WorldWideScience

Sample records for adp ribosylating bacterial

  1. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  2. ADP-ribosylation of proteins: Enzymology and biological significance

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probing of proteins involved in signal transduction and protein biosynthesis.

  3. Poly(ADP-ribosyl)ation in carcinogenesis.

    Science.gov (United States)

    Masutani, Mitsuko; Fujimori, Hiroaki

    2013-12-01

    Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.

  4. Targeted delivery of an ADP-ribosylating bacterial toxin into cancer cells

    Science.gov (United States)

    Zahaf , N.-I.; Lang, A. E.; Kaiser, L.; Fichter, C. D.; Lassmann, S.; McCluskey, A.; Augspach, A.; Aktories, K.; Schmidt, G.

    2017-01-01

    The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells. PMID:28128281

  5. The natural history of ADP-ribosyltransferases and the ADP-ribosylation system.

    Science.gov (United States)

    Aravind, L; Zhang, Dapeng; de Souza, Robson F; Anand, Swadha; Iyer, Lakshminarayan M

    2015-01-01

    Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.

  6. Mono(ADP-ribosylation) in rat liver mitochondria.

    Science.gov (United States)

    Frei, B; Richter, C

    1988-01-26

    This paper investigates protein mono(ADP-ribosylation) in rat liver mitochondria. In isolated inner mitochondrial membranes, in the presence of both ADP-ribose and NAD+, a protein is mono-(ADP-ribosylated) with high specificity. The reaction apparently consists of enzymatic NAD+ glycohydrolysis and subsequent binding of free ADP-ribose to the acceptor protein. In terms of chemical stability, the resulting bond is unique among the ADP-ribose linkages thus far characterized. Formation of a Schiff base adduct between free ADP-ribose and the acceptor protein is excluded. In intact mitochondria at least three classes of proteins are ADP-ribosylated in vivo. One ADP-ribose-protein linkage is of the carboxylate ester type as indicated by its lability in neutral buffer. Another class of ADP-ribosylated proteins requires hydroxylamine for release of ADP-ribose. The third class is stable in hydroxylamine but labile to alkali, similar to the ADP-ribose-cysteine linkage in transducin formed by pertussis toxin.

  7. ADP-ribosylation of histones by ARTD1: an additional module of the histone code?

    Science.gov (United States)

    Hottiger, Michael O

    2011-06-01

    ADP-ribosylation is a covalent post-translational protein modification catalyzed by ADP-ribosyltransferases and is involved in important processes such as cell cycle regulation, DNA damage response, replication or transcription. Histones are ADP-ribosylated by ADP-ribosyltransferase diphtheria toxin-like 1 at specific amino acid residues, in particular lysines, of the histones tails. Specific ADP-ribosyl hydrolases and poly-ADP-ribose glucohydrolases degrade the ADP-ribose polymers. The ADP-ribose modification is read by zinc finger motifs or macrodomains, which then regulate chromatin structure and transcription. Thus, histone ADP-ribosylation may be considered an additional component of the histone code.

  8. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion.

    Science.gov (United States)

    Simon, Nathan C; Barbieri, Joseph T

    2014-04-11

    Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.

  9. Evidence that Mono-ADP-Ribosylation of CtBP1/BARS Regulates Lipid Storage

    OpenAIRE

    Bartz, René; Seemann, Joachim; Zehmer, John K.; Serrero, Ginette; Kent D. Chapman; Anderson, Richard G. W.; Liu, Pingsheng

    2007-01-01

    Mono-ADP-ribosylation is emerging as an important posttranslational modification that modulates a variety of cell signaling pathways. Here, we present evidence that mono-ADP-ribosylation of the transcriptional corepressor C terminal binding protein, brefeldin A (BFA)-induced ADP-ribosylated substrate (CtBP1/BARS) regulates neutral lipid storage in droplets that are surrounded by a monolayer of phospholipid and associated proteins. CtBP1/BARS is an NAD-binding protein that becomes ribosylated ...

  10. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J.; Smith, Craig D.; Senkovich, Olga; Holder, Anthony A.; Chattopadhyay, Debasish (UAB); (NIMR)

    2011-09-26

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  11. Inhibiting poly(ADP-ribosylation) improves axon regeneration

    Science.gov (United States)

    Byrne, Alexandra B; McWhirter, Rebecca D; Sekine, Yuichi; Strittmatter, Stephen M; Miller, David M; Hammarlund, Marc

    2016-01-01

    The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured C. elegans GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both C. elegans GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration. DOI: http://dx.doi.org/10.7554/eLife.12734.001

  12. From toxins to mammalian enzymes: the diversity of mono-ADP-ribosylation.

    Science.gov (United States)

    Grimaldi, Giovanna; Corda, Daniela; Catara, Giuliana

    2015-01-01

    The ADP-ribosylation of proteins is a phylogenetically ancient mechanism that involves the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD⁺) to specific amino acids of target proteins post-translationally. In the first part of this review, we briefly describe ADP-ribosylation as the mechanism of action of toxins, while giving particular emphasis to a non-conventional ADP-ribosylation reaction that is mediated by the fungal toxin brefeldin A (BFA). This modification results in the loss of the membrane fission activity of the C-terminal binding protein (CtBP)1/ BFA-ADP-ribosylated substrate (BARS), thus blocking progression of cells into mitosis, with important implications for the design of new anticancer drugs. In addition, we summarize the most recent findings on mammalian, intracellular mono-ADP-ribosyl transferase enzymes, underlining the emerging functional roles in which they are involved, including immune responses, transcriptional regulation, stress responses, cell survival. The observation that several mono-ADP-ribosyl transferases, such as PARP-10, PARP-12, PARP-13, are involved in a range of physiological processes points at the multifunctional feature of these proteins.

  13. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors.

    Science.gov (United States)

    Donà, Francesca; Chiodi, Ilaria; Belgiovine, Cristina; Raineri, Tatiana; Ricotti, Roberta; Mondello, Chiara; Scovassi, Anna Ivana

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribosylation) play essential roles in several biological processes, among which neoplastic transformation and telomere maintenance. In this paper, we review the poly(ADP-ribosylation) process together with the highly appealing use of PARP inhibitors for the treatment of cancer. In addition, we report our results concerning poly(ADP-ribosylation) in a cellular model system for neoplastic transformation developed in our laboratory. Here we show that PARP-1 and PARP-2 expression increases during neoplastic transformation, together with the basal levels of poly(ADP-ribosylation). Furthermore, we demonstrate a greater effect of the PARP inhibitor 3-aminobenzamide (3AB) on cellular viability in neoplastically transformed cells compared to normal fibroblasts and we show that prolonged 3AB administration to tumorigenic cells causes a decrease in telomere length. Taken together, our data support an active involvement of poly(ADP-ribosylation) in neoplastic transformation and telomere length maintenance and confirm the relevant role of poly(ADP-ribosylation) inhibition for the treatment of cancer.

  14. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    OpenAIRE

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao; Chen, Junjie

    2015-01-01

    Li et al. report ADP-ribosylation as a new post-translational modification of the tumor suppressor PTEN. Tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas.

  15. Poly(ADP-ribosyl)ation of proteins associated with nuclear matrix in rat testis

    Energy Technology Data Exchange (ETDEWEB)

    Quesada, P.; Atorino, L.; Faraone-Mennella, M.R.; Farina, B. [Naples Univ. (Italy); Caiafa, P. [Rome Univ. (Italy)

    1995-12-31

    We have previously demonstrated that a significant percentage of poly(ADPR)polymerase is present, as a tightly-bound form, at the third level of chromatin organization defined by chromosomal loops and nuclear matrix. The present work is focused on the study of poly(ADP-ribosyl)ation of proteins present in these nuclear subfractions. It has been shown that, due to the action of poly(ADPR) polymerase, the ADP-ribose moiety of [{sup 14}C]NAD is transferred to both loosely-bound and tightly-bound chromosomal proteins, which in consequence are modified by chain polymers of ADP-ribose of different lengths. Moreover, histone-like proteins seem to be ADP-ribosylated in chromosomal loops and nuclear matrix associated regions of DNA loops (MARS). A hypothesis can be put forward that the ADP-ribosylation system is functionally related to the nuclear processes, actively coordinated by the nuclear matrix. (author). 34 refs, 4 figs.

  16. ADPr-ChAP: Mapping ADP-Ribosylation onto the Genome.

    Science.gov (United States)

    McPherson, Robert Lyle; Leung, Anthony K L

    2016-02-04

    In this issue of Molecular Cell, Bartolomei et al. (2016) describe a chromatin affinity precipitation method using well-characterized ADP-ribose binding domains to provide the first genome-wide view of ADP-ribosylated chromatin. Here, we discuss its potential applications and the remaining challenges ahead.

  17. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination.

    Science.gov (United States)

    Wang, Zhizhi; Michaud, Gregory A; Cheng, Zhihong; Zhang, Yue; Hinds, Thomas R; Fan, Erkang; Cong, Feng; Xu, Wenqing

    2012-02-01

    Protein poly(ADP-ribosyl)ation and ubiquitination are two key post-translational modifications regulating many biological processes. Through crystallographic and biochemical analysis, we show that the RNF146 WWE domain recognizes poly(ADP-ribose) (PAR) by interacting with iso-ADP-ribose (iso-ADPR), the smallest internal PAR structural unit containing the characteristic ribose-ribose glycosidic bond formed during poly(ADP-ribosyl)ation. The key iso-ADPR-binding residues we identified are highly conserved among WWE domains. Binding assays further demonstrate that PAR binding is a common function for the WWE domain family. Since many WWE domain-containing proteins are known E3 ubiquitin ligases, our results suggest that protein poly(ADP-ribosyl)ation may be a general mechanism to target proteins for ubiquitination.

  18. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair

    Science.gov (United States)

    Van Meter, Michael; Mao, Zhiyong; Gorbunova, Vera; Seluanov, Andrei

    2011-01-01

    The sirtuin gene family comprises an evolutionarily ancient set of NAD+ dependent protein deacetylase and mono-ADP ribosyltransferase enzymes. Found in all domains of life, sirtuins regulate a diverse array of biological processes, including DNA repair, gene silencing, apoptosis and metabolism. Studies in multiple model organisms have indicated that sirtuins may also function to extend lifespan and attenuate age-related pathologies. To date, most of these studies have focused on the deacetylase activity of sirtuins, and relatively little is known about the other biochemical activity of sirtuins, mono-ADP ribosylation. We recently reported that the mammalian sirtuin, SIRT6, mono-ADP ribosylates PARP1 to promote DNA repair in response to oxidative stress. In this research perspective we review the role of SIRT6 in DNA repair and discuss the emerging implications for sirtuin directed mono-ADP ribosylation in aging and age-related diseases. PMID:21946623

  19. The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation.

    Directory of Open Access Journals (Sweden)

    Anna Sala

    2008-10-01

    Full Text Available ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodelers.

  20. Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage.

    Science.gov (United States)

    Bartz, René; Seemann, Joachim; Zehmer, John K; Serrero, Ginette; Chapman, Kent D; Anderson, Richard G W; Liu, Pingsheng

    2007-08-01

    Mono-ADP-ribosylation is emerging as an important posttranslational modification that modulates a variety of cell signaling pathways. Here, we present evidence that mono-ADP-ribosylation of the transcriptional corepressor C terminal binding protein, brefeldin A (BFA)-induced ADP-ribosylated substrate (CtBP1/BARS) regulates neutral lipid storage in droplets that are surrounded by a monolayer of phospholipid and associated proteins. CtBP1/BARS is an NAD-binding protein that becomes ribosylated when cells are exposed to BFA. Both endogenous lipid droplets and droplets enlarged by oleate treatment are lost after 12-h exposure to BFA. Lipid loss requires new protein synthesis, and it is blocked by multiple ribosylation inhibitors, but it is not stimulated by disruption of the Golgi apparatus or the endoplasmic reticulum unfolded protein response. Small interfering RNA knockdown of CtBP1/BARS mimics the effect of BFA, and mouse embryonic fibroblasts derived from embryos that are deficient in CtBP1/BARS seem to be defective in lipid accumulation. We conclude that mono-ADP-ribosylation of CtBP1/BARS inactivates its repressor function, which leads to the activation of genes that regulate neutral lipid storage.

  1. The uptake machinery of clostridial actin ADP-ribosylating toxins--a cell delivery system for fusion proteins and polypeptide drugs.

    Science.gov (United States)

    Barth, Holger; Blöcker, Dagmar; Aktories, Klaus

    2002-12-01

    Several bacterial protein toxins, including Clostridium botulinum C2 toxin, Clostridum perfringens iota toxin, Clostridium difficile ADP-ribosyltransferase, and the Bacillus-produced vegetative insecticidal proteins, target the cytoskeleton by ADP-ribosylation of actin. All these toxins are binary in structure and consist of an enzyme component, possessing ADP-ribosyltransferase activity and a separated binding and translocation component, which is involved in the delivery of the enzyme component into the cell. The toxins are not only important virulence factors but also cell biological tools to study the function of the actin cytoskeleton. Moreover, the binary toxins turned out to be effective transporter systems for the delivery of specific fusion toxins (e.g., Rho-ADP-ribosylating C3 exoenzyme) into cells. The present review describes the biological functions of the toxins, focuses on recent studies on the uptake and delivery mechanism and discusses the usage as a drug delivery system.

  2. ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG.

    Science.gov (United States)

    Huergo, Luciano F; Souza, Emanuel M; Araujo, Mariana S; Pedrosa, Fábio O; Chubatsu, Leda S; Steffens, Maria B R; Merrick, Mike

    2006-01-01

    Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the P(II) proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH-modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane-associated after an ammonium shock, and both this membrane sequestration and ADP-ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP-ribosyl-removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a P(II) family member. They also suggest a model for control of ADP-ribosylation that is likely to be applicable to all diazotrophs that exhibit such post-translational regulation of nitrogenase.

  3. Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae.

    Science.gov (United States)

    Becker, Argentina; Kannan, T R; Taylor, Alexander B; Pakhomova, Olga N; Zhang, Yanfeng; Somarajan, Sudha R; Galaleldeen, Ahmad; Holloway, Stephen P; Baseman, Joel B; Hart, P John

    2015-04-21

    Mycoplasma pneumoniae (Mp) infections cause tracheobronchitis and "walking" pneumonia, and are linked to asthma and other reactive airway diseases. As part of the infectious process, the bacterium expresses a 591-aa virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). CARDS TX binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathogenetic events. Here we present the structure of CARDS TX, a triangular molecule in which N-terminal mART and C-terminal tandem β-trefoil domains associate to form an overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. We demonstrate that CARDS TX binds phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities are housed within the C-terminal β-trefoil domain. The results enhance our understanding of Mp pathogenicity and suggest a novel avenue for the development of therapies to treat Mp-associated asthma and other acute and chronic airway diseases.

  4. Dissection of Arabidopsis ADP-Ribosylation Factor 1 function in epidermal cell polarity

    NARCIS (Netherlands)

    Xu, J.; Scheres, B.J.G.

    2005-01-01

    Vesicle trafficking is essential for the generation of asymmetries, which are central to multicellular development. Core components of the vesicle transport machinery, such as ADP-ribosylation factor (ARF) GTPases, have been studied primarily at the single-cell level. Here, we analyze developmental

  5. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1.

    Science.gov (United States)

    Alemasova, Elizaveta E; Pestryakov, Pavel E; Sukhanova, Maria V; Kretov, Dmitry A; Moor, Nina A; Curmi, Patrick A; Ovchinnikov, Lev P; Lavrik, Olga I

    2015-12-01

    Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.

  6. Poly(ADP-ribosyl)ation of a herpes simplex virus immediate early polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Preston, C.M.; Notarianni, E.L.

    1983-12-01

    In vitro poly(ADP-ribosyl)ation of the herpes simplex virus type 1 (HSV-1) immediate early polypeptide Vmw175 is reported. The phenomenon was most clearly observed by use of the temperature-sensitive mutant tsK, which overproduces Vmw175 at the nonpermissive temperature (NPT) and has a mutation in the coding sequences for this polypeptide. Nuclei prepared from cells which were infected with tsK at NPT and subsequently downshifted to the permissive temperature incorporated (/sup 32/P)NAD into Vmw175. This reaction did not occur when nuclei were prepared from cells constantly maintained at NPT, showing that only functional Vmw175 can be radiolabeled with (/sup 32/P)NAD. The identity of the acceptor protein was confirmed by demonstrating the expected electrophoretic mobility differences between the HSV-1 and HSV-2 counterparts of Vmw175. The use of suitable inhibitors demonstrated that the reaction represented mono- or poly(ADP-ribosyl)ation, and further analysis showed the presence of long poly(ADP-ribose) chains attached to Vmw175. Poly(ADP-ribosyl)ation may be important as a cause or result of the regulation of viral transcription by Vmw175. Radiolabeling of another virus-specified polypeptide (approximate molecular weight 38,000), thought to be a structural component of the input virus, is also reported.

  7. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    Science.gov (United States)

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  8. Class I ADP-ribosylation factors are involved in enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.

  9. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS.

    Science.gov (United States)

    Colanzi, Antonino; Grimaldi, Giovanna; Catara, Giuliana; Valente, Carmen; Cericola, Claudia; Liberali, Prisca; Ronci, Maurizio; Lalioti, Vasiliki S; Bruno, Agostino; Beccari, Andrea R; Urbani, Andrea; De Flora, Antonio; Nardini, Marco; Bolognesi, Martino; Luini, Alberto; Corda, Daniela

    2013-06-11

    ADP-ribosylation is a posttranslational modification that modulates the functions of many target proteins. We previously showed that the fungal toxin brefeldin A (BFA) induces the ADP-ribosylation of C-terminal-binding protein-1 short-form/BFA-ADP-ribosylation substrate (CtBP1-S/BARS), a bifunctional protein with roles in the nucleus as a transcription factor and in the cytosol as a regulator of membrane fission during intracellular trafficking and mitotic partitioning of the Golgi complex. Here, we report that ADP-ribosylation of CtBP1-S/BARS by BFA occurs via a nonconventional mechanism that comprises two steps: (i) synthesis of a BFA-ADP-ribose conjugate by the ADP-ribosyl cyclase CD38 and (ii) covalent binding of the BFA-ADP-ribose conjugate into the CtBP1-S/BARS NAD(+)-binding pocket. This results in the locking of CtBP1-S/BARS in a dimeric conformation, which prevents its binding to interactors known to be involved in membrane fission and, hence, in the inhibition of the fission machinery involved in mitotic Golgi partitioning. As this inhibition may lead to arrest of the cell cycle in G2, these findings provide a strategy for the design of pharmacological blockers of cell cycle in tumor cells that express high levels of CD38.

  10. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  11. Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation.

    Science.gov (United States)

    Strickfaden, Hilmar; McDonald, Darin; Kruhlak, Michael J; Haince, Jean-Francois; Th'ng, John P H; Rouleau, Michele; Ishibashi, Toytaka; Corry, Gareth N; Ausio, Juan; Underhill, D Alan; Poirier, Guy G; Hendzel, Michael J

    2016-01-22

    Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.

  12. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    Energy Technology Data Exchange (ETDEWEB)

    Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Wagner, Silvia [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany); Buerkle, Alexander [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Koenigsrainer, Alfred [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany)

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  13. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses.

    Science.gov (United States)

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V V; Intorne, Aline C; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  14. Protein poly(ADP-ribosylation regulates arabidopsis immune gene expression and defense responses.

    Directory of Open Access Journals (Sweden)

    Baomin Feng

    2015-01-01

    Full Text Available Perception of microbe-associated molecular patterns (MAMPs elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose glycohydrolase 1 (atparg1 mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose glycohydrolase (PARG is predicted to remove poly(ADP-ribose polymers on acceptor proteins modified by poly(ADP-ribose polymerases (PARPs with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosylation plays critical roles in plant immune gene expression and defense to pathogen attacks.

  15. ADP-ribosylation factor-like protein 4C (ARL4C) interacts with galectin-3 during oocyte development and embryogenesis in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    ADP-ribosylation factor-like protein 4 (ARL4) is a GTP-binding protein which belongs to the ADP-ribosylation factor protein (ARF) superfamily of small GTPases. ARL4 has been shown to be mainly related to the development of male germ cells and embryogenesis in mouse. To investigate the role of ARL4 i...

  16. NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis

    NARCIS (Netherlands)

    Carlier, L.P.A.; Köhler, Christian; Veggi, D.; Pizza, M.; Soriani, M.; Boelens, R.; Bonvin, A.M.J.J.

    2011-01-01

    NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the ADP-ribosyltransferase family and catalyses the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria u

  17. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    Science.gov (United States)

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao

    2015-01-01

    PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN–AKT pathway that can be explored further for cancer treatment. PMID:25547115

  18. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    Science.gov (United States)

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  19. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    Science.gov (United States)

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  20. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants.

    Science.gov (United States)

    Shima, J; Penyige, A; Ochi, K

    1996-07-01

    Mutants resistant to 3-aminobenzamide, a known inhibitor of ADP-ribosyltransferase, were obtained from Streptomyces coelicolor A3(2). One (strain 27) was analyzed in detail. Mutant 27 had a reduced ADP-ribosyl-transferase activity, exhibited substantial changes from the wild type in ADP-ribosylated protein profile during cell aging, and was defective in producing aerial mycelium and antibiotics. A 92-kDa ADP-ribosylated protein disappeared at the onset of differentiation in the parent strain but was present in mutant 27. Four ADP-ribosylated proteins (39, 41, 43, and 46 kDa) appeared at the onset of differentiation in the parent strain but were missing in mutant 27. Failure to ADP-ribosylate these four proteins was detected when the parent strain was grown in the presence of subinhibitory amounts of 3-aminobenzamide. Genetic analysis showed that the mutation, named brgA, conferring resistance to 3-aminobenzamide, cosegregated with the altered phenotypes (i.e., defects in ADP-ribosylation and aerial mycelium formation) and was mapped to a new locus near uraA. The brgA mutants were nonconditionally deficient in producing aerial mycelium and antibiotics, as determined by using various media, and had a morphological and physiological phenotype quite different from that of a bldG mutant carrying a mutation which was previously mapped near uraA. Among the known bld mutants, bldA, bldD, and bldG mutants exhibited a ADP-ribosylated protein profile similar to that of the wild type, while like mutant 27, bldB, bldC, and bldH mutants failed to ADP-ribosylate certain proteins.

  1. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy.

    Science.gov (United States)

    Yang, Minghua; Liu, Liying; Xie, Min; Sun, Xiaofang; Yu, Yan; Kang, Rui; Yang, Liangchun; Zhu, Shan; Cao, Lizhi; Tang, Daolin

    2015-01-01

    Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.

  2. ADP-ribosylation of actins in fibroblasts and myofibroblasts by botulinum C2 toxin: Influence on microfilament morphology and migratory behavior

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    ., Petersen, O. W. J. Cell Biol. 1996, 134, 67-80). In the present study we have expanded on the functional significance of actin isotypes in fibroblasts from the opposite point of view, namely filamentous nonmuscle actin. Nonmuscle actins in fibroblasts and myofibroblasts were ADP-ribosylated by Clostridium...... botulinum C2 toxin. The substrate for C2 toxin is globular actin, which upon ribosylation cannot incorporate into microfilaments. The pattern of actin ADP-ribosylation in (myo)fibroblasts in the presence of [32P]NAD was analyzed by isoelectric focusing, fluorography and immunoblotting. The influence of C2...

  3. Modes of action of ADP-ribosylated elongation factor 2 in inhibiting the polypeptide elongation cycle: a modeling study.

    Directory of Open Access Journals (Sweden)

    Kevin C Chen

    Full Text Available Despite the fact that ADP-ribosylation of eukaryotic elongation factor 2 (EF2 leads to inhibition of protein synthesis, the mechanism by which ADP-ribosylated EF2 (ADPR•EF2 causes this inhibition remains controversial. Here, we applied modeling approaches to investigate the consequences of various modes of ADPR•EF2 inhibitory actions on the two coupled processes, the polypeptide chain elongation and ADP-ribosylation of EF2. Modeling of experimental data indicates that ADPR•EF2 fully blocks the late-phase translocation of tRNAs; but the impairment in the translocation upstream process, mainly the GTP-dependent factor binding with the pretranslocation ribosome and/or the guanine nucleotide exchange in EF2, is responsible for the overall inhibition kinetics. The reduced ADPR•EF2-ribosome association spares the ribosome to bind and shield native EF2 against toxin attack, thereby deferring the inhibition of protein synthesis inhibition and inactivation of EF2. Minimum association with the ribosome also keeps ADPR•EF2 in an accessible state for toxins to catalyze the reverse reaction when nicotinamide becomes available. Our work underscores the importance of unveiling the interactions between ADPR•EF2 and the ribosome, and argues against that toxins inhibit protein synthesis through converting native EF2 to a competitive inhibitor to actively disable the ribosome.

  4. ADP ribosylation factor like 2 (Arl2 regulates breast tumor aggressivity in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Anne Beghin

    Full Text Available We have previously reported that ADP ribosylation factor like 2 (Arl2, a small GTPase, content influences microtubule dynamics and cell cycle distribution in breast tumor cells, as well as the degree and distribution of phosphorylated P53. Here we show, in two different human breast adenocarcinoma models, that Arl2 content has a major impact on breast tumor cell aggressivity both in vitro and in vivo. Cells with reduced content of Arl2 displayed reduced contact inhibition, increased clonogenic or cluster formation as well as a proliferative advantage over control cells in an in vitro competition assay. These cells also caused larger tumors in SCID mice, a phenotype which was mimicked by the in vivo administration of siRNA directed against Arl2. Cells with increased Arl2 content displayed reduced aggressivity, both in vitro and in vivo, with enhanced necrosis and were also found to contain increased PP2A phosphatase activity. A rt-PCR analysis of fresh human tumor breast samples suggested that low Arl2 expression was associated with larger tumor size and greater risk of lymph node involvement at diagnosis. These data underline the role of Arl2, a small GTPase, as an important regulator of breast tumor cell aggressivity, both in vitro and in vivo.

  5. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  6. Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3

    OpenAIRE

    Eun-A Kim

    2012-01-01

    We investigated the mechanisms involved in KHG26377 regulationof glutamate dehydrogenase (GDH) activity, focusing onthe roles of SIRT4 and SIRT3. Intraperitoneal injection of micewith KHG26377 reduced GDH activity with concomitant repressionof glucose-induced insulin secretion. Consistent withtheir known functions, SIRT4 ribosylated GDH and reduced itsactivity, and SIRT3 deacetylated GDH, increasing its activity.However, KHG26377 did not affect SIRT4-mediated ADP-ribosylation/inhibition or SI...

  7. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius.

    Science.gov (United States)

    Wang, Liling; Li, Haibo; Zhou, Yifeng; Qin, Yuchuan; Wang, Yanbin; Liu, Bentong; Qian, Hua

    2016-05-01

    ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation.

  8. Structure of an ADP-ribosylation factor, ARF1, from Entamoeba histolytica bound to Mg(2+)-GDP.

    Science.gov (United States)

    Serbzhinskiy, Dmitry A; Clifton, Matthew C; Sankaran, Banumathi; Staker, Bart L; Edwards, Thomas E; Myler, Peter J

    2015-05-01

    Entamoeba histolytica is the etiological agent of amebiasis, a diarrheal disease which causes amoebic liver abscesses and amoebic colitis. Approximately 50 million people are infected worldwide with E. histolytica. With only 10% of infected people developing symptomatic amebiasis, there are still an estimated 100,000 deaths each year. Because of the emergence of resistant strains of the parasite, it is necessary to find a treatment which would be a proper response to this challenge. ADP-ribosylation factor (ARF) is a member of the ARF family of GTP-binding proteins. These proteins are ubiquitous in eukaryotic cells; they generally associate with cell membranes and regulate vesicular traffic and intracellular signalling. The crystal structure of ARF1 from E. histolytica has been determined bound to magnesium and GDP at 1.8 Å resolution. Comparison with other structures of eukaryotic ARF proteins shows a highly conserved structure and supports the interswitch toggle mechanism of communicating the conformational state to partner proteins.

  9. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation.

    Science.gov (United States)

    Aravind, L

    2001-05-01

    Sequence profile analysis was used to detect a conserved globular domain in several proteins including deltex, Trip12 and poly-ADP-ribose polymerase homologs. It was named the WWE domain after its most conserved residues and is predicted to mediate specific protein-protein interactions in ubiquitin and ADP-ribose conjugation systems.

  10. The Key Involvement of Poly(ADP-Ribosylation) in Defense Against Toxic Agents: Molecular Biology Studies

    Science.gov (United States)

    1993-04-29

    Jacobson, M.K., Janzon, L., SeidegArd, J., Smulson, M.E., and Troll, W. The Malmt5 Diet and Cancer Study: The Biomarker Program. Submitted for publication in...ribosylate proteins which bind to the regulatory regions of glucocorticoid responsive genes. (2). TCDD, dioxin , a potent environmental contaminant...like glucocorticoid is mediated by an aromatic hydrocarbon rereptor which a!’c binds to specific DNA sequences (i.e. dioxin -responsive elements

  11. Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses

    DEFF Research Database (Denmark)

    Jungmichel, S.; Rosenthal, F.; Altmeyer, M.;

    2013-01-01

    Poly(ADP-ribos)ylation (PARylation) is a reversible posttranslational modification found in higher eukaryotes. However, little is known about PARylation acceptor proteins. Here, we describe a sensitive proteomics approach based on high-accuracy quantitative mass spectrometry for the identificatio...

  12. [The structural characteristics, alternative splicing and genetic experession analysis of ADP-ribosylation-factor 1 (arf1) in cotton].

    Science.gov (United States)

    Ren, Mao-Zhi; Chen, Quan-Jia; Zhang, Rui; Guo, San-Dui

    2004-08-01

    The full-length cDNA,DNA and promoter of ADP-ribosylation-factor 1 (arf1) was isolated from Gossypium hirsutum Y18 by means of isocaudarner inverse PCR (II-PCR) and rapid isolating cDNA 5' unknown sequence and promoter (RICUP) established in our lab. Results indicated that the gene is 4 360 bp in size, including seven exons and six introns. Interestingly, alterative splicing occurs at intron I. Differential processing of intron 1 yields three different transcripts with 1 026 bp, 1103 bp and 1 544 bp in sizes, respectively. Arf1 encodes 181 amino acids. Sequence analysis indicated that sequence upstream transcription initiation site of arf1 includes typical initiator, TATA box, CCAAT box, GC box and several forward and reverse repeat sequences. And typical promoter structures, such as AT-rich sequence and palindrome structure have been detected in the sequence downstream transcription initiation site. Southern blot analysis indicated that the gene has two copies in the genome of cotton. Northern blot confirmed the predominate expression of arf1 in reproductive organs of cotton, including bud, flower, fiber and boll. Also, the feature and character of arf1 and its promoter have been studied. This study will lay foundation for the other research on function of arf1 in the development of reproductive organs in cotton.

  13. ADP-ribosylation Factor-related Protein 1 Interacts with NS5A and Regulates Hepatitis C Virus Propagation

    Science.gov (United States)

    Lim, Yun-Sook; Ngo, Huong T. T.; Lee, Jihye; Son, Kidong; Park, Eun-Mee; Hwang, Soon B.

    2016-01-01

    The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet (LD) formation using cell culture-grown HCV (HCVcc)-infected cells. In this study, we selected and characterized the gene encoding ADP-ribosylation factor-related protein 1 (ARFRP1). ARFRP1 is essential for LD growth and is involved in the regulation of lipolysis. siRNA-mediated knockdown of ARFRP1 significantly inhibited HCV replication in both subgenomic replicon cells and HCVcc-infected cells. ARFRP1 interacted with NS5A and NS5A partially colocalized with LD. Silencing of ARFRP1 abrogated HCV-induced LD growth and viral protein expressions. Moreover, ARFRP1 recruited synaptosomal-associated protein 23 (SNAP23) to sites in close proximity to LDs in HCV-infected cells. Silencing of ARFRP1 ablated relocalization of SNAP23 to LD. These data indicate that HCV regulates ARFRP1 for LD growth to facilitate viral propagation and thus ARFRP1 may be a potential target for antiviral therapy. PMID:27550144

  14. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1.

    Science.gov (United States)

    Ashery, U; Koch, H; Scheuss, V; Brose, N; Rettig, J

    1999-02-01

    ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane.

  15. Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin

    Science.gov (United States)

    Toniti, Waraphan; Yoshida, Toru; Tsurumura, Toshiharu; Irikura, Daisuke; Monma, Chie; Kamata, Yoichi

    2017-01-01

    Unusual outbreaks of food poisoning in Japan were reported in which Clostridium perfringens was strongly suspected to be the cause based on epidemiological information and fingerprinting of isolates. The isolated strains lack the typical C. perfringens enterotoxin (CPE) but secrete a new enterotoxin consisting of two components: C. perfringens iota-like enterotoxin-a (CPILE-a), which acts as an enzymatic ADP-ribosyltransferase, and CPILE-b, a membrane binding component. Here we present the crystal structures of apo-CPILE-a, NAD+-CPILE-a and NADH-CPILE-a. Though CPILE-a structure has high similarity with known iota toxin-a (Ia) with NAD+, it possesses two extra-long protruding loops from G262-S269 and E402-K408 that are distinct from Ia. Based on the Ia–actin complex structure, we focused on actin-binding interface regions (I-V) including two protruding loops (PT) and examined how mutations in these regions affect the ADP-ribosylation activity of CPILE-a. Though some site-directed mutagenesis studies have already been conducted on the actin binding site of Ia, in the present study, mutagenesis studies were conducted against both α- and β/γ-actin in CPILE-a and Ia. Interestingly, CPILE-a ADP-ribosylates both α- and β/γ-actin, but its sensitivity towards β/γ-actin is 36% compared with α-actin. Our results contrast to that only C2-I ADP-ribosylates β/γ-actin. We also showed that PT-I and two convex-concave interactions in CPILE-a are important for actin binding. The current study is the first detailed analysis of site-directed mutagenesis in the actin binding region of Ia and CPILE-a against both α- and β/γ-actin. PMID:28199340

  16. PolyADP-ribosylation is required for pronuclear fusion during postfertilization in mice.

    Directory of Open Access Journals (Sweden)

    Tomoharu Osada

    Full Text Available BACKGROUND: During fertilization, pronuclear envelope breakdown (PNEB is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM for the postfertilization development. METHODOLOGY/PRINCIPAL FINDINGS: Inhibition of poly(ADP-ribose polymerase activity (PARylation by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB. PARylation inhibition affects spindle bundle formation and phosphorylation of Erk molecules of metaphase II (MII unfertilized oocytes. We found a frequent appearance of multiple pronuclei (PN in the PARylation-inhibited embryos, suggesting defective polymerization of tubulins. Attenuated phosphorylation of lamin A/C by PARylation was detected in the PARylation-inhibited embryos at PNEB. This was associated with sustained localization of heterodomain protein 1 (HP1 at the PN of the one-cell embryos arrested by PARylation inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that PARylation is required for pronuclear fusion during postfertilization processes. These data further suggest that PARylation regulates protein dynamics essential for the beginning of mouse zygotic development. PARylation and its involving signal-pathways may represent potential targets as contraceptives.

  17. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  18. Diadenosine homodinucleotide products of ADP-ribosyl cyclases behave as modulators of the purinergic receptor P2X7.

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-07-02

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5',5'"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509-14514). P24, but not P18, proved to increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca(2+) through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca(2+) influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC(50) of approximately 1 mum. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca(2+)](i) has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146-23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca(2+)](i) to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A.

  19. Poly(ADP-ribosylation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles.

    Directory of Open Access Journals (Sweden)

    Fabio Ciccarone

    Full Text Available Poly(ADP-ribosylation regulates chromatin structure and transcription driving epigenetic events. In particular, Parp1 is able to directly influence DNA methylation patterns controlling transcription and activity of Dnmt1. Here, we show that ADP-ribose polymer levels and Parp1 expression are noticeably high in mouse primordial germ cells (PGCs when the bulk of DNA demethylation occurs during germline epigenetic reprogramming in the embryo. Notably, Parp1 activity is stimulated in PGCs even before its participation in the DNA damage response associated with active DNA demethylation. We demonstrate that PARP inhibition impairs both genome-wide and locus-specific DNA methylation erasure in PGCs. Moreover, we evidence that impairment of PARP activity causes a significant reduction of expression of the gene coding for Tet1 hydroxylases involved in active DNA demethylation. Taken together these results demonstrate new and adjuvant roles of poly(ADP-ribosylation during germline DNA demethylation and suggest its possible more general involvement in genome reprogramming.

  20. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice.

    Science.gov (United States)

    Lopatina, Olga; Liu, Hong-Xiang; Amina, Sarwat; Hashii, Minako; Higashida, Haruhiro

    2010-01-01

    Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.

  1. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    DEFF Research Database (Denmark)

    Smeenk, G.; Wiegant, W.W.; Luijsterburg, M.S.

    2013-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely unexp...... to IR and results in DSB repair defects. Our study unveils a functional link between DNA damage-induced poly(ADP-ribosyl)ation, SMARCA5- mediated chromatin remodeling and RNF168-dependent signaling and repair of DSBs. © 2013. Published by The Company of Biologists Ltd....

  2. Characterization of two novel ADP ribosylation factors from giant freshwater prawn Macrobrachium rosenbergii and their responses to WSSV challenge.

    Science.gov (United States)

    Ding, Zheng-Feng; Ren, Jie; Tan, Jing-Min; Wang, Zheng; Yin, Shao-Wu; Huang, Ying; Huang, Xin; Wang, Wen; Lan, Jiang-Feng; Ren, Qian

    2015-01-01

    ADP-ribosylation factors (Arfs) are small GTP-binding proteins that have an essential function in intracellular trafficking and organelle structure. To date, little information is available on the Arfs in the economically important giant freshwater prawn Macrobrachium rosenbergii and their relationship to viral infection. Here we identified two Arf genes from M. rosenbergii (MrArf1 and MrArf2) for the first time. Phylogenetic analysis showed that MrArf1, together with MjArf1 from shrimp Marsupenaeus japonicus belonged to Class I Arfs. By contrast, MrArf2 didn't not match any of the Arfs classes of I/II/III, although it could be clustered with an Arf protein from M. japonicas called MjArfn, which may represent an analog of the Arf. MrArf1 was ubiquitously expressed in all the examined tissues, with the highest transcription level in the hepatopancreas, whereas MrArf2 was only highly expressed in the hepatopancreas and exhibited very low levels in the heart, stomach, gills and intestine. The expression level of MrArf1 in the gills was down-regulated post 24 h WSSV challenge, and reached the maximal level at 48 h. MrArf1 in the hepatopancreas went up from 24 to 48 h WSSV challenge. MrArf2 transcript in the gill also went down at 24 h and then was upregulated at 48 h WSSV challenge. MrArf2 increased significantly in the hepatopancreas 24 h after infection and then went down at 48 h WSSV challenge. RNAi results showed that knockdown of MrArf1 or MrArf2 could inhibit the expression of the envelope protein gene vp28 of the WSSV. So, it could be speculated that MrArf1 and MrArf2 might play important roles in the innate immune system against WSSV infection.

  3. A quantitative analysis for the ADP-ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products.

    Science.gov (United States)

    Cyr, T; Menzies, A J; Calver, J; Whitehouse, L W

    2001-06-01

    The majority of the biological effects of pertussis toxin (PT) are the result of a toxin-catalyzed transfer of an adenosine diphosphate-ribose (ADP-ribose) moiety from NAD(+)to the alpha-subunits of a subset of signal-transducing guanine-nucleotide-binding proteins (G-proteins). This generally leads to an uncoupling of the modified G-protein from the corresponding receptor and the loss of effector regulation. This assay is based on the PT S1 subunit enzymatic transfer of ADP-ribose from NAD to the cysteine moiety of a fluorescent tagged synthetic peptide homologous to the 20 amino acid residue carboxyl-terminal sequence of the alpha-subunit of the G(i3)protein. The tagged peptide and the ADP-ribosylated product were characterized by HPLC/MS and MS/MS for structure confirmation. Quantitation of this characterized ADP-ribosylated fluorescently tagged peptide was by HPLC fluorescence using Standard Addition methodology. The assay was linear over a five hr incubation period at 20 degrees C at PT concentrations between 0.0625 and 4.0 microg/ml and the sensitivity of the assay could be increased several fold by increasing the incubation time to 24 h. Purified S1 subunit of PT exhibited 68.1+/-10.1% of the activity of the intact toxin on a molar basis, whereas the pertussis toxin B oligomer, the genetically engineered toxoid, (PT-9K/129G), and several of the other components of the Bordetella pertussis organism possessed little (<0.6%) or no detectable ribosylation activity. Commonly used pertussis vaccine reference materials, US PV Lot #11, BRP PV 66/303, and BRP PV 88/522, were assayed by this method against Bordetella pertussis Toxin Standard 90/518 and demonstrated to contain, respectively, 0.323+/-0.007, 0.682+/-0.045, and 0.757+/-0.006 microg PT/ml (Mean+/-SEM) or in terms of microg/vial: 3.63, 4.09 and 4.54, respectively. A survey of several multivalent pertussis vaccine products formulated with both whole cell as well as acellular components indicated that

  4. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone.

    Science.gov (United States)

    Liu, Linhua; Ling, Xiaoxuan; Tang, Huanwen; Chen, Jialong; Wen, Qiaosheng; Zou, Fei

    2015-08-05

    Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.

  5. Mutational analysis of the role of ADP-ribosylation activity and G(M1)-binding activity in the adjuvant properties of the Escherichia coli heat-labile enterotoxin towards intranasally administered keyhole limpet hemocyanin

    NARCIS (Netherlands)

    de Haan, L; Feil, IK; Verweij, WR; Holtrop, M; Hol, WGJ; Agsteribbe, E; Wilschut, J

    1998-01-01

    The Escherichia coli heat-labile enterotoxin (LT) is known for its potent mucosal immunoadjuvant activity towards co-administered antigens. LT is composed of one A subunit, which has ADP-ribosylation activity, and a homopentameric B subunit, which has high affinity for the toxin receptor, gangliosid

  6. Recovery of human lymphocytes damaged with. gamma. -radiation or enzymatically produced oxygen radicals: different effects of poly(ADP-ribosyl)polymerase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Marini, M.; Zunica, G. (Ist. di Istologia ed Embriologia Generale, Bologna (Italy)); Tamba, M. (Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. di Fotochimica e Radiazioni d' Alta Energia); Cossarizza, A.; Monti, D.; Franceschi, C. (Ist. di Patologia Generale, Modena (Italy))

    1990-08-01

    Quiescent human lymphocytes were damaged in two different ways, both producing toxic oxygen radicals: xanthine oxidase plus hypoxanthine (XOD/HYP), or {gamma}-rays. Under conditions where DNA synthesis was reduced to 10-20% of control, inhibitors of poly(ADP-ribosyl)polymerase (ADPRP, an enzyme that becomes activated in the presence of DNA strand breaks) allowed lymphocytes to recover completely when the damage was caused by XOD/HYP, but they did not affect DNA synthesis of irradiated cells. However, a protective effect of ADPRP inhibitors was observed with irradiated lymphocytes receiving doses {ge}50Gy. Unscheduled DNA synthesis was significantly increased when lymphocytes were damaged by high radiation doses in the presence of ADPRP inhibitors. (author).

  7. The Type III Secretion System Effector SeoC of Salmonella enterica subsp. salamae and S. enterica subsp. arizonae ADP-Ribosylates Src and Inhibits Opsonophagocytosis

    Science.gov (United States)

    Pollard, Dominic J.; Young, Joanna C.; Covarelli, Valentina; Herrera-León, Silvia; Connor, Thomas R.; Fookes, Maria; Walker, Danielle; Echeita, Aurora; Thomson, Nicholas R.; Berger, Cedric N.

    2016-01-01

    Salmonella species utilize type III secretion systems (T3SSs) to translocate effectors into the cytosol of mammalian host cells, subverting cell signaling and facilitating the onset of gastroenteritis. In this study, we compared a draft genome assembly of Salmonella enterica subsp. salamae strain 3588/07 against the genomes of S. enterica subsp. enterica serovar Typhimurium strain LT2 and Salmonella bongori strain 12419. S. enterica subsp. salamae encodes the Salmonella pathogenicity island 1 (SPI-1), SPI-2, and the locus of enterocyte effacement (LEE) T3SSs. Though several key S. Typhimurium effector genes are missing (e.g., avrA, sopB, and sseL), S. enterica subsp. salamae invades HeLa cells and contains homologues of S. bongori sboK and sboC, which we named seoC. SboC and SeoC are homologues of EspJ from enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), which inhibit Src kinase-dependent phagocytosis by ADP-ribosylation. By screening 73 clinical and environmental Salmonella isolates, we identified EspJ homologues in S. bongori, S. enterica subsp. salamae, and Salmonella enterica subsp. arizonae. The β-lactamase TEM-1 reporter system showed that SeoC is translocated by the SPI-1 T3SS. All the Salmonella SeoC/SboC homologues ADP-ribosylate Src E310 in vitro. Ectopic expression of SeoC/SboC inhibited phagocytosis of IgG-opsonized beads into Cos-7 cells stably expressing green fluorescent protein (GFP)-FcγRIIa. Concurrently, S. enterica subsp. salamae infection of J774.A1 macrophages inhibited phagocytosis of beads, in a seoC-dependent manner. These results show that S. bongori, S. enterica subsp. salamae, and S. enterica subsp. arizonae share features of the infection strategy of extracellular pathogens EPEC and EHEC and shed light on the complexities of the T3SS effector repertoires of Enterobacteriaceae. PMID:27736780

  8. ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells.

    Science.gov (United States)

    Boulay, Pierre-Luc; Cotton, Mathieu; Melançon, Paul; Claing, Audrey

    2008-12-26

    Activation of intracellular signaling pathways by growth factors is one of the major causes of cancer development and progression. Recent studies have demonstrated that monomeric G proteins of the Ras family are key regulators of cell proliferation, migration, and invasion. Using an invasive breast cancer cell lines, we demonstrate that the ADP-ribosylation factor 1 (ARF1), a small GTPase classically associated with the Golgi, is an important regulator of the biological effects induced by epidermal growth factor. Here, we show that this ARF isoform is activated following epidermal growth factor stimulation and that, in MDA-MB-231 cells, ARF1 is found in dynamic plasma membrane ruffles. Inhibition of endogenous ARF1 expression results in the inhibition of breast cancer cell migration and proliferation. The underlying mechanism involves the activation of the phosphatidylinositol 3-kinase pathway. Our data demonstrate that depletion of ARF1 markedly impairs the recruitment of the phosphatidylinositol 3-kinase catalytic subunit (p110alpha) to the plasma membrane, and the association of the regulatory subunit (p85alpha) to the activated receptor. These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression.

  9. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.

    Science.gov (United States)

    Long, Aaron; Park, Ji H; Klimova, Nina; Fowler, Carol; Loane, David J; Kristian, Tibor

    2017-01-01

    Several enzymes in cellular bioenergetics metabolism require NAD(+) as an essential cofactor for their activity. NAD(+) depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD(+) consuming enzyme CD38. CD38 is an NAD(+) glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD(+) levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD(+) catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD(+) metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD(+) metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

  10. Cloning and Sequence Analysis of ADP-ribosylation Factors Gene from Haloxylon ammodendron%梭梭ARF1基因的克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    周晓燕; 石磊; 甘晓燕; 陈虞超; 宋玉霞

    2012-01-01

    二磷酸腺苷核糖基化作用因子( ADP-ribosylation factors,ARFs)属小G蛋白超级家族中的Arf亚族,是真核细胞囊泡运输通道的关键组成成分,参与细胞运输和信号传导.本试验采用RT-PCR、RACE等方法从超旱生、耐盐植物梭梭(Haloxylon ammodendron)中扩增出ADP- ribosylation factor( ARF1)基因的cDNA序列(命名为HaARF1),其开放阅读框为546 bp,推测氨基酸序列全长为181个氨基酸残基,具有典型的小GTP结合蛋白结构域.其氨基酸序列与GenBank中已发表同源对比相似度达99%以上,表明ARF1基因在不同物种间高度保守.%ADP-ribosylation factor (ADP-ribosylation factors, ARFs) belongs to a small G protein super-family of Arf subfamily, which is a key component of vesicle transport channel components involved in cellular transport and signal transduction in eukaryotic cells. Through RT-PCR (reverse transcription polymerase chain reaction) and RACE (rapid amplification of cDNA ends) , a 546 bp fragment containing entire ARFI gene coding region of 181 amino acid(aa) has been obtained (named as HaARFl ) from the super-xerophytic, salt-tolerant plants Haloxylon (Haloxylon ammodendron) , the deduced amino acid sequences contain a typical small GTP-binding protein domain. Encoded protein by HaARFl and ARF1 protein from GenBank has been published homologous to other species up to 99% similarity comparison, indicating that ARF1 genes are highly conserved among different species.

  11. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences.

    Science.gov (United States)

    Mangerich, Aswin; Debiak, Malgorzata; Birtel, Matthias; Ponath, Viviane; Balszuweit, Frank; Lex, Kirsten; Martello, Rita; Burckhardt-Boer, Waltraud; Strobelt, Romano; Siegert, Markus; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Bürkle, Alexander

    2016-02-26

    Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of

  12. Bacterial Cytotoxins Target Rho GTPases

    Science.gov (United States)

    Schmidt, Gudula; Aktories, Klaus

    1998-06-01

    Low molecular mass GTPases of the Rho family, which are involved in the regulation of the actin cytoskeleton and in various signal transduction processes, are the eukaryotic targets of bacterial protein toxins. The toxins covalently modify Rho proteins by ADP ribosylation, glucosylation, and deamidation, thereby inactivating and activating the GTPases.

  13. Increased poly(ADP-ribosyl)ation in skeletal muscle tissue of pediatric patients with severe burn injury: prevention by propranolol treatment.

    Science.gov (United States)

    Oláh, Gábor; Finnerty, Celeste C; Sbrana, Elena; Elijah, Itoro; Gerö, Domokos; Herndon, David N; Szabó, Csaba

    2011-07-01

    Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) has been shown to promote cellular energetic collapse and cellular necrosis in various forms of critical illness. Most of the evidence implicating the PARP pathway in disease processes is derived from preclinical studies. With respect to PARP and burns, studies in rodent and large animal models of burn injury have demonstrated the activation of PARP in various tissues and the beneficial effect of its pharmacological inhibition. The aims of the current study were to measure the activation of PARP in human skeletal muscle biopsies at various stages of severe pediatric burn injury and to identify the cell types where this activation may occur. Another aim of the study was to test the effect of propranolol (an effective treatment of patients with burns) on the activation of PARP in skeletal muscle biopsies. Poly(ADP-ribose) polymerase activation was measured by Western blotting for its product, poly(ADP-ribose) (PAR). The localization of PARP activation was determined by PAR immunohistochemistry. The results showed that PARP becomes activated in the skeletal muscle tissue after burns, with the peak of the activation occurring in the middle stage of the disease (13-18 days after burns). Even at the late stage of the disease (69-369 days after burn), an elevated degree of PARP activation persisted in some of the patients. Immunohistochemical studies localized the staining of PAR primarily to vascular endothelial cells and occasionally to resident mononuclear cells. There was a marked suppression of PARP activation in the skeletal muscle biopsies of patients who received propranolol treatment. We conclude that human burn injury is associated with the activation of PARP. We hypothesize that this response may contribute to the inflammatory responses and cell dysfunction in burns. Some of the clinical benefit of propranolol in burns may be related to its inhibitory effect on PARP activation.

  14. Overexpression of human CD38/ADP-ribosyl cyclase enhances acetylcholine-induced Ca2+ signalling in rodent NG108-15 neuroblastoma cells.

    Science.gov (United States)

    Higashida, Haruhiro; Bowden, Sarah E H; Yokoyama, Shigeru; Salmina, Alla; Hashii, Minako; Hoshi, Naoto; Zhang, Jia-Sheng; Knijnik, Rimma; Noda, Mami; Zhong, Zen-Guo; Jin, Duo; Higashida, Kazuhiro; Takeda, Hisashi; Akita, Tenpei; Kuba, Kenji; Yamagishi, Sayaka; Shimizu, Noriaki; Takasawa, Shin; Okamoto, Hiroshi; Robbins, Jon

    2007-03-01

    The role of cyclic ADP-ribose (cADPR) and its synthetic enzyme, CD38, as a downstream signal of muscarinic acetylcholine receptors (mAChRs) was examined in neuroblastoma cells expressing M1 mAChRs (NGM1). NGM1 cells were further transformed with both wild-type and mutant (C119K/C201E) human CD38. The dual transformed cells exhibited higher cADPR formation than ADPR production and elevated intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in response to ACh. These phenotypes were analyzed in detail in a representative CD38 clone. The intracellular cADPR concentration by ACh application was significantly increased by CD38 overexpression. Digital image analysis by a confocal microscopy revealed that topographical distribution of the sites of Ca(2+) release was unchanged between control and overexpressed cells. These results indicate that cADPR is an intracellular messenger of Ca(2+) signalling, suggesting that CD38 can contribute to mAChR-cADPR signalling.

  15. Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity.

    Science.gov (United States)

    Awasthi, Sharda Prasad; Asakura, Masahiro; Chowdhury, Nityananda; Neogi, Sucharit Basu; Hinenoya, Atsushi; Golbar, Hossain M; Yamate, Jyoji; Arakawa, Eiji; Tada, Toshiji; Ramamurthy, T; Yamasaki, Shinji

    2013-02-01

    Cholix toxin (ChxA) is a recently discovered exotoxin in Vibrio cholerae which has been characterized as a third member of the eukaryotic elongation factor 2-specific ADP-ribosyltransferase toxins, in addition to exotoxin A of Pseudomonas aeruginosa and diphtheria toxin of Corynebacterium diphtheriae. These toxins consist of three characteristic domains for receptor binding, translocation, and catalysis. However, there is little information about the prevalence of chxA and its genetic variations and pathogenic mechanisms. In this study, we screened the chxA gene in a large number (n = 765) of V. cholerae strains and observed its presence exclusively in non-O1/non-O139 strains (27.0%; 53 of 196) and not in O1 (n = 485) or O139 (n = 84). Sequencing of these 53 chxA genes generated 29 subtypes which were grouped into three clusters designated chxA I, chxA II, and chxA III. chxA I belongs to the prototype, while chxA II and chxA III are newly discovered variants. ChxA II and ChxA III had unique receptor binding and catalytic domains, respectively, in comparison to ChxA I. Recombinant ChxA I (rChxA I) and rChxA II but not rChxA III showed variable cytotoxic effects on different eukaryotic cells. Although rChxA II was more lethal to mice than rChxA I when injected intravenously, no enterotoxicity of any rChxA was observed in a rabbit ileal loop test. Hepatocytes showed coagulation necrosis in rChxA I- or rChxA II-treated mice, seemingly the major target for ChxA. The present study illustrates the potential of ChxA as an important virulence factor in non-O1/non-O139 V. cholerae, which may be associated with extraintestinal infections rather than enterotoxicity.

  16. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  17. Changes in NAD/ADP-ribose metabolism in rectal cancer

    Directory of Open Access Journals (Sweden)

    L. Yalcintepe

    2005-03-01

    Full Text Available The extent of ADP-ribosylation in rectal cancer was compared to that of the corresponding normal rectal tissue. Twenty rectal tissue fragments were collected during surgery from patients diagnosed as having rectal cancer on the basis of pathology results. The levels of ADP-ribosylation in rectum cancer tissue samples (95.9 ± 22.1 nmol/ml was significantly higher than in normal tissues (11.4 ± 4 nmol/ml. The level of NAD+ glycohydrolase and ADP-ribosyl cyclase activities in rectal cancer and normal tissue samples were measured. Cancer tissues had significantly higher NAD+ glycohydrolase and ADP-ribosyl cyclase activities than the control tissues (43.3 ± 9.1 vs 29.2 ± 5.2 and 6.2 ± 1.6 vs 1.6 ± 0.4 nmol mg-1 min-1. Approximately 75% of the NAD+ concentration was consumed as substrate in rectal cancer, with changes in NAD+/ADP-ribose metabolism being observed. When [14C]-ADP-ribosylated tissue samples were subjected to SDS-PAGE, autoradiographic analysis revealed that several proteins were ADP-ribosylated in rectum tissue. Notably, the radiolabeling of a 113-kDa protein was remarkably greater than that in control tissues. Poly(ADP-ribosylation of the 113-kDa protein in rectum cancer tissues might be enhanced with its proliferative activity, and poly(ADP-ribosylation of the same protein in rectum cancer patients might be an indicator of tumor diagnosis.

  18. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1.

    Directory of Open Access Journals (Sweden)

    Simone Di Paola

    Full Text Available BACKGROUND: Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes that catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. The latter include members of three different families of proteins: the well characterized arginine-specific ecto-enzymes ARTCs, two sirtuins and, more recently, novel members of the poly(ADP-ribose polymerase (PARP/ARTD family that have been suggested to act as cellular mono-ADP-ribosyltransferases. Here, we report on the characterisation of human ARTD15, the only known ARTD family member with a putative C-terminal transmembrane domain. METHODOLOGY/PRINCIPAL FINDINGS: Immunofluorescence and electron microscopy were performed to characterise the sub-cellular localisation of ARTD15, which was found to be associated with membranes of the nuclear envelope and endoplasmic reticulum. The orientation of ARTD15 was determined using protease protection assay, and is shown to be a tail-anchored protein with a cytosolic catalytic domain. Importantly, by combining immunoprecipitation with mass spectrometry and using cell lysates from cells over-expressing FLAG-ARTD15, we have identified karyopherin-ß1, a component of the nuclear trafficking machinery, as a molecular partner of ARTD15. Finally, we demonstrate that ARTD15 is a mono-ADP-ribosyltransferase able to induce the ADP-ribosylation of karyopherin-ß1, thus defining the first substrate for this enzyme. CONCLUSIONS/SIGNIFICANCE: Our data reveal that ARTD15 is a novel ADP-ribosyltransferase enzyme with a new intracellular location. Finally, the identification of karyopherin-ß1 as a target of ARTD15-mediated ADP-ribosylation, hints at a novel regulatory mechanism of karyopherin-ß1 functions.

  19. Role of poly(ADP-ribosepolymerase 2 in DNA repair

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Poly(ADP-ribosylation is a posttranslational protein modification significant for the genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosylation is catalyzed by poly(ADP-ribosepolymerases (PARPs, which use NAD+ as a substrate, synthesize polymer of (ADP-ribose (PAR covalently attached to nuclear proteins including PARP themselves. PARPs constitute a large family of proteins, in which PARP1 is the most abundant and best-characterized member. In spite of growing body of PARPs’ role in cellular processes, PARP2, the closest homolog of PARP1, still remains poorly characterized at the level of its contribution to different pathways of DNA repair. An overview summarizes in vivo and in vitro data on PARP2 implication in specialized DNA repair processes, base excision repair and double strand break repair.

  20. Identification of an enzymatic activity that hydrolyzes protein-bound ADP-ribose in skeletal muscle.

    Science.gov (United States)

    Chang, Y C; Soman, G; Graves, D J

    1986-09-30

    An enzymatic activity present in high-speed supernatant fluids of rat skeletal muscle was found that catalyzes the release of ADP-ribose from ADP-ribosylated-modified lysozyme. The nature of the product was proved by chromatographic studies and proton nuclear magnetic resonance spectroscopy. The enzyme activity is stimulated by Mg2+, dithioerythritol, and flouride. These results and those published earlier (Soman, G., Mickelson, J.R., Louis, C.F., and Graves, D.J. (1984) Biochem. Biophys. Res. Commun. 120, 973-980) show that ADP-ribosylation is a reversible process in skeletal muscle.

  1. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    OpenAIRE

    Sharan Rajeshwar N; Kataki Amal C; Lakadong Rennie O

    2010-01-01

    Abstract Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothe...

  2. Structural insight into the interaction of ADP-ribose with the PARP WWE domains.

    Science.gov (United States)

    He, Fahu; Tsuda, Kengo; Takahashi, Mari; Kuwasako, Kanako; Terada, Takaho; Shirouzu, Mikako; Watanabe, Satoru; Kigawa, Takanori; Kobayashi, Naohiro; Güntert, Peter; Yokoyama, Shigeyuki; Muto, Yutaka

    2012-11-02

    The WWE domain is often identified in proteins associated with ubiquitination or poly-ADP-ribosylation. Structural information about WWE domains has been obtained for the ubiquitination-related proteins, such as Deltex and RNF146, but not yet for the poly-ADP-ribose polymerases (PARPs). Here we determined the solution structures of the WWE domains from PARP11 and PARP14, and compared them with that of the RNF146 WWE domain. NMR perturbation experiments revealed the specific differences in their ADP-ribose recognition modes that correlated with their individual biological activities. The present structural information sheds light on the ADP-ribose recognition modes by the PARP WWE domains.

  3. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Directory of Open Access Journals (Sweden)

    Markus Dahl

    Full Text Available BACKGROUND: Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling. METHODS: A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference. RESULTS: TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1. CONCLUSION

  4. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases.

    Science.gov (United States)

    Eckei, Laura; Krieg, Sarah; Bütepage, Mareike; Lehmann, Anne; Gross, Annika; Lippok, Barbara; Grimm, Alexander R; Kümmerer, Beate M; Rossetti, Giulia; Lüscher, Bernhard; Verheugd, Patricia

    2017-02-02

    Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.

  5. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.

    Science.gov (United States)

    Vogelsgesang, Martin; Aktories, Klaus

    2006-01-24

    C3-like ADP-ribosyltransferaseses are produced by Clostridium species, Bacillus cereus, and various Staphylococcus aureus strains. The exoenzymes modify the low-molecular-mass GTPases RhoA, B, and C. In structural studies of C3-like exoenzymes, an ARTT-motif (ADP-ribosylating turn-turn motif) was identified that appears to be involved in substrate specificity and recognition (Han, S., Arvai, A. S., Clancy, S. B., Tainer, J. A. (2001) J. Mol. Biol. 305, 95-107). Exchange of Gln217, which is a key residue of the ARTT-motif, to Glu in C3 from Clostridium limosum results in inhibition of ADP-ribosyltransferase activity toward RhoA. The mutant protein is still capable of NAD-binding and possesses NAD+ glycohydrolase activity. Whereas recombinant wild-type C3 modifies Rho proteins specifically at an asparagine residue (Asn41), Gln217Glu-C3 is capable of ADP-ribosylation of poly-arginine but not poly-asparagine. Soybean trypsin inhibitor, a model substrate for many arginine-specific ADP-ribosyltransferases, is modified by the Gln217Glu-C3 transferase. Also in C3 ADP-ribosyltransferases from Clostridium botulinum and B. cereus, the exchange of the equivalent Gln residue to Glu blocked asparagine modification of RhoA but elicited arginine-specific ADP-ribosylation. Moreover, the Gln217Glu-C3lim transferase was able to ADP-ribosylate recombinant wild-type C3lim at Arg86, resulting in decrease in ADP-ribosyltransferase activity of the wild-type enzyme. The data indicate that the exchange of one amino acid residue in the ARTT-motif turns the asparagine-modifying ADP-ribosyltransferases of the C3 family into arginine-ADP-ribosylating transferases.

  6. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    Science.gov (United States)

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  7. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    Science.gov (United States)

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  8. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity.

    Directory of Open Access Journals (Sweden)

    Maria Valeri

    Full Text Available Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.

  9. ADP-ribosylhydrolase 3 (ARH3), Not Poly(ADP-ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-associated Poly(ADP-ribose)*

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-01-01

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3−/− mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism. PMID:22433848

  10. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-05-11

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.

  11. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.

    Science.gov (United States)

    Higashida, Haruhiro; Salmina, Alla B; Olovyannikova, Raissa Ya; Hashii, Minako; Yokoyama, Shigeru; Koizumi, Keita; Jin, Duo; Liu, Hong-Xiang; Lopatina, Olga; Amina, Sarwat; Islam, Mohammad Saharul; Huang, Jian-Jun; Noda, Mami

    2007-01-01

    beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.

  12. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.

    Science.gov (United States)

    Tiemann, B; Depping, R; Rüger, W

    1999-01-01

    There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  13. The art of blocking ADP-ribosyltransferases (ARTs): nanobodies as experimental and therapeutic tools to block mammalian and toxin ARTs.

    Science.gov (United States)

    Menzel, Stephan; Rissiek, Björn; Haag, Friedrich; Goldbaum, Fernando A; Koch-Nolte, Friedrich

    2013-08-01

    In 1901, the first Nobel Prize in Physiology or Medicine was awarded to Emil von Behring for his ground-breaking discovery of serum therapy: serum from horses vaccinated with toxin-containing culture medium of Corynebacterium diphtheriae contained life-saving 'antitoxins'. The molecular nature of the ADP-ribosylating toxin and the neutralizing antibodies were unraveled only 50 years later. Today, von Behring's antibody therapy is being refined with a new generation of recombinant antibodies and antibody fragments. Nanobodies, which are single-domain antibodies derived from the peculiar heavy-chain antibodies of llamas and other camelids, are emerging as a promising new class of highly specific enzyme inhibitors. In this review, we illustrate the potential of nanobodies as tools to block extracellular and intracellular ADP-ribosyltransferases (ARTs), using the toxin-related membrane-bound mammalian ecto-enzyme ARTC2 and the actin-ADP-ribosylating Salmonella virulence plasmid factor B toxin of Salmonella enterica as examples.

  14. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  15. Noncovalent protein interaction with poly(ADP-ribose).

    Science.gov (United States)

    Malanga, Maria; Althaus, Felix R

    2011-01-01

    Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

  16. Decreased ADP-Ribosyl Cyclase Activity in Peripheral Blood Mononuclear Cells from Diabetic Patients with Nephropathy

    Directory of Open Access Journals (Sweden)

    Michio Ohtsuji

    2008-01-01

    Results. ADPRCA negatively correlated with the level of HbA1c (=.040, 2=.073, although ADPRCA showed no significant correlation with gender, age, BMI, blood pressure, level of fasting plasma glucose and lipid levels, as well as type, duration, or medication of diabetes. Interestingly, patients with nephropathy, but not other complications, presented significantly lower ADPRCA than those without nephropathy (=.0198 and diabetes (=.0332. ANCOVA analysis adjusted for HbA1c showed no significant correlation between ADPRCA and nephropathy. However, logistic regression analyses revealed that determinants for nephropathy were systolic blood pressure and ADPRCA, not HbA1c. Conclusion/interpretation. Decreased ADPRCA significantly correlated with diabetic nephropathy. ADPRCA in PBMCs would be an important marker associated with diabetic nephropathy.

  17. Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice.

    Science.gov (United States)

    Meyer-Ficca, Mirella L; Ihara, Motomasa; Bader, Jessica J; Leu, N Adrian; Beneke, Sascha; Meyer, Ralph G

    2015-03-01

    Sperm are highly differentiated cells characterized by their species-specific nuclear shapes and extremely condensed chromatin. Abnormal head shapes represent a form of teratozoospermia that can impair fertilization capacity. This study shows that poly(ADP-ribose) polymerase-11 (ARTD11/PARP11), a member of the ADP-ribosyltransferase (ARTD) family, is expressed preferentially in spermatids undergoing nuclear condensation and differentiation. Deletion of the Parp11 gene results in teratozoospermia and male infertility in mice due to the formation of abnormally shaped fertilization-incompetent sperm, despite normal testis weights and sperm counts. At the subcellular level, PARP11-deficient elongating spermatids reveal structural defects in the nuclear envelope and chromatin detachment associated with abnormal nuclear shaping, suggesting functional relevance of PARP11 for nuclear envelope stability and nuclear reorganization during spermiogenesis. In vitro, PARP11 exhibits mono(ADP-ribosyl)ation activity with the ability to ADP-ribosylate itself. In transfected somatic cells, PARP11 colocalizes with nuclear pore components, such as NUP153. Amino acids Y77, Q86, and R95 in the N-terminal WWE domain, as well as presence of the catalytic domain, are essential for colocalization of PARP11 with the nuclear envelope, but catalytic activity of the protein is not required for colocalization with NUP153. This study demonstrates that PARP11 is a novel enzyme important for proper sperm head shaping and identifies it as a potential factor involved in idiopathic mammalian teratozoospermia.

  18. The Sound of Silence: RNAi in Poly (ADP-Ribose Research

    Directory of Open Access Journals (Sweden)

    Felix R. Althaus

    2012-12-01

    Full Text Available Poly(ADP-ribosyl-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose (PAR is regulated by its synthesis by poly(ADP-ribose polymerases (PARPs and on the catabolic side by poly(ADP-ribose glycohydrolase (PARG. PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption.

  19. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age

    Science.gov (United States)

    Van Meter, Michael; Kashyap, Mehr; Rezazadeh, Sarallah; Geneva, Anthony J.; Morello, Timothy D.; Seluanov, Andrei; Gorbunova, Vera

    2014-01-01

    L1 retrotransposons are an abundant class of transposable elements which pose a threat to genome stability and may play a role in age-related pathologies such as cancer. Recent evidence indicates that L1s become more active in somatic tissues during the course of aging; the mechanisms underlying this phenomenon remain unknown, however. Here we report that the longevity regulating protein, SIRT6, is a powerful repressor of L1 activity. Specifically, SIRT6 binds to the 5′UTR of L1 loci, where it mono-ADP ribosylates the nuclear corepressor protein, KAP1, and facilitates KAP1 interaction with the heterochromatin factor, HP1α, thereby contributing to the packaging of L1 elements into transcriptionally repressive heterochromatin. During the course of aging, and also in response to DNA damage, however, we find that SIRT6 is depleted from L1 loci, allowing for the activation of these previously silenced retroelements. PMID:25247314

  20. Rapid Identification of Bacterial Virulence Factors

    Science.gov (United States)

    2014-04-15

    Arsenal, Alabama 35898 14. MARKED FOR D CODE IS. ITEW NO. 16. STOCK/PART NO. DESCRIPTION (Indicate number of shipping containers - type of...In mammals , the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the...different species from fungi to mammals . The high degree of conservation, in special in the nudC domain, suggests that they are genes with essential

  1. Metabolic roles of poly(ADP-ribose) polymerases.

    Science.gov (United States)

    Vida, András; Márton, Judit; Mikó, Edit; Bai, Péter

    2017-03-01

    Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.

  2. ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis.

    Science.gov (United States)

    Tiemann, Bernd; Depping, Reinhard; Gineikiene, Egle; Kaliniene, Laura; Nivinskas, Rimas; Rüger, Wolfgang

    2004-11-01

    Bacteriophage T4 encodes three ADP-ribosyltransferases, Alt, ModA, and ModB. These enzymes participate in the regulation of the T4 replication cycle by ADP-ribosylating a defined set of host proteins. In order to obtain a better understanding of the phage-host interactions and their consequences for regulating the T4 replication cycle, we studied cloning, overexpression, and characterization of purified ModA and ModB enzymes. Site-directed mutagenesis confirmed that amino acids, as deduced from secondary structure alignments, are indeed decisive for the activity of the enzymes, implying that the transfer reaction follows the Sn1-type reaction scheme proposed for this class of enzymes. In vitro transcription assays performed with Alt- and ModA-modified RNA polymerases demonstrated that the Alt-ribosylated polymerase enhances transcription from T4 early promoters on a T4 DNA template, whereas the transcriptional activity of ModA-modified polymerase, without the participation of T4-encoded auxiliary proteins for middle mode or late transcription, is reduced. The results presented here support the conclusion that ADP-ribosylation of RNA polymerase and of other host proteins allows initial phage-directed mRNA synthesis reactions to escape from host control. In contrast, subsequent modification of the other cellular target proteins limits transcription from phage early genes and participates in redirecting transcription to phage middle and late genes.

  3. ADP-ribose polymer - a novel and general biomarker of human cancers of head & neck, breast, and cervix

    Directory of Open Access Journals (Sweden)

    Sharan Rajeshwar N

    2010-10-01

    Full Text Available Abstract Background Poly-ADP-ribosylation, a reversible post-translational modification of primarily chromosomal proteins, is involved in various cellular and molecular processes including carcinogenesis. ADP-ribose polymer or poly-ADP-ribose adducts are enzymatically added onto or stripped off the target chromosomal proteins during this metabolic process. Due to this, the chromatin superstructure is reversibly altered, which significantly influences the pattern of gene expression. We hypothesize that a decrease in the concentration of total poly-ADP-ribose adducts of peripheral blood lymphocyte (PBL proteins strongly correlates with the incidence of human cancer. Results Using a novel immunoprobe assay, we show a statistically significant (P ≤ 0.001 reduction (~ 42 to 49% in the level of poly-ADP-ribose adducts of PBL proteins of patients with advanced cancers of head & neck (H & N region (comprising fourteen distinct cancers at different sites, breast and cervix in comparison to healthy controls. Conclusions These findings imply potential utility of the poly-ADP-ribose adducts of PBL proteins as a novel and general biomarker of human cancers with potentials of significant clinical and epidemiological applications.

  4. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    Science.gov (United States)

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.

  5. Poly (ADP-ribose polymerase 1 is required for protein localization to Cajal body.

    Directory of Open Access Journals (Sweden)

    Elena Kotova

    2009-02-01

    Full Text Available Recently, the nuclear protein known as Poly (ADP-ribose Polymerase1 (PARP1 was shown to play a key role in regulating transcription of a number of genes and controlling the nuclear sub-organelle nucleolus. PARP1 enzyme is known to catalyze the transfer of ADP-ribose to a variety of nuclear proteins. At present, however, while we do know that the main acceptor for pADPr in vivo is PARP1 protein itself, by PARP1 automodification, the significance of PARP1 automodification for in vivo processes is not clear. Therefore, we investigated the roles of PARP1 auto ADP-ribosylation in dynamic nuclear processes during development. Specifically, we discovered that PARP1 automodification is required for shuttling key proteins into Cajal body (CB by protein non-covalent interaction with pADPr in vivo. We hypothesize that PARP1 protein shuttling follows a chain of events whereby, first, most unmodified PARP1 protein molecules bind to chromatin and accumulate in nucleoli, but then, second, upon automodification with poly(ADP-ribose, PARP1 interacts non-covalently with a number of nuclear proteins such that the resulting protein-pADPr complex dissociates from chromatin into CB.

  6. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.

    Science.gov (United States)

    Qiu, Jiazhang; Sheedlo, Michael J; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-05-01

    Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the ε-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP.

  7. Inhibition of poly(ADP-ribose polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Poly(ADP-ribosylation is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose polymerases (PARPs. In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.

  8. The genes pme-1 and pme-2 encode two poly(ADP-ribose) polymerases in Caenorhabditis elegans.

    Science.gov (United States)

    Gagnon, Steve N; Hengartner, Michael O; Desnoyers, Serge

    2002-11-15

    Poly(ADP-ribose) polymerases (PARPs) are an expanding, well-conserved family of enzymes found in many metazoan species, including plants. The enzyme catalyses poly(ADP-ribosyl)ation, a post-translational modification that is important in DNA repair and programmed cell death. In the present study, we report the finding of an endogenous source of poly(ADP-ribosyl)ation in total extracts of the nematode Caenorhabditis elegans. Two cDNAs encoding highly similar proteins to human PARP-1 (huPARP-1) and huPARP-2 are described, and we propose to name the corresponding enzymes poly(ADP-ribose) metabolism enzyme 1 (PME-1) and PME-2 respectively. PME-1 (108 kDa) shares 31% identity with huPARP-1 and has an overall structure similar to other PARP-1 subfamily members. It contains sequences having considerable similarity to zinc-finger motifs I and II, as well as with the catalytic domain of huPARP-1. PME-2 (61 kDa) has structural similarities with the catalytic domain of PARPs in general and shares 24% identity with huPARP-2. Recombinant PME-1 and PME-2 display PARP activity, which may partially account for the similar activity found in the worm. A partial duplication of the pme-1 gene with pseudogene-like features was found in the nematode genome. Messenger RNA for pme-1 are 5'-tagged with splice leader 1, whereas those for pme - 2 are tagged with splice leader 2, suggesting an operon-like expression for pme - 2. The expression pattern of pme-1 and pme-2 is also developmentally regulated. Together, these results show that PARP-1 and -2 are conserved in evolution and must have important functions in multicellular organisms. We propose using C. elegans as a model to understand better the functions of these enzymes.

  9. The assembly of a GTPase–kinase signalling complex by a bacterial catalytic scaffold

    Science.gov (United States)

    Selyunin, Andrey S.; Sutton, Sarah E.; Weigele, Bethany A.; Reddick, L. Evan; Orchard, Robert C.; Bresson, Stefan M.; Tomchick, Diana R.; Alto, Neal M.

    2011-01-01

    The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits1,2. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components3–6. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding7,8, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 Å crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 Å crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a ‘catalytic scaffold’ that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex. PMID:21170023

  10. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix.

    Science.gov (United States)

    Niere, Marc; Kernstock, Stefan; Koch-Nolte, Friedrich; Ziegler, Mathias

    2008-01-01

    Recent discoveries of NAD-mediated regulatory processes in mitochondria have documented important roles of this compartmentalized nucleotide pool in addition to energy transduction. Moreover, mitochondria respond to excessive nuclear NAD consumption arising from DNA damage-induced poly-ADP-ribosylation because poly(ADP-ribose) (PAR) can trigger the release of apoptosis-inducing factor from the organelles. To functionally assess mitochondrial NAD metabolism, we overexpressed the catalytic domain of nuclear PAR polymerase 1 (PARP1) and targeted it to the matrix, which resulted in the constitutive presence of PAR within the organelles. As a result, stably transfected HEK293 cells exhibited a decrease in NAD content and typical features of respiratory deficiency. Remarkably, inhibiting PARP activity revealed PAR degradation within mitochondria. Two enzymes, PAR glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3), are known to cleave PAR. Both full-length ARH3 and a PARG isoform, which arises from alternative splicing, localized to the mitochondrial matrix. This conclusion was based on the direct demonstration of their PAR-degrading activity within mitochondria of living cells. The visualization of catalytic activity establishes a new approach to identify submitochondrial localization of proteins involved in the metabolism of NAD derivatives. In addition, targeted PARP expression may serve as a compartment-specific "knock-down" of the NAD content which is readily detectable by PAR formation.

  11. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Science.gov (United States)

    Piskunova, Tatiana S.; Yurova, Maria N.; Ovsyannikov, Anton I.; Semenchenko, Anna V.; Zabezhinski, Mark A.; Popovich, Irina G.; Wang, Zhao-Qi; Anisimov, Vladimir N.

    2008-01-01

    Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis. PMID:19415146

  12. Deficiency in Poly(ADP-ribose Polymerase-1 (PARP-1 Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Tatiana S. Piskunova

    2008-01-01

    Full Text Available Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosylation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosylation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; < .05. In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.

  13. Cyclic ADP-ribose as an endogenous inhibitor of the mTOR pathway downstream of dopamine receptors in the mouse striatum.

    Science.gov (United States)

    Higashida, Haruhiro; Kamimura, Shin-Ya; Inoue, Takeshi; Hori, Osamu; Islam, Mohammad Saharul; Lopatina, Olga; Tsuji, Chiharu

    2016-12-26

    The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.

  14. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities.

    Science.gov (United States)

    Khadka, Prabhat; Hsu, Joseph K; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A; Mangerich, Aswin; Croteau, Deborah L; Bohr, Vilhelm A

    2015-12-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response.

  15. The Key Involvement of Poly(ADP-Ribosyl)ation in Defense Against Toxic Agents: Molecular Biology Studies

    Science.gov (United States)

    2008-02-19

    in all species of phloem sap-feeding insects , was reported to contain only 182 open reading frames (Nakabachi, el al, 2006). Even though this gene...including treatment with ethidium bromide (EtBr) (King, and Attardi, 1989) and silencing of the mt-DNA polymerase by RNAi (Khan, and Bennett, 2004

  16. Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.

    Science.gov (United States)

    Messner, Simon; Schuermann, David; Altmeyer, Matthias; Kassner, Ingrid; Schmidt, Darja; Schär, Primo; Müller, Stefan; Hottiger, Michael O

    2009-11-01

    Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein and functions as a molecular stress sensor. At the cellular level, PARP1 has been implicated in a wide range of processes, such as maintenance of genome stability, cell death, and transcription. PARP1 functions as a transcriptional coactivator of nuclear factor kappaB (NF-kappaB) and hypoxia inducible factor 1 (HIF1). In proteomic studies, PARP1 was found to be modified by small ubiquitin-like modifiers (SUMOs). Here, we characterize PARP1 as a substrate for modification by SUMO1 and SUMO3, both in vitro and in vivo. PARP1 is sumoylated at the single lysine residue K486 within its automodification domain. Interestingly, modification of PARP1 with SUMO does not affect its ADP-ribosylation activity but completely abrogates p300-mediated acetylation of PARP1, revealing an intriguing crosstalk of sumoylation and acetylation on PARP1. Genetic complementation of PARP1-depleted cells with wild-type and sumoylation-deficient PARP1 revealed that SUMO modification of PARP1 restrains its transcriptional coactivator function and subsequently reduces gene expression of distinct PARP1-regulated target genes.

  17. Crystallographic Analysis of Tapering of ADP Crystallites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic characteristics of ADP (ammonium dihydrogen phosphate) crystals and the selected growth conditions, the growth habit of ADP crystals was studied. In comparison with pyramidal planes, the growth rate of prismatic faces is slower and more sensitive to the additives and impurities for ADP crystals. When the supersaturation is low, the advance of growth steps on prismatic face can be blocked by ethanol or impurities, the crystal morphology is changed from the tetragonal prism to shuttle (i.e., the tapered shape). The tapering formation of ADP crystallites was structurally studied in a novel view.

  18. Study of the Five Rickettsia prowazekii Proteins Annotated as ATP/ADP Translocases (Tlc): Only Tlc1 Transports ATP/ADP, While Tlc4 and Tlc5 Transport Other Ribonucleotides

    OpenAIRE

    Audia, Jonathon P.; Winkler, Herbert H.

    2006-01-01

    The obligate intracytoplasmic pathogen Rickettsia prowazekii relies on the transport of many essential compounds from the cytoplasm of the eukaryotic host cell in lieu of de novo synthesis, an evolutionary outcome undoubtedly linked to obligatory growth in this metabolite-replete niche. The paradigm for the study of rickettsial transport systems is the ATP/ADP translocase Tlc1, which exchanges bacterial ADP for host cell ATP as a source of energy, rather than as a source of adenylate. Interes...

  19. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    Science.gov (United States)

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

  20. Rho-modifying bacterial protein toxins from Photorhabdus species.

    Science.gov (United States)

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins.

  1. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Institute of Scientific and Technical Information of China (English)

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.

  2. Raman gains of ADP and KDP crystals

    Institute of Scientific and Technical Information of China (English)

    周海亮; 柴向旭; 张清华; 王波; 许心光; 王正平; 孙洵; 张芳; 张立松; 刘宝

    2015-01-01

    In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold, and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications.

  3. 45 CFR 95.619 - Use of ADP systems.

    Science.gov (United States)

    2010-10-01

    ... Data Processing Equipment and Services-Conditions for Federal Financial Participation (FFP) Specific Conditions for Ffp § 95.619 Use of ADP systems. ADP systems designed, developed, or installed with FFP...

  4. In silico characterization of the family of PARP-like poly(ADP-ribosyltransferases (pARTs

    Directory of Open Access Journals (Sweden)

    Dittmar Katharina

    2005-10-01

    Full Text Available Abstract Background ADP-ribosylation is an enzyme-catalyzed posttranslational protein modification in which mono(ADP-ribosyltransferases (mARTs and poly(ADP-ribosyltransferases (pARTs transfer the ADP-ribose moiety from NAD onto specific amino acid side chains and/or ADP-ribose units on target proteins. Results Using a combination of database search tools we identified the genes encoding recognizable pART domains in the public genome databases. In humans, the pART family encompasses 17 members. For 16 of these genes, an orthologue exists also in the mouse, rat, and pufferfish. Based on the degree of amino acid sequence similarity in the catalytic domain, conserved intron positions, and fused protein domains, pARTs can be divided into five major subgroups. All six members of groups 1 and 2 contain the H-Y-E trias of amino acid residues found also in the active sites of Diphtheria toxin and Pseudomonas exotoxin A, while the eleven members of groups 3 – 5 carry variations of this motif. The pART catalytic domain is found associated in Lego-like fashion with a variety of domains, including nucleic acid-binding, protein-protein interaction, and ubiquitylation domains. Some of these domain associations appear to be very ancient since they are observed also in insects, fungi, amoebae, and plants. The recently completed genome of the pufferfish T. nigroviridis contains recognizable orthologues for all pARTs except for pART7. The nearly completed albeit still fragmentary chicken genome contains recognizable orthologues for twelve pARTs. Simpler eucaryotes generally contain fewer pARTs: two in the fly D. melanogaster, three each in the mosquito A. gambiae, the nematode C. elegans, and the ascomycete microfungus G. zeae, six in the amoeba E. histolytica, nine in the slime mold D. discoideum, and ten in the cress plant A. thaliana. GenBank contains two pART homologues from the large double stranded DNA viruses Chilo iridescent virus and Bacteriophage Aeh1

  5. 42 CFR 457.230 - FFP for State ADP expenditures.

    Science.gov (United States)

    2010-10-01

    ... procedures regarding the availability of FFP for ADP expenditures are in 45 CFR part 74, 45 CFR part 95... 42 Public Health 4 2010-10-01 2010-10-01 false FFP for State ADP expenditures. 457.230 Section 457...; Reduction of Federal Medical Payments § 457.230 FFP for State ADP expenditures. FFP is available for...

  6. The heteroepitaxial growth of KDP/ADP

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu.; Yang, Chunhui; Jiang, Zhaohua; Cheng, Cheng; Meng, Xiangbin; Hao, Shuwei; Xu, Chao [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wan, Yuchun [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2012-05-15

    Crystal growth rules of mixture crystals KADP (potassium dihydrogen phosphate (KDP) and ammonium dihydrogen phosphate (ADP)) have been analyzed based on the solubility product principle. The heteroepitaxial layers have been obtained by immersing KDP (ADP) substrate into the ADP (KDP) saturated solution at 313 K. The micromorphology indicates that small growing points on different planes show the self-similar property compared to the bulk crystal's morphology. The process of epitaxial growth depends on not only form the lattice match but also form crystallizing kinetics which is the main influencing factor. Moreover, it can infer from the micromorphology on the surface of the mixed crystal that the dissolving of substrates will form mixed solution on epitaxial surface. What's more, corrosion phenomenon gets more and more evident with increasing times of epitaxial growth and it will be harder to form transparent epitaxial layers due to the increasing tension of epitaxial layers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The Arabidopsis ADP-ribosylation factor (ARF) and ARF-like (ARL) system and its regulation by BIG2, a large ARF-GEF

    DEFF Research Database (Denmark)

    Nielsen, Michael; Albrethsen, Jacob; Larsen, Flemming Hofmann

    2006-01-01

    2 fraction was detected in membranes, especially those deriving from the Golgi apparatus. The activity of the BIG2 Sec7 domain was unaffected by the Sec7 inhibitor brefeldin A, suggesting that BIG2 is a BFA-insensitive GEF for ARF1 or a close homolog. These studies contribute to our understanding...

  8. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    Science.gov (United States)

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  9. ADP Analysis project for the Human Resources Management Division

    Science.gov (United States)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  10. Interaction of ADP, atractyloside, and gummiferin on the ADP translocase of the inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vignais, P.V.; Vignais, P.M.; Defaye, G.; Lauquin, G.; Doussiere, J.; Chabert, J.; Brandolin, G.

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). Two specific inhibitors of the adenine nucleotide translocation, gummiferin (GUM), identified to 4-carboxyatractyloside and atractyloside (ATR), were labeled with /sup 35/S and their binding properties to whole mitochondria and inner mitochondrial membrane vesicles used to monitor changes of membrane conformation induced by ADP. (auth)

  11. Studies of the ADP/ATP carrier of mitochondria with fluorescent ADP analogue formycin diphosphate.

    Science.gov (United States)

    Graue, C; Klingenberg, M

    1979-06-05

    The ADP/ATP carrier was studied by a fluorescent substrate, formycin diphosphate which is the only fluorescent ADP analogue to bind. Its low quantum yield, short decay time and spectral overlap with tryptophan has as yet prevented its wider use. By incorporating fluorescent acceptors of formycin diphosphate fluorescence, anthracene-maleimide and vinylanthracene, into the membrane, these difficulties were circumvented. Only bound formycin diphosphate transfers energy to the probes so that the secondary emission of these probes is a measure for membrane-bound formycin diphosphate. The fluorescent transfer is inhibited by ADP, bongkrekate and carboxyatractylate whether added before or after incubation of formycin diphosphate showing that only binding to the adenine nucleotide carrier is measured. It also shows directly that the earlier demonstrated ADP fixation by bongkrekate is indeed a displacement into the matrix. The fluorescence decay time of the bound formycin diphosphate is measured as 1.95 ns compared to 0.95 ns of the free formycin diphosphate, indicating that formycin diphosphate is bound at the carrier in a non-polar environment. The depolarization decay time was found to be larger than 15 ns, indicating that carrier-bound formycin diphosphate is immobile within this time period.

  12. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells.

    Science.gov (United States)

    Drel, Viktor R; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G

    2006-04-15

    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with/without the AR inhibitor fidarestat (F, 16 mg kg(-1) day(-1)) for 6 weeks starting from induction of diabetes. Glucose, sorbitol, and fructose concentrations were significantly increased in the renal cortex of D vs C (p diabetes-induced increase in kidney weight as well as nitrotyrosine (NT, a marker of peroxynitrite-induced injury and nitrosative stress), and poly(ADP-ribose) (a marker of PARP activation) accumulation, assessed by both immunohistochemistry and Western blot analysis, in glomerular and tubular compartments of the renal cortex. In vitro studies revealed the presence of both AR and PARP-1 in human mesangial cells, and none of these two variables were affected by high glucose or F treatment. Nitrosylated and poly(ADP-ribosyl)ated proteins (Western blot analysis) accumulated in cells cultured in 30 mM D-glucose (vs 5.55 mM glucose, p diabetic renal cortex and high-glucose-exposed human mesangial cells. These findings reveal new beneficial properties of the AR inhibitor F and provide the rationale for detailed studies of F on diabetic nephropathy.

  13. 人类ARF1蛋白的重组表达及其与GDP/ADP的弱相互作用%Recombinant Expression and Weak Interactions with GDP/ADP of hARF1

    Institute of Scientific and Technical Information of China (English)

    郑芳芳; 阮路; 刘艳; 吴学记; 赵玉芬

    2011-01-01

    腺苷酸核糖基化因子1(ADP ribosylation factor 1,ARF1)是一种小G蛋白,负责调控细胞内的囊泡运输,从而影响细胞的生长发育.采用分子克隆的方法构建人类ARF1(hARF1)蛋白的重组质粒pET28 a-hARF1,并在大肠杆菌(Escherichia coli)BL21( DE3)中表达纯化,随后利用荧光光谱法和分子对接方法研究hARF1蛋白与嘌呤核苷酸( GDP/ADP)之间的弱相互作用.研究结果表明,重组表达的hARF1蛋白分子质量22 859.29 u,与理论值基本一致,其纯度大于95%,产率为5 mg/L左右;GDP/ADP与hARF1蛋白弱相互作用的结合常数分别为0.022 69和0.007 71(μmol/L)-1,说明hARF1蛋白选择性地结合GDP,这与细胞内hARF1蛋白只结合GDP的结论一致.%ADP ribosylation factor KADP ribosylation factor 1.ARF1) is a small GTP-binding protein,which is widely distributed in eukaryotic cells. ARF1 interacts with Golgi apparatus, plays the role of regulator of vesicle trafficking,and affects the development of various diseases. In this paper, the recombinant plasmid pET28a-hARFl was constructed, and hARFl protein was expressed in Escherichia coli BL2KDE3) and purified by affinity chromatograph and gel filtration. The results showed the molecular mass of hARFl protein was 22 859. 29 u,which was consistent with the theoretical value. The purity of hARFl protein was above 95% .while the yield was about 5 mg/L. At the same time, the interactions between hARFl and GDP/ADP were investigated by using fluorescence spectroscopy and MOE-Docking. It was found that hARFl and GDP/ADP had non-covalent interactions, and the binding constants were 0. 022 69 and 0. 007 71 (μmol/L)-1 respectively. It means that hARFl could bind to GDP selectively. The above-mentioned results were useful for the further study on the structure and function of hARFl.

  14. ADP-ribose in glycation and glycoxidation reactions.

    Science.gov (United States)

    Jacobson, E L; Cervantes-Laurean, D; Jacobson, M K

    1997-01-01

    Glycation is initiated by reaction of a reducing sugar with a protein amino group to generate a Schiff base adduct. Following an Amadori rearrangement to form a ketoamine adduct, a complex chemistry involving oxidation often leads to protein glycoxidation products referred to as advanced glycosylation end products (AGE). The AGE include protein carboxymethyllysine (CML) residues and a heterogeneous group of complex modifications characterized by high fluorescence and protein-protein cross links. The sugar sources for the glycoxidation of intracellular proteins are not well defined but pentoses have been implicated because they are efficient precursors for the formation of the fluorescent AGE, pentosidine. ADP-ribose, generated from NAD by ADP-ribose transfer reactions, is a likely intracellular source of a reducing pentose moiety. Incubation of ADP-ribose with histones results in the formation of ketoamine glycation conjugates and also leads to the rapid formation of protein CML residues, histone H1 dimers, and highly fluorescent products with properties similar to the AGE. ADP-ribose is much more efficient than other possible pentose donors for glycation and glycoxidation of protein amino groups. Recently developed methods that differentiate nonenzymic modifications of proteins by ADP-ribose from enzymic modifications now allow investigations to establish whether some protein modifications by monomers of ADP-ribose in vivo represent glycation and glycoxidation.

  15. Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis.

    Science.gov (United States)

    Kim, Mi-Sun; Lim, Areum; Yang, Seung Won; Park, Jimin; Lee, Daeun; Shin, Dong Hae

    2013-04-01

    ADP-L-glycero-D-manno-heptose 6-epimerase (AGME), the product of the rfaD gene, is the last enzyme in the heptose-biosynthesis pathway; it converts ADP-D-glycero-D-manno-heptose (ADP-D,D-Hep) to ADP-L-glycero-D-manno-heptose (ADP-L,D-Hep). AGME contains a catalytic triad involved in catalyzing hydride transfer with the aid of NADP(+). Defective lipopolysaccharide is found in bacterial mutants lacking this gene. Therefore, it is an interesting target enzyme for a novel epimerase inhibitor for use as a co-therapy with antibiotics. The crystal structure of AGME from Burkholderia thailandensis (BtAGME), a surrogate organism for studying the pathogenicity of melioidosis caused by B. pseudomallei, has been determined. The crystal structure determined with co-purified NADP(+) revealed common as well as unique structural properties of the AGME family when compared with UDP-galactose 4-epimerase homologues. They form a similar architecture with conserved catalytic residues. Nevertheless, there are differences in the substrate- and cofactor-binding cavities and the oligomerization domains. Structural comparison of BtAGME with AGME from Escherichia coli indicates that they may recognize their substrate in a `lock-and-key' fashion. Unique structural features of BtAGME are found in two regions. The first region is the loop between β8 and β9, affecting the binding affinity of BtAGME for the ADP moiety of ADP-D,D-Hep. The second region is helix α8, which induces decamerization at low pH that is not found in other AGMEs. With the E210G mutant, it was observed that the resistance of the wild type to acid-induced denaturation is related to the decameric state. An in silico study was performed using the Surflex-Dock GeomX module of the SYBYL-X 1.3 software to predict the catalytic mechanism of BtAGME with its substrate, ADP-D,D-Hep. In the in silico study, the C7'' hydroxymethyl group of ADP-D,D-Hep is predicted to form hydrogen bonds to Ser116 and Gln293. With the aid of these

  16. Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1.

    Science.gov (United States)

    Santala, Suvi; Efimova, Elena; Koskinen, Perttu; Karp, Matti Tapani; Santala, Ville

    2014-03-21

    Wax esters are industrially relevant high-value molecules. For sustainable production of wax esters, bacterial cell factories are suggested to replace the chemical processes exploiting expensive starting materials. However, it is well recognized that new sophisticated solutions employing synthetic biology toolbox are required to improve and tune the cellular production platform to meet the product requirements. For example, saturated wax esters with alkanol chain lengths C12 or C14 that are convenient for industrial uses are rare among bacteria. Acinetobacter baylyi ADP1, a natural producer of wax esters, is a convenient model organism for studying the potentiality and modifiability of wax esters in a natural host by means of synthetic biology. In order to establish a controllable production platform exploiting well-characterized biocomponents, and to modify the wax ester synthesis pathway of A. baylyi ADP1 in terms product quality, a fatty acid reductase complex LuxCDE with an inducible arabinose promoter was employed to replace the natural fatty acyl-CoA reductase acr1 in ADP1. The engineered strain was able to produce wax esters by the introduced synthetic pathway. Moreover, the fatty alkanol chain length profile of wax esters was found to shift toward shorter and more saturated carbon chains, C16:0 accounting for most of the alkanols. The study demonstrates the potentiality of recircuiting a biosynthesis pathway in a natural producer, enabling a regulated production of a customized bioproduct. Furthermore, the LuxCDE complex can be potentially used as a well-characterized biopart in a variety of synthetic biology applications involving the production of long-chain hydrocarbons.

  17. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats.

    Science.gov (United States)

    Guzyk, Mykhailo M; Tykhomyrov, Artem A; Nedzvetsky, Victor S; Prischepa, Irina V; Grinenko, Tatiana V; Yanitska, Lesya V; Kuchmerovska, Tamara M

    2016-10-01

    Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin's levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR

  18. Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases.

    Directory of Open Access Journals (Sweden)

    Robert J Fieldhouse

    Full Text Available Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences--including a primary sequence pattern--to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data--and we need high-throughput validation--our approach provides insight into the newest toxin ADP-ribosyltransferases.

  19. Identification of the platelet ADP receptor targeted by antithrombotic drugs.

    Science.gov (United States)

    Hollopeter, G; Jantzen, H M; Vincent, D; Li, G; England, L; Ramakrishnan, V; Yang, R B; Nurden, P; Nurden, A; Julius, D; Conley, P B

    2001-01-11

    Platelets have a crucial role in the maintenance of normal haemostasis, and perturbations of this system can lead to pathological thrombus formation and vascular occlusion, resulting in stroke, myocardial infarction and unstable angina. ADP released from damaged vessels and red blood cells induces platelet aggregation through activation of the integrin GPIIb-IIIa and subsequent binding of fibrinogen. ADP is also secreted from platelets on activation, providing positive feedback that potentiates the actions of many platelet activators. ADP mediates platelet aggregation through its action on two G-protein-coupled receptor subtypes. The P2Y1 receptor couples to Gq and mobilizes intracellular calcium ions to mediate platelet shape change and aggregation. The second ADP receptor required for aggregation (variously called P2Y(ADP), P2Y(AC), P2Ycyc or P2T(AC)) is coupled to the inhibition of adenylyl cyclase through Gi. The molecular identity of the Gi-linked receptor is still elusive, even though it is the target of efficacious antithrombotic agents, such as ticlopidine and clopidogrel and AR-C66096 (ref. 9). Here we describe the cloning of this receptor, designated P2Y12, and provide evidence that a patient with a bleeding disorder has a defect in this gene. Cloning of the P2Y12 receptor should facilitate the development of better antiplatelet agents to treat cardiovascular diseases.

  20. Force-producing ADP state of myosin bound to actin.

    Science.gov (United States)

    Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R

    2016-03-29

    Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.

  1. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoës, Martin; Kilstrup, Mogens

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur by the tran......Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDPADP+(d)NTP. This reaction, suggested to occur...

  2. ADP Bid Protests: Better Disclosure and Accountability of Settlements Needed

    Science.gov (United States)

    1990-03-01

    but Few A With Mosey S -7 The.Census Bureaus expeice and concern about ossCA’s bid 1rotest procedures prompted.a DN Aft•ment of Commerce official in...GAO/GGD-S-13 ADP Bid Protest Settlements * 4 r 0 @ Appendix I ADP Bid Protests Fil With the GSBCA and£ G O From April to September 30, 18N General...J. Socolar Special Assistant to the Comptroller General General Accounting Office 蚉 G Street, N.V. Vashington, D.C. 20548 Subject: Analysis of

  3. An adpA homologue in Streptomyces avermitilis is involved in regulation of morphogenesis and melanogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHAO JinLei; WEN Ying; CHEN Zhi; SONG Yuan; LI JiLun

    2007-01-01

    In Streptomyces griseus, AdpA, the key transcriptional activator in the A-factor regulatory cascade, switches on the transcription of multiple genes required for secondary metabolism and morphological differentiation. Streptomyces avermitilis also contains an ortholog of adpA, which is named adpA-a. To clarify the in vivo function of adpA-a, an adpA-a-disrupted strain was constructed by double crossover recombination. No difference in avermectin production was found between the adpA-a-disruptant and the wild-type strain. However, this disruptant neither formed spores nor produced melanin and its phenotype was restored to the original wild-type by a single copy of the adpA-a gene integrated into the chromosome. This report shows that adpA-a is involved in regulation of morphological differentiation and melanin production in S. avermitilis.

  4. File list: Unc.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Brown_preadipocytes.bed ...

  5. File list: Unc.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Brown_preadipocytes.bed ...

  6. File list: Unc.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Brown_preadipocytes.bed ...

  7. File list: Unc.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Brown_preadipocytes mm9 Unclassified Adipocyte Brown preadipocytes... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Brown_preadipocytes.bed ...

  8. File list: His.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.White_adipocytes.bed ...

  9. File list: His.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.White_adipocytes.bed ...

  10. File list: His.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.White_adipocytes.bed ...

  11. File list: His.Adp.10.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.White_adipocytes.bed ...

  12. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, M.

    2005-01-01

    Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP + (d)NDP ¿ ADP + (d)NTP. This reaction, suggested to occur...

  13. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole s

  14. ADP competes with FAD binding in putrescine oxidase.

    Science.gov (United States)

    van Hellemond, Erik W; Mazon, Hortense; Heck, Albert J; van den Heuvel, Robert H H; Heuts, Dominic P H M; Janssen, Dick B; Fraaije, Marco W

    2008-10-17

    Putrescine oxidase from Rhodococcus erythropolis NCIMB 11540 (PuO(Rh)) is a soluble homodimeric flavoprotein of 100 kDa, which catalyzes the oxidative deamination of putrescine and some other aliphatic amines. The initial characterization of PuO(Rh) uncovered an intriguing feature: the enzyme appeared to contain only one noncovalently bound FAD cofactor per dimer. Here we show that this low FAD/protein ratio is the result of tight binding of ADP, thereby competing with FAD binding. MS analysis revealed that the enzyme is isolated as a mixture of dimers containing two molecules of FAD, two molecules ADP, or one FAD and one ADP molecule. In addition, based on a structural model of PuO(Rh) that was built using the crystal structure of human monoamine oxidase B (MAO-B), we constructed an active mutant enzyme, PuO(Rh) A394C, that contains covalently bound FAD. These findings show that the covalent FAD-protein linkage can be formed autocatalytically and hint to a new-found rationale for covalent flavinylation: covalent flavinylation may have evolved to prevent binding of ADP or related cellular compounds, which would prohibit formation of flavinylated and functional enzyme.

  15. Impact of Dabigatran versus Phenprocoumon on ADP Induced Platelet Aggregation in Patients with Atrial Fibrillation with or without Concomitant Clopidogrel Therapy (the Dabi-ADP-1 and Dabi-ADP-2 Trials

    Directory of Open Access Journals (Sweden)

    Amadea M. Martischnig

    2015-01-01

    Full Text Available Background. A relevant number of patients receive triple therapy with clopidogrel, aspirin, and oral anticoagulation. Clopidogrel’s efficacy on ADP induced platelet function may be influenced by concomitant antithrombotic therapies. Data regarding the effect of dabigatran on platelet function is limited to in vitro studies and healthy individuals. Methods. The “Dabi-ADP-1” and “Dabi-ADP-2” trials randomized patients with atrial fibrillation to either dabigatran or phenprocoumon for a 2-week period. In Dabi-ADP-1 (n=70 patients with clopidogrel therapy were excluded and in Dabi-ADP-2 (n=46 patients had to be treated concomitantly with clopidogrel. The primary endpoint was ADP-induced platelet aggregation between dabigatran and phenprocoumon at 14 days. Secondary endpoints were ADPtest HS-, TRAP-, and COL-induced platelet aggregation. Results. There was no significant difference regarding the primary endpoint between both groups in either trial (Dabi-ADP-1: Dabigatran: 846 [650–983] AU × min versus phenprocoumon: 839 [666–1039] AU × min, P=0.90 and Dabi-ADP-2: 326 [268–462] versus 350 [214–535], P=0.70 or regarding the secondary endpoints, ADPtest HS-, TRAP-, and COL-induced platelet aggregation. Conclusion. Dabigatran as compared to phenprocoumon has no impact on ADP-induced platelet aggregation in atrial fibrillation patients neither with nor without concomitant clopidogrel therapy.

  16. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine".

    Science.gov (United States)

    Iizuka, Ryo; Yoshida, Takao; Ishii, Noriyuki; Zako, Tamotsu; Takahashi, Kazunobu; Maki, Kosuke; Inobe, Tomonao; Kuwajima, Kunihiro; Yohda, Masafumi

    2005-12-01

    Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.

  17. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.

    Science.gov (United States)

    Gagné, Jean-Philippe; Moreel, Xavier; Gagné, Pierre; Labelle, Yves; Droit, Arnaud; Chevalier-Paré, Mélissa; Bourassa, Sylvie; McDonald, Darin; Hendzel, Michael J; Prigent, Claude; Poirier, Guy G

    2009-02-01

    Phosphorylation is a very common post-translational modification event known to modulate a wide range of biological responses. Beyond the regulation of protein activity, the interrelation of phosphorylation with other post-translational mechanisms is responsible for the control of diverse signaling pathways. Several observations suggest that phosphorylation of poly(ADP-ribose) polymerase-1 (PARP-1) regulates its activity. There is also accumulating evidence to suggest the establishment of phosphorylation-dependent assembly of PARP-1-associated multiprotein complexes. Although it is relatively straightforward to demonstrate phosphorylation of a defined target, identification of the actual amino acids involved still represents a technical challenge for many laboratories. With the use of a combination of bioinformatics-based predictions tools for generic and kinase-specific phosphorylation sites, in vitro phosphorylation assays and mass spectrometry analysis, we investigated the phosphorylation profile of PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), two major enzymes responsible for poly(ADP-ribose) turnover. Mass spectrometry analysis revealed the phosphorylation of several serine/threonine residues within important regulatory domains and motifs of both enzymes. With the use of in vivo microirradiation-induced DNA damage, we show that altered phosphorylation at specific sites can modify the dynamics of assembly and disassembly of PARP-1 at sites of DNA damage. By documenting and annotating a collection of known and newly identified phosphorylation sites, this targeted proteomics study significantly advances our understanding of the roles of phosphorylation in the regulation of PARP-1 and PARG.

  18. Arginine ADP-ribosyltransferase 1 promotes angiogenesis in colorectal cancer via the PI3K/Akt pathway.

    Science.gov (United States)

    Yang, Lian; Xiao, Ming; Li, Xian; Tang, Yi; Wang, Ya-Lan

    2016-03-01

    Arginine adenosine diphosphate (ADP)-ribosyl-transferase 1 (ART1) is known to play an important role in many physiological and pathological processes. Previous studies have demonstrated that ART1 promotes proliferation, invasion and metastasis in colon carcinoma. However, it was unclear whether ART1 is involved in angiogenesis in cases of colorectal cancer (CRC). In the present study, lentiviral vector‑mediated ART1‑cDNA or ART1-shRNA were transfected into LoVo cells, and the LoVo cells transfected with ART1-cDNA or ART1-shRNA were co-cultured with human umbilical vein endothelial cells (HUVECs) to determine the influence of ART1 on HUVECs. The proliferation, migration and angiogenesis of HUVECs were monitored using a cell counting kit-8 assay, a Transwell migration assay and immunohistochemical analysis in intrasplenic allograft tumors, respectively. Hypoxia‑inducible factor 1-α (HIF-1α), total (t-)Akt, phosphorylated (p-)Akt, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) expression levels were detected via western blot analysis. Our results revealed that HUVECs which were co-cultured with ART1-cDNA LoVo cells showed higher proliferation, migration and angiogenic abilities, but a reduction was noted in those cultured with ART1-shRNA LoVo cells; p-Akt, HIF-1α, VEGF and bFGF expression was increased in HUVECs cultured with ART1‑cDNA-transfected LoVo cells, but reduced in ART1-shRNA-transfected LoVo cells. In a mouse xenograft model, we noted that the tumor microvessel density (MVD) was significantly increased in intrasplenic transplanted ART1‑cDNA CT26 tumors but decreased in intrasplenic transplanted ART1‑shRNA tumors. These data suggest that ART1 promoted the expression of HIF-1α via the Akt pathway in tumor cells. It also upregulated VEGF and bFGF and enhanced angiogenesis in HUVECs. Thus, we suggest that ART1 plays an important role in the invasion of CRC cells and the metastasis of CRC.

  19. Bacterial Vaginosis

    Science.gov (United States)

    ... Issues > Conditions > Sexually Transmitted > Bacterial Vaginosis Health Issues Listen Español Text Size Email Print Share Bacterial Vaginosis Page Content Bacterial vaginosis (BV) is the most common vaginal infection in sexually active teenaged girls . It appears to be caused by ...

  20. Structures of the human poly (ADP-ribose glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Directory of Open Access Journals (Sweden)

    Julie A Tucker

    Full Text Available Poly(ADP-ribose glycohydrolase (PARG is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG. Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR, adenosine 5'-diphosphate (hydroxymethylpyrrolidinediol (ADP-HPD and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  1. Chemical Bond Calculations of Crystal Growth of KDP and ADP

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.

  2. Structures of Mycobacterium Tuberculosis Folylpolyglutamate Synthase Complexed With ADP And AMPPCD

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.; Smith, C.A.; Metcalf, P.; Baker, E.N.

    2009-05-28

    Folate derivatives are essential vitamins for cell growth and replication, primarily because of their central role in reactions of one-carbon metabolism. Folates require polyglutamation to be efficiently retained within the cell and folate-dependent enzymes have a higher affinity for the polyglutamylated forms of this cofactor. Polyglutamylation is dependent on the enzyme folylpolyglutamate synthetase (FPGS), which catalyzes the sequential addition of several glutamates to folate. FPGS is essential for the growth and survival of important bacterial species, including Mycobacterium tuberculosis, and is a potential drug target. Here, the crystal structures of M. tuberculosis FPGS in complex with ADP and AMPPCP are reported at 2.0 and 2.3 angstroms resolution, respectively. The structures reveal a deeply buried nucleotide-binding site, as in the Escherichia coli and Lactobacillus casei FPGS structures, and a long extended groove for the binding of folate substrates. Differences from the E. coli and L. casei FPGS structures are seen in the binding of a key divalent cation, the carbamylation state of an essential lysine side chain and the adoption of an 'open' position by the active-site beta5-alpha6 loop. These changes point to coordinated events that are associated with dihydropteroate/folate binding and the catalysis of the new amide bond with an incoming glutamate residue.

  3. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    Science.gov (United States)

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  4. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Greene, T.W.; Woodbury, R.L.; Okita, T.W. [Washington State Univ., Pullman, WA (United States)

    1996-11-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production. One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to I{sub 2} vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wildtype recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA. The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. 28 refs., 3 figs., 1 tab.

  5. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase.

    Science.gov (United States)

    Greene, T W; Woodbury, R L; Okita, T W

    1996-01-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509-1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to l3 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. PMID:8938421

  6. File list: InP.Adp.05.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.Input_control.AllCell mm9 Input control Input control Adipocyte SRX99775...27370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.Input_control.AllCell.bed ...

  7. File list: InP.Adp.05.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.Input_control.AllCell hg19 Input control Input control Adipocyte SRX0194...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.Input_control.AllCell.bed ...

  8. File list: InP.Adp.10.AllAg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.AllCell hg19 Input control Adipocyte SRX019491,SRX660092,SRX127280...1,SRX196110,SRX660091,SRX032892,SRX825392,SRX1272789,SRX469459,SRX469457,SRX027404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.AllCell.bed ...

  9. File list: InP.Adp.20.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.Input_control.AllCell mm9 Input control Input control Adipocyte SRX99775...78161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.Input_control.AllCell.bed ...

  10. File list: InP.Adp.10.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.Input_control.AllCell hg19 Input control Input control Adipocyte SRX0194...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.Input_control.AllCell.bed ...

  11. File list: InP.Adp.20.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.Input_control.AllCell hg19 Input control Input control Adipocyte SRX0194...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.Input_control.AllCell.bed ...

  12. File list: InP.Adp.50.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.Input_control.AllCell mm9 Input control Input control Adipocyte SRX18587...27367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.Input_control.AllCell.bed ...

  13. File list: InP.Adp.20.AllAg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.AllCell hg19 Input control Adipocyte SRX019491,SRX660092,SRX660091...,SRX1272789,SRX1272801,SRX032892,SRX196110,SRX469459,SRX469457,SRX825392,SRX027404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.AllCell.bed ...

  14. File list: InP.Adp.10.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.Input_control.AllCell mm9 Input control Input control Adipocyte SRX99775...78161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.10.Input_control.AllCell.bed ...

  15. File list: His.Adp.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: Oth.Adp.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.Crotonyl_lysine.AllCell.bed ...

  17. File list: His.Adp.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...dipocyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.Pan_lysine_crotonylation.AllCell.bed ...

  18. File list: DNS.Adp.20.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Fetal_Heart hg19 DNase-seq Adipocyte Fetal Heart SRX040387,SRX0404...0390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Fetal_Heart.bed ...

  19. File list: NoD.Adp.05.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Fetal_Heart hg19 No description Adipocyte Fetal Heart SRX088650,SR...X088647,SRX056801,SRX031428,SRX031386,SRX031444,SRX056800 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Fetal_Heart.bed ...

  20. File list: NoD.Adp.20.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Fetal_Heart hg19 No description Adipocyte Fetal Heart SRX088650,SR...X031428,SRX031386,SRX056801,SRX031444,SRX056800,SRX088647 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Fetal_Heart.bed ...

  1. File list: Pol.Adp.10.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Adipocy...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.RNA_Polymerase_III.AllCell.bed ...

  2. File list: Pol.Adp.50.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Adipocyte... SRX800011,SRX800010,SRX341031,SRX341032,SRX341029,SRX800016,SRX800017,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.RNA_Polymerase_II.AllCell.bed ...

  3. File list: Pol.Adp.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Adipocy...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.RNA_Polymerase_III.AllCell.bed ...

  4. REDUCED THROMBOGENICITY OF VASCULAR PROSTHESES BY COATING WITH ADP-ASE

    NARCIS (Netherlands)

    VANDERLEI, B; ROBINSON, PH; BAKKER, WW; Bartels, H.

    1992-01-01

    In this pilot study ADP-ase coated polyurethane (PL) vascular prostheses and noncoated (control) PU vascular prostheses (all vascular prostheses: ID 1.5 mm, length 1,5 cm) were implanted into the carotid artery of the rabbit to test wheter ADP-ase might function as an adequate anti-thrombogenic coat

  5. File list: Oth.Adp.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.Crotonyl_lysine.AllCell.bed ...

  6. File list: Oth.Adp.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.Crotonyl_lysine.AllCell.bed ...

  7. File list: Oth.Adp.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Adipocyte htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.Crotonyl_lysine.AllCell.bed ...

  8. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  10. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: DNS.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  13. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  16. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  17. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  18. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  20. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  3. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  5. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  6. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  7. File list: Oth.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  10. File list: His.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127394,SRX127409,SRX127396,SRX127407,SRX127381,SRX127383 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: InP.Adp.05.AllAg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.AllCell hg19 Input control Adipocyte SRX019491,SRX660092,SRX127280...1,SRX196110,SRX660091,SRX469459,SRX032892,SRX825392,SRX1272789,SRX469457,SRX027404 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.AllAg.AllCell.bed ...

  13. File list: His.Adp.50.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Capan-1 hg19 Histone Adipocyte Capan-1 SRX825378,SRX825364,SRX8253...85,SRX825371 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Capan-1.bed ...

  14. File list: His.Adp.20.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Capan-2 hg19 Histone Adipocyte Capan-2 SRX825386,SRX825379,SRX8253...65,SRX825372 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Capan-2.bed ...

  15. File list: ALL.Adp.10.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Capan-1 hg19 All antigens Adipocyte Capan-1 SRX825378,SRX825371,SR...X825364,SRX825385,SRX825392 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Capan-1.bed ...

  16. File list: ALL.Adp.50.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Capan-1 hg19 All antigens Adipocyte Capan-1 SRX825378,SRX825364,SR...X825385,SRX825392,SRX825371 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Capan-1.bed ...

  17. File list: His.Adp.05.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Capan-2 hg19 Histone Adipocyte Capan-2 SRX825386,SRX825379,SRX8253...72,SRX825365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Capan-2.bed ...

  18. File list: His.Adp.10.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Capan-1 hg19 Histone Adipocyte Capan-1 SRX825378,SRX825371,SRX8253...64,SRX825385 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Capan-1.bed ...

  19. File list: His.Adp.10.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Capan-2 hg19 Histone Adipocyte Capan-2 SRX825386,SRX825379,SRX8253...72,SRX825365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Capan-2.bed ...

  20. File list: ALL.Adp.20.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Capan-2 hg19 All antigens Adipocyte Capan-2 SRX825386,SRX825379,SR...X825365,SRX825372 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Capan-2.bed ...

  1. File list: ALL.Adp.05.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Capan-2 hg19 All antigens Adipocyte Capan-2 SRX825386,SRX825379,SR...X825372,SRX825365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Capan-2.bed ...

  2. File list: ALL.Adp.20.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Capan-1 hg19 All antigens Adipocyte Capan-1 SRX825378,SRX825364,SR...X825385,SRX825371,SRX825392 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Capan-1.bed ...

  3. File list: His.Adp.20.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Capan-1 hg19 Histone Adipocyte Capan-1 SRX825378,SRX825364,SRX8253...85,SRX825371 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Capan-1.bed ...

  4. File list: His.Adp.05.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Capan-1 hg19 Histone Adipocyte Capan-1 SRX825378,SRX825371,SRX8253...64,SRX825385 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Capan-1.bed ...

  5. File list: ALL.Adp.10.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Capan-2 hg19 All antigens Adipocyte Capan-2 SRX825386,SRX825379,SR...X825372,SRX825365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Capan-2.bed ...

  6. File list: ALL.Adp.05.AllAg.Capan-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Capan-1 hg19 All antigens Adipocyte Capan-1 SRX825378,SRX825371,SR...X825364,SRX825385,SRX825392 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Capan-1.bed ...

  7. File list: His.Adp.50.AllAg.Capan-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Capan-2 hg19 Histone Adipocyte Capan-2 SRX825386,SRX825379,SRX8253...65,SRX825372 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Capan-2.bed ...

  8. File list: His.Adp.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.Pan_lysine_acetylation.AllCell.bed ...

  9. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue, White...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: NoD.Adp.50.NA.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.NA.AllCell hg19 No description NA Adipocyte SRX134732,SRX031428,SRX08865...0,SRX031386,SRX056801,SRX031444,SRX312175,SRX056800,SRX088647,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.NA.AllCell.bed ...

  19. File list: NoD.Adp.20.NA.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.NA.AllCell hg19 No description NA Adipocyte SRX088650,SRX134732,SRX31217...5,SRX031428,SRX031386,SRX056801,SRX031444,SRX312171,SRX056800,SRX088647 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.NA.AllCell.bed ...

  20. File list: Unc.Adp.05.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.Unclassified.AllCell mm9 Unclassified Unclassified Adipocyte SRX978685,S...RX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.Unclassified.AllCell.bed ...

  1. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: His.Adp.10.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Fetal_Heart hg19 Histone Adipocyte Fetal Heart SRX860893,SRX860894...,SRX860897,SRX860898,SRX860889,SRX860890,SRX860896,SRX860892,SRX860895,SRX860891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Fetal_Heart.bed ...

  10. File list: His.Adp.50.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Fetal_Heart hg19 Histone Adipocyte Fetal Heart SRX860893,SRX860890...,SRX860889,SRX860894,SRX860892,SRX860896,SRX860895,SRX860898,SRX860891,SRX860897 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Fetal_Heart.bed ...

  11. File list: His.Adp.50.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.Pan_lysine_acetylation.AllCell.bed ...

  12. File list: His.Adp.20.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.Pan_lysine_acetylation.AllCell.bed ...

  13. File list: His.Adp.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_acetylation.AllCell hg19 Histone Pan lysine acetylation Adipo...cyte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.Pan_lysine_acetylation.AllCell.bed ...

  14. File list: His.Adp.10.Pan_lysine_acetylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.Pan_lysine_acetylation.AllCell mm9 Histone Pan lysine acetylation Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.Pan_lysine_acetylation.AllCell.bed ...

  15. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White http://dbarchi...ve.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: His.Adp.05.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Fetal_Heart hg19 Histone Adipocyte Fetal Heart SRX860893,SRX860894...,SRX860897,SRX860898,SRX860892,SRX860890,SRX860889,SRX860896,SRX860895,SRX860891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Fetal_Heart.bed ...

  17. File list: His.Adp.20.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Fetal_Heart hg19 Histone Adipocyte Fetal Heart SRX860893,SRX860898...,SRX860890,SRX860889,SRX860894,SRX860892,SRX860896,SRX860895,SRX860891,SRX860897 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Fetal_Heart.bed ...

  18. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  19. File list: ALL.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341419,SRX341767,SRX341421,SRX478161,SRX341039,SRX341040 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.05.AllAg.Brown_preadipocytes.bed ...

  20. File list: NoD.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Brown_preadipocytes.bed ...

  1. File list: Pol.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Brown_preadipocytes.bed ...

  2. File list: His.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Brown_preadipocytes mm9 Histone Adipocyte Brown preadipocytes SRX3...RX341421,SRX341046,SRX478160 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.Brown_preadipocytes.bed ...

  3. File list: Oth.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341763,SRX341767,SRX341419,SRX341028,SRX341766 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Brown_preadipocytes.bed ...

  4. File list: ALL.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341420,SRX478161,SRX478160,SRX341040,SRX341041,SRX341039 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.10.AllAg.Brown_preadipocytes.bed ...

  5. File list: Oth.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341766,SRX341418,SRX341023,SRX341419,SRX341767 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Brown_preadipocytes.bed ...

  6. File list: ALL.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341420,SRX341421,SRX341046,SRX478161,SRX341027,SRX478160 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.50.AllAg.Brown_preadipocytes.bed ...

  7. File list: Oth.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341023,SRX341760,SRX341767,SRX341763,SRX341027 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Brown_preadipocytes.bed ...

  8. File list: DNS.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.05.AllAg.Brown_preadipocytes.bed ...

  9. File list: Pol.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Brown_preadipocytes.bed ...

  10. File list: DNS.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Brown_preadipocytes.bed ...

  11. File list: Pol.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.Brown_preadipocytes.bed ...

  12. File list: Pol.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Brown_preadipocytes mm9 RNA polymerase Adipocyte Brown preadipocyt...es SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Brown_preadipocytes.bed ...

  13. File list: NoD.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Brown_preadipocytes.bed ...

  14. File list: NoD.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Brown_preadipocytes.bed ...

  15. File list: His.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Brown_preadipocytes mm9 Histone Adipocyte Brown preadipocytes SRX3...RX341420,SRX341421,SRX341046 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.Brown_preadipocytes.bed ...

  16. File list: InP.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Brown_preadipocytes mm9 Input control Adipocyte Brown preadipocyte...056,SRX341058,SRX478161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Brown_preadipocytes.bed ...

  17. File list: DNS.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Brown_preadipocytes.bed ...

  18. File list: His.Adp.05.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Brown_preadipocytes mm9 Histone Adipocyte Brown preadipocytes SRX3...RX341421,SRX341039,SRX341040 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Brown_preadipocytes.bed ...

  19. File list: DNS.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Brown_preadipocytes mm9 DNase-seq Adipocyte Brown preadipocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Brown_preadipocytes.bed ...

  20. File list: NoD.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Brown_preadipocytes mm9 No description Adipocyte Brown preadipocyt...es http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Brown_preadipocytes.bed ...

  1. File list: ALL.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Brown_preadipocytes mm9 All antigens Adipocyte Brown preadipocytes...RX341044,SRX341420,SRX341421,SRX341046,SRX478161,SRX341027 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.20.AllAg.Brown_preadipocytes.bed ...

  2. File list: Oth.Adp.50.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Brown_preadipocytes mm9 TFs and others Adipocyte Brown preadipocyt...341028,SRX341760,SRX341767,SRX341763,SRX341027 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Brown_preadipocytes.bed ...

  3. File list: InP.Adp.20.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Brown_preadipocytes mm9 Input control Adipocyte Brown preadipocyte...782,SRX341056,SRX478161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Brown_preadipocytes.bed ...

  4. File list: InP.Adp.10.AllAg.Brown_preadipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Brown_preadipocytes mm9 Input control Adipocyte Brown preadipocyte...058,SRX341056,SRX478161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.10.AllAg.Brown_preadipocytes.bed ...

  5. File list: Pol.Adp.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Adipocyte... SRX800011,SRX800010,SRX800016,SRX800017,SRX341031,SRX341032,SRX341029,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.RNA_Polymerase_II.AllCell.bed ...

  6. File list: Pol.Adp.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Adipocyte... SRX800011,SRX800010,SRX341031,SRX341032,SRX341029,SRX800016,SRX800017,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.RNA_Polymerase_II.AllCell.bed ...

  7. File list: Pol.Adp.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Adipocyte... SRX800011,SRX800010,SRX800016,SRX341031,SRX341032,SRX341029,SRX800017,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.RNA_Polymerase_II.AllCell.bed ...

  8. File list: Pol.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.Brown_adipocytes.bed ...

  9. File list: Oth.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.White_adipocytes mm9 TFs and others Adipocyte White adipocytes SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.White_adipocytes.bed ...

  10. File list: Unc.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Brown_adipocytes.bed ...

  11. File list: Pol.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Brown_adipocytes.bed ...

  12. File list: NoD.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.White_adipocytes mm9 No description Adipocyte White adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.White_adipocytes.bed ...

  13. File list: NoD.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.White_adipocytes mm9 No description Adipocyte White adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.White_adipocytes.bed ...

  14. File list: Oth.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.White_adipocytes mm9 TFs and others Adipocyte White adipocytes SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.White_adipocytes.bed ...

  15. File list: Oth.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX800019,SRX978691,SRX978690,SRX978689,SRX978688 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Brown_adipocytes.bed ...

  16. File list: Oth.Adp.05.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...968,SRX760970,SRX760967,SRX760971,SRX760969 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Pre-adipocytes.bed ...

  17. File list: ALL.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X800018,SRX800019,SRX185797,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.20.AllAg.Brown_adipocytes.bed ...

  18. File list: ALL.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X185879,SRX978689,SRX978688,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.05.AllAg.Brown_adipocytes.bed ...

  19. File list: NoD.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Brown_adipocytes.bed ...

  20. File list: InP.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.White_adipocytes mm9 Input control Adipocyte White adipocytes SRX9...97757,SRX821799,SRX821801,SRX821800,SRX268023 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.White_adipocytes.bed ...

  1. File list: InP.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX4...78163,SRX143805,SRX185879 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Brown_adipocytes.bed ...

  2. File list: InP.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.White_adipocytes mm9 Input control Adipocyte White adipocytes SRX2...68023,SRX997757,SRX821800,SRX821801,SRX821799 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.White_adipocytes.bed ...

  3. File list: Unc.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Brown_adipocytes.bed ...

  4. File list: Oth.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX800014,SRX978690,SRX978689,SRX978688,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Brown_adipocytes.bed ...

  5. File list: Pol.Adp.10.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.White_adipocytes mm9 RNA polymerase Adipocyte White adipocytes SRX...800011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.White_adipocytes.bed ...

  6. File list: Oth.Adp.20.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...967,SRX760968,SRX760971,SRX760969,SRX760970 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Pre-adipocytes.bed ...

  7. File list: Oth.Adp.50.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...967,SRX760968,SRX760971,SRX760969,SRX760970 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Pre-adipocytes.bed ...

  8. File list: NoD.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.White_adipocytes mm9 No description Adipocyte White adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.White_adipocytes.bed ...

  9. File list: His.Adp.05.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760966,SRX...760963,SRX760964,SRX760965,SRX760962 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Pre-adipocytes.bed ...

  10. File list: His.Adp.10.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760965,SRX...760962,SRX760966,SRX760964,SRX760963 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Pre-adipocytes.bed ...

  11. File list: Pol.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Brown_adipocytes.bed ...

  12. File list: InP.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.White_adipocytes mm9 Input control Adipocyte White adipocytes SRX9...97757,SRX821800,SRX821801,SRX268023,SRX821799 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.White_adipocytes.bed ...

  13. File list: Unc.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Brown_adipocytes.bed ...

  14. File list: Oth.Adp.10.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...968,SRX760967,SRX760971,SRX760969,SRX760970 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Pre-adipocytes.bed ...

  15. File list: His.Adp.50.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760966,SRX...760964,SRX760963,SRX760965,SRX760962 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Pre-adipocytes.bed ...

  16. File list: ALL.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X978688,SRX800019,SRX478163,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.10.AllAg.Brown_adipocytes.bed ...

  17. File list: Oth.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX978688,SRX800015,SRX800014,SRX800018,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Brown_adipocytes.bed ...

  18. File list: Unc.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Brown_adipocytes.bed ...

  19. File list: Pol.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.White_adipocytes mm9 RNA polymerase Adipocyte White adipocytes SRX...800011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.White_adipocytes.bed ...

  20. File list: Pol.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Brown_adipocytes.bed ...

  1. File list: Oth.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX978689,SRX800015,SRX800014,SRX800018,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Brown_adipocytes.bed ...

  2. File list: ALL.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X800019,SRX185797,SRX478163,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.50.AllAg.Brown_adipocytes.bed ...

  3. File list: His.Adp.20.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760962,SRX...760966,SRX760963,SRX760965,SRX760964 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Pre-adipocytes.bed ...

  4. File list: NoD.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Brown_adipocytes.bed ...

  5. File list: DNS.Adp.50.AllAg.Fetal_Heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Fetal_Heart hg19 DNase-seq Adipocyte Fetal Heart SRX040387,SRX0404...0390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Fetal_Heart.bed ...

  6. File list: Oth.Adp.05.AllAg.SGBS [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.SGBS hg19 TFs and others Adipocyte SGBS SRX813768,SRX813771,SRX813...X813775,SRX032891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.SGBS.bed ...

  7. File list: Oth.Adp.50.Cebpb.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.Cebpb.AllCell mm9 TFs and others Cebpb Adipocyte SRX341417,SRX341415,SRX...341026,SRX341414,SRX341416,SRX341025 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.Cebpb.AllCell.bed ...

  8. File list: Oth.Adp.20.Cebpb.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.Cebpb.AllCell mm9 TFs and others Cebpb Adipocyte SRX341415,SRX341026,SRX...341417,SRX341414,SRX341025,SRX341416 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.Cebpb.AllCell.bed ...

  9. File list: InP.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX1...85879,SRX143805,SRX478163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Brown_adipocytes.bed ...

  10. File list: NoD.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Brown_adipocytes.bed ...

  11. File list: InP.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX1...43805,SRX185879,SRX478163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.10.AllAg.Brown_adipocytes.bed ...

  12. File list: NoD.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Brown_adipocytes.bed ...

  13. File list: InP.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX1...85879,SRX143805,SRX478163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Brown_adipocytes.bed ...

  14. File list: His.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...15,SRX019508,SRX019494 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  15. File list: ALL.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019497,SRX019518,SRX019504,SRX019511,SRX019515,SRX019508 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  16. File list: Unc.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  17. File list: His.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...11,SRX019515,SRX019508 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  18. File list: DNS.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  19. File list: DNS.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  20. File list: ALL.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019518,SRX019504,SRX019511,SRX019515,SRX019508,SRX019494 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  1. File list: DNS.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  2. File list: Pol.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  3. File list: Unc.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  4. File list: Unc.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  5. File list: Pol.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  6. File list: Unc.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  7. File list: His.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...04,SRX019497,SRX019503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  8. File list: Pol.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  9. File list: Pol.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  10. File list: His.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...17,SRX019503,SRX019497 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  11. File list: ALL.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019496,SRX019511,SRX019518,SRX019504,SRX019497,SRX019503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  12. File list: DNS.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  13. File list: ALL.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019504,SRX019510,SRX019496,SRX019517,SRX019503,SRX019497 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  14. File list: Pol.Adp.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.RNA_polymerase_III.AllCell.bed ...

  15. The role of ADP-ribosylation and G(M1)-binding activity in the mucosal immunogenicity and adjuvanticity of the Escherichia coli heat-labile enterotoxin and Vibrio cholerae cholera toxin

    NARCIS (Netherlands)

    de Haan, L; Verweij, W; Agsteribbe, E; Wilschut, J

    1998-01-01

    The mucosal route of vaccination has attracted a great deal of attention recently. Not only is mucosal application of vaccines, for example, orally or intranasally, particularly convenient, it also offers the possibility to induce locally produced and secreted S-IgA antibodies in addition to systemi

  16. Effects of cumene hydroperoxide on adenosine diphosphate ribosyl transferase in mononuclear leukocytes of patients with adenomatous polyps in the colon.

    Science.gov (United States)

    Markowitz, M M; Johnson, D B; Pero, R W; Winawer, S J; Miller, D G

    1988-03-01

    We have studied the effects of plasma and of cumene hydroperoxide (CUM) on adenosine diphosphate ribosyl transferase (ADPRT) from mononuclear leukocytes (HML) of patients with colonic adenomatous polyps (n = 22), with colonic hyperplastic polyps (n = 5) and with neither type of polyp (controls) (n = 6). ADPRT was measured after incubation of HML with plasma alone (termed the plasma value), and with plasma plus CUM (50 microM) (the activated value); the difference elicited by CUM was termed the induced value. There was no significant difference in values between the control and hyperplastic polyp groups: these were combined for further analysis. The plasma (P = 0.038), activated (P = 0.009) and induced (P = 0.0024) values of the combined group all differed significantly from those of the adenoma group. At low exposures, CUM stimulated both ADPRT and unscheduled DNA synthesis and, at higher exposures, inactivated both. Pretreatment of HML with vitamin E protected against these effects of CUM, while pretreatment with diamide (which depletes GSH) accentuated the effects. This study demonstrates a differential reaction of ADPRT in patients harboring colonic adenomas and suggests that the origin of this difference may lie in cellular responses to oxidative stress.

  17. Bacterial gastroenteritis

    Science.gov (United States)

    Bacterial gastroenteritis is present when bacteria cause an infection of the stomach and intestines ... has not been treated Many different types of bacteria can cause ... Campylobacter jejuni E coli Salmonella Shigella Staphylococcus ...

  18. The effect of jasplakinolide on the thermodynamic properties of ADP.BeFx bound actin filaments

    Science.gov (United States)

    Kardos, Roland; Vig, Andrea; Orbán, József; Hild, Gábor; Nyitrai, Miklós; Lőrinczy, Dénes

    2010-01-01

    The effect of BeFx and a natural toxin (jasplakinolide) was examined on the thermal stability of actin filaments by using differential scanning calorimetry. The phosphate analogue beryllium fluoride shifted the melting temperature of actin filaments (67.4 °C) to 83.7 °C indicating that the filaments were thermodynamically more stable in their complex with ADP.BeFx. A similar tendency was observed when the jasplakinolide was used in the absence of BeFx. When both the ADP.BeFx and the jasplakinolide bound to the actin filaments their collective effect was similar to that observed with ADP.BeFx or jasplakinolide alone. These results suggested that ADP.BeFx and jasplakinolide probably stabilize the actin filaments by similar molecular mechanisms. PMID:20543906

  19. Unidirectional growth of pure and L-lysine added ADP crystals from aqueous solution

    Science.gov (United States)

    Salarian, Samaneh; Dizaji, Hamid Rezagholipour

    2014-01-01

    Pure and L-lysine added ammonium dihydrogen phosphate (ADP) crystals were grown in the direction by Sankaranarayanan-Ramasamy (S-R) method. The grown crystals were characterized by X-Ray diffractometry (XRD), UV-Vis spectroscopy, Fourier Transform Infrared (FT-IR) and Vicker's Microhardness analysis. XRD spectrum of each of the grown crystals proved its crystallinity. The crystals showed good transparency in the entire visible region. FT-IR spectra of the specimens revealed the presence of functional groups in them. The hardness of the pure and L-lysine added ADP crystals were measured and that of the added one was found higher. Meanwhile, it was found that the ADP crystals (pure and L-lysine added) grown by S-R method had higher hardness compared to ADP crystal grown by conventional method.

  20. Modification of ADP extinguishing powder by siliconization in spray drying

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Zhang; Zhigang Shen; Chujiang Cai; Xiaozheng Yu; Jun Du; Yushan Xing; Shulin Ma

    2012-01-01

    Superfine spherical fire-extinguishing powder,ammonium dihydrogen phosphate (ADP,NH4H2PO4),was prepared by spray drying and modified in situ with methyl hydrogen silicone oil (MHSO) emulsion and the fluorinated surfactant FK-510.The influences of the MHSO mass ratio on the hydrophobicity,surface composition,surface morphology,dispersion and particle-size distribution of the NH4H2PO4 were studied,and the influence of the drying air temperature on the decomposition of the NH4H2PO4 was also researched.The results indicate that the MHSO and FK-510 congregate on the particle surfaces and then form a hydrophobic shell.This shell improves the particle hydrophobicity and leads to a fine dispersion of the particles.During the process of preparing the precursor solution,3 wt% (based on the weight of NH4H2PO4) was chosen as the optimum value of the MHSO mass ratio.During the spray drying,a low absolute humidity of the air should be maintained,and it is very important to keep the exit-air temperature below 100℃ to avoid decomposition.

  1. Facile synthesis of boronate-decorated polyethyleneimine-grafted hybrid magnetic nanoparticles for the highly selective enrichment of modified nucleosides and ribosylated metabolites.

    Science.gov (United States)

    Li, Hua; Shan, Yuanhong; Qiao, Lizhen; Dou, Abo; Shi, Xianzhe; Xu, Guowang

    2013-12-03

    Ribosylated metabolites, especially modified nucleosides, have been extensively evaluated as cancer-related biomarkers. Boronate adsorbents are considered to be promising materials for extracting them from complex matrices. However, the enrichment of ribosylated metabolites in low abundance is still a challenge due to the limited capacity and selectivity of the existing boronate adsorbents. In this study, a novel type of magnetic nanoparticles named Fe3O4@SiO2@PEI-FPBA was synthesized by grafting polyethyleneimine (PEI) onto the surface of Fe3O4@SiO2 before modification by boronate groups. The high density of the amino groups on the PEI chains supplied a large number of binding sites for boronate groups. Thus, the adsorption capacity (1.34 ± 0.024 mg/g) of the nanoparticles, which is 6- to 7-fold higher than that of analogous materials, was greatly improved. The unreacted secondary amines and tertiary amines of the PEI enhanced the aqueous solubility of the nanoparticles, which could efficiently reduce nonspecific adsorption. The nanoparticles were able to capture 1,2 cis-diol nucleosides from 1000-fold interferences. Moreover, the flexible chains of PEI were favorable for effective enrichment and quick equilibration (nanoparticles. Among them, 43 were identified to be nucleosides and other ribosylated metabolites. Nine low abundance modified nucleosides were detected for the first time. In conclusion, Fe3O4@SiO2@PEI-FPBA is an attractive candidate material for the highly selective enrichment of 1,2-cis-diol compounds.

  2. File list: InP.Adp.50.AllAg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.AllCell mm9 Input control Adipocyte SRX185879,SRX143805,SRX268023,...7,SRX341056,SRX341058,SRX821800,SRX821801,SRX821799,SRX478163,SRX478161,SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.AllCell.bed ...

  3. File list: InP.Adp.05.AllAg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.AllCell mm9 Input control Adipocyte SRX997757,SRX478163,SRX821800,...0,SRX341056,SRX341058,SRX821799,SRX341057,SRX341783,SRX341781,SRX478161,SRX127367,SRX127370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.AllCell.bed ...

  4. Pistacia chinensis Methanolic Extract Attenuated MAPK and Akt Phosphorylations in ADP Stimulated Rat Platelets In Vitro

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2012-01-01

    (2.5–20 μg/mL inhibited ADP-induced platelet aggregation. While PCME diminished [Ca2+]i, ATP, and TXA2 release in ADP-activated platelets, it enhanced cAMP production in resting platelets. Likewise, PCME inhibited fibrinogen binding to αIIbβ3 and downregulated JNK, ERK, and Akt phosphorylations. Thus, PCME contains potential antiplatelet compounds that could be deployed for their therapeutic values in cardiovascular pathology.

  5. File list: Oth.Adp.50.Kmt2d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.Kmt2d.AllCell mm9 TFs and others Kmt2d Adipocyte SRX339719,SRX339718,SRX...339717,SRX339721,SRX339722,SRX341764,SRX341418,SRX339720,SRX341766,SRX341765,SRX341419,SRX341767 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.Kmt2d.AllCell.bed ...

  6. File list: Oth.Adp.05.Kmt2d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.Kmt2d.AllCell mm9 TFs and others Kmt2d Adipocyte SRX339719,SRX339722,SRX...339717,SRX339718,SRX339721,SRX341764,SRX341765,SRX339720,SRX341766,SRX341418,SRX341419,SRX341767 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.Kmt2d.AllCell.bed ...

  7. Biosynthesis Pathway of ADP-l-glycero-β-d-manno-Heptose in Escherichia coli

    Science.gov (United States)

    Kneidinger, Bernd; Marolda, Cristina; Graninger, Michael; Zamyatina, Alla; McArthur, Fiona; Kosma, Paul; Valvano, Miguel A.; Messner, Paul

    2002-01-01

    The steps involved in the biosynthesis of the ADP-l-glycero-β-d-manno-heptose (ADP-l-β-d-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-d-β-d-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-d-β-d-heptose. Our results demonstrate that the synthesis of ADP-d-β-d-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional d-β-d-heptose 7-phosphate kinase/d-β-d-heptose 1-phosphate adenylyltransferase), and GmhB (d,d-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-l-β-d-heptose precursor utilized in the assembly of inner core LPS. PMID:11751812

  8. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic.

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M

    2008-09-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.

  9. Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic1

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L.; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A.; Preiss, Jack; Romero, José M.

    2008-01-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  10. Red blood cell ATP/ADP & nitric oxide: The best vasodilators in diabetic patients

    Directory of Open Access Journals (Sweden)

    Bakhtiari Nuredin

    2012-08-01

    Full Text Available Abstract Background Diabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels that result from defects in insulin secretion, or action, or both. Inspired by previous report the release of ATP from RBCs, which may participate in vessel dilation by stimulating NO production in the endothelium through purinergic receptor signaling and so, the aim of this study is to clearly determined relationship between RBC ATP/ADP ratio with nitric oxide. Methods The ATP/ADP ratio of erythrocytes among four groups of normal individuals (young & middle age, athletes’ subjects and diabetic patients were compared and the relationship between ATP/ADP ratio and NO level of plasma was determined with AVOVA test and bioluminescence method. Results ATP/ADP level in four groups normal (young & middle age, athletes, diabetes] are measured and analyzed with ANOVA test that show a significant difference between groups (P-value Conclusion In this study, a positive relationship between RBC ATP/ADP ratio and NO was found. Based on the obtained result, higher RBC ATP/ADP content may control the ratio of plasma NO in different individuals, also this results show that ATP can activate endothelial cells in NO production and is a main factor in releasing of NO from endothelial cells.

  11. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  12. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  13. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  14. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    Science.gov (United States)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  15. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP.

    Science.gov (United States)

    Platero, Ana I; Santero, Eduardo; Govantes, Fernando

    2014-03-01

    The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.

  16. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists.

  17. Effect of Co2+ doping on solubility, crystal growth and properties of ADP crystals

    Science.gov (United States)

    Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Yahia, I. S.

    2016-09-01

    Bulk size crystal growth of ADP with different concentrations doping of cobalt (Co2+) has been done by low cost slow evaporation technique at ambient conditions. The solubility measurement was carried out on pure and doped crystals and found that the solubility is decreasing with doping concentrations. The presence of Co2+ ion in crystalline matrix of ADP has been confirmed by structural, vibrational and elemental analyses. Scanning electron microscopic study reveals that the doping has strong effect on the quality of the crystals. The optical absorbance and transmission confirms the enhancement of quality of ADP crystals due to Co2+ doping and so the optical band gap. Further the dislocation, photoluminescence, dielectric and mechanical studies confirms that the properties of grown crystals with Co2+ doping has been enriched and propose it as a better candidate for optoelectronic applications.

  18. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  19. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose

    Science.gov (United States)

    Tsuzuki, Takayoshi; Takano, Satoshi; Sakaguchi, Natsumi; Kudoh, Takashi; Murayama, Takashi; Sakurai, Takashi; Hashii, Minako; Higashida, Haruhiro; Weber, Karin; Guse, Andreas H.; Kameda, Tomoshi; Hirokawa, Takatsugu; Kumaki, Yasuhiro; Arisawa, Mitsuhiro; Potter, Barry V. L.; Shuto, Satoshi

    2016-01-01

    Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways. PMID:27200225

  20. Effects of epinephrine on ADP-induced changes in platelet inositol phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, J.D.; Keraly, C.L.; Kinlough-Rathbone, R.L.; Mustard, J.F.

    1986-03-01

    Epinephrine (EPI) does not aggregate rabbit platelets, but it does increase the labelling of inositol phosphate (IP) at 60s (21%, p < 0.05) in the presence of 20 mM Li/sup +/, in platelets prelabelled with (/sup 3/H) inositol. In contrast, 0.5 ..mu..M ADP which causes aggregation, increases the labelling of inositol bisphosphate (IP/sub 2/) by 30% (p < 0.01) at 10s and by 46% (p < 0.05) at 60s and IP by 26% (p < 0.05) at 60s. The combination of 0.5 ..mu..M ADP and 50 ..mu..M EPI causes more extensive aggregation and increases IP/sub 2/ by 154% (p < 0.01) and IP by 65% (p < 0.01) at 60s. The increase in IP/sub 2/ stimulated by ADP + EPI was greater than the increase caused by ADP (p < 0.05). The authors examined the effects of ..cap alpha..- and ..beta..-adrenergic receptor blockers on EPI + ADP-induced changes in the inositol phosphates. The ..beta..-adrenergic blocker Sotalol (50 ..mu..M), which had no effect by itself, enhanced the accumulation of IP/sub 2/ due to 0.2 ..mu..M ADP + 0.6 ..mu..M EPI by 70% (p < 0.01) at 60s, as well as aggregation. This is consistent with EPI inhibition mediated through stimulation of adenylate cyclase via the ..beta..-adrenergic receptor. The ..cap alpha..-adrenergic blocker phentolamine (50 ..mu..M), reduced aggregation stimulated by 0.5 ..mu..M ADP + 50 ..mu..M EPI, and reduced the accumulation of IP by 53% (p < 0.05) and IP/sub 2/ by 108% (0 < 0.05). These data are compatible with the hypothesis that the effect of EPI on ADP-induced aggregation involves IP/sub 2/ metabolism stimulated via the ..cap alpha..-adrenergic receptor.

  1. Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof

    Science.gov (United States)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Sun, Chang-Yin; Wei, Qing-Lai

    2013-09-01

    In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.

  2. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: NoD.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: NoD.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  5. File list: NoD.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  6. File list: NoD.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  8. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer

    NARCIS (Netherlands)

    Klauke, M.L.; Hoogerbrugge-van der Linden, N.; Budczies, J.; Bult, P.; Prinzler, J.; Radke, C.; Krieken, J.H. van; Dietel, M.; Denkert, C.; Muller, B.M.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic

  9. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  10. Multiple origins of hydrogenosomes : functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp.

    NARCIS (Netherlands)

    Voncken, F; Boxma, B; Tjaden, J; Akhmanova, A; Huynen, M; Tielens, AGM; Haferkamp, [No Value; Neuhaus, HE; Vogels, G; Veenhuis, M; Hackstein, JHP; Tielens, Aloysius G.M.; Haferkamp, Ilka; Hackstein, Johannes H.P.

    2002-01-01

    A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the co

  11. File list: NoD.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Oth.Adp.05.Nr3c1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.Nr3c1.AllCell mm9 TFs and others Nr3c1 Adipocyte SRX821805,SRX821802,SRX...821803,SRX821804 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.Nr3c1.AllCell.bed ...

  15. File list: NoD.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  16. File list: InP.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  17. File list: NoD.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  18. File list: NoD.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  19. File list: InP.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  20. File list: NoD.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  1. File list: InP.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  2. File list: InP.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  3. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synth

  4. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synth

  5. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  6. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  7. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion.

    Science.gov (United States)

    Szabó, C; Dawson, V L

    1998-07-01

    Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.

  8. Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice

    NARCIS (Netherlands)

    Hancock, C.R.; Janssen, E.E.W.; Terjung, R.L.

    2005-01-01

    The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole

  9. 10 CFR 95.49 - Security of automatic data processing (ADP) systems.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security of automatic data processing (ADP) systems. 95.49 Section 95.49 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.49 Security...

  10. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-05-01

    Full Text Available Abstract Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  11. 45 CFR 95.625 - Increased FFP for certain ADP systems.

    Science.gov (United States)

    2010-10-01

    ...-D program are contained in 45 CFR Part 307. The applicable regulations for the Title IV-E program are contained in 45 CFR 1355.55. The applicable regulations for the Title XIX program are contained in 42 CFR Part 433, Subpart C. Federal Financial Participation in Costs of ADP Acquisitions...

  12. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    Science.gov (United States)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  13. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Science.gov (United States)

    2010-07-01

    ... Designating Positions J Appendix J to Part 154 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE SECURITY DEPARTMENT OF DEFENSE PERSONNEL SECURITY PROGRAM REGULATION Pt. 154, App. J Appendix J to Part 154—ADP Position Categories and Criteria for Designating Positions OMB Circular...

  14. Automated Data Processing Equipment for the Fleet Marine Force (ADPE-FMF).

    Science.gov (United States)

    1982-06-01

    Systems Management Officer ( ISMO )--------------------------------------38 2. Information Systems Coordinator (ISC)-------39 3. Staff Officers...Management Officer ( ISMO ) of the First Marine Amphibious Force (IMAF), then spent the bulk of their time interviewing individual unit Information...interviews, the IMAF ISMO and his ADP personnel were interviewed. Interviews were taped for later review. E. FOLLOW-ON STUDY For the following four

  15. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms

    Directory of Open Access Journals (Sweden)

    Kuhn Misty L

    2013-02-01

    Full Text Available Abstract Background ADP-glucose pyrophosphorylase (ADP-Glc PPase catalyzes the first committed step in the synthesis of glycogen in bacteria and starch in algae and plants. In oxygenic photosynthetic organisms, ADP-Glc PPase is mainly activated by 3-phosphoglycerate (3-PGA and to a lesser extent by other metabolites. In this work, we analyzed the activation promiscuity of ADP-Glc PPase subunits from the cyanobacterium Anabaena PCC 7120, the green alga Ostreococcus tauri, and potato (Solanum tuberosum tuber by comparing a specificity constant for 3-PGA, fructose-1,6-bisphosphate (FBP, fructose-6-phosphate, and glucose-6-phosphate. Results The 3-PGA specificity constant for the enzymes from Anabaena (homotetramer, O. tauri, and potato tuber was considerably higher than for other activators. O. tauri and potato tuber enzymes were heterotetramers comprising homologous small and large subunits. Conversely, the O. tauri small subunit (OtaS homotetramer was more promiscuous because its FBP specificity constant was similar to that for 3-PGA. To explore the role of both OtaS and OtaL (O. tauri large subunit in determining the specificity of the heterotetramer, we knocked out the catalytic activity of each subunit individually by site-directed mutagenesis. Interestingly, the mutants OtaSD148A/OtaL and OtaS/OtaLD171A had higher specificity constants for 3-PGA than for FBP. Conclusions After gene duplication, OtaS seemed to have lost specificity for 3-PGA compared to FBP. This was physiologically and evolutionarily feasible because co-expression of both subunits restored the specificity for 3-PGA of the resulting heterotetrameric wild type enzyme. This widespread promiscuity seems to be ancestral and intrinsic to the enzyme family. Its presence could constitute an efficient evolutionary mechanism to accommodate the ADP-Glc PPase regulation to different metabolic needs.

  16. Bacterial vaginosis -- aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000687.htm Bacterial vaginosis - aftercare To use the sharing features on this ... to back after you use the bathroom. Preventing Bacterial Vaginosis You can help prevent bacterial vaginosis by: Not ...

  17. Pregnancy Complications: Bacterial Vaginosis

    Science.gov (United States)

    ... Complications & Loss > Pregnancy complications > Bacterial vaginosis and pregnancy Bacterial vaginosis and pregnancy E-mail to a friend Please ... this page It's been added to your dashboard . Bacterial vaginosis (also called BV or vaginitis) is an infection ...

  18. 阿维链霉菌adpA-a调控形态分化和黑色素形成

    Institute of Scientific and Technical Information of China (English)

    赵金雷; 文莹; 陈芝; 宋渊; 李季伦

    2007-01-01

    灰色链霉菌(Streptomyces griseus)中的AdpA是A-因子调控网络中的一个中心转录调控因子,控制形态分化和次级代谢.在阿维链霉菌(Streptomyces avermitilis)的基因组上,也存在着与adpA高度同源的基因adpA-a.为了研究其功能,通过同源双交换将adpA-a基因破坏,得到的adpA-a突变株不能进行正常的形态分化,同时不再产生黑色素,但产阿维菌素(avermectin)的能力不受影响.对该破坏菌株进行基因互补,互补突变株的表型得到恢复,证实了突变株表型变化是由adpA-a破坏引起的.以上结果表明,在阿维链霉菌中,adpA-a不仅参与形态分化的调控,同时也参与黑色素生物合成的调控.

  19. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  20. The crystal structure of the Y140F mutant of ADP-l-glycero-d-manno-heptose 6-epimerase bound to ADP-β-d-mannose suggests a one base mechanism

    Science.gov (United States)

    Kowatz, Thomas; Morrison, James P; Tanner, Martin E; Naismith, James H

    2010-01-01

    Bacteria synthesize a wide array of unusual carbohydrate molecules, which they use in a variety of ways. The carbohydrate l-glycero-d-manno-heptose is an important component of lipopolysaccharide and is synthesized in a complex series of enzymatic steps. One step involves the epimerization at the C6″ position converting ADP-d-glycero-d-manno-heptose into ADP-l-glycero-d-manno-heptose. The enzyme responsible is a member of the short chain dehydrogenase superfamily, known as ADP-l-glycero-d-manno-heptose 6-epimerase (AGME). The structure of the enzyme was known but the arrangement of the catalytic site with respect to the substrate is unclear. We now report the structure of AGME bound to a substrate mimic, ADP-β-d-mannose, which has the same stereochemical configuration as the substrate. The complex identifies the key residues and allows mechanistic insight into this novel enzyme. PMID:20506248

  1.   Adenosine-diphosphate (ADP) reduces infarct size and improves porcine heart function after myocardial infarction

    DEFF Research Database (Denmark)

    Bune, Laurids Touborg; Larsen, Jens Kjærgaard Rolighed; Thaning, Pia;

    2013-01-01

    (UTP) are both released during myocardial ischemia, influencing hemodynamics. Both mediate the release of tissue plasminogen activator (t-PA), which can reduce infarct size (IS). The objective of this study was to investigate whether exogenous ADP and UTP administration during reperfusion could reduce......Acute myocardial infarction continues to be a major cause of morbidity and mortality. Timely reperfusion can substantially improve outcomes and the administration of cardioprotective substances during reperfusion is therefore highly attractive. Adenosine diphosphate (ADP) and uridine-5-triphoshate...... myocardial IS and whether this correlated to t-PA release or improvements in hemodynamic responses. Hemodynamic variables and t-PA were measured in 22 pigs before, during, and after 45 min of left anterior coronary artery occlusion. During reperfusion, the pigs were randomized to 240 min of intracoronary...

  2. Ageing of atrazine in manure amended soils assessed by bioavailability to Pseudomonas sp. strain ADP

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Bælum, Jacob; Strobel, Bjarne W.;

    2014-01-01

    bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~108 cells g−1 of the ADP strain was inoculated to the 14C-atrazine exposed soil and 14CO2 was collected over 7 days as a measure of mineralized atrazine. Even...... though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure....... Contrarily, sorption experiments showed less sorption to Simmelkær treated with manure than the untreated soil indicating that sorption processes are not the only mechanisms of ageing. The other topsoil low in organic carbon content, Ringe, showed no significant difference in ageing between the manure...

  3. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  4. The effect of jasplakinolide on the thermodynamic properties of ADP.BeF(x) bound actin filaments.

    Science.gov (United States)

    Kardos, Roland; Vig, Andrea; Orbán, József; Hild, Gábor; Nyitrai, Miklós; Lőrinczy, Dénes

    2007-10-25

    The effect of BeF(x) and a natural toxin (jasplakinolide) was examined on the thermal stability of actin filaments by using differential scanning calorimetry. The phosphate analogue beryllium fluoride shifted the melting temperature of actin filaments (67.4 degrees C) to 83.7 degrees C indicating that the filaments were thermodynamically more stable in their complex with ADP.BeF(x). A similar tendency was observed when the jasplakinolide was used in the absence of BeF(x). When both the ADP.BeF(x) and the jasplakinolide bound to the actin filaments their collective effect was similar to that observed with ADP.BeF(x) or jasplakinolide alone. These results suggested that ADP.BeF(x) and jasplakinolide probably stabilize the actin filaments by similar molecular mechanisms.

  5. Effect of L-cysteine on optical, thermal and mechanical properties of ADP crystal for NLO application

    Science.gov (United States)

    Shaikh, R. N.; Shirsat, M. D.; Koinkar, P. M.; Hussaini, S. S.

    2015-06-01

    The ammonium dihydrogen phosphate (ADP) crystal doped with amino acid L-cysteine (LC) was grown by a slow evaporation technique. The grown crystal was transparent in the entire visible region, which is an essential requirement for a nonlinear crystal. The LC doping enhances the optical band gap of ADP (5.35 eV). The TG/DTA analysis of LC doped ADP crystal confirms the optimum thermal stability of grown crystal. The enhancement in the mechanical stability after LC doping was confirmed by Vicker's microhardness test. The LC doping showed significant impact on dielectric properties (dielectric constant and dielectric loss) of grown crystal. The third order nonlinear behavior of LC doped ADP crystal was investigated using a Z-scan technique at 632.8 nm and effective nonlinear optical parameters were evaluated.

  6. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes.

    Science.gov (United States)

    Pietropaolo, Adriana; Pierri, Ciro Leonardo; Palmieri, Ferdinando; Klingenberg, Martin

    2016-06-01

    The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane domain structure. Modeling of transport mechanism remained hypothetical for want of an atomic structure of the m-state. Previous molecular dynamics studies simulated the binding of ADP or ATP to the AAC remaining in the c-state. Here, a full description of the AAC switching from the c- to the m-state is reported using well-tempered metadynamics simulations. Free-energy landscapes of the entire translocation from the c- to the m-state, based on the gyration radii of the c- and m-gates and of the center of mass, were generated. The simulations revealed three free-energy basins attributed to the c-, intermediate- and m-states separated by activation barriers. These simulations were performed with the empty and with the ADP- and ATP-loaded AAC as well as with the poorly transported AMP and guanine nucleotides, showing in the free energy landscapes that ADP and ATP lowered the activation free-energy barriers more than the other substrates. Upon binding AMP and guanine nucleotides a deeper free-energy level stabilized the intermediate-state of the AAC2 hampering the transition to the m-state. The structures of the substrate binding sites in the different states are described producing a full picture of the translocation events in the AAC.

  7. The Effect of Agricultural Development Project (ADP on the Rural Farmers in Adamawa State, Nigeria

    Directory of Open Access Journals (Sweden)

    Umar Adamu Madu

    2012-09-01

    Full Text Available Majority of communities in Nigeria are rural dwellers and agrarian by occupation. Development strategy for a country whose rural population are mainly farmers cannot be achieved without first sustained growth in rural income and standard of living primarily from agriculture. It was based on this that the state wide Agricultural Development Project (ADP was established to raise productivity, income and standard of living of rural farmers in Nigeria. This study assesses the effect of the ADP activities on the wellbeing of the rural farmers in Adamawa State, Nigeria. Data for this study were collect on annual crop output, annual income, farm size, use of improved technology, access to credit among farmers, farmers’ training and rural infrastructure development. The data were sourced using structured questionnaire and personal interviews. The statistical analysis used to determine the effect to the project on the participating farmers include, descriptive statistics and comparability test for difference (T-test analysis. The results indicates that Adamawa ADP had positive and significant impact on rural farmers productivity, income, access to credit, standard of living as measured by assets ownership. However, the project did not have significant impact on the rural infrastructure, adoption of improved technologies and farm sizes, even though the change from before and after ADP activities was positive. The study recommends that much attention should be paid to the provision of rural infrastructure and the needed improved technologies. The study also recommends that the two tiers of government in Nigeria should adequately fund the project to efficiently cope with its responsibility of developing the rural sector.

  8. Guidelines for contingency planning NASA (National Aeronautics and Space Administration) ADP security risk reduction decision studies

    Science.gov (United States)

    Tompkins, F. G.

    1984-01-01

    Guidance is presented to NASA Computer Security Officials for determining the acceptability or unacceptability of ADP security risks based on the technical, operational and economic feasibility of potential safeguards. The risk management process is reviewed as a specialized application of the systems approach to problem solving and information systems analysis and design. Reporting the results of the risk reduction analysis to management is considered. Report formats for the risk reduction study are provided.

  9. Cloning and expression of cDNA for human poly(ADP-ribose)polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, H.M.; Chen, D.; Cherney, B.; Bhatia, K.; Notario, V.; Giri, C.; Stein, G.; Slattery, E.; Roeder, R.G.; Smulson, M.E.

    1987-03-01

    cDNAs encoding poly(ADP-ribose) polymerase from a human hepatoma lambdagt11 cDNA library were isolated by immunological screening. One insert of 1.3 kilobases (kb) consistently hybridized on RNA gel blots to an mRNA species of 3.6-3.7 kb, which is consistent with the size of RNA necessary to code for the polymerase protein (116 kDa). This insert was subsequently used in both in vitro hybrid selection and hybrid-arrested translation studies. An mRNA species from HeLa cells of 3.6-3.7 kb was selected that was translated into a 116-kDa protein, which was selectively immunoprecipitated with anti-poly(ADP-ribose) polymerase. To confirm that the 1.3-kb insert from lambdagt11 encodes for poly(ADP-ribose) polymerase, the insert was used to screen a 3- to 4-kb subset of a transformed human fibroblast cDNA library in the Okayama-Berg vector. One of these vectors was tested in transient transfection experiments in COS cells. This cDNA insert contained the complete coding sequence for polymerase. Using pcD-p(ADPR)P as probe, it was observed that the level of poly(ADP-ribose) polymerase mRNA was elevated at 5 and 7 hr of S phase of the HeLa cell cycle, but was unaltered when artificial DNA strand breaks are introduced in HeLa cells by alkylating agents.

  10. D.C. electrical conductivity measurements on ADP single crystals added with simple organic compounds

    Indian Academy of Sciences (India)

    A Anne Assencia; C Mahadevan

    2005-08-01

    Pure and impurity added (with urea and thiourea) ADP single crystals were grown by the free evaporation method. D.C. electrical conductivity measurements were carried out along both the unique axis and perpendicular directions at various temperatures ranging from 40–150°C by the conventional two-probe method. Activation energies were also determined. The present study indicates that the conductivity increases with the increase in impurity concentration and temperature.

  11. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  12. The role of poly(ADP-ribose) in the DNA damage signaling network.

    Science.gov (United States)

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  13. ADP is a vasodilator component from Lasiodora sp. mygalomorph spider venom.

    Science.gov (United States)

    Horta, C C; Rezende, B A; Oliveira-Mendes, B B R; Carmo, A O; Capettini, L S A; Silva, J F; Gomes, M T; Chávez-Olórtegui, C; Bravo, C E S; Lemos, V S; Kalapothakis, E

    2013-09-01

    Members of the spider genus Lasiodora are widely distributed in Brazil, where they are commonly known as caranguejeiras. Lasiodora spider venom is slightly harmful to humans. The bite of this spider causes local pain, edema and erythema. However, Lasiodora sp. spider venom may be a source of important pharmacological tools. Our research group has described previously that Lasiodora sp. venom produces bradycardia in the isolated rat heart. In the present work, we sought to evaluate the vascular effect of Lasiodora sp. venom and to isolate the vasoactive compounds from the venom. The results showed that Lasiodora spider venom induced a concentration-dependent vasodilation in rat aortic rings, which was dependent on the presence of a functional endothelium and abolished by the nitric oxide synthase (NOS) inhibitor L-NAME. Western blot experiments revealed that the venom also increased endothelial NOS function by increasing phosphorylation of the Ser¹¹⁷⁷ residue. Assay-directed fractionation isolated a vasoactive fraction from Lasiodora sp. venom. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) assays identified a mixture of two compounds: adenosine diphosphate (ADP, approximately 90%) and adenosine monophosphate (AMP, approximately 10%). The vasodilator effects of Lasiodora sp. whole venom, as well as ADP, were significantly inhibited by suramin, which is a purinergic P2-receptor antagonist. Therefore, the results of the present work indicate that ADP is a main vasodilator component of Lasiodora sp. spider venom.

  14. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.

    Science.gov (United States)

    Frieden, C; Patane, K

    1985-07-16

    The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.

  15. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Srivastava, A; Tripathi, A K

    2006-10-01

    Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.

  16. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    Science.gov (United States)

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  17. Poly (ADP-ribose) polymerase inhibitor:an evolving paradigm in the treatment of prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Jingsong Zhang

    2014-01-01

    Recent phase I studies have reported single-agent activities of poly (ADP-ribose) polymerase (PARP) inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR) and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.

  18. Poly (ADP-ribose polymerase inhibitor: an evolving paradigm in the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Jingsong Zhang

    2014-06-01

    Full Text Available Recent phase I studies have reported single-agent activities of poly (ADP-ribose polymerase (PARP inhibitor in sporadic and in BRCA-mutant prostate cancers. Two of the most common genetic alterations in prostate cancer, ETS gene rearrangement and loss of PTEN, have been linked to increased sensitivity to PARP inhibitor in preclinical models. Emerging evidence also suggests that PARP1 plays an important role in mediating the transcriptional activities of androgen receptor (AR and ETS gene rearrangement. In this article, the preclinical work and early-phase clinical trials in developing PARP inhibitor-based therapy as a new treatment paradigm for metastatic prostate cancer are reviewed.

  19. Maximum ADPE Approach for a High Rate CCSDS Return Link Processing System

    Science.gov (United States)

    Krimchansky, Alexander; Moe, Brian; Erickson, David

    1996-01-01

    The earth observing system data and operations system (EDOS) multi-mission data processing and distribution system for the earth observing system is considered. The EDOS was based on the Consultative Committee for Space Data Systems (CCSDS) protocols. The development included the challenge of developing and demonstrating a 150 Mbps CCSDS return link processing capability for the support of the first EDOS delivery. The approach used general-purpose automated data processing equipment (ADPE) and minimized the use of customized hardware. The way in which the system was developed is described. The principle design decisions and the performance benchmark results are presented.

  20. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  1. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    Science.gov (United States)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  2. Rapid Exchange of Bound ADP on the Staphylococcus aureus Replication Initiation Protein DnaA*

    OpenAIRE

    2009-01-01

    In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in Gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but n...

  3. Ribosylated BSA Monomer is Severely Toxic to SH-SY5Y Cells%核糖糖基化BSA单体对SH-SY5Y细胞的毒性明显

    Institute of Scientific and Technical Information of China (English)

    魏艳; 王玉婧; 吴蓓蓓; 张英豪; 赫荣乔

    2016-01-01

    Oligomers,rather than polymers and fibrils,of protein aggregates are thought to be cytotoxic,which is a milestone in the study of protein misfolding and aggregation.Abnormally high level of uric ribose in type 2 diabetic patients and ribosylated animal models indicate that diabetes is not only correlated with metabolic dysfunction in glucose but also ribose.Here,using ribosylation of bovine serum albumin (BSA),we show that ribosylated BSA aggregates and proceeds from a monomer and onto an oligomer and polymer,observed with fluorescence spectrophotometer,atomic force microscopy,transmission electron microscopy and size exclusion chromatography.Ribosylated monomer showed severely cytotoxic to SH-SY5Y cells (a human neuroblastoma cell line) under the observations by assays of CCK-8,LDH activity,TUNEL staining,caspase-3 activity and flow-cytometry,whereas ribosylated oligomer and polymer did not.The cytotoxic effect of the ribosylated monomer likely occurs by inducing neuronal apoptosis through activation of the receptor of AGEs (RAGE) associated with mitogen-activated protein kinases (MAPK) pathways.%研究显示,蛋白质异常修饰形成的寡聚体,与其多聚体、淀粉样纤维相比,具有更强的细胞毒性.这一发现被认为是蛋白质错误折叠和聚集研究领域中的重要进展.蛋白质的异常修饰如还原糖的非酶糖基化,是糖尿病最基本的病理特征.2型糖尿病患者尿液中的核糖浓度显著升高,表明糖尿病不仅与葡萄糖代谢紊乱相关,同时也与核糖代谢失调相关.以牛血清白蛋白(BSA)为研究对象,通过荧光分光光度计检测、原子力显微镜、透射电子显微镜观察以及分子排阻色谱分离,观察到核糖糖基化能够诱导BSA聚集,从单体、寡聚体逐渐形成多聚体.通过CCK-8 Kit、乳酸脱氢酶细胞活性检测、TUNEL染色、caspase-3活性检测以及流式细胞检测等方法,发现核糖糖基化的BSA单体对SH-SY5Y细胞(人神经母细胞瘤

  4. Cloning and Expression Pattern of a Gene Encoding a Putative Plastidic ATP/ADP Transporter from Helianthus tuberosus L.

    Institute of Scientific and Technical Information of China (English)

    Kun MENG; Tuan-Jie CHANG; Xiang LIU; Song-Biao CHEN; Yong-Qin WANG; Ai-Jun SUN; Hong-Lin XU; Xiao-Li WEI; Zhen ZHU

    2005-01-01

    Herein, we report the cloning and molecular characterization of a full cDNA encoding a putative plastidic ATP/ADP transporter, designated HtAATP, for Helianthus tuberosus L. The ATP/ADP translocator protein was isolated from the tuber-cDNA library of H. tuberosus for the first time. The predicted HtAATP protein was judged as a plastidic ATP/ADP translocator protein from its high homology at the amino acid sequence level to the two Arabidopsis thaliana plastidic ATP/ADP translocator proteins AATP1 and AATP2 (84.8% and 79.9% identity, respectively). Amino acid sequence analysis of the primary structure of HtAATP revealed that it belonged to the plastidic ATP/ADP transporter family. Hydropathy prediction indicated that HtAATP gene product is a highly hydrophobic membrane protein that contains 10 transmembrane domains to form a spanning topology. Southern blotting analysis showed that the HtAATP gene is a single-copy gene in the H. tuberosus genome. Tissue distribution analysis showed that the HtAATP gene is prominently expressed in sink tissues. A stable expression pattern in tubers at different developmental stages implies an active involvement of HtAATP during carbohydrate formation.

  5. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  6. Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation.

    Science.gov (United States)

    Dölle, Christian; Niere, Marc; Lohndal, Emilia; Ziegler, Mathias

    2010-02-01

    Poly-ADP-ribose polymerases (PARPs) use NAD(+) as substrate to generate polymers of ADP-ribose. We targeted the catalytic domain of human PARP1 as molecular NAD(+) detector into cellular organelles. Immunochemical detection of polymers demonstrated distinct subcellular NAD(+) pools in mitochondria, peroxisomes and, surprisingly, in the endoplasmic reticulum and the Golgi complex. Polymers did not accumulate within the mitochondrial intermembrane space or the cytosol. We demonstrate the suitability of this compartment-specific NAD(+) and poly-ADP-ribose turnover to establish intra-organellar protein localization. For overexpressed proteins, genetically endowed with PARP activity, detection of polymers indicates segregation from the cytosol and consequently intra-organellar residence. In mitochondria, polymer build-up reveals matrix localization of the PARP fusion protein. Compared to presently used fusion tags for subcellular protein localization, these are substantial improvements in resolution. We thus established a novel molecular tool applicable for studies of subcellular NAD metabolism and protein localization.

  7. Ageing of atrazine in manure amended soils assessed by bioavailability to Pseudomonas sp. strain ADP.

    Science.gov (United States)

    Glæsner, Nadia; Bælum, Jacob; Strobel, Bjarne W; Jacobsen, Carsten S

    2014-04-01

    Animal manure is applied to agricultural land in areas of high livestock production. In the present study, we evaluated ageing of atrazine in two topsoils with and without addition of manure and in one subsoil. Ageing was assessed as the bioavailability of atrazine to the atrazine mineralizing bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~10(8) cells g(-1) of the ADP strain was inoculated to the (14)C-atrazine exposed soil and (14)CO2 was collected over 7 days as a measure of mineralized atrazine. Even though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure. Contrarily, sorption experiments showed less sorption to Simmelkær treated with manure than the untreated soil indicating that sorption processes are not the only mechanisms of ageing. The other topsoil low in organic carbon content, Ringe, showed no significant difference in ageing between the manure-treated and untreated soil. The present study illustrates that not simply the organic carbon content influences adsorption and ageing of atrazine in soil but the origin and composition of organic matter plays an important role.

  8. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death.

    Science.gov (United States)

    Blenn, Christian; Althaus, Felix R; Malanga, Maria

    2006-06-15

    PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.

  9. P2Y12-ADP receptor antagonists: Days of future and past

    Institute of Scientific and Technical Information of China (English)

    Marc Laine; Franck Paganelli; Laurent Bonello

    2016-01-01

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease.Thanks to a better understanding in physiology,pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing theexpansion of percutaneous coronary intervention.Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way.Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate(ADP)-receptor antagonist.This dual antiplatelet therapy has dramatically improved the prognosis of stented patients.However,due to pharmacological limitations of clopidogrel(interindividual variability in its biological efficacy,slow onset of action,mild platelet reactivity inhibition)ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients.Thus,more potent P2Y12-ADP receptor inhibitors were developped including prasugrel,ticagrelor and more recently cangrelor to overcome these pitfalls.These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk.The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient.Recently,the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome.The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients.

  10. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

    Science.gov (United States)

    Carzaniga, Thomas; Mazzantini, Elisa; Nardini, Marco; Regonesi, Maria Elena; Greco, Claudio; Briani, Federica; De Gioia, Luca; Dehò, Gianni; Tortora, Paolo

    2014-02-01

    Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

  11. The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases

    DEFF Research Database (Denmark)

    Zaganas, Ioannis; Pajecka, Kamilla; Nielsen, Camilla Wendel;

    2013-01-01

    human isoenzymes (hGDH1 and hGDH2), though highly homologous, differ markedly in their regulatory properties. Here we obtained hGDH1 and hGDH2 in recombinant form and studied their Km for ammonia in the presence of 1.0 mM ADP. The analyses showed that lowering the pH of the buffer (from 8.0 to 7.......0) increased the Km for ammonia substantially (hGDH1: from 12.8 ± 1.4 mM to 57.5 ± 1.6 mM; hGDH2: from 14.7 ± 1.6 mM to 62.2 ± 1.7 mM), thus essentially precluding reductive amination. Moreover, lowering the ADP concentration to 0.1 mM not only increased the K0.5 [NH4 (+)] of hGDH2, but also introduced...

  12. adPEO mutations in ANT1 impair ADP-ATP translocation in muscle mitochondria.

    Science.gov (United States)

    Kawamata, Hibiki; Tiranti, Valeria; Magrané, Jordi; Chinopoulos, Christos; Manfredi, Giovanni

    2011-08-01

    Mutations in the heart and muscle isoform of adenine nucleotide translocator 1 (ANT1) are associated with autosomal-dominant progressive external opthalmoplegia (adPEO) clinically characterized by exercise intolerance, ptosis and muscle weakness. The pathogenic mechanisms underlying the mitochondrial myopathy caused by ANT1 mutations remain largely unknown. In yeast, expression of ANT1 carrying mutations corresponding to the human adPEO ones causes a wide range of mitochondrial abnormalities. However, functional studies of ANT1 mutations in mammalian cells are lacking, because they have been hindered by the fact that ANT1 expression leads to apoptotic cell death in commonly utilized replicating cell lines. Here, we successfully express functional ANT1 in differentiated mouse myotubes, which naturally contain high levels of ANT1, without causing cell death. We demonstrate, for the first time in these disease-relevant mammalian cells, that mutant human ANT1 causes dominant mitochondrial defects characterized by decreased ADP-ATP exchange function and abnormal translocator reversal potential. These abnormalities are not due to ANT1 loss of function, because knocking down Ant1 in myotubes causes functional changes different from ANT1 mutants. Under certain physiological conditions, mitochondria consume ATP to maintain membrane potential by reversing the ADP-ATP transport. The modified properties of mutant ANT1 can be responsible for disease pathogenesis in adPEO, because exchange reversal occurring at higher than normal membrane potential can cause excessive energy depletion and nucleotide imbalance in ANT1 mutant muscle cells.

  13.  Poly(ADP-ribose polymerase (PARP inhibitors in BRCA1/2 cancer therapy

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluzek

    2012-06-01

    Full Text Available  A majority of currently used anticancer drugs belong to a group of chemical agents that damage DNA. The efficiency of the treatment is limited by effective DNA repair systems functioning in cancer cells. Many chemotherapeutic compounds cause strong systemic toxicity. Therefore, there is still a need for new anticancer agents which are less toxic for nontransformed cells and selectively kill cancer cells. One of the most promising molecular targets in cancer therapy is poly(ADP-ribose polymerases (PARP. PARP play an essential role in repairing DNA strand breaks. Small molecule inhibitors of these enzymes have been developed and have proved to be extremely toxic for cancer cells that lack the functional BRCA1 and BRCA2 proteins that are involved in homologous recombination, a complex repair mechanism of DNA double strand breaks. Mutations in BRCA1/2 genes are associated with genetically inherited breast and ovarian cancers. Therefore PARP inhibitors may prove to be very effective and selective in the treatment of these cancer types. This review is focused on the function of BRCA1/2 proteins and poly(ADP-ribose polymerases in DNA repair systems, especially in the homologous recombination process. A short history of the studies that led to synthesis of high specificity small molecule PARP inhibitors is also presented, as well as the results of clinical trials concerning the most effective PARP inhibitors in view of their potential application in oncological treatment, particularly breast cancers.

  14. Analysis of current situation and perspective of digital preservation in the Social Science Data Archives (ADP

    Directory of Open Access Journals (Sweden)

    Irena Vipavc Brvar

    2011-01-01

    Full Text Available Social science data archives have begun to evolve in 1960’s, thus being one of the pioneers of digital preservation. The Slovenian Data Archive (ADP follows and adjusts best practices that have emerged in this specific field. Its tasks comprise acquisition,processing and long term preservation of valuable primary research data, as well as providing accessibility to the content for users. As in other areas of digital preservation much attention is paid to meeting the requirements of long term preservation as specified in the OAIS (Opean Archival Information System standard, and the use of technological solutions, proposed metadata standards, strategies and policies, and best practices. The purpose of this paper is to present procedures in ADP, to compare them with selected solutions of organizations with the similar mission, and to suggest improvements.Examples are taken from partner organizations within the CESSDA data archives association. These organizations (especially those from the USA, Great Britain and the Netherlands have developed solutions in the field of digital preservation to the highest degree. The paper also reflects on agreed guidelines of reliable services for the archives of research data, which arose in the frame of the FP7 project with the same title (i.e. CESSDA PPP. The results of analysis are useful for all are seeking practical solutions to similar problems.

  15. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes.

    Science.gov (United States)

    Kwak, Hyo-Bum; Thalacker-Mercer, Anna; Anderson, Ethan J; Lin, Chien-Te; Kane, Daniel A; Lee, Nam-Sihk; Cortright, Ronald N; Bamman, Marcas M; Neufer, P Darrell

    2012-01-01

    Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (PMitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, Pmitochondrial PTP opening (+44%, Pmitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy.

  16. Hydrogen ADPs with Cu Kα data? Invariom and Hirshfeld atom modelling of fluconazole.

    Science.gov (United States)

    Orben, Claudia M; Dittrich, Birger

    2014-06-01

    For the structure of fluconazole [systematic name: 2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol] monohydrate, C13H12F2N6O·H2O, a case study on different model refinements is reported, based on single-crystal X-ray diffraction data measured at 100 K with Cu Kα radiation to a resolution of sin θ/λ of 0.6 Å(-1). The structure, anisotropic displacement parameters (ADPs) and figures of merit from the independent atom model are compared to `invariom' and `Hirshfeld atom' refinements. Changing from a spherical to an aspherical atom model lowers the figures of merit and improves both the accuracy and the precision of the geometrical parameters. Differences between results from the two aspherical-atom refinements are small. However, a refinement of ADPs for H atoms is only possible with the Hirshfeld atom density model. It gives meaningful results even at a resolution of 0.6 Å(-1), but requires good low-order data.

  17. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  18. Poly(ADP-ribose)--a unique natural polymer structural features, biological role and approaches to the chemical synthesis.

    Science.gov (United States)

    Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Poly(ADP-ribose) (PAR) is a natural polymer, taking part in numerous important cellular processes. Several enzymes are involved in biosynthesis and degradation of PAR. One of them, poly(ADP-ribose)polymerase-1 (PARP-1) is considered to be a perspective target for the design of new drugs, affecting PAR metabolism. The structure of PAR was established by enzymatic hydrolysis and further analysis of the products, but total chemical synthesis of PAR hasn't been described yet. Several approaches have been developed on the way to chemical synthesis of this unique biopolymer.

  19. Prediction of the Occurrence of the ADP-binding βαβ-fold in Proteins, Using an Amino Acid Sequence Fingerprint

    NARCIS (Netherlands)

    Wierenga, Rik K.; Terpstra, Peter; Hol, Wim G.J.

    1986-01-01

    An amino acid sequence "fingerprint” has been derived that can be used to test if a particular sequence will fold into a βαβ-unit with ADP-binding properties. It was deduced from a careful analysis of the known three-dimensional structures of ADP-binding βαβ-folds. This fingerprint is in fact a set

  20. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  1. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles.

    NARCIS (Netherlands)

    Tjaden, J.; Haferkamp, I.; Boxma, B.; Tielens, A.G.; Huynen, M.A.; Hackstein, J.H.P.

    2004-01-01

    The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-ge

  2. 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether and ATP ether. Affinity reagents for labeling ATPases.

    Science.gov (United States)

    Chuan, H; Wang, J H

    1988-09-15

    The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by ATP or ADP. An average number of 1.3 covalent label per F1 is sufficient for 100% inhibition of the ATPase. About 73% of the radioactive label was found covalently attached to beta subunits, 9% on alpha, practically none on gamma, delta, and epsilon. Cleavage of the labeled enzyme by pepsin and sequencing of the major radioactive peptide showed that the labeled amino acid residue in beta subunit was Lys beta 162. These results show that Lys beta 162 is indeed at the active site of F1 as assumed in the recently proposed models (Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 907-911; Duncan, I. M., Parsonage, D., and Senior, A. E. (1986) FEBS Lett. 208, 1-6).

  3. Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling.

    Science.gov (United States)

    Gerhardt, Edileusa C M; Araújo, Luíza M; Ribeiro, Ronny R; Chubatsu, Leda S; Scarduelli, Marcelo; Rodrigues, Thiago E; Monteiro, Rose A; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2012-06-01

    Proteins belonging to the P(II) family coordinate cellular nitrogen metabolism by direct interaction with a variety of enzymes, transcriptional regulators and transporters. The sensing function of P(II) relies on its ability to bind the nitrogen/carbon signalling molecule 2-oxoglutarate (2-OG). In Proteobacteria, P(II) is further subject to reversible uridylylation according to the intracellular levels of glutamine, which reflect the cellular nitrogen status. A number of P(II) proteins have been shown to bind ADP and ATP in a competitive manner, suggesting that P(II) might act as an energy sensor. Here, we analyse the influence of the ADP/ATP ratio, 2-OG levels and divalent metal ions on in vitro uridylylation of the Azospirillum brasilense P(II) proteins GlnB and GlnZ, and on interaction with their targets AmtB, DraG and DraT. The results support the notion that the cellular concentration of 2-OG is a key factor governing occupation of the GlnB and GlnZ nucleotide binding sites by ATP or ADP, with high 2-OG levels favouring the occupation of P(II) by ATP. Both P(II) uridylylation and interaction with target proteins responded to the ADP/ATP ratio within the expected physiological range, supporting the concept that P(II) proteins might act as cellular energy sensors.

  4. Poly (ADP-ribose) polymerase-1 gene polymorphism in various Chinese nationalities

    Institute of Scientific and Technical Information of China (English)

    Hairong Liang; Junli Shao; Yuting Gao; Linhua Liu; Juanxiu Dai; Yun He; Huanwen Tang

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) can exacerbate ischemic brain injury and lessen ischemic neuronal death, which may be associated with PARP-1 polymorphisms. The present study investigated human PARP-1 gene polymorphisms in various Chinese nationalities, the results of which could potentially help in the treatment and prevention of neurologic diseases. Genetic polymorphisms of seven exons in the PARP-1 gene, in 898 Chinese Han, Buyi, Shui, Miao, and Zhuang subjects, were investigated by PCR-single-strand conformation polymorphism. A single-strand conformation polymorphism variant in exons 12, 13, 16, and 17 of the PARP-1 gene was identified in 148 people, with two stationary bands showing three degenerative single strands.Results showed that the PARP-1 gene polymorphisms exist in various nationalities, and may act as a biomarker for susceptibility to disease.

  5. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    Science.gov (United States)

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.

  6. The Role of Poly(ADP-ribose Polymerase-1 in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Samuel García

    2015-01-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.

  7. Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer.

    Science.gov (United States)

    Todorova, Tanya; Bock, Florian J; Chang, Paul

    2015-06-01

    Post-transcriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) polymerase-13 (PARP13), also known as ZC3HAV1 and zinc-finger antiviral protein (ZAP), is an RNA-binding protein that regulates the stability and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally affect miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the prosurvival cytokine receptor tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 4 (TRAILR4) suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target.

  8. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  9. ADP-flow velocity profile to interpret hydromorphological features of China's Yangtze Three-Gorges valley

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; CHEN Zhongyuan; XU Kaiqin; WEI Taoyuan; LI Maotian; WANG Zhanghua; Masataka Watanabe

    2005-01-01

    In late May and early June, 2002, a field investigation was conducted along the Three-Gorges valley of the upper Yangtze catchment by ADP (Acoustic Doppler Profile SONTEK-500). Data obtained when surveying were accompanied with discharge of 1000 m) and shallower water depth (50 m) and U-shaped river-channel morphology. Mapping the river cross-section area at those sites can determine that smaller cross-section area accelerates the flow velocity. From Wanxian to Fengjie, the average flow velocity ranging from 3.0 to 4.5 m/s is in-phase with the water depth. The high-flow velocity is associated with narrower river-channel, where V-shaped gorges valley occurs with small cross-section area. Further downstream from Fengjie to Zigui, the low flow velocity is linked to deep river channel characterized by W-shaped valley morphology of large cross-section area, in general. The average flow velocity is 2.5―3.5 m/s, and maximum can reach 6.0 m/s near Wu-Gorge. Our survey had also detected a slow-flow velocity (mostly 100 m; maximum) in the gorges valley (30―40 m below the present mean sea level). This contrasts to the relative shallow water river-channel above Fengjie, i.e. 20―30 m in general and 50―60 m, maximum at gorges site. The present ADP investigation displays the hydromorphological feature in the Three-Gorges valley, and most importantly, it accumulates invaluable dataset for the post-dam study in the near future.

  10. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria...

  11. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  12. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  13. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  14. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  15. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  16. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing....... These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  17. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  18. 8-Bromo-cyclic inosine diphosphoribose: towards a selective cyclic ADP-ribose agonist

    Science.gov (United States)

    Kirchberger, Tanja; Moreau, Christelle; Wagner, Gerd K.; Fliegert, Ralf; Siebrands, Cornelia C.; Nebel, Merle; Schmid, Frederike; Harneit, Angelika; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2009-01-01

    cADPR (cyclic ADP-ribose) is a universal Ca2+ mobilizing second messenger. In T-cells cADPR is involved in sustained Ca2+ release and also in Ca2+ entry. Potential mechanisms for the latter include either capacitative Ca2+ entry, secondary to store depletion by cADPR, or direct activation of the non-selective cation channel TRPM2 (transient receptor potential cation channel, subfamily melastatin, member 2). Here we characterize the molecular target of the newly-described membrane-permeant cADPR agonist 8-Br-N1-cIDPR (8-bromo-cyclic IDP-ribose). 8-Br-N1-cIDPR evoked Ca2+ signalling in the human T-lymphoma cell line Jurkat and in primary rat T-lymphocytes. Ca2+ signalling induced by 8-Br-N1-cIDPR consisted of Ca2+ release and Ca2+ entry. Whereas Ca2+ release was sensitive to both the RyR (ryanodine receptor) blocker RuRed (Ruthenium Red) and the cADPR antagonist 8-Br-cADPR (8-bromo-cyclic ADP-ribose), Ca2+ entry was inhibited by the Ca2+ entry blockers Gd3+ (gadolinium ion) and SKF-96365, as well as by 8-Br-cADPR. To unravel a potential role for TRPM2 in sustained Ca2+ entry evoked by 8-Br-N1-cIDPR, TRPM2 was overexpressed in HEK (human embryonic kidney)-293 cells. However, though activation by H2O2 was enhanced dramatically in those cells, Ca2+ signalling induced by 8-Br-N1-cIDPR was almost unaffected. Similarly, direct analysis of TRPM2 currents did not reveal activation or co-activation of TRPM2 by 8-Br-N1-cIDPR. In summary, the sensitivity to the Ca2+ entry blockers Gd3+ and SKF-96365 is in favour of the concept of capacitative Ca2+ entry, secondary to store depletion by 8-Br-N1-cIDPR. Taken together, 8-Br-N1-cIDPR appears to be the first cADPR agonist affecting Ca2+ release and secondary Ca2+ entry, but without effect on TRPM2. PMID:19492987

  19. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  20. Cloning, expression, purification and crystallization as well as X-ray fluorescence and preliminary X-ray diffraction analyses of human ADP-ribosylhydrolase 1.

    Science.gov (United States)

    Kernstock, Stefan; Koch-Nolte, Friedrich; Mueller-Dieckmann, Jochen; Weiss, Manfred S; Mueller-Dieckmann, Christoph

    2009-05-01

    Human ADP-ribosylhydrolase 1 (hARH1, ADPRH) cleaves the glycosidic bond of ADP-ribose attached to an Arg residue of a protein. hARH1 has been cloned, expressed heterologously in Escherichia coli, purified and crystallized in complex with K(+) and ADP. The orthorhombic crystals contained one monomer per asymmetric unit, exhibited a solvent content of 43% and diffracted X-rays to a resolution of 1.9 A. A prerequisite for obtaining well diffracting crystals was the performance of X-ray fluorescence analysis on poorly diffracting apo hARH1 crystals, which revealed the presence of trace amounts of K(+) in the crystal. Adding K-ADP to the crystallization cocktail then resulted in a crystal of different morphology and with dramatically improved diffraction properties.

  1. CRED Acoustic Doppler Profiler (ADP); AMSM, ROS; Long: -168.15481, Lat: -14.53510 (WGS84); Sensor Depth: 7.01m; Data Range: 20080311-20080314.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Island Fisheries Science Center Acoustic Doppler Profilers (ADP) provide a time series of water current...

  2. Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    OpenAIRE

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; SzabÓ, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 2...

  3. Pravastatin-induced improvement in coronary reactivity and circulating ATP and ADP levels in young adults with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Tuomas Oskari Kiviniemi

    2012-08-01

    Full Text Available Aims: Extracellular ATP and ADP regulate diverse inflammatory, prothrombotic and vasoactive responses in the vasculature. Statins have been shown to modulate their signaling pathways in vitro. We hypothesized that altered intravascular nucleotide turnover modulates vasodilation in patients with type 1 diabetes (T1DM, and this can be partly restored with pravastatin therapy. Methods: In this randomized double blind study, plasma ATP and ADP levels and echocardiography-derived coronary flow velocity response to cold pressor test (CPT were concurrently assessed in 42 normocholesterolemic patients with T1DM (age 30±6 years, LDL cholesterol 2.5±0.6 mmol/L before and after four-month treatment with pravastatin 40 mg/day or placebo (n=22 and n=20, respectively, and in 41 healthy control subjects. Results: Compared to controls, T1DM patients had significantly higher concentrations of ATP (p<0.01 and ADP (p<0.01 and these levels were partly restored after treatment with pravastatin (p=0.002 and p=0.007, respectively, but not after placebo (p=0.06 and p=0.14, respectively. Coronary flow velocity acceleration was significantly lower in T1DM patients compared to control subjects, and it increased from pre- to post-intervention in the pravastatin (p=0.02, but not in placebo group (p=0.15. Conclusions: Pravastatin treatment significantly reduces circulating ATP and ADP levels of T1DM patients, and concurrently improves coronary flow response to CPT. This study provides a novel insight in purinergic mechanisms involved in pleiotropic effects of pravastatin.

  4. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    Science.gov (United States)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  5. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    Science.gov (United States)

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.

  6. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    Science.gov (United States)

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  7. Differential Role of Poly(ADP-ribose polymerase in D. discoideum growth and development

    Directory of Open Access Journals (Sweden)

    Begum Rasheedunnisa

    2011-03-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. Results In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. Conclusion These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP.

  8. Poly (ADP) ribose polymerase inhibition: A potential treatment of malignant peripheral nerve sheath tumor.

    Science.gov (United States)

    Kivlin, Christine M; Watson, Kelsey L; Al Sannaa, Ghadah A; Belousov, Roman; Ingram, Davis R; Huang, Kai-Lieh; May, Caitlin D; Bolshakov, Svetlana; Landers, Sharon M; Kalam, Azad Abul; Slopis, John M; McCutcheon, Ian E; Pollock, Raphael E; Lev, Dina; Lazar, Alexander J; Torres, Keila E

    2016-01-01

    Poly (ADP) ribose polymerase (PARP) inhibitors, first evaluated nearly a decade ago, are primarily used in malignancies with known defects in DNA repair genes, such as alterations in breast cancer, early onset 1/2 (BRCA1/2). While no specific mutations in BRCA1/2 have been reported in malignant peripheral nerve sheath tumors (MPNSTs), MPNST cells could be effectively targeted with a PARP inhibitor to drive cells to synthetic lethality due to their complex karyotype and high level of inherent genomic instability. In this study, we assessed the expression levels of PARP1 and PARP2 in MPNST patient tumor samples and correlated these findings with overall survival. We also determined the level of PARP activity in MPNST cell lines. In addition, we evaluated the efficacy of the PARP inhibitor AZD2281 (Olaparib) in MPNST cell lines. We observed decreased MPNST cell proliferation and enhanced apoptosis in vitro at doses similar to, or less than, the doses used in cell lines with established defective DNA repair genes. Furthermore, AZD2281 significantly reduced local growth of MPNST xenografts, decreased the development of macroscopic lung metastases, and increased survival of mice with metastatic disease. Our results suggest that AZD2281 could be an effective therapeutic option in MPNST and should be further investigated for its potential clinical use in this malignancy.

  9. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  10. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity.

    Science.gov (United States)

    Luzak, Boguslawa; Kassassir, Hassan; Rój, Edward; Stanczyk, Lidia; Watala, Cezary; Golanski, Jacek

    2017-02-01

    Hop cones (Humulus lupulus L.), very rich source of phenolic compounds, possessing anticancer, antioxidant and anti-inflammatory activities, are considered as beneficial diet ingredients improving human health. In this study, the antiplatelet action of xanthohumol (XN), the principal flavonoid in hop cones, was investigated. XN significantly attenuated ADP-induced blood platelet aggregation (97.2 ± 35.7 AU for 6 μg/ml of XN vs. 120.4 ± 30.1 AU for 0.17% dimethyl sulfoxide (DMSO), p < 0.001) and significantly reduced the expression of fibrinogen receptor (activated form of GPIIbIIIa) on platelets' surface (47.6 ± 15.8 for 1.5 μg/ml XN, 44.6 ± 17.3% for 3 μg/ml XN vs. 54.5 ± 19.2% for control or 43.3 ± 18.4% for 6 μg/ml XN vs. 49.7 ± 19.4% for 0.17% DMSO, p < 0.05 or less). These findings suggest that the phenolic compounds originating from hops (XN) have a novel role as antiplatelet agents and can likely be used as dietary supplements in prophylactic approaches.

  11. Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors.

    Science.gov (United States)

    Shiokawa, Motoko; Masutani, Mitsuko; Fujihara, Hisako; Ueki, Keisuke; Nishikawa, Ryo; Sugimura, Takashi; Kubo, Harumi; Nakagama, Hitoshi

    2005-02-01

    Accumulated evidence suggests that poly(ADP-ribose) polymerase-1 (PARP-1) is involved in DNA repair, cell-death induction, differentiation and tumorigenesis. Parp-1 deficiency also induces trophoblast differentiation from mouse embryonic stem cells during teratocarcinoma-like tumor formation. To understand the relationship of PARP-1 dysfunction and development of germ cell tumors, we conducted a genetic analysis of the PARP-1 gene in human germ cell tumors. Sixteen surgical specimens of germ cell tumors that developed in the brain and testes were used. Two known single nucleotide polymorphisms (SNPs) (Val762Ala and Lys940Arg), which are listed in the SNP database of the NCBI (National Center for Biotechnology Information), were detected. In both cases, cSNPs encoded amino acids located within peptide stretches in the catalytic domain, which are highly conserved among various animal species. Furthermore, another novel sequence alteration, a base change of ATG to ACG, was identified in a tumor specimen, which would result in the amino acid substitution, Met129Thr. This base change was observed in one allele of both tumor and normal tissues, suggesting that it is either a rare SNP or a germline mutation of the PARP-1 gene. Notably, the amino acid Met129 is located within the second zinc finger domain, which is essential for DNA binding and is conserved among animal species. One SNP in intron 2 and one in the upstream 5'-UTR (untranslated region) were also detected.

  12. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site.

    Science.gov (United States)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A; Smith, Thomas J

    2011-09-30

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic β-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  13. Growth and Characterization of ADP Single Crystals Added With CdS

    Directory of Open Access Journals (Sweden)

    J. Anitha Hudson,

    2014-01-01

    Full Text Available Pure and CdS added (in five concentrations ammonium dihydrogen orthophosphate (ADP single crystals have been grown at room temperature by the free evaporation method. The six grown crystals have been characterized structurally, chemically, thermally, mechanically, optically and electrically using the available standard methods. The powder X-ray diffraction and Fourier transform infrared spectral measurements confirm the crystal and molecular structures. The atomic absorption spectroscopic measurement confirms the presence of impurity in the CdS added crystals. Thermogravimetric, UU-Vis-NIR spectral and microhardness measurements indicate respectively the thermal stability, optical transparency and mechanical stability of the grown crystals. Results of the non-linear optical measurements indicate the enhancement of second harmonic generation efficiency due to CdS addition. The DC and AC electrical measurements made in the temperature range 40-150 0C indicate an increase of the electrical parameters, viz. dielectric constant, dielectric loss factor and AC and DC electrical conductivities with the increase in temperature for all the six crystals studied.

  14. 2´,3´-Dialdehyde of ATP, ADP, and adenosine inhibit HIV-1 reverse transcriptase and HIV-1 replication.

    Science.gov (United States)

    Schachter, Julieta; Valadao, Ana Luiza Chaves; Aguiar, Renato Santana; Barreto-de-Souza, Victor; Rossi, Atila Duque; Arantes, Pablo Ricardo; Verli, Hugo; Quintana, Paula Gabriela; Heise, Norton; Tanuri, Amilcar; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis

    2014-01-01

    The 2´3´-dialdehyde of ATP or oxidized ATP (oATP) is a compound known for specifically making covalent bonds with the nucleotide-binding site of several ATP-binding enzymes and receptors. We investigated the effects of oATP and other oxidized purines on HIV-1 infection and we found that this compound inhibits HIV-1 and SIV infection by blocking early steps of virus replication. oATP, oxidized ADP (oADP), and oxidized Adenosine (oADO) impact the natural activity of endogenous reverse transcriptase enzyme (RT) in cell free virus particles and are able to inhibit viral replication in different cell types when added to the cell cultures either before or after infection. We used UFLC-UV to show that both oADO and oATP can be detected in the cell after being added in the extracellular medium. oATP also suppresses RT activity and replication of the HIV-1 resistant variants M184V and T215Y. We conclude that oATP, oADP and oADO display anti HIV-1 activity that is at in least in part due to inhibitory activity on HIV-1 RT.

  15. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility.

    Science.gov (United States)

    Lee, Sang-Kyu; Eom, Joon-Seob; Hwang, Seon-Kap; Shin, Dongjin; An, Gynheung; Okita, Thomas W; Jeon, Jong-Seong

    2016-10-01

    To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.

  16. Inhibitory effects and mechanisms of high molecular-weight phlorotannins from Sargassum thunbergii on ADP-induced platelet aggregation

    Institute of Scientific and Technical Information of China (English)

    WEI Yuxi; WANG Changyun; LI Jing; GUO Qi; QI Hongtao

    2009-01-01

    We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P<0.01) and increasing the synthesis of 6-keto-PGF1α, thus changing the plasma TXB2/6-keto-PGF1α balance when the platelets were activated (P<0.01). Therefore, STP altered AA metabolism and these findings partly revealed the molecular mechanism by which STP inhibits ADP-induced platelet aggregation.

  17. ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Shen, Jianzhong; DiCorleto, Paul E

    2008-02-29

    Extensive research on the role of ADP in platelet activation led to the design of new anti-thrombotic drugs, such as clopidogrel (Plavix; sanofi-aventis); however, very little is known about the ADP-preferring nucleotide receptors (P2Y1, P2Y12, and P2Y13) in endothelium. Here, we show that ADP stimulates migration of cultured human umbilical vein endothelial cells (HUVECs) in both Boyden chamber and in vitro wound repair assays. This promigratory effect was mimicked by 2-MeSADP, but not by AMP, and was inhibited by MRS2179 (P2Y1 receptor antagonist) but not by AR-C69931MX (P2Y12/13 receptor antagonist). RT-PCR revealed abundant P2Y1, barely detectable P2Y12, and absent P2Y13 receptor message in these cells. In addition, both ADP and 2-MeSADP, but not AMP, activated the mitogen-activated protein kinase pathways as evidenced by increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), and p38 kinase. ADP also stimulated phosphorylation of p90RSK, a downstream substrate of phosphorylated ERK1/2, and induced phosphorylation of such transcription factors downstream of the JNK and p38 pathways as c-Jun and activating transcription factor-2. These signaling events were inhibited by MRS2179 but not by AR-C69931MX. Furthermore, blockade of the ERK or JNK pathways by U0126 and SP600125, respectively, abolished ADP- and 2-MeSADP-stimulated HUVEC migration. However, inhibition of the p38 pathway by SB203580 partially suppressed ADP- and 2-MeSADP-induced HUVEC migration. We conclude that ADP promotes human endothelial cell migration by activating P2Y1 receptor-mediated MAPK pathways, possibly contributing to reendothelialization and angiogenesis after vascular injury.

  18. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  19. A study of the expression of p53 in posttransfection cells with rAdp53 gene and inhibitory activity in vitro

    Institute of Scientific and Technical Information of China (English)

    Jianhua Wang; Zongzheng Ji; Xiaoqiang Wang

    2007-01-01

    Objective: To investigate the inhibitory effect and IC50 (50% inhibiting concentration) of the recombinant adenoviral p53 gene (rAdp53) in colorectal cancer cells in vitro and to guide clinical practice. Methods: We evaluated the efficiency (IC50)of the rAdp53 and six kinds of anti-cancer drugs(5-fluorouracil, tegafur, mitomycin c, cisplatin, oxaliplatin, paclitaxel) in human colorectal cancer cell line-174 through the cell culture and MTT chemosensitivity assay to make sure the anti-cancer capability of rAdp53.Expression of p53 protein in transfection cells of colorectal cancer line-174 with rAdp53 was evaluated by immunohistochemical staining. Results: The rAdp53 is a dose- and time-dependent anti-cancer drug, its IC5o is 5.73×1011 VP/ml, but its effect was not obvious when compared with other anti-cancer drugs. In control group, the immunohistochemistry stain was negative. However,rAd-p53 of five different concentrations were all positive in infected colorectal cancer cells with rAd-p53 and the earliest positive result would present 24 hours after infection. Conclusion: The rAdp53 has good anti-cancer efficacy is colorectal cancer cell line174 in vitro. But its anti-cancer efficacy was less than those of the classical chemical medicine mitomycin c, 5-fluorouracil and cisplatin etc., when it was used alone.

  20. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.