WorldWideScience

Sample records for adp-ribose polymerase parp

  1.  Poly(ADP-ribose polymerase (PARP inhibitors in BRCA1/2 cancer therapy

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluzek

    2012-06-01

    Full Text Available  A majority of currently used anticancer drugs belong to a group of chemical agents that damage DNA. The efficiency of the treatment is limited by effective DNA repair systems functioning in cancer cells. Many chemotherapeutic compounds cause strong systemic toxicity. Therefore, there is still a need for new anticancer agents which are less toxic for nontransformed cells and selectively kill cancer cells. One of the most promising molecular targets in cancer therapy is poly(ADP-ribose polymerases (PARP. PARP play an essential role in repairing DNA strand breaks. Small molecule inhibitors of these enzymes have been developed and have proved to be extremely toxic for cancer cells that lack the functional BRCA1 and BRCA2 proteins that are involved in homologous recombination, a complex repair mechanism of DNA double strand breaks. Mutations in BRCA1/2 genes are associated with genetically inherited breast and ovarian cancers. Therefore PARP inhibitors may prove to be very effective and selective in the treatment of these cancer types. This review is focused on the function of BRCA1/2 proteins and poly(ADP-ribose polymerases in DNA repair systems, especially in the homologous recombination process. A short history of the studies that led to synthesis of high specificity small molecule PARP inhibitors is also presented, as well as the results of clinical trials concerning the most effective PARP inhibitors in view of their potential application in oncological treatment, particularly breast cancers.

  2. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  3. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  4. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy.

    Science.gov (United States)

    Wang, Ying-Qing; Wang, Ping-Yuan; Wang, Yu-Ting; Yang, Guang-Fu; Zhang, Ao; Miao, Ze-Hong

    2016-11-10

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.

  5. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    Energy Technology Data Exchange (ETDEWEB)

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  6. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  7. Synthesis and biological evaluation of substituted 2-phenyl-2H-indazole-7-carboxamides as potent poly(ADP-ribose) polymerase (PARP) inhibitors.

    Science.gov (United States)

    Scarpelli, Rita; Boueres, Julia K; Cerretani, Mauro; Ferrigno, Federica; Ontoria, Jesus M; Rowley, Michael; Schultz-Fademrecht, Carsten; Toniatti, Carlo; Jones, Philip

    2010-01-15

    A potent series of substituted 2-phenyl-2H-indazole-7-carboxamides were synthesized and evaluated as inhibitors of poly (ADP-ribose) polymerase (PARP). This extensive SAR exploration culminated with the identification of substituted 5-fluoro-2-phenyl-2H-indazole-7-carboxamide analog 48 which displayed excellent PARP enzyme inhibition with IC(50)=4nM, inhibited proliferation of cancer cell lines deficient in BRCA-1 with CC(50)=42nM and showed encouraging pharmacokinetic properties in rats compared to the lead 6.

  8. Structural insight into the interaction of ADP-ribose with the PARP WWE domains.

    Science.gov (United States)

    He, Fahu; Tsuda, Kengo; Takahashi, Mari; Kuwasako, Kanako; Terada, Takaho; Shirouzu, Mikako; Watanabe, Satoru; Kigawa, Takanori; Kobayashi, Naohiro; Güntert, Peter; Yokoyama, Shigeyuki; Muto, Yutaka

    2012-11-02

    The WWE domain is often identified in proteins associated with ubiquitination or poly-ADP-ribosylation. Structural information about WWE domains has been obtained for the ubiquitination-related proteins, such as Deltex and RNF146, but not yet for the poly-ADP-ribose polymerases (PARPs). Here we determined the solution structures of the WWE domains from PARP11 and PARP14, and compared them with that of the RNF146 WWE domain. NMR perturbation experiments revealed the specific differences in their ADP-ribose recognition modes that correlated with their individual biological activities. The present structural information sheds light on the ADP-ribose recognition modes by the PARP WWE domains.

  9. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole s

  10. Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent.

    Science.gov (United States)

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Luo, Yan; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F; Frost, David; Donawho, Cherrie; Jarvis, Ken; Bouska, Jennifer; Marsh, Kennan C; Rosenberg, Saul H; Giranda, Vincent L; Penning, Thomas D

    2008-07-15

    Poly(ADP-ribose) polymerases (PARPs) play significant roles in various cellular functions including DNA repair and control of RNA transcription. PARP inhibitors have been demonstrated to potentiate the effect of cytotoxic agents or radiation in a number of animal tumor models. Utilizing a benzimidazole carboxamide scaffold in which the amide forms a key intramolecular hydrogen bond for optimal interaction with the enzyme, we have identified a novel series of PARP inhibitors containing a quaternary methylene-amino substituent at the C-2 position of the benzimidazole. Geminal dimethyl analogs at the methylene-amino substituent were typically more potent than mono-methyl derivatives in both intrinsic and cellular assays. Smaller cycloalkanes such as cyclopropyl or cyclobutyl were tolerated at the quaternary carbon while larger rings were detrimental to potency. In vivo efficacy data in a B16F10 murine flank melanoma model in combination with temozolomide (TMZ) are described for two optimized analogs.

  11. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    Science.gov (United States)

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability.

  12. Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Edit, E-mail: edit.nagy@karolinska.se [Department of Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Cardiology, Karolinska University Hospital, Stockholm (Sweden); Caidahl, Kenneth [Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (Sweden); Department of Clinical Physiology, Karolinska University Hospital, Stockholm (Sweden); Franco-Cereceda, Anders [Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (Sweden); Department of Throracic Surgery, Karolinska University Hospital, Stockholm (Sweden); Baeck, Magnus [Department of Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Cardiology, Karolinska University Hospital, Stockholm (Sweden)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Oxidative stress has been implicated in the pathomechanism of calcific aortic valve stenosis. Black-Right-Pointing-Pointer We assessed the transcript levels for PARP-1 (poly(ADP-ribose) polymerase), acts as a DNA damage nick sensor in stenotic valves. Black-Right-Pointing-Pointer Early stage of diseased tricuspid valves exhibited higher mRNA levels for PARP-1 compared to bicuspid valves. Black-Right-Pointing-Pointer The mRNA levels for PARP-1 inversely correlated with the clinical stenosis severity in tricuspid valves. Black-Right-Pointing-Pointer Our data demonstrated that DNA damage pathways might be associated with stenosis severity only in tricuspid valves. -- Abstract: Oxidative stress may contribute to the hemodynamic progression of aortic valve stenosis, and is associated with activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) 1. The aim of the present study was to assess the transcriptional profile and the topological distribution of PARP-1 in human aortic valves, and its relation to the stenosis severity. Human stenotic aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery and used for mRNA extraction followed by quantitative real-time PCR to correlate the PARP-1 expression levels with the non invasive hemodynamic parameters quantifying the stenosis severity. Primary isolated valvular interstitial cells (VICs) were used to explore the effects of cytokines and leukotriene C{sub 4} (LTC{sub 4}) on valvular PARP-1 expression. The thickened areas of stenotic valves with tricuspid morphology expressed significantly higher levels of PARP-1 mRNA compared with the corresponding part of bicuspid valves (0.501 vs 0.243, P = 0.01). Furthermore, the quantitative gene expression levels of PARP-1 were inversely correlated with the aortic valve area (AVA) (r = -0.46, P = 0.0469) and AVA indexed for body surface area (BSA) (r = -0.498; P = 0.0298) only in tricuspid aortic valves

  13. No Silver Bullet – Canonical Poly(ADP-Ribose) Polymerases (PARPs) Are No Universal Factors of Abiotic and Biotic Stress Resistance of Arabidopsis thaliana

    Science.gov (United States)

    Rissel, Dagmar; Heym, Peter P.; Thor, Kathrin; Brandt, Wolfgang; Wessjohann, Ludger A.; Peiter, Edgar

    2017-01-01

    Abiotic and biotic stress can have a detrimental impact on plant growth and productivity. Hence, there is a substantial demand for key factors of stress responses to improve yield stability of crops. Members of the poly(ADP-ribose)polymerase (PARP) protein family, which post-translationally modify (PARylate) nuclear proteins, have been suggested as such universal determinants of plant stress responses. A role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants. To further elucidate the role of PARP proteins under stress, T-DNA knockout mutants for the three Arabidopsis thaliana PARP genes were subjected to drought, osmotic, salt, and oxidative stress. To exclude a functional redundancy, which was indicated by a transcriptional upregulation of the remaining parp genes, a parp triple mutant was generated. Surprisingly, parp mutant plants did not differ from wild type plants in any of these stress experiments, independent from the number of PARP genes mutated. The parp triple mutant was also analyzed for callose formation in response to the pathogenassociated molecular pattern flg22. Unexpectedly, callose formation was unaltered in the mutant, albeit pharmacological PARP inhibition robustly blocked this immune response, confirming previous reports. Evidently, pharmacological inhibition appears to be more robust than the abolition of all PARP genes, indicating the presence of so-far undescribed proteins with PARP activity. This was supported by the finding that protein PARylation was not absent, but even increased in the parp triple mutant. Candidates for novel PARP-inhibitor targets may be found in the SRO protein family. These proteins harbor a catalytic PARP-like domain and are centrally involved in stress responses. Molecular modeling analyses, employing animal PARPs as templates, indeed indicated a capability of the SRO proteins RCD1 and

  14. Reduced estradiol-induced vasodilation and poly-(ADP-ribose polymerase (PARP activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS.

    Directory of Open Access Journals (Sweden)

    Gabriella Masszi

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT. After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE. Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose polymerase (PARP activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.

  15. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats.

    Science.gov (United States)

    Guzyk, Mykhailo M; Tykhomyrov, Artem A; Nedzvetsky, Victor S; Prischepa, Irina V; Grinenko, Tatiana V; Yanitska, Lesya V; Kuchmerovska, Tamara M

    2016-10-01

    Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin's levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR

  16. Design and synthesis of N-substituted indazole-3-carboxamides as poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors(†).

    Science.gov (United States)

    Patel, Maulik R; Pandya, Kashyap G; Lau-Cam, Cesar A; Singh, Satyakam; Pino, Maria A; Billack, Blase; Degenhardt, Kurt; Talele, Tanaji T

    2012-04-01

    A group of novel N-1-substituted indazole-3-carboxamide derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy was applied to a weakly active unsubstituted 1H-indazole-3-carboxamide 2, by introducing a three carbon linker between 1H-indazole-3-carboxamide and different heterocycles, and led to compounds 4 [1-(3-(piperidine-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) =36μm] and 5 [1-(3-(2,3-dioxoindolin-1-yl)propyl)-1H-indazole-3-carboxamide, IC(50) = 6.8μm]. Compound 5 was evaluated in rats for its protective action against diabetes induced by a treatment with streptozotocin, a known diabetogenic agent. In addition to preserving the ability of the pancreas to secrete insulin, compound 5 was also able to attenuate the ensuing hyperglycemic response to a significant extent.

  17. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    Science.gov (United States)

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins.

  18. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Science.gov (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  19. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Science.gov (United States)

    Piskunova, Tatiana S.; Yurova, Maria N.; Ovsyannikov, Anton I.; Semenchenko, Anna V.; Zabezhinski, Mark A.; Popovich, Irina G.; Wang, Zhao-Qi; Anisimov, Vladimir N.

    2008-01-01

    Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis. PMID:19415146

  20. Deficiency in Poly(ADP-ribose Polymerase-1 (PARP-1 Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Tatiana S. Piskunova

    2008-01-01

    Full Text Available Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosylation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosylation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; < .05. In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.

  1. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer

    NARCIS (Netherlands)

    Klauke, M.L.; Hoogerbrugge-van der Linden, N.; Budczies, J.; Bult, P.; Prinzler, J.; Radke, C.; Krieken, J.H. van; Dietel, M.; Denkert, C.; Muller, B.M.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic

  2. Metabolic roles of poly(ADP-ribose) polymerases.

    Science.gov (United States)

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.

  3. Synthesis and SAR of novel tricyclic quinoxalinone inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1)

    Energy Technology Data Exchange (ETDEWEB)

    Miyashiro, Julie; Woods, Keith W.; Park, Chang H.; Liu, Xuesong; Shi, Yan; Johnson, Eric F.; Bouska, Jennifer J.; Olson, Amanda M.; Luo, Yan; Fry, Elizabeth H.; Giranda, Vincent L.; Penning, Thomas D.; (Abbott)

    2010-09-03

    Based on screening hit 1, a series of tricyclic quinoxalinones have been designed and evaluated for inhibition of PARP-1. Substitutions at the 7- and 8-positions of the quinoxalinone ring led to a number of compounds with good enzymatic and cellular potency. The tricyclic quinoxalinone class is sensitive to modifications of both the amine substituent and the tricyclic core. The synthesis and structure-activity relationship studies are presented.

  4. Discovery and SAR study of 2-(1-propylpiperidin-4-yl)-3H-imidazo[4,5-c]pyridine-7-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) for the treatment of cancer.

    Science.gov (United States)

    Zhu, Qihua; Wang, Xueyan; Hu, Yan; He, Xiaorong; Gong, Guoqing; Xu, Yungen

    2015-10-15

    A series of imidazo[4,5-c]pyridine-7-carboxamide derivatives as poly(ADP-ribose) polymerase (PARP) inhibitors have been developed. All target compounds were evaluated for their PARP-1 inhibitory activity and some were further assessed for cellular potency. These efforts led to identification of a novel PARP-1 inhibitor 2-(1-propylpiperidin-4-yl)-3H-imidazo[4,5-c]pyridine-7-carboxamide 11a (XZ-120312). 11a displayed strong inhibition against the PARP-1 enzyme with an IC50 of 8.6±0.6 nM and excellent potentiation of temozolomide cytotoxicity in cancer cell lines SW-620, MDA-MB-468 and A549 by 4.0, 3.0 and 7.7 times, respectively.

  5. Poly (ADP-ribose polymerase 1 is required for protein localization to Cajal body.

    Directory of Open Access Journals (Sweden)

    Elena Kotova

    2009-02-01

    Full Text Available Recently, the nuclear protein known as Poly (ADP-ribose Polymerase1 (PARP1 was shown to play a key role in regulating transcription of a number of genes and controlling the nuclear sub-organelle nucleolus. PARP1 enzyme is known to catalyze the transfer of ADP-ribose to a variety of nuclear proteins. At present, however, while we do know that the main acceptor for pADPr in vivo is PARP1 protein itself, by PARP1 automodification, the significance of PARP1 automodification for in vivo processes is not clear. Therefore, we investigated the roles of PARP1 auto ADP-ribosylation in dynamic nuclear processes during development. Specifically, we discovered that PARP1 automodification is required for shuttling key proteins into Cajal body (CB by protein non-covalent interaction with pADPr in vivo. We hypothesize that PARP1 protein shuttling follows a chain of events whereby, first, most unmodified PARP1 protein molecules bind to chromatin and accumulate in nucleoli, but then, second, upon automodification with poly(ADP-ribose, PARP1 interacts non-covalently with a number of nuclear proteins such that the resulting protein-pADPr complex dissociates from chromatin into CB.

  6. Poly (ADP-ribose) polymerase inhibitor:an evolving paradigm in the treatment of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Jingsong Zhang

    2014-01-01

    Recent phase I studies have reported single-agent activities of poly (ADP-ribose) polymerase (PARP) inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR) and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.

  7. Poly (ADP-ribose polymerase inhibitor: an evolving paradigm in the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Jingsong Zhang

    2014-06-01

    Full Text Available Recent phase I studies have reported single-agent activities of poly (ADP-ribose polymerase (PARP inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.

  8. Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C [Formula: see text] and poly (ADP-ribose) polymerase-1 (PARP-1).

    Science.gov (United States)

    Chadha, Navriti; Silakari, Om

    2016-08-01

    Current clinical studies have revealed that diabetic complications are multifactorial disorders that target two or more pathways. The majority of drugs in clinical trial target aldose reductase and protein kinase C ([Formula: see text]), while recent studies disclosed a significant role played by poly (ADP-ribose) polymerase-1 (PARP-1). In light of this, the current study was aimed to identify novel dual inhibitors of [Formula: see text] and PARP-1 using a pharmaco-informatics methodology. Pharmacophore-based 3D QSAR models for these two targets were generated using HypoGen and used to screen three commercially available chemical databases to identify dual inhibitors of [Formula: see text] and PARP-1. Overall, 18 hits were obtained from the screening process; the hits were filtered based on their drug-like properties and predicted binding affinities (docking analysis). Important amino acid residues were predicted by developing a fingerprint of the active site using alanine-scanning mutagenesis and molecular dynamics. The stability of the complexes (18 hits with both proteins) and their final binding orientations were investigated using molecular dynamics simulations. Thus, novel hits have been predicted to have good binding affinities for [Formula: see text] and PARP-1 proteins, which could be further investigated for in vitro/in vivo activity.

  9. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Directory of Open Access Journals (Sweden)

    Markus Dahl

    Full Text Available BACKGROUND: Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling. METHODS: A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference. RESULTS: TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1. CONCLUSION

  10. Inhibition of poly(ADP-ribose polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Poly(ADP-ribosylation is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose polymerases (PARPs. In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.

  11. The Role of Poly(ADP-ribose Polymerase-1 in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Samuel García

    2015-01-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.

  12. Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca(2+) Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?

    Science.gov (United States)

    Gerace, Elisabetta; Pellegrini-Giampietro, Domenico E; Moroni, Flavio; Mannaioni, Guido

    2015-01-01

    A significant number of laboratories observed that poly (ADP-ribose) polymerase (PARP) inhibitors, administered a few hours after ischemic or traumatic brain injury, may drastically reduce the subsequent neurological damage. It has also been shown that PARP inhibitors, administered for 24 hours to rats with permanent middle cerebral artery occlusion (MCAO), may reduce the number of dying neurons for a long period after surgery, thus suggesting that these agents could reduce the delayed brain damage and the neurological and cognitive impairment (dementia) frequently observed a few months after a stroke. In organotypic hippocampal slices exposed to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), an alkylating agent able to activate PARP, a selective and delayed degeneration of the CA1 pyramidal cells which was anatomically similar to that observed after a short period of oxygen and glucose deprivation (OGD) has been described. Biochemical and electrophysiological approaches showed that MNNG exposure caused an increased expression and function of the calcium permeable α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in the CA1 but not in the CA3 hippocampal region. PARP inhibitors prevented this increase and reduced CA1 cell death. The AMPA receptor antagonist 2,3-dihydroxy-6- nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione or the selective Ca(2+) permeable AMPA channel blocker 1-Naphthyl acetyl spermine (NASPM), also reduced the MNNG-induced CA1 pyramidal cell death. Since activation of PARP-1 facilitate the expression of Ca(2+) permeable channels and the subsequent delayed cell death, PARP inhibitors administered a few hours after a stroke may not only reduce the early post-ischemic brain damage but also the late neuronal death frequently occurring after severe stroke.

  13. Poly (ADP-ribose) polymerase-1 gene polymorphism in various Chinese nationalities

    Institute of Scientific and Technical Information of China (English)

    Hairong Liang; Junli Shao; Yuting Gao; Linhua Liu; Juanxiu Dai; Yun He; Huanwen Tang

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) can exacerbate ischemic brain injury and lessen ischemic neuronal death, which may be associated with PARP-1 polymorphisms. The present study investigated human PARP-1 gene polymorphisms in various Chinese nationalities, the results of which could potentially help in the treatment and prevention of neurologic diseases. Genetic polymorphisms of seven exons in the PARP-1 gene, in 898 Chinese Han, Buyi, Shui, Miao, and Zhuang subjects, were investigated by PCR-single-strand conformation polymorphism. A single-strand conformation polymorphism variant in exons 12, 13, 16, and 17 of the PARP-1 gene was identified in 148 people, with two stationary bands showing three degenerative single strands.Results showed that the PARP-1 gene polymorphisms exist in various nationalities, and may act as a biomarker for susceptibility to disease.

  14. Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.

    Science.gov (United States)

    Messner, Simon; Schuermann, David; Altmeyer, Matthias; Kassner, Ingrid; Schmidt, Darja; Schär, Primo; Müller, Stefan; Hottiger, Michael O

    2009-11-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein and functions as a molecular stress sensor. At the cellular level, PARP1 has been implicated in a wide range of processes, such as maintenance of genome stability, cell death, and transcription. PARP1 functions as a transcriptional coactivator of nuclear factor kappaB (NF-kappaB) and hypoxia inducible factor 1 (HIF1). In proteomic studies, PARP1 was found to be modified by small ubiquitin-like modifiers (SUMOs). Here, we characterize PARP1 as a substrate for modification by SUMO1 and SUMO3, both in vitro and in vivo. PARP1 is sumoylated at the single lysine residue K486 within its automodification domain. Interestingly, modification of PARP1 with SUMO does not affect its ADP-ribosylation activity but completely abrogates p300-mediated acetylation of PARP1, revealing an intriguing crosstalk of sumoylation and acetylation on PARP1. Genetic complementation of PARP1-depleted cells with wild-type and sumoylation-deficient PARP1 revealed that SUMO modification of PARP1 restrains its transcriptional coactivator function and subsequently reduces gene expression of distinct PARP1-regulated target genes.

  15. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer.

    Science.gov (United States)

    Todorova, Tanya; Bock, Florian J; Chang, Paul

    2015-06-01

    Post-transcriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) polymerase-13 (PARP13), also known as ZC3HAV1 and zinc-finger antiviral protein (ZAP), is an RNA-binding protein that regulates the stability and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally affect miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the prosurvival cytokine receptor tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 4 (TRAILR4) suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target.

  16. Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    OpenAIRE

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; SzabÓ, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 2...

  17. Structural requirements of some 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide derivatives as poly (ADP-ribose) polymerase (PARP) for the treatment of cancer: QSAR approach.

    Science.gov (United States)

    Sharma, Mukesh C

    2014-09-02

    The present study is aimed to elucidate the structural features of substituted 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide required for poly (ADP-ribose) polymerase inhibition and to obtain predictive 2D QSAR models to guide the rational synthesis of novel poly (ADP-ribose) polymerase inhibitors. The statistical analysis has shown that excellent results are obtained by using partial least regression based on simulated annealing method. The best model was selected based on the highest correlation coefficient r(2) = 0.8590 and cross validated squared correlation coefficient q(2) = 0.7875 with external predictive ability of pred_r(2) = 0.7407 was developed by stepwise PLS method with the descriptors like T_N_F_1, SdsCHcount, and Rotatable Bond Count. The generated models provide insight into the influence of various interactive fields on the activity and, thus, can help in designing and forecasting the inhibition activity of novel (ADP-ribose) polymerase molecules.

  18. Structural Requirements of Some 2-(1-Propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide Derivatives as Poly (ADP-Ribose) Polymerase (PARP) for the Treatment of Cancer: QSAR Approach.

    Science.gov (United States)

    Sharma, Mukesh C

    2016-03-01

    The present study is aimed to elucidate the structural features of substituted 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide required for poly (ADP-ribose) polymerase inhibition and to obtain predictive 2D QSAR models to guide the rational synthesis of novel poly (ADP-ribose) polymerase inhibitors. The statistical analysis has shown that excellent results are obtained by using partial least regression based on simulated annealing method. The best model was selected based on the highest correlation coefficient r (2) = 0.8590, and cross-validated squared correlation coefficient q (2) = 0.7875 with external predictive ability of [Formula: see text] was developed by stepwise PLS method with the descriptors like T_N_F_1, SdsCHcount, and Rotatable Bond Count. The generated models provide insight into the influence of various interactive fields on the activity and, thus, can help in designing and forecasting the inhibition activity of novel (ADP-ribose) polymerase molecules.

  19. Differential Role of Poly(ADP-ribose polymerase in D. discoideum growth and development

    Directory of Open Access Journals (Sweden)

    Begum Rasheedunnisa

    2011-03-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. Results In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. Conclusion These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP.

  20. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  1. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities.

    Science.gov (United States)

    Khadka, Prabhat; Hsu, Joseph K; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A; Mangerich, Aswin; Croteau, Deborah L; Bohr, Vilhelm A

    2015-12-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response.

  2. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    Science.gov (United States)

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  3. Poly (ADP) ribose polymerase inhibition: A potential treatment of malignant peripheral nerve sheath tumor.

    Science.gov (United States)

    Kivlin, Christine M; Watson, Kelsey L; Al Sannaa, Ghadah A; Belousov, Roman; Ingram, Davis R; Huang, Kai-Lieh; May, Caitlin D; Bolshakov, Svetlana; Landers, Sharon M; Kalam, Azad Abul; Slopis, John M; McCutcheon, Ian E; Pollock, Raphael E; Lev, Dina; Lazar, Alexander J; Torres, Keila E

    2016-01-01

    Poly (ADP) ribose polymerase (PARP) inhibitors, first evaluated nearly a decade ago, are primarily used in malignancies with known defects in DNA repair genes, such as alterations in breast cancer, early onset 1/2 (BRCA1/2). While no specific mutations in BRCA1/2 have been reported in malignant peripheral nerve sheath tumors (MPNSTs), MPNST cells could be effectively targeted with a PARP inhibitor to drive cells to synthetic lethality due to their complex karyotype and high level of inherent genomic instability. In this study, we assessed the expression levels of PARP1 and PARP2 in MPNST patient tumor samples and correlated these findings with overall survival. We also determined the level of PARP activity in MPNST cell lines. In addition, we evaluated the efficacy of the PARP inhibitor AZD2281 (Olaparib) in MPNST cell lines. We observed decreased MPNST cell proliferation and enhanced apoptosis in vitro at doses similar to, or less than, the doses used in cell lines with established defective DNA repair genes. Furthermore, AZD2281 significantly reduced local growth of MPNST xenografts, decreased the development of macroscopic lung metastases, and increased survival of mice with metastatic disease. Our results suggest that AZD2281 could be an effective therapeutic option in MPNST and should be further investigated for its potential clinical use in this malignancy.

  4. Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors.

    Science.gov (United States)

    Shiokawa, Motoko; Masutani, Mitsuko; Fujihara, Hisako; Ueki, Keisuke; Nishikawa, Ryo; Sugimura, Takashi; Kubo, Harumi; Nakagama, Hitoshi

    2005-02-01

    Accumulated evidence suggests that poly(ADP-ribose) polymerase-1 (PARP-1) is involved in DNA repair, cell-death induction, differentiation and tumorigenesis. Parp-1 deficiency also induces trophoblast differentiation from mouse embryonic stem cells during teratocarcinoma-like tumor formation. To understand the relationship of PARP-1 dysfunction and development of germ cell tumors, we conducted a genetic analysis of the PARP-1 gene in human germ cell tumors. Sixteen surgical specimens of germ cell tumors that developed in the brain and testes were used. Two known single nucleotide polymorphisms (SNPs) (Val762Ala and Lys940Arg), which are listed in the SNP database of the NCBI (National Center for Biotechnology Information), were detected. In both cases, cSNPs encoded amino acids located within peptide stretches in the catalytic domain, which are highly conserved among various animal species. Furthermore, another novel sequence alteration, a base change of ATG to ACG, was identified in a tumor specimen, which would result in the amino acid substitution, Met129Thr. This base change was observed in one allele of both tumor and normal tissues, suggesting that it is either a rare SNP or a germline mutation of the PARP-1 gene. Notably, the amino acid Met129 is located within the second zinc finger domain, which is essential for DNA binding and is conserved among animal species. One SNP in intron 2 and one in the upstream 5'-UTR (untranslated region) were also detected.

  5. Association of poly(ADP-ribose) polymerase with nuclear subfractions catalyzed with sodium tetrathionate and hydrogene peroxide crosslinks.

    Science.gov (United States)

    Desnoyers, S; Kirkland, J B; Poirier, G G

    1996-06-21

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which catalyzes the transfer of ADP-ribose units from NAD+ to a variety of nuclear proteins under the stimulation of DNA strand break. To examine its role in DNA repair, we have been studying the interaction of PARP with other nuclear proteins using disulfide cross-linking, initiated by sodium tetrathionate (NaTT). Chinese Hamster Ovary (CHO) cells were extracted sequentially with Nonidet P40 (detergent), nucleases (DNase+RNase), and high salt (1.6 M NaCl) with and without the addition of a sulfhydryl reducing agent. The residual structures are referred to as the nuclear matrix, and are implicated in the organization of DNA repair and replication. Treatment of the cells with NaTT causes the crosslinking of PARP to the nuclear matrix. Activating PARP by pretreating the cells with H2O2 did not increase the cross-linking of PARP with the nuclear matrix, suggesting a lack of additional interaction of the enzyme with the nuclear matrix during DNA repair. Both NaTT and H2O2 induced crosslinks of PARP that were extractable with high salt. To shorten the procedure, these crosslinks were extracted from cells without nucleases and high salt treatment, using phosphate buffer. Using western blotting, these crosslinks appeared as a smear of high molecular weight species including a possible dimer of PARP at 230 kDa, which return to 116 kDa following reduction with beta-mercaptoethanol.

  6. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer.

    Science.gov (United States)

    Klauke, Marie-Luise; Hoogerbrugge, Nicoline; Budczies, Jan; Bult, Peter; Prinzler, Judith; Radke, Cornelia; van Krieken, J Han J M; Dietel, Manfred; Denkert, Carsten; Müller, Berit Maria

    2012-10-01

    Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic and 39 familial breast cancer cases. The two groups were matched for hormone receptor status and human epidermal growth factor receptor 2 status. Additionally, they were matched by grading with a maximum difference of ±1 degree (e.g., G2 instead of G3). Cytoplasmic PARP (cPARP) expression was significantly higher in familial compared to sporadic breast cancer (P = 0.008, chi-squared test for trends) and a high nuclear PARP expression (nPARP) was significantly more frequently observed in familial breast cancer (64 %) compared with sporadic breast cancer (36 %) (P = 0.005, chi-squared test). The overall PARP expression was significantly higher in familial breast cancer (P = 0.042, chi-squared test). In familial breast cancer, a combination of high cPARP and high nPARP expression is the most common (33 %), whereas in sporadic breast cancer, a combination of low cPARP and intermediate nPARP expression is the most common (39 %). Our results show that the overall PARP expression in familial breast cancer is higher than in sporadic breast cancer which might suggest they might respond better to treatment with PARP inhibitors.

  7. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    Science.gov (United States)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  8. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    Science.gov (United States)

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.

  9. The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans.

    Science.gov (United States)

    Gagnon, Steve N; Hengartner, Michael O; Desnoyers, Serge

    2002-11-15

    Poly(ADP-ribose) polymerases (PARPs) are an expanding, well-conserved family of enzymes found in many metazoan species, including plants. The enzyme catalyses poly(ADP-ribosyl)ation, a post-translational modification that is important in DNA repair and programmed cell death. In the present study, we report the finding of an endogenous source of poly(ADP-ribosyl)ation in total extracts of the nematode Caenorhabditis elegans. Two cDNAs encoding highly similar proteins to human PARP-1 (huPARP-1) and huPARP-2 are described, and we propose to name the corresponding enzymes poly(ADP-ribose) metabolism enzyme 1 (PME-1) and PME-2 respectively. PME-1 (108 kDa) shares 31% identity with huPARP-1 and has an overall structure similar to other PARP-1 subfamily members. It contains sequences having considerable similarity to zinc-finger motifs I and II, as well as with the catalytic domain of huPARP-1. PME-2 (61 kDa) has structural similarities with the catalytic domain of PARPs in general and shares 24% identity with huPARP-2. Recombinant PME-1 and PME-2 display PARP activity, which may partially account for the similar activity found in the worm. A partial duplication of the pme-1 gene with pseudogene-like features was found in the nematode genome. Messenger RNA for pme-1 are 5'-tagged with splice leader 1, whereas those for pme - 2 are tagged with splice leader 2, suggesting an operon-like expression for pme - 2. The expression pattern of pme-1 and pme-2 is also developmentally regulated. Together, these results show that PARP-1 and -2 are conserved in evolution and must have important functions in multicellular organisms. We propose using C. elegans as a model to understand better the functions of these enzymes.

  10. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1

    Science.gov (United States)

    Wang, Yingfei; An, Ran; Umanah, George K.; Park, Hyejin; Nambiar, Kalyani; Eacker, Stephen M.; Kim, BongWoo; Bao, Lei; Harraz, Maged M.; Chang, Calvin; Chen, Rong; Wang, Jennifer E.; Kam, Tae-In; Jeong, Jun Seop; Xie, Zhi; Neifert, Stewart; Qian, Jiang; Andrabi, Shaida A.; Blackshaw, Seth; Zhu, Heng; Song, Hongjun; Ming, Guo-li; Dawson, Valina L.; Dawson, Ted M.

    2016-01-01

    Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1–dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1–dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation. PMID:27846469

  11. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    Prashanth Komirishetty; Aparna Areti; Ranadeep Gogoi; Ramakrishna Sistla; Ashutosh Kumar

    2016-01-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially per-oxynitrite atfer the nerve injury. hTey provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inlfammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neu-ronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown beneifts in treating experimental neuropathy. hTis article reviews the in-volvement of PARP over-activation in trauma induced neuropathy and therapeutic signiifcance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  12. Poly(ADP-ribose polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    Directory of Open Access Journals (Sweden)

    Prashanth Komirishetty

    2016-01-01

    Full Text Available Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose polymerase (PARP upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  13. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    Science.gov (United States)

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  14. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    Science.gov (United States)

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  15. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    Science.gov (United States)

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  16. Poly(ADP-ribose) polymerase 1 inhibition protects human aortic endothelial cells against LPS-induced inflammation response

    Institute of Scientific and Technical Information of China (English)

    Xiaonu Peng; Wenjun Li; Wei Zhang

    2012-01-01

    Atherosclerosis is a chronic inflammatory disease.Tolllike receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response.Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes.In this study,we investigated the role and the underlying mechanisms of PARP1 on lipopolysaccharide (LPS)-induced inflammation in human aortic endothelial cells.Compared with the control,LPS stimulation increased the protein expression of TLR4 and PARP1.TLR4 inhibition reduced LPS-induced upregulation of inducible nitric oxide synthase (iNOS) and ICAM-1 as well as PARP1. Nuclear factor κB (NF-κB) inhibition decreased ICAM-1 and iNOS expression.Inhibition of PARP1 decreased protein expression of inflammatory cytokines induced by LPS stimulation,probably through preventing NF-KB nuclear translocation. Our study demonstrated that LPS increased ICAM-1 and iNOS expression via TLR4/PARP1/NF-KB pathway.PARP1 might be an indispensable factor in TLR4-mediated inflammation after LPS stimulation.PARP1 inhibition might shed light on the treatment of LPS-induced inflammatory cytokines expression during atherosclerosis.

  17. Cloning and expression of cDNA for human poly(ADP-ribose)polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, H.M.; Chen, D.; Cherney, B.; Bhatia, K.; Notario, V.; Giri, C.; Stein, G.; Slattery, E.; Roeder, R.G.; Smulson, M.E.

    1987-03-01

    cDNAs encoding poly(ADP-ribose) polymerase from a human hepatoma lambdagt11 cDNA library were isolated by immunological screening. One insert of 1.3 kilobases (kb) consistently hybridized on RNA gel blots to an mRNA species of 3.6-3.7 kb, which is consistent with the size of RNA necessary to code for the polymerase protein (116 kDa). This insert was subsequently used in both in vitro hybrid selection and hybrid-arrested translation studies. An mRNA species from HeLa cells of 3.6-3.7 kb was selected that was translated into a 116-kDa protein, which was selectively immunoprecipitated with anti-poly(ADP-ribose) polymerase. To confirm that the 1.3-kb insert from lambdagt11 encodes for poly(ADP-ribose) polymerase, the insert was used to screen a 3- to 4-kb subset of a transformed human fibroblast cDNA library in the Okayama-Berg vector. One of these vectors was tested in transient transfection experiments in COS cells. This cDNA insert contained the complete coding sequence for polymerase. Using pcD-p(ADPR)P as probe, it was observed that the level of poly(ADP-ribose) polymerase mRNA was elevated at 5 and 7 hr of S phase of the HeLa cell cycle, but was unaltered when artificial DNA strand breaks are introduced in HeLa cells by alkylating agents.

  18. Current Status of Poly(ADP-ribose Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    David J. Hiller

    2012-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer that is clinically defined as lacking estrogen and progesterone receptors, as well as being ERBB2 (HER-2 negative. Without specific therapeutic targets, TNBC carries a worse prognosis than other types of breast cancer in the absence of therapy. Research has now further differentiated breast cancer into subtypes based on genetic expression patterns. One of these subtypes, basal-like, frequently overlaps with the clinical picture of TNBC. Additionally, both TNBC and basal-like breast cancer link to BRCA mutations. Recent pharmaceutical advances have created a class of drugs, poly(ADP-ribose polymerase (PARP inhibitors, which are showing potential to effectively treat these patients. The aim of this paper is to summarize the basis behind PARP inhibitors and update the current status of their development in clinical trials for the treatment of TNBC.

  19. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells

    OpenAIRE

    Drel, Viktor R.; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G.

    2006-01-01

    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with...

  20. 3-aminobenzamide, one of poly(ADP-ribose)polymerase-1 inhibitors, rescuesapoptosisin rat models of spinal cord injury.

    Science.gov (United States)

    Meng, Xianqing; Song, Wenqi; Deng, Bin; Xing, Ziling; Zhang, Weihong

    2015-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is anubiquitous, DNA repair-associated enzyme, which participates in gene expression, cell death, central nerve system (CNS) disorders and oxidative stress. According to the previous studies, PARP-1 over-activation may lead to over-consumption of ATP and even cell apoptosis. Spinal cord injury (SCI) is an inducement towards PARP-1 over-activation due to its massive damage to DNA. 3-aminobenzamide (3-AB) is a kind of PARP-1 inhibitors. The relationship among PARP-1, 3-AB, SCI and apoptosis has not been fully understood. Hence, in the present study, we focused on the effects of 3-AB on cell apoptosis after SCI. Accordingly, SCI model was constructed artificially, and 3-AB was injected intrathecally into the Sprague-Dawley (SD) rats. The results demonstrated an increase in cell apoptosis after SCI. Furthermore, PARP-1 was over-activated after SCI but inhibited by 3-AB injection. In addition, apoptosis-inducing factor (AIF) was inhibited but B-cell lymphoma-2 (Bcl-2) was up-regulated by 3-AB. Interestingly, caspase-3 was not significantly altered with or without 3-AB. In conclusion, our experiments showed that 3-AB, as a PARP-1 inhibitor, could inhibit cell apoptosis after SCI in caspase-independent way, which could provide a better therapeutic target for the treatment of SCI.

  1. Continuous inhibition of poly(ADP-ribose) polymerase does not reduce reperfusion injury in isolated rat heart.

    Science.gov (United States)

    Nishizawa, Kenya; Yanagida, Shigeki; Yamagishi, Tadashi; Takayama, Eiichi; Bessho, Motoaki; Kusuhara, Masatoshi; Adachi, Takeshi; Ohsuzu, Fumitaka

    2013-07-01

    Poly(ADP-ribose) polymerase (PARP), an enzyme that is important to the regulation of nuclear function, is activated by DNA strand breakage. In massive DNA damage, PARP is overactivated, exhausting nicotinamide adenine dinucleotide and leading to cell death. Recent studies have succeeded in reducing cellular damage in ischemia/reperfusion by inhibiting PARP. However, PARP plays an important part in the DNA repair system, and its inhibition may be hazardous in certain situations. We compared the short-time inhibition of PARP against continuous inhibition during ischemia/reperfusion using isolated rat hearts. The hearts were reperfused after 21 minutes of ischemia with a bolus injection of 3-aminobenzamide (3-AB) (10 mg/kg) followed by continuous 3-AB infusion (50 μM) for the whole reperfusion period or for the first 6 minutes or without 3-AB. At the end of reperfusion, contractile function, high-energy phosphate content, nicotinamide adenine dinucleotide content, and infarcted area were significantly preserved in the 3-AB 6-minute group. In the 3-AB continuous group, these advantages were not apparent. At the end of reperfusion, PARP cleavage had significantly proceeded in the 3-AB continuous group, indicating initiation of the apoptotic cascade. Thus, continuous PARP inhibition by 3-AB does not reduce reperfusion injury in the isolated rat heart, which may be because of acceleration of apoptosis.

  2. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K;

    2007-01-01

    . Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced...... apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative...

  3. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy); Caligo, Maria Adelaide [Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa (Italy); Galli, Alvaro, E-mail: alvaro.galli@ifc.cnr.it [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy)

    2015-04-15

    Highlights: • The human poly (ADP-ribose) polymerase 1 (PARP-1) gene affects growth and UV-induced homologous recombination in yeast. • PARP-1 chemical inhibition impacts yeast growth and UV-induced recombination. • A genome-wide screen identifies 99 yeast genes that suppress the growth defect inferred by PARP-1. • Bioinformatics analysis identifies 41 human orthologues that may have a role in PARP-1 intracellular localization. • The findings suggest that PARP-1 nuclear localization may affect the response to PARP inhibitors in cancer therapy. - Abstract: The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the

  4. Association of poly(ADP-ribose) polymerase activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock

    Institute of Scientific and Technical Information of China (English)

    Li Li; Hu Bangchuan; Gong Shijin; Yu Yihua; Dai Haiwen; Yan Jing

    2014-01-01

    Background Severe sepsis and septic shock are the leading causes of morbidity and mortality in hospitalized patients.This study aimed to investigate the association of poly(ADP-ribose) polymerase-1 (PARP-1) activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock.Methods A total of 64 patients with septic shock were divided into the survival group (n=41) and the nonsurvival group (n=23) according to mortality at 28 days after enrollments.PARP-1 activity in circulating mononuclear cells,brain natriuretic peptide,Acute Physiology and Chronic Health Evaluation Ⅱ score,the cardiac index (CI),the cardiac function index (CFI),global ejection fraction (GEF),and the left ventricular contractility index (dp/dt max) were measured after admission to the intensive care unit.Results PARP-1 activity in circulating mononuclear cells of nonsurvival patients with septic shock was significantly higher than that in survival patients.PARP-1 activity in circulating mononuclear cells was strongly,negatively correlated with the CI,the CFI,GEE and dp/dt max.Multiple Logistic regression analysis showed that PARP-1 activity in circulating mononuclear cells was an independent risk factor of myocardial dysfunction.The optimal cutoff point of PARP-1 activity for predicting 28-day mortality was 942 nmol/L with a sensibility of 78.2% and specificity of 65.1%.Conclusion PARP-1 activity in circulating mononuclear cells is significantly associated with myocardial dysfunction and may have prognostic value in patients with septic shock.

  5. 3-aminobenzamide, a poly (ADP ribose) polymerase inhibitor, enhances wound healing in whole body gamma irradiated model.

    Science.gov (United States)

    El-Hamoly, Tarek; El-Denshary, Ezzeddin S; Saad, Shokry Mohamed; El-Ghazaly, Mona A

    2015-09-01

    The custom use of radiotherapy was found to participate in the development of chronic unhealed wounds. In general, exposure to gamma radiation stimulates the production of reactive oxygen species (ROS) that eventually leads to damaging effect. Conversely, overexpression of a nuclear poly (ADP-ribose) polymerase enzyme (PARP) after oxidative insult extremely brings about cellular injury due to excessive consumption of NAD and ATP. Here, we dedicated our study to investigate the role of 3-aminobenzamide (3-AB), a PARP inhibitor, on pregamma irradiated wounds. Two full-thickness (6 mm diameter) wounds were created on the dorsum of Swiss albino mouse. The progression of wound contraction was monitored by capturing daily photo images. Exposure to gamma radiation (6Gy) exacerbated the normal healing of excisional wounds. Remarkably, topical application of 3-AB cream (50 µM) revealed a marked acceleration in the rate of wound contraction. Likewise, PARP inhibition ameliorated the unbalanced oxidative/nitrosative status of granulated skin tissues. Such effect was significantly revealed by the correction of the reduced antioxidant capacity and the enhanced lipid peroxidation, hydrogen peroxide, and myeloperoxidase contents. Moreover, application of 3-AB modified the cutaneous nitrite content throughout healing process. Conversely, the expressions of pro-inflammatory cytokines were down-regulated by PARP inhibition. The mitochondrial ATP content showed a lower consumption rate on 3-AB-treated wound bed as well. In parallel, the mRNA expressions of Sirt-1 and acyl-COA oxidase-2 (ACOX-2) were up-regulated; whom functions control the mitochondrial ATP synthesis and lipid metabolism. The current data suggested that inhibition of PARP-1 enzyme may accelerate the delayed wound healing in whole body gamma irradiated mice by early modifying the oxidative stress as well as the inflammatory response.

  6. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  7. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    Directory of Open Access Journals (Sweden)

    Francisco O'Valle

    Full Text Available UNLABELLED: Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD transplantation. Ischemia-reperfusion (IR injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1 activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN. MATERIALS AND METHODS: Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls and in murine Parp-1 knockout model of IR injury. RESULTS: PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603, time to effective diuresis (r = 0.770, serum creatinine levels at biopsy (r = 0.649, and degree of ATN (r = 0.810 (p = 0.001, Pearson test. In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  8. Effects of poly (ADP-ribose) polymerase inhibitor on early peripheral neuropathy in streptozotocin-diabetic rat

    Institute of Scientific and Technical Information of China (English)

    Wei Guo; Chenghong Zheng; Jie Xu

    2007-01-01

    Objective: To explore the effects and mechanisms of poly (ADP-ribose) polymerase (PARP) inhibitor 3-aminobenzamide on nerve lesions in streptozotocin-diabetic rats. Methods: Experimental rats were divided into normal control group(NC group), diabetic control group (DC group)and diabetic group treated with 3-aminobenzamide (DT group ) .Nerve conduction velocity (NCV),serum superoxide dismutase (SOD) activity and serum malondialdehyde (MDA) concentration,phosphocreatine (Pcr),creatine (Cr) concentration in sciatic nerves were evaluated after 4 weeks. Results: SOD, Pcr activity, and NCV were higher (P < 0.05)and MDA concentration were significantly lower in DT group, compared with DC group (P < 0.01). Meanwhile, ATP and Cr in sciatic nerves were similar in DT group, compare d with DC group (P > 0.05). Conclusion: 3-aminobenzamide could alleviate the established functional and metabolic abnormalities of early DPN in the streptozotocin-induced diabetic rat models,which provided a novel approach for prevention and treatment of diabetic neuropathy.

  9. Anti-cancer action of 4-iodo-3-nitrobenzamide in combination with buthionine sulfoximine: inactivation of poly(ADP-ribose) polymerase and tumor glycolysis and the appearance of a poly(ADP-ribose) polymerase protease.

    Science.gov (United States)

    Bauer, Pal I; Mendeleyeva, Jerome; Kirsten, Eva; Comstock, John A; Hakam, Alaeddin; Buki, Kalman G; Kun, Ernest

    2002-02-01

    E-ras 20 tumorigenic malignant cells and CV-1 non-tumorigenic cells were treated with a drug combination of 4-iodo-3-nitrobenzamide (INO(2)BA) and buthionine sulfoximine (BSO). Growth inhibition of E-ras 20 cells by INO(2)BA was augmented 4-fold when cellular GSH content was diminished by BSO, but the growth rate of CV-1 cells was not affected by the drug combination. Analyses of the intracellular fate of the prodrug INO(2)BA revealed that in E-ras 20 cells about 50% of the intracellular reduced drug was covalently protein-bound, and this binding was dependent upon BSO, whereas in CV-1 cells BSO did not influence protein binding. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the protein that covalently binds the reduction product of INO(2)BA, which is 4-iodo-3-nitrosobenzamide. Since only the enzymatically reduced drug INOBA bound covalently to GAPDH, the BSO-dependent covalent protein-drug association indicated an apparent nitro-reductase activity present in E-ras 20 cells, but not in CV-1 cells, explaining the selective toxicity. Covalent binding of INOBA to GAPDH inactivated this enzyme in vitro; INO(2)BA+BSO also inactivated cellular glycolysis in E-ras 20 cells because it provided the precursor to the inhibitory species: INOBA. Another event that occurred in INO(2)BA+BSO-treated E-ras 20 cells was the progressive appearance of a poly(ADP-ribose) polymerase protease. This enzyme was partially purified and characterized by the polypeptide degradation product generated from PARP I, which exhibited a 50kDa mass. This pattern of proteolysis of PARP I is consistent with a drug-induced necrotic cell killing pathway.

  10. Neuroprotective effects of a novel water-soluble poly(ADP-ribose) polymerase-1 inhibitor, MP-124, in in vitro and in vivo models of cerebral ischemia.

    Science.gov (United States)

    Egi, Yasuhiro; Matsuura, Shigeru; Maruyama, Tomoyuki; Fujio, Masakazu; Yuki, Satoshi; Akira, Toshiaki

    2011-05-10

    Cerebral ischemia induces excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), leading to neuronal cell death and the development of post-ischemic dysfunction. Blockade of PARP-related signals during cerebral ischemia has become a focus of interest as a new therapeutic approach for acute stroke treatment. The purpose of the present study was to examine the pharmacological profiles of MP-124, a novel water-soluble PARP-1 inhibitor, and its neuroprotective effects on ischemic injury in vitro and in vivo. MP-124 demonstrated competitive inhibition of the PARP-1 activity of human recombinant PARP-1 enzyme (Ki=16.5nmol/L). In P388D(1) cells, MP-124 inhibited the LDH leakage induced by H(2)O(2) in a concentration-dependent manner. (IC(50)=20.8nmol/L). In rat primary cortical neurons, MP-124 also inhibited the NAD depletion and polymerized ADP-ribose formation induced by H(2)O(2) exposure. Moreover, we investigated the neuroprotective effects of MP-124 in rat permanent and transient stroke models. In the rat permanent middle cerebral artery occlusion (MCAO) model, MP-124 was administered intravenously for 24h from 5min after the onset of MCAO. MP-124 (1, 3 and 10mg/kg/h) significantly inhibited the cerebral infarction in a dose-dependent manner (18, 42 and 48%). In rat transient MCAO model, MP-124 was administered intravenously from 30min after the onset of MCAO. MP-124 (3 and 10mg/kg/h) significantly reduced the infarct volume (53% and 50%). The present findings suggest that MP-124 acts as a potent neuroprotective agent in focal ischemia and its actions can be attributed to a reduction in NAD depletion and PAR formation.

  11. Minocycline postconditioning protects myocardium from ischemia-reper-fusion injury through attenuating poly(ADP-ribose) polymerase excessive activation%米诺环素后处理通过抑制 PARP 过度活化减轻心肌缺血/再灌注损伤

    Institute of Scientific and Technical Information of China (English)

    张利群; 陈冬; 齐国先

    2015-01-01

    目的:探讨米诺环素后处理能否通过抑制多腺苷二磷酸核糖聚合酶1( PARP-1)过度活化减轻大鼠心肌缺血/再灌注( I/R)损伤。方法:结扎大鼠冠状动脉左前降支45 min,再灌注2 h,建立心肌I/R模型。将90只雄性Wistar大鼠随机分为假手术( sham)组, I/R组,低、高剂量米诺环素组及PARP抑制剂3-氨基苯甲酰胺(3-AB)组。氯化三苯基四氮唑(TTC)和伊文思蓝双染法检测心肌梗死范围,HE 染色观察心肌组织形态学改变, TUNEL法评估心肌细胞凋亡程度,酶联免疫吸附法测定血清肿瘤坏死因子α( TNF-α)和白细胞介素1β( IL-1β)含量,Western blot法检测再灌注心肌及外周血白细胞内PARP-1活化产物多腺苷二磷酸核糖( PAR)的表达。结果:与sham组比较,心肌、外周血白细胞内PAR表达及血清TNF-α、IL-1β含量明显升高。与I/R组比较,米诺环素低、高剂量及3-AB后处理组均能显著减少梗死范围及心肌细胞凋亡程度,同时明显降低心肌、外周血白细胞内PAR表达及血清TNF-α、IL-1β含量。米诺环素高剂量组与3-AB组比较无显著差异。结论:米诺环素后处理可能通过抑制心肌及外周血白细胞PARP过度活化减轻大鼠心肌I/R损伤。%AIM:To investigate whether minocycline postconditioning protects rat myocardium from ischemia-reperfusion ( I/R ) injury through attenuating poly ( ADP-ribose ) polymerase-1 ( PARP-1 ) excessive activation. METHODS:The left anterior descending coronary artery was ligated for 45 min and then reopened for 2 h to establish the rat model of myocardial ischemia-reperfusion injury.The male Wistar rats ( n =90 ) were randomly divided into sham group, I/R group, low-and high-dose minocycline groups, and 3-aminobenzamide (3-AB, PARP inhibitor) group.The myocardial infarct size was measured by Evans blue and 2,3,5-triphenyltetrazolium

  12. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi-Scharber, Mika, E-mail: maoyagi@bmrn.com [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States); Gardberg, Anna S. [Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110 (United States); Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A. [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States)

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  13. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells.

    Science.gov (United States)

    Drel, Viktor R; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G

    2006-04-15

    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with/without the AR inhibitor fidarestat (F, 16 mg kg(-1) day(-1)) for 6 weeks starting from induction of diabetes. Glucose, sorbitol, and fructose concentrations were significantly increased in the renal cortex of D vs C (p diabetes-induced increase in kidney weight as well as nitrotyrosine (NT, a marker of peroxynitrite-induced injury and nitrosative stress), and poly(ADP-ribose) (a marker of PARP activation) accumulation, assessed by both immunohistochemistry and Western blot analysis, in glomerular and tubular compartments of the renal cortex. In vitro studies revealed the presence of both AR and PARP-1 in human mesangial cells, and none of these two variables were affected by high glucose or F treatment. Nitrosylated and poly(ADP-ribosyl)ated proteins (Western blot analysis) accumulated in cells cultured in 30 mM D-glucose (vs 5.55 mM glucose, p diabetic renal cortex and high-glucose-exposed human mesangial cells. These findings reveal new beneficial properties of the AR inhibitor F and provide the rationale for detailed studies of F on diabetic nephropathy.

  14. Effects of 3-aminobenzamide on poly(ADP-ribose)polymerase expression,apoptosis and cell cycle progression of HeLa cells after X-ray irradiation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this paper is to study the changes of apoptosis and cell cycle progression in HeLa cells after the poly(ADP-ribose)polymerase(PARP)was inhibited by its inhibitor 3-aminobenzamide(3-AB)and the mechanisms of PARP action on HeLa cells damaged by irradiation.Flow cytometry(FCM)was used to examine the PARP expression and the percentage of apoptotic cells and cell cycle progression.The percentage of HeLa cells with positive expression of PARP protein 2,4,8 and 12 h after administrated with 3-AB was significantly lower than that of the control(P<0.01).The percentages of apoptotic cells in the 3-AB plus irradiation group at the time points of 2,8,12 and 24 h after 2 Gy irradiation were higher than that in the irradiation group(P<0.01 or P<0.05)and the percentage of G2 cells decreased significantly(P<0.01 or P<0.05).It indicates that 3-AB can rapidly inhibit PARP expression of HeLa cells,promote cell apoptosis and block G2 arrest induced by irradiation.

  15. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury.

    Science.gov (United States)

    Liu, Hongwei; Hua, Ning; Xie, Keliang; Zhao, Tingting; Yu, Yonghao

    2015-08-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis.

  16. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    Science.gov (United States)

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  17. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  18. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    Science.gov (United States)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.

  19. Tankyrase 2 Poly(ADP-Ribose) Polymerase Domain-Deleted Mice Exhibit Growth Defects but Have Normal Telomere Length and Capping

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Susan J [ORNL; Poitras, Marc [New York University School of Medicine; Cook, Brandoch [New York University School of Medicine; Liu, Yie [National Institute on Aging, Baltimore; Smith, Susan [New York University School of Medicine

    2006-03-01

    Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardation phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement foTnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together these results suggest that Tnkjs2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice.

  20. Approche morphologique de la fragmentation de l'ADN radio-induite par immunomarquage anti-poly (ADP-ribose) polymérase (PARP) : étude de cultures d'oligodendrogliomes

    Science.gov (United States)

    Varlet, P.; Beuvon, F.; Cervera, P.; Averbeck, D.; Daumas-Duport, C.

    1998-04-01

    Poly (ADP-ribose) polymerase (PARP) is a nuclear enzyme encompassing two zinc finger motifs which specifically binds to radiation induced DNA strand breaks. We develop a new immuno-labelling of poly ADP-ribose which coupled together with the immunodetection of cells in cycle with MIB1, permits to detect and quantify the DNA fragmentation induced by radiations (Cesium137). This method, applied to organotypical cultures of human oligodendroglioma, submitted to radiation, a dose dependant nuclear signal. This one increased significantly in the presence of a radiosensitizer like iododeoxyuridine (IUDR 5 g/ml). This poly ADP-ribose immunodetection can be useful, to detect furtherly the individual radiosensitivity of human glioma. Les protéases “ICE-like" ou caspases, sont les homologues humaines du produit du gène ced-3 du ver Caenorhabditis elegans et sont activées lors des étapes précoces de l'apoptose. L'objectif de ce travail vise à déterminer dans quelle mesure l'inhibition de l'une d'entre elles, la caspase-3 est susceptible de modifier la sensibilité des cellules vis-à-vis de l'apoptose radioinduite. Des lymphocytes spléniques murins irradiés en présence de Ac-DVED-CHO un inhibiteur spécifique de la caspase-3 présentent un taux de particules hypodiploïdes radioinduites bien inférieur à celui des contrôles et une diminution drastique de la fragmentation internucléosomale de l'ADN. Toutefois, ni l'externalisation des phospholipides anioniques, autre marqueur spécifique de l'apoptose, ni la viabilité ne sont affectées.

  1. Cross talk between poly(ADP-ribose polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bai W

    2015-09-01

    Full Text Available Wenlin Bai,1,2 Yujiao Chen,1,2 Ai Gao1,2 1Department of Occupational Health and Environmental Health, School of Public Health, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China Abstract: Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs, concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose polymerase 1 (PARP-1, a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs

  2. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA.

    NARCIS (Netherlands)

    G. Gradwohl; J.M. de Murcia; M. Molinete; F. Simonin; M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); G. de Murcia

    1990-01-01

    textabstractPoly(ADP-ribose) polymerase (EC 2.4.2.30) is a zinc-binding protein that specifically binds to a DNA strand break in a zinc-dependent manner. We describe here the cloning and expression in Escherichia coli of a cDNA fragment encoding the two putative zinc fingers (FI and FII) domain of t

  3. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yan [Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing (China); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Li, Guodong [Department of Surgical Oncology, Cancer Treatment Center, Fourth Affiliated Hospital of Harbin Medical University, Harbin (China); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Dong, Yafeng; Zhou, Helen H. [Department of Obstetrics and Gynecologic, University of Kansas Medical Center, Kansas City, KS (United States); Kong, Bo; Aleksunes, Lauren M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ (United States); Li, Fei, E-mail: xw_lifei@yahoo.com.cn [Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing (China); Guo, Grace L., E-mail: guo@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States)

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in mice leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.

  4. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Thomas D.; Zhu, Gui-Dong; Gong, Jianchun; Thomas, Sheela; Gandhi, Viraj B.; Liu, Xuesong; Shi, Yan; Klinghofer, Vered; Johnson, Eric F.; Park, Chang H.; Fry, Elizabeth H.; Donawho, Cherrie K.; Frost, David J.; Buchanan, Fritz G.; Bukofzer, Gail T.; Rodriguez, Luis E.; Bontcheva-Diaz, Velitchka; Bouska, Jennifer J.; Osterling, Donald J.; Olson, Amanda M.; Marsh, Kennan C.; Luo, Yan; Giranda, Vincent L. (Abbott)

    2010-06-21

    We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K{sub i} of 1 nM and an EC{sub 50} of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.

  5. Non-NAD-Like poly(ADP-Ribose Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo

    Directory of Open Access Journals (Sweden)

    Colin Thomas

    2016-11-01

    Full Text Available The clinical potential of PARP-1 inhibitors has been recognized >10 years ago, prompting intensive research on their pharmacological application in several branches of medicine, particularly in oncology. However, natural or acquired resistance of tumors to known PARP-1 inhibitors poses a serious problem for their clinical implementation. Present study aims to reignite clinical interest to PARP-1 inhibitors by introducing a new method of identifying highly potent inhibitors and presenting the largest known collection of structurally diverse inhibitors. The majority of PARP-1 inhibitors known to date have been developed as NAD competitors. NAD is utilized by many enzymes other than PARP-1, resulting in a trade-off trap between their specificity and efficacy. To circumvent this problem, we have developed a new strategy to blindly screen a small molecule library for PARP-1 inhibitors by targeting a highly specific rout of its activation. Based on this screen, we present a collection of PARP-1 inhibitors and provide their structural classification. In addition to compounds that show structural similarity to NAD or known PARP-1 inhibitors, the screen identified structurally new non-NAD-like inhibitors that block PARP-1 activity in cancer cells with greater efficacy and potency than classical PARP-1 inhibitors currently used in clinic. These non-NAD-like PARP-1 inhibitors are effective against several types of human cancer xenografts, including kidney, prostate, and breast tumors in vivo. Our pre-clinical testing of these inhibitors using laboratory animals has established a strong foundation for advancing the new inhibitors to clinical trials.

  6. Effects of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide on blood-brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson's disease.

    Science.gov (United States)

    Wu, Xiao-li; Wang, Ping; Liu, Yun-hui; Xue, Yi-xue

    2014-05-01

    Neuro-inflammation and dysfunction of blood-brain barrier play an important role in the occurrence, development, and neuronal degeneration of Parkinson's disease (PD). Studies have demonstrated that a variety of cytokines such as TNF-α and IL-1β destroy the structure and function of blood-brain barrier. The damage to blood-brain barrier results in death of dopaminergic neurons, while protection of blood-brain barrier slows down the progression of PD. Also, it has been shown that activation of poly (ADP-ribose) polymerase (PARP) plays an important role in causing damage to blood-brain barrier. In addition, the PARP inhibitor 3-AB has been shown to protect blood-brain barrier from damage and has neuroprotective effects. In this study, using a lipopolysaccharide (LPS)-induced PD rat model, we investigated whether 3-AB protects blood-brain barrier and dopaminergic neurons from functional damage. LPS significantly increased Evans blue content in the substantia nigra which peaked at 12 h, while administration of 3-AB significantly inhibited the LPS-induced increase in Evans blue content and also significantly increased the expression of the tight junction-associated proteins claudin-5, occludin and ZO-1. 3-AB also increased the number of tyrosine hydroxylase positive cells and reduced the IL-1β and TNF-α content significantly. According to western blot analysis, 3-AB significantly reduced the p-ERK1/2 expression, while the expression of p-p38MAPK increased. These results suggest that 3-AB protects the blood-brain barrier from functional damage in an LPS-induced PD rat model and dopaminergic neurons are protected from degeneration by upregulation of tight junction-associated proteins. These protective effects of 3-AB may be related to modulation of the ERK1/2 pathway.

  7. Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation.

    Science.gov (United States)

    Dölle, Christian; Niere, Marc; Lohndal, Emilia; Ziegler, Mathias

    2010-02-01

    Poly-ADP-ribose polymerases (PARPs) use NAD(+) as substrate to generate polymers of ADP-ribose. We targeted the catalytic domain of human PARP1 as molecular NAD(+) detector into cellular organelles. Immunochemical detection of polymers demonstrated distinct subcellular NAD(+) pools in mitochondria, peroxisomes and, surprisingly, in the endoplasmic reticulum and the Golgi complex. Polymers did not accumulate within the mitochondrial intermembrane space or the cytosol. We demonstrate the suitability of this compartment-specific NAD(+) and poly-ADP-ribose turnover to establish intra-organellar protein localization. For overexpressed proteins, genetically endowed with PARP activity, detection of polymers indicates segregation from the cytosol and consequently intra-organellar residence. In mitochondria, polymer build-up reveals matrix localization of the PARP fusion protein. Compared to presently used fusion tags for subcellular protein localization, these are substantial improvements in resolution. We thus established a novel molecular tool applicable for studies of subcellular NAD metabolism and protein localization.

  8. The Sound of Silence: RNAi in Poly (ADP-Ribose Research

    Directory of Open Access Journals (Sweden)

    Felix R. Althaus

    2012-12-01

    Full Text Available Poly(ADP-ribosyl-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose (PAR is regulated by its synthesis by poly(ADP-ribose polymerases (PARPs and on the catabolic side by poly(ADP-ribose glycohydrolase (PARG. PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption.

  9. Prokaryotic Expression and Enzymatic Assay of Arabidopsis Poly(ADP-ribose) Polymerase%拟南芥多聚ADP核糖聚合酶Ⅰ的原核表达与活性检测

    Institute of Scientific and Technical Information of China (English)

    张海磊; 吴巧; 葛晓春

    2014-01-01

    采用RT-PCR技术获得了拟南芥多聚ADP核糖聚合酶[poly(ADP-ribose) polymerase,PARP] PARP1基因的全长cDNA,转入原核表达载体pET32a并转化宿主菌Origami(DE3),加入终浓度为0.3 mmol/L IPTG,在16℃下诱导可获得较多的可溶重组蛋白.纯化TRX-PARP1,在反应液中加入NAD+和断裂DNA,通过SDS PAGE凝胶电泳和Western blotting分析,TRX-PARP1分子量可随着时间的延长逐渐增大,产生向上的弥散,表明蛋白质连上了ADP核糖分子;与此对比,作为参照的标签蛋白TRX无此现象.实验结果显示原核表达拟南芥PARP1能够催化自身多聚ADP核糖化修饰,为深入研究植物多聚ADP核糖聚合酶的功能奠定了基础.

  10. Effect of the regimen of Gaoshan Hongjingtian on the mechanism of poly(ADP-ribose) polymerase regulation of nuclear factor kappa B in the experimental diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-shu; SHI Xiang-yu; WEI Wen-bin; WANG Ning-li

    2013-01-01

    Background Poly(ADP-ribose) polymerase (PARP) plays an important role in the death of retinal capillary cells indiabetic retinopathy (DR) partly via its regulation of nuclear factor kappa B (NF-κB).The current study investigated theeffect of the regimen of Gaoshan Hongjingtian (RG) on the mechanism of PARP regulation of NF-KB,and demonstratedthe possible impact of the RG and Gaoshan Hongjingtian (Rhodiola sachalinensis,RS) on diabetic retinopathy.Methods Wistar rats were made diabetic by administering streptozotocin.They were then assigned to three groups atrandom.After 2 months,the three groups of these diabetic rats were treated with RS or RG,or untreated.Analyses ofexpression levels of PARP,NF-κB,and intercellular adhesion molecule-1 (ICAM-1) in the retinas of rats in differentgroups were performed by Western blotting and immunohistochemical assays,and mRNA levels of NF-κB and ICAM-1were determined by real-time polymerase chain reaction (PCR).In addition,the basement membranes of capillaries inthe rats' retinas were observed using electron microscopy,and diabetes-induced capillary degeneration (ghost pericytesand acellular capillaries) were quantitated.Results From the third month after the injection of streptozotocin,the diabetic rats were given daily RG,RS or tap water separately.The diabetic rats failed to gain weight compared with normal age-matched rats,whereas their glycated hemoglobin levels were significantly increased.After 5 months,the mRNA levels of NF-κB and ICAM-1 and the protein expression of PAPP,NF-κB,and ICAM-1 were significantly increased in the retinas of diabetic rats in the untreated group compared with the nondiabetic controls.After 8 months,the number of degenerated retinal capillaries (ghost pericytes and acellular capillaries) was significantly increased in the diabetic rats in the untreated group compared with normal age-matched rats.RG and RS inhibited diabetes-induced over-expression of PARP,NF-κB,and ICAM-1 in the retinas of

  11. ADP-ribosylhydrolase 3 (ARH3), Not Poly(ADP-ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-associated Poly(ADP-ribose)*

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-01-01

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3−/− mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism. PMID:22433848

  12. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-05-11

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.

  13. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    Science.gov (United States)

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  14. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  15. Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray-induced cellular recovery processes in Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Arundel-Suto, C.M.; Scavone, S.V.; Turner, W.R.; Suto, M.J.; Sebolt-Leopold, J.S. (Warner-Lambert Company, Ann Arbor, MI (USA))

    1991-06-01

    The modifying effects of PD 128763 (3,4-dihydro-5-methyl-1(2H)-isoquinolinone), a potent inhibitor of poly(adenosine-diphosphate (ADP)-ribose) polymerase, on radiation-induced cell killing were examined in Chinese hamster V79 cells. This compound has an IC50 value against the purified enzyme approximately 50X lower than 3-aminobenzamide (3-AB), a widely used specific inhibitor of the enzyme. Exposure of exponentially growing cells to a noncytotoxic concentration (0.5 mM) of PD 128763 for 2 h immediately following X irradiation increased their radiation sensitivity, modifying both the shoulder and the slope of the survival curve. When recovery from sublethal damage and potentially lethal damage was examined in exponential and plateau-phase cells, respectively, postirradiation incubation with 0.5 mM PD 128763 was found not only to inhibit both these processes fully, but also to enhance further the level of radiation-induced cell killing. This is in contrast to the slight effect seen with the less potent inhibitor, 3-AB. The results presented suggest that the mechanism of radiosensitization by PD 128763 is related to the potent inhibition of poly(ADP-ribose) polymerase by this compound.

  16. Poly(ADP-ribose)--a unique natural polymer structural features, biological role and approaches to the chemical synthesis.

    Science.gov (United States)

    Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Poly(ADP-ribose) (PAR) is a natural polymer, taking part in numerous important cellular processes. Several enzymes are involved in biosynthesis and degradation of PAR. One of them, poly(ADP-ribose)polymerase-1 (PARP-1) is considered to be a perspective target for the design of new drugs, affecting PAR metabolism. The structure of PAR was established by enzymatic hydrolysis and further analysis of the products, but total chemical synthesis of PAR hasn't been described yet. Several approaches have been developed on the way to chemical synthesis of this unique biopolymer.

  17. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion.

    Science.gov (United States)

    Szabó, C; Dawson, V L

    1998-07-01

    Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

  18. The role of poly(ADP-ribose) in the DNA damage signaling network.

    Science.gov (United States)

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  19. A novel and orally active poly(ADP-ribose) polymerase inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl) methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], attenuates injury in in vitro model of cell death and in vivo model of cardiac ischemia.

    Science.gov (United States)

    Oh, Kwang-Seok; Lee, Sunkyung; Yi, Kyu Yang; Seo, Ho Won; Koo, Hyun-Na; Lee, Byung Ho

    2009-01-01

    Blocking of poly(ADP-ribose) polymerase (PARP)-1 has been expected to protect the heart from ischemia-reperfusion injury. We have recently identified a novel and orally active PARP-1 inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl)-methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], and its major metabolite, KR-34285 [2-[carboxy(4-methoxyphenyl)methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide]. KR-33889 potently inhibited PARP-1 activity with an IC(50) value of 0.52 +/- 0.10 microM. In H9c2 myocardial cells, KR-33889 (0.03-30 microM) showed a resistance to hydrogen peroxide (2 mM)-mediated oxidative insult and significantly attenuated activation of intracellular PARP-1. In anesthetized rats subjected to 30 min of coronary occlusion and 3 h of reperfusion, KR-33889 (0.3-3 mg/kg i.v.) dose-dependently reduced myocardial infarct size. KR-34285, a major metabolite of KR-33889, exerted similar patterns to the parent compound with equi- or weaker potency in the same studies described above. In separate experiments for the therapeutic time window study, KR-33889 (3 mg/kg i.v.) given at preischemia, at reperfusion or in both, in rat models also significantly reduced the myocardial infarction compared with their respective vehicle-treated group. Furthermore, the oral administration of KR-33889 (1-10 mg/kg p.o.) at 1 h before occlusion significantly reduced myocardial injury. The ability of KR-33889 to inhibit PARP in the rat model of ischemic heart was confirmed by immunohistochemical detection of poly(ADP-ribose) activation. These results indicate that the novel PARP inhibitor KR-33889 exerts its cardioprotective effect in in vitro and in vivo studies of myocardial ischemia via potent PARP inhibition and also suggest that KR-33889 could be an attractive therapeutic candidate with oral activity for several cardiovascular disorders, including myocardial infarction.

  20. Pyridine Nucleotide Cycling and Control of Intracellular Redox State in Relation to Poly (ADP-Ribose) Polymerase Activity and Nuclear Localization of Glutathione during Exponential Growth of Arabidopsis Cells in Culture

    Institute of Scientific and Technical Information of China (English)

    Till K.Pellny; Vittoria Locato; Pedro Diaz Vivancos; Jelena Markovic; Laura De Gara; Federico V.Pallardó; Christine H.Foyer

    2009-01-01

    Pyridine nucleotides,ascorbate and glutathione are major redox metabolites in plant cells,with specific roles in cellular redox homeostasis and the regulation of the cell cycle.However,the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized.The present analysis of the abundance of ascorbate,glutathione,and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools.Ascorbate was most abundant early in the growth cycle,but glutathione was low at this point.The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased.The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information.Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed.Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide,ox-idized form (NAD)-plus-nicotinamide adenine dinucleotide,reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate,oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate,reduced form (NADPH) pool sizes,and NAPD/NADPH ratios were much less affected.The ascorbate,glutathi-one,and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended.We concludethat there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is main-rained by interplay

  1. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1.

    Science.gov (United States)

    Zhang, Haoyue; Xiong, Zheng-Mei; Cao, Kan

    2014-06-03

    Hutchinson-Gilford progeria syndrome (HGPS) is a severe human premature aging disorder caused by a lamin A mutant named progerin. Death occurs at a mean age of 13 y from cardiovascular problems. Previous studies revealed loss of vascular smooth muscle cells (SMCs) in the media of large arteries in a patient with HGPS and two mouse models, suggesting a causal connection between the SMC loss and cardiovascular malfunction. However, the mechanisms of how progerin leads to massive SMC loss are unknown. In this study, using SMCs differentiated from HGPS induced pluripotent stem cells, we show that HGPS SMCs exhibit a profound proliferative defect, which is primarily caused by caspase-independent cell death. Importantly, progerin accumulation stimulates a powerful suppression of PARP1 and consequently triggers an activation of the error-prone nonhomologous end joining response. As a result, most HGPS SMCs exhibit prolonged mitosis and die of mitotic catastrophe. This study demonstrates a critical role of PARP1 in mediating SMC loss in patients with HGPS and elucidates a molecular pathway underlying the progressive SMC loss in progeria.

  2. A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia.

    Science.gov (United States)

    Iwashita, Akinori; Tojo, Nobuteru; Matsuura, Shigeru; Yamazaki, Syunji; Kamijo, Kazunori; Ishida, Junya; Yamamoto, Hirofumi; Hattori, Kouji; Matsuoka, Nobuya; Mutoh, Seitaro

    2004-08-01

    The activation of poly(ADP-ribose) polymerase-1 (PARP-1) after exposure to nitric oxide or oxygen-free radicals can lead to cell injury via severe, irreversible depletion of NAD. Genetic deletion or pharmacological inhibition of PARP-1 attenuates brain injury after focal ischemia and neurotoxicity in several neurodegenerative models in animals. FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone) is a novel PARP-1 inhibitor that has recently been identified through structure-based drug design. In an enzyme kinetic analysis, FR247304 exhibits potent and competitive inhibition of PARP-1 activity, with a K(i) value of 35 nM. Here, we show that prevention of PARP activation by FR247304 treatment protects against both reactive oxygen species-induced PC12 cell injury in vitro and ischemic brain injury in vivo. In cell death model, treatment with FR247304 (10(-8)-10(-5) M) significantly reduced NAD depletion by PARP-1 inhibition and attenuated cell death after hydrogen peroxide (100 microM) exposure. After 90 min of middle cerebral artery occlusion in rats, poly(ADP-ribosy)lation and NAD depletion were markedly increased in the cortex and striatum from 1 h after reperfusion. The increased poly(ADP-ribose) immunoreactivity and NAD depletion were attenuated by FR247304 (32 mg/kg i.p.) treatment, and FR247304 significantly decreased ischemic brain damage measured at 24 h after reperfusion. Whereas other PARP inhibitors such as 3-aminobenzamide and PJ34 [N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylactamide] showed similar neuroprotective actions, they were less potent in in vitro assays and less efficacious in an in vivo model compared with FR247304. These results indicate that the novel PARP-1 inhibitor FR247304 exerts its neuroprotective efficacy in in vitro and in vivo experimental models of cerebral ischemia via potent PARP-1 inhibition and also suggest that FR247304 or its derivatives could be attractive therapeutic

  3. Association of poly(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention, and cell type.

    Science.gov (United States)

    Kaufmann, S H; Brunet, G; Talbot, B; Lamarr, D; Dumas, C; Shaper, J H; Poirier, G

    1991-02-01

    The recovery of the enzyme poly(ADP-ribose) polymerase (pADPRp) in the nuclease- and 1.6 M NaCl-resistant nuclear subfraction prepared from a number of different sources was assessed by Western blotting. When rat liver nuclei were treated with DNase I and RNase A followed by 1.6 M NaCl, approximately 10% of the nuclear pADPRp was recovered in the sedimentable fraction. The proportion of pADPRp recovered with the residual fraction decreased to less than 5% of the total nuclear polymerase when nuclei were prepared in the presence of the sulfhydryl blocking reagent iodoacetamide and increased to approximately 50% of the total nuclear pADPRp when nuclei were treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to fractionation. To determine whether this effect of disulfide bond formation was unique to rat liver nuclei, nuclear matrix/cytoskeleton structures were prepared in situ by sequentially treating monolayers of tissue culture cells with Nonidet-P40, DNase I and RNase A, and 1.6 M NaCl (S.H. Kaufmann and J.H. Shaper (1991) Exp. Cell Res. 192, 511-523). When nuclear monolayers were prepared from HTC rat hepatoma cells, CaLu-1 human lung carcinoma cells, and CHO hamster ovary cells in the absence of NaTT, pADPRp was undetectable in the nuclease- and 1.6 M NaCl-resistant fraction. In contrast, when nuclear monolayers were isolated in the presence of NaTT, from 5% (CaLu-1) to 26% (HTC cells) of the total nuclear pADPRp was recovered with the nuclease- and salt-resistant fraction. Examination of these residual structures by SDS-polyacrylamide gel electrophoresis under nonreducing conditions suggested that pADPRp was present as a component of disulfide cross-linked complexes. Further analysis by immunofluorescence revealed that the pADPRp was diffusely distributed throughout the CaLu-1 or CHO nuclear matrix. In addition, when matrices were prepared in the absence of RNase A, pADPRp was also observed in the residual nucleoli. These

  4. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    Energy Technology Data Exchange (ETDEWEB)

    Whatcott, Clifford J. [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States); Meyer-Ficca, Mirella L.; Meyer, Ralph G. [Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, NBC Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, PA 19348 (United States); Jacobson, Myron K., E-mail: mjacobson@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States)

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  5. Large-scale production and purification of recombinant protein from an insect cell/baculovirus system in Erlenmeyer flasks: application to the chicken poly(ADP-ribose polymerase catalytic domain

    Directory of Open Access Journals (Sweden)

    Miranda E.A.

    1997-01-01

    Full Text Available A simple and inexpensive shaker/Erlenmeyer flask system for large-scale cultivation of insect cells is described and compared to a commercial spinner system. On the basis of maximum cell density, average population doubling time and overproduction of recombinant protein, a better result was obtained with a simpler and less expensive bioreactor consisting of Erlenmeyer flasks and an ordinary shaker waterbath. Routinely, about 90 mg of pure poly(ADP-ribose polymerase catalytic domain was obtained for a total of 3 x 109 infected cells in three liters of culture

  6. Synthesis and evaluation of benzimidazole derivatives as poly(ADP-ribose) polymerase inhibitors%苯并咪唑类聚腺苷二磷酸核糖聚合酶抑制剂的合成及初步活性研究

    Institute of Scientific and Technical Information of China (English)

    沈超; 王慧源; 柳军; 赵娜; 张陆勇; 吴晓明; 孙宏斌

    2011-01-01

    Poly (ADP-ribose) polymerases(PARPs) are a large enzyme family which consists of at least 17 members. These enzymes are implicated in multiple cellular processes through catalysis of the addition of ADP-ribose polymers on various acceptor proteins. PARP-1, the most abundant isoform which can be activated by DNA damage,plays an important role in the repair of DNA single strand breaks(SSBs) under normal circumstances. However,PARP-1 can also contribute to resistance after cancer therapy due to its DNA repair activity. Thus PARP inhibitors have been pursued for many years as chemo/radiotherapy sensitizers in cancer treatment. Besides being used in combination, PARP inhibitors may also be applied as monotherapy in some specific cancer types with synthetic lethality as the main mechanism of action. There are currently at least six compounds being investigated in clinical trials,including BSI201 ,AZD2281, ABT888, MK4827, AG014699,and INO1001. NU1085 ,developed by the University of Newcastle,has been used as a benchmark of PARP inhibitors due to its potent activity and other good features. We used NU1085 as the lead compound,attempting to find more desirable PARP inhibitors through structural modification. Docking between PARP-1 and the designed molecules showed that introduction of lipid soluble groups at 4'-position might improve the PARP inhibitory activity. In addition, a series of 4-carborsylate derivatives were also designed and synthesized to find novel PARP inhibitors. Twenty-two benzimidazole derivatives were synthesized in all, starting with 3-nitrophthalic anhydride which underwent ring-opening, Hofmann rearrangement, amidation or esterification,and reduction to give diamino compounds. Condensation of the diamino compounds with benzaldehyde or its derivatives afforded the target compounds. All the target compounds were structurally confirmed by 1H-NMR, IR and MS and seventeen compounds were novel ones. The following poly (ADP-ribose) polymerase inhibitory

  7. Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity.

    Science.gov (United States)

    Kiss, Borbála; Szántó, Magdolna; Szklenár, Mónika; Brunyánszki, Attila; Marosvölgyi, Tamás; Sárosi, Eszter; Remenyik, Éva; Gergely, Pál; Virág, László; Decsi, Tamás; Rühl, Ralph; Bai, Peter

    2015-04-01

    Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin and other organs. The aim of the present study was to investigate the effects of the deletion of PARP‑1 expression on polyunsaturated fatty acids (PUFA), and PUFA metabolite composition, in mice under control conditions or undergoing an oxazolone (OXA)‑induced contact hypersensitivity reaction (CHS). CHS was elicited using OXA in both the PARP‑1+/+ and PARP‑1/ mice, and the concentration of PUFAs and PUFA metabolites in the diseased skin were assessed using lipidomics experiments. The levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were shown to be increased in the PARP‑1/ mice, as compared with the control, unsensitized PARP‑1+/+ mice. In addition, higher expression levels of fatty acid binding protein 7 (FABP7) were detected in the PARP‑1/ mice. FABP7 is considered to be a specific carrier of DHA and EPA. Furthermore, the levels of the metabolites of DHA and EPA (considered mainly as anti‑inflammatory or pro‑resolving factors) were higher, as compared with the metabolites of arachidonic acid (considered mainly pro‑inflammatory), both in the unsensitized control and OXA‑sensitized PARP‑1/ mice. The results of the present study suggest that the genetic deletion of PARP‑1 may affect the PUFA‑homeostasis of the skin, resulting in an anti‑inflammatory milieu, including increased DHA and EPA levels, and DHA and EPA metabolite levels. This may be an important component of the anti‑inflammatory action of PARP‑1 inhibition.

  8. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix.

    Science.gov (United States)

    Niere, Marc; Kernstock, Stefan; Koch-Nolte, Friedrich; Ziegler, Mathias

    2008-01-01

    Recent discoveries of NAD-mediated regulatory processes in mitochondria have documented important roles of this compartmentalized nucleotide pool in addition to energy transduction. Moreover, mitochondria respond to excessive nuclear NAD consumption arising from DNA damage-induced poly-ADP-ribosylation because poly(ADP-ribose) (PAR) can trigger the release of apoptosis-inducing factor from the organelles. To functionally assess mitochondrial NAD metabolism, we overexpressed the catalytic domain of nuclear PAR polymerase 1 (PARP1) and targeted it to the matrix, which resulted in the constitutive presence of PAR within the organelles. As a result, stably transfected HEK293 cells exhibited a decrease in NAD content and typical features of respiratory deficiency. Remarkably, inhibiting PARP activity revealed PAR degradation within mitochondria. Two enzymes, PAR glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3), are known to cleave PAR. Both full-length ARH3 and a PARG isoform, which arises from alternative splicing, localized to the mitochondrial matrix. This conclusion was based on the direct demonstration of their PAR-degrading activity within mitochondria of living cells. The visualization of catalytic activity establishes a new approach to identify submitochondrial localization of proteins involved in the metabolism of NAD derivatives. In addition, targeted PARP expression may serve as a compartment-specific "knock-down" of the NAD content which is readily detectable by PAR formation.

  9. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K;

    2007-01-01

    ) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th...... apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative...

  10. PARP抑制剂3-AB对脂多糖诱导的帕金森病大鼠血脑屏障及多巴胺能神经元的影响%Effects of Poly(ADP-Ribose) polymerase inhibitor 3-AB on blood-brain barrier permeability and dopaminergic neurons in LPS-induced PD rats

    Institute of Scientific and Technical Information of China (English)

    吴晓黎; 王萍; 刘云会; 薛一雪

    2015-01-01

    目的 研究多聚ADP核糖聚合酶(poly(ADP-ribose) polymerase,PARP)抑制剂3-氨基苯甲酰(3-aminobenzamide,3-AB)对脂多糖(lipopolysaccharide,LPS)诱导的帕金森病(Parkinson's disease,PD)大鼠的血脑屏障(blood-brain barrier,BBB)及多巴胺能神经元的影响.方法 大鼠随机分三组:对照组,LPS组和LPS+3-AB组.用伊文思兰渗透性实验检测血脑屏障通透性;Western blot法检测MMP-9和紧密连接蛋白ZO-1的表达;免疫组化法检测MMP-9在黑质神经元的表达.结果 与对照组比较,LPS组黑质内BBB的通透性和MMP-9的表达显著增加,紧密连接蛋白相关蛋白ZO-1的表达和酪氨酸羟化酶(tyrosine hydroxylase,TH)阳性细胞数显著降低.上述作用受到PARP抑制剂3-AB的显著抑制.结论 3-AB通过保护LPS诱导的PD大鼠的BBB进一步保护多巴胺能神经元.

  11. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  12. [Molecular mechanisms of regulaion of transcription by PARP1].

    Science.gov (United States)

    Maliuchenko, N V; Kulaeva, O I; Kotova, E; Chupyrkina, A A; Nikitin, D V; Kirpichnikov, M P; Studitskiĭ, V M

    2015-01-01

    Poly-ADP-ribosylation is a covalent post-translational modification of nuclear proteins that plays a key role in the immediate response of cells to genotoxic stress. Poly(ADP-ribose) polymerase (PARP) synthesizes long and branched polymers of ADP-ribose onto acceptor regulator proteins, and thereby change their activity. Metabolism of poly-ADP regulates DNA repair, cell cycle, replication, aging and death of cells, as well as remodeling of chromatin structure and gene transcription. PARP1 is one of the most common nuclear proteins; it is responsible for production of -90% of the polymers of ADP-ribose in the cell. PARP1 inhibitors are promising antitumor agents. At the same time, the current inhibitors target the catalytic domain of PARP1 that leads to.a number of side effects. Therefore, considering the potential benefits of PARP1 inhibitors for the treatment of multiple diseases, it is necessary to develop new strategies of PARP1 inhibition. PARP1 has a modular structure and has catalytic, transcription and DNA-binding activities. The review focuses primarily on the role of PARP1 in transcriptional regulation; the structure and functional organization of PARP1, as well as multiple ways of regulation of chromatin remodeling, DNA methylation and transcription are covered in detail. Studies of the molecular mechanisms of regulation of transcription factor PARP1 can serve as a basis for search and design of new inhibitors.

  13. Effect of combination of poly(ADP-ribose)polymerase inhibitor and sildenafil on erectile function in diabetic rats%多聚ADP-核糖聚合酶抑制剂联合西地那非改善糖尿病大鼠勃起功能的研究

    Institute of Scientific and Technical Information of China (English)

    付桥; 张景宇; 张志超

    2012-01-01

    Objective To investigate the effect of combination of poly( ADP - ribose )polymerase ( PARP )inhibitor and sildenafil on erectile function in diabetic rats. Methods Forty male SD rats were randomly divided into four groups: normal control group, diabetic + sildenafil group, diabetic + PJ - 34 group and diabetic + PJ - 34 + sildenafil group. Sexual activity triggered by apomorphine was observed in each group. Mean arterial pressure( MAP )and intracavernous pressure( ICP )induced by electrostimulation of penile dorsal nerves were measured. The corporal tissue was obtained to detect the caspas - 3 activity. Results PARP blockade by PJ - 34 to some extent prevented diabetes - associated apoptosis. The caspas - 3 activity was significantly increased in diabetic rats. The sexual activity and ICP/MAP level in diabetic + sildenafil group and diabetic + PJ - 34 group were significantly lower than those in normal control group. The efficiency of combination of PARP inhibitor and sildenafil was significantly higher than single drug application. Conclusion Our results indicate that combination of PARP inhibitor and sildenafil can significantly improve erectile function in diabetic rats, providing experimental groundwork for a new therapeutic intervention for the treatment of diabetes - associated erectile dysfunction.%目的 探讨多聚ADP-核糖聚合酶抑制剂(PJ-34)联合西地那非对糖尿病大鼠勃起功能的影响.方法 40只雄性SD大鼠随机分为正常对照组、糖尿病+西地那非组、糖尿病+PJ-34组、糖尿病+PJ-34+西地那非组.测定各组大鼠阿扑吗啡诱导下的性行为变化;电刺激盆神经测定各组大鼠阴茎海绵体内压(ICP)及平均周围动脉压(MAP),然后取海绵体组织测定Caspase-3活性.结果 Caspase-3活性在糖尿病大鼠中显著升高,PJ-34治疗可有效抑制其活性.糖尿病+西地那非组、糖尿病+PJ-34组性行为能力及ICP/MA均低于正常对照组,PJ-34与西地那非联合应用疗效

  14. ADP-ribose in glycation and glycoxidation reactions.

    Science.gov (United States)

    Jacobson, E L; Cervantes-Laurean, D; Jacobson, M K

    1997-01-01

    Glycation is initiated by reaction of a reducing sugar with a protein amino group to generate a Schiff base adduct. Following an Amadori rearrangement to form a ketoamine adduct, a complex chemistry involving oxidation often leads to protein glycoxidation products referred to as advanced glycosylation end products (AGE). The AGE include protein carboxymethyllysine (CML) residues and a heterogeneous group of complex modifications characterized by high fluorescence and protein-protein cross links. The sugar sources for the glycoxidation of intracellular proteins are not well defined but pentoses have been implicated because they are efficient precursors for the formation of the fluorescent AGE, pentosidine. ADP-ribose, generated from NAD by ADP-ribose transfer reactions, is a likely intracellular source of a reducing pentose moiety. Incubation of ADP-ribose with histones results in the formation of ketoamine glycation conjugates and also leads to the rapid formation of protein CML residues, histone H1 dimers, and highly fluorescent products with properties similar to the AGE. ADP-ribose is much more efficient than other possible pentose donors for glycation and glycoxidation of protein amino groups. Recently developed methods that differentiate nonenzymic modifications of proteins by ADP-ribose from enzymic modifications now allow investigations to establish whether some protein modifications by monomers of ADP-ribose in vivo represent glycation and glycoxidation.

  15. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  16. Targeting Homology-Directed Recombinational Repair (HDR) of Chromosomal Breaks to Sensitize Prostate Cancer Cells to Poly (ADP-Ribose) Polymerase (PARP) Inhibition

    Science.gov (United States)

    2013-08-01

    University School of Medicine, Nashville, TN ABR Holman Research Scholar Nucletron Prostate HDR Training Course 2009 Chief Resident 2009-2010 2005...of North America (RSNA) Research & 2007 Education Foundation Grant • American Board of Radiology Holman Research Pathway 2006 • Alpha Omega...group, UAB-CCC 2011- • Holman Research Pathway Mentor 2010- • Residency applicant interviewer 2010- • Translational Breast Cancer

  17. The effects of sevoflurane on expression of protein Poly (ADP-ribose) polymerase-1 and γ-aminobutyric acid receptor a1/α2 in hippocampus and the adaptation ability of neonatal rats%七氟醚对幼鼠海马组织神经元凋亡和γ-氨基丁酸A受体α1/α2亚型组成及远期空间探索能力的影响

    Institute of Scientific and Technical Information of China (English)

    谢思宁; 叶虹; 李俊发; 安立新

    2016-01-01

    Objective To investigate the effect of sevoflurane on the expression of poly (ADP-ribose) polymerase-1(PARP-1) protein and γ-aminobutyric acid subtype A receptor (GABAAR) α1/α2 in hippocampus, and analyze its possible neurotoxicity mechanisms in the developing brain of rats.Methods Two hundred and sixteen neonatal SD rats (7 d postnatal, P7) were randomly divided into three groups(n=72): the control group(group A), the sham anesthesia group(group B), and the anesthesia group(group C).The anesthesia management was a 4-hour exposure to the 0.8 MAC (2.11%) sevoflurane.The expression of the PARP-1 and GABAAR α1/α2 in the hippocampus was examined by western blotting at 6, 24, 72 h after anesthesia, respectively.Open-field test were then performed separately when the rats were 5, 8, 14-week-old, respectively.Results Compared with group A(100%), the expression of the PARA-1 was significantly increased at 6 h after sevoflurane exposure in group C [(216±15)%, P<0.05], and the ratio of α1/α2 subgroup of GABAAR was significantly increased at 6 h [(126±6)%], 24 h [(127±8)%], and 72 h [(183±22)%] after sevoflurane exposure (P<0.05).Both the expression of PARP-1 and the ratio of α1/α2 subgroup of GABAAR was of no significant difference between group A and group B.Rats exposed to sevoflurane (group C) showed a longer travel distance and time than that in group A underwent open-f ield test when they were 5 weeks old (P<0.05), and there was no significant difference in the activities between group A and group B (P>0.05).While no differences were seen in the activities when rats were 8 and 14 weeks old(P>0.05).Conclusions The exposure of sevoflurane can induce the apoptosis of neurons at early stage, indicated by the α1/α2 subgroup of GABAAR increasing.Sevoflurane might affect the adaptation and cognition ability of environment in the short term in neonatal rats.%目的 通过观察七氟醚对幼鼠海马组织多聚

  18. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage

    Science.gov (United States)

    Kang, Ho Chul; Lee, Yun-Il; Shin, Joo-Ho; Andrabi, Shaida A.; Chi, Zhikai; Gagné, Jean-Philippe; Lee, Yunjong; Ko, Han Seok; Lee, Byoung Dae; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Ubiquitin mediated protein degradation is crucial for regulation of cell signaling and protein quality control. Poly(ADP-ribose) (PAR) is a cell-signaling molecule that mediates changes in protein function through binding at PAR binding sites. Here we characterize the PAR binding protein, Iduna, and show that it is a PAR-dependent ubiquitin E3 ligase. Iduna’s E3 ligase activity requires PAR binding because point mutations at Y156A and R157A eliminate Iduna’s PAR binding and Iduna’s E3 ligase activity. Iduna’s E3 ligase activity also requires an intact really interesting new gene (RING) domain because Iduna possessing point mutations at either H54A or C60A is devoid of ubiquitination activity. Tandem affinity purification reveals that Iduna binds to a number of proteins that are either PARsylated or bind PAR including PAR polymerase-1, 2 (PARP1, 2), nucleolin, DNA ligase III, KU70, KU86, XRCC1, and histones. PAR binding to Iduna activates its E3 ligase function, and PAR binding is required for Iduna ubiquitination of PARP1, XRCC1, DNA ligase III, and KU70. Iduna’s PAR-dependent ubiquitination of PARP1 targets it for proteasomal degradation. Via PAR binding and ubiquitin E3 ligase activity, Iduna protects against cell death induced by the DNA damaging agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and rescues cells from G1 arrest and promotes cell survival after γ-irradiation. Moreover, Iduna facilitates DNA repair by reducing apurinic/apyrimidinic (AP) sites after MNNG exposure and facilitates DNA repair following γ-irradiation as assessed by the comet assay. These results define Iduna as a PAR-dependent E3 ligase that regulates cell survival and DNA repair. PMID:21825151

  19. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I.

    Science.gov (United States)

    Malanga, Maria; Czubaty, Alicja; Girstun, Agnieszka; Staron, Krzysztof; Althaus, Felix R

    2008-07-18

    Human DNA topoisomerase I plays a dual role in transcription, by controlling DNA supercoiling and by acting as a specific kinase for the SR-protein family of splicing factors. The two activities are mutually exclusive, but the identity of the molecular switch is unknown. Here we identify poly(ADP-ribose) as a physiological regulator of the two topoisomerase I functions. We found that, in the presence of both DNA and the alternative splicing factor/splicing factor 2 (ASF/SF2, a prototypical SR-protein), poly(ADP-ribose) affected topoisomerase I substrate selection and gradually shifted enzyme activity from protein phosphorylation to DNA cleavage. A likely mechanistic explanation was offered by the discovery that poly(ADP-ribose) forms a high affinity complex with ASF/SF2 thereby leaving topoisomerase I available for directing its action onto DNA. We identified two functionally important domains, RRM1 and RS, as specific poly(ADP-ribose) binding targets. Two independent lines of evidence emphasize the potential biological relevance of our findings: (i) in HeLa nuclear extracts, ASF/SF2, but not histone, phosphorylation was inhibited by poly(ADP-ribose); (ii) an in silico study based on gene expression profiling data revealed an increased incidence of alternative splicing within a subset of inflammatory response genes that are dysregulated in cells lacking a functional poly(ADP-ribose) polymerase-1. We propose that poly(ADP-ribose) targeting of topoisomerase I and ASF/SF2 functions may participate in the regulation of gene expression.

  20. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  1. From polypharmacology to target specificity: the case of PARP inhibitors.

    Science.gov (United States)

    Liscio, Paride; Camaioni, Emidio; Carotti, Andrea; Pellicciari, Roberto; Macchiarulo, Antonio

    2013-01-01

    Poly(ADP-ribose)polymerases (PARPs) catalyze a post-transcriptional modification of proteins, consisting in the attachment of mono, oligo or poly ADP-ribose units from NAD+ to specific polar residues of target proteins. The scientific interest in members of this superfamily of enzymes is continuously growing since they have been implicated in a range of diseases including stroke, cardiac ischemia, cancer, inflammation and diabetes. Despite some inhibitors of PARP-1, the founder member of the superfamily, have advanced in clinical trials for cancer therapy, and other members of PARPs have recently been proposed as interesting drug targets, challenges exist in understanding the polypharmacology of current PARP inhibitors as well as developing highly selective chemical tools to unravel specific functions of each member of the superfamily. Beginning with an overview on the molecular aspects that affect polypharmacology, in this article we discuss how these may have an impact on PARP research and drug discovery. Then, we review the most selective PARP inhibitors hitherto reported in literature, giving an update on the molecular aspects at the basis of selective PARP inhibitor design. Finally, some outlooks on current issues and future directions in this field of research are also provided.

  2. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    Science.gov (United States)

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  3. Noncovalent protein interaction with poly(ADP-ribose).

    Science.gov (United States)

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  4. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  5. PARP1 Inhibitors: antitumor drug design.

    Science.gov (United States)

    Malyuchenko, N V; Kotova, E Yu; Kulaeva, O I; Kirpichnikov, M P; Studitskiy, V M

    2015-01-01

    The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a "sensor" for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed.

  6. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C.; Chen,David J.

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.

  7. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1

    Science.gov (United States)

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-01-01

    Summary Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins. PMID:26626479

  8. Relationship of PARG with PARP, VEGF and b-FGF in Colorectal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ling Lin; Jia Li; Ya-lan Wang; Xiao Lin

    2009-01-01

    Objective: To investigate the relationship of poly(ADP-ribose)glycohydrolase(PARG) with poly (ADP-ribose) polymerase(PARP), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor(b-FGF) in colorectal carcinoma(CRC).Methods: Immunohistochemical analysis was used to detect PARG, PARP, VEGF and b-FGF in human colorectal carcinoma. Flow cytometry was used to detect PARG and PARP in murine CT26 cell line. Gallotannin (GLTN) was served as PARG inhibitor. Results: The individual positive rates of PARG, PARP, VEGF and b-FGF were 55.81%(24/43), 97.67%(42/43), 79.07%(34/43) and 81.40%(35/43), respectively, which were significantly higher than those of control group. The positive PARG was correlated to PARP(r=0.3703, P<0.05) and b-FGF (r=0.4838, P<0.05). The positive PARP was correlated to VEGF (r=0.3968, P<0.05) and b-FGF (r=0.5610, P<0.05). Both PARG and PARP were expressed in CT26 cells. The positive staining rates of PARG and PARP in GLTN-treated group were 7.3% and 52.38%, respectively. They were markedly reduced than those of control group (55.41% and 95.28%, P<0.01, n=10000).Conclusion: The data suggest that PARG expression probably plays a role for VEGF and b-FGF expression in colorectal carcinoma.

  9. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    Science.gov (United States)

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  10. Structures of the human poly (ADP-ribose glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Directory of Open Access Journals (Sweden)

    Julie A Tucker

    Full Text Available Poly(ADP-ribose glycohydrolase (PARG is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG. Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR, adenosine 5'-diphosphate (hydroxymethylpyrrolidinediol (ADP-HPD and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  11. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo.

    Science.gov (United States)

    Nakajima, Hidemitsu; Itakura, Masanori; Sato, Keishi; Nakamura, Sunao; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2017-03-04

    Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.

  12. Benzimidazole derivatives as potential dual inhibitors for PARP-1 and DHODH.

    Science.gov (United States)

    Abdullah, Iskandar; Chee, Chin Fei; Lee, Yean-Kee; Thunuguntla, Siva Sanjeeva Rao; Satish Reddy, K; Nellore, Kavitha; Antony, Thomas; Verma, Jitender; Mun, Kong Wai; Othman, Shatrah; Subramanya, Hosahalli; Rahman, Noorsaadah Abd

    2015-08-01

    Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.

  13. Understanding specific functions of PARP-2: new lessons for cancer therapy

    Science.gov (United States)

    Ali, Syed O; Khan, Farhaan A; Galindo-Campos, Miguel A; Yélamos, José

    2016-01-01

    Poly(ADP-ribosyl)ation (PARylation) is a widespread and highly conserved post-translational modification catalysed by a large family of enzymes called poly(ADP-ribose) polymerases (PARPs). PARylation plays an essential role in various cardinal processes of cellular physiology and recent approvals and breakthrough therapy designations for PARP inhibitors in cancer therapy have sparked great interest in pharmacological targeting of PARP proteins. Although, many PARP inhibitors have been developed, existing compounds display promiscuous inhibition across the PARP superfamily which could lead to unwanted off-target effects. Thus the prospect of isoform-selective inhibition is being increasingly explored and research is now focusing on understanding specific roles of PARP family members. PARP-2, alongside PARP-1 and PARP-3 are the only known DNA damage-dependent PARPs and play critical roles in the DNA damage response, DNA metabolism and chromatin architecture. However, growing evidence shows that PARP-2 plays specific and diverse regulatory roles in cellular physiology, ranging from genomic stability and epigenetics to proliferative signalling and inflammation. The emerging network of PARP-2 target proteins has uncovered wide-ranging functions of the molecule in many cellular processes commonly dysregulated in carcinogenesis. Here, we review novel PARP-2-specific functions in the hallmarks of cancer and consider the implications for the development of isoform-selective inhibitors in chemotherapy. By considering the roles of PARP-2 through the lens of tumorigenesis, we propose PARP-2-selective inhibition as a potentially multipronged attack on cancer physiology.

  14. Changes in NAD/ADP-ribose metabolism in rectal cancer

    Directory of Open Access Journals (Sweden)

    L. Yalcintepe

    2005-03-01

    Full Text Available The extent of ADP-ribosylation in rectal cancer was compared to that of the corresponding normal rectal tissue. Twenty rectal tissue fragments were collected during surgery from patients diagnosed as having rectal cancer on the basis of pathology results. The levels of ADP-ribosylation in rectum cancer tissue samples (95.9 ± 22.1 nmol/ml was significantly higher than in normal tissues (11.4 ± 4 nmol/ml. The level of NAD+ glycohydrolase and ADP-ribosyl cyclase activities in rectal cancer and normal tissue samples were measured. Cancer tissues had significantly higher NAD+ glycohydrolase and ADP-ribosyl cyclase activities than the control tissues (43.3 ± 9.1 vs 29.2 ± 5.2 and 6.2 ± 1.6 vs 1.6 ± 0.4 nmol mg-1 min-1. Approximately 75% of the NAD+ concentration was consumed as substrate in rectal cancer, with changes in NAD+/ADP-ribose metabolism being observed. When [14C]-ADP-ribosylated tissue samples were subjected to SDS-PAGE, autoradiographic analysis revealed that several proteins were ADP-ribosylated in rectum tissue. Notably, the radiolabeling of a 113-kDa protein was remarkably greater than that in control tissues. Poly(ADP-ribosylation of the 113-kDa protein in rectum cancer tissues might be enhanced with its proliferative activity, and poly(ADP-ribosylation of the same protein in rectum cancer patients might be an indicator of tumor diagnosis.

  15. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  16. Evaluation of DNA Repair Function as a Predictor of Response in a Clinical Trial of PARP Inhibitor Monotherapy for Recurrent Ovarian Carcinoma

    Science.gov (United States)

    2014-10-01

    DNA ligase IV, XRCC4 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...nonhomologous end-joining (NHEJ) pathway (53BP1, Ku70, Ku80, DNA-PKcs, XRCC4, DNA ligase IV) as well as PARP1. This group of proteins was chosen based on our...recombination, nonhomologous end-joining (NHEJ), immunohistochemistry, poly(ADP-ribose) polymerase, Ku70, Ku80, PARP1, 53BP1, DNA-PK, Artemis, DNA ligase IV

  17. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells.

    Science.gov (United States)

    Buchfellner, Andrea; Yurlova, Larisa; Nüske, Stefan; Scholz, Armin M; Bogner, Jacqueline; Ruf, Benjamin; Zolghadr, Kourosh; Drexler, Sophie E; Drexler, Guido A; Girst, Stefanie; Greubel, Christoph; Reindl, Judith; Siebenwirth, Christian; Romer, Tina; Friedl, Anna A; Rothbauer, Ulrich

    2016-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.

  18. A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells.

    Directory of Open Access Journals (Sweden)

    Andrea Buchfellner

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP1 is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa, termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.

  19. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination.

    Science.gov (United States)

    Wang, Zhizhi; Michaud, Gregory A; Cheng, Zhihong; Zhang, Yue; Hinds, Thomas R; Fan, Erkang; Cong, Feng; Xu, Wenqing

    2012-02-01

    Protein poly(ADP-ribosyl)ation and ubiquitination are two key post-translational modifications regulating many biological processes. Through crystallographic and biochemical analysis, we show that the RNF146 WWE domain recognizes poly(ADP-ribose) (PAR) by interacting with iso-ADP-ribose (iso-ADPR), the smallest internal PAR structural unit containing the characteristic ribose-ribose glycosidic bond formed during poly(ADP-ribosyl)ation. The key iso-ADPR-binding residues we identified are highly conserved among WWE domains. Binding assays further demonstrate that PAR binding is a common function for the WWE domain family. Since many WWE domain-containing proteins are known E3 ubiquitin ligases, our results suggest that protein poly(ADP-ribosyl)ation may be a general mechanism to target proteins for ubiquitination.

  20. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade.

    Directory of Open Access Journals (Sweden)

    Fenqing Shang

    Full Text Available Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose polymerase 1 (PARP1. Biguanides and angiotensin II receptor blockers (ARBs such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs, diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosylation (PARylation, but increased endothelial nitric oxide synthase (eNOS activity and silent mating type information regulation 2 homolog 1 (SIRT1 expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.

  1. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade.

    Science.gov (United States)

    Shang, Fenqing; Zhang, Jiao; Li, Zhao; Zhang, Jin; Yin, Yanjun; Wang, Yaqiong; Marin, Traci L; Gongol, Brendan; Xiao, Han; Zhang, You-Yi; Chen, Zhen; Shyy, John Y-J; Lei, Ting

    2016-01-01

    Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.

  2. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Geeta; Kumar, Ashutosh [Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062 (India); Sharma, Shyam S., E-mail: sssharma@niper.ac.in [Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062 (India)

    2010-01-01

    Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).

  3. Cleaved PARP-1, an Apoptotic Marker, can be Detected in Ram Spermatozoa.

    Science.gov (United States)

    Casao, A; Mata-Campuzano, M; Ordás, L; Cebrián-Pérez, J A; Muiño-Blanco, T; Martínez-Pastor, F

    2015-08-01

    The presence of apoptotic features in spermatozoa has been related to lower quality and functional impairment. Members of the poly-ADP-ribose polymerases (PARP) familyare involved in both DNA repair and apoptosis, playing important roles in spermatogenesis. Poly-ADP-ribose polymerase can be cleaved by caspases, and the presence of its cleavage product (cPARP) in spermatozoa has been related to chromatin remodelling during spermatogenesis and to the activation of apoptotic pathways. There are no reports on immunodetection of cPARP in ram spermatozoa; thus, we have tested a commercially available antibody for this purpose. cPARP was microscopically detected in the acrosomal ridge of some spermatozoa (indirect immunofluorescence). A preliminary study was carried out by flow cytometry (direct immunofluorescence, FITC). Ram semen was extended in TALP and incubated for 4 h with apoptosis inducers staurosporine (10 μm) or betulinic acid (200 μm). Both inducers and incubation caused a significant increase in cPARP spermatozoa (0 h, control: 21.4±3.3%, inducers: 44.3±1.4%; 4 h, control: 44.3±2.4%, inducers: 53.3±1.4%). In a second experiment, we compared the sperm fractions after density gradient separation (pellet and interface). The pellet yielded a slightly lower proportion of cPARP spermatozoa (28.5±1.2% vs 36.2±2.0% in the interface; p ram semen, although its presence in untreated samples was weakly related to worse quality (pellet/interface). We suggest to study the relationship of PARP and cPARP levels with between-male differences on sperm fertility.

  4. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Directory of Open Access Journals (Sweden)

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  5. PARP activation promotes nuclear AID accumulation in lymphoma cells.

    Science.gov (United States)

    Tepper, Sandra; Jeschke, Julia; Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-03-15

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.

  6. PARP inhibitors – theoretical basis and clinical application

    Directory of Open Access Journals (Sweden)

    Sylwia Dębska

    2012-05-01

    Full Text Available  Poly-ADP-ribose polymerases (PARP are involved in a number of processes that are vital for every living cell. Once activated by the presence of DNA damage they trigger poly-ADP-ribosylation of various proteins which are crucial for DNA repair, preserving of genom integrity, regulation of transcription, proliferation and apoptosis. PARP1, which is the best known enzyme of PARP protein family, plays a role in single-strand breaks (SSB repair. Decrease of its activity results in accumulation of single strand DNA breaks (SSB which leads as a consequence to double- strand breaks (DSBs. This disorder is particularly harmful to cells with deficiency of BRCA1/2 protein which is involved in repair of DNA double-strand breaks.This phenomenon is an example of “synthetic lethality” concept and contributes to research on application of PARP inhibitors in treatment of cancers associated with BRCA1/2 protein defect (breast or ovarian cancer.Noticed synergism between PARP inhibitors and genotoxic chemotherapy or radiotherapy determined another direction of research on application of these medicaments.After promising results of phase I and II trials with most commonly investigated PARP inhibitors – iniparib and olaparib- which recruited patients with triple negative breast cancer and ovarian cancer, further studies started.This paper presents theoretical basis of PARP inhibitors action as well as critical review of most important clinical trials of these medicaments.

  7. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  8. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    OpenAIRE

    Sharan Rajeshwar N; Kataki Amal C; Lakadong Rennie O

    2010-01-01

    Abstract Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothe...

  9. Effects of PARP-1 Deficiency on Th1 and Th2 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    M. Sambucci

    2013-01-01

    Full Text Available T cell differentiation to effector Th cells such as Th1 and Th2 requires the integration of multiple synergic and antagonist signals. Poly(ADP-ribosylation is a posttranslational modification of proteins catalyzed by Poly(ADP-ribose polymerases (PARPs. Recently, many reports showed that PARP-1, the prototypical member of the PARP family, plays a role in immune/inflammatory responses. Consistently, its enzymatic inhibition confers protection in several models of immune-mediated diseases, mainly through an inhibitory effect on NF-κB (and NFAT activation. PARP-1 regulates cell functions in many types of immune cells, including dendritic cells, macrophages, and T and B lymphocytes. Our results show that PARP-1KO cells displayed a reduced ability to differentiate in Th2 cells. Under both nonskewing and Th2-polarizing conditions, naïve CD4 cells from PARP-1KO mice generated a reduced frequency of IL-4+ cells, produced less IL-5, and expressed GATA-3 at lower levels compared with cells from wild type mice. Conversely, PARP-1 deficiency did not substantially affect differentiation to Th1 cells. Indeed, the frequency of IFN-γ+ cells as well as IFN-γ production, in nonskewing and Th1-polarizing conditions, was not affected by PARP-1 gene ablation. These findings demonstrate that PARP-1 plays a relevant role in Th2 cell differentiation and it might be a target to be exploited for the modulation of Th2-dependent immune-mediated diseases.

  10. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    Science.gov (United States)

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  11. Identification of an enzymatic activity that hydrolyzes protein-bound ADP-ribose in skeletal muscle.

    Science.gov (United States)

    Chang, Y C; Soman, G; Graves, D J

    1986-09-30

    An enzymatic activity present in high-speed supernatant fluids of rat skeletal muscle was found that catalyzes the release of ADP-ribose from ADP-ribosylated-modified lysozyme. The nature of the product was proved by chromatographic studies and proton nuclear magnetic resonance spectroscopy. The enzyme activity is stimulated by Mg2+, dithioerythritol, and flouride. These results and those published earlier (Soman, G., Mickelson, J.R., Louis, C.F., and Graves, D.J. (1984) Biochem. Biophys. Res. Commun. 120, 973-980) show that ADP-ribosylation is a reversible process in skeletal muscle.

  12. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms.

  13. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    Directory of Open Access Journals (Sweden)

    Sharan Rajeshwar N

    2010-10-01

    Full Text Available Abstract Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothesize that a decrease in the concentration of total poly-ADP-ribose adducts of peripheral blood lymphocyte (PBL proteins strongly correlates with the incidence of human cancer. Results Using a novel immunoprobe assay, we show a statistically significant (P ≤ 0.001 reduction (~ 42 to 49% in the level of poly-ADP-ribose adducts of PBL proteins of patients with advanced cancers of head & neck (H & N region (comprising fourteen distinct cancers at different sites, breast and cervix in comparison to healthy controls. Conclusions These findings imply potential utility of the poly-ADP-ribose adducts of PBL proteins as a novel and general biomarker of human cancers with potentials of significant clinical and epidemiological applications.

  14. An update on PARP inhibitors for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Benafif S

    2015-02-01

    Full Text Available Sarah Benafif, Marcia Hall Mount Vernon Cancer Centre, Northwood, Middlesex, UK Abstract: The development of poly (adenosine diphosphate [ADP] ribose polymerase (PARP inhibitors (PARPi has progressed greatly over the last few years and has shown encouraging results in the BRCA1/2 mutation–related cancers. This article attempts to summarize the rationale and theory behind PARPi, the clinical trials already reported, as well as ongoing studies designed to determine the role of PARPi in patients with and without germline mutations of BRCA genes. Future plans for PARPi both as monotherapy and in combination with standard cytotoxics, other biological agents, and as radiosensitizers are also covered. The widening scope of PARPi adds another important targeted agent to the growing list of molecular inhibitors; future and ongoing trials will identify the most effective role for PARPi, including for patients other than BRCA germline mutation carriers. Keywords: PARPi, BRCA genes, germline mutations, cytotoxics, radiosensitizers, BRCA germline mutation carriers

  15. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

    Directory of Open Access Journals (Sweden)

    Hsueh Chung-Tsen

    2011-04-01

    Full Text Available Abstract We reviewed preclinical data and clinical development of MDM2 (murine double minute 2, ALK (anaplastic lymphoma kinase and PARP (poly [ADP-ribose] polymerase inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC. Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.

  16. PARP inhibitors: its role in treatment of cancer

    Institute of Scientific and Technical Information of China (English)

    Alice Chen

    2011-01-01

    PARP is an important protein in DNA repair pathways especially the base excision repair (BER).BER is involved in DNA repair of single strand breaks (SSBs). If BER is impaired, inhibiting poly(ADP-ribose) polymerase (PARP), SSBs accumulate and become double stand breaks (DSBs). The cells with increasing number of DSBs become more dependent on other repair pathways, mainly the homologous recombination (HR) and the nonhomologous end joining. Patients with defective HR, like BRCA-deficient cell lines, are even more susceptible to impairment of the BER pathway. Inhibitors of PARP preferentially kill cancer cells in BRCA-mutation cancer cell lines over normal cells. Also, PARP inhibitors increase cytotoxicity by inhibiting repair in the presence of chemotherapies that induces SSBs. These two principles have been tested clinically. Over the last few years, excitement over this class of agents has escalated due to reported activity as single agent in BRCA1- or BRCA2-associated ovarian or breast cancers, and in combination with chemotherapy in tdple negative breast cancer. This review covers the current results of clinical trials testing those two principles. It also evaluates future directions for the field of PARP inhibitor development.

  17. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    Science.gov (United States)

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  18. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  19. Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice.

    Science.gov (United States)

    Meyer-Ficca, Mirella L; Ihara, Motomasa; Bader, Jessica J; Leu, N Adrian; Beneke, Sascha; Meyer, Ralph G

    2015-03-01

    Sperm are highly differentiated cells characterized by their species-specific nuclear shapes and extremely condensed chromatin. Abnormal head shapes represent a form of teratozoospermia that can impair fertilization capacity. This study shows that poly(ADP-ribose) polymerase-11 (ARTD11/PARP11), a member of the ADP-ribosyltransferase (ARTD) family, is expressed preferentially in spermatids undergoing nuclear condensation and differentiation. Deletion of the Parp11 gene results in teratozoospermia and male infertility in mice due to the formation of abnormally shaped fertilization-incompetent sperm, despite normal testis weights and sperm counts. At the subcellular level, PARP11-deficient elongating spermatids reveal structural defects in the nuclear envelope and chromatin detachment associated with abnormal nuclear shaping, suggesting functional relevance of PARP11 for nuclear envelope stability and nuclear reorganization during spermiogenesis. In vitro, PARP11 exhibits mono(ADP-ribosyl)ation activity with the ability to ADP-ribosylate itself. In transfected somatic cells, PARP11 colocalizes with nuclear pore components, such as NUP153. Amino acids Y77, Q86, and R95 in the N-terminal WWE domain, as well as presence of the catalytic domain, are essential for colocalization of PARP11 with the nuclear envelope, but catalytic activity of the protein is not required for colocalization with NUP153. This study demonstrates that PARP11 is a novel enzyme important for proper sperm head shaping and identifies it as a potential factor involved in idiopathic mammalian teratozoospermia.

  20. PARP INHIBITION OR GENE DEFICIENCY COUNTERACT INTRAEPIDERMAL NERVE FIBER LOSS AND NEUROPATHIC PAIN IN ADVANCED DIABETIC NEUROPATHY

    Science.gov (United States)

    Obrosova, Irina G.; Xu, Weizheng; Lyzogubov, Valeriy V.; Ilnytska, Olga; Mashtalir, Nazar; Vareniuk, Igor; Pavlov, Ivan A.; Zhang, Jie; Slusher, Barbara; Drel, Viktor R.

    2011-01-01

    Evidence for important role of poly(ADP-ribose) polymerase (PARP) activation in diabetic complications is emerging. This study evaluated the role for PARP in rat and mouse models of advanced diabetic neuropathy. The orally active PARP inhibitor 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]anthracen-3-one(GPI-15427, formulated as mesilate salt, 30 mg kg−1d−1 in the drinking water, for 10 weeks after first 2 weeks without treatment) at least partially prevented PARP activation in peripheral nerve and DRG neurons, as well as thermal hypoalgesia, mechanical hyperalgesia, tactile allodynia, exaggerated response to formalin, and, the most important, intraepidermal nerve fiber degeneration in streptozotocin-diabetic rats. These findings are consistent with the lack of small sensory nerve fiber dysfunction in diabetic PARP−/− mice. Furthermore, whereas diabetic PARP+/+ mice displayed ~ 46% intraepidermal nerve fiber loss, diabetic PARP−/− preserved completely normal intraepidermal nerve fiber density. In conclusion, PARP activation is an important contributor to intraepidermal nerve fiber degeneration and functional changes associated with advanced Type 1 diabetic neuropathy. The results support the rationale for development of potent and low toxic PARP inhibitors and PARP inhibitor-containing combination therapies. PMID:17976390

  1. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription.

    Science.gov (United States)

    Vidaković, Melita; Gluch, Angela; Qiao, Junhua; Oumard, Andrè; Frisch, Matthias; Poznanović, Goran; Bode, Juergen

    2009-05-15

    This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.

  2. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    Science.gov (United States)

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light

  3. Accelerated Aging during Chronic Oxidative Stress: A Role for PARP-1

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2013-01-01

    Full Text Available Oxidative stress plays a major role in the pathophysiology of chronic inflammatory disease and it has also been linked to accelerated telomere shortening. Telomeres are specialized structures at the ends of linear chromosomes that protect these ends from degradation and fusion. Telomeres shorten with each cell division eventually leading to cellular senescence. Research has shown that poly(ADP-ribose polymerase-1 (PARP-1 and subtelomeric methylation play a role in telomere stability. We hypothesized that PARP-1 plays a role in accelerated aging in chronic inflammatory diseases due to its role as coactivator of NF-κb and AP-1. Therefore we evaluated the effect of chronic PARP-1 inhibition (by fisetin and minocycline in human fibroblasts (HF cultured under normal conditions and under conditions of chronic oxidative stress, induced by tert-butyl hydroperoxide (t-BHP. Results showed that PARP-1 inhibition under normal culturing conditions accelerated the rate of telomere shortening. However, under conditions of chronic oxidative stress, PARP-1 inhibition did not show accelerated telomere shortening. We also observed a strong correlation between telomere length and subtelomeric methylation status of HF cells. We conclude that chronic PARP-1 inhibition appears to be beneficial in conditions of chronic oxidative stress but may be detrimental under relatively normal conditions.

  4. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Antonella Cardinale

    Full Text Available Poly (ADP-ribose polymerase 1 (PARP-1 is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington's disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.

  5. Sensitizing thermochemotherapy with a PARP1-inhibitor.

    Science.gov (United States)

    Oei, Arlene L; Vriend, Lianne E M; van Leeuwen, Caspar M; Rodermond, Hans M; Ten Cate, Rosemarie; Westermann, Anneke M; Stalpers, Lukas J A; Crezee, Johannes; Kanaar, Roland; Kok, H Petra; Krawczyk, Przemek M; Franken, Nicolaas A P

    2016-08-19

    Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects.

  6. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ji Yang eKim

    2015-09-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP1 plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE in the distinct brain regions. In addition, P2X7 receptor (P2X7R, an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death. Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths.

  7. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism.

    Science.gov (United States)

    Mohamed, Junaith S; Wilson, Joseph C; Myers, Matthew J; Sisson, Kayla J; Alway, Stephen E

    2014-10-01

    Accumulation of reactive oxygen species (ROS) in skeletal muscles and the resulting decline in muscle performance are hallmarks of sarcopenia. However, the precise mechanism by which ROS results in a decline in muscle performance is unclear. We demonstrate that isometric-exercise concomitantly increases the activities of Silent information regulator 1 (SIRT-1) and Poly [ADP-ribose] polymerase (PARP-1), and that activated SIRT-1 physically binds with and inhibits PARP-1 activity by a deacetylation dependent mechanism in skeletal muscle from young mice. In contrast, skeletal muscle from aged mice displays higher PARP-1 activity and lower SIRT-1 activity due to decreased intracellular NAD+ content, and as a result reduced muscle performance in response to exercise. Interestingly, injection of PJ34, a PARP-1 inhibitor, in aged mice increased SIRT-1 activity by preserving intracellular NAD+ content, which resulted in higher skeletal muscle mitochondrial biogenesis and performance. We found that the higher activity of PARP-1 in H2O2-treated myotubes or in exercised-skeletal muscles from aged mice is due to an elevated level of PARP-1 acetylation by the histone acetyltransferase General control of amino acid synthesis protein 5-like 2 (GCN-5). These results suggest that activation of SIRT-1 and/or inhibition of PARP-1 may ameliorate skeletal muscle performance in pathophysiological conditions such as sarcopenia and disuse-induced atrophy in aging.

  8. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Wang, Huibo; Davis, Ben C. [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Liang, Jiyong [Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 (United States); Cui, Rutao [Department of Dermatology, Boston University School of Medicine, Boston, MA 02118 (United States); Chen, Sai-Juan, E-mail: sjchen@stn.sh.cn [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Xu, Zhi-Xiang, E-mail: zhi-xiang.xu@ccc.uab.edu [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States)

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  9. Consumer beware: a systematic assessment of potential bias in the lay electronic media to examine the portrayal of "PARP" inhibitors for cancer treatment.

    Science.gov (United States)

    Coleman, Shawnta; Peethambaram, Prema P; Jatoi, Aminah

    2011-09-01

    This study examined how the lay electronic media covers poly-ADP-ribose polymerase, or "PARP," inhibitors, a class of cancer agents currently under clinical investigation. Of 771 internet links, 51 targeted the lay public. Independent review by two investigators yielded the following categorizations: 36 (71%) were "overly positive", 15 (29%) "neutral", and none "overly negative". "Overly positive" articles used: (l) overstated benefit, (2) included quotations from enthusiastic scientists, and (3) discussed single or small patient subsets. They used such phrases as "the holy grail of cancer research", "the most exciting development in cancer research in a decade or more…. it could save thousands of lives", and "we were surprised and delighted…. it's the kind of thing you don't really think will happen". Healthcare providers should be aware of the foregoing when discussing PARP inhibitors-and perhaps other novel therapies-with cancer patients.

  10. PARP-1 inhibition influences the oxidative stress response of the human lens

    Directory of Open Access Journals (Sweden)

    Andrew J.O. Smith

    2016-08-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is best characterised for its involvement in DNA repair. PARP-1 activity is also linked to cell fate, confounding its roles in maintaining genome integrity. The current study assessed the functional roles of PARP-1 within human lens cells in response to oxidative stress. The human lens epithelial cell line FHL124 and whole human lens cultures were used as experimental systems. Hydrogen peroxide (H2O2 was employed to induce oxidative stress and cell death was assessed by LDH release. The functional influence of PARP-1 was assessed using targeted siRNA and chemical inhibition (by AG14361. Immunocytochemistry and western blotting were used to assess PARP-1 expression and the alkaline comet assay determined the levels of DNA strand breaks. PARP-1 was generally observed in the cell nucleus in both the FHL124 cell line and whole human lenses. PARP-1 inhibition rendered FHL124 cells more susceptible to H2O2-induced DNA strand breaks. Interestingly, reduction of PARP-1 activity significantly inhibited H2O2-induced cell death relative to control cells. Inhibition of PARP-1 in whole human lenses resulted in a reduced level of lens opacity and cell death following exposure to H2O2 relative to matched pair controls. Thus, we show that PARP-1 could play a role in the fate of human lens cells, and these first observations in human lenses suggest that it could impact on lens opacity. Further studies are required to elucidate the regulatory processes that give rise to these effects.

  11. 8-Bromo-cyclic inosine diphosphoribose: towards a selective cyclic ADP-ribose agonist

    Science.gov (United States)

    Kirchberger, Tanja; Moreau, Christelle; Wagner, Gerd K.; Fliegert, Ralf; Siebrands, Cornelia C.; Nebel, Merle; Schmid, Frederike; Harneit, Angelika; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2009-01-01

    cADPR (cyclic ADP-ribose) is a universal Ca2+ mobilizing second messenger. In T-cells cADPR is involved in sustained Ca2+ release and also in Ca2+ entry. Potential mechanisms for the latter include either capacitative Ca2+ entry, secondary to store depletion by cADPR, or direct activation of the non-selective cation channel TRPM2 (transient receptor potential cation channel, subfamily melastatin, member 2). Here we characterize the molecular target of the newly-described membrane-permeant cADPR agonist 8-Br-N1-cIDPR (8-bromo-cyclic IDP-ribose). 8-Br-N1-cIDPR evoked Ca2+ signalling in the human T-lymphoma cell line Jurkat and in primary rat T-lymphocytes. Ca2+ signalling induced by 8-Br-N1-cIDPR consisted of Ca2+ release and Ca2+ entry. Whereas Ca2+ release was sensitive to both the RyR (ryanodine receptor) blocker RuRed (Ruthenium Red) and the cADPR antagonist 8-Br-cADPR (8-bromo-cyclic ADP-ribose), Ca2+ entry was inhibited by the Ca2+ entry blockers Gd3+ (gadolinium ion) and SKF-96365, as well as by 8-Br-cADPR. To unravel a potential role for TRPM2 in sustained Ca2+ entry evoked by 8-Br-N1-cIDPR, TRPM2 was overexpressed in HEK (human embryonic kidney)-293 cells. However, though activation by H2O2 was enhanced dramatically in those cells, Ca2+ signalling induced by 8-Br-N1-cIDPR was almost unaffected. Similarly, direct analysis of TRPM2 currents did not reveal activation or co-activation of TRPM2 by 8-Br-N1-cIDPR. In summary, the sensitivity to the Ca2+ entry blockers Gd3+ and SKF-96365 is in favour of the concept of capacitative Ca2+ entry, secondary to store depletion by 8-Br-N1-cIDPR. Taken together, 8-Br-N1-cIDPR appears to be the first cADPR agonist affecting Ca2+ release and secondary Ca2+ entry, but without effect on TRPM2. PMID:19492987

  12. Targeted radiosensitization of ETS fusion-positive prostate cancer through PARP1 inhibition.

    Science.gov (United States)

    Han, Sumin; Brenner, J Chad; Sabolch, Aaron; Jackson, Will; Speers, Corey; Wilder-Romans, Kari; Knudsen, Karen E; Lawrence, Theodore S; Chinnaiyan, Arul M; Feng, Felix Y

    2013-10-01

    ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose) polymerase 1 (PARP1) in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07) fold (mean ± SEM) and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03) relative to ERG-negative cells (P ETS fusion-positive cancers.

  13. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors.

    Science.gov (United States)

    Donà, Francesca; Chiodi, Ilaria; Belgiovine, Cristina; Raineri, Tatiana; Ricotti, Roberta; Mondello, Chiara; Scovassi, Anna Ivana

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribosylation) play essential roles in several biological processes, among which neoplastic transformation and telomere maintenance. In this paper, we review the poly(ADP-ribosylation) process together with the highly appealing use of PARP inhibitors for the treatment of cancer. In addition, we report our results concerning poly(ADP-ribosylation) in a cellular model system for neoplastic transformation developed in our laboratory. Here we show that PARP-1 and PARP-2 expression increases during neoplastic transformation, together with the basal levels of poly(ADP-ribosylation). Furthermore, we demonstrate a greater effect of the PARP inhibitor 3-aminobenzamide (3AB) on cellular viability in neoplastically transformed cells compared to normal fibroblasts and we show that prolonged 3AB administration to tumorigenic cells causes a decrease in telomere length. Taken together, our data support an active involvement of poly(ADP-ribosylation) in neoplastic transformation and telomere length maintenance and confirm the relevant role of poly(ADP-ribosylation) inhibition for the treatment of cancer.

  14. In Silico Screening Identifies a Novel Potential PARP1 Inhibitor Targeting Synthetic Lethality in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-02-01

    Full Text Available Synthetic lethality describes situations in which defects in two different genes or pathways together result in cell death. This concept has been applied to drug development for cancer treatment, as represented by Poly (ADP-ribose polymerase (PARPs inhibitors. In the current study, we performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated that the ZINC67913374 compound achieved a better grid score (−86.8 and amber score (−51.42. Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable than olaparib. The binding free energy for ZINC67913374 was −177.28 kJ/mol while that of olaparib was −159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity, which suggest ZINC67913374 has promising potential for cancer drug development.

  15. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting

    Science.gov (United States)

    Gąsiorowska, Emilia; Nowak-Markwitz, Ewa; Jankowska, Anna

    2017-01-01

    Poly(ADP-ribose) polymerases have shown true promise in early clinical studies due to reported activity in BRCA-associated cancers. PARP inhibitors may represent a potentially important new class of chemotherapeutic agents directed at targeting cancers with defective DNA-damage repair. In order to widen the prospective patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. In addition, a more sophisticated understanding of the toxicity profile is required if PARP inhibitors are to be employed in the curative, rather than the palliative, setting. PARP inhibitors have successfully moved into clinical practice in the past few years, with approval granted from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past two years. The United States FDA approval of olaparib applies to fourth-line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval of olaparib for maintenance therapy in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. This review covers the current understanding of PARP, its inhibition, and the basis of the excitement surrounding these new agents. It also evaluates future approaches and directions required to achieve full understanding of the intricate interplay of these agents at the cellular level. PMID:28250726

  16. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants

    Directory of Open Access Journals (Sweden)

    Salojärvi Jarkko

    2010-03-01

    Full Text Available Abstract Background The SROs (SIMILAR TO RCD-ONE are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose polymerase (PARP domain and a C-terminal RST (RCD-SRO-TAF4 domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. Results SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918 but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11. We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose polymerase (PS51059 domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. Conclusions The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

  17. PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington’s Disease

    Science.gov (United States)

    Cardinale, Antonella; Paldino, Emanuela; Giampà, Carmela; Bernardi, Giorgio; Fusco, Francesca R.

    2015-01-01

    Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD. PMID:26252217

  18. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.

    Science.gov (United States)

    Higashida, Haruhiro; Salmina, Alla B; Olovyannikova, Raissa Ya; Hashii, Minako; Yokoyama, Shigeru; Koizumi, Keita; Jin, Duo; Liu, Hong-Xiang; Lopatina, Olga; Amina, Sarwat; Islam, Mohammad Saharul; Huang, Jian-Jun; Noda, Mami

    2007-01-01

    beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.

  19. PARP inhibition ameliorates nephropathy in an animal model of type 2 diabetes: focus on oxidative stress, inflammation, and fibrosis.

    Science.gov (United States)

    Zakaria, Esraa M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmonim A; El-Bassossy, Hany M

    2017-02-21

    Poly(ADP-ribose) polymerase (PARP) enzyme contributes to nephropathy, a serious diabetic complication which may lead to end-stage renal disease. The study aims to investigate the effect of PARP over-activation on kidney functions in a type 2 diabetic rat model. The study also tests the therapeutic use of PARP inhibitors in diabetic nephropathy. Type 2 diabetes was induced in adult male rats by high-fructose/high-fat diet and low streptozotocin dose. Then, the PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for 10 weeks. At the end, urine samples were collected to measure urine creatinine, albumin, and total proteins. PARP activity, superoxide dismutase (SOD) activity, and nitrite content were measured in kidney tissue homogenate. Glucose, fructosamine, insulin, and tumor necrosis factor-alpha (TNF-α) were measured in serum. Furthermore, histological studies, collagen deposition, and immunofluorescence of nuclear factor kappa B (NFκB) and transforming growth factor beta1 (TGF-β1) were carried out. PARP enzyme activity was significantly higher in the diabetic group and was significantly reduced by 4-AB administration. Diabetic animals had clear nephropathy indicated by proteinuria and increased albumin excretion rate (AER) which were significantly decreased by PARP inhibition. In addition, PARP inhibition increased creatinine clearance in diabetic animals and reduced renal TGF-β1 and glomerular fibrosis. Moreover, PARP inhibition alleviated the elevated serum TNF-α level, renal NFκB, nitrite, and the decrease in SOD activity in diabetic animals. However, PARP inhibition did not significantly affect neither hyperglycemia nor insulin sensitivity. PARP enzyme inhibition alleviates diabetic nephropathy through decreasing inflammation, oxidative stress, and renal fibrosis.

  20. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    Directory of Open Access Journals (Sweden)

    Cian M McCrudden

    Full Text Available Therapeutic inhibition of poly(ADP-ribose polymerase (PARP, as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699, induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  1. Combination strategy of PARP inhibitor with antioxidant prevent bioenergetic deficits and inflammatory changes in CCI-induced neuropathy.

    Science.gov (United States)

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2017-02-01

    Neuropathic pain, a debilitating pain condition and the underlying pathogenic mechanisms are complex and interwoven amongst each other and still there is scant information available regarding therapies which promise to treat the condition. Evidence indicate that oxidative/nitrosative stress induced poly (ADP-ribose) polymerase (PARP) overactivation initiate neuroinflammation and bioenergetic crisis culminating into neurodegenerative changes following nerve injury. Hence, we investigated the therapeutic effect of combining an antioxidant, quercetin and a PARP inhibitor, 4-amino 1, 8-naphthalimide (4-ANI) on the hallmark deficits induced by chronic constriction injury (CCI) of sciatic nerve in rats. Quercetin (25 mg/kg, p.o.) and 4-ANI (3 mg/kg, p.o.) were administered either alone or in combination for 14 days to examine sciatic functional index, allodynia and hyperalgesia using walking track analysis, Von Frey, acetone spray and hot plate tests respectively. Malondialdehyde, nitrite and glutathione levels were estimated to detect oxidative/nitrosative stress; mitochondrial membrane potential and cytochrome c oxidase activity to assess mitochondrial function; NAD & ATP levels to examine the bioenergetic status and levels of inflammatory markers were evaluated in ipsilateral sciatic nerve. Quercetin and 4-ANI alone improved the pain behaviour and biochemical alterations but the combination therapy demonstrated an appreciable reversal of CCI-induced changes. Nitrotyrosine and Poly ADP-Ribose (PAR) immunopositivity was decreased and nuclear factor erythroid 2-related factor (Nrf-2) levels were increased significantly in micro-sections of the sciatic nerve and dorsal root ganglion (DRG) of treatment group. These results suggest that simultaneous inhibition of oxidative stress-PARP activation cascade may potentially be useful strategies for management of trauma induced neuropathic pain.

  2. In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma☆,☆☆

    Science.gov (United States)

    AlHilli, Mariam M.; Becker, Marc A.; Weroha, S. John; Flatten, Karen S.; Hurley, Rachel M.; Harrell, Maria I.; Oberg, Ann L.; Maurer, Matt J.; Hawthorne, Kieran M.; Hou, Xiaonan; Harrington, Sean C.; McKinstry, Sarah; Meng, X. Wei; Wilcoxen, Keith M.; Kalli, Kimberly R.; Swisher, Elizabeth M.; Kaufmann, Scott H.; Haluska, Paul

    2017-01-01

    Objective Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo. Methods Massively parallel sequencing was performed on HGSOCs to identify mutations contributing to HR deficiency. HR pathway integrity was assessed using fluorescence microscopy-based RAD51 focus formation assays. Effects of niraparib (MK-4827) on treatment-naïve PDX tumor growth as monotherapy, in combination with carboplatin/paclitaxel, and as maintenance therapy were assessed by transabdominal ultrasound. Niraparib responses were correlated with changes in levels of poly(ADP-ribose), PARP1, and repair proteins by western blotting. Results Five PDX models were evaluated in vivo. Tumor regressions were induced by single-agent niraparib in one of two PDX models with deleterious BRCA2 mutations and in a PDX with RAD51C promoter methylation. Diminished formation of RAD51 foci failed to predict response, but Artemis loss was associated with resistance. Niraparib generally failed to enhance responses to carboplatin/paclitaxel chemotherapy, but maintenance niraparib therapy delayed progression in a BRCA2-deficient PDX. Conclusions Mutations in HR genes are neither necessary nor sufficient to predict response to niraparib. Assessment of repair status through multiple complementary assays is needed to guide PARP inhibitor therapy, design future clinical trials and identify ovarian cancer patients most likely to benefit from PARP inhibition. PMID:27614696

  3. Poly(Adp-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm.

    Science.gov (United States)

    Ozdülger, Ali; Cinel, Ismail; Unlü, Ali; Cinel, Leyla; Mavioglu, Ilhan; Tamer, Lülüfer; Atik, Ugur; Oral, Ugur

    2002-07-01

    Although the precise mechanism by which sepsis causes impairment of respiratory muscle contractility has not been fully elucidated, oxygen-derived free radicals are thought to play an important role. In our experimental study, the effects of poly(ADP-ribose) synthetase (PARS) inhibition on the diaphragmatic Ca(2+)-ATPase, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) levels and additionally histopathology of the diaphragm in lipopolysaccharide (LPS)-induced endotoxemia are investigated.Thirty-two male Wistar rats, weighing between 180-200 g were randomly divided into four groups. The first group (control; n=8) received saline solution and the second (LPS group; n=8) 10 mgkg(-1) LPS i.p. 3-Aminobenzamide (3-AB) as a PARS inhibitor; was given to the third group (C+3-AB, n=8) 20 min before administration of saline solution while the fourth group (LPS+3-AB, n=8) received 3-AB 20 min before LPS injection. Six hours later, under ketamin/xylasine anesthesia diapraghmatic specimens were obtained and the rats were decapitated. Diaphragmatic specimens were divided into four parts, three for biochemical analyses and one for histopathologic assessment. In the LPS group, tissue Ca(2+)-ATPase levels were found to be decreased and tissue MDA and 3-NT levels were found to be increased (P<0.05). In the LPS+3-AB group, 3-AB pretreatment inhibited the increase in MDA and 3-NT levels and Ca(2+)-ATPase activity remained similar to those in the control group (P<0.05). Histopathologic examination of diaphragm showed edema between muscle fibers only in LPS group. PARS inhibition with 3-AB prevented not only lipid peroxidation but also the decrease of Ca(2+)-ATPase activity in endotoxemia. These results highlights the importance of nitric oxide (NO)-peroxynitrite (ONOO(-))-PARS pathway in preventing free radical mediated injury. PARS inhibitors should further be investigated as a new thearapetic alternative in sepsis treatment.

  4. Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin.

    Directory of Open Access Journals (Sweden)

    Claudia A Benavente

    Full Text Available Sirtuins (SIRTs and poly(ADP-ribose polymerases (PARPs, NAD(+-dependent enzymes, link cellular energy status with responses to environmental stresses. Skin is frequently exposed to the DNA damaging effects of UV irradiation, a known etiology in skin cancer. Thus, understanding the defense mechanisms in response to UV, including the role of SIRTs and PARPs, may be important in developing skin cancer prevention strategies. Here, we report expression of the seven SIRT family members in human skin. SIRTs gene expressions are progressively upregulated in A431 epidermoid carcinoma cells (SIRTs1 and 3, actinic keratoses (SIRTs 2, 3, 5, 6, and 7 and squamous cell carcinoma (SIRTs 1-7. Photodamage induces dynamic changes in SIRT expression with upregulation of both SIRT1 and SIRT4 mRNAs. Specific losses of SIRT proteins occur early after photodamage followed by accumulation later, especially for SIRT4. Niacin restriction, which decreases NAD(+, the sirtuin substrate, results in an increase in acetylated proteins, upregulation of SIRTs 2 and 4, increased inherent DNA damage, alterations in SIRT responses to photodamage, abrogation of PARP activation following photodamage, and increased sensitivity to photodamage that is completely reversed by repleting niacin. These data support the hypothesis that SIRTs and PARPs play important roles in resistance to photodamage and identify specific SIRTs that respond to photodamage and may be targets for skin cancer prevention.

  5. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer.

    Science.gov (United States)

    George, Angela; Kaye, Stan; Banerjee, Susana

    2016-12-13

    The treatment of patients with ovarian cancer is rapidly changing following the success of poly [ADP-ribose] polymerase (PARP) inhibitors in clinical trials. Olaparib is the first PARP inhibitor to be approved by the EMA and FDA for BRCA-mutated ovarian cancer. Germ line BRCA mutation status is now established as a predictive biomarker of potential benefit from treatment with a PARP inhibitor; therefore, knowledge of the BRCA status of an individual patient with ovarian cancer is essential, in order to guide treatment decisions. BRCA testing was previously offered only to women with a family or personal history of breast and/or ovarian cancer; however, almost 20% of women with high-grade serous ovarian cancer are now recognized to harbour a germ line BRCA mutation, and of these, >40% might not have a family history of cancer and would not have received BRCA testing. A strategy to enable more widespread implementation of BRCA testing in routine care is, therefore, necessary. In this Review, we summarize data from key clinical trials of PARP inhibitors and discuss how to integrate these agents into the current treatment landscape of ovarian cancer. The validity of germ line BRCA testing and other promising biomarkers of homologous-recombination deficiency will also be discussed.

  6. Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition.

    Science.gov (United States)

    Villamar Cruz, Olga; Prudnikova, Tatiana Y; Araiza-Olivera, Daniela; Perez-Plasencia, Carlos; Johnson, Neil; Bernhardy, Andrea J; Slifker, Michael; Renner, Catherine; Chernoff, Jonathan; Arias-Romero, Luis E

    2016-11-22

    Cells that are deficient in homologous recombination, such as those that have mutations in any of the Fanconi Anemia (FA)/BRCA genes, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, FA/BRCA-deficient tumors represent a small fraction of breast cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. The gene encoding the serine-threonine protein kinase p21-activated kinase 1 (PAK1) is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme controls many cellular processes by phosphorylating both cytoplasmic and nuclear substrates. Here, we show that depletion or pharmacological inhibition of PAK1 down-regulated the expression of genes involved in the FA/BRCA pathway and compromised the ability of cells to repair DNA by Homologous Recombination (HR), promoting apoptosis and reducing colony formation. Combined inhibition of PAK1 and PARP in PAK1 overexpressing breast cancer cells had a synergistic effect, enhancing apoptosis, suppressing colony formation, and delaying tumor growth in a xenograft setting. Because reduced PAK1 activity impaired FA/BRCA function, inhibition of this kinase in PAK1 amplified and/or overexpressing breast cancer cells represents a plausible strategy for expanding the utility of PARP inhibitors to FA/BRCA-proficient cancers.

  7. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Holleman, Amy; den Boer, Monique L; Kazemier, Karin M; Beverloo, H Berna; von Bergh, Anne R M; Janka-Schaub, Gritta E; Pieters, Rob

    2005-09-01

    Drug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) in cells from children with acute lymphoblastic leukemia (ALL; n = 43) and acute myeloid leukemia (AML; n = 10). PARP expression was present in all B-lineage samples, but absent in 4 of 15 T-lineage ALL samples and 3 of 10 AML cases, which was not caused by genomic deletions. PARP expression was a median 7-fold lower in T-lineage ALL (P < .001) and 10-fold lower in AML (P < .001) compared with B-lineage ALL. PARP expression was 4-fold lower in prednisolone, vincristine and L-asparaginase (PVA)-resistant compared with PVA-sensitive ALL patients (P < .001). Procaspase-2 expression was 3-fold lower in T-lineage ALL (P = .022) and AML (P = .014) compared with B-lineage ALL. In addition, procaspase-2 expression was 2-fold lower in PVA-resistant compared to PVA-sensitive ALL patients (P = .042). No relation between apoptotic protease-activating factor 1 (Apaf-1), procaspases-3, -6, -7, -8, -10, and drug resistance was found. In conclusion, low baseline expression of PARP and procaspase-2 is related to cellular drug resistance in childhood acute lymphoblastic leukemia.

  8. Targeted Radiosensitization of ETS Fusion-Positive Prostate Cancer through PARP1 Inhibition

    Directory of Open Access Journals (Sweden)

    Sumin Han

    2013-10-01

    Full Text Available ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose polymerase 1 (PARP1 in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07 fold (mean ± SEM and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03 relative to ERG-negative cells (P < .05. Neutral and alkaline COMET assays and immunofluorescence microscopy assessing γ-H2AX foci showed increased short- and long-term efficiencies of DNA repair, respectively, following radiation that was preferentially reversed by PARP1 inhibition. These findings were verified in an in vivo xenograft model. Our findings demonstrate that ERG overexpression confers radiation resistance through increased efficiency of DNA repair following radiation that can be reversed through inhibition of PARP1. These results motivate the use of PARP1 inhibitors as radiosensitizers in patients with localized ETS fusion-positive cancers.

  9. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein

    Science.gov (United States)

    Liu, Chien-Hung; Zhou, Ligang; Chen, Guifang; Krug, Robert M.

    2015-01-01

    Previous studies showed that ZAPL (PARP-13.1) exerts its antiviral activity via its N-terminal zinc fingers that bind the mRNAs of some viruses, leading to mRNA degradation. Here we identify a different antiviral activity of ZAPL that is directed against influenza A virus. This ZAPL antiviral activity involves its C-terminal PARP domain, which binds the viral PB2 and PA polymerase proteins, leading to their proteasomal degradation. After the PB2 and PA proteins are poly(ADP-ribosylated), they are associated with the region of ZAPL that includes both the PARP domain and the adjacent WWE domain that is known to bind poly(ADP-ribose) chains. These ZAPL-associated PB2 and PA proteins are then ubiquitinated, followed by proteasomal degradation. This antiviral activity is counteracted by the viral PB1 polymerase protein, which binds close to the PARP domain and causes PB2 and PA to dissociate from ZAPL and escape degradation, explaining why ZAPL only moderately inhibits influenza A virus replication. Hence influenza A virus has partially won the battle against this newly identified ZAPL antiviral activity. Eliminating PB1 binding to ZAPL would be expected to substantially increase the inhibition of influenza A virus replication, so that the PB1 interface with ZAPL is a potential target for antiviral development. PMID:26504237

  10. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Jelena Marković

    Full Text Available Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12 transcription. The roles of poly(ADP-ribose polymerase-1 (PARP-1 and transcription factor Yin Yang 1 (YY1 in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the

  11. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES.

    Science.gov (United States)

    Cho, Chao-Cheng; Lin, Meng-Hsuan; Chuang, Chien-Ying; Hsu, Chun-Hua

    2016-03-01

    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) encodes the conserved macro domain within non-structural protein 3. However, the precise biochemical function and structure of the macro domain is unclear. Using differential scanning fluorimetry and isothermal titration calorimetry, we characterized the MERS-CoV macro domain as a more efficient adenosine diphosphate (ADP)-ribose binding module than macro domains from other CoVs. Furthermore, the crystal structure of the MERS-CoV macro domain was determined at 1.43-Å resolution in complex with ADP-ribose. Comparison of macro domains from MERS-CoV and other human CoVs revealed structural differences in the α1 helix alters how the conserved Asp-20 interacts with ADP-ribose and may explain the efficient binding of the MERS-CoV macro domain to ADP-ribose. This study provides structural and biophysical bases to further evaluate the role of the MERS-CoV macro domain in the host response via ADP-ribose binding but also as a potential target for drug design.

  12. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy.

    Science.gov (United States)

    Papeo, Gianluca; Posteri, Helena; Borghi, Daniela; Busel, Alina A; Caprera, Francesco; Casale, Elena; Ciomei, Marina; Cirla, Alessandra; Corti, Emiliana; D'Anello, Matteo; Fasolini, Marina; Forte, Barbara; Galvani, Arturo; Isacchi, Antonella; Khvat, Alexander; Krasavin, Mikhail Y; Lupi, Rosita; Orsini, Paolo; Perego, Rita; Pesenti, Enrico; Pezzetta, Daniele; Rainoldi, Sonia; Riccardi-Sirtori, Federico; Scolaro, Alessandra; Sola, Francesco; Zuccotto, Fabio; Felder, Eduard R; Donati, Daniele; Montagnoli, Alessia

    2015-09-10

    The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by). NMS-P118 proved to be a potent, orally available, and highly selective PARP-1 inhibitor endowed with excellent ADME and pharmacokinetic profiles and high efficacy in vivo both as a single agent and in combination with Temozolomide in MDA-MB-436 and Capan-1 xenograft models, respectively. Cocrystal structures of 20by with both PARP-1 and PARP-2 catalytic domain proteins allowed rationalization of the observed selectivity.

  13. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    Science.gov (United States)

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, pfisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1 interacted with DUX4 promoter and may be involved in modulating DUX4 expression in FSHD. PMID:27722032

  14. PARP inhibition treatment in a nonconventional experimental mouse model of chronic asthma.

    Science.gov (United States)

    Zaffini, Raffaela; Di Paola, Rosanna; Cuzzocrea, Salvatore; Menegazzi, Marta

    2016-12-01

    Allergic asthma is an immunological disease that occurs as a consequence of aeroallergen exposure. Inhibition of poly(ADP-ribose) polymerases (PARPs) in conventional models of asthma-like reaction has emerged as an effective anti-inflammatory and airway remodeling intervention. In a house dust mite (HDM) exposure mouse model, we investigated the impact of PARP inhibition on allergic airway inflammation, sensitization, and remodeling. Mice were intranasally exposed to a HDM extract for 5 days per week for up to 5 weeks. Mice were administered, or not, by PARP inhibitors 3-aminobenzamide (3-ABA) or 5-aminoisoquinolinone (5-AIQ) during the last 2 weeks of HDM treatment. Mice treated with PARP inhibitors after HDM stimulation showed a significant decrease in the number of total cells and eosinophils detectable in the bronchoalveolar lavage fluid as compared with the HDM-stimulated ones. In vitro HDM-stimulated splenocyte culture produced considerable amounts of the Th2 cytokines that were not affected by treatment with PARP inhibitors. Immunoglobulin levels in the serum were also unchanged. In the lung tissue, collagen deposition was decreased, whereas α-smooth muscle actin thickening was not significantly affected. Moreover, in HDM-stimulated PARP inhibitor-treated groups, we found a downregulation in the activation of signal transducer and activator of trascription-6 (STAT-6) and a significant decrease in the mRNA levels of C-C motif chemokine 11 (CCL11). In this mouse model of chronic asthma PARP inhibition treatment, although it does not affect sensitization, it effectively reduces the allergic airway inflammation and affects the remodeling through a mechanism involving STAT6 and CCL11.

  15. The Combination of the PARP Inhibitor Rucaparib and 5FU Is an Effective Strategy for Treating Acute Leukemias.

    Science.gov (United States)

    Falzacappa, Maria Vittoria Verga; Ronchini, Chiara; Faretta, Mario; Iacobucci, Ilaria; Di Rorà, Andrea Ghelli Luserna; Martinelli, Giovanni; Meyer, Lüder Hinrich; Debatin, Klaus-Michael; Orecchioni, Stefania; Bertolini, Francesco; Pelicci, Pier Giuseppe

    2015-04-01

    The existing treatments to cure acute leukemias seem to be nonspecific and suboptimal for most patients, drawing attention to the need of new therapeutic strategies. In the last decade the anticancer potential of poly ADP-ribose polymerase (PARP) inhibitors became apparent and now several PARP inhibitors are being developed to treat various malignancies. So far, the usage of PARP inhibitors has been mainly focused on the treatment of solid tumors and not too much about their efficacy on leukemias is known. In this study we test, for the first time on leukemic cells, a combined therapy that associates the conventional chemotherapeutic agent fluorouracil (5FU), used as a source of DNA damage, and a PARP inhibitor, rucaparib. We demonstrate the efficacy and the specificity of this combined therapy in killing both acute myeloid leukemia and acute lymphoid leukemia cells in vitro and in vivo. We clearly show that the inhibition of DNA repair induced by rucaparib is synthetic lethal with the DNA damage caused by 5FU in leukemic cells. Therefore, we propose a new therapeutic strategy able to enhance the cytotoxic effect of DNA-damaging agents in leukemia cells via inhibiting the repair of damaged DNA.

  16. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  17. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway.

    Science.gov (United States)

    Jangra, Ashok; Datusalia, Ashok Kumar; Khandwe, Shriya; Sharma, Shyam Sunder

    2013-12-01

    Diabetes associated hyperglycemia results in generation of reactive oxygen species which induces oxidative stress and initiate massive DNA damage leading to overactivation of poly (ADP-ribose) polymerase (PARP). In this study, we have elucidated the involvement of oxidative stress-PARP pathway using pharmacological interventions (melatonin, as an anti-oxidant and nicotinamide, as a PARP inhibitor) in diabetes-induced neurobehavioral and neurochemical alterations. Sprague-Dawley rats were rendered diabetic by a single intraperitoneal injection of streptozotocin. Behavioral and cognitive deficits were assessed after 8weeks of diabetes induction using a functional observation battery, passive avoidance and rotarod test. Acetylcholinesterase activity was significantly decreased in hippocampus of diabetic rats as compared to control rats. Diabetic animals showed significant increase in malondialdehyde levels and reduction in NAD levels in hippocampus. Glutamate and GABA levels were also altered in hippocampus of the diabetic animals. Two week treatment with melatonin (3 and 10mg/kg) and nicotinamide (300 and 1000mg/kg) alone and in combination significantly improved the neurobehavioral parameters which were altered in diabetes. Neurotransmitter (glutamate and GABA) levels were improved by these interventions. Our results emphasize that simultaneous inhibition of oxidative stress-PARP overactivation cascade can be beneficial in treatment of diabetes associated CNS changes.

  18. PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR

    Science.gov (United States)

    Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan; Wen, Jitao; Wang, Ke; Jiang, Xue; Tian, Xue; Ba, Xueqing; Boldogh, Istvan; Zeng, Xianlu

    2017-01-01

    Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding. Increases in mRNA level or stability of pro-inflammatory cytokines/chemokines are abolished by PARP1 ablation or inhibition, or blocked in D226A HuR-expressing cells. The present study demonstrates a mechanism to regulate gene expression at the post-transcriptional level, and suggests that blocking the interaction of PARP1 with HuR could be a strategy to treat inflammation-related diseases that involve increased mRNA stability. PMID:28272405

  19. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    Science.gov (United States)

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-02-06

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor.

  20. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    Science.gov (United States)

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition.

  1. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors.

    Science.gov (United States)

    Gerace, E; Masi, A; Resta, F; Felici, R; Landucci, E; Mello, T; Pellegrini-Giampietro, D E; Mannaioni, G; Moroni, F

    2014-10-01

    An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting

  2. 抗肿瘤药物PARP-1抑制剂及其放射性核素标记的研究进展%Research Progress of PARP-1 Inhibitors in Antitumor Drugs and Radionuclide Markers

    Institute of Scientific and Technical Information of China (English)

    赵凌舟; 张华北

    2011-01-01

    聚(腺苷二磷酸-核糖)多聚酶( poly(ADP-ribose) polymerase,PARP)是当今癌症治疗的一个新靶点.PARP不但能修复DNA损伤和调控转录,维持细胞内环境与基因组稳定,调节细胞存活和死亡过程,同时也是肿瘤发展和炎症发生过程中的主要转录因子.抑制PARP活性能降低肿瘤细胞的DNA修复功能,增强其对DNA损伤因子的敏感性,从而提高肿瘤放疗和化疗疗效.大量的研究表明,无论单一用药或联合化疗药物,PARP抑制剂都显示了在抗肿瘤治疗领域的潜力.本文综述了PARP-1抑制剂在抗肿瘤方面的研究进展.根据PARP-1抑制剂的发展阶段进行分类,着重介绍几种有代表性的,处于临床试验阶段,且具有潜在临床应用价值的PARP-1抑制剂.正电子发射计算机断层扫描(Positron Emission Tomograph,PET)利用组成人体主要元素的短半衰期核素作示踪剂,在分子水平上,无创伤、定量、动态地观察代谢物或药物在人体内的各种变化,是当代最先进的影像诊断技术,本文也将简单介绍用放射性核素标记PARP-1抑制剂的研究进展.%Poly (ADP-ribose) polymerase ( PARP) is a new target in the cancer treatment nowadays. PARP not only can repair DNA damage, regulate and control transcription, maintain the stability of intracellular environment and genome, regulate the process of cell survival and death, but also is the main transcription factor in the development of inflammation and the process of cancer. To inhibit PARP activity can reduce the DNA repair function in tumor cells, and increase the sensibility to DNA damage agents, so as to improve the ef-ficacy of radiation therapy and chemotherapy for tumor. A number of studies have suggested that, whether used alone or combination with other chemotherapy drugs, PARP inhibitors show the potential in the anti-tumor therapeutic areas. In this paper, PARP-1 inhibitors were reviewed in antitumor research progress. According to the stage

  3. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer

    Science.gov (United States)

    Henneman, Linda; van Miltenburg, Martine H.; Michalak, Ewa M.; Braumuller, Tanya M.; Jaspers, Janneke E.; Drenth, Anne Paulien; de Korte-Grimmerink, Renske; Gogola, Ewa; Szuhai, Karoly; Schlicker, Andreas; Bin Ali, Rahmen; Pritchard, Colin; Huijbers, Ivo J.; Berns, Anton; Rottenberg, Sven; Jonkers, Jos

    2015-01-01

    Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics. PMID:26100884

  4. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer.

    Science.gov (United States)

    Henneman, Linda; van Miltenburg, Martine H; Michalak, Ewa M; Braumuller, Tanya M; Jaspers, Janneke E; Drenth, Anne Paulien; de Korte-Grimmerink, Renske; Gogola, Ewa; Szuhai, Karoly; Schlicker, Andreas; Bin Ali, Rahmen; Pritchard, Colin; Huijbers, Ivo J; Berns, Anton; Rottenberg, Sven; Jonkers, Jos

    2015-07-07

    Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.

  5. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Petra; Hegedűs, Csaba [Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); Salazar Ayestarán, Nerea; Juarranz, Ángeles [Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid (Spain); Kövér, Katalin E. [Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Debrecen, Debrecen (Hungary); Szabó, Éva [Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); Virág, László, E-mail: lvirag@med.unideb.hu [Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen (Hungary); MTA-DE Cell Biology and Signaling Research Group, Debrecen (Hungary)

    2016-08-15

    Highlights: • PARP-1 is not a key regulator of photochemotherapy. • The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. • Photosensitization by PJ-34 is associated with increased ROS production and DNA damage. • Cells sensitized by PJ-34 undergo caspase-mediated apoptosis. - Abstract: A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5 J/cm{sup 2}) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ–34 + UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and −8. In conclusion, PJ-34 is a photosensitizer and PJ–34 + UVA causes DNA damage and caspase

  6. PARP-I and p53 expression in Sertoli cell during rat ontogenesis

    Directory of Open Access Journals (Sweden)

    R. Taherian

    2010-01-01

    Full Text Available Poly ADP-ribose polymerase-I (PARP-I, a nuclear I I 3-kDa Zinc-finger protein, catalyze poly ADP-ribosilation reactions and is involved in many physiological and pathological conditions such as cell differentation and proliferation, transcriptional events, carcinogenesis and apoptosis. Sertoli cells are essential for reproduction, providing germ cells with nutrients and hormonal signals. Poly ADP-ribosylation has been well studied during sperm cell maturation but the role of such reactions at the Sertoli cell level remains unknown. In the present work we analyzed the expression of PARP-I during the postnatal differentiation of Sertoli cells isolated from rat testis. We compared PART-I expression with that of p53, whose activity is modulated by poly ADP-ribosylation. Quantitative RT-PCR technique was employed. Our data demonstrate for the first time PART-I expression in rat Sertoli cell both in the neonatal and peripubertal period. p53 expression pattern was found opposite to that of PART-I, suggesting that PART-I is possibility in charge for protecting the developing Sertoli cells when the activity of p53 lowers.

  7. Imaging Therapeutic PARP Inhibition In Vivo through Bioorthogonally Developed Companion Imaging Agents

    Directory of Open Access Journals (Sweden)

    Thomas Reiner

    2012-03-01

    Full Text Available A number of small-molecule poly (ADP-ribose polymerase (PARP inhibitors are currently undergoing advanced clinical trials. Determining the distribution and target inhibitory activity of these drugs in individual subjects, however, has proven problematic. Here, we used a PARP agent for positron emission tomography-computed tomography (PET-CT imaging (18F-BO, which we developed based on the Olaparib scaffold using rapid bioorthogonal conjugation chemistries. We show that the bioorthogonal 18F modification of the parent molecule is simple, highly efficient, and well tolerated, resulting in a half maximal inhibitory concentration (IC50 of 17.9 ± 1.1 nM. Intravital imaging showed ubiquitous distribution of the drug and uptake into cancer cells, with ultimate localization within the nucleus, all of which were inhibitable. Whole-body PET-CT imaging showed tumoral uptake of the drug, which decreased significantly, after a daily dose of Olaparib. Standard 18F-fludeoxyglucose imaging, however, failed to detect such therapy-induced changes. This research represents a step toward developing a more generic approach for the rapid codevelopment of companion imaging agents based on small-molecule therapeutic inhibitors.

  8. The PARP inhibitor benzamide protects against kainate and NMDA but not AMPA lesioning of the mouse striatum in vivo.

    Science.gov (United States)

    Cosi, Cristina; Guerin, Karen; Marien, Marc; Koek, Wouter; Rollet, Karin

    2004-01-16

    Overactivation of poly(ADP-ribose) polymerase (PARP) in response to genotoxic insults can cause cell death by energy deprivation. We previously reported that neurotoxic amounts of kainic acid (KA) injected into the rat striatum produce time-dependent changes in striatal PARP activity in vivo. Here, we have investigated the time-course of KA-induced toxicity and the effects of the PARP inhibitor benzamide on KA, AMPA and NMDA neurotoxicities in vivo, by measuring changes in the volume of the lesion and in NAD+ and ATP levels induced by the intra-striatal injection of these excitotoxins in C57Bl/6N mice. The KA-induced lesion volume was dependent on the amount of toxin injected and the survival time. The lesion was well developed at 48 h and was almost undetectable after one week. KA produced an extensive astrogliosis at one week. Benzamide partially prevented both KA- and NMDA- but not AMPA-induced lesions when measured at 48 h after the treatment. The effects of benzamide appeared to be in part related to changes in energy metabolism, since KA produced decreases in striatal levels of NAD+ and ATP that were partially prevented by benzamide at 48 h and which returned to control levels at one week. NMDA did not affect NAD+ and induced little alteration in ATP levels. Benzamide had no effect on AMPA-induced decreases in either NAD+ or ATP levels at 48 h. These results (1) indicate that PARP overactivation and energy depletion could be responsible in part for the cellular demise during the development of the lesion induced by KA; (2) confirm that PARP is involved in NMDA but not AMPA toxicities; (3) suggest the existence of differences between KA and AMPA-mediated toxicities; and (4) provide further evidence supporting PARP as a novel target for new drug treatments against neurodegenerative disorders.

  9. 多聚腺苷二磷酸核糖聚合酶抑制剂AG014699联合化疗对三阴性乳腺癌细胞株MDA-MB-231增殖的影响%Effects of Poly (ADP-ribose) Polymerase Inhibitor AG014699 Combined with Chemotherapy on the Proliferation of Triple-negative Breast Cancer Cell Line MDA-MB-231

    Institute of Scientific and Technical Information of China (English)

    孙颖; 丁焕; 黎晓晴; 黎莉

    2014-01-01

    目的 研究多聚腺苷二磷酸核糖聚合酶(PARP)抑制剂AG014699联合多西他赛(DTX)或卡铂(CBP)对三阴性乳腺癌细胞株MDA-MB-231增殖的影响,探讨PARP抑制剂AG014699联合化疗是否有协同抗肿瘤效应.方法 PARP抑制剂AG014699与DTX、CBP单独或联合作用于MDA-MB-231细胞,细胞增殖及细胞毒性实验法检测细胞增殖并用联合用药公式分析合用效应(q值0.85~1.15为单纯相加,>1.15为协同,<0.85为拮抗);流式细胞仪分析细胞凋亡及周期分布.结果 PARP抑制剂AG014699、DTX、CBP单独作用于MDA-MB-231细胞,均可抑制增殖,诱导凋亡,引起细胞周期阻滞;PARP抑制剂AG014699(10μmol/L)与DTX (10-8、10-7、10-6、10-5 mol/L)、CBP (10-5、10-4 mol/L)联合作用时,q值在0.85 ~1.15,显示相加效应;PARP抑制剂AG014699与CBP (10-3 mol/L)联合作用时,q值>1.15,显示协同效应.PARP抑制剂AG014699联合DTX或CBP能进一步促进凋亡,并使G2/M期细胞比例增加.结论 PARP抑制剂AG014699联合化疗药物DTX或CBP能显著抑制MDA-MB-231细胞增殖,发挥相加或协同抗肿瘤作用.

  10. Role of PARP-2 in cardiac hypertrophy in rats%PARP-2在大鼠心肌肥大中的作用

    Institute of Scientific and Technical Information of China (English)

    周广友; 耿彪; 耿涛; 安儒峰; 田芳; 刘培庆

    2015-01-01

    AIM:To investigate the expression of poly(ADP-ribose) polymerase-2 (PARP-2) during rat car-diac hypertrophy in vitro and in vivo, and to explore the effects of PARP-2 on the cardiac hypertrophy.METHODS:Ab-dominal aortic coarctation ( AAC) was performed to establish a model of pressure overload-induced cardiac hypertrophy in SD rats.The expression of PARP-2 at mRNA and protein levels in the myocardium was determined by real-time PCR and Western blot.The hypertrophy model of the cardiomyocytes was induced by treating the cells with angiotensinⅡ( AngⅡ) . PARP-2 was knocked down by siRNAs in neonatal rat cardiomyocytes and the cardiomyocyte hypertrophy was evaluated by measuring the mRNA levels of ANF, BNP, and β-MHC and the cellular surface area.RESULTS: The expression of PARP-2 at mRNA and protein levels was both increased in the AAC rats as compared with those in the sham animals.The expression of PARP-2 at mRNA and protein levels was also increased in a time-and concentration-dependent manner in AngⅡ-induced hypertrophy model of the cardiomyocytes.In the neonatal rat cardiomyocytes, knockdown of PARP-2 ex-pression by siRNA attenuated AngⅡ-induced cardiac hypertrophy of the cardiomyocytes, indicating that endogenous PARP-2 played a positive regulatory role in cardiac hypertrophy.CONCLUSION:The mRNA and protein levels of PARP-2 in-crease in the in vitro and in vivo models of cardiac hypertrophy.Knockdown of PARP-2 protects cardiomyocytes from hyper-trophy.%目的:在细胞和整体水平研究多聚腺苷酸二磷酸核糖基聚合酶2(PARP-2)在心肌肥大过程中表达的变化规律以及PARP-2对心肌肥大的调控作用。方法:健康雄性SD大鼠采用腹主动脉缩窄法( AAC)建立心肌肥大动物模型,采用real-time PCR和Western blot检测PARP-2的mRNA和蛋白表达变化;使用PARP-2特异性的siRNA干扰序列来处理细胞后,通过检测心肌细胞表面积及ANF、BNP和β-MHC的mRNA表达变化来作为评判

  11. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  12. P21-PARP-1 Pathway Is Involved in Cigarette Smoke-Induced Lung DNA Damage and Cellular Senescence

    Science.gov (United States)

    Yao, Hongwei; Sundar, Isaac K.; Gorbunova, Vera; Rahman, Irfan

    2013-01-01

    Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21CDKN1A (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence. PMID:24244594

  13. P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence.

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    Full Text Available Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS-induced lung diseases. Both p21(CDKN1A (p21 and poly(ADP-ribose polymerase-1 (PARP-1 are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks as well as non-homologous end joining proteins (Ku70 and Ku80 in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence.

  14. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    Science.gov (United States)

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  15. Aryl Hydrocarbon Receptor Repressor and TiPARP (ARTD14 Use Similar, but also Distinct Mechanisms to Repress Aryl Hydrocarbon Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Laura MacPherson

    2014-05-01

    Full Text Available The aryl hydrocarbon receptor (AHR regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. The AHR repressor (AHRR is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose polymerase (TiPARP; ARTD14 also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1 in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.

  16. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family.

    Directory of Open Access Journals (Sweden)

    Joaquim Rui Rodrigues

    Full Text Available The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn(2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg(2+ and active with low micromolar Mn(2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn(2+, significant (≈25% Mg(2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart. The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.

  17. Characterization of Danio rerio Mn2+-Dependent ADP-Ribose/CDP-Alcohol Diphosphatase, the Structural Prototype of the ADPRibase-Mn-Like Protein Family

    Science.gov (United States)

    Rodrigues, Joaquim Rui; Fernández, Ascensión; Canales, José; Cabezas, Alicia; Ribeiro, João Meireles; Costas, María Jesús; Cameselle, José Carlos

    2012-01-01

    The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg2+ and active with low micromolar Mn2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn2+, significant (≈25%) Mg2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily. PMID:22848751

  18. BZLF1 Expression of EBV is correlated with PARP1 Regulation on Nasopharyngeal Carcinoma Tissues

    Directory of Open Access Journals (Sweden)

    Wahyu nur laili fajri, Ahmad Rofi'i, Fatchiyah Fatchiyah

    2013-04-01

    Full Text Available Nasopharyngeal carcinomas (NPC is a cancer that arises in the epithelial tissue that covers the inside of the nasopharyngeal mucosa and nasopharynx. Infected Epstein Barr Virus (EBV cell in a latent infection associated with the expression of nine latent proteins. Latent Membrane Protein 1 (LMP1 is one of latent proteins, and mayor EBV oncoprotein, with functions including virus growth, and to activate BamHI-Z Leftward Reading Frame 1 (BZLF1-EBV, which can inhibit p53 to induce apoptotic resistance, metastasis, and immune modulation. The body will respond to the expansion of EBV infection with activation of Poly(ADP-ribosePolymerase-1 (PARP1. The objective of study is to observe the expression of BZLF1 and determine PARP1 regulation in nasopharyngeal tissues. NPC-T2, NPC-T3 and polyp tissues slides are from Ulin Hospital, Banjarmasin. To characterize the necrotic cells such as pyknosis, karyorrhexsis, and karyolysis, histological slides were stained by HE that the necrotic cells measured by using a BX-53 microscope (Olympus with CellSens Standard software. Tissues slides were stained by using immunofluorohistochemistry with EBV-BZLF1 antibody-Mouse anti-EBV monoclonal antibody against Goat anti-mouse IgG-FITC and anti-PARP1 antibody (MC-10 against Goat anti-mouse IgG labeled Rhodamin. The expression intensities were measured by Confocal Laser Scanning Microscope (Olympus. The percentage number of necrotic cells and BZLF1 and PARP1 expression intensity were analyzed using SPSS 16.0 by one-way ANOVA test with α = 0.05, beside that we use correlate and regression analyze. The research showed that the amount of karryorhexis higher than pyknosis and karyolysis in both tissues. BZLF1 expression 1.79 INT/sel (in polyp, 2.76 INT/sel (NPC Type 2 and 4.36 INT/sel (NPC Type 3, PARP1 expression 2.25 INT/sel (in polyp, 3.31 INT/sel (NPC Type 2, dan 5.93 INT/sel (NPC Type 3.The high of intensity of expression BZLF1 induced the increasing of PARP1 expression

  19. Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer.

    Science.gov (United States)

    Qiu, Wei-Gang; Polotskaia, Alla; Xiao, Gu; Di, Lia; Zhao, Yuhan; Hu, Wenwei; Philip, John; Hendrickson, Ronald C; Bargonetti, Jill

    2017-01-01

    Over 80% of triple negative breast cancers express mutant p53. Mutant p53 often gains oncogenic function suggesting that triple negative breast cancers may be driven by p53 protein type. To determine the chromatin targets of this gain-of-function mutant p53 we used inducible knockdown of endogenous gain-of-function mtp53 in MDA-MB-468 cells in conjunction with stable isotope labeling with amino acids in cell culture and subcellular fractionation. We sequenced over 70,000 total peptides for each corresponding reciprocal data set and were able to identify 3010 unique cytoplasmic fraction proteins and 3403 unique chromatin fraction proteins. The present proteomics experiment corroborated our previous experiment-based results that poly ADP-ribose polymerase has a positive association with mutant p53 on the chromatin. Here, for the first time we report that the heterohexomeric minichromosome maintenance complex that participates in DNA replication initiation ranked as a high mutant p53-chromatin associated pathway. Enrichment analysis identified the minichromosome maintenance members 2-7. To validate this mutant p53- poly ADP-ribose polymerase-minichromosome maintenance functional axis, we experimentally depleted R273H mutant p53 and found a large reduction of the amount of minichromosome maintenance complex proteins on the chromatin. Furthermore a mutant p53-minichromosome maintenance 2 direct interaction was detected. Overexpressed mutant p53, but not wild type p53, showed a protein-protein interaction with minichromosome maintenance 2 and minichromosome maintenance 4. To target the mutant p53- poly ADP-ribose polymerase-minichromosome maintenance axis we treated cells with the poly ADP-ribose polymerase inhibitor talazoparib and the alkylating agent temozolomide and detected synergistic activation of apoptosis only in the presence of mutant p53. Furthermore when minichromosome maintenance 2-7 activity was inhibited the synergistic activation of apoptosis was blocked

  20. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity

    Directory of Open Access Journals (Sweden)

    Salome’ V. Ibba

    2016-01-01

    Full Text Available Although expression of inducible NO synthase (iNOS in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose polymerase (PARP activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma.

  1. Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIα/caspase-3/PARP pathway.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available AIM: Human periodontal ligament (PDL cells incur changes in morphology and express proteins in response to cyclic strain. However, it is not clear whether cyclic strain, especially excessive cyclic strain, induces PDL cell apoptosis and if so, what mechanism(s are responsible. The aim of the present study was to elucidate the molecular mechanisms by which pathological levels of cyclic strain induce human PDL cell apoptosis. MATERIALS AND METHODS: Human PDL cells were obtained from healthy premolar tissue. After three to five passages in culture, the cells were subjected to 20% cyclic strain at a frequency of 0.1 Hz for 6 or 24 h using an FX-5000T system. Morphological changes of the cells were assessed by inverted phase-contrast microscopy, and apoptosis was detected by fluorescein isothiocyanate (FITC-conjugated annexin V and propidium iodide staining followed by flow cytometry. Protein expression was evaluated by Western blot analysis. RESULTS: The number of apoptotic human PDL cells increased in a time-dependent manner in response to pathological cyclic strain. The stretched cells were oriented parallel to each another with their long axes perpendicular to the strain force vector. Cleaved caspase-3 and poly-ADP-ribose polymerase (PARP protein levels increased in response to pathological cyclic strain over time, while Rho GDP dissociation inhibitor alpha (RhoGDIα decreased. Furthermore, knock-down of RhoGDIα by targeted siRNA transfection increased stretch-induced apoptosis and upregulated cleaved caspase-3 and PARP protein levels. Inhibition of caspase-3 prevented stretch-induced apoptosis, but did not change RhoGDIα protein levels. CONCLUSION: The overall results suggest that pathological-level cyclic strain not only influenced morphology but also induced apoptosis in human PDL cells through the RhoGDIα/caspase-3/PARP pathway. Our findings provide novel insight into the mechanism of apoptosis induced by pathological cyclic strain in

  2. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  3. PARP inhibitor increases chemosensitivity by upregulating miR-664b-5p in BRCA1-mutated triple-negative breast cancer.

    Science.gov (United States)

    Song, Wei; Tang, Lin; Xu, Yumei; Xu, Jing; Zhang, Wenwen; Xie, Hui; Wang, Shui; Guan, Xiaoxiang

    2017-02-08

    Emerging evidence has shown that adding poly(ADP-ribose) polymerase (PARP) inhibitors to chemotherapy regimens is superior to the control regimens alone in BRCA1-mutated triple-negative breast cancer (TNBC) patients, but their underlying mechanisms have not been fully elucidated. In this study, using miRNA microarray analysis of two BRCA1-mutated TNBC cell lines, we found that miR-664b-5p expression was increased after adding a PARP inhibitor, olaparib, to a carboplatin (CBP) plus gemcitabine (GEM) therapy regimen. Functional assays showed miR-664b-5p overexpression inhibited proliferation, migration and invasion in BRCA1-mutated TNBC cells. CCNE2 was identified as a novel functional target of miR-664b-5p, and CCNE2 knockdown revealed effects similar to those observed with miR-664b-5p overexpression. Both CCNE2 knockdown and miR-664b-5p overexpression significantly increased the chemosensitivity of BRCA1-mutated TNBC cells. In addition, in vivo studies indicated that miR-664b-5p inhibited tumour growth compared with the control in tumour xenograft models, and we also found that CCNE2 expression was inversely correlated with miR-664b-5p expression in 90 TNBC patient samples. In conclusion, miR-664b-5p functions as a tumour suppressor and has an important role in the regulation of PARP inhibitors to increase chemosensitivity by targeting CCNE2. This may be one of the possible mechanisms by which PARP inhibitors increase chemosensitivity in BRCA1-mutated TNBC.

  4. PARP inhibitor increases chemosensitivity by upregulating miR-664b-5p in BRCA1-mutated triple-negative breast cancer

    Science.gov (United States)

    Song, Wei; Tang, Lin; Xu, Yumei; Xu, Jing; Zhang, Wenwen; Xie, Hui; Wang, Shui; Guan, Xiaoxiang

    2017-01-01

    Emerging evidence has shown that adding poly(ADP-ribose) polymerase (PARP) inhibitors to chemotherapy regimens is superior to the control regimens alone in BRCA1-mutated triple-negative breast cancer (TNBC) patients, but their underlying mechanisms have not been fully elucidated. In this study, using miRNA microarray analysis of two BRCA1-mutated TNBC cell lines, we found that miR-664b-5p expression was increased after adding a PARP inhibitor, olaparib, to a carboplatin (CBP) plus gemcitabine (GEM) therapy regimen. Functional assays showed miR-664b-5p overexpression inhibited proliferation, migration and invasion in BRCA1-mutated TNBC cells. CCNE2 was identified as a novel functional target of miR-664b-5p, and CCNE2 knockdown revealed effects similar to those observed with miR-664b-5p overexpression. Both CCNE2 knockdown and miR-664b-5p overexpression significantly increased the chemosensitivity of BRCA1-mutated TNBC cells. In addition, in vivo studies indicated that miR-664b-5p inhibited tumour growth compared with the control in tumour xenograft models, and we also found that CCNE2 expression was inversely correlated with miR-664b-5p expression in 90 TNBC patient samples. In conclusion, miR-664b-5p functions as a tumour suppressor and has an important role in the regulation of PARP inhibitors to increase chemosensitivity by targeting CCNE2. This may be one of the possible mechanisms by which PARP inhibitors increase chemosensitivity in BRCA1-mutated TNBC. PMID:28176879

  5. Simultaneous inhibition of ATR and PARP sensitizes colon cancer cell lines to irinotecan

    Directory of Open Access Journals (Sweden)

    Atlal eAbu-Sanad

    2015-07-01

    Full Text Available Enhanced DNA damage repair is one mechanism involved in colon cancer drug resistance. Thus, targeting molecular components of repair pathways with specific small molecule inhibitors may improve the efficacy of chemotherapy. ABT-888 and VE-821, inhibitors of poly-ADP-ribose-polymerase (PARP and the serine/threonine-kinase Ataxia telangiectasia related (ATR, respectively, were used to treat colon cancer cell lines in combination with the topoisomerase-I inhibitor irinotecan (SN38. Our findings show that each of these DNA repair inhibitors utilized alone at nontoxic single agent concentrations resulted in sensitization to SN38 producing a 1.4 to 3 fold reduction in the 50% inhibitory concentration (IC50 of SN38 in three colon cancer cell lines. When combined together, nontoxic concentrations of ABT-888 and VE-821 produced a 4.5 to 27 fold reduction in the IC50 of SN38 with the HCT-116 colon cancer cells demonstrating the highest sensitization as compared to LoVo and HT-29 colon cancer cells. Furthermore, the combination of all three agents was associated with maximal G2-M arrest and enhanced DNA-damage (γH2AX in all three colon cancer cell lines. The mechanism of this enhanced sensitization was associated with: (a maximal suppression of SN38 induced PARP activity in the presence of both inhibitors and (b ABT-888 producing partial abrogation of the VE-821 enhancement of SN38 induced DNA-PK phosphorylation, resulting in more unrepaired DNA damage; these alterations were only present in the HCT-116 cells which have reduced levels of ATM. This novel combination of DNA repair inhibitors may be useful to enhance the activity of DNA damaging chemotherapies such as irinotecan and help produce sensitization to this drug in colon cancer.

  6. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.

    Science.gov (United States)

    Domercq, Maria; Mato, Susana; Soria, Federico N; Sánchez-gómez, M Victoria; Alberdi, Elena; Matute, Carlos

    2013-03-01

    Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied

  7. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    Full Text Available Poly(ADP-ribose polymerases (PARPs are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR, a DNA double-strand break (DSB repair pathway, are hypersensitive to PARP inhibitors (PARPi. Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR, and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold and chromatid aberrations (2-6-fold. Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.

  8. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    Science.gov (United States)

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  9. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose

    Science.gov (United States)

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H.; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V. L.; Shuto, Satoshi

    2016-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways. PMID:27200225

  10. The Treatment of BRCA1/2 Hereditary Breast Cancer and Sporadic Breast Cancer with Poly(ADP-ribose) PARP-1 Inhibitors and Chemotherapy

    Science.gov (United States)

    2008-09-01

    Pharmacogenomics and Cancer Pharmacology. C) In Sept of 2008 was named Chairman of the Faculty Senate Research Policy Committee...Title (Chair/Member) Service/Committee 2008-2009 Chair Research Policy Committee – Faculty Senate 2008-2009 Member USUHS Merit Review Committee...Senate- Comparability and faculty welfare committee 2007-2008 Member Research policy committee – Faculty Senate 2007-current Member Ph.D

  11. Doubling Down on the PI3K-AKT-mTOR Pathway Enhances the Antitumor Efficacy of PARP Inhibitor in Triple Negative Breast Cancer Model beyond BRCA-ness

    Directory of Open Access Journals (Sweden)

    Pradip De

    2014-01-01

    Full Text Available Phosphoinositide 3-kinase (PI3K pathway, in addition to its pro-proliferative and antiapoptotic effects on tumor cells, contributes to DNA damage repair (DDR. We hypothesized that GDC-0980, a dual PI3K-mammalian target of rapamycin (mTOR inhibitor, would induce an efficient antitumor effect in BRCA-competent triple negative breast cancer (TNBC model when combined with ABT888 and carboplatin. Mechanism-based in vitro studies demonstrated that GDC-0980 treatment alone or in combination led to DNA damage (increased pγH2AXS139; Western blot, immunofluorescence, gain in poly ADP-ribose (PAR, and a subsequent sensitization of BRCA-competent TNBC cells to ABT888 plus carboplatin with a time-dependent 1 decrease in proliferation signals (pAKTT308/S473, pP70S6KT421/S424, pS6RPS235/236, PAR/poly(ADP-ribose polymerase (PARP ratios, PAR/pγH2AX ratios, live/dead cell ratios, cell cycle progression, and three-dimensional clonogenic growths and 2 increase in apoptosis markers (cleaved caspases 3 and 9, a pro-apoptotic BH3-only of Bcl-2 family (BIM, cleaved PARP, annexin V. The combination was effective in vitro in BRCA-wild-type PIK3CA-H1047R-mutated BT20 and PTEN-null HCC70 cells. The combination blocked the growth of established xenograft tumors by 80% to 90% with a concomitant decrease in tumor Ki67, CD31, phosphorylated vascular endothelial growth factor receptor, pS6RPS235/236, and p4EBP1T37/46 as well as an increase in cleaved caspase 3 immunohistochemistry (IHC levels. Interestingly, a combination with GDC-0941, a pan-PI3K inhibitor, failed to block the tumor growth in MDA-MB231. Results demonstrate that the dual inhibition of PI3K and mTOR regulates DDR. In a BRCA-competent model, GDC-0980 enhanced the antitumor activity of ABT888 plus carboplatin by inhibiting both tumor cell proliferation and tumor-induced angiogenesis along with an increase in the tumor cell apoptosis. This is the first mechanism-based study to demonstrate the integral role of the

  12. DNA damage in Nijmegen Breakage Syndrome cells leads to PARP hyperactivation and increased oxidative stress.

    Directory of Open Access Journals (Sweden)

    Harald Krenzlin

    Full Text Available Nijmegen Breakage Syndrome (NBS, an autosomal recessive genetic instability syndrome, is caused by hypomorphic mutation of the NBN gene, which codes for the protein nibrin. Nibrin is an integral member of the MRE11/RAD50/NBN (MRN complex essential for processing DNA double-strand breaks. Cardinal features of NBS are immunodeficiency and an extremely high incidence of hematological malignancies. Recent studies in conditional null mutant mice have indicated disturbances in redox homeostasis due to impaired DSB processing. Clearly this could contribute to DNA damage, chromosomal instability, and cancer occurrence. Here we show, in the complete absence of nibrin in null mutant mouse cells, high levels of reactive oxygen species several hours after exposure to a mutagen. We show further that NBS patient cells, which unlike mouse null mutant cells have a truncated nibrin protein, also have high levels of reactive oxygen after DNA damage and that this increased oxidative stress is caused by depletion of NAD+ due to hyperactivation of the strand-break sensor, Poly(ADP-ribose polymerase. Both hyperactivation of Poly(ADP-ribose polymerase and increased ROS levels were reversed by use of a specific Poly(ADP-ribose polymerase inhibitor. The extremely high incidence of malignancy among NBS patients is the result of the combination of a primary DSB repair deficiency with secondary oxidative DNA damage.

  13. Inhibition of NOS-2 induction in LPS-stimulated J774.2 cells by 1, 5-isoquinolinediol, an inhibitor of PARP.

    Science.gov (United States)

    Olszanecki, R; Gebska, A; Jawień, J; Jakubowski, A; Korbut, R

    2006-03-01

    Activation of both poly (ADP-ribose) polymerase (PARP) and inducible nitric oxide synthase (NOS-2) have been implicated in the pathogenesis of various forms of inflammation, therefore compounds which may simultaneously inhibit both pathways are of potential therapeutic interest. We tested the influence of potent inhibitor of PARP, 1, 5-isoquinolinediol (ISO), on NOS-2 induction in model of mouse macrophages (cell line J774.2) stimulated with lipopolysaccharide (1 microg/ml). Pretreatment with ISO (1-300 microM) resulted in dose-dependent inhibition of accumulation of NOS-2-derived nitrite in culture medium (IC(50) = 9,3 microM) as well as inhibition of NOS-2 protein induction in cultured J774.2 cells; ISO given 10 hours after LPS did not influence activity of NOS-2. Interestingly, another PARP inhibitor, 3-aminobenzamide (3-AB, 10-3000 microM), did not influence 24-hr nitrite accumulation in J774.2 cell culture, either administered 15 minutes prior to LPS or 10 hrs after LPS. Scavenging of reactive oxygen species by use of mixture of SOD and catalase (SOD/Cat, 100/300 - 1000/3000 U/ml) as well as cell permeable SOD-mimetic [Mn(III)TBAP, 1- 100 microM], did not influence NOS-2 induction in J774.2 cells. In summary, we identified 1, 5-isoquinoline as potent inhibitor of induction of NOS-2 in LPS-treated mouse macrophages. The exact mechanism of inhibitory action of this compound on NOS-2 induction requires further investigation.

  14. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    Science.gov (United States)

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-06

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  15. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  16. Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie L Boerner

    Full Text Available Patients with metastatic triple-negative breast cancer (TNBC have a poor prognosis. New approaches for the treatment of TNBC are needed to improve patient survival. The concept of synthetic lethality, brought about by inactivating complementary DNA repair pathways, has been proposed as a promising therapeutic option for these tumors. The TNBC tumor type has been associated with BRCA mutations, and inhibitors of Poly (ADP-ribose polymerase (PARP, a family of proteins that facilitates DNA repair, have been shown to effectively kill BRCA defective tumors by preventing cells from repairing DNA damage, leading to a loss of cell viability and clonogenic survival. Here we present preclinical efficacy results of combining the PARP inhibitor, ABT-888, with CPT-11, a topoisomerase I inhibitor. CPT-11 binds to topoisomerase I at the replication fork, creating a bulky adduct that is recognized as damaged DNA. When DNA damage was stimulated with CPT-11, protein expression of the nucleotide excision repair enzyme ERCC1 inversely correlated with cell viability, but not clonogenic survival. However, 4 out of the 6 TNBC cells were synergistically responsive by cell viability and 5 out of the 6 TNBC cells were synergistically responsive by clonogenic survival to the combination of ABT-888 and CPT-11. In vivo, the BRCA mutant cell line MX-1 treated with CPT-11 alone demonstrated significant decreased tumor growth; this decrease was enhanced further with the addition of ABT-888. Decrease in tumor growth correlated with an increase in double strand DNA breaks as measured by γ-H2AX phosphorylation. In summary, inhibiting two arms of the DNA repair pathway simultaneously in TNBC cell lines, independent of BRCA mutation status, resulted in un-repairable DNA damage and subsequent cell death.

  17. Withania somnifera Improves Ischemic Stroke Outcomes by Attenuating PARP1-AIF-Mediated Caspase-Independent Apoptosis.

    Science.gov (United States)

    Raghavan, Aparna; Shah, Zahoor A

    2015-12-01

    Withania somnifera (WS), popularly known as "Ashwagandha" has been used for centuries as a nerve tonic. Its protective effect has been elucidated in many neurodegenerative pathologies, although there is a paucity of data regarding its effects in ischemic stroke. We examined the neuroprotective properties of an aqueous extract of WS in both pre- and poststroke treatment regimens in a mouse model of permanent distal middle cerebral artery occlusion (pMCAO). WS (200 mg/kg) improved functional recovery and significantly reduced the infarct volume in mice, when compared to those treated with vehicle, in both paradigms. We investigated the protective mechanism/s induced by WS using brain cortices by testing its ability to modulate the expression of key proteins in the ischemic-apoptotic cascade. The Western blots and immunofluorescence analyses of mice cortices revealed that WS upregulated the expression of hemeoxygenase 1 (HO1) and attenuated the expression of the proapoptotic protein poly (ADP-ribose) polymerase-1 (PARP1) via the PARP1-AIF pathway, thus preventing the nuclear translocation of apoptosis-inducing factor (AIF), and subsequent apoptosis. Semaphorin-3A (Sema3A) expression was reduced in WS-treated group, whereas Wnt, pGSK3β, and pCRMP2 expression levels were virtually unaltered. These results indicate the interplay of antioxidant-antiapoptic pathways and the possible involvement of angiogenesis in the protective mechanism of WS while emphasizing the noninvolvement of one of the prime pathways of neurogenesis. Our results suggest that WS could be a potential prophylactic as well as a therapeutic agent aiding stroke repair, and that part of its mechanism could be attributed to its antiapoptotic and antioxidant properties.

  18. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors.

    Science.gov (United States)

    Brown, Jessica S; O'Carrigan, Brent; Jackson, Stephen P; Yap, Timothy A

    2017-01-01

    Germline aberrations in critical DNA-repair and DNA damage-response (DDR) genes cause cancer predisposition, whereas various tumors harbor somatic mutations causing defective DDR/DNA repair. The concept of synthetic lethality can be exploited in such malignancies, as exemplified by approval of poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2-mutated ovarian cancers. Herein, we detail how cellular DDR processes engage various proteins that sense DNA damage, initiate signaling pathways to promote cell-cycle checkpoint activation, trigger apoptosis, and coordinate DNA repair. We focus on novel therapeutic strategies targeting promising DDR targets and discuss challenges of patient selection and the development of rational drug combinations.

  19. Cyclic ADP-ribose as an endogenous inhibitor of the mTOR pathway downstream of dopamine receptors in the mouse striatum.

    Science.gov (United States)

    Higashida, Haruhiro; Kamimura, Shin-Ya; Inoue, Takeshi; Hori, Osamu; Islam, Mohammad Saharul; Lopatina, Olga; Tsuji, Chiharu

    2016-12-26

    The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.

  20. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.

    Directory of Open Access Journals (Sweden)

    Michal Yalon

    Full Text Available Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR. However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi, become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi. Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG-a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.

  1. NIH study uncovers new mechanism of action for class of chemotherapy drugs

    Science.gov (United States)

    NIH researchers have discovered a significant new mechanism of action for a class of chemotherapy drugs known as poly (ADP-ribose) polymerase inhibitors, or PARP inhibitors. They have also identified differences in the toxic capabilities of three drugs in

  2. Upregulation of Salmonella-Induced IL-6 Production in Caco-2 Cells by PJ-34, PARP-1 Inhibitor: Involvement of PI3K, p38 MAPK, ERK, JNK, and NF-κB

    Directory of Open Access Journals (Sweden)

    Fu-Chen Huang

    2009-01-01

    Full Text Available Following Salmonella invasion, intestinal epithelial cells release a distinct array of proinflammatory cytokines. Interleukin (IL-6 produced by enterocytes may have anti-inflammatory and cell-protective effects, and may counteract some of the injurious effects of sepsis and endotoxemia. Recent studies in a variety of rodent models of experimental colitis by using PJ-34, a potent poly (ADP-ribose polymerase-1 (PARP-1 inhibitor, support the concept that the marked beneficial effect of PJ-34 can be exploited to treat human inflammatory diseases. The present study was to investigate the effect of PJ-34 on Salmonella-induced enterocyte IL-6 production and its mechanisms. We found that PJ-34 enhanced Salmonella-induced IL-6 production in Caco-2 cells, either secreted protein or mRNA expression. PJ-34 treatment enhanced the activity of NF-κB in Salmonella-infected Caco-2 cells. Besides, the involvement of PJ-34 in up-regulating IL-6 production in S. typhimurium-infected Caco-2 cells might be also through the ERK but not p38 MAPK, JNK or PI3K/Akt pathways, as demonstrated by Western blot of phosphorylated ERK, p38, JNK and Akt proteins. It suggests that PJ-34 may exert its protective effect on intestinal epithelial cells against invasive Salmonella infection by up-regulating IL-6 production through ERK and NF-κB but not P38 MAPK, JNK or PI3K/Akt signal pathways.

  3. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1α network in skeletal muscle.

    Science.gov (United States)

    Mohamed, Junaith S; Hajira, Ameena; Pardo, Patricia S; Boriek, Aladin M

    2014-05-01

    High-fat diet (HFD) plays a central role in the initiation of mitochondrial dysfunction that significantly contributes to skeletal muscle metabolic disorders in obesity. However, the mechanism by which HFD weakens skeletal muscle metabolism by altering mitochondrial function and biogenesis is unknown. Given the emerging roles of microRNAs (miRNAs) in the regulation of skeletal muscle metabolism, we sought to determine whether activation of a specific miRNA pathway would rescue the HFD-induced mitochondrial dysfunction via the sirtuin-1 (SIRT-1)/ peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, a pathway that governs genes necessary for mitochondrial function. We here report that miR-149 strongly controls SIRT-1 expression and activity. Interestingly, miR-149 inhibits poly(ADP-ribose) polymerase-2 (PARP-2) and so increased cellular NAD(+) levels and SIRT-1 activity that subsequently increases mitochondrial function and biogenesis via PGC-1α activation. In addition, skeletal muscles from HFD-fed obese mice exhibit low levels of miR-149 and high levels of PARP-2, and they show reduced mitochondrial function and biogenesis due to a decreased activation of the SIRT-1/PGC-1α pathway, suggesting that mitochondrial dysfunction in the skeletal muscle of obese mice may be because of, at least in part, miR-149 dysregulation. Overall, miR-149 may be therapeutically useful for treating HFD-induced skeletal muscle metabolic disorders in such pathophysiological conditions as obesity and type 2 diabetes.

  4. Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer

    Science.gov (United States)

    Qiu, Wei-Gang; Polotskaia, Alla; Xiao, Gu; Di, Lia; Zhao, Yuhan; Hu, Wenwei; Philip, John; Hendrickson, Ronald C.; Bargonetti, Jill

    2017-01-01

    Over 80% of triple negative breast cancers express mutant p53. Mutant p53 often gains oncogenic function suggesting that triple negative breast cancers may be driven by p53 protein type. To determine the chromatin targets of this gain-of-function mutant p53 we used inducible knockdown of endogenous gain-of-function mtp53 in MDA-MB-468 cells in conjunction with stable isotope labeling with amino acids in cell culture and subcellular fractionation. We sequenced over 70,000 total peptides for each corresponding reciprocal data set and were able to identify 3010 unique cytoplasmic fraction proteins and 3403 unique chromatin fraction proteins. The present proteomics experiment corroborated our previous experiment-based results that poly ADP-ribose polymerase has a positive association with mutant p53 on the chromatin. Here, for the first time we report that the heterohexomeric minichromosome maintenance complex that participates in DNA replication initiation ranked as a high mutant p53-chromatin associated pathway. Enrichment analysis identified the minichromosome maintenance members 2–7. To validate this mutant p53- poly ADP-ribose polymerase-minichromosome maintenance functional axis, we experimentally depleted R273H mutant p53 and found a large reduction of the amount of minichromosome maintenance complex proteins on the chromatin. Furthermore a mutant p53-minichromosome maintenance 2 direct interaction was detected. Overexpressed mutant p53, but not wild type p53, showed a protein-protein interaction with minichromosome maintenance 2 and minichromosome maintenance 4. To target the mutant p53- poly ADP-ribose polymerase-minichromosome maintenance axis we treated cells with the poly ADP-ribose polymerase inhibitor talazoparib and the alkylating agent temozolomide and detected synergistic activation of apoptosis only in the presence of mutant p53. Furthermore when minichromosome maintenance 2–7 activity was inhibited the synergistic activation of apoptosis was

  5. PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms.

    Directory of Open Access Journals (Sweden)

    Laszlo Deres

    Full Text Available Spontaneously hypertensive rat (SHR is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose polymerase enzyme (PARP plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286 treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group or placebo (SHR-C group for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group. Echocardiography was performed, brain-derived natriuretic peptide (BNP activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps and the phosphorylation state of Akt-1(Ser473, glycogen synthase kinase (GSK-3β(Ser9, forkhead transcription factor (FKHR(Ser256, mitogen activated protein kinases (MAPKs, and protein kinase C (PKC isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK1/2(Thr183-Tyr185, Akt-1(Ser473, GSK-3β(Ser9, FKHR(Ser256, and PKC ε(Ser729 and the level of Hsp90 were increased, while the activity of PKC α/βII(Thr638/641, ζ/λ(410/403 were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling.

  6. Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice.

    Science.gov (United States)

    Zhong, Jing; Amina, Sarwat; Liang, Mingkun; Akther, Shirin; Yuhi, Teruko; Nishimura, Tomoko; Tsuji, Chiharu; Tsuji, Takahiro; Liu, Hong-Xiang; Hashii, Minako; Furuhara, Kazumi; Yokoyama, Shigeru; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Zhao, Yong Juan; Lee, Hon Cheung; Tominaga, Makoto; Lopatina, Olga; Higashida, Haruhiro

    2016-01-01

    Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR) with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca(2+)]i) that seems to trigger OT release can be elevated by β-NAD(+), cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD(+) metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca(2+)]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level increased transiently at 5 min after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8°C) were higher than

  7. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice

    Directory of Open Access Journals (Sweden)

    Jing Zhong

    2016-07-01

    Full Text Available Hypothalamic oxytocin (OT is released into the brain by cyclic ADP-ribose (cADPR with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i that seems to trigger OT release can be elevated by -NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these -NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF OT level increased transiently at 5 minutes after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8

  8. The Treatment of BRCA1/2 Hereditary BRCA1/2 and Sporadic Breast Cancer with Poly(ADP-Ribose) Polymerase Inhibitors and Chemotherapy

    Science.gov (United States)

    2009-09-01

    pathology, social issues, and healthcare are also covered. Respond to questions from the community and guidance to solve individual health care... Narcissism , the new mental illness? The Journal 29 Dec 2008 C1.    De Soto JA, Treating migraine headaches, The Journal 1 Dec 2008 C1‐C2.    De Soto JA...Anti‐Estrogens.   Doctoral Dissertation, Advisor: Donnell Bowen Ph.D., Professor of Pharmacology &  Oncology. Dec 2005      Media     CNN News, Rob Snyder

  9. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1.

    Directory of Open Access Journals (Sweden)

    Simone Di Paola

    Full Text Available BACKGROUND: Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes that catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. The latter include members of three different families of proteins: the well characterized arginine-specific ecto-enzymes ARTCs, two sirtuins and, more recently, novel members of the poly(ADP-ribose polymerase (PARP/ARTD family that have been suggested to act as cellular mono-ADP-ribosyltransferases. Here, we report on the characterisation of human ARTD15, the only known ARTD family member with a putative C-terminal transmembrane domain. METHODOLOGY/PRINCIPAL FINDINGS: Immunofluorescence and electron microscopy were performed to characterise the sub-cellular localisation of ARTD15, which was found to be associated with membranes of the nuclear envelope and endoplasmic reticulum. The orientation of ARTD15 was determined using protease protection assay, and is shown to be a tail-anchored protein with a cytosolic catalytic domain. Importantly, by combining immunoprecipitation with mass spectrometry and using cell lysates from cells over-expressing FLAG-ARTD15, we have identified karyopherin-ß1, a component of the nuclear trafficking machinery, as a molecular partner of ARTD15. Finally, we demonstrate that ARTD15 is a mono-ADP-ribosyltransferase able to induce the ADP-ribosylation of karyopherin-ß1, thus defining the first substrate for this enzyme. CONCLUSIONS/SIGNIFICANCE: Our data reveal that ARTD15 is a novel ADP-ribosyltransferase enzyme with a new intracellular location. Finally, the identification of karyopherin-ß1 as a target of ARTD15-mediated ADP-ribosylation, hints at a novel regulatory mechanism of karyopherin-ß1 functions.

  10. Is there an epigenetic component underlying the resistance of triple-negative breast cancers to PARP inhibitors?

    Directory of Open Access Journals (Sweden)

    Amanda eLovato

    2012-12-01

    Full Text Available Poly(ADP-ribosepolymerase (Parp is an enzyme responsible for catalyzing post-translational modifications through the addition of poly(ADP-ribose chains (known as PARylation. Modification by PARylation modulates numerous cellular processes including transcription, chromatin remodeling, apoptosis and DNA damage repair. In particular, the role of Parp activation in response to DNA damage has been intensely studied. Tumors bearing mutations of the breast cancer susceptibility genes, Brca1/2, are prone to DNA breakages whose restoration into functional double-strand DNA is Parp dependent. This concept has been exploited therapeutically in Brca mutated breast and ovarian tumors, where acute sensitivity to Parp inhibitors is observed. Based on in vitro and clinical studies it remains unclear to what extent Parp inhibitors can be utilized beyond treating Brca mutated tumors. This review will focus on the often overlooked roles of PARylation in chromatin remodeling, epigenetics and transcription to explain why some cancers may be unresponsive to Parp inhibition. We predict that understanding the impact of PARylation on gene expression will lead to alternative approaches to manipulate the Parp pathway for therapeutic benefit.

  11. Inhibition of gamma-ray dose-rate effects by D/sup 2/O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-06-01

    Effects of deuterium oxide (D/sub 2/O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of ..gamma.. rays. Growth of irradiated and unirradiated cells was inhibited by 45% D/sub 2/O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of ..gamma.. rays. Possible mechanisms underlying the inhibition are discussed.

  12. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    Energy Technology Data Exchange (ETDEWEB)

    Stenerl& #246; w, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn; Stenerlow, Bo

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.

  13. Matrix Metalloproteinase-2 (MMP-2) Gene Deletion Enhances MMP-9 Activity, Impairs PARP-1 Degradation, and Exacerbates Hepatic Ischemia and Reperfusion Injury in Mice.

    Science.gov (United States)

    Kato, Hiroyuki; Duarte, Sergio; Liu, Daniel; Busuttil, Ronald W; Coito, Ana J

    2015-01-01

    Hepatic ischemia and reperfusion injury (IRI) is an inflammatory condition and a significant cause of morbidity and mortality after surgery. Matrix metalloproteinases (MMPs) have been widely implicated in the pathogenesis of inflammatory diseases. Among the different MMPs, gelatinases (MMP-2 and MMP-9) are within the most prominent MMPs detected during liver IRI. While the role of MMP-9 in liver damage has been fairly documented, direct evidence of the role for MMP-2 activity in hepatic IRI remains to be established. Due to the lack of suitable inhibitors to target individual MMPs in vivo, gene manipulation is as an essential tool to assess MMP direct contribution to liver injury. Hence, we used MMP-2-/- deficient mice and MMP-2+/+ wild-type littermates to examine the function of MMP-2 activity in hepatic IRI. MMP-2 expression was detected along the sinusoids of wild-type livers before and after surgery and in a small population of leukocytes post-IRI. Compared to MMP-2+/+ mice, MMP-2 null (MMP-2-/-) mice showed exacerbated liver damage at 6, 24, and 48 hours post-reperfusion, which was fatal in some cases. MMP-2 deficiency resulted in upregulation of MMP-9 activity, spontaneous leukocyte infiltration in naïve livers, and amplified MMP-9-dependent transmigration of leukocytes in vitro and after hepatic IRI. Moreover, complete loss of MMP-2 activity impaired the degradation of poly (ADP-ribose) polymerase (PARP-1) in extensively damaged livers post-reperfusion. However, the administration of a PARP-1 inhibitor to MMP-2 null mice restored liver preservation to almost comparable levels of MMP-2+/+ mice post-IRI. Deficient PARP-1 degradation in MMP-2-null sinusoidal endothelial cells correlated with their increased cytotoxicity, evaluated by the measurement of LDH efflux in the medium. In conclusion, our results show for the first time that MMP-2 gene deletion exacerbates liver IRI. Moreover, they offer new insights into the MMP-2 modulation of inflammatory responses

  14. PARP-1基因Val762Ala多态性与乳腺癌易感性的关系%Relation between PARP-1 Val762Ala Polymorphisms and Susceptibility to Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    王昆鹏; 杨淋清; 刘建军; 庄志雄; 任泽舫

    2011-01-01

    [ Objective] To investigate the association between the Val762Ala polymorphisms of the poly( ADP-ribose) polymerase-1 (PARP-1) gene and susceptibility to breast cancer in a Chinese population. [ Methods] PARP-1 Val762Ala genotyping were conducted in 837 breast carcinoma patients and 865 cancer-free controls by Sequenom MassARRAY (SNP) genotype analysis technique. The associations between genotypes and breast cancer risk were estimated by computing the Ors and their 95% Cis from non-conditional logistic regression analyses. Experiment data was analyzed by using SPSS13.0 software. [Results]The differences of genotype IT, TC, Ccand TC + CC distributions between patients and controls were not significant, Off [95% CI] values were 1, 1. 07 (0.83 -1.39), 1.03 (0.70 ~ 1.467, 1.08 (0.82 ~ 1. 33). [ Conclusion ] Val762Ala is not obviously correlated with susceptibility to breast cancer. tThe PARP-1 Val762Ala polymorphisms may not play a role in the etiology of breast cancer.%目的 探讨DNA修复基因聚腺苷二磷酸核糖聚合酶-1(PARP-1)单核苷酸多态性位点Val762Ala基因多态性与中国人群乳腺癌易感性的关系.方法 采用Sequenom MassARRAY单核苷酸多态性(SNP)基因型分析技术对经病理确诊的原发性乳腺癌女性患者837例(病例组)和健康对照组865例进行PARP-1基因单核苷酸位点Val762Ala基因分型.以非条件logistic回归计算优势比(odds ratio,OR)及其95%可信区间(a)评价各基因型与乳腺癌发病风险的关系.数据均由SPSS13.0统计软件分析.结果 病例组和对照组中TT、TC、CC和TC+CC4种基因型的分布分别差异无统计学意义,OR[95%CI]值分别为1、1.07(0.83~1.39)、1.03(0.70~1.36)、1.08(0.82 ~1.33).结论 Val762Ala基因型与乳腺癌易感性无显著相关性.PARP-1基因Val762Ala多态性在乳腺癌发病过程中无作用.

  15. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport.

    Science.gov (United States)

    Peng, Hui; Zhu, Qin-shi; Zhong, Shuping; Levy, Daniel

    2015-01-01

    Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.

  16. ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.

    Science.gov (United States)

    Spruijt, Cornelia G; Luijsterburg, Martijn S; Menafra, Roberta; Lindeboom, Rik G H; Jansen, Pascal W T C; Edupuganti, Raghu Ram; Baltissen, Marijke P; Wiegant, Wouter W; Voelker-Albert, Moritz C; Matarese, Filomena; Mensinga, Anneloes; Poser, Ina; Vos, Harmjan R; Stunnenberg, Hendrik G; van Attikum, Haico; Vermeulen, Michiel

    2016-10-11

    NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.

  17. ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage

    Directory of Open Access Journals (Sweden)

    Cornelia G. Spruijt

    2016-10-01

    Full Text Available NuRD (nucleosome remodeling and histone deacetylase is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.

  18. Role of Shh-PARP-1 signaling pathway in the protective effects of tea polyphenols against fatty acid-induced injury to islet microvessel endothelial function%Shh-PARP-1信号通路在茶多酚拮抗胰岛微血管内皮细胞脂毒性中的调控作用

    Institute of Scientific and Technical Information of China (English)

    田蜜; 雷琪; 鄢韵升; 李龙坤

    2016-01-01

    目的 探讨Sonic Hedgehog (Shh)-聚腙苷二磷酸核糖聚合酶1[poly(ADP-ribose) polymerase 1,PARP-1]信号通路在茶多酚拮抗胰岛微血管内皮细胞脂毒性中的调控作用.方法 以小鼠胰岛微血管内皮MS-1细胞为研究对象,分为正常对照组、溶剂对照组、脂肪酸(0.25 mmol/L软脂酸+0.5 mmol/L油酸)组、茶多酚(25μmol/L)组、脂肪酸十茶多酚组、PARP-1抑制剂(8μmol/L BYK204165)+脂肪酸组、PARP-1抑制剂十脂肪酸十茶多酚组、Shh抑制剂(2.5μmol/L环巴胺)+脂肪酸组、Shh抑制剂十脂肪酸十茶多酚组及Shh抑制剂+PARP-1抑制剂+脂肪酸+茶多酚组,分别检测各组细胞活力、凋亡水平、一氧化氮(NO)合成及氧化应激相关指标的改变.结果 脂肪酸处理后,MS-1细胞存活率下降,细胞凋亡率增高(P<0.05);同时,细胞内NO的含量及总一氧化氮合酶(tNOS)、诱导型NOS(iNOS)和结构型NOS(cNOS)的活性均升高(P<0.05);而且,脂质过氧化产物丙二醛(MDA)含量增加(P<0.05),抗氧化物质谷胱甘肽(GSH)和超氧化物歧化酶(SOD)的水平下降(P<0.05),并增强了PARP-1和磷酸化Shh的表达水平(P<0.05).茶多酚干预后,各项指标的水平均得以改善(P<0.05);而且,利用BYK204165和环巴胺预处理1h后,茶多酚对脂肪酸的拮抗效应更为显著,各项检测指标与正常对照组比较差异无统计学意义(P>0.05).结论 脂肪酸可诱发胰岛微血管内皮功能损伤,茶多酚具有拮抗脂肪酸毒性的作用,且抑制Shh-PARP-1信号通路能增强茶多酚的保护效应.

  19. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    Science.gov (United States)

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  20. Protein poly(ADP-ribosylation regulates arabidopsis immune gene expression and defense responses.

    Directory of Open Access Journals (Sweden)

    Baomin Feng

    2015-01-01

    Full Text Available Perception of microbe-associated molecular patterns (MAMPs elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose glycohydrolase 1 (atparg1 mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose glycohydrolase (PARG is predicted to remove poly(ADP-ribose polymers on acceptor proteins modified by poly(ADP-ribose polymerases (PARPs with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosylation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  1. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice.

    Science.gov (United States)

    Lopatina, Olga; Liu, Hong-Xiang; Amina, Sarwat; Hashii, Minako; Higashida, Haruhiro

    2010-01-01

    Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.

  2. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    Science.gov (United States)

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001

  3. Neurological and histological consequences induced by in vivo cerebral oxidative stress: evidence for beneficial effects of SRT1720, a sirtuin 1 activator, and sirtuin 1-mediated neuroprotective effects of poly(ADP-ribose polymerase inhibition.

    Directory of Open Access Journals (Sweden)

    Cindy Gueguen

    Full Text Available Poly(ADP-ribosepolymerase and sirtuin 1 are both NAD(+-dependent enzymes. In vitro oxidative stress activates poly(ADP-ribosepolymerase, decreases NAD(+ level, sirtuin 1 activity and finally leads to cell death. Poly(ADP-ribosepolymerase hyperactivation contributes to cell death. In addition, poly(ADP-ribosepolymerase inhibition restores NAD(+ level and sirtuin 1 activity in vitro. In vitro sirtuin 1 induction protects neurons from cell loss induced by oxidative stress. In this context, the role of sirtuin 1 and its involvement in beneficial effects of poly(ADP-ribosepolymerase inhibition were evaluated in vivo in a model of cerebral oxidative stress induced by intrastriatal infusion of malonate in rat. Malonate promoted a NAD(+ decrease that was not prevented by 3-aminobenzamide, a poly(ADP-ribosepolymerase inhibitor, at 4 and 24 hours. However, 3-aminobenzamide increased nuclear SIRT1 activity/expression ratio after oxidative stress. Malonate induced a neurological deficit associated with a striatal lesion. Both were reduced by 3-aminobenzamide and SRT1720, a sirtuin 1 activator, showing beneficial effects of poly(ADP-ribosepolymerase inhibition and sirtuin 1 activation on oxidative stress consequences. EX527, a sirtuin 1 inhibitor, given alone, modified neither the score nor the lesion, suggesting that endogenous sirtuin 1 was not activated during cerebral oxidative stress. However, its association with 3-aminobenzamide suppressed the neurological improvement and the lesion reduction induced by 3-aminobenzamide. The association of 3-aminobenzamide with SRT1720, the sirtuin 1 activator, did not lead to a better protection than 3-aminobenzamide alone. The present data represent the first demonstration that the sirtuin 1 activator SRT1720 is neuroprotective during in vivo cerebral oxidative stress. Furthermore sirtuin 1 activation is involved in the beneficial effects of poly(ADP-ribosepolymerase inhibition after in vivo cerebral oxidative stress.

  4. Changes of PARP and NF-κB in adenohypophysis of rat model of severe acute pancreatitis%聚腺苷二磷酸核糖聚合酶及核因子-κB在重症急性胰腺炎大鼠腺垂体中的表达

    Institute of Scientific and Technical Information of China (English)

    邓文宏; 赵凯亮; 杨波; 石乔; 周星; 王卫星

    2013-01-01

    目的 观察聚腺苷二磷酸核糖聚合酶(PARP)及核因子kappa B(NF-κB)在重症急性胰腺炎(SAP)大鼠腺垂体中的表达,并探讨其在SAP大鼠腺垂体损伤中的作用.方法 雄性Wistar大鼠40只,随机(随机数字法)分为5组(n=8):假手术组(SO组)及重症急性胰腺炎组(SAP组)1、3、6、12 h组.胆胰管逆行注射5%牛磺胆酸钠制备重症急性胰腺炎模型.测定腹水量,血清淀粉酶、脂肪酶水平.光镜观察胰腺及垂体病理改变,电镜观察垂体超微结构改变.免疫组化观察垂体PARP及NF-κB的表达.结果 SAP组血清淀粉酶、脂肪酶水平及胰腺病理学评分逐渐增加,均较SO组明显升高(P<0.05).光镜下可见SAP大鼠腺垂体细胞水肿及坏死;电镜下见SAP大鼠腺垂体出现核固缩、内质网及线粒体肿胀.PARP和NF-κB在SAP大鼠腺垂体中随时间点延长,其表达逐渐增强,均高于SO组表达.结论 在重症急性胰腺炎时,大鼠腺垂体出现病理结构及超微结构损伤,PARP及NF-κB通路的变化可能参与其中.%Objective To investigate the changes of poly-ADP-ribose polymerase (PARP) and NF kappa B (NF-κB) in adenohypophysis in rat model of severe acute pancreatitis (SAP),and their role in the mechanism of adenohypophysis injury in SAP.Methods Forty Wistar rats were randomly (random number) divided into 5 groups:the sham operation group (SO group,n =8),SAP 1 h,3 h,6 h and 12 h groups (n =8 in each group).SAP model was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct.Serum levels of amylase,lipase and ascites were measured.After sacrifice of experiment rats,pancreas and adenohypophysis tissues were taken for pathological examination under light microscope.Adenohypophysis cells were observed under electronic microscopy as well.PARP and NF-κB expressions in adenohypophysis cell was studied by using immunohistochemisty assay.Results After modelling,serum levels of amylase,lipase and

  5. Tankyrase的结构和功能的研究进展

    Institute of Scientific and Technical Information of China (English)

    卫秦芝; 庄志雄

    2004-01-01

    随着人类对基因损伤修复机制研究的不断深入,聚腺甘二磷酸核糖聚合酶(polyADP-ribose polymerase,PARP)在损伤修复过程中所起的作用也越来越清晰,并且发现PARP是一个家族酶,包括5个成员:PARP-1,PARP-2,PARP-3,Tankyrase(TRF1-interacting ankyrin related ADP-ribose polymerase)和V-PARP。PARP-1,-2在基因的损伤过程中起作用,

  6. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa.

    Science.gov (United States)

    Bertapelle, Carla; Polese, Gianluca; Di Cosmo, Anna

    2017-03-02

    Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis.

  7. 人参皂甙Rd预处理对大鼠局灶性脑缺血再灌注损伤后多聚ADP核糖聚合物的影响%The effect of Ginsenoside Rd pretreatment on the level of poly (ADP-ribose) polymer after focal ischemia reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    胡耿瑶; 史明; 周林甫; 张云霞; 赵钢

    2012-01-01

    目的:观察人参皂甙Rd缺血前预给药对大鼠局灶性脑缺血/再灌注损伤后多聚ADP核糖聚合物含量的影响.方法:60只健康雄性Sprague-Dawley大鼠,体重280 ~ 300 g,随机分为假手术组(Sham组)、丙二醇组(Vehicle组)和人参皂甙Rd处理组(Rd组),每组20只.Vehicle组和Rd组大鼠采用MCAO线栓法阻塞大鼠右侧大脑中动脉,2h后拔出栓线达到再灌注目的,建立急性局灶性脑缺血/再灌注模型.Vehicle组和Rd组分别于造模前30 min腹腔注射丙二醇(人参皂甙Rd稀释液)和人参皂甙Rd( 10 mg/kg).Sham组手术操作同前,但线栓未阻塞大脑中动脉.Western Blot和免疫组织化学方法检测大鼠大脑中动脉阻塞4h后多聚ADP核糖聚合物的含量.结果:与Sham组相比,Vehicle组和Rd组缺血侧脑组织PAR聚合物含量增加(P<0.01);与Vehicle组相比,Rd组缺血侧脑组织PAR聚合物含量明显上调(P<0.01).结论:10 mg/kg人参皂甙Rd预处理可能通过.增加PAR聚合物的含量起到脑缺血损伤早期神经保护作用.%Objective: To investigate the effect of Ginsenoside Rd pretreatment on poly (ADP-ribose) (PAR) polymer expression in rats after focal cerebral ischemia. Methods: A total of 60 male Sprague-Dawley rats weighing 280-300 g were randomly divided into sham operation group (Sham group) , propanediol group (Vehicle group) and ginsenoside Rd pretreatment group ( Rd group) , with 20 in each group. The focal cerebral ischemia/reperfusion was induced by intervening a MCAO monofilament from the right external carotid artery into the origin of the middle cerebral artery and removing it after 2 h. In Vehicle group and Rd group, rats were respectively exposed to propanediol and ginsenoside Rd (10 mg/ kg) for 30 min before the occlusion of the right middle cerebral artery. The rats in Sham group were operated the same as propanediol group, but cerebral artery was not blocked. The expression of poly (ADP-ribose) polymer was detected by Westem

  8. Incorporating PARP Inhibition in Cancer Therapy: Key Questions, Expert Answers

    Directory of Open Access Journals (Sweden)

    Tristin Abair

    2015-11-01

    Full Text Available This engaging symposium focussed on the rationale and current evidence supporting the role for poly(adenosine diphosphate-ribose polymerase (PARP inhibition in patients with cancer. The meeting opened with an overview of DNA repair and the biological basis for targeting this process in oncology, delivered by Prof Calvert. This was followed by a discussion from Prof Pujade-Lauraine that focussed on patient selection for PARP inhibition and the role for these agents in BRCA -mutated and BRCA -like cancers. Next, Prof Colombo presented a clinical scenario of BRCA -associated ovarian cancer and examined optimal treatment options in the first-line setting and for progressive disease. She also highlighted current clinical data and ongoing trials evaluating PARP inhibition in advanced ovarian cancer. Prof Tutt then discussed the potential role for PARP inhibitors in patients with breast cancer, focussing on a clinical scenario of triple-negative disease and emphasising current and investigational treatment options. Lastly, Prof Van Cutsem described emerging data and ongoing clinical studies evaluating PARP inhibition in the treatment of patients with pancreatic and gastric cancers, and how this could impact future clinical practice. The programme also included a PARP quiz, in which participants were polled at the beginning and conclusion of the symposium to examine their knowledge and practice patterns regarding the use of PARP inhibitors in oncology. The key highlights from these presentations and the PARP quiz are summarised herein.

  9. Increased poly(ADP-ribosyl)ation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment.

    Science.gov (United States)

    Oláh, Gábor; Finnerty, Celeste C; Sbrana, Elena; Elijah, Itoro; Gerö, Domokos; Herndon, David N; Szabó, Csaba

    2011-07-01

    Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) has been shown to promote cellular energetic collapse and cellular necrosis in various forms of critical illness. Most of the evidence implicating the PARP pathway in disease processes is derived from preclinical studies. With respect to PARP and burns, studies in rodent and large animal models of burn injury have demonstrated the activation of PARP in various tissues and the beneficial effect of its pharmacological inhibition. The aims of the current study were to measure the activation of PARP in human skeletal muscle biopsies at various stages of severe pediatric burn injury and to identify the cell types where this activation may occur. Another aim of the study was to test the effect of propranolol (an effective treatment of patients with burns) on the activation of PARP in skeletal muscle biopsies. Poly(ADP-ribose) polymerase activation was measured by Western blotting for its product, poly(ADP-ribose) (PAR). The localization of PARP activation was determined by PAR immunohistochemistry. The results showed that PARP becomes activated in the skeletal muscle tissue after burns, with the peak of the activation occurring in the middle stage of the disease (13-18 days after burns). Even at the late stage of the disease (69-369 days after burn), an elevated degree of PARP activation persisted in some of the patients. Immunohistochemical studies localized the staining of PAR primarily to vascular endothelial cells and occasionally to resident mononuclear cells. There was a marked suppression of PARP activation in the skeletal muscle biopsies of patients who received propranolol treatment. We conclude that human burn injury is associated with the activation of PARP. We hypothesize that this response may contribute to the inflammatory responses and cell dysfunction in burns. Some of the clinical benefit of propranolol in burns may be related to its inhibitory effect on PARP activation.

  10. Drug: D10079 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10079 Drug Rucaparib (USAN) C19H18FN3O 323.1434 323.3641 D10079.gif Treatment of c...ancer poly [ADP-ribose] polymerase (PARP) inhibitor [HSA:142 10038 10039 143] [KO:K10798] hsa03410(10038+100... ADP ribose polymerase (PARP) [HSA:142 10038 10039 143] [KO:K10798] Rucaparib D100...79 Rucaparib (USAN) CAS: 283173-50-2 PubChem: 135626799 LigandBox: D10079 ATOM 24 1 C8y C 16.3800 -18.2000 ...8.9000 14 C8x C 24.4300 -17.7100 15 C8x C 23.0300 -17.7100 16 C1b C 26.5300 -18.9000 17 N1b N 27.2300 -20.09

  11. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  12. PTEN regulates colorectal epithelial apoptosis through Cdc42 signalling

    OpenAIRE

    Deevi, R; A. Fatehullah; Jagan, I; Nagaraju, M; Bingham, V; Campbell, F C

    2011-01-01

    Background: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear. Methods: To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN+/...

  13. Drug: D10157 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10157 Drug Rucaparib phosphate (USAN) C19H18FN3O. H3PO4 421.1203 421.3593 D10157.g...sa03410(10038+10039+142+143) Base excision repair Target-based classification of drugs [BR:br08310] Enzymes ...Transferases poly ADP ribose polymerase (PARP) [HSA:142 10038 10039 143] [KO:K10798] Rucaparib D10157 Ru

  14. Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors

    Directory of Open Access Journals (Sweden)

    Ciara C. O'Sullivan

    2014-02-01

    Full Text Available Poly(ADP-ribose polymerase inhibitors (PARPi have shown clinical activity in patients with germline BRCA1/2 mutation (gBRCAm-associated breast and ovarian cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of cancers defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancreatic cancers. Several PARPi are currently in phase I/II clinical investigation, as single agents and/or in combination therapy in these solid tumors. Understanding more about the molecular abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian cancers, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers, are critical to expanding the field of PARPi therapy. This will improve clinical outcome in advanced solid tumors. Here we briefly review the preclinical data and clinical development of PARPi, and discuss its future of development in solid tumors beyond gBRCAm associated breast and ovarian cancers.

  15. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  16. Adrenomedullin in inflammatory process associated with experimental pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Bramanti Placido

    2011-04-01

    Full Text Available Abstract Background Adrenomedullin (AM, a 52-amino acid ringed-structure peptide with C-terminal amidation, was originally isolated from human pheochromocytoma. AM are widely distributed in various tissues and acts as a local vasoactive hormone in various conditions. Methods In the present study, we investigated the efficacy of AM on the animal model of bleomycin (BLM-induced lung injury. Mice were subjected to intratracheal administration of BLM and were assigned to receive AM daily by an intraperitoneal injection of 200 ngr/kg. Results and Discussion Myeloperoxidase activity, lung histology, immunohistochemical analyses for cytokines and adhesion molecules expression, inducible nitric oxide synthase (iNOS, nitrotyrosine, and poly (ADP-ribose polymerase (PARP were performed one week after fibrosis induction. Lung histology and transforming growth factor beta (TGF-β were performed 14 and 21 days after treatments. After bleomycin administration, AM-treated mice exhibited a reduced degree of lung damage and inflammation compared with BLM-treated mice, as shown by the reduction of (1 myeloperoxidase activity (MPO, (2 cytokines and adhesion molecules expression, (3 nitric oxide synthase expression, (4 the nitration of tyrosine residues, (5 poly (ADP-ribose (PAR formation, a product of the nuclear enzyme poly (ADP-ribose polymerase (PARP (6 transforming growth factor beta (TGF-β (7and the degree of lung injury. Conclusions Our results indicate that AM administration is able to prevent bleomycin induced lung injury through the down regulation of proinflammatory factors.

  17. 聚腺苷二磷酸核糖聚合酶抑制剂3-氨基苯甲酰胺对重症急性胰腺炎大鼠腺垂体损伤的保护作用%The protection of 3-AB, a PARP Inhibitor, on injures of adenohypophysis in rats with severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    邓文宏; 赵凯亮; 杨波; 石乔; 周星; 王卫星

    2013-01-01

    Objective To evaluate the protection of 3-aminobenzamide (3-AB),an inhibitor of Poly (ADP-ribose) polymerase (PARP),on severe acute pancreatitis associated adenohypophysis injury in rats.Method Forty Wistar rats were randomly divided into 4 groups:sham operation group (SO group,n=8),SAP group (n=12),3-AB pretreatment group (n =12),drug control group (n =8).The bilepancreatic duct was cannulated through the duodenum and SAP model was induced by a standardized pressure-controlled retrograde infusion of 5% sodium taurocholate (0.1 ml/100 g) into the bile-pancreatic duct.In 3-AB group,3-AB (20 mg/kg) was administered via femoral vein 30 min prior to the operation;other procedures were identical to SAP group.In SO group,pancreas was flipped several times only.In drug control group,3-AB (20 mg/kg) was administered via femoral vein 30 min prior to the operation.Serum amylase,lipase were measured.Pancreas and pituitary tissue were taken for pathological examination under light microscope.PARP and NF-κB antibodies for adenohypophysis immunohistochemical stains.Adenohypophysis cell was observed under electronic microscope.Result Serum amylase,lipase and pancreas pathological scores were significantly higher in 3-AB group compared with SO group (P < 0.05),but lower than that in SAP group (P < 0.05).Adenohypophysis pathological injury was less severe in 3-AB group.Expressions of PARP and NF-κB in adenohypophysis cells were significantly higher in 3-AB group compared with SO group,but lower than that in SAP group (P < 0.05).Ultrastructural change of thyrotroph cell was relieved in 3-AB group.No significant difference was observed between SO group and drug control group in PARP and NF-κB expression nor adenohypophysis pathological injury.Conclusions 3-AB exerts the protective effect against acute pancreatitis associated adenohypophysis injury by inhibition of PARP and NF-κB.%目的 探讨聚腺苷二磷酸核糖聚合酶抑制剂3-氨基苯甲酰胺(3-AB)对SAP大

  18. Nitric Oxide: Genomic Instability And Synthetic Lethality

    Directory of Open Access Journals (Sweden)

    Vasily A. Yakovlev

    2015-08-01

    Loss or inhibition of Poly(ADP-ribose polymerase 1 (PARP1 activity results in accumulation of DNA single-strand breaks, which are subsequently converted to DSB by the transcription machinery. In BRCA-positive cells, DSB are repaired by HRR, but they cannot be properly repaired in BRCA1-deficient cells, leading to genomic instability, chromosomal rearrangements, and cell death. Our data demonstrated that combination of NO-donors with PARP inhibitors significantly sensitized the BRCA1-positive cancer cells to DNA-damaging agents.

  19. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  20. PARG基因沉默对小鼠结肠癌CT26细胞肝转移影响%Effect of Poly (ADP-ribose) glycohydrolase (PARG) gene silencing on liver metastasis of colorectal carcinoma CT26 cell line in mice

    Institute of Scientific and Technical Information of China (English)

    杨怡; 王娅兰; 王洁琼; 盛永涛

    2012-01-01

    Objective This study was to investigate the effect of PARG-shRNA on liver metastasis of colorectal carcinoma CT26 cell line in mice. Methods Mice were divided into three groups. Animal model for liver metastases of colorectal cancer was established by intrasplenic inoculation of colorectal carcinoma cell in BALB/c mice. CT26 cells transfected with empty vector and CT26 cells transfected with PARG-shRNA were inoculated into spleen caspsule. CT26 cells transfected with empty vector and untransfected CT26 cells served as control. The change of spleen and liver metastases carcinoma nodules were observed and counted. The expressions of PARG, PARP, NF-kB, integrin-β1, MMP-2, MMP-9 in spleen transplant tumor were measured by Western blot analysis. Results The size of spleen transplant tumor and liver metastatic nodules in transfected group were smaller than that in the control groups ( P < 0. 05). The expression of PARG (0. 0105±0.0028), PARP (0.1786 ± 0.024), NF-κB (0. 1678 ± 0.0359), integrin-β1, MMP-2 and MMP-9 in transfected group was weaker than that in the control groups ( P < 0. 05). Conclusions The growth of spleen transplant tumor and liver metastases can be inhibited by PARG gene silencing in CT26 cells probably through down-regulation of PARP, NF-κB and NF-κB-dependent downstream gene.%目的 探讨多聚(腺苷二磷酸核糖)水解酶(PARG)基因沉默对小鼠结肠癌CT26细胞肝脏转移的影响.方法 小鼠随机分成3组,脾脏包膜下注射PARG-shRNA慢病毒载体转染CT26细胞悬液,以未转染组和空载体转染组为对照.比较各组脾脏肝脏瘤结节数量、大小;Western blot检测PARG、PARP、NF-κB、integrin-β1、MMP-2和MMP-9的表达.结果 PARG基因沉默组小鼠脾脏移植瘤大小及肝脏转移瘤结节分级均明显低于对照组(P<0.05);PARG基因沉默后,脾脏移植瘤组织中PARG(0.0105±0.0028)、PARP(0.1786±0.024)、NF-κB(0.1678±0.0359)、integrin-p1、MMP-2和MMP-9的蛋白表

  1. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    Energy Technology Data Exchange (ETDEWEB)

    Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Wagner, Silvia [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany); Buerkle, Alexander [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Koenigsrainer, Alfred [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany)

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  2. Olaparib in the management of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Bixel K

    2015-08-01

    Full Text Available Kristin Bixel,1 John L Hays2 1Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, 2Department of Hematology Oncology, Ohio State University, Columbus, OH, USAAbstract: Alterations in the homologous repair pathway are thought to occur in 30%–50% of epithelial ovarian cancers. Cells deficient in homologous recombination rely on alternative pathways for DNA repair in order to survive, thereby providing a potential target for therapy. Olaparib, a poly(ADP-ribose polymerase (PARP inhibitor, capitalizes on this concept and is the first drug in its class approved for patients with ovarian cancer. This review article will provide an overview of the BRCA genes and homologous recombination, the role of PARP in DNA repair and the biological rationale for the use of PARP inhibitors as cancer therapy, and ultimately will focus on the use of olaparib in the management of ovarian cancer.Keywords: olaparib, ovarian cancer, PARP inhibitor

  3. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Park, Cheon-Soo; Ahn, Yongchel; Lee, Dahae; Moon, Sung Won; Kim, Ki Hyun; Yamabe, Noriko; Hwang, Gwi Seo; Jang, Hyuk Jai; Lee, Heesu; Kang, Ki Sung; Lee, Jae Wook

    2015-12-15

    Eight chalcone analogues were prepared and evaluated for their cytotoxic effects in human hepatoma HepG2 cells. Compound 5 had a potent cytotoxic effect. The percentage of apoptotic cells was significantly higher in compound 5-treated cells than in control cells. Exposure to compound 5 for 24h induced cleavage of caspase-8 and -3, and poly (ADP-ribose) polymerase (PARP). Our findings suggest that compound 5 is the active chalcone analogue that contributes to cell death in HepG2 cells via the extrinsic apoptotic pathway.

  4. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy.

    Science.gov (United States)

    Bai, Huimin; Cao, Dongyan; Yang, Jiaxin; Li, Menghui; Zhang, Zhenyu; Shen, Keng

    2016-04-01

    Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.

  5. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  6. Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair.

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    Full Text Available The apurinic/apyrimidinic- (AP- site in genomic DNA arises through spontaneous base loss and base removal by DNA glycosylases and is considered an abundant DNA lesion in mammalian cells. The base excision repair (BER pathway repairs the AP-site lesion by excising and replacing the site with a normal nucleotide via template directed gap-filling DNA synthesis. The BER pathway is mediated by a specialized group of proteins, some of which can be found in multiprotein complexes in cultured mouse fibroblasts. Using a DNA polymerase (pol β immunoaffinity-capture technique to isolate such a complex, we identified five tightly associated and abundant BER factors in the complex: PARP-1, XRCC1, DNA ligase III, PNKP, and Tdp1. AP endonuclease 1 (APE1, however, was not present. Nevertheless, the complex was capable of BER activity, since repair was initiated by PARP-1's AP lyase strand incision activity. Addition of purified APE1 increased the BER activity of the pol β complex. Surprisingly, the pol β complex stimulated the strand incision activity of APE1. Our results suggested that PARP-1 was responsible for this effect, whereas other proteins in the complex had no effect on APE1 strand incision activity. Studies of purified PARP-1 and APE1 revealed that PARP-1 was able to stimulate APE1 strand incision activity. These results illustrate roles of PARP-1 in BER including a functional partnership with APE1.

  7. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation.

    Science.gov (United States)

    Aravind, L

    2001-05-01

    Sequence profile analysis was used to detect a conserved globular domain in several proteins including deltex, Trip12 and poly-ADP-ribose polymerase homologs. It was named the WWE domain after its most conserved residues and is predicted to mediate specific protein-protein interactions in ubiquitin and ADP-ribose conjugation systems.

  8. The C. elegans gene pme-5: molecular cloning and role in the DNA-damage response of a tankyrase orthologue.

    Science.gov (United States)

    Gravel, Catherine; Stergiou, Lilli; Gagnon, Steve N; Desnoyers, Serge

    2004-02-03

    Tankyrases are recently identified proteins characterized by ankyrin repeats and a poly(ADP-ribose) polymerase (PARP) signature motif. In vertebrates, tankyrases mediate protein-protein interactions via the ankyrin domain. Many partners have been identified that could function in telomere maintenance, signal transduction in vesicular transport, and cell death. To further our knowledge of tankyrases and to study their function in development, we sought and found a tankyrase-related gene in Caenorhabditis elegans that we named pme-5 (poly(ADP-ribose) metabolism enzyme-5). The protein encoded includes a large ankyrin domain and a catalytic PARP domain containing the well-conserved PARP signature sequence and the regulatory region. Unlike other tankyrases, PME-5 lacks a sterile-alpha module (SAM), but has a coiled coil domain which may mediate oligomerization. We also found that pme-5 mRNA is alternatively spliced at the fifth exon, producing a long (PME-5L) and a short (PME-5S) transcript. Both isoforms are constitutively expressed during the life cycle of C. elegans. We also show DNA damage increases expression of pme-5, a response that requires the DNA damage checkpoint gene hus-1. Moreover, DNA damage-induced germ cell apoptosis was slightly increased in pme-5(RNAi) hermaphrodites. Altogether, these data indicate that pme-5 is part of a DNA damage response pathway which leads to apoptosis in C. elegans.

  9. Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation.

    Science.gov (United States)

    Strickfaden, Hilmar; McDonald, Darin; Kruhlak, Michael J; Haince, Jean-Francois; Th'ng, John P H; Rouleau, Michele; Ishibashi, Toytaka; Corry, Gareth N; Ausio, Juan; Underhill, D Alan; Poirier, Guy G; Hendzel, Michael J

    2016-01-22

    Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.

  10. Analysis list: Parp1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Parp1 Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Parp1.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Parp1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Parp...1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Parp1.Neural.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  11. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP.

    Science.gov (United States)

    Mantena, Sudheer K; Sharma, Som D; Katiyar, Santosh K

    2006-10-01

    Chemotherapeutic approach using non-toxic botanicals may be one of the strategies for the management of the skin cancers. Here we report that in vitro treatment of human epidermoid carcinoma A431 cells with berberine, a naturally occurring isoquinoline alkaloid, decreased cell viability (3-77%, P berberine-induced G(1) cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), a simultaneous decrease in Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and enhanced binding of Cdki-Cdk. In additional studies, treatment of A431 cells with berberine (15-75 microM) for 72 h resulted in a significant dose-dependent increase in apoptosis (31-60%, P berberine-treated control (11.7%), which was associated with an increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl-2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase. Pretreatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway. Together, this study for the first time identified berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 cells in vitro, further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers.

  12. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases.

    Science.gov (United States)

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R; Kümmerer, Beate M; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-02-02

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.

  13. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Neelsen, Kai J; Teloni, Federico;

    2015-01-01

    disordered proteins at DNA break sites. Demixing, which relies on electrostatic interactions between positively charged RGG repeats and negatively charged PAR, is amplified by aggregation-prone prion-like domains, and orchestrates the earliest cellular responses to DNA breakage. We propose that PAR...

  14. Molecular Toxicology of Chromatin: The Role of Poly(ADP-Ribose) in Gene Control.

    Science.gov (United States)

    1985-02-01

    Anal. Biochen. 106 (1980) 296. *12. Juarez-Salinas,H., Mendoza - Alvarez ,H., Levi,V., Jacobson,M.K. and Jacobson,E.L. Anal. Biochen. 131 (1983) 410. 13...1982) 6217. 7. H. Juarez-Salinas, V. Levi, E. L. Jacobson, M. K. Jacobson, J. Biol. Chem. 257, (1982) 607. *8. H. Juarez-Salinas, H. Mendoza - Alvarez , V...Conferences 1. "International Symposium on IPLC of proteins and nucleic acids" (Kurn and Hakam), Nov. 1983, Monte Carlo 2. "Round table discussion

  15. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities

    Science.gov (United States)

    Fatokun, Amos A; Dawson, Valina L; Dawson, Ted M

    2014-01-01

    Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24684389

  16. PARP Inhibitors in Epithelial Ovarian Cancer: State of Art and Perspectives of Clinical Research.

    Science.gov (United States)

    Gadducci, Angiolo; Guerrieri, Maria Elena

    2016-05-01

    Homologous recombination (HR) and base excision repair (BER) are two of the major DNA-repair pathways. The proteins encoded by breast-related cancer antigen (BRCA) and poly(adenosine diphosphate-ribose) polymerases (PARP) are involved in HR and BER, respectively. Tumors with HR deficiency, including those in BRCA mutation carriers, are sensitive to BER blockade via PARP inhibitors. These represent novel therapeutic tools for HR-deficient ovarian cancer, able to improve progression-free survival of women with recurrent, platinum-sensitive disease in response to recent platinum-based chemotherapy. More research is needed to assesses whether inhibitors of PARP have any role as maintenance treatment after first-line chemotherapy and as palliative treatment of platinum-resistant disease. Germline BRCA testing should be offered to all patients with ovarian cancer, regardless of age and family history. HR deficiency has been observed not only in germline BRCA mutation carriers, but also in patients with somatic mutations or epigenetic silencing of BRCA, and with loss of function of other genes. Half of all high-grade ovarian carcinomas are HR-deficient, and additional biological and clinical investigations are strongly warranted to identify patients with this subset of tumors.

  17. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1.

    Science.gov (United States)

    Alemasova, Elizaveta E; Pestryakov, Pavel E; Sukhanova, Maria V; Kretov, Dmitry A; Moor, Nina A; Curmi, Patrick A; Ovchinnikov, Lev P; Lavrik, Olga I

    2015-12-01

    Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.

  18. The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation.

    Directory of Open Access Journals (Sweden)

    Anna Sala

    2008-10-01

    Full Text Available ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodelers.

  19. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  20. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer.

    Science.gov (United States)

    Moschetta, M; George, A; Kaye, S B; Banerjee, S

    2016-08-01

    The significant activity of poly(ADP-ribose)polymerase (PARP) inhibitors in the treatment of germline BRCA mutation-associated ovarian cancer, which represents ∼15% of HGS cases, has recently led to European Medicines Agency and food and drug administration approval of olaparib. Accumulating evidence suggests that PARP inhibitors may have a wider application in the treatment of sporadic ovarian cancers. Up to 50% of HGS ovarian cancer patients may exhibit homologous recombination deficiency (HRD) through mechanisms including germline BRCA mutations, somatic BRCA mutations, and BRCA promoter methylation. In this review, we discuss the role of somatic BRCA mutations and BRCA methylation in ovarian cancer. There is accumulating evidence for routine somatic BRCA mutation testing, but the relevance of BRCA epigenetic modifications is less clear. We explore the challenges that need to be addressed if the full potential of these markers of HRD is to be utilised in clinical practice.

  1. Replication fork stability confers chemoresistance in BRCA-deficient cells

    DEFF Research Database (Denmark)

    Chaudhuri, Arnab Ray; Callen, Elsa; Ding, Xia;

    2016-01-01

    Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3....../4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11...... nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations...

  2. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Hexi Shen

    2017-01-01

    Full Text Available Double-strand breaks (DSBs are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR and nonhomologous end-joining (NHEJ. NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ and the more error-prone KU-independent backup-NHEJ (b-NHEJ pathways, involving the poly (ADP-ribose polymerases (PARPs. However, in the absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs. The outcome of DSB repair by NHEJ pathways can be investigated by using artificial sequence-specific nucleases such as CRISPR/Cas9 to induce DSBs at a target of interest. Here, we used CRISPR/Cas9 for DSB induction at the Arabidopsis cruciferin 3 (CRU3 and protoporphyrinogen oxidase (PPO genes. DSB repair outcomes via NHEJ were analyzed using footprint analysis in wild-type plants and plants deficient in key factors of c-NHEJ (ku80, b-NHEJ (parp1 parp2, or both (ku80 parp1 parp2. We found that larger deletions of >20 bp predominated after DSB repair in ku80 and ku80 parp1 parp2 mutants, corroborating with a role of KU in preventing DSB end resection. Deletion lengths did not significantly differ between ku80 and ku80 parp1 parp2 mutants, suggesting that a KU- and PARP-independent b-NHEJ mechanism becomes active in these mutants. Furthermore, microhomologies and templated insertions were observed at the repair junctions in the wild type and all mutants. Since these characteristics are hallmarks of polymerase θ-mediated DSB repair, we suggest a possible role for this recently discovered polymerase in DSB repair in plants.

  3. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Kim D Allen

    Full Text Available Long-term memory (LTM formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose polymerase-1 (PARP-1, are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosylation (PAR dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP ribose molecules (pADPr after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA and extracellular signal-regulated kinase (ERK--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I, responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.

  4. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.

    Science.gov (United States)

    Long, Aaron; Park, Ji H; Klimova, Nina; Fowler, Carol; Loane, David J; Kristian, Tibor

    2017-01-01

    Several enzymes in cellular bioenergetics metabolism require NAD(+) as an essential cofactor for their activity. NAD(+) depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD(+) consuming enzyme CD38. CD38 is an NAD(+) glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD(+) levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD(+) catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD(+) metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD(+) metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

  5. Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ping; Zhu, Xueping [Department of Immunology, Anhui Medical University, Hefei 230032 (China); Jin, Wei [Department of Otolaryngology, Chaohu Hospital of Anhui Medical University, Chaohu 238000 (China); Hao, Shumei; Liu, Qi [Department of Immunology, Anhui Medical University, Hefei 230032 (China); Zhang, Linjie, E-mail: zlj33@ahmu.edu.cn [Department of Immunology, Anhui Medical University, Hefei 230032 (China)

    2015-05-01

    Intrinsic apoptotic pathway is considered to be responsible for cell death induced by platinum anticancer drugs. While in this study, we found that, necrosis is an indispensable pathway besides apoptosis in oxaliplatin-treated gastric cancer SGC-7901 cells. Upon exposure to oxaliplatin, both apoptotic and necrotic features were observed. The majority of dead cells were double positive for Annexin V and propidium iodide (PI). Moreover, mitochondrial membrane potential collapsed and caspase cascades were activated. However, ultrastructural changes under transmission electron microscope, coupled with the release of cellular contents, demonstrated the rupture of the plasma membrane. Oxaliplatin administration did not stimulate reactive oxygen species (ROS) production and autophagy, but elevated the protein level of Bmf. In addition, receptor interacting protein 1 (RIP1), but not receptor interacting protein 3 (RIP3) and its downstream components participated in this death process. Necrostatin-1 (Nec-1) blocked oxaliplatin-induced cell death nearly completely, whereas z-VAD-fmk could partially suppress cell death. Oxaliplatin treatment resulted in poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, as indicated by the increase of poly(ADP-ribose) (PAR), which led to NAD{sup +} and ATP depletion. PARP-1 inhibitor, olaparib, could significantly block oxaliplatin-induced cell death, thus confirming that PARP-1 activation is mainly responsible for the cytotoxicity of oxaliplatin. Phosphorylation of H2AX at Ser139 and translocalization of apoptosis-inducing factor (AIF) are critical for this death process. Taken together, these results indicate that oxaliplatin can bypass canonical cell death pathways to kill gastric cancer cells, which may be of therapeutic advantage in the treatment of gastric cancer. - Highlights: • Oxaliplatin induces apoptotic and necrotic cell death. • Nec-1 can inhibit oxaliplatin-induced cell death nearly completely. • RIP3 and its

  6. Iduna Protects the Brain from Glutamate Excitotoxicity and Stroke by Interfering with Parthanatos

    Science.gov (United States)

    Andrabi, Shaida A.; Kang, Ho Chul; Haince, Jean-François; Lee, Yun-Il; Zhang, Jian; Chi, Zhikai; West, Andrew B.; Koehler, Raymond C.; Poirier, Guy G.; Dawson, Ted M.; Dawson, Valina L.

    2013-01-01

    Glutamate acting on N-methyl-D-aspartate (NMDA) receptors plays an important role in neurodegenerative diseases and neuronal injury following stroke, through activation of poly(ADP-ribose) polymerase-1 and generation of the death molecule poly(ADP-ribose) (PAR) polymer. Here we identify Iduna, a novel NMDA receptor-induced survival gene that is neuroprotective against glutamate NMDA receptor mediated excitotoxicity both in vitro and in vivo and against stroke through interfering with PAR polymer induced cell death (parthanatos). Iduna’s protective effects are independent and downstream of PARP-1 activity. Iduna is a PAR polymer binding protein and mutations at the PAR polymer binding site abolishes the PAR binding activity of Iduna and attenuates its protective actions. Iduna is protective in vivo against NMDA-induced excitotoxicity and middle cerebral artery occlusion (MCAO)-induced stroke in mice. These results define Iduna as the first endogenous inhibitor of parthanatos. Interfering with PAR polymer signaling offers a new therapeutic strategy for the treatment of neurologic disorders. PMID:21602803

  7. Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS

    Science.gov (United States)

    Crone, Barbara; Aschner, Michael; Schwerdtle, Tanja; Karst, Uwe; Bornhorst, Julia

    2015-01-01

    Cis-diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 µm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable. PMID:25996669

  8. 3,3′-Diindolylmethane: A Promising Sensitizer of γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Wenjing Wang

    2015-01-01

    Full Text Available Purpose. Radiotherapy is an effective treatment modality in the clinical treatment of breast cancer. The present work investigated the effect of 3,3′-diindolylmethane (DIM on γ-irradiation sensitizing human breast carcinoma. Methods. Cell survival, intracellular ROS levels, cell cycle distribution, cell apoptosis, and expression of proteins related to apoptosis were measured with MTT assays, flow cytometry, and Western blot analysis, respectively. Results. In vitro DIM plus γ-irradiation arrested the activity of G2/M phase cell cycle, increased intracellular ROS level, significantly suppressed PARP (poly ADP-ribose polymerase, and enhanced γ-irradiation-induced apoptosis, thereby inhibiting the proliferation of MCF-7 cells. Conclusion. These data provide a rationale for the use of DIM as a promising sensitizer of γ-irradiation.

  9. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs

    Science.gov (United States)

    Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-01-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  10. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    Directory of Open Access Journals (Sweden)

    Zita Nagy

    2016-02-01

    Full Text Available DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR, a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1 is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ and Homologous Recombination (HR repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose Polymerases (PARPs TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.

  11. Niacinamide - mechanisms of action and its topical use in dermatology.

    Science.gov (United States)

    Wohlrab, Johannes; Kreft, Daniela

    2014-01-01

    Niacinamide, an amide of vitamin B3 (niacin), is a hydrophilic endogenous substance. Its effects after epicutaneous application have long been described in the literature. Given a sufficient bioavailability, niacinamide has antipruritic, antimicrobial, vasoactive, photo-protective, sebostatic and lightening effects depending on its concentration. Within a complex metabolic system niacinamide controls the NFκB-mediated transcription of signalling molecules by inhibiting the nuclear poly (ADP-ribose) polymerase-1 (PARP-1). Niacinamide is a well-tolerated and safe substance often used in cosmetics. Clinical data for its therapeutic use in various dermatoses can increasingly be found in the literature. Although the existing data are not sufficient for a scientifically founded evaluation, it can be stated that the use of niacinamide in galenic preparations for epicutaneous application offers most interesting prospects.

  12. 2,4,3′,4′-tetramethoxy-biphenyl induces apoptosis in MGC-803 cells through a mitochondrial/caspase pathway

    Directory of Open Access Journals (Sweden)

    Xin Sui

    2014-06-01

    Full Text Available Anti-proliferative and apoptosis-inducing effects of 2,4,3′,4′-tetramethoxy-biphenyl (TMBP on human gastric cancer MGC-803 cells were investigated. The molecular mechanisms of TMBP-mediated tumor cell death were detected by clonogenic assay, staining with Hoechst 33258, DNA fragmentation assay, Western blot analysis and flow cytometry assay. Studies on MGC-803 cells treated with TMBP showed that TMBP inhibited the proliferation of MGC-803 cells in a time- and dose-dependent manner. The induction of apoptosis by TMBP was accompanied by the loss of mitochondrial membrane potential (ΔΨm, cytochrome C release and activation of caspase cascade, resulting in the cleavage of some specific substrates for caspase-3 such as poly (ADP-ribose polymerase (PARP. In conclusion, these findings showed that TMBP may induce the apoptosis of MGC-803 through a mitochondrial/caspase pathway, suggesting its possible use for treating human cancers.

  13. Breast cancer in BRCA mutation carriers: medical treatment.

    Science.gov (United States)

    Milani, Andrea; Geuna, Elena; Zucchini, Giorgia; Aversa, Caterina; Martinello, Rossella; Montemurro, Filippo

    2016-10-01

    About 10% of breast cancers are associated with the inheritance of autosomal dominant breast cancer susceptibility alleles BRCA1 and BRCA2. Until recently, the medical management of BRCA mutation-associated breast cancer has not differed from that of the sporadic breast cancer counterpart. However, there is mounting evidence that this molecular alteration confers sensitivity or resistance to systemic therapies that can be exploited in terms of medical management. For example, studies support the use of platinum salts chemotherapy in BRCA mutated cancers. Moreover, a number of targeted therapies are showing activity in BRCA mutation carriers. Above all, BRCA defective tumor cells are particularly sensitive to Poly(ADP-ribose) polymerase (PARP) inhibitors. This review will summarize the state of the art of the medical treatment of breast cancer in BRCA mutation carriers, with a particular focus on chemotherapies and targeted therapies.

  14. The role of caspase 3 and BclxL in the action of interleukin 7 (IL-7): a survival factor in activated human T cells

    DEFF Research Database (Denmark)

    Amos, C L; Woetmann, A; Nielsen, M;

    1998-01-01

    by the synthetic glucocorticoid, dexamethasone. Bcl-2 protein expression was uupregulated by IL-7 with or without dexamethasone, but Bc1-2 was expressed at a much lower level than BclxL in these cells. Levels of Bax did not markedly change on either cytokine stimulation or dexamethasone treatment. An unidentified...... cells. Both cytokines abrogated the dexamethasone-induced stimulation of Caspase 3 and prevented the cleavage of poly (ADP-ribose) polymerase (PARP), a substrate for the Caspase 3. IL-7 upregulated the expression of Bc1xL and counteracted the downregulation of this anti-apoptotic protein...... of apoptosis. A clear role for IL-7 as a survival factor for cytokine withdrawal and glucocorticoid induced apoptosis in activated primary hT cells is implicated. In addition, regulation of BclxL and downstream inhibition of Caspase 3 activity may mediate this rescue signal....

  15. Parthanatos Mediates AIMP2 Activated Age Dependent Dopaminergic Neuronal Loss

    Science.gov (United States)

    Lee, Yunjong; Karuppagounder, Senthilkumar S.; Shin, Joo-Ho; Lee, Yun-Il; Ko, Han Seok; Swing, Debbie; Jiang, Haisong; Kang, Sung-Ung; Lee, Byoung Dae; Kang, Ho Chul; Kim, Donghoon; Tessarollo, Lino; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    The defining pathogenic feature of Parkinson’s disease is the age dependent loss of dopaminergic neurons. Mutations and inactivation of parkin, an ubiquitin E3 ligase, cause Parkinson’s disease through accumulation of pathogenic substrates. Here we show that transgenic overexpression of the parkin substrate, aminoacyl-tRNA synthetase complex interacting multifunctional protein-2 (AIMP2) leads to a selective, age-dependent progressive loss of dopaminergic neurons via activation of poly(ADP-ribose) polymerase-1 (PARP1). AIMP2 accumulation in vitro and in vivo results in PARP1 overactivation and dopaminergic cell toxicity via direct association of these proteins in the nucleus providing a new path to PARP1 activation other than DNA damage. Inhibition of PARP1 through gene deletion or drug inhibition reverses behavioral deficits and protects in vivo against dopamine neuron death in AIMP2 transgenic mice. These data indicate that brain permeable PARP inhibitors could be effective in delaying or preventing disease progression in Parkinson’s disease. PMID:23974709

  16. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy.

    Science.gov (United States)

    Yang, Minghua; Liu, Liying; Xie, Min; Sun, Xiaofang; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhu, Shan; Cao, Lizhi; Tang, Daolin

    2015-01-01

    Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.

  17. Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2

    Energy Technology Data Exchange (ETDEWEB)

    Quenet, Delphine [IREBS-FRE 3211, Ecole Superieure de Biotechnologie de Strasbourg, F-67412 Illkirch cedex (France); Mark, Manuel [Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Institut Clinique de la souris (ICS), F-67404 Illkirch cedex (France); Govin, Jerome [INSERM, U823, Grenoble, F-38706 (France); Universite Joseph Fourier, Institut Albert Bonniot, Grenoble, F-38706 (France); Dorsselear, A. van [Laboratoire de Spectrometrie de Masse Bio-organique, UMR7178, Ecole de Chimie, Polymeres et Materiaux, Strasbourg (France); Schreiber, Valerie [IREBS-FRE 3211, Ecole Superieure de Biotechnologie de Strasbourg, F-67412 Illkirch cedex (France); Khochbin, Saadi [INSERM, U823, Grenoble, F-38706 (France); Universite Joseph Fourier, Institut Albert Bonniot, Grenoble, F-38706 (France); Dantzer, Francoise, E-mail: francoise.dantzer@unistra.fr [IREBS-FRE 3211, Ecole Superieure de Biotechnologie de Strasbourg, F-67412 Illkirch cedex (France)

    2009-10-01

    Spermiogenesis is a complex male germ cell post-meiotic differentiation process characterized by dramatic changes in chromatin structure and function, including chromatin condensation, transcriptional inhibition and the sequential replacement of histones by transition proteins and protamines. Recent advances, in mammalian cells, suggest a possible role of poly(ADP-ribosyl)ation catalyzed by Parp1 and/or Parp2 in this process. We have recently reported severely compromised spermiogenesis in Parp2-deficient mice characterized by a marked delay in nuclear elongation whose molecular mechanisms remain however unknown. Here, using in vitro protein-protein interaction assays, we show that Parp2 interacts significantly with both the transition protein TP2 and the transition chaperone HSPA2, whereas Parp1 binds weakly to HSPA2. Parp2-TP2 interaction is partly mediated by poly(ADP-ribosyl)ation. Only Parp1 poly(ADP-ribosyl)ates HSPA2. In addition, a detailed analysis of spermatid maturation in Parp2-deficient mice, combining immunohistochemistry and electron microscopic approaches, reveals a loss of spermatids expressing TP2, a defect in chromatin condensation and abnormal formation of the manchette microtubules that, together, contribute to spermatid-specific cell death. In conclusion, we propose both Parps as new participants of a spermatid-specific protein complex involved in genome reorganization throughout spermiogenesis.

  18. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  19. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone.

    Science.gov (United States)

    Moore, Z; Chakrabarti, G; Luo, X; Ali, A; Hu, Z; Fattah, F J; Vemireddy, R; DeBerardinis, R J; Brekken, R A; Boothman, D A

    2015-01-15

    Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD(+) synthesis while increasing NAD(+) consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)(+) depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD(+)-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD(+) synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD(+) pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors.

  20. Effect of silencing PARG in human colon carcinoma LoVo cells on the ability of HUVEC migration and proliferation.

    Science.gov (United States)

    Pan, J; Fauzee, N J S; Wang, Y-l; Sheng, Y-T; Tang, Y; Wang, J-Q; Wu, W-q; Yan, J-x; Xu, J

    2012-10-01

    Our aim was to investigate the influence of silencing poly-(ADP-ribose)glycohydrolase (PARG) in human colon carcinoma LoVo cells on the ability of human umbilical vein endothelial cell (HUVEC) migration, proliferation and its possible mechanisms. PARG mRNA expression was detected by reverse transcriptase (RT) and real-time-PCR. PARG, poly-(ADP-ribose)polymerase (PARP), p38, p-p38, extracellular signal-regulated kinase (ERK), p-ERK, nuclear factor (NF)-κB, phosphorylated IκBα (p-IκBα), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), intercellular cell adhesion molecule (ICAM)-1 and matrix metalloproteinases (MMP)-9 expressions were detected by western blot. The influence of PARG-short hairpin (sh)RNA on the ability of HUVEC migration and proliferation were observed by transwell migration and Counting Kit-8 (CCK-8) assay. Both RT-PCR and western blot results showed that the expression of PARG in PARG-shRNA cells was decreased and expressions of PARP, p38, p-p38, ERK, p-ERK, NF-κB, p-IκBα, VEGF, b-FGF, ICAM-1 and MMP-9 in those cells were lower than that in the untransfected and control-shRNA groups (PHUVEC was decreased (55.23%) in cocultured PARG-shRNA cells; moreover, CCK-8 assay showed that the proliferation of HUVECs cultured with the supernatant of PARG-shRNA cells was also comparatively lower. Hence, concluding that PARG silencing could inhibit the ability of HUVEC migration and proliferation by downregulating the activity of NF-κB in LoVo cells that in turn decreases angiogenic factors such as VEGF, b-FGF, ICAM-1, MMP-9, as well as phosphorylation of p38 and ERK.

  1. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Atanu Ghorai

    2014-01-01

    Full Text Available Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C, is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose polymerase (PARP inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma.

  2. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Benjamin Lemasson

    2016-02-01

    Full Text Available Despite the use of ionizing radiation (IR and temozolomide (TMZ, outcome for glioblastoma (GBM patients remains dismal. Poly (ADP-ribose polymerase (PARP is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM.

  3. miR-223 reverses experimental pulmonary arterial hypertension.

    Science.gov (United States)

    Meloche, Jolyane; Le Guen, Marie; Potus, François; Vinck, Jérôme; Ranchoux, Benoit; Johnson, Ian; Antigny, Fabrice; Tremblay, Eve; Breuils-Bonnet, Sandra; Perros, Frederic; Provencher, Steeve; Bonnet, Sébastien

    2015-09-15

    Pulmonary arterial hypertension (PAH) is a devastating disease affecting lung vasculature. The pulmonary arteries become occluded due to increased proliferation and suppressed apoptosis of the pulmonary artery smooth muscle cells (PASMCs) within the vascular wall. It was recently shown that DNA damage could trigger this phenotype by upregulating poly(ADP-ribose)polymerase 1 (PARP-1) expression, although the exact mechanism remains unclear. In silico analyses and studies in cancer demonstrated that microRNA miR-223 targets PARP-1. We thus hypothesized that miR-223 downregulation triggers PARP-1 overexpression, as well as the proliferation/apoptosis imbalance observed in PAH. We provide evidence that miR-223 is downregulated in human PAH lungs, distal PAs, and isolated PASMCs. Furthermore, using a gain and loss of function approach, we showed that increased hypoxia-inducible factor 1α, which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. Finally, we demonstrated that restoring the expression of miR-223 in lungs of rats with monocrotaline-induced PAH reversed established PAH and provided beneficial effects on vascular remodeling, pulmonary resistance, right ventricle hypertrophy, and survival. We provide evidence that miR-223 downregulation in PAH plays an important role in numerous pathways implicated in the disease and restoring its expression is able to reverse PAH.

  4. Niacinamide abrogates the organ dysfunction and acute lung injury caused by endotoxin.

    Science.gov (United States)

    Kao, Shang-Jyh; Liu, Demeral David; Su, Chain-Fa; Chen, Hsing I

    2007-09-01

    Poly (ADP-ribose) synthabse (PARS) or polymerase (PARP) is a cytotoxic enzyme causing cellular damage. Niacinamide inhibits PARS or PARP. The present experiment tests the effects of niacinamide (NCA) on organ dysfunction and acute lung injury (ALI) following lipopolysaccharide (LPS). LPS was administered to anesthetized rats and to isolated rat lungs. In anesthetized rats, LPS caused systemic hypotension and increased biochemical factors, nitrate/nitrite (NOx), methyl guanidine (MG), tumor necrosis factoralpha (TNFalpha), and interleukin-1beta (IL-1beta). In isolated lungs, LPS increased lung weight (LW) to body weight ratio, LW gain, protein and dye tracer leakage, and capillary permeability. The insult also increased NOx, MG, TNFalpha, and IL-1beta in lung perfusate, while decreased adenosine triphosphate (ATP) content with an increase in PARP activity in lung tissue. Pathological examination revealed pulmonary edema with inflammatory cell infiltration. These changes were abrogated by posttreatment (30 min after LPS) with NCA. Following LPS, the inducible NO synthase (iNOS) mRNA expression was increased. NCA reduced the iNOS expression. Niacinamide exerts protective effects on the organ dysfunction and ALI caused by endotoxin. The mechanisms may be mediated through the inhibition on the PARP activity, iNOS expression and the subsequent suppression of NO, free radicals, and proinflammatory cytokines with restoration of ATP.

  5. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model.

    Science.gov (United States)

    Lemasson, Benjamin; Wang, Hanxiao; Galbán, Stefanie; Li, Yinghua; Zhu, Yuan; Heist, Kevin A; Tsein, Christina; Chenevert, Thomas L; Rehemtulla, Alnawaz; Galbán, Craig J; Holland, Eric C; Ross, Brian D

    2016-02-01

    Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM.

  6. PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia

    Directory of Open Access Journals (Sweden)

    Raimundo M. G. del Moral

    2013-01-01

    Full Text Available We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN and other renal lesions related to prolonged cold ischemia/reperfusion (IR in kidneys preserved at 4°C in University of Wisconsin (UW solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinylbutoxyl]-1(2H-isoquinolinone (DPQ at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ. We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  7. Pelargonium quercetorum Agnew induces apoptosis without PARP or cytokeratin 18 cleavage in non-small cell lung cancer cell lines

    Science.gov (United States)

    Aztopal, Nazlihan; Cevatemre, Buse; Sarimahmut, Mehmet; Ari, Ferda; Dere, Egemen; Ozel, Mustafa Zafer; Firat, Mehmet; Ulukaya, Engin

    2016-01-01

    Pelargonium species have various uses in folk medicine as traditional remedies, and several of them have been screened for their biological activity, including anticancer. Pelargonium quercetorum Agnew (P. quercetorum) is traditionally used for its anthelminthic activity. However, little is known about its biological activity or its effect on cancer cells. The aim of the present study was to determine the cytotoxic activity of P. quercetorum extract on lung cancer cell lines with varying properties. Following the analyses of its chemical composition, the cytotoxic activity was screened by the adenosine triphosphate viability test. M30-Apoptosense® and M65 EpiDeath® enzyme-linked immunosorbent assays were used to determine the cell death mode (apoptosis vs. necrosis). For apoptosis, additional methods, including Annexin-V-fluorescein isothiocyanate (FITC) and Hoechst 33342 staining, were employed. The cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP) was assayed by western blotting to further dissect the apoptosis mechanism. The methanol extract of P. quercetorum caused cytotoxic activity in a dose-dependent manner. The mode of cell death was apoptosis, as evidenced by the positive staining of the cells for Annexin-V-FITC and the presence of pyknotic nuclei. Notably, neither PARP cleavage nor cytokeratin 18 fragmentation were observed. P.quercetorum caused cell death by an apoptosis mechanism that is slightly different from classical apoptosis. Therefore, future in vivo experiments are required for further understanding of the effect of this plant on cancer cells. PMID:27446448

  8. Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells

    Institute of Scientific and Technical Information of China (English)

    Jin-bo WANG; Li-li QI; Shui-di ZHENG; Tian-xing WU

    2009-01-01

    Objective:To investigate the effects of curcumin on release of cytochrome c and expressions of Bcl-2,Bax,Bad,Bcl-xL,caspase-3,poly ADP-ribose polymerase (PARP),and survivin of HT-29 cells.Methods:HT-29 cells were treated with curcumin (0~80 μmol/L) for 24 h.The release of cytochrome c from the mitochondria and the apoptosis-related proteins Bax,Bcl-2,Bci-xL,Bad,caspase-3,PARP,and survivin were determined by Western blot analysis and their mRNA expressions by reverse transcriptase-polymerase chain reaction (RT-PCR).Results:Curcumin significantly induced the growth inhibition and apoptosis of HT-29 ceils.A decrease in expressions of Bcl-2,Bci-xL and survivin was observed after exposure to 10~80 μmol/L curcumin,while the levels of Bax and Bad increased in the curcumin-treated cells.Curcumin also induced the release of cytochrome c,the activation ofcaspase-3,and the cleavage of PARP in a dose-dependent manner.Conclusion:These data suggest that curcumin induced the HT-29 cell apoptosis possibly via the mitochondria-mediated pathway.

  9. Prognostic and clinicopathological value of poly (adenosine diphosphate-ribose) polymerase expression in breast cancer: A meta-analysis

    Science.gov (United States)

    Qiao, Weiqiang; Pan, Linlin; Kou, Changgui; Li, Ke; Yang, Ming

    2017-01-01

    Background Previous studies have shown that the poly (adenosine diphosphate-ribose) polymerase (PARP) level is a promising indicator of breast cancer. However, its prognostic value remains controversial. The present meta-analysis evaluated the prognostic value of PARP expression in breast cancer. Materials and methods Eligible studies were retrieved from the PubMed, Web of Science, Embase, and Cochrane Library databases through July 20, 2016. Studies investigating PARP expression as well as reporting survival data in breast cancer were included. Two independent reviewers carried out all literature searches. The pooled relative risk (RR) and hazard ratio (HR) with 95% confidence interval (95% CI) were applied to assess the association between PARP expression and the clinicopathological features and survival outcome in breast cancer. Results A total of 3506 patients from eight eligible studies were included. We found that higher PARP expression indicated a worse clinical outcome in early stage breast cancer, with a HR of 3.08 (95% CI, 1.14–8.29, P = 0.03) for disease-free survival and a HR of 1.82 (95% CI, 1.20–2.76; P = 0.005) for overall survival. Moreover, increased PARP expression was significantly associated with higher nuclear grade (RR, 1.51; 95% CI, 1.12–2.04; P = 0.008) in breast cancer. A similar correlation was detected in triple-negative breast cancer (TNBC; RR, 1.81; 95% CI, 1.04–3.17; P = 0.04). Conclusions Our findings indicated that elevated PARP expression correlated with worse prognosis in early stage breast cancer. Furthermore, high PARP expression was associated with higher nuclear grade and TNBC. PMID:28212434

  10. The PARP promoter of Trypanosoma brucei is developmentally regulated in a chromosomal context

    DEFF Research Database (Denmark)

    Biebinger, S; Rettenmaier, S; Flaspohler, J;

    1996-01-01

    RNA is abundant in procyclic forms and almost undetectable in blood-stream forms. Post-transcriptional mechanisms are mainly responsible for PARP mRNA regulation but results of nuclear run-on experiments suggested that transcription might also be regulated. We measured the activity of genomically-integrated PARP...... not developmentally regulated, but integration at the PARP locus reduced rRNA promoter activity in bloodstream forms. PARP promoter activity was 5-fold down-regulated in bloodstream forms when integrated at either site. Regulation was probably at the level of transcriptional initiation, but elongation through plasmid...

  11. In silico characterization of the family of PARP-like poly(ADP-ribosyltransferases (pARTs

    Directory of Open Access Journals (Sweden)

    Dittmar Katharina

    2005-10-01

    Full Text Available Abstract Background ADP-ribosylation is an enzyme-catalyzed posttranslational protein modification in which mono(ADP-ribosyltransferases (mARTs and poly(ADP-ribosyltransferases (pARTs transfer the ADP-ribose moiety from NAD onto specific amino acid side chains and/or ADP-ribose units on target proteins. Results Using a combination of database search tools we identified the genes encoding recognizable pART domains in the public genome databases. In humans, the pART family encompasses 17 members. For 16 of these genes, an orthologue exists also in the mouse, rat, and pufferfish. Based on the degree of amino acid sequence similarity in the catalytic domain, conserved intron positions, and fused protein domains, pARTs can be divided into five major subgroups. All six members of groups 1 and 2 contain the H-Y-E trias of amino acid residues found also in the active sites of Diphtheria toxin and Pseudomonas exotoxin A, while the eleven members of groups 3 – 5 carry variations of this motif. The pART catalytic domain is found associated in Lego-like fashion with a variety of domains, including nucleic acid-binding, protein-protein interaction, and ubiquitylation domains. Some of these domain associations appear to be very ancient since they are observed also in insects, fungi, amoebae, and plants. The recently completed genome of the pufferfish T. nigroviridis contains recognizable orthologues for all pARTs except for pART7. The nearly completed albeit still fragmentary chicken genome contains recognizable orthologues for twelve pARTs. Simpler eucaryotes generally contain fewer pARTs: two in the fly D. melanogaster, three each in the mosquito A. gambiae, the nematode C. elegans, and the ascomycete microfungus G. zeae, six in the amoeba E. histolytica, nine in the slime mold D. discoideum, and ten in the cress plant A. thaliana. GenBank contains two pART homologues from the large double stranded DNA viruses Chilo iridescent virus and Bacteriophage Aeh1

  12. MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide.

    Science.gov (United States)

    Erice, Oihane; Smith, Michael P; White, Rachel; Goicoechea, Ibai; Barriuso, Jorge; Jones, Chris; Margison, Geoffrey P; Acosta, Juan C; Wellbrock, Claudia; Arozarena, Imanol

    2015-05-01

    Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomide resistance, but cotargeting MGMT has proven difficult due to dose-limiting toxicities. Here, we show that the MGMT-mediated resistance of cancer cells is profoundly dependent on the DNA repair enzyme PARP. Both in vitro and in vivo, we observe that MGMT-positive cancer cells strongly respond to the combination of temozolomide and PARP inhibitors (PARPi), whereas MGMT-deficient cells do not. In melanoma cells, temozolomide induced an antiproliferative senescent response, which was greatly enhanced by PARPi in MGMT-positive cells. In summary, we provide compelling evidence to suggest that the stratification of patients with cancer upon the MGMT status would enhance the success of combination treatments using temozolomide and PARPi.

  13. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  14. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture.

    Directory of Open Access Journals (Sweden)

    Sun Hee Kim

    Full Text Available BACKGROUND: Sirtuins (Sirt, a family of nicotinamide adenine nucleotide (NAD dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7, Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM. NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD in neurons through poly (ADP-ribose polymerase-1 (PARP-1 activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity. CONCLUSIONS: This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury.

  15. Protective Pleiotropic Effect of Flavonoids on NAD+ Levels in Endothelial Cells Exposed to High Glucose

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2015-01-01

    Full Text Available NAD+ is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+ levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose-polymerase (PARP. We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone during high glucose conditions in an in vitro model using human umbilical vein endothelial cells (HUVECs. Additionally we assessed the ability of these flavonoids to inhibit aldose reductase enzyme activity. We have previously shown that flavonoids can inhibit PARP activation. Extending these studies, we here provide evidence that flavonoids are also able to protect endothelial cells against a high glucose induced decrease in NAD+. In addition, we established that flavonoids are able to inhibit aldose reductase, the key enzyme in the polyol pathway. We conclude that this protective effect of flavonoids on NAD+ levels is a combination of the flavonoids ability to inhibit both PARP activation and aldose reductase enzyme activity. This study shows that flavonoids, by a combination of effects, maintain the redox state of the cell during hyperglycemia. This mode of action enables flavonoids to ameliorate diabetic complications.

  16. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity.

    Science.gov (United States)

    Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M; Dawson, Valina L

    2016-04-06

    Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells or human inducible pluripotent stem cells that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid to FOXG1(+) neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuronal cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and poly(ADP-ribose) polymerase (PARP) (a cell death pathway called parthanatos that is distinct from apoptosis, necroptosis, and other forms of cell death). Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons.

  17. Apoptosis Induced by High Concentrations of Nicotinamide in Tobacco Suspension Cells

    Institute of Scientific and Technical Information of China (English)

    张贵友; 朱瑞宇; 戴尧仁

    2004-01-01

    As an inhibitor of poly(ADP-ribose) polymerase (PARP), nicotinamide has a restraining effect on apoptosis at certain low concentrations. In our present study, apoptosis induced by high concentrations of nicotinamide was observed in tobacco suspension cells. When cells were preincubated with 250 mmol/L nicotinamide for 24 h, the hallmarks of apoptosis were detected, including DNA fragments increasing in size by multiples of 180-200 bp, the condensation and peripheral distribution of nuclear chromatin, and a positive reaction to the TUNEL assay. At the same time, the degradation of PARP and the reduction in the potential of the inner membrane of mitochondria appeared in apoptotic cells induced by high concentrations of nicotinamide. This result indicates that apoptosis induced by high concentrations of nicotinamide is associated with caspase-3-like activity and with the opening of mitochondrial permeability pores. These results partially support the hypothesis that high concentrations of PARP inhibitor could force cells to enter an apoptotic pathway by delay of DNA repair in replicating cells.

  18. Lifestyle influences human sperm functional quality

    Institute of Scientific and Technical Information of China (English)

    Mnica Ferreira; Joana Vieira Silva; Vladimiro Silva; Antnio Barros; Margarida Fardilha

    2012-01-01

    Objective:To investigate the impact of acute lifestyle changes on human sperm functional quality.Methods:In the academic festivities week, young and apparently healthy male students who voluntarily submit themselves to acute lifestyle alterations(among the potentially important variations are increase in alcohol, caffeine, and tobacco consumption and circadian rhythm shifts) were used as a model system.Sperm samples were obtained before and after the academic week and compared by traditional semen analysis(n=54) and also tested for cleavedPolyADP-ribose polymerase(PARP) protein, an apoptotic marker(n=35).Results:Acute lifestyle changes that occurred during the academic week festivities(the study model) resulted both in a significant reduction in sperm quality, assessed by basic semen analysis(decrease in sperm concentration, total number of spermatozoa, progressive and non-progressive motility and increase in sperm morphological abnormalities) and by an increase in the expression of the apoptotic marker, cleavedPARP, in the ejaculate.Conclusions:Acute lifestyle changes have clear deleterious effects on sperm quality.We propose cleavedPARP as a novel molecular marker, valuable for assessing spermquality in parallel with the basic semen analysis method.

  19. Clinical outcomes in pancreatic adenocarcinoma associated with BRCA-2 mutation.

    Science.gov (United States)

    Vyas, Ojas; Leung, Keith; Ledbetter, Leslie; Kaley, Kristin; Rodriguez, Teresa; Garcon, Marie C; Saif, Muhammad W

    2015-02-01

    Patients with BRCA-1 and BRCA-2 germ line mutations are at an increased risk of developing pancreatic adenocarcinoma (PAC). In particular, the BRCA-2 mutation has been associated with a relative risk of developing PAC of 3.51. The BRCA-2 protein is involved in repair of double-stranded DNA breaks. Recent reports have suggested that in the setting of impaired DNA repair, chemotherapeutic agents that induce DNA damage, such as platinum-based antineoplastic drugs (platins) and poly(ADP-ribose) polymerase inhibitors (PARP inhibitors), have improved efficacy. However, because of the relative rarity of BRCA-related PAC, studies evaluating such agents in this setting are scarce. Patients with a known BRCA-2 mutation and PAC were retrospectively reviewed. Ten patients with PAC and BRCA-2 mutation were identified. Four patients (40%) were of Ashkenazi Jewish descent. Seven patients (70%) received platinum agents, two (20%) received mitomycin-C, one (10%) received a PARP inhibitor, and seven (70%) received a topoisomerase-I inhibitor. Overall, chemotherapy was well tolerated with expected side effects. Patients with a BRCA-2 mutation and PAC represent a group with a unique biology underlying their cancer. Chemotherapies such as platinum derivatives, mitomycin-C, topoisomerase-I inhibitors, and PARP inhibitors targeting DNA require further investigation in this population. Genetic testing may guide therapy in the future.

  20. Activation and modulation of cardiac poly-adenosine diphosphate ribose polymerase activity in a rat model of brain death.

    Science.gov (United States)

    Brain, John G; Rostron, Anthony J; Dark, John H; Kirby, John A

    2008-05-15

    DNA damage during transplantation can activate poly-adenosine diphosphate ribose polymerase (PARP) resulting in the generation of polymers of adenosine diphosphate-ribose (PAR). Excessive linkage of PAR to nuclear proteins can induce cell death, thereby limiting the function of transplanted organs. This study uses a rat model of brain death to determine the profile of PARP activation and whether mechanisms that lead to cell death can be ameliorated by appropriate donor resuscitation. The expression of PAR-linked nuclear proteins within cardiac myocytes was greatly increased after the induction of donor brain death. Importantly, infusion of noradrenaline or vasopressin to normalize the chronic hypotension produced by brain death reduced the expression of PAR to a level below baseline. These data suggest that chronic hypotension after donor brain death has the potential to limit cardiac function through the activation of PARP; however, this early cause of graft damage can be mitigated by appropriate donor resuscitation.

  1. Novel treatment strategies in triple-negative breast cancer: specific role of poly(adenosine diphosphate-ribose polymerase inhibition

    Directory of Open Access Journals (Sweden)

    Audeh MW

    2014-10-01

    Full Text Available M William Audeh Division of Medical Oncology, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: Inhibitors of the poly(adenosine triphosphate-ribose polymerase (PARP-1 enzyme induce synthetic lethality in cancers with ineffective DNA (DNA repair or homologous repair deficiency, and have shown promising clinical activity in cancers deficient in DNA repair due to germ-line mutation in BRCA1 and BRCA2. The majority of breast cancers arising in carriers of BRCA1 germ-line mutations, as well as half of those in BRCA2 carriers, are classified as triple-negative breast cancer (TNBC. TNBC is a biologically heterogeneous group of breast cancers characterized by the lack of immunohistochemical expression of the ER, PR, or HER2 proteins, and for which the current standard of care in systemic therapy is cytotoxic chemotherapy. Many “sporadic” cases of TNBC appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of TNBC. Significant genetic heterogeneity has been observed within the TNBC cohort, creating challenges for interpretation of prior clinical trial data, and for the design of future clinical trials. Several PARP inhibitors are currently in clinical development in BRCA-mutated breast cancer. The use of PARP inhibitors in TNBC without BRCA mutation will require biomarkers that identify cancers with homologous repair deficiency in order to select patients likely to respond. Beyond mutations in the BRCA genes, dysfunction in other genes that interact with the homologous repair pathway may offer opportunities to induce synthetic lethality when combined with PARP inhibition. Keywords: PARP, triple negative breast cancer, PARP inhibitors

  2. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    Science.gov (United States)

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  3. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1.

    Science.gov (United States)

    Dziaman, Tomasz; Ludwiczak, Hubert; Ciesla, Jaroslaw M; Banaszkiewicz, Zbigniew; Winczura, Alicja; Chmielarczyk, Mateusz; Wisniewska, Ewa; Marszalek, Andrzej; Tudek, Barbara; Olinski, Ryszard

    2014-01-01

    The ethiology of colon cancer is largely dependent on inflammation driven oxidative stress. The analysis of 8-oxodeoxyguanosine (8-oxodGuo) level in leukocyte DNA of healthy controls (138 individuals), patients with benign adenomas (AD, 137 individuals) and with malignant carcinomas (CRC, 169 individuals) revealed a significant increase in the level of 8-oxodGuo in leukocyte DNA of AD and CRC patients in comparison to controls. The counteracting mechanism is base excision repair, in which OGG1 and PARP-1 play a key role. We investigated the level of PARP-1 and OGG1 mRNA and protein in diseased and marginal, normal tissues taken from AD and CRC patients and in leukocytes taken from the patients as well as from healthy subjects. In colon tumors the PARP-1 mRNA level was higher than in unaffected colon tissue and in polyp tissues. A high positive correlation was found between PARP-1 and OGG1 mRNA levels in all investigated tissues. This suggests reciprocal influence of PARP-1 and OGG1 on their expression and stability, and may contribute to progression of colon cancer. PARP-1 and OGG1 proteins level was several fold higher in polyps and CRC in comparison to normal colon tissues. Individuals bearing the Cys326Cys genotype of OGG1 were characterized by higher PARP-1 protein level in diseased tissues than the Ser326Cys and Ser326Ser genotypes. Aforementioned result may suggest that the diseased cells with polymorphic OGG1 recruit more PARP protein, which is necessary to remove 8-oxodGuo. Thus, patients with decreased activity of OGG1/polymorphism of the OGG1 gene and higher 8-oxodGuo level may be more susceptible to treatment with PARP-1 inhibitors.

  4. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  5. NAD+ metabolism in health and disease.

    Science.gov (United States)

    Belenky, Peter; Bogan, Katrina L; Brenner, Charles

    2007-01-01

    Nicotinamide adenine dinucleotide (NAD(+)) is both a coenzyme for hydride-transfer enzymes and a substrate for NAD(+)-consuming enzymes, which include ADP-ribose transferases, poly(ADP-ribose) polymerases, cADP-ribose synthases and sirtuins. Recent results establish protective roles for NAD(+) that might be applicable therapeutically to prevent neurodegenerative conditions and to fight Candida glabrata infection. In addition, the contribution that NAD(+) metabolism makes to lifespan extension in model systems indicates that therapies to boost NAD(+) might promote some of the beneficial effects of calorie restriction. Nicotinamide riboside, the recently discovered nucleoside precursor of NAD(+) in eukaryotic systems, might have advantages as a therapy to elevate NAD(+) without inhibiting sirtuins, which is associated with high-dose nicotinamide, or incurring the unpleasant side-effects of high-dose nicotinic acid.

  6. Neurodegeneration in accelerated aging.

    Science.gov (United States)

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  7. Perinatal asphyxia: CNS development and deficits with delayed onset

    Directory of Open Access Journals (Sweden)

    Mario eHerrera-Marschitz

    2014-03-01

    Full Text Available Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified.In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by over expression of sentinel proteins, such as poly(ADP-ribose polymerase-1 (PARP-1, competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.

  8. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    Science.gov (United States)

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation.

  9. Stalled replication forks within heterochromatin require ATRX for protection.

    Science.gov (United States)

    Huh, M S; Ivanochko, D; Hashem, L E; Curtin, M; Delorme, M; Goodall, E; Yan, K; Picketts, D J

    2016-05-12

    Expansive growth of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered neocortex, while also placing a heavy burden on proteins that regulate chromatin packaging and genome integrity. This problem is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. ATRX gene mutations cause a severe intellectual disability disorder (α-thalassemia mental retardation X-linked (ATRX) syndrome; OMIM no. 301040), characterized by microcephaly, urogenital abnormalities and α-thalassemia. Although the ATRX protein is required for the maintenance of repetitive DNA within heterochromatin, how this translates to disease pathogenesis remain poorly understood and was a focus of this study. We demonstrate that Atrx(FoxG1Cre) forebrain-specific conditional knockout mice display poly(ADP-ribose) polymerase-1 (Parp-1) hyperactivation during neurogenesis and generate fewer late-born Cux1- and Brn2-positive neurons that accounts for the reduced cortical size. Moreover, DNA damage, induced Parp-1 and Atm activation is elevated in progenitor cells and contributes to their increased level of cell death. ATRX-null HeLa cells are similarly sensitive to hydroxyurea-induced replication stress, accumulate DNA damage and proliferate poorly. Impaired BRCA1-RAD51 colocalization and PARP-1 hyperactivation indicated that stalled replication forks are not efficiently protected. DNA fiber assays confirmed that MRE11 degradation of stalled replication forks was rampant in the absence of ATRX or DAXX. Indeed, fork degradation in ATRX-null cells could be attenuated by treatment with the MRE11 inhibitor mirin, or exacerbated by inhibiting PARP-1 activity. Taken together, these results suggest that ATRX is required to limit replication stress during cellular proliferation, whereas upregulation of PARP-1 activity functions as a compensatory mechanism to protect stalled forks

  10. Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and γ-H2AX foci formation in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Xu K

    2015-10-01

    Full Text Available Kaiwu Xu,1* Zhihui Chen,2* Yi Cui,1 Changjiang Qin,2 Yulong He,2 Xinming Song2 1Endoscopy Center, 2Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China *These authors contributed equally to this work Background: Poly (ADP-ribose polymerase 1 (PARP1 has an important role in homologous recombination repair. The purpose of this study was to investigate the effect of PARP1 inhibitor on oxaliplatin treatment for colorectal cancer (CRC. Methods: A cell counting kit-8 assay was used to determine the sensitivity of CRC cells to olaparib and/or oxaliplatin. The gene and protein expressions of PARP1 and the gamma histone variant H2AX (γH2AX were measured by real-time quantitative polymerase chain reaction and western blotting, respectively. The γH2AX foci formation assay was used to investigate the influence of treatments on cells. Flow cytometry was used to examine the changes in cell cycle distribution. Finally, we investigated the combination of olaparib and oxaliplatin in the CRC tumor model. Results: Olaparib changed the expression of γH2AX and PARP1, and increased the sensitivity of CRC cells to oxaliplatin. The γH2AX foci assay showed that olaparib did not induce double-strand breaks (DSBs alone, but it enhanced the induction of DSBs by oxaliplatin. The flow cytometry results showed that cells exposed to combination treatment had more G2/M-phase cells than control. Additionally, tumor xenograft studies suggested that combined treatment inhibited the growth of CRC. Conclusion: CRC cells are sensitized to combined treatment with olaparib and oxaliplatin, and this could be a promising strategy for clinical chemotherapy in CRC. Keywords: olaparib, oxaliplatin, chemosensitization, colorectal cancer

  11. Direct current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH oxidase-derived reactive oxygen species.

    Science.gov (United States)

    Wartenberg, Maria; Wirtz, Nina; Grob, Alexander; Niedermeier, Wilhelm; Hescheler, Jürgen; Peters, Saskia C; Sauer, Heinrich

    2008-01-01

    The presence of more than one dental alloy in the oral cavity often causes pathological galvanic currents and voltage resulting in superficial erosions of the oral mucosa and eventually in the emergence of oral cancer. In the present study the mechanisms of apoptosis of oral mucosa cancer cells in response to electromagnetic fields was investigated. Direct current (DC) electrical fields with field strengths between 2 and 16 V/m, applied for 24 h to UM-SCC-14-C oral mucosa cancer cells, dose-dependently resulted in decreased cell proliferation as evaluated by Ki-67 immunohistochemistry and upregulation of the cyclin-dependent kinase (CDK) inhibitors p21(cip1/waf1) and p27(kip1), which are associated with cell cycle arrest. Electrical field treatment (4 V/m, 24 h) increased apoptosis as evaluated by immunohistochemical analysis of cleaved caspase-3 and poly-(ADP-ribose)-polymerase-1 (PARP-1). Furthermore, robust reactive oxygen species (ROS) generation, increased expression of NADPH oxidase subunits as well as Hsp70 was observed. Electrical field treatment (4 V/m, 24 h) resulted in increased expression of Cu/Zn superoxide dismutase and decreased intracellular concentration of reduced glutathione (GSH), whereas the expression of catalase remained unchanged. Pre-treatment with the free radical scavenger N-acetyl cysteine (NAC) and the superoxide dismutase mimetic EUK-8 abolished caspase-3 and PARP-1 induction, suggesting that apoptosis in oral mucosa cancer cells is initated by ROS generation in response to DC electrical field treatment.

  12. Cajal bodies and their role in plant stress and disease responses.

    Science.gov (United States)

    Love, Andrew J; Yu, Chulang; Petukhova, Natalia V; Kalinina, Natalia O; Chen, Jianping; Taliansky, Michael E

    2016-10-11

    Cajal bodies (CBs) are distinct sub-nuclear structures that are present in eukaryotic living cells and are often associated with the nucleolus. CBs play important roles in RNA metabolism and formation of RNPs involved in transcription, splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles, CBs appear to be involved in additional functions that may not be directly related to RNA metabolism and RNP biogenesis. In this review, we assess possible roles of plant CBs in RNA regulatory pathways such as nonsense-mediated mRNA decay and RNA silencing. We also summarize recent progress and discuss new non-canonical functions of plant CBs in responses to stress and disease. It is hypothesized that CBs can regulate these responses via their interaction with poly(ADP ribose)polymerase (PARP), which is known to play an important role in various physiological processes including responses to biotic and abiotic stresses. It is suggested that CBs and their components modify PARP activities and functions.

  13. Antiapoptotic mechanism of cannabinoid receptor 2 agonist on cisplatin-induced apoptosis in the HEI-OC1 auditory cell line.

    Science.gov (United States)

    Jeong, Hyun-Ja; Kim, Su-Jin; Moon, Phil-Dong; Kim, Na-Hyun; Kim, Jung-Sun; Park, Rae-Kil; Kim, Min-Sun; Park, Byung-Rim; Jeong, Sejin; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2007-03-01

    Cisplatin is a highly effective chemotherapeutic agent but with significant ototoxic side effects. Apoptosis is an important mechanism of cochlear hair cell loss following exposure to an ototoxic level of cisplatin. The present study investigated the effects of the cannabinoid receptor 2 (CB2) ligand JWH-015 on cisplatin-induced apoptosis. CB2 mRNA was constitutively expressed in the auditory cell line HEI-OC1. By using MTT assay, DNA fragmentation, and FACS analysis, we demonstrated that apoptosis induced by cisplatin was inhibited by treatment with JWH-015 in a dose-dependent manner. Activation of caspase-3, caspase-8, and caspase-9 was detected after treatment with cisplatin, and the cleavage of poly-(ADP)-ribose polymerase (PARP) was observed within cisplatin-treated HEI-OC1 cells. JWH-015 inhibited the activation of caspase-3, caspase-8, and caspase-9; cleavage of PARP; and release of cytochrome c. JWH-015 also inhibited the apoptosis through activation of the extracellular signal-regulated kinase pathway. Finally, JWH-015 inhibited cisplatin-induced reactive oxygen species and tumor necrosis factor-alpha production. Collectively, these findings show that blocking a critical step in apoptosis by using JWH-015 may be a useful strategy to prevent harmful side effects of cisplatin ototoxicity in patients having to undergo chemotherapy.

  14. Downregulation of hTERT: an important As2O3 induced mechanism of apoptosis in myelodysplastic syndrome.

    Directory of Open Access Journals (Sweden)

    Weilai Xu

    Full Text Available Two myelodysplastic syndrome (MDS cell lines, MUTZ-1 and SKM-1 cells, were used to study the effect of arsenic trioxide (As2O3 on hematological malignant cells. As2O3 induced this two cell lines apoptosis via activation of caspase-3/8 and cleavage of poly (ADP-ribose polymerase (PARP, a DNA repair enzyme. As2O3 reduced NF-κB activity, which was important for inducing MUTZ-1 and SKM-1 cells apoptosis. As2O3 also inhibited the activities of hTERT in MUTZ-1 and SKM-1 cells. Moreover, the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, had no effect on caspase-8 activation, although PDTC did inhibit MUTZ-1 and SKM-1 cells proliferation. Incubation of MUTZ-1 cells with a caspase-8 inhibitor failed to block As2O3-induced inhibition of NF-κB activity. Our findings suggest that As2O3 may induce apoptosis in MUTZ-1 and SKM-1 cells by two independent pathways: first, by activation of caspase-3/8 and PARP; and second, by inhibition of NF-κB activity, which results in downregulation of hTERT expression. We conclude that hTERT and NF-κB are important molecular targets in As2O3-induced apoptosis.

  15. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  16. Autophagy is associated with cucurbitacin D-induced apoptosis in human T cell leukemia cells.

    Science.gov (United States)

    Nakanishi, Tsukasa; Song, Yuan; He, Cuiying; Wang, Duo; Morita, Kentaro; Tsukada, Junichi; Kanazawa, Tamotsu; Yoshida, Yasuhiro

    2016-04-01

    We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. In the present study, we investigated the effects of co-treatment with an additional Bcl-xL inhibitor, Z36. Treatment with Z36 induced cell death in leukemia cell lines, with MT-4 cells exhibiting the lowest sensitivity to Z36. Co-treatment of cells with Z36 and CuD resulted in a greater degree of cell death for Hut78 and Jurkat cells than treatment with CuD alone. In contrast, co-treatment of MT-4 cells with Z36 and CuD had a suppressive effect on cell death. The autophagy inhibitor 3-methyladenine (3-MA) suppressed the growth of leukemia cell lines HuT78, Jurkat, MT-1, and MT-4. CuD-induced cell death was enhanced by 3-MA in Jurkat cells, but inhibited in MT-4 cells. Western blotting results revealed cleavage of poly(ADP ribose) polymerase (PARP), supporting CuD-induced cell death; 3-MA enhanced CuD-Z36-induced PARP cleavage. Taken together, our results indicate that autophagy negatively regulates chemical-induced cell death of leukemia cells, and that controlling autophagy could be beneficial in the development of more effective chemotherapies against leukemia.

  17. SCP, a polysaccharide from Schisandra chinensis, induces apoptosis in human renal cell carcinoma Caki-1 cells through mitochondrial-dependent pathway via inhibition of ERK activation.

    Science.gov (United States)

    Liu, Shi-Jian; Qu, Hai-Ming; Ren, Ye-Ping

    2014-06-01

    This study is the first to investigate the anticancer effect of Schisandra chinensis polysaccharide (SCP) in renal cell carcinoma (RCC) cells. The results revealed that SCP treatment showed high cytotoxic potency in Caki-1 cells by inducing apoptosis, which is associated with the disruption of mitochondrial membrane potential (MMP), release of cytochrome c into the cytosol, increase of Bax/Bcl-2 ratio, activation of caspase-3/9, and cleavage of poly(ADP-ribose) polymerase (PARP). Furthermore, pan-caspase inhibitor (z-VAD-fmk) significantly blocked SCP-induced apoptosis and PARP cleavage in Caki-1 cells. As well, we also observed that SCP inhibited the phosphorylation of ERK1/2, whereas it had no significant inhibition effect on the phospho-p38 and phospho-JNK activity. All the above parameters provided scientific evidence that SCP induced mitochondrial-mediated apoptosis in Caki-1 cells through the inactivation of ERK pathways, which may shed further light on its potential application as a cancer chemopreventive agent against RCC.

  18. Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells.

    Science.gov (United States)

    Baek, Seung Joon; Kim, Jong-Sik; Jackson, Felix R; Eling, Thomas E; McEntee, Michael F; Lee, Seong-Ho

    2004-12-01

    There is persuasive epidemiological and experimental evidence that dietary polyphenolic plant-derived compounds have anticancer activity. Many laboratories, including ours, have reported such an effect in cancers of the gastrointestinal tract, lung, skin, prostate and breast. The catechins are a group of polyphenols found in green tea, which is one of the most commonly consumed beverages in the world. While the preponderance of the data strongly indicates significant antitumorigenic benefits from the green tea catechins, the potential molecular mechanisms involved remain obscure. We found that green tea components induce apoptosis via a TGF-beta superfamily protein, NAG-1 (Non-steroidal anti-inflammatory drug Activated Gene). In this report, we show that ECG is the strongest NAG-1 inducer among the tested catechins and that treatment of HCT-116 cells results in an increasing G(1) sub-population, and cleavage of poly (ADP-ribose) polymerase (PARP), consistent with apoptosis. In contrast, other catechins do not significantly induce NAG-1 expression, PARP cleavage or morphological changes at up to a 50-microM concentration. Furthermore, we provide evidence that ECG induces the ATF3 transcription factor, followed by NAG-1 induction at the transcriptional level in a p53-independent manner. The data generated by this study will help elucidate mechanisms of action for components in green tea and this information may lead to the design of more effective anticancer agents and informed clinical trials.

  19. Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells.

    Science.gov (United States)

    Belichenko, I; Morishima, N; Separovic, D

    2001-06-01

    Oxidative stress, such as photodynamic therapy, is an apoptosis inducer. Apoptosis, as well as photosensitization, have been associated with disruption of the cytoskeletal network. The purpose of the present study was to assess the role of vimentin, a major cytoskeletal protein, in apoptosis after photodynamic treatment (PDT) with the silicon phthalocyanine Pc 4 in human Jurkat T cells. Here we show for the first time that photosensitization with Pc 4 initiates vimentin cleavage and that this event precedes poly(ADP-ribose) polymerase (PARP) degradation. Similar findings were obtained in the presence of C2-ceramide, an inducer of oxidative stress and apoptosis. In the presence of benzyloxycarbonyl-Val-Ala-Asp(O-methyl)-fluoromethylketone, a pan-caspase inhibitor, Pc 4-PDT-induced vimentin and PARP cleavage were abolished. In Jurkat cells transfected with a caspase-resistant vimentin apoptosis was partly suppressed and delayed post-Pc 4-PDT. We suggest that the full-length vimentin confers resistance to nuclear apoptosis after PDT with Pc 4.

  20. Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo.

    Science.gov (United States)

    Kim, Kihyun; Kong, Sun-Young; Fulciniti, Mariateresa; Li, Xianfeng; Song, Weihua; Nahar, Sabikun; Burger, Peter; Rumizen, Mathew J; Podar, Klaus; Chauhan, Dharminder; Hideshima, Teru; Munshi, Nikhil C; Richardson, Paul; Clark, Ann; Ogden, Janet; Goutopoulos, Andreas; Rastelli, Luca; Anderson, Kenneth C; Tai, Yu-Tzu

    2010-05-01

    This study investigated the cytotoxicity and mechanism of action of AS703026, a novel, selective, orally bioavailable MEK1/2 inhibitor, in human multiple myeloma (MM). AS703026 inhibited growth and survival of MM cells and cytokine-induced osteoclast differentiation more potently (9- to 10-fold) than AZD6244. Inhibition of proliferation induced by AS703026 was mediated by G0-G1 cell cycle arrest and was accompanied by reduction of MAF oncogene expression. AS703026 further induced apoptosis via caspase 3 and Poly ADP ribose polymerase (PARP) cleavage in MM cells, both in the presence or absence of bone marrow stromal cells (BMSCs). Importantly, AS703026 sensitized MM cells to a broad spectrum of conventional (dexamethasone, melphalan), novel or emerging (lenalidomide, perifosine, bortezomib, rapamycin) anti-MM therapies. Significant tumour growth reduction in AS703026- vs. vehicle-treated mice bearing H929 MM xenograft tumours correlated with downregulated pERK1/2, induced PARP cleavage, and decreased microvessels in vivo. Moreover, AS703026 (BRAF genes. Importantly, BMSC-induced viability of MM patient cells was similarly blocked within the same dose range. Our results therefore support clinical evaluation of AS703026, alone or in combination with other anti-MM agents, to improve patient outcome.

  1. Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86.

    Science.gov (United States)

    Trotter, Kevin W; King, Heather A; Archer, Trevor K

    2015-08-01

    BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.

  2. Activation of group IVC phospholipase A{sub 2} by polycyclic aromatic hydrocarbons induces apoptosis of human coronary artery endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tithof, Patricia K. [University of Tennessee, Department of Pathobiology, College of Veterinary Medicine, Knoxville, TN (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN (United States); Richards, Sean M. [University of Tennessee, Department of Biological and Environmental Sciences, Chattanooga, TN (United States); Elgayyar, Mona A. [University of Tennessee, Department of Pathobiology, College of Veterinary Medicine, Knoxville, TN (United States); Menn, Fu-Minn; Vulava, Vijay M.; McKay, Larry; Sanseverino, John; Sayler, Gary [University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN (United States); Tucker, Dawn E.; Leslie, Christina C. [National Jewish Medical and Research Center, Department of Pediatrics, Denver, CO (United States); Lu, Kim P. [Texas A and M University, Department of Biology, College Station, TX (United States); Ramos, Kenneth S. [University of Louisville, Department of Biochemistry and Molecular Biology, Louisville, KY (United States)

    2011-06-15

    Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A{sub 2} (PLA{sub 2}) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA{sub 2} in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA{sub 2} inhibited both {sup 3}H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA{sub 2}. Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA{sub 2}. (orig.)

  3. Activation of group IVC phospholipase A2 by polycyclic aromatic hydrocarbons induces apoptosis of human coronary artery endothelial cells

    Science.gov (United States)

    Richards, Sean M.; Elgayyar, Mona A.; Menn, Fu-Minn; Vulava, Vijay M.; McKay, Larry; Sanseverino, John; Sayler, Gary; Tucker, Dawn E.; Leslie, Christina C.; Lu, Kim P.; Ramos, Kenneth S.

    2016-01-01

    Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A2 (PLA2) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA2 in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA2 inhibited both 3H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA2. Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA2. PMID:21132278

  4. Intervention timing and effect of PJ34 on astrocytes during oxygen-glucose deprivation/reperfusion and cell death pathways.

    Science.gov (United States)

    Cai, Chuan; Zhang, Rui; Huang, Qiao-Ying; Cao, Xu; Zou, Liang-Yu; Chu, Xiao-Fan

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) plays as a double edged sword in cerebral ischemia-reperfusion, hinging on its effect on the intracellular energy storage and injury severity, and the prognosis has relationship with intervention timing. During ischemia injury, apoptosis and oncosis are the two main cell death pathway sin the ischemic core. The participation of astrocytes in ischemia-reperfusion induced cell death has triggered more and more attention. Here, we examined the protective effects and intervention timing of the PARP-1 inhibitor PJ34, by using a mixed oxygen-glucose deprivation/reperfusion (OGDR) model of primary rat astrocytes in vitro, which could mimic the ischemia-reperfusion damage in the "ischemic core". Meanwhile, cell death pathways of various PJ34 treated astrocytes were also investigated. Our results showed that PJ34 incubation (10 μmol/L) did not affect release of lactate dehydrogenase (LDH) from astrocytes and cell viability or survival 1 h after OGDR. Interestingly, after 3 or 5 h OGDR, PJ34 significantly reduced LDH release and percentage of PI-positive cells and increased cell viability, and simultaneously increased the caspase-dependent apoptotic rate. The intervention timing study demonstrated that an earlier and longer PJ34 intervention during reperfusion was associated with more apparent protective effects. In conclusion, earlier and longer PJ34 intervention provides remarkable protective effects for astrocytes in the "ischaemic core" mainly by reducing oncosis of the astrocytes, especially following serious OGDR damage.

  5. In Vitro Anticancer Activity of Phlorofucofuroeckol A via Upregulation of Activating Transcription Factor 3 against Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hyun Ji Eo

    2016-03-01

    Full Text Available Phlorofucofuroeckol A (PFF-A, one of the phlorotannins found in brown algae, has been reported to exert anti-cancer property. However, the molecular mechanism for the anti-cancer effect of PFF-A has not been known. Activating transcription factor 3 (ATF3 has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which PFF-A stimulates ATF3 expression and apoptosis in human colorectal cancer cells. PFF-A decreased cell viability through apoptosis of human colorectal cancer cells. PFF-A increased ATF3 expression through regulating transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by PFF-A was cAMP response element binding protein (CREB, located between positions −147 and −85 of the ATF3 promoter. Inhibition of p38, c-Jun N-terminal kinases (JNK, glycogen synthase kinase (GSK 3β, and IκB kinase (IKK-α blocked PFF-A-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of poly (ADP-ribose polymerase (PARP by PFF-A, while ATF3 overexpression increased PFF-A-mediated cleaved PARP. These results suggest that PFF-A may exert anti-cancer property through inducing apoptosis via the ATF3-mediated pathway in human colorectal cancer cells.

  6. Protective effect of ginkgolide B on high altitude cerebral edema of rats.

    Science.gov (United States)

    Botao, Yu; Ma, Jie; Xiao, Wenjing; Xiang, Qingyu; Fan, Kaihua; Hou, Jun; Wu, Juan; Jing, Weihua

    2013-03-01

    Ginkgolide B (GB) is one of the ginkgolides isolated from leaves of the Ginkgo biloba tree. The aim of this study was to investigate whether GB has a protective effect on high altitude cerebral edema (HACE) of rats. HACE was induced by hypobaric hypoxia exposure for 24 hours in an animal decompression chamber with the chamber pressure of 267 mmHg to simulate an altitude of 8000 m. Before the exposure, three doses (3, 6, and 12 mg·kg(-1)) of GB were given intraperitoneally (ip) daily for 3 days. Effects of GB on brain water content (BWC), activity of superoxide dismutase (SOD), concentration of glutathione (GSH) and malondialdehyde (MDA), expression of active caspase-3 and poly(ADP-ribose) polymerase (PARP) were measured. In GB pretreatment groups (6 and 12 mg·kg(-1), but not 3 mg·kg(-1)), BWC, the concentration of MDA, the expression of active caspase-3 and PARP were reduced significantly, while the activity of SOD and concentration of GSH were significantly increased. In conclusion, these results indicate that GB has a protective effect on cerebral edema caused by high altitude in rats. The protective effect of GB might be attributed to its antioxidant properties and suppression of the caspase-dependent apoptosis pathway.

  7. Bathing Effects of Various Seawaters on Allergic (Atopic Dermatitis-Like Skin Lesions Induced by 2,4-Dinitrochlorobenzene in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Choong Gon Kim

    2015-01-01

    Full Text Available We evaluated the preventive effects of four types of seawater collected in Republic of Korea on hairless mice with 2,4-dinitrochlorobenzene- (DNCB- induced allergic/atopic dermatitis (AD. The anti-inflammatory effects were evaluated by measuring tumor necrosis factor- (TNF- α and interleukins (ILs. Glutathione (GSH, malondialdehyde (MDA, superoxide anion, and inducible nitric oxide synthase (iNOS were measured to evaluate the antioxidant effects. Caspase-3 and poly (ADP-ribose polymerase (PARP were observed to measure the antiapoptotic effects; matrix metalloproteinase- (MMP- 9 levels were also evaluated. Mice with AD had markedly higher clinical skin severity scores and scratching behaviors; higher TNF-α and ILs (1β, 10, 4, 5, and 13 levels; higher MDA, superoxide anion, caspase-3, PARP, and MMP-9 levels; and greater iNOS activity. However, the severity of AD was significantly decreased by bathing in seawaters, but it did not influence the dermal collagen depositions and skin tissue antioxidant defense systems. These results suggest that bathing in all four seawaters has protective effects against DNCB-induced AD through their favorable systemic and local immunomodulatory effects, active cytoprotective antiapoptotic effects, inhibitory effects of MMP activity and anti-inflammatory and antioxidative effects.

  8. Combinational effects of hexane insoluble fraction of Ficus septica Burm. F. and doxorubicin chemotherapy on T47D breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Agung Endro Nugroho; Adam Hermawan; Anindya Novika; Edy Meiyanto

    2013-01-01

    Objective: To evaluate the effects of n-hexane insoluble fraction (HIF) of Ficus septica leaves in combination with doxorubicin on cytotoxicity, cell cycle and apoptosis induction of breast cancer T47D cell lines. Methods: The in vitro drugs-stimulated cytotoxic effects were determined using MTT assay. Analysis of cell cycle distribution was performed using flowcytometer and the data was analyzed using ModFit LT 3.0 program. Apoptosis assay was carried out by double staining method using ethydium bromide-acridin orange. The expression of cleaved-poly (ADP-ribose) polymerase (PARP) on T47D cell lines was identified using immunocytochemistry. Results:The combination exhibited higher inhibitory effect on cell growth than the single treatment of doxorubicin in T47D cells. In addition, combination of doxorubicin and HIF increased the incidence of cells undergoing apoptosis. HIF could improve doxorubicin cytotoxic effect by changing the accumulation of cell cycle phase from G2/M to G1 phase. The combination also exhibited upregulation of cleaved-PARP in T47D cells. Conclusions: Based on this results, HIF is potential to be developed as co-chemotherapeutic agent for breast cancer by inducing apoptosis and cell cycle arrest. However, the molecular mechanism need to be explored further.

  9. Interferon-α enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiang-wei YUAN; Xiao-feng ZHU; Xiu-fang HUANG; Pu-yi SHENG; Ai-shan HE; Zi-bo YANG; Rong DENG; Gong-kan FENG; Wei-ming LIAO

    2007-01-01

    Aim:To determine whether intefferon-α (IFNα) can enhance doxorubicin sensitivity in osteosarcoma cells and its molecular mechanism. Methods:Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was studied using Flow cytometry analysis,Hoechst33258 staining,DNA fragmentation assay,as well as the activation of caspase-3 and poly (ADP-ribose) polymerase. Protein expression was detected by Western blotting. The dependence of p53 was determined using p53-siRNA transfection. Results:IFNα increased doxorubicin-induced cytotoxicity to a much greater degree through apoptosis in human osteosarcoma p53-wild U2OS cells,but not p53-mutant MG63 cells. IFNoα markedly upregulated p53,Bax,Mdm2,and p21,downregulated Bcl-2,and activated caspase-3 and PARP cleavage in response to doxorubicin in U2OS cells. Moreover,the siRNA-mediated silencing of p53 significantly reduced the IFNoα/doxorubicin combination-induced cytotoxicity and PARP cleavage. Conclusion:IFNtx enhances the sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. The proper combination with IFNα and conventional chemotherapeutic agents may be a rational strategy for improving the treatment of osteosarcoma with functional p53.

  10. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?

    Science.gov (United States)

    Haffner, Michael C; De Marzo, Angelo M; Meeker, Alan K; Nelson, William G; Yegnasubramanian, Srinivasan

    2011-06-15

    An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated by the class II topoisomerase TOP2B, which is recruited with the androgen receptor and estrogen receptor to regulatory sites on target genes and is apparently required for efficient transcriptional activation of these genes. These DSBs are recognized by the DNA repair machinery triggering the recruitment of repair proteins such as poly(ADP-ribose) polymerase 1 (PARP1), ATM, and DNA-dependent protein kinase (DNA-PK). If illegitimately repaired, such DSBs can seed the formation of genomic rearrangements like the TMPRSS2-ERG fusion oncogene in prostate cancer. Here, we hypothesize that these transcription-induced, TOP2B-mediated DSBs can also be exploited therapeutically and propose that, in hormone-dependent tumors like breast and prostate cancers, a hormone-cycling therapy, in combination with topoisomerase II poisons or inhibitors of the DNA repair components PARP1 and DNA-PK, could overwhelm cancer cells with transcription-associated DSBs. Such strategies may find particular utility in cancers, like prostate cancer, which show low proliferation rates, in which other chemotherapeutic strategies that target rapidly proliferating cells have had limited success.

  11. Redox regulation of SIRT1 in inflammation and cellular senescence.

    Science.gov (United States)

    Hwang, Jae-woong; Yao, Hongwei; Caito, Samuel; Sundar, Isaac K; Rahman, Irfan

    2013-08-01

    Sirtuin 1 (SIRT1) regulates inflammation, aging (life span and health span), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging, in which oxidative stress occurs. SIRT1 is regulated by a NAD(+)-dependent DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), and subsequent NAD(+) depletion by oxidative stress may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to posttranslational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65, and FOXO3, thereby enhancing the inflammatory, prosenescent, and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox posttranslational modifications of SIRT1 and its roles in PARP1 and NF-κB activation, and FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging, are discussed. Furthermore, we have also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases.

  12. Effect of pseudolaric acid B on gastric cancer cells: Inhibition of proliferation and induction of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ke-Shen Li; Xue-Feng Gu; Ping Li; Yong Zhang; Ya-Shuang Zhao; Zhen-Jiang Yao; Nai-Qiang Qu; Bin-You Wang

    2005-01-01

    AIM: To examine the effect of pseudolaric acid B on the growth of human gastric cancer cell line, AGS, and its possible mechanism of action.METHODS: Growth inhibition by pseudolaric acid B was analyzed using MTT assay. Apoptotic cells were detected using Hoechst 33258 staining, and confirmed by DNA fragmentation analysis. Western blot was used to detect the expression of apoptosis-regulated gene Bcl-2, caspase 3, and cleavage of poly (ADP-ribose)polymerase-1 (PARP-1).RESULTS: Pseudolaric acid B inhibited the growth of AGS cells in a time- and dose-dependent manner by arresting the cells at G2/M phase, which was accompanied with a decrease in the levels of cdc2.AGS cells treated with pseudolaric acid B showed typical characteristics of apoptosis including chromatin condensation and DNA fragmentation. Moreover,treatment of AGS cells with pseudolaric acid B was also associated with decreased levels of the anti-apoptotic protein Bcl-2, activation of caspase-3, and proteolytic cleavage of PARP-1.CONCLUSION: Pseudolaric acid B can dramatically suppress the AGS cell growth by inducing apoptosis after G2/M phase arrest. These findings are consistent with the possibility that G2/M phase arrest is mediated by the down-regulation of cdc2 levels. The data also suggest that pseudolaric acid B can trigger apoptosis by decreasing Bcl-2 levels and activating caspase-3 protease.

  13. Involvement of free radicals followed by the activation of phospholipase A2 in the mechanism that underlies the combined effects of methamphetamine and morphine on subacute toxicity or lethality in mice: comparison of the therapeutic potential of fullerene, mepacrine, and cooling.

    Science.gov (United States)

    Mori, Tomohisa; Ito, Shinobu; Namiki, Mizuho; Suzuki, Tadashi; Kobayashi, Shizuko; Matsubayashi, Kenji; Sawaguchi, Toshiko

    2007-07-17

    An increase in polydrug abuse is a major problem worldwide. The coadministration of methamphetamine and morphine increased subacute toxicity or lethality in rodents. However, the underlying mechanisms by which lethality is increased by the coadministration of methamphetamine and morphine are not yet fully understood. Coadministered methamphetamine and morphine induced lethality by more than 80% in BALB/c mice, accompanied by the rupture of cells in the kidney and liver, and an increase in poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine was significantly attenuated by pretreatment with mepacrine (phospholipase A(2) inhibitor) or fullerene (a radical scavenger), or by cooling from 30 to 90 min after drug administration. Furthermore, based on the results of the electron spin resonance spin-trapping technique, hydroxyl radicals were increased by the administration of methamphetamine and morphine, and these increased hydroxyl radicals were potently attenuated by fullerene and cooling. These results suggest that hydroxyl radicals plays an important role in the increased lethality induced by the coadministration of methamphetamine plus morphine. The potency of cooling or drugs for decreasing the subacute toxicity or lethality induced by the coadministration of methamphetamine and morphine was in the order fullerene=cooling>mepacrine. These results indicate that fullerene and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine.

  14. Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia Cell line-K562.

    Science.gov (United States)

    Sreekanth, Devalraju; Arunasree, M K; Roy, Karnati R; Chandramohan Reddy, T; Reddy, Gorla V; Reddanna, Pallu

    2007-11-01

    Betalains are water-soluble nitrogenous vacuolar pigments present in flowers and fruits of many caryophyllales with potent antioxidant properties. In the present study the antiproliferative effects of betanin, a principle betacyanin pigment, isolated from the fruits of Opuntia ficus-indica, was evaluated on human chronic myeloid leukemia cell line (K562). The results show dose and time dependent decrease in the proliferation of K562 cells treated with betanin with an IC(50) of 40 microM. Further studies involving scanning and transmission electron microscopy revealed the apoptotic characteristics such as chromatin condensation, cell shrinkage and membrane blebbing. Agarose electrophoresis of genomic DNA of cells treated with betanin showed fragmentation pattern typical for apoptotic cells. Flow cytometric analysis of cells treated with 40 microM betanin showed 28.4% of cells in sub G0/G1 phase. Betanin treatment to the cells also induced the release of cytochrome c into the cytosol, poly (ADP) ribose polymerase (PARP) cleavage, down regulation Bcl-2, and reduction in the membrane potentials. Confocal microscopic studies on the cells treated with betanin suggest the entry of betanin into the cells. These studies thus demonstrate that betanin induces apoptosis in K562 cells through the intrinsic pathway and is mediated by the release of cytochrome c from mitochondria into the cytosol, and PARP cleavage. The antiproliferative effects of betanin add further value to the nutritional characteristics of the fruits of O. ficus-indica.

  15. Efficacy of the polo-like kinase inhibitor rigosertib, alone or in combination with Abelson tyrosine kinase inhibitors, against break point cluster region-c-Abelson-positive leukemia cells.

    Science.gov (United States)

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Sakuta, Juri; Ohyashiki, Kazuma

    2015-08-21

    The potency of Abelson (ABL) tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML) has been demonstrated. However, ABL TKI resistance can develop. In this study, we investigated the efficacy of a combination therapy including rigosertib (ON 01910.Na), a polo-like kinase (PLK) and phosphoinositide 3-kinase (PI3K) inhibitor, and ABL TKIs. A 72-h rigosertib treatment was found to inhibit cell growth, induce apoptosis, reduce phosphorylation of the breakpoint cluster region-c (BCR)-ABL and its substrate Crk-L, and increase the activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). This combination therapy also exerted a synergistic inhibitory effect on Philadelphia chromosome (Ph)-positive cell proliferation and reduced the phosphorylation of BCR-ABL and Crk-L while increasing that of cleaved PARP and the H2A.X histone. Rigosertib also potently inhibited the growth of ABL TKI-resistant cells, and cotreatment with ABL TKIs and rigosertib induced higher cytotoxicity. These results indicate that rigosertib treatment may be a powerful strategy against ABL TKI-resistant cells and could enhance the cytotoxic effects of ABL TKIs.

  16. Editorial

    Directory of Open Access Journals (Sweden)

    Khong HT

    2011-04-01

    Full Text Available Hung T KhongUniversity of South Alabama, Mitchell Cancer institute, Mobile, AL, USAWith the completion of the human genome project and the explosion of knowledge derived from genomics, proteomics, metabolomics, and other-omics, there are a vast and ever increasing number of potential druggable targets and therapeutic candidates. Each of these targets can be considered a potential biomarker that serves as a risk assessment tool and/or a biological predictor of prognosis and treatment outcome. For example, the risk of developing breast cancer in a woman who has inherited a deleterious breast cancer antigen (BRCA1 mutation is five times that of a woman in the general population.1 When cells are damaged by chemotherapy, DNA damages are often repaired by the BRCA pathway. In cells that are deficient in BRCA functionality, an alternative pathway such as the base excision repair pathway is utilized. This pathway is dependent on poly (ADP-ribose polymerase (PARP being fully functional.2 Therefore, BRCA1-deficient cancer cells are exquisitely sensitive to the combination of PARP inhibitor and chemotherapy.3,4 In this case, BRCA1 serves as a biomarker for both risk of developing breast cancer and favorable outcome to certain treatments.

  17. Increased frequency of DNA deletions in pink-eyed unstable mice carrying a mutation in the Werner syndrome gene homologue.

    Science.gov (United States)

    Lebel, Michel

    2002-01-01

    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.

  18. The proteins (12 and 15 kDa) isolated from heat-killed Lactobacillus plantarum L67 induces apoptosis in HT-29 cells.

    Science.gov (United States)

    Song, S; Oh, S; Lim, K T

    2015-03-01

    A number of scientific studies have revealed that Lactobacillus strains have beneficial bioactivities in the gastrointestinal tract. In this study, the production of intracellular reactive oxygen species (ROS) and the amounts of intracellular calcium, protein kinase C activity, cytochrome c, Bid, Bcl-2, Bax and the apoptosis-mediated proteins [caspase-8, caspase-3 and poly ADP ribose polymerase (PARP)] were evaluated to understand the induction of programmed cell death in HT-29 cells by Lactobacillus plantarum L67. The results obtained from this study indicated that the relative intensities of the apoptotic-related factors (intracellular ROS and intracellular calcium) and of apoptotic signals (Bax and t-Bid) increased with increasing concentrations of the membrane proteins isolated from heat-killed L. plantarum L67, whereas the relative intensities of cytochrome c, Bcl-2, caspase-8, caspase-3 and PARP decreased. This study determines whether proteins (12 and 15 kDa) isolated from heat-killed L. plantarum L67 induce programmed cell death in HT-29 cells. Proteins isolated from L. plantarum L67 can stimulate the apoptotic signals and then consequently induce programmed cell death in HT-29 cells. The results in this study suggest that the proteins isolated from L. plantarum L67 could be used as an antitumoural agent in probiotics and as a component of supplements or health foods.

  19. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy

    Institute of Scientific and Technical Information of China (English)

    José Manuel Rodríguez-Vargas; Abelardo López Rivas; Marja J(a)(a)ttela; F Javier Oliver; María José Ruiz-Maga(n)a; Carmen Ruiz-Ruiz; Jara Majuelos-Melguizo; Andreína Peralta-Leal; María Isabel Rodríguez; José Antonio Mu(n)oz-Gámez; Mariano Ruiz de Almodóvar; Eva Siles

    2012-01-01

    In response to nutrient stress,cells start an autophagy program that can lead to adaptation or death.The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood.In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy.We have found that DNA damage is an early event of starvation-induced autophagy as measured by γ-H2AX accumulation and comet assay,with PARP-1 knockout cells displaying a reduction in both parameters.During starvation,ROS-induced DNA damage activates PARP-1,leading to ATP depletion (an early event after nutrient deprivation).The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity,leading to a delay in autophagy.PARP-1 depletion favors apoptosis in starved cells,suggesting a pro-survival role of autophagy and PARP-1 activation after nutrient deprivation.In vivo results show that neonates of PARP-1 mutant mice subjected to acute starvation,also display deficient liver autophagy,implying a physiological role for PARP-1 in starvation-induced autophagy.Thus,the PARP signaling pathway is a key regulator of the initial steps of autophagy commitment following starvation.

  20. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  1. Glycyrrhetinic acid and its derivatives as inhibitors of poly(ADP-ribosepolymerases 1 and 2, apurinic/apyrimidinic endonuclease 1 and DNA polymerase β

    Directory of Open Access Journals (Sweden)

    Salakhutdinov N. F.

    2012-06-01

    Full Text Available Aim. For strengthening the efficiency of monofunctional alkylating antineoplastic drugs it is important to lower the capacity of base excision repair (BER system which corrects the majority of DNA damages caused by these reagents. The objective was to create inhibitors of the key BER enzymes (PARP1, PARP2, DNA polymerase β, and APE1 by the directed modification of glycyrrhetinic acid (GA. Methods. Amides of GA were produced from the GA acetate by formation of the corresponding acyl chloride, amidation with the appropriate amine and subsequent deacylation. Small library of 2-cyano substituted derivatives of GA methyl esters was obtained by the structural modification of GA framework and carboxylic acid group. The inhibitory capacity of the compounds was estimated by comparison of the enzyme activities in specific tests in the presence of compounds versus their absence. Results. None of tested compounds inhibits PARP1 significantly. Unmodified GA and its morpholinic derivative were shown to be weak inhibitors of PARP2. The derivatives of GA containing keto-group in 11 triterpene framework were shown to be moderate inhibitors of pol β. Compound 3, containing 12-oxo-9(11-en moiety in the ring C, was shown to be a single inhibitor of APE1 among all compounds studied. Conclusions. The class of GA derivatives, selective pol β inhibitors, was found out. The selective inhibitor of APE1 and weak selective inhibitor of PARP2 were also revealed.

  2. AcEST: BP921490 [AcEST

    Lifescience Database Archive (English)

    Full Text Available TXQ1|PME5_CAEEL Poly(ADP-ribose) polymerase pme-5 OS=Caenor... 32 1.6 sp|Q0IHV1|INF2_XENTR Inverted formin-2...TLLSNLL 644 Query: 192 QQRDE 206 DE Sbjct: 645 SYADE 649 >sp|Q0IHV1|INF2_XENTR Inverted

  3. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  4. The synthetic inhibitor of Fibroblast Growth Factor Receptor PD166866 controls negatively the growth of tumor cells in culture

    Directory of Open Access Journals (Sweden)

    Castelli Mauro

    2009-12-01

    Full Text Available Abstract Background Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1 act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1. Methods Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture. Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by in situ fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay. Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA deriving from the decomposition of poly-unsaturated fatty acids. The expression of Poly-ADP-Ribose-Polymerase (PARP, consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme. Results The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell

  5. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Emad A. [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Boer, Peter de [Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen (Netherlands); Philippens, Marielle E.P.; Kal, Henk B. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Rooij, Dirk G. de, E-mail: d.g.derooij@uu.nl [Department of Endocrinology and Metabolism, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam (Netherlands)

    2010-01-05

    The repair of DNA double strand breaks (DSBs) in male germ cells is slower and differently regulated compared to that in somatic cells. Round spermatids show DSB repair and are radioresistant to apoptosis induction. Mutation induction studies using ionizing irradiation, indicated a high frequency of chromosome aberrations (CA) in the next generation. Since they are in a G1 comparable stage of the cell cycle, haploid spermatids are expected to repair DSBs by the non-homologous end-joining pathway (NHEJ). However, immunohistochemical evidence indicates that not all components of the classical NHEJ pathway are available since the presence of DNA-PKcs cannot be shown. Here, we demonstrate that round spermatids, as well as most other types of male germ cells express both Parp1 and XRCC1. Therefore, we have determined whether the alternative Parp1/XRCC1 dependent NHEJ pathway is active in these nuclei and also have tested for classical NHEJ activity by a genetic method. To evaluate DSB repair in SCID mice, deficient for DNA-PKcs, and to study the involvement of the Parp1/XRCC1 dependent NHEJ pathway in round spermatids, the loss of {gamma}-H2AX foci after irradiation has been determined in nucleus spreads of round spermatids of SCID mice and in nucleus spreads and histological sections of Parp1-inhibited mice and their respective controls. Results show that around half of the breaks in randomly selected round spermatids are repaired between 1 and 8 h after irradiation. The repair of 16% of the induced DSBs requires DNA-PKcs and 21% Parp1. Foci numbers in the Parp1-inhibited testes tend to be higher in spermatids of all epithelial stages reaching significance in stages I-III which indicates an active Parp1/XRCC1 pathway in round spermatids and a decreased repair capacity in later round spermatid stages. In Parp1-inhibited SCID mice only 14.5% of the breaks were repaired 8 h after irradiation indicating additivity of the two NHEJ pathways in round spermatids.

  6. The Prognostic Value of BRCA1 and PARP Expression in Epithelial Ovarian Carcinoma

    DEFF Research Database (Denmark)

    Hjortkjær, Mette; Waldstrøm, Marianne; Jakobsen, Anders

    2017-01-01

    BRCA1/2 mutation status in epithelial ovarian cancer (EOC) presently relies on genetic testing which is resource consuming. Immunohistochemistry is cheap, fairly reproducible, and may identify gene product alterations due to both germline and somatic mutations and other defects along the BRCA gene...... tissue from 170 patients with EOC was stained immunohistochemically with BRCA1 and PARP antibodies. Semiquantitative analyses were performed to determine loss of, equivocal, and retained BRCA1 and high versus low PARP protein expression. These parameters were analyzed for relation with patient...

  7. The role of hnRPUL1 involved in DNA damage response is related to PARP1.

    Directory of Open Access Journals (Sweden)

    Zehui Hong

    Full Text Available Heterogeneous nuclear ribonucleoprotein U-like 1 (hnRPUL1 -also known as adenovirus early region 1B-associated proteins 5 (E1B-AP5 - plays a role in RNA metabolism. Recently, hnRPUL1 has also been shown to be involved in DNA damage response, but the function of hnRPUL1 in response to DNA damage remains unclear. Here, we have demonstrated that hnRPUL1 is associated with PARP1 and recruited to DNA double-strand breaks (DSBs sites in a PARP1-mediated poly (ADP-ribosyl ation dependent manner. In turn, hnRPUL1 knockdown enhances the recruitment of PARP1 to DSBs sites. Specifically, we showed that hnRPUL1 is also implicated in the transcriptional regulation of PARP1 gene. Thus, we propose hnRPUL1 as a new component related to PARP1 in DNA damage response and repair.

  8. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  9. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone.

    Science.gov (United States)

    Liu, Linhua; Ling, Xiaoxuan; Tang, Huanwen; Chen, Jialong; Wen, Qiaosheng; Zou, Fei

    2015-08-05

    Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.

  10. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  11. PARP1 orchestrates variant histone exchange in signal-mediated transcriptional activation.

    Science.gov (United States)

    O'Donnell, Amanda; Yang, Shen-Hsi; Sharrocks, Andrew D

    2013-12-01

    Transcriptional activation is accompanied by multiple molecular events that remodel the local chromatin environment in promoter regions. These molecular events are often orchestrated in response to the activation of signalling pathways, as exemplified by the response of immediate early genes such as FOS to ERK MAP kinase signalling. Here, we demonstrate that inducible NFI recruitment permits PARP1 binding to the FOS promoter by a mutually reinforcing loop. PARP1 and its poly(ADP-ribosyl)ation activity are required for maintaining FOS activation kinetics. We also show that the histone variant H2A.Z associates with the FOS promoter and acts in a transcription-suppressive manner. However, in response to ERK pathway signalling, H2A.Z is replaced by H2A; PARP1 activity is required to promote this exchange. Thus, our work has revealed an additional facet of PARP1 function in promoting dynamic remodelling of promoter-associated nucleosomes to allow transcriptional activation in response to cellular signalling.

  12. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors.

    Science.gov (United States)

    Passeri, Daniela; Camaioni, Emidio; Liscio, Paride; Sabbatini, Paola; Ferri, Martina; Carotti, Andrea; Giacchè, Nicola; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2016-06-20

    Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.

  13. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment

    DEFF Research Database (Denmark)

    Oplustilova, L.; Wolanin, K.; Bartkova, J.

    2012-01-01

    resistance efux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53Bp1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53Bp1 in BRCA-defective and triple-negative breast carcinomas...

  14. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation

    Science.gov (United States)

    Shawl, Asif Iqbal; Im, Soo-Yeul; Nam, Tae-Sik; Lee, Sun-Hwa; Ko, Jae-Ki; Jang, Kyu Yoon; Kim, Donghee; Kim, Uh-Hyun

    2016-01-01

    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively. PMID:26959359

  15. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

    Science.gov (United States)

    Mangerich, Aswin; Debiak, Malgorzata; Birtel, Matthias; Ponath, Viviane; Balszuweit, Frank; Lex, Kirsten; Martello, Rita; Burckhardt-Boer, Waltraud; Strobelt, Romano; Siegert, Markus; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Bürkle, Alexander

    2016-02-26

    Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of

  16. Mitigation of gamma-radiation induced abasic sites in genomic DNA by dietary nicotinamide supplementation: Metabolic up-regulation of NAD{sup +} biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Vipen, E-mail: batravipen@gmail.com; Kislay, Binita

    2013-09-15

    Highlights: • Dietary nicotinamide increases enzyme dependent NAD{sup +} synthesis after irradiation. • Enhanced NAD{sup +} levels mitigate gamma (γ)-radiation induced abasic sites in DNA. • Dietary nicotinamide induces and prolongs expression of excision repair enzymes. • Nicotinamide reduces radiation-generated biomarker (8-oxo-dG) of DNA base damage. • Dietary nicotinamide reduces radiation inflicted DNA damage and delays apoptosis. - Abstract: The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. The objective of the present study was to investigate dietary nicotinamide enrichment dependent adaptive response to potential cytotoxic effect of {sup 60}Co γ-radiation. To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on control diet (CD) and nicotinamide supplemented diet (NSD). After 6 weeks of CD and NSD dietary regimen, we exposed the animals to γ-radiation (2, 4 and 6 Gy) and investigated the profile of downstream metabolites and activities of enzymes involved in NAD{sup +} biosynthesis. Increased activities of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNAT) were observed up to 48 h post-irradiation in NSD fed irradiated mice. Concomitant with increase in liver NAMPT and NMNAT activities, NAD{sup +} levels were replenished in NSD fed and irradiated animals. However, NAMPT and NMNAT-mediated NAD{sup +} biosynthesis and ATP levels were severely compromised in liver of CD fed irradiated mice. Another major finding of these studies revealed that under γ-radiation stress, dietary nicotinamide supplementation might induce higher and long-lasting poly(ADP)-ribose polymerase 1 (PARP1) and poly(ADP-ribose) glycohydrolase (PARG) activities in NSD fed animals compared to CD fed animals. To investigate liver DNA damage, number of apurinic/apyrimidinic sites (AP sites) and level of

  17. Role of poly(ADP-ribosepolymerase 2 in DNA repair

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Poly(ADP-ribosylation is a posttranslational protein modification significant for the genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosylation is catalyzed by poly(ADP-ribosepolymerases (PARPs, which use NAD+ as a substrate, synthesize polymer of (ADP-ribose (PAR covalently attached to nuclear proteins including PARP themselves. PARPs constitute a large family of proteins, in which PARP1 is the most abundant and best-characterized member. In spite of growing body of PARPs’ role in cellular processes, PARP2, the closest homolog of PARP1, still remains poorly characterized at the level of its contribution to different pathways of DNA repair. An overview summarizes in vivo and in vitro data on PARP2 implication in specialized DNA repair processes, base excision repair and double strand break repair.

  18. Effects of PARP-1 deficiency on airway inflammatory cell recruitment in response to LPS or TNF: differential effects on CXCR2 ligands and Duffy Antigen Receptor for Chemokines.

    Science.gov (United States)

    Zerfaoui, Mourad; Naura, Amarjit S; Errami, Youssef; Hans, Chetan P; Rezk, Bashir M; Park, Jiwon; Elsegeiny, Waleed; Kim, Hogyoung; Lord, Kevin; Kim, Jong G; Boulares, A Hamid

    2009-12-01

    We reported that PARP-1 exhibits differential roles in expression of inflammatory factors. Here, we show that PARP-1 deletion was associated with a significant reduction in inflammatory cell recruitment to mouse airways upon intratracheal administration of LPS. However, PARP-1 deletion exerted little effect in response to TNF exposure. LPS induced massive neutrophilia and moderate recruitment of macrophages, and TNF induced recruitment of primarily macrophages with smaller numbers of neutrophils in the lungs. Following either exposure, macrophage recruitment was blocked severely in PARP-1(-/-) mice, and this was associated with a marked reduction in MCP-1 and MIP-1alpha. This association was corroborated partly by macrophage recruitment in response to intratracheal administration of MCP-1 in PARP-1(-/-) mice. Surprisingly, although neutrophil recruitment was reduced significantly in LPS-treated PARP-1(-/-) mice, neutrophil numbers increased in TNF-treated mice, suggesting that PARP-1 deletion may promote a macrophagic-to-neutrophilic shift in the inflammatory response upon TNF exposure. Neutrophil-specific chemokines mKC and MIP-2 were reduced significantly in lungs of LPS-treated but only partially reduced in TNF-treated PARP-1(-/-) mice. Furthermore, the MIP-2 antagonist abrogated the shift to a neutrophilic response in TNF-exposed PARP-1(-/-) mice. Although CXCR2 expression increased in response to either stimulus in PARP-1(+/+) mice, the DARC increased only in lungs of TNF-treated PARP-1(+/+) mice; both receptors were reduced to basal levels in treated PARP-1(-/-) mice. Our results show that the balance of pro-neutrophilic or pro-macrophagic stimulatory factors and the differential influence of PARP-1 on these factors are critical determinants for the nature of the airway inflammatory response.

  19. Isoorientin induces apoptosis and autophagy simultaneously by reactive oxygen species (ROS)-related p53, PI3K/Akt, JNK, and p38 signaling pathways in HepG2 cancer cells.

    Science.gov (United States)

    Yuan, Li; Wei, Shuping; Wang, Jing; Liu, Xuebo

    2014-06-11

    Cell death is closely related to autophagy under some circumstances; however, the effect of isoorientin (ISO) on autophagy and the interplay between apoptosis and autophagy in human hepatoblastoma cancer (HepG2) cells remains poorly understood. The present study showed that ISO induced autophagy, which was correlated with the formation of autophagic vacuoles and the overexpression of Beclin-1 and LC3-II. The autophagy inhibitor 3-methyladenine (3-MA) markedly inhibited apoptosis, and the apoptosis inhibitor ZVAD-fmk also decreased ISO-induced autophagy. In addition, the PI3K/Akt inhibitor LY294002 enhanced Beclin-1, LC3-II, and poly(ADP-ribose) polymerase (PARP) cleavage levels. Also, the reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine (NAC), the JNK inhibitor SP600125, and the p38 inhibitor SB203580 efficiently downregulated the levels of these proteins. Moreover, the p53 inhibitor pifithrin-α and the nuclear factor (NF)-κB inhibitor pyrrolidinedithiocarbamic acid (PDTC) clearly suppressed Beclin-1 and LC3-II and increased cytochrome c release, caspase-3 activation, and PARP cleavage. These results demonstrated for the first time that ISO simultaneously induced apoptosis and autophagy by ROS-related p53, PI3K/Akt, JNK, and p38 signaling pathways. Furthermore, ISO-induced apoptosis by activating the Fas receptor-mediated apoptotic pathway and suppressing the p53 and PI3K/Akt-dependent NF-κB signaling pathway, with the subsequent increase in the release of cytochrome c, caspase-3 activation, and PARP cleavage.

  20. Theobromine increases NAD⁺/Sirt-1 activity and protects the kidney under diabetic conditions.

    Science.gov (United States)

    Papadimitriou, Alexandros; Silva, Kamila C; Peixoto, Elisa B M I; Borges, Cynthia M; Lopes de Faria, Jacqueline M; Lopes de Faria, José B

    2015-02-01

    Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.

  1. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Yin, Shankai; Zheng, Hongliang; Min, Daliu

    2016-12-01

    Xanthohumol is a flavonoid compound that exhibits antioxidant and anticancer effects, and is used to treat atherosclerosis. The aim of the present study was to investigate the effect of xanthohumol on the cell proliferation of laryngeal squamous cell carcinoma and to understand the mechanism of its action. The effects of xanthohumol on the cell viability and apoptosis rate of laryngeal squamous cell carcinoma SCC4 cells were assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. In addition, the expression levels of pro-apoptotic proteins, caspase-3, caspase-8, caspase-9, poly ADP ribose polymerase (PARP) p53 and apoptosis-inducing factor (AIF), as well as anti-apoptotic markers, B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1), were analyzed by western blotting. The results revealed that treatment with 40 µM xanthohumol significantly inhibited the proliferation of SCC4 cells. Furthermore, xanthohumol treatment (40 µM) induced SCC4 cell apoptosis, as indicated by the significant increase in activity and expression of caspase-3, caspase-8, caspase-9, PARP, p53 and AIF. By contrast, the protein expression of Bcl-2 and Mcl-1 was significantly decreased following treatment with 40 µM xanthohumol. Taken together, the results of the present study indicated that xanthohumol mediates growth suppression and apoptosis induction, which was mediated via the suppression of Bcl-2 and Mcl-1 and activation of PARP, p53 and AIF signaling pathways. Therefore, future studies that investigate xanthohumol as a potential therapeutic agent for laryngeal squamous cell carcinoma are required.

  2. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  3. Effect of ginsenoside Rh-2 via activation of caspase-3 and Bcl-2-insensitive pathway in ovarian cancer cells.

    Science.gov (United States)

    Kim, Jin Hee; Choi, Jae-Sun

    2016-12-13

    Ginsenoside has been reported to have therapeutic effects for some types of cancer, but its effect on ovarian cancer cells has not been evaluated. In this study, we monitored the effects of ginsenoside-Rh2 (Rh2) on the inhibition of cell proliferation and the apoptotic process in the ovarian cancer cell line SKOV3 using an MTT assay and TUNEL assay. We found that Rh2 inhibited cell proliferation and significantly induced apoptosis. We confirmed the apoptotic effects of Rh2 using western blot analysis of apoptosis-related proteins. Specifically, the levels of cleaved poly ADP ribose polymerase (PARP) and cleaved caspase-3 significantly increased in SKOV3 cells treated with Rh2. Therefore, Rh2 clearly suppressed the growth of SKOV3 cells in vitro, which was associated with induction of the apoptosis pathway. Moreover, the migration assay showed that Rh2 inhibited the invasive ability of SKOV3 cells. Taken together, our results suggest that Rh2 has anticancer effects in SKOV3 cells through inhibition of cell proliferation and induction of apoptosis. Considering the therapeutic potential of Rh2, more studies should be carried out to facilitate the future application of this natural product as a potential anti-cancer agent.

  4. Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun Jeong Lim; Jong Chul Rhee; Young Mee Bae; Wan Joo Chun

    2007-01-01

    AIM: To investigate the combined chemotherapeutic effects of celecoxib when used with 5-FU in vitro.METHODS: Two human colon cancer cell lines (HCT-15and HT-29) were treated with 5-FU and celecoxib, alone and in combination. The effects of each drug were evaluated using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry,and western blotting.RESULTS: 5-FU and celecoxib showed a dosedependent cytotoxic effect. When treated with 10-3mol/L 5-FU (IC50) and celecoxib with its concentration ranging from 10-8 mol/L to 10-4 mol/L of celecoxib,cells showed reduced cytotoxic effect than 5-FU(10-3 mol/L) alone. Flow cytometry showed that celecoxib attenuated 5-FU induced accumulation of cells at subG1 phase. Western blot analyses for caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage showed that celecoxib attenuated 5-FU induced apoptosis. Western blot analyses for cell cycle molecules showed that G2/M arrest might be possible cause of 5-FU induced apoptosis and celecoxib attenuated 5-FU induced apoptosis via blocking of cell cycle progression to the G2/M phase,causing an accumulation of cells at the G1/S phase.CONCLUSION: We found that celecoxib attenuated cytotoxic effect of 5-FU. Celecoxib might act via inhibition of cell cycle progression, thus preventing apoptosis induced by 5-FU.

  5. Generation of Multicellular Breast Cancer Tumor Spheroids: Comparison of Different Protocols.

    Science.gov (United States)

    Froehlich, Karolin; Haeger, Jan-Dirk; Heger, Julia; Pastuschek, Jana; Photini, Stella Mary; Yan, Yan; Lupp, Amelie; Pfarrer, Christiane; Mrowka, Ralf; Schleußner, Ekkehard; Markert, Udo R; Schmidt, André

    2016-12-01

    Multicellular tumor spheroids are widely used models in tumor research. Because of their three dimensional organization they can simulate avascular tumor areas comprising proliferative and necrotic cells. Nonetheless, protocols for spheroid generation are still inconsistent. Therefore, in this study the breast cancer cell lines MCF-7, MDA-MB-231 and SK-BR-3 have been used to compare different spheroid generation models including hanging drop, liquid overlay and suspension culture techniques, each under several conditions. Experimental approaches differed in cell numbers (400-10,000), media and additives (25 % methocel, 25 % methocel plus 1 % Matrigel, 3.5 % Matrigel). In total, 42 different experimental setups have been tested. Generation of spheroids was evaluated by light microscopy and the structural composition was assessed immunohistochemically by means of Ki-67, cleaved poly (ADP-ribose) polymerase (cPARP) and mucin-1 (MUC-1) expression. Although the tested cell lines diverged widely in their capacity of forming spheroids we recommend hanging drops supplemented with 25 % methocel as the most reliable and efficient method with regard to success of generation of uniform spheroids, costs, experimental complexity and time expenditure in the different cell lines. MCF-7 cells formed spheroids under almost all analyzed conditions, and MDA-MB-231 cells under only one protocol (liquid overlay technique, 3.5 % Matrigel), while SK-BR-3 did not under neither condition. Therefore, we outline specific methods and recommend the use of adapted and standardized spheroid generation protocols for each cell line.

  6. Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis

    Directory of Open Access Journals (Sweden)

    Sandeep Mittal

    2014-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs have promising industrial and biomedical applications. In spite of their applications, the toxicity of these NPs in biological/physiological environment is a major concern. Present study aimed to understand the molecular mechanism underlying the toxicity of CeO2 NPs on lung adenocarcinoma (A549 cells. After internalization, CeO2 NPs caused significant cytotoxicity and morphological changes in A549 cells. Further, the cell death was found to be apoptotic as shown by loss in mitochondrial membrane potential and increase in annexin-V positive cells and confirmed by immunoblot analysis of BAX, BCl-2, Cyt C, AIF, caspase-3, and caspase-9. A significant increase in oxidative DNA damage was found which was confirmed by phosphorylation of p53 gene and presence of cleaved poly ADP ribose polymerase (PARP. This damage could be attributed to increased production of reactive oxygen species (ROS with concomitant decrease in antioxidant “glutathione (GSH” level. DNA damage and cell death were attenuated by the application of ROS and apoptosis inhibitors N-acetyl-L- cysteine (NAC and Z-DEVD-fmk, respectively. Our study concludes that ROS mediated DNA damage and cell cycle arrest play a major role in CeO2 NPs induced apoptotic cell death in A549 cells. Apart from beneficial applications, these NPs also impart potential harmful effects which should be properly evaluated prior to their use.

  7. Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE

    Science.gov (United States)

    Ferrando, Tiziana; Poggi, Alessandro; Garuti, Anna; D'Urso, Agustina; Selmo, Martina; Benvenuto, Federica; Cea, Michele; Zoppoli, Gabriele; Moran, Eva; Soncini, Debora; Ballestrero, Alberto; Sordat, Bernard; Patrone, Franco; Mostoslavsky, Raul; Uccelli, Antonio; Nencioni, Alessio

    2009-01-01

    Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders. PMID:19936064

  8. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE.

    Directory of Open Access Journals (Sweden)

    Santina Bruzzone

    Full Text Available Nicotinamide phosphoribosyltransferase (Nampt inhibitors such as FK866 are potent inhibitors of NAD(+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD(+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-gamma and TNF-alpha production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD(+-degrading enzyme poly-(ADP-ribose-polymerase (PARP by activated T cells enhances their susceptibility to NAD(+ depletion. In addition, we relate defective IFN-gamma and TNF-alpha production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.

  9. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  10. Niacin requirements for genomic stability.

    Science.gov (United States)

    Kirkland, James B

    2012-05-01

    Through its involvement in over 400 NAD(P)-dependent reactions, niacin status has the potential to influence every area of metabolism. Niacin deficiency has been linked to genomic instability largely through impaired function of the poly ADP-ribose polymerase (PARP) family of enzymes. In various models, niacin deficiency has been found to cause impaired cell cycle arrest and apoptosis, delayed DNA excision repair, accumulation of single and double strand breaks, chromosomal breakage, telomere erosion and cancer development. Rat models suggest that most aspects of genomic instability are minimized by the recommended levels of niacin found in AIN-93 formulations; however, some beneficial responses do occur in the range from adequate up to pharmacological niacin intakes. Mouse models show a wide range of protection against UV-induced skin cancer well into pharmacological levels of niacin intake. It is currently a challenge to compare animal and human data to estimate the role of niacin status in the risk of genomic instability in human populations. It seems fairly certain that some portion of even affluent populations will benefit from niacin supplementation, and some subpopulations are likely well below an optimal intake of this vitamin. With exposure to stressors, like chemotherapy or excess sunlight, suraphysiological doses of niacin may be beneficial.

  11. Rational Design of Ruthenium Complexes Containing 2,6-Bis(benzimidazolyl)pyridine Derivatives with Radiosensitization Activity by Enhancing p53 Activation.

    Science.gov (United States)

    Deng, Zhiqin; Yu, Lianling; Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-06-01

    The rational design of metal-based complexes is an effective strategy for the discovery of potent sensitizers for use in cancer radiotherapy. In this study, we synthesized three ruthenium complexes containing bis-benzimidazole derivatives: Ru(bbp)Cl3 (1), [Ru(bbp)2 ]Cl2 (2 a) (in which bbp=2,6-bis(benzimidazol-1-yl)pyridine), and [Ru(bbp)2]Cl2 (2 b) (where bbp=2,6-bis-(6-nitrobenzimidazol-2-yl)pyridine). We evaluated their radiosensitization capacities in vitro and mechanisms of action. Complex 2 b was found to be particularly effective in sensitizing human melanoma A375 cells toward radiation, with a sensitivity enhancement ratio of 2.4. Along with this potency, complex 2 b exhibited a high degree of selectivity between human cancer and normal cells. Mechanistic studies revealed that 2 b promotes radiation-induced accumulation of intracellular reactive oxygen species (ROS) by reacting with cellular glutathione (GSH) and then causing DNA stand breaks. The subsequent DNA damage induces phosphorylation of p53 (p-p53) and upregulates the expression levels of p21, which inhibits the expression of cyclin-B, leading to G2M arrest. Moreover, p-p53 activates caspases-3 and -8, triggers cleavage of poly(ADP-ribose) polymerase (PARP), finally resulting in apoptosis. Taken together, the results of this study provide a strategy for the design of ruthenium-based radiosensitizers for use in cancer therapy.

  12. Gadolinium induced apoptosis of human embryo liver L02 cell line by ROS-mediated AIF pathway

    Institute of Scientific and Technical Information of China (English)

    YE Lihua; SHI Zhe; LIU Huixue; YANG Xiaoda; WANG Kui

    2011-01-01

    Gd3+ complexes have a variety of medical applications. In order to shed light on the mechanism of hepatotoxicity of Gd3+ compounds, we investigated the effects of GdCl3 on human embryo liver cell strand (L02 cells). The experimental results showed that long-time exposure to GdC13 resulted in L02 cell apoptosis. The incubation of L02 cells with GdCl3 first induced increase in cellular reactive oxygen species (ROS) and decrease in mitochondrial inner membrane potential (△Ψm). It later resulted in the activation of poly (ADP-ribose) polymerase (PARP) and the release of mitochondrial apoptosis-inducing factor (AIF). The activation of caspase 3, however, was not observed.Antioxidants could significantly reduce GdCl3-induced decrease of △Ψm, release of AIF, and cell apoptosis. Although GdCl3 caused a significant increase in cell membrane permeability in L02, the change of cell membrane permeability was unlikely to be involved in GdCl3-induced cell apoptosis. Overall, our experimental results suggested that GdCl3 induced apoptosis of human embryo liver L02 cell line by ROS-mediated AIF pathway.

  13. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth

    Science.gov (United States)

    Chen, Lixia; Xia, Guiyang; Qiu, Feng; Wu, Chunli; Denmon, Andria P.; Zi, Xiaolin

    2016-01-01

    We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as “hairy groundcherry” in English and “Deng-Long-Cao” in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation. PMID:27581364

  14. Quercetin-Induced Cell Death in Human Papillary Thyroid Cancer (B-CPAP Cells

    Directory of Open Access Journals (Sweden)

    Ergül Mutlu Altundağ

    2016-01-01

    Full Text Available In this study, we have investigated the antiproliferative effect of quercetin on human papillary thyroid cancer cells and determined the apoptotic mechanisms underlying its actions. We have used different concentrations of quercetin to induce apoptosis and measured cell viability. Apoptosis and cell cycle analysis was determined by flow cytometry using Annexin V and propidium iodide. Finally, we have measured changes in caspase-3 and cleaved poly(ADP-ribose polymerase (PARP protein expression levels as hallmarks of apoptosis and Hsp90 protein expression level as a marker of proteasome activity in treated and control cells. Quercetin treatment of human papillary thyroid cancer cells resulted in decreased cell proliferation and increased rate of apoptosis by caspase activation. Furthermore, it was demonstrated that quercetin induces cancer cell apoptosis by downregulating the levels of Hsp90. In conclusion, we have shown that quercetin induces downregulation of Hsp90 expression that may be involved in the decrease of chymotrypsin-like proteasome activity which, in order, induces inhibition of growth and causes cell death in thyroid cancer cells. Thus, quercetin appears to be a promising candidate drug for Hsp90 downregulation and apoptosis of thyroid cancer cells.

  15. Pharmacogenomic analysis indicates potential of 1,5-isoquinolinediol as a universal anti-aging agent for different tissues.

    Science.gov (United States)

    Park, Mi Sung; Choi, Joon-Seok; Lee, Wan; Yang, Yoon Jung; Kim, Juhee; Lee, Gun-Joo; Kim, Sang Soo; Park, Seong Hoon; Kim, Sung Chul; Choi, Jin Woo

    2015-07-10

    The natural aging of multicellular organisms is marked by a progressive decline in the function of cells and tissues. The accumulation of senescent cells in tissues seems to eventually cause aging of the host. Nevertheless, gene expression that influences aging is unlikely to be conserved between tissues, and age-related loss of function seems to depend on a variety of mechanisms. This is a concern when developing anti-aging drugs in geriatric clinical pharmacology. We have sought a universal agent to redundantly cover gene expression despite the variation in differentially expressed genes between tissues. Using a minimally modified connectivity map, the poly (ADP-ribose) polymerase (PARP) inhibitor 1,5-isoquinolinediol was selected as a potent candidate, simultaneously applicable to various tissues. This choice was validated in vitro. Treatment of murine embryonic fibroblasts with 1,5-isoquinolinediol appeared to efficiently suppress the rate of replicative senescence at a concentration of 0.1 µM without resulting in cell death. The appearance of abnormal nuclei and accumulation of β-galactosidase in the cytoplasm were inhibited by daily treatment with the agent. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect was even more noticeable. Thus, 1,5-isoquinolinediol may potentially be developed as an agent to prolong life.

  16. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Shunfei Yan

    2017-01-01

    Full Text Available Overall survival for patients with ovarian cancer (OC has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC. HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose polymerase (PARP inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.

  17. Apoptotic induction in B-cell acute lymphoblastic leukemia cell lines treated with a protein kinase Cβ inhibitor.

    Science.gov (United States)

    Saba, Nakhle S; Levy, Laura S

    2011-05-01

    B-cell acute lymphoblastic leukemia (B-ALL) in adults exhibits a 5-year disease-free survival rate of only 25-40% after currently available treatment. Protein kinase Cβ (PKCβ) is under active consideration as a rational therapeutic target in several B-cell malignancies, but studies of its possible utility in B-ALL are lacking. Expression of PKCβ1 and PKCβ2 isoforms was demonstrated in five B-ALL cell lines characterized by distinctive chromosomal translocations, and sensitivity to PKCβ-selective inhibition was examined. Inhibitor treatment resulted in a dose-dependent reduction in viability in all cell lines, although pro-B ALL with t(4;11)(q21;q23) was most sensitive. Apoptotic induction was evident after 24-48 h of treatment, and an inhibition of cell cycle progression was detected in one cell line. Treatment resulted in a rapid induction of poly(ADP-ribose) polymerase (PARP) cleavage, indicating caspase-3-mediated apoptosis, and a rapid reduction in phosphorylation of AKT and its downstream target glycogen synthase kinase 3β (GSK3β). These results indicate that PKCβ targeting should be considered as a potential treatment option in B-ALL.

  18. Induction of G1 arrest and apoptosis by schisandrin C isolated from Schizandra chinensis Baill in human leukemia U937 cells.

    Science.gov (United States)

    Park, Cheol; Choi, Young-Whan; Hyun, Sook Kyung; Kwon, Hyun Ju; Hwang, Hye Jin; Kim, Gi-Young; Choi, Byung Tae; Kim, Byung-Woo; Choi, Il-Whan; Moon, Sung-Kwon; Kim, Wun-Jae; Choi, Yung Hyun

    2009-10-01

    We isolated two phytochemical lignans, schisandrin and schisandrin C, from Schizandra chinensis Baill and investigated their anti-cancer effects in human leukemia U937 cells. Schisandrin C inhibited cell growth in a dose-dependent manner, which was associated with the induction of G1 arrest of the cell cycle and apoptosis; schisandrin did not inhibit growth. Schisandrin C induced G1 arrest was correlated with down-regulation of cyclin D1, cyclin E, cyclin-dependent kinase (Cdk) 4 and E2Fs expression, inhibition of phosphorylation of retinoblastoma protein (pRB), and up-regulation of the Cdk inhibitor p21(WAF1/CIP1). In addition, schisandrin C-induced apoptosis was associated with down-regulation of expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, proteolytic activation of caspase-3 and -9, and a concomitant degradation of poly(ADP-ribose) polymerase (PARP). Furthermore, schisandrin C-induced apoptosis was significantly inhibited by a caspase-3 specific inhibitor z-DEVD-fmk, indicating an important role for caspase-3 in the schisandrin C mechanism. In summary, growth inhibition by schisandrin C is related to cell cycle arrest at G1 and induction of caspase-3-dependent apoptosis in U937 cells; these findings suggest that schisandrin C may be a useful chemotherapeutic agent.

  19. Growth inhibition and apoptosis induced by lupeol, a dietary triterpene, in human hepatocellular carcinoma cells.

    Science.gov (United States)

    He, Yan; Liu, Fen; Zhang, Lurong; Wu, Yan; Hu, Bo; Zhang, Yinsheng; Li, Yunsen; Liu, Haiyan

    2011-01-01

    Hepatocellular carcinoma (HCC) is the fifth most malignant tumor worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Lup-20(29)-en-3H-ol (Lupeol), a novel dietary triterpene, is found in fruits, vegetables, and medicinal plants and possesses multiple bio-activities with very low toxicity. In the current study, we investigated its growth-inhibitory effects in HCC cell lines SMMC7721 and HepG2. In the in vitro studies, lupeol treatment alone caused decrease of cell viability in two HCC cell lines in a dose-dependent manner. It also induced apoptosis and caused cell accumulation in S phase. Further analysis revealed the induction of active caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage by lupeol treatment. In the in vivo studies, nude mice implanted with SMMC7721 cells subcutaneously were treated with lupeol three times a week and tumor development was significantly inhibited. We further investigated the combination anti-tumor effect of lupeol and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HCC, considering TRAIL treatment alone could not achieve high level of anti-tumor effect. The results demonstrated that lupeol could exert a combinational effect with TRAIL, resulting in chemosensitization of HCC. Our results suggested that lupeol alone or as an adjuvant to therapeutic agents could be developed as a potential agent for treating HCC.

  20. Inducing G2/M Cell Cycle Arrest and Apoptosis through Generation Reactive Oxygen Species (ROS-Mediated Mitochondria Pathway in HT-29 Cells by Dentatin (DEN and Dentatin Incorporated in Hydroxypropyl-β-Cyclodextrin (DEN-HPβCD

    Directory of Open Access Journals (Sweden)

    Al-Abboodi Shakir Ashwaq

    2016-10-01

    Full Text Available Dentatin (DEN, purified from the roots of Clausena excavata Burm f., has poor aqueous solubility that reduces its therapeutic application. The aim of this study was to assess the effects of DEN-HPβCD (hydroxypropyl-β-cyclodextrin complex as an anticancer agent in HT29 cancer cell line and compare with a crystal DEN in dimethyl sulfoxide (DMSO. The exposure of the cancer cells to DEN or DEN-HPβCD complex leads to cell growth inhibition as determined by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. To analyze the mechanism, in which DEN or DEN-HPβCD complex causes the death in human colon HT29 cancer cells, was evaluated by the enzyme-linked immunosorbent assay (ELIZA-based assays for caspase-3, 8, 9, and reactive oxygen species (ROS. The findings showed that an anti-proliferative effect of DEN or DEN-HPβCD complex were via cell cycle arrest at the G2/M phase and eventually induced apoptosis through both mitochondrial and extrinsic pathways. The down-regulation of poly(ADP-ribose polymerase (PARP which leaded to apoptosis upon treatment, was investigated by Western-blotting. Hence, complexation between DEN and HPβCD did not diminish or eliminate the effective properties of DEN as anticancer agent. Therefore, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents in the future.

  1. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    Science.gov (United States)

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.

  2. Hepatoprotective effects of melatonin against pronecrotic cellular events in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Grigorov, Ilijana; Bogojević, Desanka; Jovanović, Sofija; Petrović, Anja; Ivanović-Matić, Svetlana; Zolotarevski, Lidija; Poznanović, Goran; Martinović, Vesna

    2014-06-01

    Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P Melatonin prevented the diabetes-related morphological deterioration of hepatocytes, DNA damage (P diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury.

  3. Tanshinone IIA Inhibits Growth of Keratinocytes through Cell Cycle Arrest and Apoptosis: Underlying Treatment Mechanism of Psoriasis

    Directory of Open Access Journals (Sweden)

    Fu-Lun Li

    2012-01-01

    Full Text Available The aim of the present investigation was to elucidate the cellular mechanisms whereby Tanshinone IIA (Tan IIA leads to cell cycle arrest and apoptosis in vitro in keratinocytes, the target cells in psoriasis. Tan IIA inhibited proliferation of mouse keratinocytes in a dose- and time-dependent manner and induced apoptosis, resulting in S phase arrest accompanied by down-regulation of pCdk2 and cyclin A protein expression. Furthermore, Tan IIA-induced apoptosis and mitochondrial membrane potential changes were also further demonstrated by DNA fragmentation, single-cell gel electrophoresis assay (SCGE, and flow cytometry methods. Apoptosis was partially blocked by the caspase-3 inhibitor Ac-DEVD-CHO. Mitochondrial regulation of apoptosis further downstream was investigated, showing changes in the mitochondrial membrane potential, cytochrome c release into the cytoplasm, and enhanced activation of cleaved caspase-3 and Poly ADP-ribose polymerase (PARP. There was also no translocation of apoptosis-inducing factor (AIF from mitochondria to the nucleus in apoptotic keratinocytes, indicating Tan IIA-induced apoptosis occurs mainly through the caspase pathway. Our findings provide the molecular mechanisms by which Tan IIA can be used to treat psoriasis and support the traditional use of Salvia miltiorrhiza Bungee (Labiatae for psoriasis and related skin diseases.

  4. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis.

    Science.gov (United States)

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Rayalam, Srujana; Baile, Clifton A

    2007-11-01

    Xanthohumol (XN), the chalcone from beer hops has several biological activities. XN has been shown to induce apoptosis in cancer cells and also has been reported to be involved in lipid metabolism. Based on these studies and our previous work with natural compounds, we hypothesized that XN and its isomeric flavanone, isoxanthohumol (IXN), would induce apoptosis in adipocytes through the mitochondrial pathway and would inhibit maturation of preadipocytes. Adipocytes were treated with various concentrations of XN or IXN. In mature adipocytes both XN and IXN decreased viability, increased apoptosis and increased ROS production, XN being more effective. Furthermore, the antioxidants ascorbic acid and 2-mercaptoethanol prevented XN and IXN-induced ROS generation and apoptosis. Immunoblotting analysis showed an increase in the levels of cytoplasmic cytochrome c and cleaved poly (ADP-ribose) polymerase (PARP) by XN and IXN. Concomitantly, we observed activation of the effectors caspase-3/7. In maturing preadipocytes both XN and IXN were effective in reducing lipid content, XN being more potent. Moreover, the major adipocyte marker proteins such as PPARgamma, C/EBPalpha, and aP2 decreased after treatment with XN during the maturation period and that of DGAT1 decreased after treatment with XN and IXN. Taken together, our data indicate that both XN and IXN inhibit differentiation of preadipocytes, and induce apoptosis in mature adipocytes, but XN is more potent.

  5. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells.

    Science.gov (United States)

    Lee, Hye Min; Moon, Aree

    2016-01-01

    Amygdalin, D-mandelonitrile-β-D-glucoside-6-β-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin α5 may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

  6. Antiproliferative and pro-apoptotic effects of Uncaria tomentosa in human medullary thyroid carcinoma cells.

    Science.gov (United States)

    Rinner, Beate; Li, Zeng Xia; Haas, Helga; Siegl, Veronika; Sturm, Sonja; Stuppner, Hermann; Pfragner, Roswitha

    2009-11-01

    Medullary thyroid carcinoma (MTC), a rare calcitonin-producing tumor, is derived from parafollicular C-cells of the thyroid and is characterized by constitutive Bcl-2 overexpression. The tumor is relatively insensitive to radiation therapy as well as conventional chemotherapy. To date, the only curative treatment is the early and complete surgical removal of all neoplastic tissue. In this study, the antiproliferative and pro-apoptotic effects of fractions obtained from Uncaria tomentosa (Willd.) DC, commonly known as uña de gato or cat's claw were investigated. Cell growth of MTC cells as well as enzymatic activity of mitochondrial dehydrogenase was markedly inhibited after treatment with different fractions of the plant. Furthermore, there was an increase in the expressions of caspase-3 and -7 and poly(ADP-ribose) polymerase (PARP) fraction, while bcl-2 overexpression remained constant. In particular, the alkaloids isopterpodine and pteropodine of U. tomentosa exhibited a significant pro-apoptotic effect on MTC cells, whereas the alkaloid-poor fraction inhibited cell proliferation but did not show any pro-apoptotic effects. These promising results indicate the growth-restraining and apoptotic potential of plant extracts against neuroendocrine tumors, which may add to existing therapies for cancer.

  7. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition.

    Science.gov (United States)

    Nateewattana, Jintapat; Dutta, Suman; Reabroi, Somrudee; Saeeng, Rungnapha; Kasemsook, Sakkasem; Chairoungdua, Arthit; Weerachayaphorn, Jittima; Wongkham, Sopit; Piyachaturawat, Pawinee

    2014-01-15

    Cholangiocarcinoma (CCA), the common primary malignant tumor of bile duct epithelial cells, is unresponsive to most chemotherapeutic drugs. Diagnosis with CCA has a poor prognosis, and therefore urgently requires effective therapeutic agents. In the present study we investigated anti-cancer effects of andrographolide analogue 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) and its mechanism in human CCA cell line KKU-M213 derived from a Thai CCA patient. By 24h after exposure, the analogue 3A.1 exhibited a potent cytotoxic effect on KKU-M213 cells with an inhibition concentration 50 (IC50) of approximately 8.0µM. Analogue 3A.1 suppressed DNA topoisomerase II α (Topo II α) protein expression, arrested the cell cycle at sub G0/G1 phase, induced cleavage of DNA repair protein poly (ADP-ribose) polymerases-1 (PARP-1), and enhanced expression of tumor suppressor protein p53 and pro-apoptotic protein Bax. In addition, analogue 3A.1 induced caspase 3 activity and inhibited cyclin D1, CDK6, and COX-2 protein expression. These results suggest that andrographolide analogue 3A.1, a novel topo II inhibitor, has significant potential to be developed as a new anticancer agent for the treatment of CCA.

  8. Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-Forming Endothelial Cells through Inactivation of Survival Signal ERK1/2.

    Science.gov (United States)

    Kunimasa, Kazuhiro; Ahn, Mok-Ryeon; Kobayashi, Tomomi; Eguchi, Ryoji; Kumazawa, Shigenori; Fujimori, Yoshihiro; Nakano, Takashi; Nakayama, Tsutomu; Kaji, Kazuhiko; Ohta, Toshiro

    2011-01-01

    We recently reported that propolis suppresses tumor-induced angiogenesis through tube formation inhibition and apoptosis induction in endothelial cells. However, molecular mechanisms underlying such angiogenesis suppression by propolis have not been fully elucidated. The aim of this study was to investigate the effects of ethanol extract of Brazilian propolis (EEBP) on two major survival signals, extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, and to elucidate whether changes in these signals were actually involved in antiangiogenic effects of the propolis. Detection by western blotting revealed that EEBP suppressed phosphorylation of ERK1/2, but not that of Akt. Pharmacological inhibition by U0126 demonstrated that ERK1/2 inactivation alone was enough to inhibit tube formation and induce apoptosis. It was also shown that EEBP and U0126 similarly induced activation of caspase-3 and cleavage of poly ADP-ribose polymerase (PARP) and lamin A/C, all of which are molecular markers of apoptosis. These results indicate that inhibition of survival signal ERK1/2, and subsequent induction of apoptosis, is a critical mechanism of angiogenesis suppression by EEBP.

  9. Oxidative-stress-induced epigenetic changes in chronic diabetic complications.

    Science.gov (United States)

    Feng, Biao; Ruiz, Michael Anthony; Chakrabarti, Subrata

    2013-03-01

    Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.

  10. Systematic identification of genomic markers of drug sensitivity in cancer cells.

    Science.gov (United States)

    Garnett, Mathew J; Edelman, Elena J; Heidorn, Sonja J; Greenman, Chris D; Dastur, Anahita; Lau, King Wai; Greninger, Patricia; Thompson, I Richard; Luo, Xi; Soares, Jorge; Liu, Qingsong; Iorio, Francesco; Surdez, Didier; Chen, Li; Milano, Randy J; Bignell, Graham R; Tam, Ah T; Davies, Helen; Stevenson, Jesse A; Barthorpe, Syd; Lutz, Stephen R; Kogera, Fiona; Lawrence, Karl; McLaren-Douglas, Anne; Mitropoulos, Xeni; Mironenko, Tatiana; Thi, Helen; Richardson, Laura; Zhou, Wenjun; Jewitt, Frances; Zhang, Tinghu; O'Brien, Patrick; Boisvert, Jessica L; Price, Stacey; Hur, Wooyoung; Yang, Wanjuan; Deng, Xianming; Butler, Adam; Choi, Hwan Geun; Chang, Jae Won; Baselga, Jose; Stamenkovic, Ivan; Engelman, Jeffrey A; Sharma, Sreenath V; Delattre, Olivier; Saez-Rodriguez, Julio; Gray, Nathanael S; Settleman, Jeffrey; Futreal, P Andrew; Haber, Daniel A; Stratton, Michael R; Ramaswamy, Sridhar; McDermott, Ultan; Benes, Cyril H

    2012-03-28

    Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

  11. Toxic profile of bergamot essential oil on survival and proliferation of SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Berliocchi, Laura; Ciociaro, Antonella; Russo, Rossella; Cassiano, Maria Gilda Valentina; Blandini, Fabio; Rotiroti, Domenicantonio; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana

    2011-11-01

    Cosmetic, pharmaceutical, food and confectionary industries make increasing use of plant extracts in their products. Despite the widespread use of products containing plant extracts, the mechanisms of their effects are not fully characterized. Bergamot essential oil (BEO; Citrus bergamia, Risso) is a well-known plant extract used in aromatherapy and it has analgesic, anxiolytic and neuroprotective effects in rodents. To elicit neuroprotection, BEO recruits Akt prosurvival pathways. However, Akt stimulates cell proliferation, which may also pose risks for health in case of prolonged use. To study the potential effects of BEO on survival and proliferation of dividing cells, we selected human SH-SY5Y neuroblastoma cells. BEO triggered concentration-dependent mitochondrial dysfunction, cytoskeletal reorganization, cell shrinkage, DNA fragmentation and both caspase-dependent and independent cell death. Analysis of cleavage products of poly-(ADP-ribose) polymerase (PARP) revealed caspase-3 activation, but also activation of additional protease families. As result of increased proteolytic activity, Akt protein levels decreased in BEO-treated cells. Our data show that BEO can be lethal for dividing cells by activating multiple pathways. While this may reduce the risk of unwanted cell proliferation after prolonged use, it does suggest a cautionary approach to the use of inappropriate dilutions of the oil that may cause cell death.

  12. Protective autophagy antagonizes oxaliplatin-induced apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ling Xu; Xiu-Juan Qu; Yun-Peng Liu; Ying-Ying Xu; Jing Liu; Ke-Zuo Hou; Ye Zhang

    2011-01-01

    Oxaliplatin-based chemotherapy is used for treating gastric cancer. Autophagy has been extensively implicated in cancer cells; however, its function is not fully understood. Our study aimed to determine if oxaliplatin induce autophagy in gastric cancer MGC803 cells and to assess the effect of autophagy on apoptosis induced by oxaliplatin. MGC803 cells were cultured with oxaliplatin. Cell proliferation was measured using MTT assay, and apoptosis was determined by flow cytometry. Protein expression was detected by Western blot. Autophagy was observed using fluorescent microscopy. Our results showed that the rate of apoptosis was 9.73% and 16.36% when MGC803 cells were treated with 5 and 20 μg/mL oxaliplatin for 24 h, respectively. In addition, caspase activation and poly ADP-ribose polymerase (PARP)cleavage were detected. Furthermore, when MGC803 cells were treated with oxaliplatin for 24 h, an accumulation of punctate LC3 and an increase of LC3-Ⅱ protein were also detected, indicating the activation of autophagy. Phosphorylation of Akt and mTOR were inhibited by oxaliplatin. Compared to oxaliplatin alone, the combination of autophagy inhibitor chlorochine and oxaliplatin significantly enhanced the inhibition of cell proliferation and the induction of cell apoptosis. In conclusion, oxaliplatin-induced protective autophagy partially prevents apoptosis in gastric cancer MGC803 cells. The combination of autophagy inhibitor and oxaliplatin may be a new therapeutic option for gastric cancer.

  13. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    Science.gov (United States)

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  14. Docosahexaenoic acid sensitizes colon cancer cells to sulindac sulfide-induced apoptosis.

    Science.gov (United States)

    Lim, Soo-Jeong; Lee, Eunmyong; Lee, Eun-Hye; Kim, Soo-Yeon; Cha, Jun Hyung; Choi, Hwanho; Park, Wanseo; Choi, Hyeon Kyeom; Ko, Seong-Hee; Kim, So Hee

    2012-06-01

    Sulindac analogs represent one of the most efficacious groups of NSAIDs reducing the risk of colon cancer. Recent studies have shown that sulindac sulfide, a sulindac analog effective at lower doses compared to its parent compound, triggers the death receptor (DR)5-dependent extrinsic apoptotic pathway. Induction of apoptosis via activation of the DR-mediated pathway would be an ideal therapeutic strategy to eliminate cancer cells. In this study, we investigated the possibility that colon cancer cells are sensitized to sulindac sulfide-induced apoptosis by docosahexaenoic acid (DHA), via activation of the DR/extrinsic apoptotic pathway. Our data demonstrated that DHA combination sensitized colon cancer cells to sulindac sulfide-induced apoptosis, leading to enhanced growth suppression of human colon cancer xenografts. The combination effect was primarily attributed to increased cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-8 activation. Moreover, pretreatment with z-IETD-FMK (caspase-8 inhibitor) or stable expression of dominant negative caspase-8 genes blocked DHA/sulindac sulfide cotreatment-induced apoptosis. In view of the finding that DR5 silencing abrogated the combination-stimulated apoptosis, we propose that apoptotic synergy induced by sulindac sulfide plus DHA is mediated via DR5. Our findings collectively support the utility of a combination of sulindac sulfide and DHA in the effective prevention and treatment of colon cancer.

  15. Neoadjuvant strategies for triple negative breast cancer: 'state-of-the-art' and future perspectives.

    Science.gov (United States)

    Carbognin, Luisa; Furlanetto, Jenny; Vicentini, Cecilia; Nortilli, Rolando; Pilotto, Sara; Brunelli, Matteo; Pellini, Francesca; Pollini, Giovanni Paolo; Bria, Emilio; Tortora, Giampaolo

    2015-01-01

    Neoadjuvant therapy for triple negative breast cancer (TNBC) has recently generated growing interest given the more aggressive biologic characteristics of such subtype and the lack of approved targeted therapies. Systemic chemotherapy represents the mainstay of treatment for TNBC. Although neoadjuvant chemotherapy has consistently demonstrated higher response rates for TNBC compared to non-TNBC, and the pathological complete response predicts long-term outcome, most patient display residual disease with a higher risk of relapse. In order to improve the outcome of TNBC new chemotherapic combinations, including platinum agents, and different targeted agents such as antiangiogenetics, poly-ADP ribose polymerase (PARP) inhibitors and other small molecule inhibitors are being evaluated in neoadjuvant setting. Currently, the research is ongoing to further characterize TNBC from a phenotypical and molecular perspective, in order to identify potential new target agents and to individualize the treatment. In this regard, the neoadjuvant setting may represent the best potential scenario to assess the activity and the sensitivity of novel agents.

  16. Involvement of Prohibitin Upregulation in Abrin-Triggered Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Huei Liu

    2012-01-01

    Full Text Available Abrin (ABR, a protein purified from the seeds of Abrus precatorius, induces apoptosis in various types of cancer cells. However, the detailed mechanism remains largely uncharacterized. By using a cDNA microarray platform, we determined that prohibitin (PHB, a tumor suppressor protein, is significantly upregulated in ABR-triggered apoptosis. ABR-induced upregulation of PHB is mediated by the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK pathway, as demonstrated by chemical inhibitors. In addition, ABR significantly induced the expression of Bax as well as the activation of caspase-3 and poly(ADP-ribose polymerase (PARP in Jurkat T cells, whereas the reduction of PHB by specific RNA interference delayed ABR-triggered apoptosis through the proapoptotic genes examined. Moreover, our results also indicated that nuclear translocation of the PHB-p53 complex may play a role in the transcription of Bax. Collectively, our data show that PHB plays a role in ABR-induced apoptosis, which may be helpful for the development of diagnostic or therapeutic agents.

  17. Autophagy Induced by Areca Nut Extract Contributes to Decreasing Cisplatin Toxicity in Oral Squamous Cell Carcinoma Cells: Roles of Reactive Oxygen Species/AMPK Signaling

    Science.gov (United States)

    Xu, Zhi; Huang, Chun-Ming; Shao, Zhe; Zhao, Xiao-Ping; Wang, Meng; Yan, Ting-Lin; Zhou, Xiao-Cheng; Jiang, Er-Hui; Liu, Ke; Shang, Zheng-Jun

    2017-01-01

    Chewing areca nut is closely associated with oral squamous cell carcinoma (OSCC). The current study aimed to investigate potential associations between areca nut extract (ANE) and cisplatin toxicity in OSCC cells. OSCC cells (Cal-27 and Scc-9) viability and apoptosis were analyzed after treatment with ANE and/or cisplatin. The expressions of proteins associated with autophagy and the AMP-activated protein kinase (AMPK) signaling network were evaluated. We revealed that advanced OSCC patients with areca nut chewing habits presented higher LC3 expression and poorer prognosis. Reactive oxygen species (ROS)-mediated autophagy was induced after pro-longed treatment of ANE (six days, 3 μg). Cisplatin toxicity (IC50, 48 h) was decreased in OSCC cells after ANE treatment (six days, 3 μg). Cisplatin toxicity could be enhanced by reversed autophagy by pretreatment of 3-methyladenine (3-MA), N-acetyl-l-cysteine (NAC), or Compound C. Cleaved-Poly-(ADP-ribose) polymerase (cl-PARP) and cleaved-caspase 3 (cl-caspase 3) were downregulated in ANE-treated OSCC cells in the presence of cisplatin, which was also reversed by NAC and Compound C. Collectively, ANE could decrease cisplatin toxicity of OSCC by inducing autophagy, which involves the ROS and AMPK/mTOR signaling pathway. PMID:28257034

  18. Calcium paradox induces apoptosis in the isolated perfused Rana ridibunda heart: involvement of p38-MAPK and c