WorldWideScience

Sample records for adp ribose transferases

  1. Discovery of novel poly(ADP-ribose) glycohydrolase inhibitors by a quantitative assay system using dot-blot with anti-poly(ADP-ribose)

    International Nuclear Information System (INIS)

    Okita, Naoyuki; Ashizawa, Daisuke; Ohta, Ryo; Abe, Hideaki; Tanuma, Sei-ichi

    2010-01-01

    Poly(ADP-ribosyl)ation, which is mainly regulated by poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG), is a unique protein modification involved in cellular responses such as DNA repair and replication. PARG hydrolyzes glycosidic linkages of poly(ADP-ribose) synthesized by PARP and liberates ADP-ribose residues. Recent studies have suggested that inhibitors of PARG are able to be potent anti-cancer drug. In order to discover the potent and specific Inhibitors of PARG, a quantitative and high-throughput screening assay system is required. However, previous PARG assay systems are not appropriate for high-throughput screening because PARG activity is measured by radioactivities of ADP-ribose residues released from radioisotope (RI)-labeled poly(ADP-ribose). In this study, we developed a non-RI and quantitative assay system for PARG activity based on dot-blot assay using anti-poly(ADP-ribose) and nitrocellulose membrane. By our method, the maximum velocity (V max ) and the michaelis constant (k m ) of PARG reaction were 4.46 μM and 128.33 μmol/min/mg, respectively. Furthermore, the IC50 of adenosine diphosphate (hydroxymethyl) pyrrolidinediol (ADP-HPD), known as a non-competitive PARG inhibitor, was 0.66 μM. These kinetics values were similar to those obtained by traditional PARG assays. By using our assay system, we discovered two novel PARG inhibitors that have xanthene scaffold. Thus, our quantitative and convenient method is useful for a high-throughput screening of PARG specific inhibitors.

  2. Symposium cellular response to DNA damage the role of poly(ADP-ribose) poly(ADP-ribose) in the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Berger, N.A.

    1985-01-01

    Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Inhibitors of Poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of Poly(ADP-ribose) persists and the activated enzyme is capable of totaly consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of Poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest

  3. Poly(ADP-ribose) and the response of cells to ionizing radiation

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Evans, H.H.

    1985-01-01

    The activity of poly(ADP-ribose) polymerase is stimulated by DNA damage resulting from treatment of cells with ionizing radiation, as well as with DNA-damaging chemicals. The elevated polymerase activity can be observed at doses lower than those necessary for measurable reduction in cellular NAD concentration. Several nuclear proteins, including the polymerase itself, are poly(ADP-ribosylated) at elevated levels in irradiated Chinese hamster cells. The addition of inhibitors of poly(ADP-ribose) polymerase to irradiated cells has been found to sensitize the cells to the lethal effects of the radiation, to inhibit the repair of potentially lethal damage, and to delay DNA strand break rejoining. Because of the nonspecificity of the inhibitors, however, it is as yet unknown whether their effects are directly related to the inhibition of poly(ADP-ribose) polymerase, to interference with the poly(ADP-ribosylation) of one or more chromosomal proteins, or to effects unrelated to the poly(ADP-ribosylation) process. The data are consistent with the involvement of poly(ADP-ribose) in the repair of radiation damage, but the nature of this involvement remains to be elucidated

  4. Crystallographic and biochemical analysis of the mouse poly(ADP-ribose glycohydrolase.

    Directory of Open Access Journals (Sweden)

    Zhizhi Wang

    Full Text Available Protein poly(ADP-ribosylation (PARylation regulates a number of important cellular processes. Poly(ADP-ribose glycohydrolase (PARG is the primary enzyme responsible for hydrolyzing the poly(ADP-ribose (PAR polymer in vivo. Here we report crystal structures of the mouse PARG (mPARG catalytic domain, its complexes with ADP-ribose (ADPr and a PARG inhibitor ADP-HPD, as well as four PARG catalytic residues mutants. With these structures and biochemical analysis of 20 mPARG mutants, we provide a structural basis for understanding how the PAR polymer is recognized and hydrolyzed by mPARG. The structures and activity complementation experiment also suggest how the N-terminal flexible peptide preceding the PARG catalytic domain may regulate the enzymatic activity of PARG. This study contributes to our understanding of PARG catalytic and regulatory mechanisms as well as the rational design of PARG inhibitors.

  5. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  6. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    International Nuclear Information System (INIS)

    Nolan, N.L.; Kidwell, W.R.

    1982-01-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37 0 C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of γ-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of γ-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels

  7. Poly (ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents

    International Nuclear Information System (INIS)

    Alvarez-Gonzalez, R.; Althaus, F.R.

    1989-01-01

    DNA damage inflicted by the alkylating agens N-methyl-N-nitro-N-nitrosoquanidine, or by UV stimulated the catabolism of protein-bound poly (ADP-ribose) in the chromatin of cultured hepatocytes. The stimulation was highest at the largest doses of DNA-damaging treatment. As a consequence, the half-life of ADP-ribosyl polymers may drop to less than 41 s. This rapid turnover contrasts with the slow catabolism of a constitutive fraction of polymers exhibiting a half-life of 7.7 h. These data suggest that post-incisional stimulation of poly (ADP-ribose) biosynthesis in DNA-excision repair is coupled with an adaptation of poly (ADP-ribose) catabolism in mammalian cells. (Author). 37 refs.; 3 figs

  8. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    Science.gov (United States)

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity. © 2013 Elsevier Inc. All rights reserved.

  9. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis

  10. The Dichotomy of the Poly(ADP-Ribose Polymerase-Like Thermozyme from Sulfolobus solfataricus

    Directory of Open Access Journals (Sweden)

    Maria Rosaria Faraone Mennella

    2018-01-01

    Full Text Available The first evidence of an ADP-ribosylating activity in Archaea was obtained in Sulfolobus solfataricus(strain MT-4 where a poly(ADP-ribose polymerase (PARP-like thermoprotein, defined with the acronymous PARPSso, was found. Similarly to the eukaryotic counterparts PARPSso cleaves beta-nicotinamide adenine dinucleotide to synthesize oligomers of ADP-ribose; cross-reacts with polyclonal anti-PARP-1 catalytic site antibodies; binds DNA. The main differences rely on the molecular mass (46.5 kDa and the thermophily of PARPSso which works at 80 °C. Despite the biochemical properties that allow correlating it to PARP enzymes, the N-terminal and partial amino acid sequences available suggest that PARPSso belongs to a different group of enzymes, the DING proteins, an item discussed in detail in this review.This finding makes PARPSso the first example of a DING protein in Archaea and extends the existence of DING proteins into all the biological kingdoms. PARPSsohas a cell peripheral localization, along with the edge of the cell membrane. The ADP-ribosylation reaction is reverted by a poly(ADP-ribose glycohydrolase-like activity, able to use the eukaryotic poly(ADP-ribose as a substrate too. Here we overview the research of (ADP-ribosylation in Sulfolobus solfataricus in the past thirty years and discuss the features of PARPSso common with the canonical poly(ADP-ribose polymerases, and the structure fitting with that of DING proteins.

  11. Fine-tuning of Smad protein function by poly(ADP-ribose polymerases and poly(ADP-ribose glycohydrolase during transforming growth factor β signaling.

    Directory of Open Access Journals (Sweden)

    Markus Dahl

    Full Text Available Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose polymerase 1 (PARP-1 negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose glycohydrolase (PARG can remove poly(ADP-ribose chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling.A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference.TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7 and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1.Nuclear Smad function is negatively

  12. Poly(ADP-ribose) metabolism in X-irradiated Chinese hamster cells: its relation to repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Elkind, M.M.

    1984-01-01

    Nicotinamide-adenine dinucleotide (NAD + ) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD + levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase (ADPRT) also increased linearly with radiation dose. The decrease of NAD + was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79-AL162/S-10. An inhibitor of ADPRT, m-aminobenzamide, largely prevented the depletion of cellular NAD + and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D 2 O-which inhibit repair of radiation-induced potentially lethal damage-enhanced the depletion of NAD + and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD + metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage. (author)

  13. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    International Nuclear Information System (INIS)

    Gao Hong; Coyle, Donna L.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Elaine L.; Wang, Zhao-Qi; Jacobson, Myron K.

    2007-01-01

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain

  14. Poly (ADP-ribose polymerase 1 is required for protein localization to Cajal body.

    Directory of Open Access Journals (Sweden)

    Elena Kotova

    2009-02-01

    Full Text Available Recently, the nuclear protein known as Poly (ADP-ribose Polymerase1 (PARP1 was shown to play a key role in regulating transcription of a number of genes and controlling the nuclear sub-organelle nucleolus. PARP1 enzyme is known to catalyze the transfer of ADP-ribose to a variety of nuclear proteins. At present, however, while we do know that the main acceptor for pADPr in vivo is PARP1 protein itself, by PARP1 automodification, the significance of PARP1 automodification for in vivo processes is not clear. Therefore, we investigated the roles of PARP1 auto ADP-ribosylation in dynamic nuclear processes during development. Specifically, we discovered that PARP1 automodification is required for shuttling key proteins into Cajal body (CB by protein non-covalent interaction with pADPr in vivo. We hypothesize that PARP1 protein shuttling follows a chain of events whereby, first, most unmodified PARP1 protein molecules bind to chromatin and accumulate in nucleoli, but then, second, upon automodification with poly(ADP-ribose, PARP1 interacts non-covalently with a number of nuclear proteins such that the resulting protein-pADPr complex dissociates from chromatin into CB.

  15. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer

    NARCIS (Netherlands)

    Klauke, M.L.; Hoogerbrugge-van der Linden, N.; Budczies, J.; Bult, P.; Prinzler, J.; Radke, C.; van Krieken, J.H.; Dietel, M.; Denkert, C.; Muller, B.M.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP) is a key element of the single-base excision pathway for repair of DNA single-strand breaks. To compare the cytoplasmic and nuclear poly(ADP-ribose) expression between familial (BRCA1, BRCA2, or non BRCA1/2) and sporadic breast cancer, we investigated 39 sporadic

  16. Poly(ADP-ribose) polymerase-independent potentiation of nitrosourea cytotoxicity by 3-aminobenzamide in human malignant glioma cells.

    Science.gov (United States)

    Winter, S; Weller, M

    2000-06-16

    Poly(ADP-ribose) polymerase is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents and is thought to be involved in DNA repair. Here, we examined the effects of 3-aminobenzamide, a poly(ADP-ribose) polymerase inhibitor, on the chemosensitivity of human malignant glioma cells. 3-Aminobenzamide selectively potentiated the cytotoxicity of the nitrosoureas, nimustine, carmustine and lomustine in 10 of 12 human malignant glioma cell lines. In contrast, 3-aminobenzamide did not modulate the cytotoxic effects of doxorubicine, teniposide, vincristine, camptothecin or cytarabine. The nitrosoureas did not induce poly(ADP-ribose) polymerase activity in the glioma cells. Ectopic expression of truncated poly(ADP-ribose) polymerase containing the poly(ADP-ribose) polymerase DNA-binding domain, which acts as a dominant-negative mutant, in LN-18 or LN-229 cells did not alter the 3-aminobenzamide effect on nitrosourea-mediated cytotoxicity. Thus, 3-aminobenzamide may target another nicotinamide adenine dinucleotide (NAD)-requiring enzyme, but not poly(ADP-ribose) polymerase, when enhancing nitrosourea cytotoxicity in human malignant glioma cells. Carmustine cytotoxicity was associated with a G2/M arrest. Coexposure to carmustine and 3-aminobenzamide overcame this G2/M arrest in T98G cells, which are sensitized to carmustine by 3-aminobenzamide, but not in U251MG cells, which are refractory to 3-aminobenzamide-mediated sensitization to carmustine. Thus, 3-aminobenzamide-mediated sensitization to carmustine cytotoxicity may result from interference with the stable G2/M arrest response to carmustine in human glioma cells.

  17. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  18. Poly(ADP-ribose) Glycohydrolase and Poly(ADP-ribose)-interacting Protein Hrp38 Regulate Pattern Formation during Drosophila Eye Development

    Science.gov (United States)

    Ji, Yingbiao; Jarnik, Michael; Tulin, Alexei V.

    2013-01-01

    Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that Poly(ADP-ribose) Glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases. PMID:23711619

  19. Acceptors for poly(ADP-ribose) in irradiated Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Xue, L.Y.; Sokany, N.M.; Friedman, L.R.; Oleinick, N.L.

    1985-01-01

    Strand breaks in DNA, as produced by ionizing radiation, stimulate the synthesis of poly(ADP-ribose) (pADPR) by the nuclear enzyme pADPR transferase (ADPRT). The polymer is covalently bound to chromatin-associated proteins and may function in repair of DNA lesions. When total /sup 32/P-pADPR-protein is analyzed by electrophoresis on SDS-polyacrylamide gels, the major radioactive bands correspond to the 116 kD ADPRT and the low molecular weight (histone) region. On two-dimensional gels (isoelectric focusing followed by SDS-PAGE) several ADP-ribosylated species can be detected in each molecular weight range. The intensity of label in each species is greater for proteins isolated from irradiated (10 or 100 Cy) rather than control cells. For detailed analysis of histones, the authors incubated isolated nuclei with /sup 32/P-NAD, extracted histones in acid, and subjected them to electrophoresis in acid-urea gels. Specific radiation-induced increases in pADPR were seen on some nucleosomal core histone bands but not on histone H1. The results suggest that radiation-induced strand breaks stimulate ADPRT to modify core histones; the resultant increase in negative charge could loosen nucleosomal structure, permitting access of repair enzymes to the DNA lesions

  20. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole

  1. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  2. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  3. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  4. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    National Research Council Canada - National Science Library

    Bhat, K. Ramachandra; Benton, Betty J; Ray, Radharaman

    2004-01-01

    Poly (ADP-ribose) polymerase (PARP) modulates several cellular functional proteins by a mechanism in which the proteins are poly-ADP-ribosylated by transferring the ADP-ribose moieties from the enzyme substrate NAD+ to the proteins...

  5. Studying Catabolism of Protein ADP-Ribosylation.

    Science.gov (United States)

    Palazzo, Luca; James, Dominic I; Waddell, Ian D; Ahel, Ivan

    2017-01-01

    Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD + ) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.

  6. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  7. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle.

    NARCIS (Netherlands)

    Pirinen, E.; Canto, C.; Jo, Y.S.; Morato, L.; Zhang, H.; Menzies, K.J.; Williams, E.G.; Mouchiroud, L.; Moullan, N.; Hagberg, C.; Li, W.; Timmers, S.; Imhof, R.; Verbeek, J.; Pujol, A.; Loon, B. van; Viscomi, C.; Zeviani, M.; Schrauwen, P.; Sauve, A.A.; Schoonjans, K.; Auwerx, J.

    2014-01-01

    We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show

  8. Poly(ADP-ribose) polymerase inhibition reduces tumor necrosis factor-induced inflammatory response in rheumatoid synovial fibroblasts

    NARCIS (Netherlands)

    García, S.; Bodaño, A.; Pablos, J. L.; Gómez-Reino, J. J.; Conde, C.

    2008-01-01

    To investigate the effect of poly(ADP-ribose) polymerase (PARP) inhibition on the production of inflammatory mediators and proliferation in tumour necrosis factor (TNF)-stimulated fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Cultured FLS from patients with RA were

  9. PROTEOLYTIC DEGRADATION OF POLY (ADP-RIBOSE POLYMERASE IN RATS WITH CARRAGEENAN-INDUCED GASTROENTEROCOLITIS

    Directory of Open Access Journals (Sweden)

    Tkachenko A. S.

    2017-12-01

    Full Text Available The aim of the research was to study the activity of poly (ADP-ribose polymerase in small intestinal homogenate of rats with chronic carrageenan-induced gastroenterocolitis, as well as mechanisms of regulation of the enzyme in this pathology. Twenty Wistar Albino Glaxo rats were divided into two groups. Animals of group 1 (n = 10 consumed 1 % carrageenan solution for 28 days, which resulted in the development of gastroenterocolitis confirmed morphologically. The control group consisted of intact animals (n = 10. The activity of poly (ADP-ribose polymerase (PARP in the homogenate of small intestine, as well as caspase-3, matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 serum levels were determined. Obtained data were statistically processed using the Mann-Whitney U test and calculating median and interquartile range (Me, 25th–75th percentile with the help of the GraphPad Prism 5 application. The development of carrageenan-induced gastroenterocolitis was accompanied by an increase in caspase-3, MMP-2, MMP-9 concentrations in blood serum and a decrease in the activity of PARP in small intestinal homogenates. The reduced activity of PARP in chronic carrageenan-induced gastroenterocolitis may be due to the proteolysis of this enzyme under the action of caspase-3, MMP-2, and MMP-9.

  10. Inhibitors of poly (ADP-ribose) synthesis inhibit the two types of repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi; Elkind, M.M.

    1994-01-01

    The purpose of this study was to examine whether 3-amino-benzamide (3ABA), an inhibitor of poly (ADP-ribose) synthesis, inhibits the two types of potentially lethal damage (PLD) repair, termed slow and fast. The fast-type PLD repair was measured by the decrease in survival of V79 Chinese hamster cells by postirradiation treatment with 3ABA. The slow-type PLD repair was measured by the increase in survival by posttreatment with conditioned medium (CM), which became conditioned by growing a crowed culture of cells and supports the slow-type PLD repair. Up to 1 mM 3-ABA inhibited the slow type repair; at doses of 2 mM and above, it inhibited the fast type of PLD repair. There are quantitative differences in cellular effects of 3ABA dependent on concentration. Poly (ADP-ribose) appears to play an important role in the PLD repairs and has little effect on the repair of sublethal damage. 10 refs., 2 figs

  11. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Directory of Open Access Journals (Sweden)

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  12. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Science.gov (United States)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Differences in the regulation by poly(ADP-ribose) of repair of DNA damage from alkylating agents and ultraviolet light according to cell type

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Bodell, W.J.; Morgan, W.F.; Zelle, B.

    1983-08-10

    Inhibition of poly(ADP-ribose) synthesis by 3-aminobenzamide in various human and hamster cells influenced the responses to DNA damage from methyl methanesulfonate, but not from ultraviolet light. After exposure to methyl methanesulfonate, 3-aminobenzamide increased the strand break frequency in all cell types studied, but only stimulated repair replication in lymphoid and HeLa cells, suggesting these are independent effects. 3-Aminobenzamide also inhibited the pathway for de novo synthesis of DNA purines, suggesting that some of its effects may be due to disturbance of precursor pathways and irrelevant to the role of poly(ADP-ribose) in repair. Previous claims that 3-aminobenzamide stimulates repair synthesis after exposure to UV light are probably artifacts, because the stimulations are only observed in lymphocytes in the presence of a high concentration of hydroxyurea that itself inhibits repair. The initial inhibition of semiconservative DNA synthesis and the excision of the major alkylation products and pyrimidine dimers were unaffected by 3-aminobenzamide. In general poly(ADP-ribose) synthesis appears to be uniquely involved in regulating the ligation stage of repair of alkylation damage but not ultraviolet damage. By regulating the ligation efficiency, poly(ADP-ribosylation) modulates the dynamic balance between incision and ligation, so as to minimize the frequency of DNA breaks. The ligation stage of repair of UV damage appears different and is not regulated by poly(ADP-ribosylation).

  14. ADP-ribosyl-N₃: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds.

    Science.gov (United States)

    Li, Lingjun; Li, Qianqian; Ding, Shengqiang; Xin, Pengyang; Zhang, Yuqin; Huang, Shenlong; Zhang, Guisheng

    2017-08-14

    Adenosine diphosphate-ribose (ADP-ribose) and its derivatives play important roles in a series of complex physiological procedures. The design and synthesis of artificial ADP-ribosylated compounds is an efficient way to develop valuable chemical biology tools and discover new drug candidates. However, the synthesis of ADP-ribosylated compounds is currently difficult due to structural complexity, easily broken pyrophosphate bond and high hydrophilicity. In this paper, ADP-ribosyl-N₃ was designed and synthesized for the first time. With ADP-ribosyl-N₃ as the key precursor, a divergent post-modification strategy was developed to prepare structurally diverse ADP-ribosylated compounds including novel nucleotides and peptides bearing ADP-ribosyl moieties.

  15. Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Treatment of normal human cells with DNA-damaging agents such as uv light or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) stimulates the conversion of NAD to the chromosomal polymer poly(ADP-ribose) which in turn results in a rapid depletion of the cellular NAD pool. The effect of uv light or MNNG on the NAD pools of seven cell lines of human fibroblasts either homozygous or heterozygous for the xeroderma pigmentosum genotype has been studied. Xeroderma pigmentosum cells of genetic complementation groups A, C, and D are deficient in the excision repair of DNA damage caused by uv light. Following uv treatment, the NAD content of these cells was unchanged or only slightly reduced. All of the cell lines are able to excise DNA damage caused by MNNG and all of the cell lines had a greatly reduced content of NAD following MNNG treatment. The results demonstrate a close relationship between the conversion of NAD to poly(ADP-ribose) and DNA excision repair in human cells

  16. Thrombomodulin Is Silenced in Malignant Mesothelioma by a Poly(ADP-ribose) Polymerase-1-mediated Epigenetic Mechanism

    Czech Academy of Sciences Publication Activity Database

    Nocchi, L.; Tomasetti, M.; Amati, M.; Neužil, Jiří; Santarelli, L.; Saccucci, F.

    2011-01-01

    Roč. 286, č. 22 (2011), s. 19478-19488 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA204/08/0811 Institutional research plan: CEZ:AV0Z50520701 Keywords : Thrombomodulin gene promoter * malignant mesothelioma * poly(ADP-ribose) polymerase-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  17. Activity-based assay for human mono-ADP-ribosyltransferases ARTD7/PARP15 and ARTD10/PARP10 aimed at screening and profiling inhibitors.

    Science.gov (United States)

    Venkannagari, Harikanth; Fallarero, Adyary; Feijs, Karla L H; Lüscher, Bernhard; Lehtiö, Lari

    2013-05-13

    Poly(ADP-ribose) polymerases (PARPs) or diphtheria toxin like ADP-ribosyl transferases (ARTDs) are enzymes that catalyze the covalent modification of proteins by attachment of ADP-ribose units to the target amino acid residues or to the growing chain of ADP-ribose. A subclass of the ARTD superfamily consists of mono-ADP-ribosyl transferases that are thought to modify themselves and other substrate proteins by covalently adding only a single ADP-ribose moiety to the target. Many of the ARTD enzymes are either established or potential drug targets and a functional activity assay for them will be a valuable tool to identify selective inhibitors for each enzyme. Existing assays are not directly applicable for screening of inhibitors due to the different nature of the reaction and different target molecules. We modified and applied a fluorescence-based assay previously described for PARP1/ARTD1 and tankyrase/ARTD5 for screening of PARP10/ARTD10 and PARP15/ARTD7 inhibitors. The assay measures the amount of NAD(+) present after chemically converting it to a fluorescent analog. We demonstrate that by using an excess of a recombinant acceptor protein the performance of the activity-based assay is excellent for screening of compound libraries. The assay is homogenous and cost effective, making it possible to test relatively large compound libraries. This method can be used to screen inhibitors of mono-ARTDs and profile inhibitors of the enzyme class. The assay was optimized for ARTD10 and ARTD7, but it can be directly applied to other mono-ARTDs of the ARTD superfamily. Profiling of known ARTD inhibitors against ARTD10 and ARTD7 in a validatory screening identified the best inhibitors with submicromolar potencies. Only few of the tested ARTD inhibitors were potent, implicating that there is a need to screen new compound scaffolds. This is needed to create small molecules that could serve as biological probes and potential starting points for drug discovery projects against

  18. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M.

    1989-01-01

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by 31 P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase

  19. The mechanism of action of poly (ADP-ribose) polymerases inhibitors and its application perspective

    International Nuclear Information System (INIS)

    Huang Xiaofei; Cao Jianping

    2008-01-01

    Poly (ADP-ribose) polymerases (PARP) constitute a family of enzymes involved in the regulation of many cellular processes. It plays a vital role in many physical and physiopathological processes,, In the past ten years scientists have conducted extensive research on PARP and its inhibitors, among which the role of PARP inhihitors in radiosensitization, chemopotentiation and neuroprotection have been placed close attention. There have been several PARP inhibitors entering the clinical trials, which predicts its sound application perspectives. (authors)

  20. Toward a unified nomenclature for mammalian ADP-ribosyltransferases.

    Science.gov (United States)

    Hottiger, Michael O; Hassa, Paul O; Lüscher, Bernhard; Schüler, Herwig; Koch-Nolte, Friedrich

    2010-04-01

    ADP-ribosylation is a post-translational modification of proteins catalyzed by ADP-ribosyltransferases. It comprises the transfer of the ADP-ribose moiety from NAD+ to specific amino acid residues on substrate proteins or to ADP-ribose itself. Currently, 22 human genes encoding proteins that possess an ADP-ribosyltransferase catalytic domain are known. Recent structural and enzymological evidence of poly(ADP-ribose)polymerase (PARP) family members demonstrate that earlier proposed names and classifications of these proteins are no longer accurate. Here we summarize these new findings and propose a new consensus nomenclature for all ADP-ribosyltransferases (ARTs) based on the catalyzed reaction and on structural features. A unified nomenclature would facilitate communication between researchers both inside and outside the ADP-ribosylation field. 2009 Elsevier Ltd. All rights reserved.

  1. Gamma-ray induced DNA breaks and repair studied by immuno-labelling of poly(ADP-ribose) polymerase (PARP) in chinese hamster ovary cells (CHO)

    International Nuclear Information System (INIS)

    Bidon, N.; Noel, G.; Averbeck, D.; Varlet, P.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly(ADP-ribose)polymerase is a nuclear ubiquitous enzyme capable of binding to DNA breaks. Chinese hamster ovary cells were (CHO-K1) cultured on slides and γ-irradiated ( 137 Cs) at a high (12.8 Gy/min) or medium dose rate (5 Gy/min), and immuno-labelling against (ADP-ribose) polymers immediately or three hours after irradiation. Quantification and localisation of γ-ray induced breaks was performed by confocal microscopy. The results show a dose effect relationship, a dose-rate effect and the signal disappearance after 3 hours at 37 deg.C. The presence of PARP activity appears to reflect γ-rays induced DNA fragmentation. (authors)

  2. Metabolic consequences of DNA damage: The role of poly (ADP-ribose) polymerase as mediator of the suicide response

    International Nuclear Information System (INIS)

    Berger, N.A.; Berger, S.J.

    1986-01-01

    Recent studies show that DNA damage can produce rapid alterations in steady state levels of deoxynucleoside triphosphate pools, for example, MNNG or uv-irradiation cause rapid increases in dATP and dTTP pools without significant changes in dGTP or dCTP pools. In vitro, studies with purified eukaryotic DNA polymerases show that the frequency of nucleotide misincorporation was affected by alterations in relative concentrations of the deoxynucleoside triphosphates. Thus the alterations in dNTP pool sizes that occur consequent to DNA damage may contribute to an increased mutagenic frequency. Poly(ADP-ribose) polymerase mediated suicide mechanism may participate in the toxicity of adenosine deaminase deficiency and severe combined immune deficiency disease in humans. Individuals with this disease suffer severe lymphopenia due to the toxic effects of deoxyadenosine. The lymphocytotoxic effect of adenosine deaminase deficiency can be simulated in lymphocyte cell lines from normal individuals by incubating them with the adenosine deaminase inhibitor, deoxycoformycin. Incubation of such leukocytes with deoxycoformycin and deoxyadenosine results in the gradual accumulation of DNA strand breaks and the depletion of NAD + leading to cell death over a period of several days. This depletion of NAD and loss of cell viability were effectively blocked by nicotinamide or 3-amino benzamide. Thus, persistent activation of poly(ADP-ribose) polymerase by unrepaired or recurrent DNA strand breaks may activate the suicide mechanism of cell death. This study provides a basis for the interesting suggestion that treatment with nicotinamide could block the persistent activity of poly(ADP-ribose) polymerase and may help preserve lymphocyte function in patients with adenosine deaminase deficiency. 16 refs., 3 figs., 2 tabs

  3. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Sachiko [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Tanaka, Masakazu [Department of Microbiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka 573-1010 (Japan); Sato, Teruaki [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Ida, Chieri [Department of Applied Life Studies, College of Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi 467-8610 (Japan); Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Moss, Joel [Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590 (United States); Miwa, Masanao, E-mail: m_miwa@nagahama-i-bio.ac.jp [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2016-08-05

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  4. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    International Nuclear Information System (INIS)

    Yamashita, Sachiko; Tanaka, Masakazu; Sato, Teruaki; Ida, Chieri; Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke; Moss, Joel; Miwa, Masanao

    2016-01-01

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  5. The Role of Poly(ADP-ribose Polymerase-1 in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Samuel García

    2015-01-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.

  6. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  7. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    International Nuclear Information System (INIS)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-01-01

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs

  8. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family.

    Directory of Open Access Journals (Sweden)

    Joaquim Rui Rodrigues

    Full Text Available The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn(2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg(2+ and active with low micromolar Mn(2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn(2+, significant (≈25% Mg(2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart. The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.

  9. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    Science.gov (United States)

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  10. A key role for poly(ADP-ribose polymerase 3 in ectodermal specification and neural crest development.

    Directory of Open Access Journals (Sweden)

    Michèle Rouleau

    2011-01-01

    Full Text Available The PARP family member poly(ADP-ribose polymerase 3 (PARP3 is structurally related to the well characterized PARP1 that orchestrates cellular responses to DNA strand breaks and cell death by the synthesis of poly(ADP-ribose. In contrast to PARP1 and PARP2, the functions of PARP3 are undefined. Here, we reveal critical functions for PARP3 during vertebrate development.We have used several in vitro and in vivo approaches to examine the possible functions of PARP3 as a transcriptional regulator, a function suggested from its previously reported association with several Polycomb group (PcG proteins. We demonstrate that PARP3 gene occupancy in the human neuroblastoma cell line SK-N-SH occurs preferentially with developmental genes regulating cell fate specification, tissue patterning, craniofacial development and neurogenesis. Addressing the significance of this association during zebrafish development, we show that morpholino oligonucleotide-directed inhibition of parp3 expression in zebrafish impairs the expression of the neural crest cell specifier sox9a and of dlx3b/dlx4b, the formation of cranial sensory placodes, inner ears and pectoral fins. It delays pigmentation and severely impedes the development of the median fin fold and tail bud.Our findings demonstrate that Parp3 is crucial in the early stages of zebrafish development, possibly by exerting its transcriptional regulatory functions as early as during the specification of the neural plate border.

  11. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  12. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly (ADP-ribose) polymerase-1

    OpenAIRE

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G.; Liu, Ke Jian

    2013-01-01

    Arsenic enhances genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic co-carcinogenesis, and DNA repair proteins such as poly (ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlyi...

  13. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  14. The influence of inhibitors of poly (ADP-ribose) polymerase on X-ray induced potentially lethal damage repair

    International Nuclear Information System (INIS)

    Brown, D.M.; Evans, J.W.; Brown, J.M.

    1984-01-01

    Inhibition of repair of X-ray-induced potentially lethal damage (PLD) could enhance the curability of radioresistant tumours. We have studied the effect of inhibitors of the enzyme poly (ADP-ribose) polymerase on X-ray PLD repair. Four classes of inhibitors are known: aromatic amides (e.g., 3-aminobenzamide), thymidine, nicotinamides and methyl xanthines (e.g., caffeine). Plateau-phase Chinese hamster ovary (HA-1) cultures were exposed to 10 mM concentrations of thymidine, nicotinamide, 3-aminobenzamide (3-ABA) and caffeine prior to irradiation to 12 Gy in air, and then incubated with drug at 37 0 C for varying times (0-6 h) prior to subculture. Irradiated cells without drug exhibited a 5-6 fold increase in survival over the 6 h period compared to cultures plated immediately after irradiation. Although none of the compounds proved cytotoxic to unirradiated controls over the 6.5 h exposure, all of the compounds except thymidine reduced the capacity of the cells to repair PLD. The order of the inhibitory effect was caffeine > 3-ABA > nicotinamide, and the inhibition was concentration dependent for nicotinamide and 3-ABA. We also studied the effect of 3-ABA on the radiation response of exponentially growing cells. 5 mM 3-ABA for 2h post-irradiation resulted in a dose-multiplicative sensitization reducing the D 0 from 0.88 Gy to 0.69 Gy, indicating an involvement of poly (ADP-ribose) polymerase in the radiosensitivity of exponentially growing as well as plateau-phase cells. (author)

  15. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Nakadate, Yusuke [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kodera, Yasuo; Kitamura, Yuka [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tachibana, Taro [Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tamura, Tomohide [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Koizumi, Fumiaki, E-mail: fkoizumi@ncc.go.jp [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  17. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.

    Science.gov (United States)

    Gagné, Jean-Philippe; Langelier, Marie-France; Pascal, John M; Poirier, Guy G

    2018-06-11

    Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.

  18. Effect of Vaccinia virus infection on poly(ADP-ribose)synthesis and DNA metabolism in different cells

    Energy Technology Data Exchange (ETDEWEB)

    Topaloglou, A.; Ott, E.; Altmann, H. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie); Zashukhina, G.D.; Sinelschikova, T.A. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    1983-07-14

    In Chang liver cells and rat spleen cells infected with Vaccinia virus, DNA synthesis, repair replication after UV irradiation and poly(ADP-ribose)(PAR) synthesis were determined. In the time post infection semiconservative DNA synthesis showed only a slight reduction. DNA repair replication was not very different from controls 4 hours p.i. but was enhanced 24 hours after infection compared to noninfected cells. PAR synthesis was also not changed very much 4 hours p.i. but was decreased significantly after 24 hours. The determination of radioactivity resulting from /sup 3/H-NAD, showed a marked reduction of PAR in the spacer region of chromatin 24 hours p.i., but in addition, PAR located in the core region, was reduced, too.

  19. Human mass balance study and metabolite profiling of 14C-niraparib, a novel poly(ADP-Ribose) polymerase (PARP)-1 and PARP-2 inhibitor, in patients with advanced cancer

    NARCIS (Netherlands)

    van Andel, Lotte; Zhang, Z; Lu, S.; Kansra, V; Agarwal, S.; Hughes, L.; Tibben, M.; Gebretensae, A.; Lucas, L.; Hillebrand, Michel J X; Rosing, H.; Schellens, J H M|info:eu-repo/dai/nl/073926272; Beijnen, J H|info:eu-repo/dai/nl/071919570

    2017-01-01

    Niraparib is an investigational oral, once daily, selective poly(ADP-Ribose) polymerase (PARP)-1 and PARP-2 inhibitor. In the pivotal Phase 3 NOVA/ENGOT/OV16 study, niraparib met its primary endpoint of improving progression-free survival (PFS) for adult patients with recurrent, platinum sensitive,

  20. Poly(ADP-ribose) polymerase-1 inhibits ATM kinase activity in DNA damage response

    International Nuclear Information System (INIS)

    Watanabe, Fumiaki; Fukazawa, Hidesuke; Masutani, Mitsuko; Suzuki, Hiroshi; Teraoka, Hirobumi; Mizutani, Shuki; Uehara, Yoshimasa

    2004-01-01

    DNA double-strand breaks (DSB) mobilize DNA-repair machinery and cell cycle checkpoint by activating the ataxia-telangiectasia (A-T) mutated (ATM). Here we show that ATM kinase activity is inhibited by poly(ADP-ribose) polymerase-1 (PARP-1) in vitro. It was shown by biochemical fractionation procedure that PARP-1 as well as ATM increases at chromatin level after induction of DSB with neocarzinostatin (NCS). Phosphorylation of histone H2AX on serine 139 and p53 on serine 15 in Parp-1 knockout (Parp-1 -/- ) mouse embryonic fibroblasts (MEF) was significantly induced by NCS treatment compared with MEF derived from wild-type (Parp-1 +/+ ) mouse. NCS-induced phosphorylation of histone H2AX on serine 139 in Parp-1 -/- embryonic stem cell (ES) clones was also higher than that in Parp-1 +/+ ES clone. Furthermore, in vitro, PARP-1 inhibited phosphorylation of p53 on serine 15 and 32 P-incorporation into p53 by ATM in a DNA-dependent manner. These results suggest that PARP-1 negatively regulates ATM kinase activity in response to DSB

  1. Analysis of poly(ADP-Ribose polymerases in Arabidopsis telomere biology.

    Directory of Open Access Journals (Sweden)

    Kara A Boltz

    Full Text Available Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose polymerases (PARPs have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one.

  2. Analysis of Poly(ADP-Ribose) Polymerases in Arabidopsis Telomere Biology

    Science.gov (United States)

    Townley, Jennifer M.; Shippen, Dorothy E.

    2014-01-01

    Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose) polymerases (PARPs) have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one. PMID:24551184

  3. Electrophoretic characterization of the Mammalian nuclear matrix proteome, nuclear envelope, nucleoli and covalently bound ADP-ribose polymers: potential applications to cancer.

    Science.gov (United States)

    Aranda, Xavier G; Racho, Ronald G; Pacheco-Rodríguez, Gustavo; Alvarez-González, Rafael

    2014-01-01

    Nucleic acid metabolism is biochemically compartmentalized to the nucleus. Thus, it is necessary to define the proteome of the various macromolecular structures within this organelle. We isolated the nuclear matrix (NM) fraction from rat liver by sequential centrifugation steps at 13,000 rpm, staggered between endogenous nuclease treatment for 2 h at 37°C, followed by high-salt (H.S.; 2.0 M NaCl) and non-ionic detergent extractions (0.1%- or 1.0% Triton X-100) to eliminate the bulk of chromosomal DNA/RNA, histone proteins and the nuclear envelope (NE). Integrity of the NM and NE structures was confirmed by electron microscopy. Next, we analyzed the NM proteome on a 20% polyacrylamide gel using the PhastSystem. We observed the absence of histone proteins and the characteristic presence of the lamins by Coomassie blue staining. By contrast, upon silver staining, following electrophoretic separation with a Tris-Borate-EDTA buffer, we observed the NM-associated nucleic RNA and protein-free ADP-ribose polymers. While polymers are found in much lower concentration than RNA in NM, they were purified by affinity chromatography on boronate resin prior to electrophoresis. We observed the electrophoretic resolution of free ADP-ribose chains (5-25 units) by silver staining. The significance of our observations to cancer studies and carcinogenesis is discussed. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  4. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chassé, Maggie H.; Muthurajan, Uma M.; Clark, Nicholas J.; Kramer, Michael A.; Chakravarthy, Srinivas; Irving, Thomas; Luger, Karolin [Children; (IIT); (Colorado); (Amgen)

    2018-01-18

    Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.

  5. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    Science.gov (United States)

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Inhibitors of poly (ADP-ribose) polymerase and their enhancement of alkylating agent cytotoxicity in vivo

    International Nuclear Information System (INIS)

    Horsman, M.R.; Brown, D.M.; Hirst, D.G.; Brown, J.M.

    1984-01-01

    The chromosomal enzyme poly (ADP-ribose) polymerase (ADPRP) is involved in the repair of DNA damage caused by both ionizing radiation and alkylating agents. The authors have shown that certain inhibitors of this enzyme decrease potentially lethal damage repair after X-rays. The aim of the present study was to investigate the possible enhancement of alkylating agent damage in vivo by several of these ADPRP inhibitors. 3-aminobenzamide (200 mg/kg), caffeine (200 mg/kg), or nicotinamide (1000 mg/kg) given to RIF-1-tumor-bearing mice immediately before a dose of melphalan (L-PAM) (8 mg/kg) produced enhancement of tumor response as demonstrated by an in vivo in vitro tumor excision assay. Caffeine and nicotinamide provided the greatest enhancement of L-PAM cytotoxicity with at least a 100-fold increase in killing. Data are presented on the mechanism by which these drugs and other more potent inhibitors enhance the tumor cell killing by L-PAM and other alkylating agents

  7. The in vitro screening of aromatic amides as potential inhibitors of poly (ADP-ribose) polymerase

    International Nuclear Information System (INIS)

    Brown, D.M.; Horsman, M.R.; Lee, W.W.; Brown, J.M.

    1984-01-01

    It is now well established that the chromosomal enzyme poly (ADP-ribose) polymerase (ADPRP) is involved in the repair of DNA damage caused by ionizing radiation and alkylating agents, although the mechanisms involved are still not clear. ADPRP inhibitors include thymidine, nicotinamides, benzamides and methyl xanthines. The authors have demonstrated that these compounds are effective inhibitors of X-ray-induced potentially lethal damage repair (PLDR). More recently, they have shown that the cytotoxicity of the bifunctional alkylating L-phenylalanine mustard (L-PAM) was enhanced in vitro and in vivo by 3-aminobenzamide, nicotinamide and caffeine, although in the latter case pharmacokinetic changes could have contributed to the enhanced killing. The authors have examined a series of substituted carbocyclic and heterocyclic aromatic amides as potential inhibitors of ADPRP. The effect of these compounds on ADPRP activity in vitro as well as their effect on the repair of X-ray and alkylation damage in vitro are presented

  8. Differential Role of Poly(ADP-ribose polymerase in D. discoideum growth and development

    Directory of Open Access Journals (Sweden)

    Begum Rasheedunnisa

    2011-03-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerase is evolutionarily conserved as a responder to various forms of stress. Though PARP's role in cell death is well addressed, its role in development and multicellularity is still an enigma. We have previously reported the role of PARP in oxidative stress induced delayed development of D. discoideum. Results In the current study we highlight the involvement of PARP during D. discoideum development. Oxidative stress affects expression of aca and cAR1 thus affecting aggregation. Although parp expression is not affected during oxidative stress but it is involved during normal development as confirmed by our PARP down-regulation studies. Constitutive PARP down-regulation resulted in blocked development while no effect was observed on D. discoideum growth. Interestingly, stage specific PARP down-regulation arrested development at the slug stage. Conclusion These results emphasize that PARP is essential for complex differentiation and its function may be linked to multicellularity. This is the first report where the involvement of PARP during normal multicellular development in D. discoideum, an ancient eukaryote, is established which could be of evolutionary significance. Thus our study adds one more role to the multitasking function of PARP.

  9. Poly(ADP-ribose polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    Directory of Open Access Journals (Sweden)

    Prashanth Komirishetty

    2016-01-01

    Full Text Available Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose polymerase (PARP upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  10. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    Science.gov (United States)

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  11. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  12. Reduced estradiol-induced vasodilation and poly-(ADP-ribose) polymerase (PARP) activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Masszi, Gabriella; Horvath, Eszter Maria; Tarszabo, Robert; Benko, Rita; Novak, Agnes; Buday, Anna; Tokes, Anna-Maria; Nadasy, Gyorgy L; Hamar, Peter; Benyó, Zoltán; Varbiro, Szabolcs

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT). After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE). Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose) polymerase (PARP) activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.

  13. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by γ-radiation and N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Skidmore, C.J.; Davies, M.I.; Goodwin, P.M.; Halldorsson, H.; Lewis, P.J.; Shall, S.; Zia'ee, A.

    1979-01-01

    Both N-methyl-N-nitrosourea and γ-radiation lower cellular NAD in mouse leukaemia cells (L1210) in a dose-dependent way. The minimum NAD level is reached 2 h after a brief exposure to N-methyl-N-nitrosourea, but within 15 min of γ-irradiation. The cells remain metabolically active; they are able to recover their control NAD levels and are impermeable to trypan blue. Several inhibitors of poly(ADP-ribose) polymerase inhibit the drop in cellular NAD caused by these two agents: 2 mM 5-methylnicotinamide, 1 mM theophylline or 1 mM theobromine inhibit the effect of N-methyl-N-nitrosourea on cellular NAD level; 200 μM thymidine, 500 μM 5-methylnicotinaminde, 500 μM thephylline and 500 μM theobromine prevent the lowering of cellular NAD by γ-irradiation. The extent to which the drop in cellular NAD is inhibited is dependent on both the concentration of cytotoxic agent and of polymerase inhibitor. Caffeine will inhibit the drop in NAD but only at 10 mM, while nicotonic acid is ineffictive even at this dose. The activity of poly(ADP-ribose) polymerase is permeabilized cells immediately after γ-radiation increases with dose up to 12 krad, giving a maximal 3.4-fold stimulation of the enzyme activity, whereas the degradation of NAD under conditions optimal for NAD glycohydrolase does not change. The activity of the polymerase shows a close temporal correlation with the NAD drop following both γ-radiation and N-methyl-N-nitrosourea. The enzyme activity is maximal when the NAD content. (orig./AJ) 891 AJ/orig.- 892 HIS [de

  14. Involvement of poly(ADP-ribose polymerase-1 in development of spinal cord injury in Chinese individuals: a Chinese clinical study

    Directory of Open Access Journals (Sweden)

    Meng Q

    2017-12-01

    Full Text Available Qing-Tao Meng,* Guang Yang,* Ren-Bo Li, Jing-Xin Nie, Wei Zhou, Hong-De Yu, Bo Chen, Li Jiang, Jing-Bo Shang Department of Spine Surgery, The Third People’s Hospital of Dalian, Dalian, People’s Republic of China *These authors contributed equally to this work Objective: We aimed to evaluate whether the polymorphism of poly(ADP-ribose polymerase-1 (PARP-1 is involved as potential risk factor in the development of spinal cord injury (SCI among Chinese individuals.Patients and methods: Patients with a confirmed diagnosis of SCI (other than traumatic injury and healthy individuals with no clinical symptoms of SCI were enrolled at Spinal Cord Injury Care Center, The Third People’s Hospital of Dalian, China. Genetic polymorphisms were studied in plasma samples by polymerase chain reaction-restriction fragment length polymorphism assay.Results: A total of 130 Chinese patients with SCI and 130 healthy Chinese individuals were included. We found that patients with the GG genotype (odds ratio [OR]: 4.09, 95% confidence interval [CI] 2.42–6.90, P<0.001 and carriers of the G allele (OR 3.96, 95% CI 2.33–6.74, P<0.0001 were at high risk of developing SCI. A del/ins polymorphism of the NF-κB1 gene (OR 3.32, 95% CI 1.96–5.61, P<0.001 was also found to be associated with SCI.Conclusion: Our study suggests that PARP-1 polymorphisms are involved in the development of SCI in Chinese individuals. Thus, PARP-1 polymorphisms can be considered as one of the potential risk factors for developing SCI. Keywords: spinal cord injury, poly(ADP-ribose polymerase-1, polymorphism 

  15. Poly(ADP-Ribose) Polymerase-1: A Novel Therapeutic Target in Necrotizing Enterocolitis

    Science.gov (United States)

    Giannone, Peter J.; Alcamo, Alicia A.; Schanbacher, Brandon L.; Nankervis, Craig A.; Besner, Gail E.; Bauer, John A.

    2011-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of infancy, afflicting 11% of infants born 22–28 weeks gestational age. Both inflammation and oxidation may be involved in NEC pathogenesis through reactive nitrogen species production, protein oxidation and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) is a critical enzyme activated to facilitate DNA repair using nicotinamide adenine dinucleotide (NAD+) as a substrate. However, in the presence of severe oxidative stress and DNA damage, PARP-1 over-activation may ensue, depleting cells of NAD+ and ATP, killing them by metabolic catastrophe. Here we tested the hypothesis that NO dysregulation in intestinal epithelial cells during NEC leads to marked PARP-1 expression and that administration of a PARP-1 inhibitor (nicotinamide) attenuates intestinal injury in a newborn rat model of NEC. In this model, 56% of control pups developed NEC (any stage), versus 14% of pups receiving nicotinamide. Forty-four percent of control pups developed high-grade NEC (grades 3–4), whereas only 7% of pups receiving nicotinamide developed high-grade NEC. Nicotinamide treatment protects pups against intestinal injury incurred in the newborn rat NEC model. We speculate that PARP-1 over-activation in NEC may drive mucosal cell death in this disease and that PARP-1 may be a novel therapeutic target in NEC. PMID:21399558

  16. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    Science.gov (United States)

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  17. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.

    Science.gov (United States)

    Ferrarotto, Renata; Cardnell, Robert; Su, Shirley; Diao, Lixia; Eterovic, A Karina; Prieto, Victor; Morrisson, William H; Wang, Jing; Kies, Merrill S; Glisson, Bonnie S; Byers, Lauren Averett; Bell, Diana

    2018-03-23

    Patients with metastatic Merkel cell carcinoma are treated similarly to small cell lung cancer (SCLC). Poly ADP-ribose polymerase-1 (PARP1) is overexpressed in SCLC and response to PARP inhibitors have been reported in patients with SCLC. Our study explores PARP as a therapeutic target in Merkel cell carcinoma. We evaluated PARP1 expression and Merkel cell polyomavirus (MCPyV) in 19 patients with Merkel cell carcinoma. Target exome-sequencing was performed in 14 samples. Sensitivity to olaparib was tested in 4 Merkel cell carcinoma cell lines. Most Merkel cell carcinomas (74%) express PARP1 at high levels. Mutations in DNA-damage repair genes were identified in 9 samples (64%), occurred exclusively in head neck primaries, and correlated with TP53/RB1 mutations. The TP53/RB1 mutations were more frequent in MCPyV-negative tumors. Sensitivity to olaparib was seen in the Merkel cell carcinoma line with highest PARP1 expression. Based on PARP1 overexpression, DNA-damage repair gene mutations, platinum sensitivity, and activity of olaparib in a Merkel cell carcinoma line, clinical trials with PARP inhibitors are warranted in Merkel cell carcinoma. © 2018 Wiley Periodicals, Inc.

  18. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Scaife, R.M. (Fred Hutchinson Cancer Research Center, Seattle, WA (United States)); Wilson, L. (Univ. of California, Santa Barbara (United States)); Purich, D.L. (Univ. of Florida, Gainesville (United States))

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  19. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-kB-dependent signaling

    Science.gov (United States)

    Castri, Paola; Lee, Yang-ja; Ponzio, Todd; Maric, Dragan; Spatz, Maria; Bembry, Joliet; Hallenbeck, John

    2014-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) and its cleavage products regulate cell viability and NF-kB activity when expressed in neurons. PARP-1 cleavage generates a 24kDa (PARP-124) and an 89kDa fragment (PARP-189). Compared to WT (PARP-1WT), the expression of an uncleavable PARP-1 (PARP-1UNCL) or of PARP-124 conferred protection from oxygen/glucose deprivation (OGD) or OGD/restoration of oxygen and glucose (ROG) damage in vitro, whereas expression of PARP-189 was cytotoxic. Viability experiments were performed in SH-SY5Y, a human neuroblastoma cell line, as well as in rat primary cortical neurons. Following OGD, the higher viability in the presence of PARP-1UNCL or PARP-124 was not accompanied with decreased formation of poly(ADP-riboses) or higher NAD levels. PARP-1 is a known cofactor for NF-kB, hence we investigated whether PARP-1 cleavage influences the inflammatory response. All PARP-1 constructs mimicked PARP-1WT in regards to induction of NF-kB translocation into the nucleus and its increased activation during ischemic challenge. However, expression of PARP-189 construct induced significantly higher NF-kB activity than PARP-1WT; and the same was true for NF-kB-dependent iNOS promoter binding activity. At a protein level, PARP-1UNCL and PARP-124 decreased iNOS (and lower levels of iNOS transcript) and COX-2, and increased Bcl-xL. The increased levels of NF-kB and iNOS transcriptional activities, seen with cytotoxic PARP-189, were accompanied by higher protein expression of COX-2 and iNOS (and higher levels of iNOS transcript) and lower protein expression of Bcl-xL. Taken together, these findings suggest that PARP-1 cleavage products may regulate cellular viability and inflammatory responses in opposing ways during in vitro models of “ischemia”. PMID:24333653

  20. Reduced estradiol-induced vasodilation and poly-(ADP-ribose polymerase (PARP activity in the aortas of rats with experimental polycystic ovary syndrome (PCOS.

    Directory of Open Access Journals (Sweden)

    Gabriella Masszi

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine disorder characterized by hyperandrogenism and insulin resistance, both of which have been connected to atherosclerosis. Indeed, an increased risk of clinical manifestations of arterial vascular diseases has been described in PCOS. On the other hand endothelial dysfunction can be detected early on, before atherosclerosis develops. Thus we assumed that vascular dysfunction is also related directly to the hormonal imbalance rather than to its metabolic consequences. To detect early functional changes, we applied a novel rodent model of PCOS: rats were either sham operated or hyperandrogenism was achieved by implanting subcutaneous pellets of dihydrotestosterone (DHT. After ten weeks, myograph measurements were performed on isolated aortic rings. Previously we described an increased contractility to norepinephrine (NE. Here we found a reduced immediate relaxation to estradiol treatment in pre-contracted aortic rings from hyperandrogenic rats. Although the administration of vitamin D3 along with DHT reduced responsiveness to NE, it did not restore relaxation to estradiol. Poly-(ADP-ribose polymerase (PARP activity was assessed by poly-ADP-ribose immunostaining. Increased PAR staining in ovaries and circulating leukocytes from DHT rats showed enhanced DNA damage, which was reduced by concomitant vitamin D3 treatment. Surprisingly, PAR staining was reduced in both the endothelium and vascular smooth muscle cells of the aorta rings from hyperandrogenic rats. Thus in the early phase of PCOS, vascular tone is already shifted towards vasoconstriction, characterized by reduced vasorelaxation and vascular dysfunction is concomitant with altered PARP activity. Based on our findings, PARP inhibitors might have a future perspective in restoring metabolic disorders in PCOS.

  1. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  2. Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat.

    Science.gov (United States)

    Szabados, E; Fischer, G M; Toth, K; Csete, B; Nemeti, B; Trombitas, K; Habon, T; Endrei, D; Sumegi, B

    1999-02-01

    The short term cardiac side-effects of AZT (3'-azido-3'-deoxythymidine, zidovudine) was studied in rats to understand the biochemical events contributing to the development of AZT-induced cardiomyopathy. Developing rats were treated with AZT (50 mg/kg/day) for 2 wk and the structural and functional changes were monitored in the cardiac muscle. AZT treatment provoked a surprisingly fast appearance of cardiac malfunctions in developing animals characterized by prolonged RR, PR and QT intervals and J point depression. Electron microscopy showed abnormal mitochondrial structure but the cardiomyocyte had normal myofibers. The AZT treatment of rats significantly increased ROS and peroxynitrite formation in heart tissues as determined by the oxidation of nonfluorescent dihydrorhodamine123 and dichlorodihydro-fluorescein diacetate (H2DCFDA) to fluorescent dyes, and induced single-strand DNA breaks. Lipid peroxidation and oxidation of cellular proteins determined from protein carbonyl content were increased as a consequence of AZT treatment. Activation of the nuclear poly-ADP-ribose polymerase and the accelerated NAD+ catabolism were also observed in AZT-treated animals. Western blot analysis showed that mono-ADP-ribosylation of glucose regulated protein (GRP78/BIP) was enhanced by AZT treatment, that process inactivates GRP78. In this way moderate decrease in the activity of respiratory complexes was detected in the heart of AZT-treated animals indicating a damaged mitochondrial energy production. There was a significant decrease in creatine phosphate concentration resulting in a decrease in creatine phosphate/creatine ratio from 2.08 to 0.58. ATP level remained close to normal but the total extractable ADP increased with 45%. The calculated free ATP/ADP ratio decreased from 340 to 94 in the heart of AZT-treated rats as a consequence of increased free ADP concentration. It was assumed that the increased free ADP in AZT-treated cardiomyocyte may help cells to compensate the

  3. Poly (ADP-ribose) metabolism in alkylated mouse L5178Y cells

    International Nuclear Information System (INIS)

    Boyle, J.M.

    1985-01-01

    Poly ADP-ribosylation of two mouse lymphoma cell lines, L5178Y (LS) and the radiation and alkylating agent resistant derivative AII, was investigated by uptake of [ 3 H]NAD by permeabilised cells into acid-precipitable material that was sensitive to phosphodiesterase but insensitive to DNase and RNase. Basal activities in both lymphoma lines were 3-4-fold greater than in mouse L1210 leukaemia cells. However, total endogenous poly (ADP-R) polymerase activity in both L5178Y cell lines, stimulated by a large excess of DNase in the presence of Triton X-100, was less than half the activity in L1210 cells. Doses of N-methyl-N-nitrosourea (MNU) that produced 20-50% survival of colony-forming units increased poly (ADP-R) in both lymphoma lines by only 25% compared with 377% in L1210 cells when synthesis was measured immediately after a 30-min exposure of MNU. Concentrations of 3-aminobenzamide (3AB) above 2.5 mM inhibited colony-forming ability of lymphoma cells and equally inhibited uptake of [ 14 C]formate into protein, RNA and DNA indicating that 3AB behaves as a general metabolic poison. Non-toxic concentrations of 3AB potentiated cell killing by MNU to a similar degree in both lymphoma cell lines. In conclusion, the authors have found little evidence to support the hypothesis that the differential sensitivity of LS and AII is related to poly ADP-ribosylation. Compared with other mouse cells, L5178Y cells appear deficient in poly (ADP-R) polymerase and poly (ADP-R) glycohydrolase activities

  4. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Ciulli, Alessio [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Lobley, Carina M. C. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Tuck, Kellie L. [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Smith, Alison G. [Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA (United Kingdom); Blundell, Tom L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Abell, Chris, E-mail: ca26@cam.ac.uk [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-02-01

    A combined crystallographic, calorimetric and mutagenic study has been used to show how changes in pH give rise to two distinct binding modes of 2′-phospho-ADP-ribose to ketopantoate reductase. The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP{sup +} that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP{sup +}, with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes.

  5. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    International Nuclear Information System (INIS)

    Ciulli, Alessio; Lobley, Carina M. C.; Tuck, Kellie L.; Smith, Alison G.; Blundell, Tom L.; Abell, Chris

    2007-01-01

    A combined crystallographic, calorimetric and mutagenic study has been used to show how changes in pH give rise to two distinct binding modes of 2′-phospho-ADP-ribose to ketopantoate reductase. The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP + that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP + , with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes

  6. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K

    2007-01-01

    The mechanism of action of methotrexate (MTX) in autoimmune diseases (AID) is unclear. A pro-apoptotic effect has been demonstrated in mitogen-stimulated peripheral blood mononuclear cells (PBMC), but studies employing conventional antigens have disputed a pro-apoptotic effect. CD4+ T helper (Th....... Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced......) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th...

  7. Cyclic ADP-ribose and IP3 mediate abscisic acid-induced isoflavone accumulation in soybean sprouts

    International Nuclear Information System (INIS)

    Jiao, Caifeng; Yang, Runqiang; Gu, Zhenxin

    2016-01-01

    In this study, the roles of ABA-cADPR-Ca 2+ and ABA-IP3-Ca 2+ signaling pathways in UV-B-induced isoflavone accumulation in soybean sprouts were investigated. Results showed that abscisic acid (ABA) up regulated cyclic ADP-ribose (cADPR) and inositol 1,4,5-trisphosphate (IP3) levels in soybean sprouts under UV-B radiation. Furthermore, cADPR and IP3, as second messengers of UV-B-triggered ABA, induced isoflavone accumulation by up-regulating proteins and genes expression and activity of isoflavone biosynthetic-enzymes (chalcone synthase, CHS; isoflavone synthase, IFS). After Ca 2+ was chelated by EGTA, isoflavone content decreased. Overall, ABA-induced cADPR and IP3 up regulated isoflavone accumulation which was mediated by Ca 2+ signaling via enhancing the expression of proteins and genes participating in isoflavone biosynthesis in soybean sprouts under UV-B radiation. - Highlights: • UV-B-induced cADPR and IP3 synthesis was mediated by ABA. • cADPR and IP3 were involved in UV-B-ABA-induced isoflavone accumulation. • cADPR and IP3-induced isoflavone accumulation may be mediated by Ca 2+ . • ABA, cADPR, IP3 and Ca 2+ could activate proteins expression of CHS and IFS.

  8. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; Dashner, Erica J. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Tsosie, Ranalda [Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812 (United States); Cho, Young Mi [Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 133-791 (Korea, Republic of); Lewis, Johnnye [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Community Environmental Health Program, University of New Mexico Health Sciences Center College of Pharmacy, Albuquerque, NM 87131 (United States); Hudson, Laurie G., E-mail: lhudson@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.

  9. Poly(ADP-ribose polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

    Directory of Open Access Journals (Sweden)

    Dan Huang

    Full Text Available BACKGROUND: Transforming growth factor type-β (TGF-β/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose polymerase 1 (PARP1, a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs. METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB or N-(6-oxo-5,6-dihydrophenanthridin-2-yl-2-(N,N-dimethylaminoacetami (PJ34, or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosylation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosylation enhanced Smad-Smad binding element (SBE complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.

  10. A novel and selective poly (ADP-ribose polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    Directory of Open Access Journals (Sweden)

    Lauren E Ta

    Full Text Available Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose polymerase (PARP inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888 would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice.An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p. injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment.Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  11. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy.

    Science.gov (United States)

    Ta, Lauren E; Schmelzer, James D; Bieber, Allan J; Loprinzi, Charles L; Sieck, Gary C; Brederson, Jill D; Low, Philip A; Windebank, Anthony J

    2013-01-01

    Chemotherapy-induced neuropathy is the principle dose limiting factor requiring discontinuation of many chemotherapeutic agents, including cisplatin and oxaliplatin. About 30 to 40% of patients receiving chemotherapy develop pain and sensory changes. Given that poly (ADP-ribose) polymerase (PARP) inhibition has been shown to provide neuroprotection, the current study was developed to test whether the novel PARP inhibitor compound 4a (analog of ABT-888) would attenuate pain in cisplatin and oxaliplatin-induced neuropathy in mice. An established chemotherapy-induced painful neuropathy model of two weekly cycles of 10 intraperitoneal (i.p.) injections separated by 5 days rest was used to examine the therapeutic potential of the PARP inhibitor compound 4a. Behavioral testing using von Frey, paw radiant heat, cold plate, and exploratory behaviors were taken at baseline, and followed by testing at 3, 6, and 8 weeks from the beginning of drug treatment. Cisplatin-treated mice developed heat hyperalgesia and mechanical allodynia while oxaliplatin-treated mice exhibited cold hyperalgesia and mechanical allodynia. Co-administration of 50 mg/kg or 25 mg/kg compound 4a with platinum regimen, attenuated cisplatin-induced heat hyperalgesia and mechanical allodynia in a dose dependent manner. Similarly, co-administration of 50 mg/kg compound 4a attenuated oxaliplatin-induced cold hyperalgesia and mechanical allodynia. These data indicate that administration of a novel PARP inhibitor may have important applications as a therapeutic agent for human chemotherapy-induced painful neuropathy.

  12. ADP-ribosylation of membrane components by pertussis and cholera toxin

    International Nuclear Information System (INIS)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its α/sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its α; subunit. By using [ 32 P]NAD + and determining the transfer of its [ 32 P]ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin

  13. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    International Nuclear Information System (INIS)

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-01-01

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  14. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    Energy Technology Data Exchange (ETDEWEB)

    Fahrer, Joerg, E-mail: joerg.fahrer@uni-ulm.de [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Wagner, Silvia [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany); Buerkle, Alexander [Molecular Toxicology Group, Department of Biology, University of Konstanz (Germany); Koenigsrainer, Alfred [Clinic of General, Visceral- and Transplantation Surgery, ZMF, University Hospital Tuebingen (Germany)

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  15. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    International Nuclear Information System (INIS)

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-01-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis

  16. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation.

    Science.gov (United States)

    Sriram, Chandra Shekhar; Jangra, Ashok; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Bezbaruah, Babul Kumar

    2014-10-01

    The highly conserved abundant nuclear protein poly(ADP-ribose)polymerase1 (PARP1) functions at the center of cellular stress response and is mainly implied in DNA damage repair mechanism. Apart from its involvement in DNA damage repair, it does sway multiple vital cellular processes such as cell death pathways, cell aging, insulator function, chromatin modification, transcription and mitotic apparatus function. Since brain is the principal organ vulnerable to oxidative stress and inflammatory responses, upon stress encounters robust DNA damage can occur and intense PARP1 activation may result that will lead to various CNS diseases. In the context of soaring interest towards PARP1 as a therapeutic target for newer pharmacological interventions, here in the present review, we are attempting to give a silhouette of the role of PARP1 in the neurological diseases and the potential of its inhibitors to enter clinical translation, along with its structural and functional aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Molecular characterization of a novel intracellular ADP-ribosyl cyclase.

    Directory of Open Access Journals (Sweden)

    Dev Churamani

    2007-08-01

    Full Text Available ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates.Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1 is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained.Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized.

  18. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    Science.gov (United States)

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  19. The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    Science.gov (United States)

    Jiang, Hong-Yan; Yang, Yang; Zhang, Yuan-Yuan; Xie, Zhen; Zhao, Xue-Yan; Sun, Yu; Kong, Wei-Jia

    2018-04-01

    Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimulated by oxidative stress, but the role of autophagy and its relationship with parthanatos underlying this activation in the inner ear remains unknown. In this study, we established an oxidative stress model in vitro by glucose oxidase/glucose (GO/G), which could continuously generate low concentrations of H 2 O 2 to mimic continuous exposure to H 2 O 2 in physiological conditions, for investigation of oxidative stress-induced cell death mechanisms and the regulatory role of PARP-1 in this process. We observed that GO/G induced stria marginal cells (MCs) death via upregulation of PARP-1 expression, accumulation of polyADP-ribose (PAR) polymers, decline of mitochondrial membrane potential (MMP) and nuclear translocation of apoptosis-inducing factor (AIF), which all are biochemical features of parthanatos. PARP-1 knockdown rescued GO/G-induced MCs death, as well as abrogated downstream molecular events of PARP-1 activation. In addition, we demonstrated that GO/G stimulated autophagy and PARP-1 knockdown suppressed GO/G-induced autophagy in MCs. Interestingly, autophagy suppression by 3-Methyladenine (3-MA) accelerated GO/G-induced parthanatos, indicating a pro-survival function of autophagy in GO/G-induced MCs death. Taken together, these data suggested that PARP-1 played dual roles by modulating parthanatos and autophagy in oxidative stress-induced MCs death, which may be considered as a promising therapeutic target for ameliorating oxidative stress-related hearing disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  1. Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity

    International Nuclear Information System (INIS)

    Nagy, Edit; Caidahl, Kenneth; Franco-Cereceda, Anders; Bäck, Magnus

    2012-01-01

    Highlights: ► Oxidative stress has been implicated in the pathomechanism of calcific aortic valve stenosis. ► We assessed the transcript levels for PARP-1 (poly(ADP-ribose) polymerase), acts as a DNA damage nick sensor in stenotic valves. ► Early stage of diseased tricuspid valves exhibited higher mRNA levels for PARP-1 compared to bicuspid valves. ► The mRNA levels for PARP-1 inversely correlated with the clinical stenosis severity in tricuspid valves. ► Our data demonstrated that DNA damage pathways might be associated with stenosis severity only in tricuspid valves. -- Abstract: Oxidative stress may contribute to the hemodynamic progression of aortic valve stenosis, and is associated with activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) 1. The aim of the present study was to assess the transcriptional profile and the topological distribution of PARP-1 in human aortic valves, and its relation to the stenosis severity. Human stenotic aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery and used for mRNA extraction followed by quantitative real-time PCR to correlate the PARP-1 expression levels with the non invasive hemodynamic parameters quantifying the stenosis severity. Primary isolated valvular interstitial cells (VICs) were used to explore the effects of cytokines and leukotriene C 4 (LTC 4 ) on valvular PARP-1 expression. The thickened areas of stenotic valves with tricuspid morphology expressed significantly higher levels of PARP-1 mRNA compared with the corresponding part of bicuspid valves (0.501 vs 0.243, P = 0.01). Furthermore, the quantitative gene expression levels of PARP-1 were inversely correlated with the aortic valve area (AVA) (r = −0.46, P = 0.0469) and AVA indexed for body surface area (BSA) (r = −0.498; P = 0.0298) only in tricuspid aortic valves. LTC 4 (1 nM) significantly elevated the mRNA levels of PARP-1 by 2.38-fold in VICs. Taken together, these data suggest that

  2. Ataxia-telangiectasia cells are not uniformly deficient in poly(ADP-ribose) synthesis following X-irradiation

    International Nuclear Information System (INIS)

    Zwelling, L.A.; Kerrigan, D.; Mattern, M.R.

    1983-01-01

    The synthesis of poly(adenosine diphosphoribose [poly(ADP-R)] follows the DNA strand breakage produced by a number of physical and chemical agents, including X-radiation, and may be important for repair of several types of DNA damage. The reduction or abolition of its synthesis following X-irradiation might explain the enhanced sensitivity of ataxia-telangiectasia (A-T) cells to X-ray. We have examined 8 lines of human fibroblasts (including 4 A-T lines) for stimulation of the synthesis of poly(ADP-R) by X-irradiation. Similar amounts of X-ray-stimulated synthesis of poly(ADP-R) were detected in 4 lines of A-T fibroblasts, and in fibrolasts from a xeroderma pigmentosum (XP) patient, a Fanconi's anemia (FA) patient and 2 normal patients. 6 lines of human lymphoblastoid lines were also examined for X-ray-stimulated poly(ADP-R) synthesis. 4 A-T lines displayed an unusually high synthesis of poly(ADP-R) in unirradiated cells compared with 2 normal lines. (orig./AJ)

  3. Ataxia-telangiectasia cells are not uniformly deficient in poly(ADP-ribose) synthesis following X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zwelling, L.A.; Kerrigan, D. (National Cancer Inst., Bethesda, MD (USA). Lab. of Molecular Pharmacology); Mattern, M.R. (National Cancer Inst., Bethesda, MD (USA). Lab. of Molecular Carcinogenesis)

    1983-04-01

    The synthesis of poly(adenosine diphosphoribose (poly(ADP-R)) follows the DNA strand breakage produced by a number of physical and chemical agents, including X-radiation, and may be important for repair of several types of DNA damage. The reduction or abolition of its synthesis following X-irradiation might explain the enhanced sensitivity of ataxia-telangiectasia (A-T) cells to X-ray. We have examined 8 lines of human fibroblasts (including 4 A-T lines) for stimulation of the synthesis of poly(ADP-R) by X-irradiation. Similar amounts of X-ray-stimulated synthesis of poly(ADP-R) were detected in 4 lines of A-T fibroblasts, and in fibrolasts from a xeroderma pigmentosum (XP) patient, a Fanconi's anemia (FA) patient and 2 normal patients. 6 lines of human lymphoblastoid lines were also examined for X-ray-stimulated poly(ADP-R) synthesis. 4 A-T lines displayed an unusually high synthesis of poly(ADP-R) in unirradiated cells compared with 2 normal lines.

  4. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  5. Inhibition of gamma-ray dose-rate effects by D2O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    International Nuclear Information System (INIS)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-01-01

    Effects of deuterium oxide (D 2 O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of γ rays. Growth of irradiated and unirradiated cells was inhibited by 45% D 2 O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of γ rays. Possible mechanisms underlying the inhibition are discussed

  6. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells

    Science.gov (United States)

    Mortusewicz, Oliver; Amé, Jean-Christophe; Leonhardt, Heinrich

    2007-01-01

    Genome integrity is constantly threatened by DNA lesions arising from numerous exogenous and endogenous sources. Survival depends on immediate recognition of these lesions and rapid recruitment of repair factors. Using laser microirradiation and live cell microscopy we found that the DNA-damage dependent poly(ADP-ribose) polymerases (PARP) PARP-1 and PARP-2 are recruited to DNA damage sites, however, with different kinetics and roles. With specific PARP inhibitors and mutations, we could show that the initial recruitment of PARP-1 is mediated by the DNA-binding domain. PARP-1 activation and localized poly(ADP-ribose) synthesis then generates binding sites for a second wave of PARP-1 recruitment and for the rapid accumulation of the loading platform XRCC1 at repair sites. Further PARP-1 poly(ADP-ribosyl)ation eventually initiates the release of PARP-1. We conclude that feedback regulated recruitment of PARP-1 and concomitant local poly(ADP-ribosyl)ation at DNA lesions amplifies a signal for rapid recruitment of repair factors enabling efficient restoration of genome integrity. PMID:17982172

  7. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism.

    Science.gov (United States)

    Rotin, Lianne E; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L; Minden, Mark D; Slassi, Malik; Schimmer, Aaron D

    2016-01-19

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.

  8. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose polymerase-1.

    Directory of Open Access Journals (Sweden)

    Ingrid Oit-Wiscombe

    Full Text Available Chronic oxidative stress (OS, a major mechanism of chronic obstructive pulmonary disease (COPD, may cause significant damage to DNA. Poly(ADP-ribose polymerase (PARP-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR 7.88, 95% CI 4.26-14.57; p<0.001 and OR 3.91, 95% CI 2.69-5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001. An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040. Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.

  9. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    Science.gov (United States)

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors.

    Science.gov (United States)

    Eltze, Tobias; Boer, Rainer; Wagner, Thomas; Weinbrenner, Steffen; McDonald, Michelle C; Thiemermann, Christoph; Bürkle, Alexander; Klein, Thomas

    2008-12-01

    We have identified three novel structures for inhibitors of the poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA and implicated in DNA repair, apoptosis, organ dysfunction or necrosis. 2-[4-(5-Methyl-1H-imidazol-4-yl)-piperidin-1-yl]-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK49187), 2-(4-pyridin-2-yl-phenyl)-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK236864), 6-chloro-8-hydroxy-2,3-dimethyl-imidazo-[1,2-alpha]-pyridine (BYK20370), and 4-(1-methyl-1H-pyrrol-2-ylmethylene)-4H-isoquinolin-1,3-dione (BYK204165) inhibited cell-free recombinant human PARP-1 with pIC(50) values of 8.36, 7.81, 6.40, and 7.35 (pK(i) 7.97, 7.43, 5.90, and 7.05), and murine PARP-2 with pIC(50) values of 7.50, 7.55, 5.71, and 5.38, respectively. BYK49187, BYK236864, and BYK20370 displayed no selectivity for PARP-1/2, whereas BYK204165 displayed 100-fold selectivity for PARP-1. The IC(50) values for inhibition of poly(ADP-ribose) synthesis in human lung epithelial A549 and cervical carcinoma C4I cells as well in rat cardiac myoblast H9c2 cells after PARP activation by H(2)O(2) were highly significantly correlated with those at cell-free PARP-1 (r(2) = 0.89-0.96, P < 0.001) but less with those at PARP-2 (r(2) = 0.78-0.84, P < 0.01). The infarct size caused by coronary artery occlusion and reperfusion in the anesthetized rat was reduced by 22% (P < 0.05) by treatment with BYK49187 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. during 2-h reperfusion), whereas the weaker PARP inhibitors, BYK236864 and BYK20370, were not cardioprotective. In conclusion, the imidazoquinolinone BYK49187 is a potent inhibitor of human PARP-1 activity in cell-free and cellular assays in vitro and reduces myocardial infarct size in vivo. The isoquinolindione BYK204165 was found to be 100-fold more selective for PARP-1. Thus, both compounds might be novel and valuable tools for investigating PARP-1-mediated effects.

  12. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    Science.gov (United States)

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  13. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    Science.gov (United States)

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  14. Influence of inhibitors of poly(ADP-ribose) polymerase on DNA repair, chromosomal alterations, and mutations

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A.T.; van Zeeland, A.A.; Zwanenburg, T.S.

    1983-01-01

    The influence of inhibitors of poly(ADP-ribose) polymerase such as 3-aminobenzamide (3AB) and benzamide (B) on the spontaneously occurring as well as mutagen induced chromosomal aberrations, sister chromatid exchanges (SCEs) and point mutations has been studied. In addition, the influence of 3AB on DNA repair was measured following treatment with physical and chemical mutagens. Post treatment of X-irradiated mammalian cells with 3AB increases the frequencies of induced chromosomal aberrations by a factor of 2 to 3. 3AB, when present in the medium containing bromodeoxyuridine(BrdUrd) during two cell cycles, increases the frequencies of SCEs in Chinese hamster ovary cells (CHO) in a concentration dependent manner leading to about a 10-fold increase at 10 mM concentration. The extent of increase in the frequencies of SCEs due to 1 mM 3AB in several human cell lines has been studied, including those derived from patients suffering from genetic diseases such as ataxia telangiectasia (A-T), Fanconi's anemia (FA), and Huntington's chorea. None of these syndromes showed any increased response when compared to normal cells. 3AB, however, increased the frequencies of spontaneously occurring chromosomal aberrations in A-T and FA cells. 3AB does not influence the frequencies of SCEs induced by UV or mitomycin C (MMC) in CHO cells. However, it increases the frequencies of SCEs induced by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS). Under the conditions in which 3AB increases the frequencies of spontaneously occurring as well as induced SCEs, it does not increase the frequencies of point mutations in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) locus. 3AB does not influence the amount of repair replication following dimethylsulphate (DMS) treatment of human fibroblasts, or UV irradiated human lymphocytes.

  15. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    Science.gov (United States)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  16. Emissive Synthetic Cofactors: An Isomorphic, Isofunctional, and Responsive NAD+ Analogue.

    Science.gov (United States)

    Rovira, Alexander R; Fin, Andrea; Tor, Yitzhak

    2017-11-08

    The synthesis, photophysics, and biochemical utility of a fluorescent NAD + analogue based on an isothiazolo[4,3-d]pyrimidine core (N tz AD + ) are described. Enzymatic reactions, photophysically monitored in real time, show N tz AD + and N tz ADH to be substrates for yeast alcohol dehydrogenase and lactate dehydrogenase, respectively, with reaction rates comparable to that of the native cofactors. A drop in fluorescence is seen as N tz AD + is converted to N tz ADH, reflecting a complementary photophysical behavior to that of the native NAD + /NADH. N tz AD + and N tz ADH serve as substrates for NADase, which selectively cleaves the nicotinamide's glycosidic bond yielding tz ADP-ribose. N tz AD + also serves as a substrate for ribosyl transferases, including human adenosine ribosyl transferase 5 (ART5) and Cholera toxin subunit A (CTA), which hydrolyze the nicotinamide and transfer tz ADP-ribose to an arginine analogue, respectively. These reactions can be monitored by fluorescence spectroscopy, in stark contrast to the corresponding processes with the nonemissive NAD + .

  17. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair.

    Science.gov (United States)

    Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M

    2017-08-15

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.

  18. Critical role of poly(ADP-ribose) polymerase-1 in modulating the mode of cell death caused by continuous oxidative stress.

    Science.gov (United States)

    Son, Young-Ok; Kook, Sung-Ho; Jang, Yong-Suk; Shi, Xianglin; Lee, Jeong-Chae

    2009-11-01

    Continuously generated hydrogen peroxide (H(2)O(2)) inhibits typical apoptosis and instead initiates a caspase-independent, apoptosis-inducing factor (AIF)-mediated pyknotic cell death. This may be related to H(2)O(2)-mediated DNA damage and subsequent ATP depletion, although the exact mechanisms by which the mode of cell death is decided after H(2)O(2) exposure are still unclear. Accumulated evidence and our previous data led us to hypothesize that continuously generated H(2)O(2), not an H(2)O(2) bolus, induces severe DNA damage, signaling poly(ADP-ribose) polymerase-1 (PARP-1) activation, ATP depletion, and eventually caspase-independent cell death. Results from the present study support that H(2)O(2) generated continuously by glucose oxidase causes excessive DNA damage and PARP-1 activation. Blockage of PARP-1 by a siRNA transfection or by pharmacological inhibitor resulted in the significant inhibition of ATP depletion, loss of mitochondrial membrane potential, nuclear translocation of AIF and endonuclease G, and eventually conversion to caspase-dependent apoptosis. Overall, the current study demonstrates the different roles of PARP-1 inhibition in modulation of cell death according to the method of H(2)O(2) exposure, that is, continuous generation versus a direct addition. (c) 2009 Wiley-Liss, Inc.

  19. Different Principles of ADP-Ribose-Mediated Activation and Opposite Roles of the NUDT9 Homology Domain in the TRPM2 Orthologs of Man and Sea Anemone

    Directory of Open Access Journals (Sweden)

    Frank Kühn

    2017-10-01

    Full Text Available A decisive element in the human cation channel TRPM2 is a region in its cytosolic C-terminus named NUDT9H because of its homology to the NUDT9 enzyme, a pyrophosphatase degrading ADP-ribose (ADPR. In hTRPM2, however, the NUDT9H domain has lost its enzymatic activity but serves as a binding domain for ADPR. As consequence of binding, gating of the channel is initiated. Since ADPR is produced after oxidative DNA damage, hTRPM2 mediates Ca2+ influx in response to oxidative stress which may lead to cell death. In the genome of the sea anemone Nematostella vectensis (nv, a preferred model organism for the evolution of key bilaterian features, a TRPM2 ortholog has been identified that contains a NUDT9H domain as well. Heterologous expression of nvTRPM2 in HEK-293 cells reveals a cation channel with many close similarities to the human counterpart. Most notably, nvTRPM2 is activated by ADPR, and Ca2+ is a co-agonist. However, the intramolecular mechanisms of ADPR gating as well as the role of NUDT9H are strikingly different in the two species. Whereas already subtle changes of NUDT9H abolish ADPR gating in hTRPM2, the region can be completely removed from nvTRPM2 without loss of responses to ADPR. An alternative ADPR binding site seems to be present but has not yet been characterized. The ADP-ribose pyrophosphatase (ADPRase function of nvNUDT9H has been preserved but can be abolished by numerous genetic manipulations. All these manipulations create channels that are sensitive to hydrogen peroxide which fails to induce channel activity in wild-type nvTRPM2. Therefore, the function of NUDT9H in nvTRPM2 is the degradation of ADPR, thereby reducing agonist concentration in the presence of oxidative stress. Thus, the two TRPM2 orthologs have evolved divergently but nevertheless gained analogous functional properties, i.e., gating by ADPR with Ca2+ as co-factor. Opposite roles are played by the respective NUDT9H domains, either binding of ADPR and mediating

  20. Inhibition of gamma-ray dose-rate effects by D/sup 2/O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-06-01

    Effects of deuterium oxide (D/sub 2/O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of ..gamma.. rays. Growth of irradiated and unirradiated cells was inhibited by 45% D/sub 2/O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of ..gamma.. rays. Possible mechanisms underlying the inhibition are discussed.

  1. Minocycline attenuates streptomycin-induced cochlear hair cell death by inhibiting protein nitration and poly (ADP-ribose) polymerase activation.

    Science.gov (United States)

    Wang, Ping; Li, Haonan; Yu, Shuyuan; Jin, Peng; Hassan, Abdurahman; Du, Bo

    2017-08-24

    This study aimed to elucidate the protective effect of minocycline against streptomycin-induced damage of cochlear hair cells and its mechanism. Cochlear membranes were isolated from newborn Wistar rats and randomly divided into control, 500μmol/L streptomycin, 100μmol/L minocycline, and streptomycin and minocycline treatment groups. Hair cell survival was analyzed by detecting the expression of 3-nitrotyrosine (3-NT) in cochlear hair cells by immunofluorescence and an enzyme-linked immunosorbent assay. Expression of 3-NT and inducible nitric oxide synthase (iNOS), and poly (ADP-Ribose) polymerase (PARP) and caspase-3 activation were evaluated by western blotting. The results demonstrated hair cell loss at 24h after streptomycin treatment. No change was found in supporting cells of the cochleae. Minocycline pretreatment improved hair cell survival and significantly reduced the expression of iNOS and 3-NT in cochlear tissues compared with the streptomycin treatment group. PARP and caspase-3 activation was increased in the streptomycin treatment group compared with the control group, and pretreatment with minocycline decreased cleaved PARP and activated caspase-3 expression. Minocycline protected cochlear hair cells from injury caused by streptomycin in vitro. The mechanism underlying the protective effect may be associated with the inhibition of excessive formation of nitric oxide, reduction of the nitration stress reaction, and inhibition of PARP and caspase-3 activation in cochlear hair cells. Combined minocycline therapy can be applied to patients requiring streptomycin treatment. Copyright © 2017. Published by Elsevier B.V.

  2. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    Science.gov (United States)

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  3. The nuclear protein Poly(ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana.

    Science.gov (United States)

    Rissel, D; Losch, J; Peiter, E

    2014-11-01

    The deterioration of seeds during prolonged storage results in a reduction of viability and germination rate. DNA damage is one of the major cellular defects associated with seed deterioration. It is provoked by the formation of reactive oxygen species (ROS) even in the quiescent state of the desiccated seed. In contrast to other stages of seed life, DNA repair during storage is hindered through the low seed water content; thereby DNA lesions can accumulate. To allow subsequent seedling development, DNA repair has thus to be initiated immediately upon imbibition. Poly(ADP-ribose) polymerases (PARPs) are important components in the DNA damage response in humans. Arabidopsis thaliana contains three homologues to the human HsPARP1 protein. Of these three, only AtPARP3 was very highly expressed in seeds. Histochemical GUS staining of embryos and endosperm layers revealed strong promoter activity of AtPARP3 during all steps of germination. This coincided with high ROS activity and indicated a role of the nuclear-localised AtPARP3 in DNA repair during germination. Accordingly, stored parp3-1 mutant seeds lacking AtPARP3 expression displayed a delay in germination as compared to Col-0 wild-type seeds. A controlled deterioration test showed that the mutant seeds were hypersensitive to unfavourable storage conditions. The results demonstrate that AtPARP3 is an important component of seed storability and viability. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Functional characterisation of an Arabidopsis gene strongly induced by ionising radiation: the gene coding the poly(ADP-ribose)polymerase-1 (AthPARP-1)

    International Nuclear Information System (INIS)

    Doucet-Chabeaud, G.

    2000-01-01

    Arabidopsis thaliana, the model-system in plant genetics, has been used to study the responses to DNA damage, experimentally introduced by γ-irradiation. We have characterised a radiation-induced gene coding a 111 kDa protein, AthPARP-1, homologous to the human poly(ADP-ribose)polymerase-1 (hPARP-1). As hPARP-1 is composed by three functional domain with characteristic motifs, AthPARP-1 binds to DNA bearing single-strand breaks and shows DNA damage-dependent poly(ADP-ribosyl)ation. The preferential expression of AthPARP-1 in mitotically active tissues is in agreement with a potential role in the maintenance of genome integrity during DNA replication, as proposed for its human counterpart. Transcriptional gene activation by ionising radiation of AthPARP-1 and AthPARP-2 genes is to date plant specific activation. Our expression analyses after exposure to various stress indicate that 1) AthPARP-1 and AthPARP-2 play an important role in the response to DNA lesions, particularly they are activated by genotoxic agents implicating the BER DNA repair pathway 2) AthPARP-2 gene seems to play an additional role in the signal transduction induced by oxidative stress 3) the observed expression profile of AthPARP-1 is in favour of the regulation of AthPARP-1 gene expression at the level of transcription and translation. This mode of regulation of AthPARP-1 protein biosynthesis, clearly distinct from that observed in animals, needs the implication of a so far unidentified transcription factor that is activated by the presence of DNA lesions. The major outcome of this work resides in the isolation and characterisation of such new transcription factor, which will provide new insight on the regulation of plant gene expression by genotoxic stress. (author) [fr

  5. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy); Caligo, Maria Adelaide [Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa (Italy); Galli, Alvaro, E-mail: alvaro.galli@ifc.cnr.it [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy)

    2015-04-15

    Highlights: • The human poly (ADP-ribose) polymerase 1 (PARP-1) gene affects growth and UV-induced homologous recombination in yeast. • PARP-1 chemical inhibition impacts yeast growth and UV-induced recombination. • A genome-wide screen identifies 99 yeast genes that suppress the growth defect inferred by PARP-1. • Bioinformatics analysis identifies 41 human orthologues that may have a role in PARP-1 intracellular localization. • The findings suggest that PARP-1 nuclear localization may affect the response to PARP inhibitors in cancer therapy. - Abstract: The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the

  6. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi-Scharber, Mika, E-mail: maoyagi@bmrn.com [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States); Gardberg, Anna S. [Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110 (United States); Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A. [BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949 (United States)

    2014-08-29

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.

  7. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone

    International Nuclear Information System (INIS)

    Aoyagi-Scharber, Mika; Gardberg, Anna S.; Yip, Bryan K.; Wang, Bing; Shen, Yuqiao; Fitzpatrick, Paul A.

    2014-01-01

    BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers. In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity

  8. The impact of cyclin-dependent kinase 5 depletion on poly(ADP-ribose) polymerase activity and responses to radiation

    International Nuclear Information System (INIS)

    Bolin, Celeste; Boudra, Mohammed-Tayyib; Fernet, Marie; Vaslin, Laurence; Pennaneach, Vincent; Zaremba, Tomasz; Favaudon, Vincent; Megnin-Chanet, Frederique; Hall, Janet; Biard, Denis; Cordelieres, Fabrice P.

    2012-01-01

    Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5- dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels. (authors)

  9. Minocycline Blocks Asthma-associated Inflammation in Part by Interfering with the T Cell Receptor-Nuclear Factor κB-GATA-3-IL-4 Axis without a Prominent Effect on Poly(ADP-ribose) Polymerase*

    Science.gov (United States)

    Naura, Amarjit S.; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C.; Jordan, Joaquin; Catling, Andrew D.; Rezk, Bashir M.; Elmageed, Zakaria Y. Abd; Pyakurel, Kusma; Tarhuni, Abdelmetalab F.; Abughazleh, Mohammad Q.; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C.; Boulares, A. Hamid

    2013-01-01

    Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N′-nitro-N-nitroso-guanidine-treated mice or H2O2-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production. PMID:23184953

  10. Minocycline blocks asthma-associated inflammation in part by interfering with the T cell receptor-nuclear factor κB-GATA-3-IL-4 axis without a prominent effect on poly(ADP-ribose) polymerase.

    Science.gov (United States)

    Naura, Amarjit S; Kim, Hogyoung; Ju, Jihang; Rodriguez, Paulo C; Jordan, Joaquin; Catling, Andrew D; Rezk, Bashir M; Abd Elmageed, Zakaria Y; Pyakurel, Kusma; Tarhuni, Abdelmetalab F; Abughazleh, Mohammad Q; Errami, Youssef; Zerfaoui, Mourad; Ochoa, Augusto C; Boulares, A Hamid

    2013-01-18

    Minocycline protects against asthma independently of its antibiotic function and was recently reported as a potent poly(ADP-ribose) polymerase (PARP) inhibitor. In an animal model of asthma, a single administration of minocycline conferred excellent protection against ovalbumin-induced airway eosinophilia, mucus hypersecretion, and Th2 cytokine production (IL-4/IL-5/IL-12(p70)/IL-13/GM-CSF) and a partial protection against airway hyperresponsiveness. These effects correlated with pronounced reduction in lung and sera allergen-specific IgE. A reduction in poly(ADP-ribose) immunoreactivity in the lungs of minocycline-treated/ovalbumin-challenged mice correlated with decreased oxidative DNA damage. The effect of minocycline on PARP may be indirect, as the drug failed to efficiently block direct PARP activation in lungs of N-methyl-N'-nitro-N-nitroso-guanidine-treated mice or H(2)O(2)-treated cells. Minocycline blocked allergen-specific IgE production in B cells potentially by modulating T cell receptor (TCR)-linked IL-4 production at the mRNA level but not through a modulation of the IL-4-JAK-STAT-6 axis, IL-2 production, or NFAT1 activation. Restoration of IL-4, ex vivo, rescued IgE production by minocycline-treated/ovalbumin-stimulated B cells. IL-4 blockade correlated with a preferential inhibition of the NF-κB activation arm of TCR but not GSK3, Src, p38 MAPK, or ERK1/2. Interestingly, the drug promoted a slightly higher Src and ERK1/2 phosphorylation. Inhibition of NF-κB was linked to a complete blockade of TCR-stimulated GATA-3 expression, a pivotal transcription factor for IL-4 expression. Minocycline also reduced TNF-α-mediated NF-κB activation and expression of dependent genes. These results show a potentially broad effect of minocycline but that it may block IgE production in part by modulating TCR function, particularly by inhibiting the signaling pathway, leading to NF-κB activation, GATA-3 expression, and subsequent IL-4 production.

  11. Nicotinamide starvation and inhibition of poly(ADP-Ribose) synthesis enhance the induced mutation in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Okada, Gensaku; Kaneko, Ichiro; Mitsui, Hideki.

    1987-01-01

    The effects of nicotinamide (NA) deficiency and added NA and 3-aminobenzamide (3AB) on the cytotoxicity and the induction of mutations in Chinese hamster V79-14 cells were investigated. In NA deficiency the addition of NA (up to 4 mM) and 3AB (up to 7.5 mM) was not cytotoxic. The presence of NA prior to exposure to mitomycin C (MMC) or γ-rays produced a dose-dependent increase in the relative cloning ability of DNA-damaged cells. The lethality of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was significantly potentiated by pre-treatment with 5 mM 3AB, but no potentiation by 3AB was observed for MMC, ultraviolet (UV)-B light, or γ-rays. Among cells pre-cultured in NA-free medium there were increased frequencies of mutations at both the hypoxanthineguanine phosphoribosyltransferase (HGPRT) and the adenine phosphoribosyltransferase (APRT) loci following DNA damage. The enhancing effect by NA deficiency was time-dependent. Incubation with NA prior to DNA damage produced a significant reduction in the frequency of mutations. The addition of 3AB to the nicotinamide adenine dinucleotide (NAD + )-depleted cell cultures before or after the DNA damage also strongly increased the frequency of induced mutations, with increasing concentrations of 3AB up to 5 mM, but the frequency was reduced at higher concentrations. The interaction between NA deficiency and the addition of 3AB appears to act synergistically on mutation induction. A correlation was observed between the potential of inhibiting poly (ADP-ribose) polymerase and the enhancement of mutation frequency. (author)

  12. Poly (ADP-ribose polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells

    Directory of Open Access Journals (Sweden)

    Chiu Sheng-Chun

    2012-03-01

    Full Text Available Abstract Background Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH. Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death. Methods Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline or poly (ADP-ribose polymerase (PARP inhibitors [3-aminobenzamide (3-AB and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF translocation to the nucleus, while PARP inhibitors (3-AB reduced this ratio. Results According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus. Conclusions We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.

  13. Poly(ADP-ribosyl)ation as a fail-safe, transcription-independent, suicide mechanism in acutely DNA-damaged cells: a hypothesis

    International Nuclear Information System (INIS)

    Nagele, A.

    1995-01-01

    Poly(ADP-ribose) polymerase is an abundant nuclear protein that is higly conserved and consitutively expressed in all higher eukaryotic cells in investigated. Today, after about two decades of intensive research, we have a fairly comprehensive picture of its remarkable enzymatic functions and of its molecular structure. Its physiological role, however, remains controversial. The present hypothesis attempts to reconcile the different findings. By extending and earlier hypothesis, it is proposed that poly(ADP-ribosy)ation is primarily a mechanism to prevent survival of mutated, possibly apoptosis-incompetent, cells after acute DNA-damage. (orig.)

  14. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    Directory of Open Access Journals (Sweden)

    Francisco O'Valle

    Full Text Available UNLABELLED: Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD transplantation. Ischemia-reperfusion (IR injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1 activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN. MATERIALS AND METHODS: Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls and in murine Parp-1 knockout model of IR injury. RESULTS: PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603, time to effective diuresis (r = 0.770, serum creatinine levels at biopsy (r = 0.649, and degree of ATN (r = 0.810 (p = 0.001, Pearson test. In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  15. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelali, Ala [Department of Anatomy, Faculty of Medicine, Kuwait University (Kuwait); Al-Bader, Maie [Department of Physiology, Faculty of Medicine, Kuwait University (Kuwait); Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw [Department of Anatomy, Faculty of Medicine, Kuwait University (Kuwait)

    2016-11-15

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers

  16. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    International Nuclear Information System (INIS)

    Abdelali, Ala; Al-Bader, Maie; Kilarkaje, Narayana

    2016-01-01

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers

  17. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    Science.gov (United States)

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  18. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  19. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis.

    Science.gov (United States)

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2017-10-01

    NAD + is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD + is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD + concentrations and possibly remove and/or reuse undesirable degradation products of NAD + Here we confirmed that at 85°C, thermal degradation of NAD + results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD + in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD + breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD + is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal

  20. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer

    International Nuclear Information System (INIS)

    Owonikoko, Taofeek K; Zhang, Guojing; Deng, Xingming; Rossi, Michael R; Switchenko, Jeffrey M; Doho, Gregory H; Chen, Zhengjia; Kim, Sungjin; Strychor, Sandy; Christner, Susan M; Beumer, Jan; Li, Chunyang; Yue, Ping; Chen, Alice; Sica, Gabriel L; Ramalingam, Suresh S; Kowalski, Jeanne; Khuri, Fadlo R; Sun, Shi-Yong

    2014-01-01

    Poly (ADP) ribose polymerase (PARP) plays a key role in DNA repair and is highly expressed in small cell lung cancer (SCLC). We investigated the therapeutic impact of PARP inhibition in SCLC. In vitro cytotoxicity of veliparib, cisplatin, carboplatin, and etoposide singly and combined was determined by MTS in 9 SCLC cell lines (H69, H128, H146, H526, H187, H209, DMS53, DMS153, and DMS114). Subcutaneous xenografts in athymic nu/nu mice of H146 and H128 cells with relatively high and low platinum sensitivity, respectively, were employed for in vivo testing. Mechanisms of differential sensitivity of SCLC cell lines to PARP inhibition were investigated by comparing protein and gene expression profiles of the platinum sensitive and the less sensitive cell lines. Veliparib showed limited single-agent cytotoxicity but selectively potentiated (≥50% reduction in IC 50 ) cisplatin, carboplatin, and etoposide in vitro in five of nine SCLC cell lines. Veliparib with cisplatin or etoposide or with both cisplatin and etoposide showed greater delay in tumor growth than chemotherapy alone in H146 but not H128 xenografts. The potentiating effect of veliparib was associated with in vitro cell line sensitivity to cisplatin (CC = 0.672; P = 0.048) and DNA-PKcs protein modulation. Gene expression profiling identified differential expression of a 5-gene panel (GLS, UBEC2, HACL1, MSI2, and LOC100129585) in cell lines with relatively greater sensitivity to platinum and veliparib combination. Veliparib potentiates standard cytotoxic agents against SCLC in a cell-specific manner. This potentiation correlates with platinum sensitivity, DNA-PKcs expression and a 5-gene expression profile

  1. Dielectric relaxation study of the dynamics of monosaccharides: D-ribose and 2-deoxy-D-ribose

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2008-08-20

    The dielectric loss spectra of two closely related monosaccharides, D-ribose and 2-deoxy-D-ribose, measured at ambient and elevated pressures are presented. 2-deoxy-D-ribose and D-ribose are respectively the building blocks of the backbone chains in the nucleic acids DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). Small differences in the structure between D-ribose and 2-deoxy-D-ribose result in changes of the glass transition temperature T{sub g}, as well as the dielectric strength and activation enthalpy of the secondary relaxations. However, the frequency dispersion of the structural {alpha}-relaxation for the same relaxation time remains practically the same. Two secondary relaxations are present in both sugars. The slower secondary relaxation shifts to lower frequencies with increasing applied pressure, but not the faster one. This pressure dependence indicates that the slower secondary relaxation is the important and 'universal' Johari-Goldstein {beta}-relaxation of both sugars according to one of the criteria set up to classify secondary relaxations. Additional confirmation of this conclusion comes from good agreement of the observed relaxation time of the slower secondary relaxation with the primitive relaxation time calculated from the coupling model. All the dynamic properties of D-ribose and 2-deoxy-D-ribose are similar to the other monosaccharides, glucose, fructose, galactose and sorbose, except for the much larger relaxation strength of the {alpha}-relaxation of the former compared to the latter. The difference may distinguish the chemical and biological functions of D-ribose and 2-deoxy-D-ribose from the other monosaccharides.

  2. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    Science.gov (United States)

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  3. 2-Azido-( sup 32 P)NAD+, a photoactivatable probe for G-protein structure: Evidence for holotransducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both alpha and gamma subunits

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, R.R.; Dhanasekaran, N.; Johnson, G.L.; Ruoho, A.E. (Univ. of Wisconsin Medical School, Madison (USA))

    1990-05-01

    A radioactive and photoactivatable derivative of NAD+, 2-azido-(adenylate-32P)NAD+, has been synthesized and used with pertussis toxin to ADP-ribosylate Cys347 of the alpha subunit (alpha T) of GT, the retinal guanine nucleotide-binding protein. ADP-ribosylation of alpha T followed by light activation of the azide moiety of 2-azido-(adenylate-32P)ADP-ribose produced four crosslinked species involving the alpha and gamma subunits of the GT heterotrimer: an alpha trimer (alpha-alpha-alpha), and alpha-alpha-gamma crosslink, an alpha dimer (alpha-alpha), and an alpha-gamma crosslink. The alpha trimer, alpha-alpha-gamma complex, alpha dimer, and alpha-gamma complexes were immunoreactive with alpha T antibodies. The alpha-alpha-gamma and the alpha-gamma complexes were immunoreactive with antisera recognizing gamma subunits. No evidence was found for crosslinking of alpha T to beta T subunits. Hydrolysis of the thioglycosidic bond between Cys347 and 2-azido-(adenylate-32P)ADP-ribose using mercuric acetate resulted in the transfer of radiolabel from Cys347 of alpha T in the crosslinked oligomers to alpha monomers, indicative of intermolecular photocrosslinking, and to gamma monomers, indicative of either intermolecular crosslinked complexes (between heterotrimers) or intramolecular crosslinked complexes (within the heterotrimer). These results demonstrate that GT exists as an oligomer and that ADP-ribosylated Cys347, which is four residues from the alpha T-carboxyl terminus, is oriented toward and in close proximity to the gamma subunit.

  4. Activation of ADP-ribosyltransferase in polyamine-depleted mammalian cells.

    Science.gov (United States)

    Wallace, H M; Gordon, A M; Keir, H M; Pearson, C K

    1984-01-01

    Mammalian fibroblasts were cultured in the presence of alpha-methylornithine and/or methylglyoxal bis(guanylhydrazone), which inhibit the synthesis of polyamines. This led to a decrease in the cellular content of the polyamines spermine and spermidine by up to 60% when the cells were grown in the presence of both drugs together. The activity of the chromatin-associated enzyme ADP-ribosyltransferase was enhanced 2-3-fold in the drug-treated cells when measured in cells subsequently rendered permeable to exogenous NAD+, the substrate for the transferase. This is a novel and surprising observation, since the transferase is invariably activated by the addition of polyamines to a suitable incubation system such as permeabilized cells, isolated nuclei or the purified enzyme. We found no evidence that the activation was due to the appearance of DNA strand breaks, by using a variety of procedures including both neutral [the 'nucleoid' technique of Cook & Brazell [(1975) J. Cell Sci. 19, 261-279; (1976) J. Cell Sci. 22, 287-302

  5. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  6. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  7. Solid-Phase Synthesis of a New Diphosphate 5-Aminoimidazole-4-carboxamide Riboside (AICAR Derivative and Studies toward Cyclic AICAR Diphosphate Ribose

    Directory of Open Access Journals (Sweden)

    Gennaro Piccialli

    2011-09-01

    Full Text Available The solid-phase synthesis of the first example of a new diphosphate AICAR derivative is reported. The new substance is characterized by the presence of a 5'-phosphate group while a second phosphate moiety is installed on a 5-hydroxypentyl chain attached to the 4-N-position of AICAR. Cyclization of the diphosphate derivative by pyrophosphate bond formation allowed for the formation of a novel AICAR-based cyclic ADP-ribose (cADPR mimic.

  8. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available 2|D Chain D, ... E. Coli Ribokinase Complexed With Ribose And Adp, Solved ... In Space Group P...d Adp, Solved In ... Space Group P212121 pdb|1RK2|B Chain B, E. Coli ... Ribokinase Complexed ...With Ribose And Adp, Solved In ... Space Group P212121 pdb|1RK2|A Chain A, E. Coli ... Ribokin...ase Complexed With Ribose And Adp, Solved In ... Space Group P212121 pdb|1

  9. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available 2|D Chain D, ... E. Coli Ribokinase Complexed With Ribose And Adp, Solved ... In Space Group P...d Adp, Solved In ... Space Group P212121 pdb|1RK2|B Chain B, E. Coli ... Ribokinase Complexed ...With Ribose And Adp, Solved In ... Space Group P212121 pdb|1RK2|A Chain A, E. Coli ... Ribokin...ase Complexed With Ribose And Adp, Solved In ... Space Group P212121 pdb|1

  10. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available 2|D Chain D, ... E. Coli Ribokinase Complexed With Ribose And Adp, Solved ... In Space Group P...d Adp, Solved In ... Space Group P212121 pdb|1RK2|B Chain B, E. Coli ... Ribokinase Complexed ...With Ribose And Adp, Solved In ... Space Group P212121 pdb|1RK2|A Chain A, E. Coli ... Ribokin...ase Complexed With Ribose And Adp, Solved In ... Space Group P212121 pdb|1

  11. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice

    Directory of Open Access Journals (Sweden)

    Jing Zhong

    2016-07-01

    Full Text Available Hypothalamic oxytocin (OT is released into the brain by cyclic ADP-ribose (cADPR with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i that seems to trigger OT release can be elevated by -NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these -NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF OT level increased transiently at 5 minutes after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8

  12. Profiling of Biomarkers for the Exposure of Polycyclic Aromatic Hydrocarbons: Lamin-A/C Isoform 3, Poly[ADP-ribose] Polymerase 1, and Mitochondria Copy Number Are Identified as Universal Biomarkers

    Directory of Open Access Journals (Sweden)

    Hwan-Young Kim

    2014-01-01

    Full Text Available This study investigated the profiling of polycyclic aromatic hydrocarbon- (PAH- induced genotoxicity in cell lines and zebrafish. Each type of cells displayed different proportionality of apoptosis. Mitochondrial DNA (mtDNA copy number was dramatically elevated after 5-day treatment of fluoranthene and pyrene. The notable deregulated proteins for PAHs exposure were displayed as follows: lamin-A/C isoform 3 and annexin A1 for benzopyrene; lamin-A/C isoform 3 and DNA topoisomerase 2-alpha for pentacene; poly[ADP-ribose] polymerase 1 (PARP-1 for fluoranthene; and talin-1 and DNA topoisomerase 2-alpha for pyrene. Among them, lamin-A/C isoform 3 and PARP-1 were further confirmed using mRNA and protein expression study. Obvious morphological abnormalities including curved backbone and cardiomegaly in zebrafish were observed in the 54 hpf with more than 400 nM of benzopyrene. In conclusion, the change of mitochondrial genome (increased mtDNA copy number was closely associated with PAH exposure in cell lines and mesenchymal stem cells. Lamin-A/C isoform 3, talin-1, and annexin A1 were identified as universal biomarkers for PAHs exposure. Zebrafish, specifically at embryo stage, showed suitable in vivo model for monitoring PAHs exposure to hematopoietic tissue and other organs.

  13. Mono(ADP-ribosyl)ation of the N2 amino groups of guanine residues in DNA by pierisin-2, from the cabbage butterfly, Pieris brassicae

    International Nuclear Information System (INIS)

    Takamura-Enya, Takeji; Watanabe, Masahiko; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji

    2004-01-01

    Pierisin-2 is a cytotoxic and apoptosis-inducing protein present in Pieris brassicae with a 91% homology in the deduced amino acid sequences to pierisin-1 from Pieris rapae. We earlier showed pierisin-1 to catalyze mono(ADP-ribosyl)ation of 2'-deoxyguanosine (dG) in DNA to form N 2 -(ADP-ribos-1-yl)-2'-deoxyguanosine, this DNA modification appearing linked to its cytotoxicity and ability to induce apoptosis in mammalian cell lines. In this paper, we documented evidence that pierisin-2 also catalyzed ADP-ribosylation of dG in DNA to give the same reaction product as demonstrated for pierisin-1, with similar efficiency. With oligonucleotides as substrates, ADP-ribosylation by pierisin-2 was suggested to occur by one-side attack of the carbon atom at 1 position of the ribose moiety in NAD toward N 2 of dG. The presence of a unique ADP-ribosylation toxin targeting dG in DNA in two distinct species in a Pieris genus could be a quite important finding to better understand biological functions of pierisin-1 and -2 in Pieris butterflies and the generic evolution of these cabbage butterflies

  14. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    Science.gov (United States)

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  15. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    Science.gov (United States)

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  16. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1.

    Directory of Open Access Journals (Sweden)

    Simone Di Paola

    Full Text Available BACKGROUND: Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes that catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. The latter include members of three different families of proteins: the well characterized arginine-specific ecto-enzymes ARTCs, two sirtuins and, more recently, novel members of the poly(ADP-ribose polymerase (PARP/ARTD family that have been suggested to act as cellular mono-ADP-ribosyltransferases. Here, we report on the characterisation of human ARTD15, the only known ARTD family member with a putative C-terminal transmembrane domain. METHODOLOGY/PRINCIPAL FINDINGS: Immunofluorescence and electron microscopy were performed to characterise the sub-cellular localisation of ARTD15, which was found to be associated with membranes of the nuclear envelope and endoplasmic reticulum. The orientation of ARTD15 was determined using protease protection assay, and is shown to be a tail-anchored protein with a cytosolic catalytic domain. Importantly, by combining immunoprecipitation with mass spectrometry and using cell lysates from cells over-expressing FLAG-ARTD15, we have identified karyopherin-ß1, a component of the nuclear trafficking machinery, as a molecular partner of ARTD15. Finally, we demonstrate that ARTD15 is a mono-ADP-ribosyltransferase able to induce the ADP-ribosylation of karyopherin-ß1, thus defining the first substrate for this enzyme. CONCLUSIONS/SIGNIFICANCE: Our data reveal that ARTD15 is a novel ADP-ribosyltransferase enzyme with a new intracellular location. Finally, the identification of karyopherin-ß1 as a target of ARTD15-mediated ADP-ribosylation, hints at a novel regulatory mechanism of karyopherin-ß1 functions.

  17. Deficiency in Poly(ADP-ribose Polymerase-1 (PARP-1 Accelerates Aging and Spontaneous Carcinogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Tatiana S. Piskunova

    2008-01-01

    Full Text Available Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosylation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosylation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; < .05. In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.

  18. Poly(ADP-RibosePolymerase-1 in Lung Inflammatory Disorders: A Review

    Directory of Open Access Journals (Sweden)

    Gurupreet S. Sethi

    2017-09-01

    Full Text Available Asthma, acute lung injury (ALI, and chronic obstructive pulmonary disease (COPD are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribosepolymerases (PARPs are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress–PARP-1–NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.

  19. Understanding D-Ribose and Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Diane E. Mahoney

    2018-02-01

    Full Text Available Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production.  With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.

  20. Mutagenicity of γ-irradiated oxygenated and deoxygenated solutions of 2-deoxy-D-ribose and D-ribose in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Wilmer, J.; Leveling, H.; Schubert, J.

    1981-01-01

    Solutions of 2-deoxy-D-ribose and D-ribose were γ-irradiated under different experimental conditions and tested for mutagenicity, with and without preincubation, in Salmonella typhimurium. The irradiated sugar solutions were mutagenic in the tester strains TA 100 and TA 98. Except for malonaldehyde (MDA), which is not mutagenic in the concentrations produced radiolytically, the relative mutagenicities of the individual radiolytic products are unknown. With irradiated solutions of 2-deoxy-D-ribose, a relationship was found between the level of non-MDA aldehydes and the mutagenicity in TA 100. Heating the irradiated solutions of 2-deoxy-D-ribose resulted in a temperature-dependent reduction fo the mutagenicity. Autoclaved, non-irradiated solutions of 2-deoxy-D-ribose were not mutagenic in the Salmonella test. (orig.)

  1. d-Ribose as a Contributor to Glycated Haemoglobin

    Directory of Open Access Journals (Sweden)

    Xixi Chen

    2017-11-01

    Full Text Available Glycated haemoglobin (HbA1c is the most important marker of hyperglycaemia in diabetes mellitus. We show that d-ribose reacts with haemoglobin, thus yielding HbA1c. Using mass spectrometry, we detected glycation of haemoglobin with d-ribose produces 10 carboxylmethyllysines (CMLs. The first-order rate constant of fructosamine formation for d-ribose was approximately 60 times higher than that for d-glucose at the initial stage. Zucker Diabetic Fatty (ZDF rat, a common model for type 2 diabetes mellitus (T2DM, had high levels of d-ribose and HbA1c, accompanied by a decrease of transketolase (TK in the liver. The administration of benfotiamine, an activator of TK, significantly decreased d-ribose followed by a decline in HbA1c. In clinical investigation, T2DM patients with high HbA1c had a high level of urine d-ribose, though the level of their urine d-glucose was low. That is, d-ribose contributes to HbA1c, which prompts future studies to further explore whether d-ribose plays a role in the pathophysiological mechanism of T2DM.

  2. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation.

    Science.gov (United States)

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Sivarama Raju, K; Wahajuddin, Mu; Singh, Sarika

    2018-03-12

    Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death

  3. Mitochondrial and Nuclear Cross Talk in Cell Death: Parthanatos

    OpenAIRE

    Andrabi, Shaida A.; Dawson, Ted M.; Dawson, Valina L.

    2008-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) PARP-1 is an abundant nuclear protein first described to facilitate DNA base excision repair. Recent work has expanded the physiologic functions of PARP-1 and it is clear that the full range of biologic actions of this important protein are not yet fully understood. Regulation of the product of PARP-1, poly(ADP-ribose) (PAR), is a dynamic process with poly(ADP-ribose) glycohydrolase (PARG) playing a major role in the degradation of the polymer. Under pat...

  4. The dual action of poly(ADP-ribose polymerase -1 (PARP-1 inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    Directory of Open Access Journals (Sweden)

    Slava eRom

    2015-08-01

    Full Text Available The transcription of HIV-1 (HIV is regulated by complex mechanisms involving various cellular factors and virus-encoded transactivators. Poly(ADP-ribose polymerase 1 (PARP-1 inhibition has emerged recently as a potent anti-inflammatory tool, since PARP-1 is involved in the regulation of some genes through its interaction with various transcription factors. We propose a novel approach to diminish HIV replication via PARP-1 inhibition using human primary monocyte-derived macrophages (MDM as an in vitro model system. PARP-1 inhibitors were able to reduce HIV replication in MDM by 60-80% after 7 days infection. Long Terminal Repeat (LTR acts as a switch in virus replication and can be triggered by several agents such as: Tat, tumor necrosis factor α (TNFα, and phorbol 12-myristate 13-acetate (PMA. Overexpression of Tat in MDM transfected with an LTR reporter plasmid led to a 4.2-fold increase in LTR activation; PARP inhibition resulted in 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%. MDM treated with PARP inhibitors showed 90% reduction in NFκB activity (known to mediate PMA- and TNFα-induced HIV LTR activation. Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These findings suggest that HIV replication in MDM could be suppressed by PARP inhibition via NFκB suppression, diminution of LTR activation and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide a potent approach to treatment of HIV infection.

  5. Cytological and molecular studies of chromosomal radiosensitivity in Down Syndrome cells

    International Nuclear Information System (INIS)

    MacLaren, R.A.

    1988-01-01

    Molecular, cellular and cytogenetic studies were conducted to determine if altered levels of poly(ADP-ribose) polymerase, a DNA repair-related enzyme, is responsible for the reported formation of excess X-ray induced chromosome aberrations in cells derived from Down Syndrome (DS) patients. Nonstimulated lymphocytes from normal and DS subjects were pretreated with 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, for 30 minutes before exposure to X-rays and the levels of induced chromosome aberrations were determined in mitotic cells. DS lymphocytes exhibited significantly higher frequencies of chromosome aberrations in the presence of 3-aminobenzamide that normal lymphocytes. No difference was observed in the absence of 3-aminobenzamide. Additional studies were done using normal and DS lymphoblastoid cell lines which exhibited a similar response at the DNA level as the lymphocytes. Analysis of poly(ADP-ribose) polymerase activity based on incorporation of the substrate, NAD + , into acid insoluble materials, revealed that there was no significant difference in the ability to form poly (ADP-ribose) in the DS or normal cells. 3-aminobenzamide effectively inhibited poly(ADP-ribose) polymerase in both the normal and DS cells

  6. Mechanism of chromatin degradation in thymocytes of irradiated rats

    International Nuclear Information System (INIS)

    Zotova, R.N.; Umanskij, S.R.; Tokarskaya, V.I.

    1983-01-01

    A biphase change in poly (ADP-ribose) polymerase activity of the thymocyte chromatin was observed after 10 Gy irradiation of rats: during the first minutes the incorporation of 14 C-NAD increased by 40% then started decreasing to make 110, 60 and 35% after 1, 2 and 3 h, respectively. Irradiation of rat thymus chromatin in vitro sharply decreased poly (ADP-ribose) polymerase activity. The possible role of changes in the poly (ADP-ribose) synthesis in the activation of nuclear Ca/Mg-dependent endonuclease and in the postirradiation degradation of the thymocyte chromatin is discussed

  7. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    Science.gov (United States)

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins. (c) 2008 Wiley-Liss, Inc.

  8. Positive transcriptional regulation of the human micro opioid receptor gene by poly(ADP-ribose) polymerase-1 and increase of its DNA binding affinity based on polymorphism of G-172 -> T.

    Science.gov (United States)

    Ono, Takeshi; Kaneda, Toshio; Muto, Akihiro; Yoshida, Tadashi

    2009-07-24

    Micro opioid receptor (MOR) agonists such as morphine are applied widely in clinical practice as pain therapy. The effects of morphine through MOR, such as analgesia and development of tolerance and dependence, are influenced by individual specificity. Recently, we analyzed single nucleotide polymorphisms on the human MOR gene to investigate the factors that contribute to individual specificity. In process of single nucleotide polymorphisms analysis, we found that specific nuclear proteins bound to G(-172) --> T region in exon 1 in MOR gene, and its affinity to DNA was increased by base substitution from G(-172) to T(-172). The isolated protein was identified by mass spectrometry and was confirmed by Western blotting to be poly(ADP-ribose) polymerase-1 (PARP-1). The overexpressed PARP-1 bound to G(-172) --> T and enhanced the transcription of reporter vectors containing G(-172) and T(-172). Furthermore, PARP-1 inhibitor (benzamide) decreased PARP-1 binding to G(-172) --> T without affecting mRNA or protein expression level of PARP-1 and down-regulated the subsequent MOR gene expression in SH-SY5Y cells. Moreover, we found that tumor necrosis factor-alpha enhanced MOR gene expression as well as increased PARP-1 binding to the G(-172) --> T region and G(-172) --> T-dependent transcription in SH-SY5Y cells. These effects were also inhibited by benzamide. In this study, our data suggest that PARP-1 positively regulates MOR gene transcription via G(-172) --> T, which might influence individual specificity in therapeutic opioid effects.

  9. Synergistic inhibition of Streptococcal biofilm by ribose and xylitol.

    Science.gov (United States)

    Lee, Heon-Jin; Kim, Se Chul; Kim, Jinkyung; Do, Aejin; Han, Se Yeong; Lee, Bhumgey David; Lee, Hyun Ho; Lee, Min Chan; Lee, So Hui; Oh, Taejun; Park, Sangbin; Hong, Su-Hyung

    2015-02-01

    Streptococcus mutans and Streptococcus sobrinus are the major causative agents of human dental caries. Therefore, the removal or inhibition of these streptococcal biofilms is essential for dental caries prevention. In the present study, we evaluated the effects of ribose treatment alone or in combination with xylitol on streptococcal biofilm formation for both species. Furthermore, we examined the expression of genes responsible for dextran-dependent aggregation (DDAG). In addition, we investigated whether ribose affects the biofilm formation of xylitol-insensitive streptococci, which results from long-term exposure to xylitol. The viability of streptococci biofilms formed in a 24-well polystyrene plate was quantified by fluorescent staining with the LIVE/DEAD bacterial viability and counting kit, which was followed by fluorescence activated cell sorting analysis. The effects of ribose and/or xylitol on the mRNA expression of DDAG-responsible genes, gbpC and dblB, was evaluated by RT-qPCR. Our data showed that ribose and other pentose molecules significantly inhibited streptococcal biofilm formation and the expression of DDAG-responsible genes. In addition, co-treatment with ribose and xylitol decreased streptococcal biofilm formation to a further extent than ribose or xylitol treatment alone in both streptococcal species. Furthermore, ribose attenuated the increase of xylitol-insensitive streptococcal biofilm, which results in the reduced difference of biofilm formation between S. mutans that are sensitive and insensitive to xylitol. These data suggest that pentose may be used as an additive for teeth-protective materials or in sweets. Furthermore, ribose co-treatment with xylitol might help to increase the anti-cariogenic efficacy of xylitol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    International Nuclear Information System (INIS)

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-01-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression

  11. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    Science.gov (United States)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template.

    Directory of Open Access Journals (Sweden)

    Christelle Moreau

    Full Text Available Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR. Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM. Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs. These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM. The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design.

  13. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films.

    Science.gov (United States)

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.

  14. Assessment of Hematological and Biochemical parameters with extended D-Ribose ingestion

    Directory of Open Access Journals (Sweden)

    Frelich Angela

    2008-09-01

    Full Text Available Abstract D-ribose, a naturally occurring pentose carbohydrate, has been shown to replenish high- energy phosphates following myocardial ischemia and high intensity, repetitive exercise. Human studies have mainly involved short-term assessment, including potential toxicity. Reports describing adverse effects of D-ribose with prolonged ingestion have been lacking. Therefore, this study assessed the toxicity of extended consumption of D-ribose in healthy adults. Nineteen subjects ingested 20 grams/Day (10 grams, twice a Day of ribose with serial measurements of biochemical and hematological parameters at Days 0, 7, and 14. No significant toxic changes over the 14-day assessment period occurred in complete blood count, albumin, alkaline phosphatase, gamma glutamyltransferase, alanine amiotransferase, and aspartate aminotransferase. However, D-ribose did produce an asymptomatic, mild hypoglycemia of short duration. Uric acid levels increased at Day 7, but decreased to baseline values by Day 14. D-ribose consumption for 14 days appears not to produce significant toxic changes in both hematological and biochemical parameters in healthy human volunteers.

  15. Roles of Nicotinamide Adenine Dinucleotide (NAD+ in Biological Systems

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2018-01-01

    Full Text Available NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A and oligoadenylates (oligo2′-5′A, two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.

  16. 26 CFR 1.401(k)-2 - ADP test.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false ADP test. 1.401(k)-2 Section 1.401(k)-2 Internal... TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-2 ADP test. (a) Actual deferral percentage (ADP) test—(1) In general—(i) ADP test formula. A cash or deferred arrangement satisfies the ADP...

  17. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis

    Science.gov (United States)

    Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit

    2018-01-01

    Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913

  18. Modulation of energy homeostasis in maize and Arabidopsis to develop lines tolerant to drought, genotoxic and oxidative stresses

    Directory of Open Access Journals (Sweden)

    Elizabeth Njuguna

    2018-02-01

    Full Text Available Abiotic stresses cause crop losses worldwide that reduce the average yield by more than 50%. Due to the high energy consumed to enhance the respiration rates, the excessive reactive oxygen species release provokes cell death and, ultimately, whole plant decay. A metabolic engineering approach in maize (Zea mays altered the expression of two poly(ADP-ribosylation metabolic pathway proteins, poly(ADP-ribose polymerase (PARP and ADP-ribose-specifIc Nudix hydrolase (NUDX genes that play a role in the maintenance of the energy homeostasis during stresses. By means of RNAi hairpin silencing and CRISPR/Cas9 gene editing strategies, the PARP expression in maize was downregulated or knocked down. The Arabidopsis NUDX7 gene and its two maize homologs, ZmNUDX2 and ZmNUDX8, were overexpressed in maize and Arabidopsis. Novel phenotypes were observed, such as significant tolerance to oxidative stress and improved yield in Arabidopsis and a trend of tolerance to mild drought stress in maize and in Arabidopsis. Key words: poly(ADP-ribose polymerase, Nudix hydrolase, CRISPR/Cas9, maize, oxidative stress, drought stress

  19. Formation of nicotinamide ribose diphosphate ribose, a new metabolite of the NAD pathway, by growing mycelium of Aspergillus niger

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1976-01-01

    A new step of NAD metabolism was shown in Aspergillus niger. Radioactive nicotinic acid and nicotinamide were incorporated into nicotinamide ribose diphosphate ribose (NAm-RDPR), which had been isolated from the culture filtrate. Its content in the culture medium increased with an increase of culture time, and this compound was proved to be a terminal metabolite in the NAD pathway. The experimental results also showed that the Preiss-Handler pathway and the NAD cycling system function in the NAD biosynthesis in A. niger. A part of the radioactive precursors was also incorporated into an unknown compound. (auth.)

  20. NAD+-Dependent Deacetylase Hst1p Controls Biosynthesis and Cellular NAD+ Levels in Saccharomyces cerevisiae

    OpenAIRE

    Bedalov, Antonio; Hirao, Maki; Posakony, Jeffrey; Nelson, Melisa; Simon, Julian A.

    2003-01-01

    Nicotine adenine dinucleotide (NAD+) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD+-dependent protein deacetylases. In the latter two processes, NAD+ is consumed and converted to ADP-ribose and nicotinamide. NAD+ levels can be maintained by regeneration of NAD+ from nicotinamide via a salvage pathway or by de novo synthesis of NAD+ from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the ...

  1. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer.

    Science.gov (United States)

    Liu, Joyce F; Tolaney, Sara M; Birrer, Michael; Fleming, Gini F; Buss, Mary K; Dahlberg, Suzanne E; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A

    2013-09-01

    Poly(ADP-ribose) polymerase (PARP)-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of vascular endothelial growth factor receptor (VEGFR)-1/2/3 and olaparib, a PARP-inhibitor (NCT01116648). Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 or met Gynecologic Cancer InterGroup (GCIG) CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 dose limiting toxicities (DLTs) (1 grade 4 neutropenia ≥ 4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30 mg daily; olaparib 400 mg twice daily [BID]). The RP2D was cediranib 30 mg daily and olaparib 200 mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus stable disease (SD) > 24 weeks) of 61%. None of the seven evaluable breast cancer patients achieved clinical response; two patients had stable disease for > 24 weeks. The combination of cediranib and olaparib has haematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    Science.gov (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  3. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    DEFF Research Database (Denmark)

    Smeenk, G.; Wiegant, W.W.; Luijsterburg, M.S.

    2013-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely...... unexplored. Here, we show that SMARCA5/SNF2H, the catalytic subunit of ISWI chromatin remodeling complexes, is recruited to DSBs in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner. Remarkably, PARP activity, although dispensable for the efficient spreading of νH2AX into damaged chromatin......, selectively promotes spreading of SMARCA5, the E3 ubiquitin ligase RNF168, ubiquitin conjugates and the ubiquitin-binding factors RAD18 and the RAP80-BRCA1 complex throughout DSB-flanking chromatin. This suggests that PARP regulates the spatial organization of the RNF168-driven ubiquitin response to DNA...

  4. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Koolstra, Jan Harm; Lobbezoo, Frank; van Lenthe, G Harry; Ghazanfari, Samaneh; Snabel, Jessica; Stoop, Reinout; Everts, Vincent

    2018-03-01

    Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transferases in Polymer Chemistry

    NARCIS (Netherlands)

    van der Vlist, Jeroen; Loos, Katja; Palmans, ARA; Heise, A

    2010-01-01

    Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic

  6. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    Science.gov (United States)

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  7. Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle

    OpenAIRE

    Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L

    2013-01-01

    Background The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untraine...

  8. Ribose facilitates thallium-201 redistribution in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Perlmutter, N.S.; Wilson, R.A.; Angello, D.A.; Palac, R.T.; Lin, J.; Brown, B.G.

    1991-01-01

    To investigate whether i.v. infusion of ribose, an adenine nucleotide precursor, postischemia facilitates thallium-201 (201Tl) redistribution and improves identification of ischemic myocardium in patients with coronary artery disease (CAD), 17 patients underwent two exercise 201Tl stress tests, performed 1-2 wk apart. After immediate postexercise planar imaging, patients received either i.v. ribose (3.3 mg/kg/min x 30 min) or saline as a control. Additional imaging was performed 1 and 4 hr postexercise. Reversible defects were identified by count-profile analysis. Significantly more (nearly twice as many) reversible 201Tl defects were identified on the post-ribose images compared to the post-saline (control) images at both 1 and 4 hr postexercise (p less than 0.001). Quantitative analyses of the coronary arteriogram was available in 13 patients and confirmed that the additional reversible defects were in myocardial regions supplied by stenosed arteries. We conclude that ribose appears to facilitate 201Tl redistribution in patients with CAD and enhances identification of ischemic myocardium

  9. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  10. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry

    Directory of Open Access Journals (Sweden)

    Isabelle Maxim

    2010-04-01

    Full Text Available Abstract Background Poly(ADP-ribose polymerases (PARPs catalyze the formation of poly(ADP-ribose (pADPr, a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose glycohydrolase (PARG, on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosylation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions. Results PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1. Conclusions This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose metabolism.

  11. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    Science.gov (United States)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-15

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  12. Adaptive changes in NAD+ metabolism in ultraviolet light-irradiated murine lymphoma cells

    International Nuclear Information System (INIS)

    Kleczkowska, H.E.; Szumiel, I.; Althaus, F.R.

    1990-01-01

    We have determined the ability of UV254nm-irradiated murine lymphoma cells to adapt their NAD+ metabolism to the increased NAD+ consumption for the poly ADP-ribosylation of chromatin proteins. Two murine lymphoma sublines with differential UV-sensitivity and poly(ADP-ribose) turnover were used as a model system. The first subline, designated LY-R is UV254nm-sensitive and tumorigenic in DBA/2 mice. The second subline, LY-S is UV254nm-resistant and nontumorigenic. Following treatment of these cells with 2 mM benzamide, an inhibitor of the NAD(+)-utilizing enzyme poly(ADP-ribose) polymerase, NAD+ levels slowly increased up to about 160% of control levels after 3 hours. When benzamide was added to these cultures 20 min after UV254nm irradiation, a dramatic transient increase of NAD+ levels was observed within 4 min in LY-R cells and more moderately in LY-S cells. At later times after UV254nm irradiation, the NAD+ levels increased in both sublines reaching up to 200% of the concentrations prior to benzamide treatment. These results demonstrate an adaptative response of NAD+ metabolism to UV254nm irradiation. In parallel, we observed a differential repartitioning of ADP-ribosyl residues between the NAD+ and poly(ADP-ribose) pools of LY-R and LY-S cells that correlates with the differential UV sensitivity of these cells

  13. Poly-ADP-ribosylation of proteins responds to cellular perturbations

    International Nuclear Information System (INIS)

    Schneeweiss, F.H.A.; Sharan, R.N.

    1999-01-01

    From the results presented above it is quite obvious that poly-ADP-ribosylation reaction is a sensitive parameter to monitor cellular responses to a wide variety of perturbations. Having developed a monolayer assay system using 32 P-NAD + as a marker, it has become possible to measure levels of cellular ADP-ribosylation more precisely. It has been demonstrated that the trigger of poly-ADP-ribosylation reaction may involve different cellular components for different perturbations. In this, membrane has been found to be important. The study has been particularly informative in the realm of DNA damage and repair following qualitatively different radiation assaults. As poly-ADP-ribosylation in eukaryotic cells primarily affects chromosomal proteins, notably histones, the reaction is strongly triggered in response to single and double strand breaks in DNA. Therefore, level of cellular poly-ADP-ribosylation can potentially be used as a biosensor of radiation induced strand breaks and can be specially useful in clinical monitoring of progress of radiotherapy. The assay of poly-ADP-ribosylation, however, requires use of radiolabelled tracer, e.g. 32 P-NAD + . Due to this, study of poly-ADP-ribosylation can not be extended to monitor effects of incorporated radionuclides. In order to overcome this shortcoming and to make the assay more sensitive and quick, a Western blot immunoassay has been developed. The preliminary indications are that the immunoassay of poly-ADP-ribosylation will fulfil the requirements to use poly-ADP-ribosylation as a sensitive, convenient and clinically applicable biosensor of cell response not only to radiations but also to different perturbations. (orig.)

  14. Cyclic ADP ribose-dependent Ca2+ release by group I metabotropic glutamate receptors in acutely dissociated rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    Full Text Available Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5 exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+. In this study, we characterized the cellular mechanisms underlying Ca(2+ mobilization induced by (RS-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca(2+ from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR, while the PLC/IP(3 signaling pathway was not involved in Ca(2+ mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4, led to transient Ca(2+ mobilization by mGluR5 and Ca(2+ influx through L-type Ca(2+ channels. We found no evidence that mGluR5-mediated Ca(2+ release and Ca(2+ influx through L-type Ca(2+ channels interact to generate supralinear Ca(2+ transients. Our study provides novel insights into the mechanisms of intracellular Ca(2+ mobilization by mGluR5 in the somata of hippocampal neurons.

  15. D-ribose--an additive with caffeine.

    Science.gov (United States)

    Herrick, Jim; Shecterle, L M; St Cyr, J A

    2009-05-01

    Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.

  16. Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Kori, Ayako; Ishihama, Akira

    2013-07-01

    Escherichia coli is able to utilize d-ribose as its sole carbon source. The genes for the transport and initial-step metabolism of d-ribose form a single rbsDACBK operon. RbsABC forms the ABC-type high-affinity d-ribose transporter, while RbsD and RbsK are involved in the conversion of d-ribose into d-ribose 5-phosphate. In the absence of inducer d-ribose, the ribose operon is repressed by a LacI-type transcription factor RbsR, which is encoded by a gene located downstream of this ribose operon. At present, the rbs operon is believed to be the only target of regulation by RbsR. After Genomic SELEX screening, however, we have identified that RbsR binds not only to the rbs promoter but also to the promoters of a set of genes involved in purine nucleotide metabolism. Northern blotting analysis indicated that RbsR represses the purHD operon for de novo synthesis of purine nucleotide but activates the add and udk genes involved in the salvage pathway of purine nucleotide synthesis. Taken together, we propose that RbsR is a global regulator for switch control between the de novo synthesis of purine nucleotides and its salvage pathway. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    Science.gov (United States)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  18. Protective effect of the poly(ADP-ribose polymerase inhibitor PJ34 on mitochondrial depolarization-mediated cell death in hepatocellular carcinoma cells involves attenuation of c-Jun N-terminal kinase-2 and protein kinase B/Akt activation

    Directory of Open Access Journals (Sweden)

    Radnai Balazs

    2012-05-01

    Full Text Available Abstract Background 2,4-Dimethoxyphenyl-E-4-arylidene-3-isochromanone (IK11 was previously described to induce apoptotic death of A431 tumor cells. In this report, we investigated the molecular action of IK11 in the HepG2 human hepatocellular carcinoma cell line to increase our knowledge of the role of poly (ADP-ribose-polymerase (PARP, protein kinase B/Akt and mitogen activated protein kinase (MAPK activation in the survival and death of tumor cells and to highlight the possible role of PARP-inhibitors in co-treatments with different cytotoxic agents in cancer therapy. Results We found that sublethal concentrations of IK11 prevented proliferation, migration and entry of the cells into their G2 phase. At higher concentrations, IK11 induced reactive oxygen species (ROS production, mitochondrial membrane depolarization, activation of c-Jun N-terminal kinase 2 (JNK2, and substantial loss of HepG2 cells. ROS production appeared marginal in mediating the cytotoxicity of IK11 since N-acetyl cysteine was unable to prevent it. However, the PARP inhibitor PJ34, although not a ROS scavenger, strongly inhibited both IK11-induced ROS production and cell death. JNK2 activation seemed to be a major mediator of the effect of IK11 since inhibition of JNK resulted in a substantial cytoprotection while inhibitors of the other kinases failed to do so. Inhibition of Akt slightly diminished the effect of IK11, while the JNK and Akt inhibitor and ROS scavenger trans-resveratrol completely protected against it. Conclusions These results indicate significant involvement of PARP, a marginal role of ROS and a pro-apoptotic role of Akt in this system, and raise attention to a novel mechanism that should be considered when cancer therapy is augmented with PARP-inhibition, namely the cytoprotection by inhibition of JNK2.

  19. ADP Analysis project for the Human Resources Management Division

    Science.gov (United States)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  20. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.

    Science.gov (United States)

    Cheng, J; Zhuang, W; Li, N N; Tang, C L; Ying, H J

    2017-01-01

    Normally, low d-ribose production was identified as responsible for plenty of acid formation by Bacillus subtilis due to its carbon overflow. An approach of co-feeding glucose and sodium citrate is developed here and had been proved to be useful in d-ribose production. This strategy is critical because it affects the cell concentration, the productivity of d-ribose and, especially, the formation of by-products such as acetoin, lactate and acetate. d-ribose production was increased by 59·6% from 71·06 to 113·41 g l -1 without acid formation by co-feeding 2·22 g l -1  h -1 glucose and 0·036 g l -1  h -1 sodium citrate to a 60 g l -1 glucose reaction system. Actually, the cell density was also enhanced from 11·51 to 13·84 g l -1 . These parameters revealed the importance of optimization and modelling of the d-ribose production process. Not only could zero acid formation was achieved over a wide range of co-feeding rate by reducing glycolytic flux drastically but also the cell density and d-ribose yield were elevated by increasing the hexose monophosphate pathway flux. Bacillus subtilis usually produce d-ribose accompanied by plenty of organic acids when glucose is used as a carbon source, which is considered to be a consequence of mismatched glycolytic and tricarboxylic acid cycle capacities. This is the first study to provide high-efficiency biosynthesis of d-ribose without organic acid formation in B. subtilis, which would be lower than the cost of separation and purification. The strain transketolase-deficient B. subtilis CGMCC 3720 can be potentially applied to the production of d-ribose in industry. © 2016 The Society for Applied Microbiology.

  1. Topographic study of the ADP/ATP transport protein. Localization of ADP and atractyloside fixation sites. Identification of the antigenic domains

    International Nuclear Information System (INIS)

    Boulay, Francois

    1983-01-01

    The objectives of this research thesis were: to determine the intramolecular localisation of binding sites of atractyloside and adenine-nucleotides; to determine whether antibodies obtained against the ADP/ATP carrier protein and isolated from beef heart mitochondria possess a reactivity specific to the organ or the species, where antigenic determinants are localized and whether there is conservation of the antigenic structure from one species to the other; to study how to follow and interpret conformational changes of the protein under the effect of ADP and inhibitors (carboxy-atractyloside or bongkrekic acid), and where the SH group unmasked by ADP and bongkrekic acid is localized [fr

  2. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs

    KAUST Repository

    Chawla, Mohit; Chermak, Edrisse; Zhang, Qingyun; Bujnicki, Janusz M.; Oliva, Romina; Cavallo, Luigi

    2017-01-01

    The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4′ atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose–base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair–π stacking interactions also occur between ribose and aromatic amino acids in RNA–protein complexes.

  3. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs

    KAUST Repository

    Chawla, Mohit

    2017-08-18

    The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4′ atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose–base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair–π stacking interactions also occur between ribose and aromatic amino acids in RNA–protein complexes.

  4. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  5. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies.

    Science.gov (United States)

    Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica

    2017-08-01

    This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Shukla, S P; Sacktor, B

    1984-11-01

    Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate ( + proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 microM) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled alpha-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (greater than 99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 microM), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 +/- 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mM. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, alpha-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the

  7. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  8. The Multiple Effect of Agricultural Development Programme's (ADP's ...

    African Journals Online (AJOL)

    This paper determined the multiplier effects of the use of Small Plot Adoption Technique (SPAT) by the Abia ADP on the income of Smallholder farmers in Abia State. The choice of Abia ADP for this research was purposive. A multi-stage random sampling technique was used in the selection of blocks, circles, 300 contact ...

  9. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  10. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    International Nuclear Information System (INIS)

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi; Maeda, Daisuke; Hirai, Takahisa; Poetsch, Anna R.; Harada, Hiromi; Yoshida, Tomoko; Sasai, Keisuke; Okayasu, Ryuichi; Masutani, Mitsuko

    2013-01-01

    Highlights: •Parg −/− ES cells were more sensitive to γ-irradiation than Parp-1 −/− ES cells. •Parg −/− cells were more sensitive to carbon-ion irradiation than Parp-1 −/− cells. •Parg −/− cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg −/− and poly(ADP-ribose) polymerase-1 deficient (Parp-1 −/− ) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg −/− cells were more sensitive to γ-irradiation than Parp-1 −/− cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg −/− cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg −/− ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1 −/− cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg −/− ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg −/− cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1 −/− cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was not different between wild-type and Parg −/− cells. The augmented

  11. Molecular mechanism of the short-term cardiotoxicity caused by 2',3'-dideoxycytidine (ddC): modulation of reactive oxygen species levels and ADP-ribosylation reactions.

    Science.gov (United States)

    Skuta, G; Fischer, G M; Janaky, T; Kele, Z; Szabo, P; Tozser, J; Sumegi, B

    1999-12-15

    The short-term cardiac side effects of 2',3'-dideoxycytidine (ddC, zalcitabine) were studied in rats in order to understand the biochemical events contributing to the development of ddC-induced cardiomyopathy. In developing animals, ddC treatment provoked a surprisingly rapid appearance of cardiac malfunctions characterized by prolonged RR, PR, and QT intervals and J point depression. The energy metabolism in the heart was compromised, characterized by a decreased creatine phosphate/creatine ratio (from 2.05 normal value to 0.75) and a decreased free ATP/ADP ratio (from 332 normal value to 121). The activity of respiratory complexes (NADH: cytochrome c oxidoreductase and cytochrome oxidase) also decreased significantly. Southern blot and polymerase chain reaction analysis did not show deletions or a decrease in the quantity of mitochondrial DNA (mtDNA) deriving from ddC-treated rat hearts, indicating that under our experimental conditions, ddC-induced heart abnormalities were not the direct consequence of mtDNA-related damage. The ddC treatment of rats significantly increased the formation of reactive oxygen species (ROS) in heart and skeletal muscle as determined by the oxidation of non-fluorescent dihydrorhodamine123 to fluorescent rhodamine123 and the oxidation of cellular proteins determined from protein carbonyl content. An activation of the nuclear poly-(ADP-ribose) polymerase (EC 2.4.2.30) and an increase in the mono-ADP-ribosylation of glucose-regulated protein and desmin were observed in the cardiac tissue from ddC-treated animals. A decrease in the quantity of heat shock protein (HSP)70s was also detected, while the level of HSP25 and HSP60 remained unchanged. Surprisingly, ddC treatment induced a skeletal muscle-specific decrease in the quantity of three proteins, one of which was identified by N-terminal sequencing as myoglobin, and another by tandem mass spectrometer sequencing as triosephosphate isomerase (EC 5.3.1.1). These data show that the short

  12. Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC. A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.

  13. Effects of epinephrine on ADP-induced changes in platelet inositol phosphates

    International Nuclear Information System (INIS)

    Vickers, J.D.; Keraly, C.L.; Kinlough-Rathbone, R.L.; Mustard, J.F.

    1986-01-01

    Epinephrine (EPI) does not aggregate rabbit platelets, but it does increase the labelling of inositol phosphate (IP) at 60s (21%, p + , in platelets prelabelled with [ 3 H] inositol. In contrast, 0.5 μM ADP which causes aggregation, increases the labelling of inositol bisphosphate (IP 2 ) by 30% (p 2 by 154% (p 2 stimulated by ADP + EPI was greater than the increase caused by ADP (p 2 due to 0.2 μM ADP + 0.6 μM EPI by 70% (p 2 by 108% (0 2 metabolism stimulated via the α-adrenergic receptor

  14. Growth and gas production of a novel obligatory heterofermentative Cheddar cheese nonstarter lactobacilli species on ribose and galactose.

    Science.gov (United States)

    Ortakci, Fatih; Broadbent, Jeffery R; Oberg, Craig J; McMahon, Donald J

    2015-06-01

    An obligatory heterofermentative lactic acid bacterium, Lactobacillus wasatchii sp. nov., isolated from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance, and survival against pasteurization treatments at 63°C and 72°C. Initially, Lb. wasatchii was thought to use only ribose as a sugar source and we were interested in whether it could also utilize galactose. We conducted experiments to determine the rate and extent of growth and gas production in carbohydrate-restricted (CR) de Man, Rogosa, and Sharpe (MRS) medium under anaerobic conditions with various combinations of ribose and galactose at 12, 23, and 37°C, with 23°C being the optimum growth temperature of Lb. wasatchii among the 3 temperatures studied. When Lb. wasatchii was grown on ribose (0.1, 0.5, and 1%), maximum specific growth rates (µmax) within each temperature were similar. When galactose was the only sugar, compared with ribose, µmax was 2 to 4 times lower. At all temperatures, the highest final cell densities (optical density at 640 nm) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 0.5% ribose and 0.5% galactose, or 1% ribose and 1% galactose. Similar µmax values and final cell densities were achieved when 50% of the ribose in CR-MRS was substituted with galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and galactose, utilizing ribose for energy and galactose for other functions such as cell wall biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to the cheese environment to efficiently ferment available sugars for maximizing metabolism and growth. As expected, gas formation by the heterofermenter was observed only when galactose was present in the medium. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5 with 0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is

  15. The Effects of Ribose on Mechanical and Physicochemical Properties of Cold Water Fish Gelatin Films

    Directory of Open Access Journals (Sweden)

    Neda Javadian

    2014-06-01

    Full Text Available Native fish gelatin has some disadvantages such as high hydrophilic, and solubility in cold water. Mixing with other biopolymers and crosslinking by sugars may improve functional properties of fish gelatin. So in this research, the effects of ribose were investigated on moisture sorption isotherm, solubility in water, and mechanical properties of cold water fish gelatin (CWFG films. Ribose sugar was incorporated into CWFG solutions at different concentrations (e.g. 0, 2, 4, and 6% w/w dried gelatin. Physicochemical properties such as water solubility, moisture sorption isotherm and mechanical properties of the films were measured according to ASTM standards. Results showed that incorporation of ribose sugar significantly improved functional properties of CWFG films. Solubility, moisture content and monolayer water content of the matrixes were decreased by increasing the ribose contents. Mechanical properties of biocomposites were improved more than 20% and moisture sorption isotherm curve significantly shifted to lower moisture contents. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for packaging purposes.

  16. Spectrographic study of neodymium complexing with ATP and ADP

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Dobrynina, N.A.; Martynenko, L.N.

    1989-01-01

    By spectrographic method neodymium complexing with ATP and ADP in aqueous solutions at different pH values has been studied. The composition of the complexes was determined by the method of isomolar series. On the basis of analysis of absorption spectra it has been ascertained that at equimolar ratio of Nd 3+ and ATP absorption band of L278A corresponds to monocomplex, and the band of 4290 A - to biscomplex. For the complexes with ADP the absorption band of 4288 A is referred to bicomplexes. The character of ATP and ADP coordination by Nd 3+ ion is considered. Stability constants of the complexes are calculated

  17. SIKLODEKSTRIN GLIKOSIL TRANSFERASE DAN PEMANFAATANNYA DALAM INDUSTRI [Cyclodextrin Glycosyl Transferase and its application in industries

    Directory of Open Access Journals (Sweden)

    Budiasih Wahyuntari

    2005-12-01

    Full Text Available Cyclodextrin glycosyl transferase (CGT-ase is mainly produced by Bacilli. Systematical name of the enzyme is E.C. 2.4.1.19 a-1,4 glucan-4-glycosyl transferase. The enzyme catalyzes hydrolysis of starch intramolecular, and intermolecular transglycosylation of a-1,4, glucan chains. Cyclodextrins are a-1,4 linked cyclic oligosaccharides resulting from enzymatic degradation of starch by cyclodextrin glycosyl transferase through untramolecular transglycosylation. The major cyclodextrins are made up of 6, 7 and 8 glucopyranose units which are known as a-, b-, and y-cyclodextrin. All CGT-ase catalyze three kinds of cyclodextrins, the proportion of the cyclodextrins depends on the enzyme source and reaction conditions. The intermolecular transglycosylation ability of the enzyme has been applied in transfering glycosyl residues into suitable acceptor. Transglycosylation by the enzymes have been tested to improve solubility of some flavonoids and to favor precipitation ci some glycosides.

  18. Radiosensitivity modulating factors: Role of PARP-1, PARP-2 and Cdk5 proteins and chromatin implication

    International Nuclear Information System (INIS)

    Boudra, M.T.

    2011-12-01

    The post-translational modifications of DNA repair proteins and histone remodeling factors by poly(ADP-ribose)ylation and phosphorylation are essential for the maintenance of DNA integrity and chromatin structure, and in particular in response to DNA damaging produced by ionizing radiation (IR). Amongst the proteins implicated in these two processes are the poly(ADP-ribose) polymerase -1 (PARP-1) and PARP-2, and the cyclin-dependent kinase Cdk5: PARP-1 and 2 are involved in DNA single strand break (SSB) repair (SSBR) and Cdk5 depletion has been linked with increased cell sensitivity to PARP inhibition. We have shown by using HeLa cells stably depleted for either CdK5 or PARP-2, that the recruitment profile of PARP-1 and XRCC-1, two proteins involved in the short-patch (SP) SSBR sub-pathway, to DNA damage sites is sub-maximal and that of PCNA, a protein involved in the long-patch (LP) repair pathway, is increased in the absence of Cdk5 and decreased in the absence of PARP-2 suggesting that both Cdk5 and PARP-2 are involved in both SSBR sub-pathways. PARP-2 and Cdk5 also impact on the poly(ADP-ribose) levels in cells as in the absence of Cdk5 a hyper-activation of PARP-1 was found and in the absence of PARP-2 a reduction in poly(ADP-ribose) glyco-hydrolase (PARG) activity was seen. However, in spite of these changes no impact on the repair of SSBs induced by IR was seen in either the Cdk5 or PARP-2 depleted cells (Cdk5 KD or PARP-2 KD cells) but, interestingly, increased radiation sensitivity in terms of cell killing was noted in the Cdk5 depleted cells. We also found that Cdk5, PARP-2 and PARG were all implicated in the regulation of the recruitment and the dissociation of the chromatin-remodeling factor ALC1 from DNA damage sites suggesting a role for these three proteins in changes in chromatin structure after DNA photo-damage. These results, taken together with the observation that PARP-1 recruitment is sub-optimal in both Cdk5 KD and PARP-2 KD cells, show that

  19. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque......The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  20. ADP-ribosylation of transducin by pertussis toxin

    International Nuclear Information System (INIS)

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-01-01

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [ 32 P]ADP-ribosylated by pertussis toxin and [ 32 P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32 -kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32 -kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [ 32 P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [ 32 P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma

  1. The ribose and glycine Maillard reaction in the interstellar medium ...

    Indian Academy of Sciences (India)

    WINTEC

    mechanics are briefly addressed in this work. Keywords. Density functional computational study; ribose; glycine; Maillard reaction; gaseous phase .... following the total mass balance of the reaction. Thus, ..... Jalbout A F Origin Life Evol. Biosph ...

  2. Molecular basis for the regulation of hypoxia-inducible factor-1α levels by 2-deoxy-D-ribose.

    Science.gov (United States)

    Ikeda, Ryuji; Tabata, Sho; Tajitsu, Yusuke; Nishizawa, Yukihiko; Minami, Kentaro; Furukawa, Tatsuhiko; Yamamoto, Masatatsu; Shinsato, Yoshinari; Akiyama, Shin-Ichi; Yamada, Katsushi; Takeda, Yasuo

    2013-09-01

    The angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity, inhibits the upregulation of hypoxia-inducible factor (HIF) 1α, BNIP3 and caspase-3 induced by hypoxia. In the present study, we investigated the molecular basis for the suppressive effect of 2-deoxy-D-ribose on the upregulation of HIF-1α. 2-Deoxy-D-ribose enhanced the interaction of HIF-1α and the von Hippel-Lindau (VHL) protein under hypoxic conditions. It did not affect the expression of HIF-1α, prolyl hydroxylase (PHD)1/2/3 and VHL mRNA under normoxic or hypoxic conditions, but enhanced the interaction of HIF-1α and PHD2 under hypoxic conditions. 2-Deoxy-D-ribose also increased the amount of hydroxy-HIF-1α in the presence of the proteasome inhibitor MG-132. The expression levels of TP are elevated in many types of malignant solid tumors and, thus, 2-deoxy-D-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.

  3. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Science.gov (United States)

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  4. An unusual diphosphatase from the PhnP family cleaves reactive FAD photoproducts.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Li, Qiang; Bruner, Steven D; Hanson, Andrew D

    2018-01-11

    Flavins are notoriously photolabile, but while the photoproducts derived from the iso -alloxazine ring are well known the other photoproducts are not. In the case of FAD, typically the main cellular flavin, the other photoproducts are predicted to include four- and five-carbon sugars linked to ADP. These FAD photoproducts were shown to be potent glycating agents, more so than ADP-ribose. Such toxic compounds would require disposal via an ADP-sugar diphosphatase or other route. Comparative analysis of bacterial genomes uncovered a candidate disposal gene that is chromosomally clustered with genes for FAD synthesis or transport and is predicted to encode a protein of the PhnP cyclic phosphodiesterase family. The representative PhnP family enzyme from Koribacter versatilis (here named Fpd, F AD p hotoproduct d iphosphatase) was found to have high, Mn 2+ -dependent diphosphatase activity against FAD photoproducts, FAD, and ADP-ribose, but almost no phosphodiesterase activity against riboflavin 4',5'-cyclic phosphate, a chemical breakdown product of FAD. To provide a structural basis of the unique Fpd activity, the crystal structure of K. versatilis Fpd was determined. The results place Fpd in the broad metallo-β-lactamase-like family of hydrolases, a diverse family commonly using two metals for hydrolytic catalysis. The active site of Fpd contains two Mn 2+ ions and a bound phosphate, consistent with a diphosphatase mechanism. Our results characterize the first PhnP family member that is a diphosphatase rather than a cyclic phosphodiesterase and suggest its involvement in a cellular damage-control system that efficiently hydrolyzes the reactive, ADP-ribose-like products of FAD photodegradation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis.

    Science.gov (United States)

    Su'etsugu, Masayuki; Nakamura, Kenta; Keyamura, Kenji; Kudo, Yuka; Katayama, Tsutomu

    2008-12-26

    ATP-DnaA is the initiator of chromosomal replication in Escherichia coli, and the activity of DnaA is regulated by the regulatory inactivation of the DnaA (RIDA) system. In this system, the Hda protein promotes DnaA-ATP hydrolysis to produce inactive ADP-DnaA in a mechanism that is mediated by the DNA-loaded form of the replicase sliding clamp. In this study, we first revealed that hda translation uses an unusual initiation codon, CUG, located downstream of the annotated initiation codon. The CUG initiation codon could be used for restricting the Hda level, as this initiation codon has a low translation efficiency, and the cellular Hda level is only approximately 100 molecules per cell. Hda translated using the correct reading frame was purified and found to have a high RIDA activity in vitro. Moreover, we found that Hda has a high affinity for ADP but not for other nucleotides, including ATP. ADP-Hda was active in the RIDA system in vitro and stable in a monomeric state, whereas apo-Hda formed inactive homomultimers. Both ADP-Hda and apo-Hda could form complexes with the DNA-loaded clamp; however, only ADP-Hda-DNA-clamp complexes were highly functional in the following interaction with DnaA. Formation of ADP-Hda was also observed in vivo, and mutant analysis suggested that ADP binding is crucial for cellular Hda activity. Thus, we propose that ADP is a crucial Hda ligand that promotes the activated conformation of the protein. ADP-dependent monomerization might enable the arginine finger of the Hda AAA+ domain to be accessible to ATP bound to the DnaA AAA+ domain.

  6. The Level of AdpA Directly Affects Expression of Developmental Genes in Streptomyces coelicolor ▿ †

    OpenAIRE

    Wolański, Marcin; Donczew, Rafał; Kois-Ostrowska, Agnieszka; Masiewicz, Paweł; Jakimowicz, Dagmara; Zakrzewska-Czerwińska, Jolanta

    2011-01-01

    AdpA is a key regulator of morphological differentiation in Streptomyces. In contrast to Streptomyces griseus, relatively little is known about AdpA protein functions in Streptomyces coelicolor. Here, we report for the first time the translation accumulation profile of the S. coelicolor adpA (adpASc) gene; the level of S. coelicolor AdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hour...

  7. REDUCED THROMBOGENICITY OF VASCULAR PROSTHESES BY COATING WITH ADP-ASE

    NARCIS (Netherlands)

    VANDERLEI, B; ROBINSON, PH; BAKKER, WW; Bartels, H.

    1992-01-01

    In this pilot study ADP-ase coated polyurethane (PL) vascular prostheses and noncoated (control) PU vascular prostheses (all vascular prostheses: ID 1.5 mm, length 1,5 cm) were implanted into the carotid artery of the rabbit to test wheter ADP-ase might function as an adequate anti-thrombogenic

  8. File list: Oth.Adp.10.RELA.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.RELA.AllCell hg19 TFs and others RELA Adipocyte SRX813772,SRX813773,SRX8...13775,SRX813774 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.RELA.AllCell.bed ...

  9. File list: Oth.Adp.20.RELA.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.RELA.AllCell hg19 TFs and others RELA Adipocyte SRX813773,SRX813775,SRX8...13774,SRX813772 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.RELA.AllCell.bed ...

  10. Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria.

    Directory of Open Access Journals (Sweden)

    Gilles Gouspillou

    Full Text Available BACKGROUND: Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically and phosphorylation (determined using the glucose-hexokinase glucose-6-phosphate dehydrogenase-NADP(+ enzymatic system rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (K(mVox and phosphorylation (K(mVp rates. We also demonstrate that determination of K(mVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method. CONCLUSIONS/SIGNIFICANCE: Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.

  11. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness.

    Science.gov (United States)

    Liaudet, Lucas

    2002-03-01

    Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.

  12. Improvement of D-Ribose Production from Corn Starch Hydrolysate by a Transketolase-Deficient Strain Bacillus subtilis UJS0717

    Science.gov (United States)

    Wei, Zhuan; Zhou, Jue; Sun, WenJing; Cui, FengJie; Xu, QinHua; Liu, ChangFeng

    2015-01-01

    D-Ribose is a five-carbon sugar and generally used as an energy source to improve athletic performance and the ability. The culture conditions for maximum D-ribose production performance from cheap raw material corn starch hydrolysate were improved by using one-factor-at-a-time experiments and a three-level Box-Behnken factorial design. The optimal fermentation parameters were obtained as 36°C culture temperature, 10% inoculum volume, and 7.0 initial pH. The mathematical model was then developed to show the effect of each medium composition and their interactions on the production of D-ribose and estimated that the optimized D-ribose production performance with the concentration of 62.13 g/L, yield of 0.40 g/g, and volumetric productivity of 0.86 g/L·h could be obtained when the medium compositions were set as 157 g/L glucose, 21 g/L corn steep liquor, 3.2 g/L (NH4)2SO4, 1 g/L yeast extract, 0.05 g/L MnSO4·H2O, and 20 g/L CaCO3. These findings indicated the D-ribose production performance was significantly improved compared to that under original conditions. PMID:26759810

  13. Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles.

    Science.gov (United States)

    Steer, Andrew M; Bia, Nicolas; Smith, David K; Clarke, Paul A

    2017-09-25

    Understanding the prebiotic genesis of 2-deoxy-d-ribose, which forms the backbone of DNA, is of crucial importance to unravelling the origins of life, yet remains open to debate. Here we demonstrate that 20 mol% of proteinogenic amino esters promote the selective formation of 2-deoxy-d-ribose over 2-deoxy-d-threopentose in combined yields of ≥4%. We also demonstrate the first aldol reaction promoted by prebiotically-relevant proteinogenic amino nitriles (20 mol%) for the enantioselective synthesis of d-glyceraldehyde with 6% ee, and its subsequent conversion into 2-deoxy-d-ribose in yields of ≥ 5%. Finally, we explore the combination of these two steps in a one-pot process using 20 mol% of an amino ester or amino nitrile promoter. It is hence demonstrated that three interstellar starting materials, when mixed together with an appropriate promoter, can directly lead to the formation of a mixture of higher carbohydrates, including 2-deoxy-d-ribose.

  14. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    Science.gov (United States)

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  15. Niraparib

    Science.gov (United States)

    ... Niraparib is in a class of medications called poly (ADP-ribose) polymerase (PARP) inhibitors. It works by ... sores in the mouth loss of appetite back pain headache dizziness changes in taste difficulty falling asleep ...

  16. Rucaparib

    Science.gov (United States)

    ... Rucaparib is in a class of medications called poly (ADP-ribose) polymerase (PARP) inhibitors. It works by ... not go away: nausea vomiting constipation diarrhea stomach pain loss of appetite bad taste in the mouth ...

  17. Hda Monomerization by ADP Binding Promotes Replicase Clamp-mediated DnaA-ATP Hydrolysis*S⃞

    Science.gov (United States)

    Su'etsugu, Masayuki; Nakamura, Kenta; Keyamura, Kenji; Kudo, Yuka; Katayama, Tsutomu

    2008-01-01

    ATP-DnaA is the initiator of chromosomal replication in Escherichia coli, and the activity of DnaA is regulated by the regulatory inactivation of the DnaA (RIDA) system. In this system, the Hda protein promotes DnaA-ATP hydrolysis to produce inactive ADP-DnaA in a mechanism that is mediated by the DNA-loaded form of the replicase sliding clamp. In this study, we first revealed that hda translation uses an unusual initiation codon, CUG, located downstream of the annotated initiation codon. The CUG initiation codon could be used for restricting the Hda level, as this initiation codon has a low translation efficiency, and the cellular Hda level is only ∼100 molecules per cell. Hda translated using the correct reading frame was purified and found to have a high RIDA activity in vitro. Moreover, we found that Hda has a high affinity for ADP but not for other nucleotides, including ATP. ADP-Hda was active in the RIDA system in vitro and stable in a monomeric state, whereas apo-Hda formed inactive homomultimers. Both ADP-Hda and apo-Hda could form complexes with the DNA-loaded clamp; however, only ADP-Hda-DNA-clamp complexes were highly functional in the following interaction with DnaA. Formation of ADP-Hda was also observed in vivo, and mutant analysis suggested that ADP binding is crucial for cellular Hda activity. Thus, we propose that ADP is a crucial Hda ligand that promotes the activated conformation of the protein. ADP-dependent monomerization might enable the arginine finger of the Hda AAA+ domain to be accessible to ATP bound to the DnaA AAA+ domain. PMID:18977760

  18. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx.

    Science.gov (United States)

    Suárez, Gabriel A; Renda, Brian A; Dasgupta, Aurko; Barrick, Jeffrey E

    2017-09-01

    The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS 1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS 1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS 1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase ( dinP ) and a DNA damage response regulator ( umuD Ab [the umuD gene of A. baylyi ]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves

  19. Determination by radioimmunoassay of the sum of oxidized and reduced forms of NAD and NADP in picomole quantities from the same acid extract

    International Nuclear Information System (INIS)

    Bredehorst, R.; Lengyel, H.; Hilz, H.

    1979-01-01

    The sum of the amounts of NAD + NADH was determined from the same acid tissue extract with the aid of a highly specific radioimmunoassay for 5'-AMP. NAD was converted to 5'-AMP via ADP-ribose by alkaline treatment while NADH was converted first to ADP-ribose by incubation of the acid extract at 25 0 C followed by alkaline conversion to 5'-AMP. Removal of phosphate groups in NADP and NADPH by treatment of the extracts with alkaline phosphates extended the procedure to the quantification of NADP(H). When combined with enzymic analyses of the oxidized coenzyme forms, NAD/NADH and NADP/NADPH ratios could also be obtained from the same extracts. The sensitivity of the test allows quantification of pyridine nucleotides in the range of 0.1-10 pmol. (orig.)

  20. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify...... the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly......(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological...

  1. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

    DEFF Research Database (Denmark)

    Mirza, Mansoor R; Monk, Bradley J; Herrstedt, Jørn

    2016-01-01

    Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum-sensitive, ......Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum...... or 4 adverse events that were reported in the niraparib group were thrombocytopenia (in 33.8%), anemia (in 25.3%), and neutropenia (in 19.6%), which were managed with dose modifications. Conclusions Among patients with platinum-sensitive, recurrent ovarian cancer, the median duration of progression...

  2. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  3. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  4. File list: His.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.White_adipocytes.bed ...

  5. File list: His.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.White_adipocytes.bed ...

  6. File list: His.Adp.10.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.White_adipocytes.bed ...

  7. File list: His.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.White_adipocytes.bed ...

  8. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  9. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  10. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  11. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  12. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system... Test Systems § 862.1030 Alanine amino transferase (ALT/SGPT) test system. (a) Identification. An alanine amino transferase (ALT/SGPT) test system is a device intended to measure the activity of the...

  13. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    International Nuclear Information System (INIS)

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-01-01

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca 2+ -mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1

  14. Interaction of ADP, atractyloside, and gummiferin on the ADP translocase of the inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vignais, P V; Vignais, P M; Defaye, G; Lauquin, G; Doussiere, J; Chabert, J; Brandolin, G

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). Two specific inhibitors of the adenine nucleotide translocation, gummiferin (GUM), identified to 4-carboxyatractyloside and atractyloside (ATR), were labeled with /sup 35/S and their binding properties to whole mitochondria and inner mitochondrial membrane vesicles used to monitor changes of membrane conformation induced by ADP. (auth)

  15. Molecular structure of human KATP in complex with ATP and ADP.

    Science.gov (United States)

    Lee, Kenneth Pak Kin; Chen, Jue; MacKinnon, Roderick

    2017-12-29

    In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K + channel Kir6.2, in the presence of Mg 2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg 2+ -ATP in the degenerate site and Mg 2+ -ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP's ability to override ATP inhibition. © 2017, Lee et al.

  16. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    Science.gov (United States)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  17. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    enzyme required Mg2+ and inorganic phosphate for activity; Mn2+ supported only 30% the activity seen with Mg2+. Michaelis constants for ATP and ribose 5-phosphate (Rib5P) were 0.66 mM and 0.48 mM, respectively. Of several end products tested, only ADP was strongly inhibitory; GDP was a weak inhibitor....... ADP inhibition displayed homotropic cooperativity and was enhanced by increasing saturation of the enzyme with ATP. These observations strongly suggest a specific allosteric site for ADP binding. A comparison of physical and kinetic properties of bacterial and mammalian PPRibP synthetases is presented....

  18. Synthesis of alkylcarbonate analogs of O-acetyl-ADP-ribose

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marcela; Nencka, Radim; Dejmek, Milan; Zborníková, Eva; Březinová, Anna; Přibylová, Marie; Pohl, Radek; Migaud, M. E.; Vaněk, Tomáš

    2013-01-01

    Roč. 11, č. 34 (2013), s. 5702-5713 ISSN 1477-0520 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : DEACETYLASES * FURANOSIDES * METABOLITE Subject RIV: CC - Organic Chemistry Impact factor: 3.487, year: 2013

  19. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio

    Science.gov (United States)

    Suszynski, T.M.; Wildey, G.M.; Falde, E.J.; Cline, G.W.; Maynard, K. Stewart; Ko, N.; Sotiris, J.; Naji, A.; Hering, B.J.; Papas, K.K.

    2009-01-01

    Real-time, accurate assessment of islet viability is critical for avoiding transplantation of nontherapeutic preparations. Measurements of the intracellular ADP/ATP ratio have been recently proposed as useful prospective estimates of islet cell viability and potency. However, dead cells may be rapidly depleted of both ATP and ADP, which would render the ratio incapable of accounting for dead cells. Since the DNA of dead cells is expected to remain stable over prolonged periods of time (days), we hypothesized that use of the ATP/DNA ratio would take into account dead cells and may be a better indicator of islet cell viability than the ADP/ATP ratio. We tested this hypothesis using mixtures of healthy and lethally heat-treated (HT) rat insulinoma cells and human islets. Measurements of ATP/DNA and ADP/ATP from the known mixtures of healthy and HT cells and islets were used to evaluate how well these parameters correlated with viability. The results indicated that ATP and ADP were rapidly (within 1 hour) depleted in HT cells. The fraction of HT cells in a mixture correlated linearly with the ATP/DNA ratio, whereas the ADP/ADP ratio was highly scattered, remaining effectively unchanged. Despite similar limitations in both ADP/ADP and ATP/DNA ratios, in that ATP levels may fluctuate significantly and reversibly with metabolic stress, the results indicated that ATP/DNA was a better measure of islet viability than the ADP/ATP ratio. PMID:18374063

  1. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3

    International Nuclear Information System (INIS)

    Yoshida, M.; Allison, W.S.

    1986-01-01

    Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with [ 3 H]ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. [ 3 H]ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with [ 3 H]ADP in 30 min with a Kd of 30 microM. [ 3 H]ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of [ 3 H]ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. [ 3 H]ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits

  2. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    African Journals Online (AJOL)

    Nuclear Magnetic Resonance (NMR), 13C-NMR and electrospray ionization tandem ... this effectively induced cleavage of anti-poly (ADP-ribose) polymerase (PARP) as well as downregulation of Bcl2 protein expression in BGC823 cells after 24 h ...

  3. Alteration in the Nuclear Structure of Breast Cancer Cells in Response to ECM Signaling

    National Research Council Canada - National Science Library

    Han, Hye-Jung

    2001-01-01

    .... We have previously identified a MAR binding protein of 1 14kDa from malignant breast carcinomas. The p114 MAR-binding activity was found to be attributed to two separate proteins, poly(ADP-ribose) polymerase (PARP) and SAF...

  4. Cloning and characterization of a thermostable 2- deoxy-D-ribose-5 ...

    African Journals Online (AJOL)

    Analysis of the presumptive 2-deoxy-D-ribose 5-phosphate aldolase gene from Aciduliprofundum boonei revealed an open reading frame (ORF) encoding 222 amino acids, which was subcloned and then expressed in Escherichia coli. The recombinant DERA protein was purified to apparent homogeneity. The enzyme ...

  5. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. Daily supplementation of D-ribose shows no therapeutic benefits in the MHC-I transgenic mouse model of inflammatory myositis.

    Directory of Open Access Journals (Sweden)

    William Coley

    Full Text Available BACKGROUND: Current treatments for idiopathic inflammatory myopathies (collectively called myositis focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1, leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. RESULTS: Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. CONCLUSIONS: Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis.

  14. Daily Supplementation of D-ribose Shows No Therapeutic Benefits in the MHC-I Transgenic Mouse Model of Inflammatory Myositis

    Science.gov (United States)

    Coley, William; Rayavarapu, Sree; van der Meulen, Jack H.; Duba, Ayyappa S.; Nagaraju, Kanneboyina

    2013-01-01

    Background Current treatments for idiopathic inflammatory myopathies (collectively called myositis) focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1), leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg) over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. Results Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. Conclusions Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis. PMID:23785461

  15. Monitoring of radon isotopes and affiliated disintegration products (ADP) in soil air and water

    International Nuclear Information System (INIS)

    Anshakov, O. M.; Bogacheva, E. S.; Bouchawach, Fauzi Hadji; Chudakov, V. A.

    2009-01-01

    The subject of research is a physic and mathematical model of the process of radon determining in soil air and water by the way of its sampling for absorbent, preparation of a sample to measurement taking, ADP radiometry: Pb- 214, Bi-214 in a sample, calculation of radon activity concentration in an initial medium. The target of research is experimental determining of assignment parameters of devices, used for radon sampling and measurement of its ADP activity in relation to the methods being developed with estimation of their expected metrological performance, analysis of radon and ADP content for ecological research in relation to objectives of radon and ADP monitoring in environmental objects. (author)

  16. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  18. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: Pol.Adp.20.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Adipocy...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.RNA_Polymerase_III.AllCell.bed ...

  5. File list: Pol.Adp.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.RNA_polymerase_III.AllCell.bed ...

  6. File list: Pol.Adp.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.RNA_polymerase_III.AllCell.bed ...

  7. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  13. File list: InP.Adp.10.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.Input_control.AllCell hg19 Input control Input control Adipocyte SRX0194...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.Input_control.AllCell.bed ...

  14. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  18. Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer

    DEFF Research Database (Denmark)

    Swanton, Charles; Szallasi, Zoltan Imre; Brenton, James D.

    2008-01-01

    The widespread introduction of high throughput RNA interference screening technology has revealed tumour drug sensitivity pathways to common cytotoxics such as paclitaxel, doxorubicin and 5-fluorouracil, targeted agents such as trastuzumab and inhibitors of AKT and Poly(ADP-ribose) polymerase (PARP...

  19. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: Oth.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  1. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  3. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  4. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  5. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  6. File list: InP.Adp.05.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.Input_control.AllCell mm9 Input control Input control Adipocyte SRX99775...27370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.Input_control.AllCell.bed ...

  7. Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP.

    Science.gov (United States)

    Ottaiano, Tatiana F; Andrade, Sheila S; de Oliveira, Cleide; Silva, Mariana C C; Buri, Marcus V; Juliano, Maria A; Girão, Manoel J B C; Sampaio, Misako U; Schmaier, Alvin H; Wlodawer, Alexander; Maffei, Francisco H A; Oliva, Maria Luiza V

    2017-04-01

    Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin α IIb β 3 through interactions with the KGD/KGE sequence motif in huPK. Integrin α IIb β 3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS 473 , ERK1/2, and p38 MAPK, and to Ca 2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and α IIb β 3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. NADP+ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    International Nuclear Information System (INIS)

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-01-01

    Cholera or pertussis toxin-catalyzed [ 32 P]ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD + , by endogenous enzymes such as NAD + -glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP + . The effect is concentration dependent; with 20 μM [ 32 P]NAD + as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP + . The enhancement of [ 32 P]ADP-ribosylation by NADP + was much greater than that by other known effectors such as Mg 2+ , phosphate or isoniazid. The effect of NADP + on ADP-ribosylation may occur by inhibition of the degradation of NAD + probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP + , isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl 2 ) to suppress NADase activity, NADP + was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP + in the assay is necessary to obtain maximal ADP-ribosylation

  9. A guide for developing an ADP security plan for Navy Finance Center, Cleveland, Ohio

    OpenAIRE

    Barber, Daniel E.; Hodnett, Elwood Thomas, Jr.

    1982-01-01

    Approved for public release; distribution is unlimited This paper is intended to be used as a guide by personnel at the Navy Finance Center (NFC) Cleveland, Ohio in developing an Automatic Data Processing (ADP) Security Plan. An effort has been made to combine the requirements for an ADP security plan established by OPNAVINST5239.1A with pertinent information from other selected readings. The importance of the devotion of personnel, time and funds to ADP security planning has been emphas...

  10. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

    NARCIS (Netherlands)

    Mirza, M. R.; Monk, B. J.; Herrstedt, J.; Oza, A. M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J. A.; Lorusso, D.; Vergote, I.; Ben-Baruch, N. E.; Marth, C.; Madry, R.; Christensen, R. D.; Berek, J. S.; Dorum, A.; Tinker, A. V.; du Bois, A.; Gonzalez-Martin, A.; Follana, P.; Benigno, B.; Rosenberg, P.; Gilbert, L.; Rimel, B. J.; Buscema, J.; Balser, J. P.; Agarwal, S.; Matulonis, U. A.; van der Zee, A.G.J.

    2016-01-01

    BACKGROUND Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum-sensitive,

  11. File list: Pol.Adp.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Adipocyt...e SRX682084,SRX682086,SRX682085,SRX682083 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.RNA_polymerase_II.AllCell.bed ...

  12. Modulated anharmonic ADPs are intrinsic to aperiodic crystals: a case study on incommensurate Rb2ZnCl4

    International Nuclear Information System (INIS)

    Li, Liang; Wölfel, Alexander; Schönleber, Andreas; Mondal, Swastik; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Smaalen, Sander van

    2011-01-01

    The superspace maximum entropy method (MEM) density in combination with structure refinements has been used to uncover the modulation in incommensurate Rb 2 ZnCl 4 close to the lock-in transition. Modulated atomic displacement parameters (ADPs) and modulated anharmonic ADPs are found to form an intrinsic part of the modulation. Refined values for the displacement modulation function depend on the presence or absence of modulated ADPs in the model. A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb 2 ZnCl 4 , at a temperature of T = 196 K, close to the lock-in transition at T lock-in = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to

  13. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  3. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  4. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    Science.gov (United States)

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase.

  5. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: NoD.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Restrict Oral Availability and Brain Accumulation of the PARP Inhibitor Rucaparib (AG-014699)

    NARCIS (Netherlands)

    Durmus, Selvi; Sparidans, Rolf W; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    BACKGROUND: Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations

  12. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    International Nuclear Information System (INIS)

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-01-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability

  13. File list: NoD.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: NoD.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: NoD.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  16. File list: Pol.Adp.50.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Adipocyte... SRX800011,SRX800010,SRX341031,SRX341032,SRX341029,SRX800016,SRX800017,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.RNA_Polymerase_II.AllCell.bed ...

  17. Carnitine palmityl transferase I deficiency

    NARCIS (Netherlands)

    Al-Aqeel, A. I.; Rashed, M. S.; Ruiter, J. P.; Al-Husseini, H. F.; Al-Amoudi, M. S.; Wanders, R. J.

    2001-01-01

    Carnitine palmityl transferase I is the key enzyme in the carnitine dependent transport of long chain fatty acids across the mitochondrial inner membrane and its deficiency results in a decrease rate of fatty acids beta-oxidation with decreased energy production. We reported a family of 3 affected

  18. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  19. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  20. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Xue, Z.; Du, Z.; Melese, T.; Boyer, P.D.

    1988-07-12

    Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F/sub 1/ ATPase (CF/sub 1/) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. The authors have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg/sup 2 +/ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF/sub 1/ that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF/sub 1/. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (P/sub i/) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with (/sup 32/P)P/sub i/, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. They also report the occurrence of a 1-2-min delay in the onset of the Mg/sup 2 +/-induced inhibition after addition of CF/sub 1/ to solutions containing Mg/sup 2 +/ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of P/sub i/ formation is followed by a much lower, constant steady-state rate. The burst is not observed with GTP as a substrate or with Ca/sup 2 +/ as the activating cation.

  1. File list: InP.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127367,SRX127370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: InP.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  3. File list: InP.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  4. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin.

    Directory of Open Access Journals (Sweden)

    Alexander Belyy

    Full Text Available Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.

  5. Reaction of Br/sub 3/. /sup 2 -/ with 2-deoxy-D-ribose. A preferred attack at C-1

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B J; Schulte-Frohlinde, D; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1978-06-01

    In the photolysis of 5-bromouracil containing DNA Br atoms are expected intermediates. In order to evaluate the possible site of attack of the Br atom at the sugar moiety of DNA the reaction of 2-deoxy-D-Ribose with the Br atom (complexed with two bromide ions) was investigated. Hydroxyl radicals generated by the radiolysis of N/sub 2/O saturated aqueous solutions were converted into Br/sub 3/./sup 2 -/-radicals by 1 M bromide ions. Br/sub 3/./sup 2 -/-reacts with 2-deoxy-D-ribose (k = 3.7 x 10/sup 4/M/sup -1/s/sup -1/, pulse radiolysis). The major product is 2-deoxy-D-erythro-pentonic acid (G = 2.4, ..gamma..-radiolysis). It is formed by hydrogen abstraction from C-1 and oxidation of this radical by other radicals. An alternative route via the radical at C-2 is neglible. It follows that Br/sub 3/./sup 2 -/ reacts preferentially at C-1 of 2-deoxy-D-ribose.

  6. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products.

    Science.gov (United States)

    Han, Jia-Run; Yan, Jia-Nan; Sun, Shi-Guang; Tang, Yue; Shang, Wen-Hui; Li, Ao-Ting; Guo, Xiao-Kun; Du, Yi-Nan; Wu, Hai-Tao; Zhu, Bei-Wei; Xiong, Youling L

    2018-09-30

    The objective of the present study was to improve the utilization of scallop (Chlamys farreri) byproducts by using Maillard reaction. Scallop mantle hydrolysates (SMHs) were prepared using neutrase then reacted with ribose. Thirty-four peptides were identified from SMHs by UPLC-Q-TOF-MS, and the abundance of Asp and Lys suggested the strong Maillard reactivity. The formation of Schiff's base as well as modification of amide I, II and III bands in Maillard reaction products (MRPs) was confirmed by ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopy. Thirty volatile compounds were produced by the reaction of SMHs with ribose. Moreover, MRPs with enhanced radical scavenging and anti-linoleic acid peroxidation activities over SMHs promoted the survival and reduced the DNA damage of HepG2 cells treated with hydrogen peroxide. These results suggest that SMHs-ribose MRPs can be potentially used as food antioxidant for suppressing of lipid oxidation or protecting of cell from oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of veliparib (ABT-888) on cardiac repolarization in patients with advanced solid tumors : a randomized, placebo-controlled crossover study

    NARCIS (Netherlands)

    Munasinghe, Wijith; Stodtmann, Sven; Tolcher, Anthony; Calvo, Emiliano; Gordon, Michael; Jalving, Mathilde; de Vos-Geelen, Judith; Medina, Diane; Bergau, Dennis; Nuthalapati, Silpa; Hoffman, David; Shepherd, Stacie; Xiong, Hao

    2016-01-01

    Veliparib (ABT-888) is an orally bioavailable potent inhibitor of poly(ADP-ribose) polymerase (PARP)-1 and PARP-2. This phase 1 study evaluated the effect of veliparib on corrected QT interval using Fridericia's formula (QTcF). Eligible patients with advanced solid tumors received single-dose oral

  8. Aero-Propulsion Technology (APT) Task V Low Noise ADP Engine Definition Study

    Science.gov (United States)

    Holcombe, V.

    2003-01-01

    A study was conducted to identify and evaluate noise reduction technologies for advanced ducted prop propulsion systems that would allow increased capacity operation and result in an economically competitive commercial transport. The study investigated the aero/acoustic/structural advancements in fan and nacelle technology required to match or exceed the fuel burned and economic benefits of a constrained diameter large Advanced Ducted Propeller (ADP) compared to an unconstrained ADP propulsion system with a noise goal of 5 to 10 EPNDB reduction relative to FAR 36 Stage 3 at each of the three measuring stations namely, takeoff (cutback), approach and sideline. A second generation ADP was selected to operate within the maximum nacelle diameter constrain of 160 deg to allow installation under the wing. The impact of fan and nacelle technologies of the second generation ADP on fuel burn and direct operating costs for a typical 3000 nm mission was evaluated through use of a large, twin engine commercial airplane simulation model. The major emphasis of this study focused on fan blade aero/acoustic and structural technology evaluations and advanced nacelle designs. Results of this study have identified the testing required to verify the interactive performance of these components, along with noise characteristics, by wind tunnel testing utilizing and advanced interaction rig.

  9. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis.

    Science.gov (United States)

    Harish Kumar, G; Vidya Priyadarsini, R; Vinothini, G; Vidjaya Letchoumy, P; Nagini, S

    2010-08-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention for their cytotoxicity against human cancer cell lines. However, the antiproliferative and apoptosis inducing effects of neem limonoids have not been tested in animal tumour models. The present study was therefore designed to evaluate the relative chemopreventive potential of the neem limonoids azadirachtin and nimbolide in the hamster buccal pouch (HBP) carcinogenesis model by analyzing the expression of proliferating cell nuclear antigen (PCNA), p21(waf1), cyclin D1, glutathione S-transferase pi (GST-P), NF-kappaB, inhibitor of kappaB (IkappaB), p53, Fas, Bcl-2, Bax, Bid, Apaf-1, cytochrome C, survivin, caspases-3, -6, -8 and -9, and poly(ADP-ribose) polymerase (PARP) by RT-PCR, immunohistochemical, and Western blot analyses. The results provide compelling evidence that azadirachtin and nimbolide mediate their antiproliferative effects by downregulating proteins involved in cell cycle progression and transduce apoptosis by both the intrinsic and extrinsic pathways. On a comparative basis, nimbolide was found to be a more potent antiproliferative and apoptosis inducing agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.

  10. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-05-01

    Full Text Available Abstract Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  11. Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry

    DEFF Research Database (Denmark)

    Zubel, Tabea; Martello, Rita; Bürkle, Alexander

    2017-01-01

    PARP inhibitors, which represent a novel class of promising chemotherapeutics. Previously, we have developed a bioanalytical platform based on isotope dilution mass spectrometry (LC-MS/MS) to quantify cellular PAR with unequivocal chemical specificity in absolute terms with femtomol sensitivity...... research, as well as in drug development (Martello et al. ACS Chem Biol 8(7):1567-1575, 2013; Mangerich et al. Toxicol Lett 244:56-71, 2016). Here, we present an improved and adjusted version of the original protocol by Martello/Mangerich et al., which uses UPLC-MS/MS instrumentation....

  12. Disrupting Na+,HCO3--cotransporter NBCn1 (Slc4a7) delays murine breast cancer development

    DEFF Research Database (Denmark)

    Lee, S.; Axelsen, T. V.; Andersen, Anne Poder

    2016-01-01

    of NBCn1 genotype, the cleaved fraction of poly(ADP-ribose) polymerase (PARP)-1 and expression of monocarboxylate transporter (MCT)1 increased while phosphorylation of Akt and ERK1 decreased as functions of tumor volume. Cell proliferation, evaluated from Ki-67 and phospho-histone H3 staining, was ~60...

  13. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    Science.gov (United States)

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  14. Radiation-induced mitotic catastrophe in PARG-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Ame, J.Ch.; Fouquerel, E.; Dantzer, F.; De Murcia, G.; Schreiber, V. [IREBS-FRE3211 du CNRS, Universite de Strasbourg, ESBS, Bd Sebastien Brant, BP 10413, 67412 Illkirch Cedex (France); Gauthier, L.R.; Boussin, F.D. [Laboratoire de Radiopathologie/INSERM U967, CEA-DSV-IRCM, 92265 Fontenay aux Roses, Cedex 6 (France); Biard, D. [CEA-DSV-IRCM/INSERM U935, Institut A. Lwoff-CNRS, BP 8, 94801 Villejuif cedex (France)

    2009-07-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glyco-hydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy. (authors)

  15. Correlations of serum levels of leptin and other related factor (NPY, ADP) in female children with simple obesity

    International Nuclear Information System (INIS)

    Bai Hua; Wei Chunlei; Qian Mingzhu

    2008-01-01

    Objective: To study the changes of serum levels of leptin, NPY and ADP in female children with simple obesity. Methods: Serum levels of leptin, NPY and ADP were measured with radioimmunoassay (RIA) in 32 female children with simple obesity and 35 controls. Results: The serum levels of leptin, NPY were significantly higher in the obese children than those in controls (P<0.01), while the serum levels of ADP were significantly lower (P<0.01). Serum leptin levels were significantly positively correlated (r=0.6014, P<0.01) with NPY levels but were negatively correlated (r=-0.4786, P<0.01) with adiponectin (ADP) levels. Conclusion: Determination of serum leptin, NPY and ADP levels is of help for judgement of degree of obesity as wen as outcome prediction in female children. (authors)

  16. D.C. electrical conductivity measurements on ADP single crystals ...

    Indian Academy of Sciences (India)

    Unknown

    Impurity added ADP crystals; density; electrical conductivity measurements. 1. Introduction ... determined by the intrinsic defects caused by thermal fluctuations in the ... beaker (corning glass vessel) and allowed to equilibrate at the desired ...

  17. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Roach, Peter J., E-mail: proach@iupui.edu [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  18. ADP Security Plan, Math Building, Room 1139

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.

    1985-08-27

    This document provides the draft copy of an updated (ADP) Security Plan for an IBM Personal Computer to be used in the Math Building at PNL for classified data base management. Using the equipment specified in this document and implementing the administrative and physical procedures as outlined will provide the secure environment necessary for this work to proceed.

  19. Adrenaline potentiates PI 3-kinase in platelets stimulated with thrombin and SFRLLN: role of secreted ADP.

    Science.gov (United States)

    Selheim, F; Frøyset, A K; Strand, I; Vassbotn, F S; Holmsen, H

    2000-11-17

    Adrenaline significantly potentiated late thrombin- and SFRLLN-induced PtdIns(3,4)P(2) production. Furthermore, the potentiating effect of adrenaline on thrombin-induced PtdIns(3, 4)P(2) production was independent on secreted ADP, whereas, the effect of adrenaline on SFRLLN-induced PtdIns(3,4)P(2) production was completely dependent of secreted ADP. However, the ADP-dependent accumulation of PtdIns(3,4)P(2) was not required for irreversible platelet aggregation induced by SFRLLN in the presence of adrenaline. It is concluded that adrenaline can replace secreted ADP to potentiate PtdIns(3,4)P(2) production in thrombin-stimulated but not in SFRLLN-stimulated platelets, thus demonstrating a qualitative difference between platelet stimulation by thrombin and the thrombin receptor activating peptide SFRLLN.

  20. Author Details

    African Journals Online (AJOL)

    Abdelraheim, SR. Vol 31, No 1 (2013) - Articles Cloning, expression and partial characterization of the C. elegans EEED8.8 gene product, a specific adp-ribose diphosphatase, member of nudix hydrolase family. Abstract. ISSN: 1687-1502. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  1. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  2. 7 CFR 272.10 - ADP/CIS Model Plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false ADP/CIS Model Plan. 272.10 Section 272.10 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... benefit computation (including but not limited to all household members' names, addresses, dates of birth...

  3. New and convenient synthesis of 2-deoxy-D-ribose from 2,4-O-ethylidene-D-erythrose

    Energy Technology Data Exchange (ETDEWEB)

    Hauske, J.R.; Rapoport, H.

    1979-01-01

    A new synthesis is described of 2-deoxy-D-erythro-pentose (2-deoxy-D-ribose,2-deoxy-D-arabinose (1)), starting from D-glucose. The synthesis proceeds through direct olefination of 2,4-O-ethylidene-D-erythrose (2) by addition of the stabilized ylides generated from dimethylphosphorylmethyl phenyl sulfide (4) and the corresponding sulfoxide 5. These afford the key intermediates, thio-enol ether 7 and ..cap alpha..,..beta..-unsaturated sulfoxide 8, which when subjected to mercuric ion assisted hydrolysis gave high yields of 2-deoxy-D-ribose (1). This facile chain extension of 2 required its existance as a monomer, and conditions effective for obtaining the monomer have been developed. Detailed /sup 1/H and /sup 13/C NMR studies of these compounds are presented.

  4. ADP stimulation of inositol phosphates in hepatocytes: role of conversion to ATP and stimulation of P2Y2 receptors.

    Science.gov (United States)

    Dixon, C Jane; Hall, John F; Boarder, Michael R

    2003-01-01

    1 Accumulation of inositol (poly)phosphates (InsP(x)) has been studied in rat hepatocytes labelled with [(3)H]inositol. Stimulation with ADP resulted in a significant increase in total [(3)H]InsP(x), whereas 2-MeSADP had only a small effect and ADPbetaS was ineffective. UTP and ITP also stimulated substantial increases in [(3)H]InsP(x). 2 The dose-response curve to ADP was largely unaltered by the presence of the P2Y(1) antagonist, adenosine-3'-phosphate-5'-phosphate (A3P5P). Similarly, inclusion of MRS 2179, a more selective P2Y(1) antagonist, had no effect on the dose-response curve to ADP. 3 The inclusion of hexokinase in the assay reduced, but did not abolish, the response to ADP. 4 HPLC analysis revealed that ADP in the medium was rapidly converted to AMP and ATP. The inclusion of hexokinase removed ATP, but exacerbated the decline in ADP concentration, leading to increased levels of AMP. 2-MeSADP was stable in the medium and ATP was largely unaffected. 5 The addition of the adenylate kinase inhibitor, diadenosine pentaphosphate (Ap(5)A) significantly reduced the ADP response. HPLC analysis conducted in parallel demonstrated that this treatment inhibited conversion of ADP to ATP and AMP. 6 Inclusion of the P1 antagonist CGS 15943 had no effect on the dose-response curve to ADP. 7 These observations indicate that hepatocytes respond to ADP with an increase in inositol (poly)phosphates following conversion to ATP. P2Y(1) activation in hepatocytes does not appear to be coupled to inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) production.

  5. Preferential uptake of ribose by primitive cells might explain why RNA was favored over its analogs

    Science.gov (United States)

    Pohorille, Andrew; Wei, Chenyu

    Permeation of molecules through membranes is a fundamental process in biological systems, which not only involves mass and signal transfers between the interior of a contemporary cell and its environment, but was also of crucial importance in the origin of life. In the absence of complex protein transporters, nutrients and building blocks of biopolymers must have been able to permeate membranes at sufficient rates to support primordial metabolism and cel-lular reproduction. From this perspective one class of solutes that is of special interest are monosaccharides, which serve not only as nutritional molecules but also as building blocks for information molecules. In particular, ribose is a part of the RNA backbone, but RNA analogs containing a number of other sugars have also been shown to form stable duplexes. Why, among these possibilities, ribose (and, subsequently, deoxyribose) was selected for the backbone of information polymers is still poorly understood. It was recently found that ribose permeates membranes an order of magnitude faster than its diastereomers, arabinose and xylose [1]. On this basis it was hypothesized that differences in membrane permeability to aldopentoses provide a mechanism for preferential delivery of ribose to primitive cells for subsequent, selective incorporation into nucleotides and their polymers. However, the origins of these unusually large differences had not been well understood. We addressed this issue in molecular dynamics simulations combined with free energy calculations. It was found that the free energy barrier for transferring ribose from water to the bilayer is lower by 1.5-2 kcal/mol than the barrier for transferring the other two aldopentoses. The calculated [2] and measured [1] permeability coefficients are in an excellent agreement. The sugar structures that permeate the membrane are -pyranoses, with a possible contribution of the -anomer for arabinose. The furanoid form of ribose is not substantially involved in

  6. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin.

    Science.gov (United States)

    Makitrynskyy, Roman; Ostash, Bohdan; Tsypik, Olga; Rebets, Yuriy; Doud, Emma; Meredith, Timothy; Luzhetskyy, Andriy; Bechthold, Andreas; Walker, Suzanne; Fedorenko, Victor

    2013-10-23

    Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production-bldA, adpA and absB-exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNA(Leu)UAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs-that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.

  7. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    International Nuclear Information System (INIS)

    Fendrick, J.L.; Iglewski, W.J.

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing [ 32 P]orthophosphate and 105 (vol/vol) fetal bovine serum. A 32 P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The 32 P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The 32 P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as [ 32 P]AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the 32 P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and [ 32 P]NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When 32 P-labeled cultures were incubated in medium containing unlabeled phosphate, the 32 P label was lost from the EF-2 within 30 min

  8. Class I ADP-ribosylation factors are involved in enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.

  9. Class I ADP-ribosylation factors are involved in enterovirus 71 replication.

    Science.gov (United States)

    Wang, Jianmin; Du, Jiang; Jin, Qi

    2014-01-01

    Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.

  10. 32 CFR Appendix J to Part 154 - ADP Position Categories and Criteria for Designating Positions

    Science.gov (United States)

    2010-07-01

    ... maintenance of a computer system, and whose work is technically reviewed by a higher authority of the ADP-I... agency computer security programs, and also including direction and control of risk analysis and/or... the activities of the individual are not subject to technical review by higher authority in the ADP-I...

  11. Design, Synthesis and Evaluation of Ribose-modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors

    Science.gov (United States)

    Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang

    2017-11-01

    The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.

  12. Preliminary crystallographic analysis of ADP-glucose pyrophosphorylase from Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Cupp-Vickery, Jill R.; Igarashi, Robert Y.; Meyer, Christopher R.

    2005-01-01

    Crystallization and X-ray diffraction methods for native A. tumefaciens ADP-glucose pyrophosphorylase and its selenomethionyl derivative are described. Two crystal forms are identified, both of which diffract to 2 Å

  13. Third-order nonlinear optical properties of ADP crystal

    Science.gov (United States)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  14. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid.

    Science.gov (United States)

    Reinsch, Helge; Pillai, Renjith S; Siegel, Renée; Senker, Jürgen; Lieb, Alexandra; Maurin, Guillaume; Stock, Norbert

    2016-03-14

    The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption.

  15. Mechanisms of Virus-Induced Neural Cell Death

    Science.gov (United States)

    2002-09-01

    Pathol the central nervous system. Lancet 342: 398-401 9:199-208 19. Cinque P, Vago L, Dahl H, Brytting M, Terreni MR, 6. Arribas JR, Clifford DB...methyl coumarin; PARP, poly(ADP-ribose) polymerase; the translocation of cytochrome c and other pro-apoptotic Ac-YVAD-CHO, Ac-Tyr-Val- Ala -Asp-CHO; Ac

  16. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Fendrick, J.L.; Iglewski, W.J. (Univ. of Rochester, NY (USA))

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  17. Zinc release contributes to hypoglycemia-induced neuronal death.

    Science.gov (United States)

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  18. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro.

    Science.gov (United States)

    Bonatto, Ana C; Souza, Emanuel M; Oliveira, Marco A S; Monteiro, Rose A; Chubatsu, Leda S; Huergo, Luciano F; Pedrosa, Fábio O

    2012-08-01

    PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.

  19. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Deepak A. Deshpande

    2018-01-01

    Full Text Available Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+ signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3 and CD38-cyclic ADP-ribose (CD38/cADPR are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.

  20. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Science.gov (United States)

    Deshpande, Deepak A.; Guedes, Alonso G. P.; Graeff, Richard; Dogan, Soner; Subramanian, Subbaya; Walseth, Timothy F.

    2018-01-01

    Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+) signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3) and CD38-cyclic ADP-ribose (CD38/cADPR) are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed. PMID:29576747

  1. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays.

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous

  2. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays

    NARCIS (Netherlands)

    Kirchberger, S.; Leroch, M.; Huynen, M.A.; Wahl, M.; Neuhaus, H.E.; Tjaden, J.

    2007-01-01

    Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous

  3. Rev1 contributes to proper mitochondrial function via the PARP-NAD(+)-SIRT1-PGC1 alpha axis

    DEFF Research Database (Denmark)

    Fakouri, Nima Borhan; Durhuus, Jon Ambaek; Regnell, Christine Elisabeth

    2017-01-01

    (ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via...... the PARP-NAD+-SIRT1-PGC1α axis....

  4. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    -methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  5.   Adenosine-diphosphate (ADP) reduces infarct size and improves porcine heart function after myocardial infarction

    DEFF Research Database (Denmark)

    Bune, Laurids Touborg; Larsen, Jens Kjærgaard Rolighed; Thaning, Pia

    2013-01-01

    Acute myocardial infarction continues to be a major cause of morbidity and mortality. Timely reperfusion can substantially improve outcomes and the administration of cardioprotective substances during reperfusion is therefore highly attractive. Adenosine diphosphate (ADP) and uridine-5-triphoshat...... infusion during reperfusion reduces IS by ~20% independently from systemic release of t-PA. ADP-induced reduction in both preload and afterload could account for the beneficial myocardial effect....

  6. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.

    Science.gov (United States)

    Tiemann, B; Depping, R; Rüger, W

    1999-01-01

    There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  7. FRET Response of a Modified Ribose Receptor Expressed in the Diatom Thalassiosira pseudonana

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Hanna

    2011-08-26

    The ability to insert complex proteins into silica has many applications including biosensing. Previous research has demonstrated how to direct proteins to the biosilica of diatoms [1]. Here, we show that a complex fusion protein that includes an enzyme, a bacterial ribose periplasmic binding protein, flanked by fluorescent proteins constituting a FRET pair can remain functional in the frustules of living diatoms. A Sil3 tag is attached to the N-terminal end to localize the fusion protein to frustules of the diatom Thalassiosira pseudonana. When ribose was applied, a larger decrease in FRET response was seen in transformed cells than in untransformed cells. Multiple forms of the expression vector were tested to find the optimal system; specifically, a one-vector system was compared to a two-vector system and the gDNA version of the Sil3 localization tag was compared to the cDNA version. The optimal system was found to be a one-vector system with the genomic version of the Sil3 tag to direct the protein to the frustules. Localization of the enzyme to the frustules was further confirmed through cell fluorescence imaging.

  8. A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm

    Science.gov (United States)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai

    2014-05-01

    We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.

  9. Analysis of glutathione S-transferase (M1, T1 and P1) gene ...

    African Journals Online (AJOL)

    Glutathione S-transferase enzymes are active in detoxifying a wide number of endogenous and exogenous chemical carcinogens and subsequently, are crucial in protecting the DNA. Several studies show some differences in association of glutathione S-transferase M1, T1 and P1 genetic polymorphisms with the risk of ...

  10. Effect of SMAD7 gene overexpression on TGF-β1-induced profibrotic responses in fibroblasts derived from Peyronie's plaque

    Directory of Open Access Journals (Sweden)

    Min Ji Choi

    2015-06-01

    Full Text Available Transforming growth factor-β1 (TGF-β1 has been identified as one of the most important fibrogenic cytokines associated with Peyronie's disease (PD. The mothers against decapentaplegic homolog 7 (SMAD7 is an inhibitory Smad protein that blocks TGF-β signaling pathway. The aim of this study was to examine the anti-fibrotic effect of the SMAD7 gene in primary fibroblasts derived from human PD plaques. PD fibroblasts were pretreated with the SMAD7 gene and then stimulated with TGF-β1. Treated fibroblasts were used for Western blotting, fluorescent immunocytochemistry, hydroxyproline determination, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. Overexpression of the SMAD7 gene inhibited TGF-β1-induced phosphorylation and nuclear translocation of SMAD2 and SMAD3, transdifferentiation of fibroblasts into myofibroblasts, and quashed TGF-β1-induced production of extracellular matrix protein and hydroxyproline. Overexpression of the SMAD7 gene decreased the expression of cyclin D1 (a positive cell cycle regulator and induced the expression of poly (ADP-ribose polymerase 1, which is known to terminate Smad-mediated transcription, in PD fibroblasts. These findings suggest that the blocking of the TGF-β pathway by use of SMAD7 may be a promising therapeutic strategy for the treatment of PD.

  11. Correlation of lung surface area to apoptosis and proliferation in human emphysema.

    Science.gov (United States)

    Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M

    2005-02-01

    Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.

  12. Control of ATP hydrolysis by ADP bound at the catalytic site of chloroplast ATP synthase as related to protonmotive force and Mg2+

    International Nuclear Information System (INIS)

    Du, Z.; Boyer, P.D.

    1989-01-01

    The activation of the ATP synthesis and hydrolysis capacity of isolated chloroplast membranes by protonmotive force is known to be associated with the release of tightly bound ADP from the ATP synthase. The data support the view that the activation requires only those structural changes occurring in the steady-state reaction mechanism. The trapping of ADP released during light activation or the chelation of Mg 2+ with EDTA effectively reduces the rate of decay of the ATPase activity. When the release of tightly bound ADP and Mg 2+ is promoted by light activation, followed by immediate dilution and washing to retard the rebinding of the ADP and Mg 2+ released, the ATPase activity remains high in the dark long after the protonmotive force has disappeared. After the addition of ADP and Mg 2+ the decay of the ATPase activity has the same characteristics as those of the unwashed chloroplast membrane. The results are interpreted as indicating that both Mg 2+ and ADP must be present prior to exposure to MgATP for the ATPase to be inhibited. However, in contrast to the isolated chloroplast ATPase, the steady-state activity of the membrane-bound ATPase is not inhibited by excess Mg 2+ . The replacement of [ 3 H]ADP from catalytic sites during hydrolysis of unlabeled ATP or during photophosphorylation with unlabeled ADP occurs as anticipated if Mg 2+ and ADP bound at one catalytic site without P i block catalysis by all three enzyme sites. The inhibited form induced by Mg 2+ and ADP may occur only under laboratory conditions and not have an in vivo role

  13. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    Science.gov (United States)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower

  14. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    Science.gov (United States)

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl

  15. The association between glutathione S-transferase P1 ...

    African Journals Online (AJOL)

    Mahmoud I. Mahmoud

    2011-08-10

    Aug 10, 2011 ... B-adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care ... transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997;18(4):641–4.

  16. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    Science.gov (United States)

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  17. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  18. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  19. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma

    International Nuclear Information System (INIS)

    Hayes, J.D.; Gilligan, D.; Beckett, G.J.

    1983-01-01

    A purification scheme is described for six human hepatic glutathione S-transferases from a single liver. Five of the transferases comprised Ya monomers and had a molecular mass of 44000. The remaining enzyme comprised Yb monomers and had a molecular mass of 47000. Data are presented demonstrating that there are at least two distinct Ya monomers. A radioimmunoassay has been developed that has sufficient precision and sensitivity to allow direct measurement of glutathione S-transferase concentrations in unextracted plasma. A comparison of aminotransferase and glutathione S-transferase levels, in three patients who had taken a paracetamol overdose, indicated that glutathione S-transferase measurements provided a far more sensitive index of hepatocellular integrity than the more conventional aminotransferase measurements. (Auth.)

  20. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.D.; Gilligan, D.; Beckett, G.J. (Edinburgh Univ. (UK). Dept. of Clinical Chemistry); Chapman, B.J. (Royal Infirmary, Edinburgh (UK))

    1983-10-31

    A purification scheme is described for six human hepatic glutathione S-transferases from a single liver. Five of the transferases comprised Ya monomers and had a molecular mass of 44000. The remaining enzyme comprised Yb monomers and had a molecular mass of 47000. Data are presented demonstrating that there are at least two distinct Ya monomers. A radioimmunoassay has been developed that has sufficient precision and sensitivity to allow direct measurement of glutathione S-transferase concentrations in unextracted plasma. A comparison of aminotransferase and glutathione S-transferase levels, in three patients who had taken a paracetamol overdose, indicated that glutathione S-transferase measurements provided a far more sensitive index of hepatocellular integrity than the more conventional aminotransferase measurements.

  1. Control of ATP hydrolysis by ADP bound at the catalytic site of chloroplast ATP synthase as related to protonmotive force and Mg sup 2+

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Boyer, P.D. (Univ. of California, Los Angeles (USA))

    1989-01-24

    The activation of the ATP synthesis and hydrolysis capacity of isolated chloroplast membranes by protonmotive force is known to be associated with the release of tightly bound ADP from the ATP synthase. The data support the view that the activation requires only those structural changes occurring in the steady-state reaction mechanism. The trapping of ADP released during light activation or the chelation of Mg{sup 2+} with EDTA effectively reduces the rate of decay of the ATPase activity. When the release of tightly bound ADP and Mg{sup 2+} is promoted by light activation, followed by immediate dilution and washing to retard the rebinding of the ADP and Mg{sup 2+} released, the ATPase activity remains high in the dark long after the protonmotive force has disappeared. After the addition of ADP and Mg{sup 2+} the decay of the ATPase activity has the same characteristics as those of the unwashed chloroplast membrane. The results are interpreted as indicating that both Mg{sup 2+} and ADP must be present prior to exposure to MgATP for the ATPase to be inhibited. However, in contrast to the isolated chloroplast ATPase, the steady-state activity of the membrane-bound ATPase is not inhibited by excess Mg{sup 2+}. The replacement of ({sup 3}H)ADP from catalytic sites during hydrolysis of unlabeled ATP or during photophosphorylation with unlabeled ADP occurs as anticipated if Mg{sup 2+} and ADP bound at one catalytic site without P{sub i} block catalysis by all three enzyme sites. The inhibited form induced by Mg{sup 2+} and ADP may occur only under laboratory conditions and not have an in vivo role.

  2. Presence of a Ca2+-sensitive CDPdiglyceride-inositol transferase in canine cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Kasinathan, C.; Kirchberger, M.A.

    1988-01-01

    Sarcoplasmic reticulum (SR) and plasma membranes from canine left ventricle were used to evaluate the presence of the enzyme CDPdiglyceride-inositol transferase in these membranes. (K + ,-Ca 2+ )-ATPase activity, a marker for SR, was 79.2 +/- 5.0 (SE) and 11.2 +/- 2.0 μmol x mg -1 x h -1 in SR and plasma membrane preparations, respectively, and (Na + , K + )-ATPase activity, a marker for plasma membranes, was 5.6 +/- 1.2 and 99.2 +/- 8.0 μmol x mg -1 x h -1 , respectively. Contamination of SR and plasma membrane preparations by mitochondria was estimated to be 2% and 8%, respectively, and by Golgi membranes, 0.9% and 1.8%, respectively. The transferase activity detected in the plasma membrane preparation could be accounted for largely, but not entirely, by contaminating SR membranes. The pH optimum for the SR transferase activity was between 8.0 and 9.0. Ca 2+ inhibited the enzyme, half-maximal inhibition occurring at about 10 μM Ca 2+ . No loss of [ 3 H]PtdIns could be detected when membranes were incubated in the presence or absence of Ca 2+ . The Ca 2+ inhibition of the transferase was noncompetitive with respect to CDP-dipalmitin while that with respect to myo-inositol was slightly noncompetitive at low [Ca 2+ ] and became uncompetitive at higher [Ca 2+ ]. It is concluded that CDPdiglyceride-inositol transferase is present on SR membranes and is sensitive to micromolar Ca 2+ . The data are consistent with a putative role for the inhibition of the SR transferase by Ca 2+ and acidic pH in the protection of the SR against calcium overload in ischemic myocardium

  3. Insecticide resistance and glutathione S-transferases in mosquitoes ...

    African Journals Online (AJOL)

    Mosquito glutathione S-transferases (GSTs) have received considerable attention in the last 20 years because of their role in insecticide metabolism producing resistance. Many different compounds, including toxic xenobiotics and reactive products of intracellular processes such as lipid peroxidation, act as GST substrates.

  4. Mechanisms of lymphocytotoxicity induced by extracorporeal photochemotherapy for cutaneous T cell lymphoma

    International Nuclear Information System (INIS)

    Marks, D.I.; Rockman, S.P.; Oziemski, M.A.; Fox, R.M.

    1990-01-01

    Extracorporeal photochemotherapy is an effective treatment for cutaneous T cell lymphoma but its mode of action is uncertain. The reduction in viability of patients' photoirradiated buffy coat lymphocytes was correlated with a 35% increase in DNA single-strand breaks and marked decreases in cellular ATP and NAD levels (to 58 and 34% of control, respectively) immediately after photoirradiation. Complementary in vitro studies were conducted with normal human peripheral blood lymphocytes using a Therakos ultraviolet A (UVA) light box. UVA light was cytotoxic on its own but was potentiated by 8-methoxysporalen. 3-aminobenzamide, a poly (ADP-ribose) synthetase inhibitor, mitigated the cytotoxic effect of ultraviolet A light in the presence of 8-methoxypsoralen in lymphocytes and reduced the amount of nucleotide depletion they caused. 10 J/cm2 of UVA light in the presence of 300 ng/ml 8-methoxypsoralen increased the poly (ADP-ribose) synthetase activity of peripheral blood lymphocytes. Exposing lymphocytes to deoxycoformycin and deoxyadenosine was found to induce biochemical and physical effects similar to those of photochemotherapy. In summary, we have shown that the lymphocytotoxic effect of extracorporeal photochemotherapy for cutaneous T cell lymphoma is apparently mediated by DNA damage, subsequent poly (ADP-ribosyl)ation and adenine nucleotide depletion. It is not known how the DNA damage and resultant biochemical effects relate to the possible immunological mechanism of extracorporeal photochemotherapy; however, it is possible that its effects can be mimicked by other DNA-damaging agents

  5. Determinants of rice output among ADP contact farmers in mining ...

    African Journals Online (AJOL)

    The study analyzed factors affecting rice output among Agricultural Development Programme (ADP) contact farmers in the mining and non mining locations of IVO LGA of Ebonyi State, Nigeria. Multistage random sampling technique was used to select agricultural circles and rice farmers. The sample size was 120 rice ...

  6. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp.

    NARCIS (Netherlands)

    Voncken, F.L.M.; Boxma, B.; Tjaden, J.; Akhmanova, A.S.; Huynen, M.A.; Verbeek, F.; Tielens, A.G.; Haferkamp, I.; Neuhaus, H.E.; Vogels, G.D.; Veenhuis, M.; Hackstein, J.H.P.

    2002-01-01

    A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the

  7. Multiple origins of hydrogenosomes : functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp.

    NARCIS (Netherlands)

    Voncken, F; Boxma, B; Tjaden, J; Akhmanova, A; Huynen, M; Tielens, AGM; Haferkamp, [No Value; Neuhaus, HE; Vogels, G; Veenhuis, M; Hackstein, JHP; Tielens, Aloysius G.M.; Haferkamp, Ilka; Hackstein, Johannes H.P.

    A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the

  8. Interaction of cytochalasin D with actin filaments in the presence of ADP and ATP.

    Science.gov (United States)

    Carlier, M F; Criquet, P; Pantaloni, D; Korn, E D

    1986-02-15

    Cytochalasin D strongly inhibits the faster components in the reactions of actin filament depolymerization and elongation in the presence of 10 mM Tris-Cl-, pH 7.8, 0.2 mM dithiothreitol, 1 mM MgCl2, 0.1 mM CaCl2, and 0.2 mM ATP or ADP. Assuming an exclusive and total capping of the barbed end by the drug, the kinetic parameters derived at saturation by cytochalasin D refer to the pointed end and are 10-15-fold lower than at the barbed end. In ATP, the critical concentration increases with cytochalasin D up to 12-fold its value when both ends are free; as a result of the lowering of the free energy of nucleation by cytochalasin D, short oligomers of F-actin exist just above and below the critical concentration. Cytochalasin D interacts strongly with the barbed ends independently of the ADP-G-actin concentration (K = 0.5 nM-1). In contrast, the affinity of cytochalasin D decreases cooperatively with increasing ATP-G-actin concentration. These data are equally well accounted for by two different models: either cytochalasin D binds very poorly to ATP-capped filament ends whose proportion increases with actin concentration, or cytochalasin D binds equally well to ATP-ends and ADP-ends and also binds to actin dimers in ATP but not in ADP. A linear actin concentration dependence of the rate of growth was found at the pointed end, consistent with the virtual absence of an ATP cap at that end.

  9. PARP1 Val762Ala polymorphism reduces enzymatic activity

    International Nuclear Information System (INIS)

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin; Shen Yan

    2007-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K m of PARP1-Ala762 was increased to a 1.2-fold of the K m of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K m . This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism

  10. The synthetic inhibitor of Fibroblast Growth Factor Receptor PD166866 controls negatively the growth of tumor cells in culture

    Directory of Open Access Journals (Sweden)

    Castelli Mauro

    2009-12-01

    Full Text Available Abstract Background Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1 act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1. Methods Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture. Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by in situ fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay. Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA deriving from the decomposition of poly-unsaturated fatty acids. The expression of Poly-ADP-Ribose-Polymerase (PARP, consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme. Results The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell

  11. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    International Nuclear Information System (INIS)

    Du, Z.; Boyer, P.D.

    1990-01-01

    Washed chloroplast thylakoid membranes upon exposure to [ 3 H]ADP retain in tightly bound [ 3 H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg 2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [ 3 H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg 2+ - and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degree C and of about 15 s at 37 degree C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg 2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [ 3 H]ADP parallels the onset of ATPase activity, although some [ 3 H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [ 3 H]ADP being at a catalytic site and being replaced as this Mg 2+ - and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P i binding site of the enzyme-ADP-Mg 2+ complex to give a form more readily activated by ATP binding at an alternative site

  12. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model.

    Science.gov (United States)

    Kuenzler, Michael B; Nuss, Katja; Karol, Agnieszka; Schär, Michael O; Hottiger, Michael; Raniga, Sumit; Kenkel, David; von Rechenberg, Brigitte; Zumstein, Matthias A

    2017-05-01

    Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  14. Residual activation events functional after irradiation of mouse splenic lymphocytes

    International Nuclear Information System (INIS)

    Duncan, D.D.; Lawrence, D.A.

    1991-01-01

    We have sought to identify the radiosensitivity of lymphocytes by determining the extent of activation of mitogen-stimulated lymphocytes previously exposed to growth-inhibiting doses of radiation. Mouse splenic lymphocytes were exposed to 0-15 Gy 137Cs radiation, and structural and functional damage were assayed. Although damage to cellular thiols and nonprotein thiols was modest, there was a significant loss of viability by 6 h as determined by uptake of propidium iodide (PI). Since cells did not die immediately after irradiation, the activation events which remained were evaluated. Growth-inhibiting doses of radiation left cells partially responsive to mitogen, in that cells were able to exit G0 phase, but they could progress no further into the cell cycle than G1a phase. It is important to note that assessment of viability by uptake of PI indicated substantial cell death after 15 Gy (45%, 6 h; 90%, 24 h); however, cell cycle analysis at 24 h indicated no significant decrease in progression from G0 to G1a phase. The LPS-stimulated response of B cells was more radiosensitive than the Con A-stimulated response of T cells. Further analysis of the Con A response indicated that production of interleukin-2 (IL-2) was unaffected, but expression of the IL-2 receptor was inhibited. Inhibition of poly-ADP-ribosylation and damage to lipids did not prevent the lack of mitogen responsiveness, since neither the ADP-ribose transferase inhibitor 3-aminobenzamide nor lipid radical scavengers had restorative effects on the mitogenic response. Nor was Con A-stimulated incorporation of [3H]thymidine restored with inhibitors of prostaglandin or leukotriene synthesis, suggesting that inhibition was due to direct effects on the Con A responders, and not indirect effects mediated by arachidonate metabolites

  15. Correlation between increased platelet ADP aggregability and silent brain infarcts

    International Nuclear Information System (INIS)

    Ono, Kenichiro; Arimoto, Hirohiko; Shirotani, Toshiki

    2012-01-01

    The purpose of this study was to investigate the correlation between platelet aggregability and silent brain infarcts. The study subjects were 445 people (264 men, 181 women; mean age, 53±14 years) with no neurologic signs, history of brain tumor, trauma, cerebrovascular disease, or antiplatelet medications. Adenosine diphosphate (ADP)-induced platelet aggregation was measured by the aggregation-size analytic method. Platelet aggregability was classified into 9 classes. The presence of headache/vertigo, hypertension, diabetes mellitus, hyperlipidemia, or smoking was elicited by questioning or blood sampling. A head MRI scan was performed, and if marked atherosclerosis or obvious stenosis in the intracranial vessels was detected, it was defined as a positive MR angiography (MRA) finding. Silent brain infarcts were detected in 26.3% of subjects. Hyperaggregability defined as that above class 6, 7, and 8 was present in 43.8%, 30.8%, and 15.7% of subjects, respectively. The risk factors for silent brain infarcts by multiple logistic regression analysis were aging, hypertension, positive MRA findings, and hyperaggregability. Platelet ADP hyperaggregability might be a risk factor for silent brain infarcts. (author)

  16. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  17. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Nop M.B.K., E-mail: n.willems@acta.nl [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Langenbach, Geerling E.J. [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Stoop, Reinout [Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden (Netherlands); Toonder, Jaap M.J. den [Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Mulder, Lars [Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Zentner, Andrej [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Everts, Vincent [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands)

    2014-09-01

    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2 M ribose at 37 °C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. - Highlights: • The assessment of effects of glycation in bone using HPLC, microCT, and nanoindentation • Ribose incubation: 300‐fold increase in the number of pentosidine cross-links • 300‐fold increase in the number of pentosidine cross-links: no changes in bone tissue stiffness.

  18. 10 CFR 95.49 - Security of automatic data processing (ADP) systems.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security of automatic data processing (ADP) systems. 95.49 Section 95.49 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Control of Information § 95.49 Security of...

  19. Formation of a Tc(III)-adenosine diphosphate complex

    International Nuclear Information System (INIS)

    Torres, J.; Kremer, C.; Kremer, E.

    1995-01-01

    A 99 Tc-ADP complex was prepared when KTcO 4 was reduced in aqueous medium by SnCl 2 , Na 2 S 2 O 4 , NaBH 4 or Zn in the presence of ADP in excess. The resulting solution was studied by chromatography and spectrophotometry. Electrochemical reduction and substitution on [Tc III (tu) 6 ] 3+ were investigated as alternative synthetic routes. The anionic Tc-ADP complex was isolated as a solid. Cerimetric titrations confirmed the oxidation state +3 for the central atom. IR and 1 H-NMR data showed that the purine base is bonded to the Tc central atom but not the ribose moiety. No oxo groups seemed to be directly bonded to the Tc atom. The complex is rather stable in neutral solutions. However, it decomposes to pertechnetate and TcO 2 at extreme pH values. (author). 16 refs., 2 figs., 3 tabs

  20. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Boyer, P.D. (Univ. of California, Los Angeles (USA))

    1990-01-16

    Washed chloroplast thylakoid membranes upon exposure to ({sup 3}H)ADP retain in tightly bound ({sup 3}H)ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg{sup 2+} results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound ({sup 3}H)ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg{sup 2+}- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22{degree}C and of about 15 s at 37{degree}C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg{sup 2+} and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound ({sup 3}H)ADP parallels the onset of ATPase activity, although some ({sup 3}H)ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound ({sup 3}H)ADP being at a catalytic site and being replaced as this Mg{sup 2+}- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P{sub i} binding site of the enzyme-ADP-Mg{sup 2+} complex to give a form more readily activated by ATP binding at an alternative site.

  1. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Satbir Thakur

    Full Text Available Inhibitor of Growth (ING proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3 and target histone acetyl transferase (HAT and histone deacetylase (HDAC complexes to chromatin.Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat or a different epigenetic mechanism such as 5-azacytidine (5azaC, which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP. ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo.These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.

  2. MgADP-induced changes in the structure of myosin S1 near the ATPase-related thiol SH1 probed by cross-linking

    International Nuclear Information System (INIS)

    Rajasekharan, K.N.; Mayadevi, M.; Agarwal, R.; Burke, M.

    1990-01-01

    The structural consequence of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca 2+ -ATPase activity as a function of reaction time, it appears that the reagent rapidly modifies SH1 irrespective of whether MgADP is present or not. In the absence of nucleotide, only extremely low levels of cross-linking to the 50-kDa middle segment of S1 can be detected, while in the presence of MgADP substantial cross-linking to this segment is observed. A similar cross-link is also formed if MgADP is added subsequent to the reaction of the SH2-NEM-premodified S1 with pPDM in the absence of nucleotide. Isolation of the labeled tryptic peptide from the cross-linked adduct formed with [ 14 C]pPDM, and subsequent partial sequence analyses, indicates that the cross-link is made from SH1 to Cys-522. Moreover, it appears that this cross-link results in the trapping of MgADP in this S1 species. These data suggest that the binding of MgADP results in a change in the structure of S1 in the vicinity of the SH1 thiol relative to the 50-kDa domain which enables Cys-522 to adopt the appropriate configuration to enable it to be cross-linked to SH1 by pPDM

  3. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    Science.gov (United States)

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  4. A heterogeneous Pd-Bi/C catalyst in the synthesis of L-lyxose and L-ribose from naturally occurring D-sugars.

    Science.gov (United States)

    Fan, Ao; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2011-10-26

    A critical step in the synthesis of the rare sugars, L-lyxose and L-ribose, from the corresponding D-sugars is the oxidation to the lactone. Instead of conventional oxidizing agents like bromine or pyridinium dichromate, it was found that a heterogeneous catalyst, Pd-Bi/C, could be used for the direct oxidation with molecular oxygen. The composition of the catalyst was optimized and the best results were obtained with 5 : 1 atomic ratio of Pd : Bi. The overall yields of the five-step procedure to L-ribose and L-lyxose were 47% and 50%, respectively. The synthetic procedure is advantageous from the viewpoint of overall yield, reduced number of steps, and mild reaction conditions. Furthermore, the heterogeneous oxidation catalyst can be easily separated from the reaction mixture and reused with no loss of activity.

  5. Glutathione S - transferases class Pi and Mi and their significance in oncology

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2017-06-01

    Full Text Available In this article the current data, which shows that glutathione S-transferases (GST class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  6. Glutathione S - transferases class Pi and Mi and their significance in oncology.

    Science.gov (United States)

    Marchewka, Zofia; Piwowar, Agnieszka; Ruzik, Sylwia; Długosz, Anna

    2017-06-19

    In this article the current data, which shows that glutathione S-transferases (GST) class Pi and Mi are interesting and promising biomarkers in acute and chronic inflammatory processes as well as in the oncology, were presented based on the review of the latest experimental and clinical studies. The article shows their characteristics, functions and participation (direct - GST Pi, indirect - GST Mi) in the regulation of signaling pathways of JNK kinases, which are involved in cell differentiation. Overexpression of glutathione S-transferases class Pi and Mi in many cancer cells plays a key role in cancer treatment, making them resistant to chemotherapy. GST isoenzymes are involved in the metabolism of various types of xenobiotics and endogenous substrates, so their altered expression in cancer tissues as well as in serum and urine could be an important potential marker of the cancer and an indicator of oxidative stress. The study shows the role of glutathione S-transferases in redox homeostasis of tumor cells and in the mechanism of resistance to anticancer drugs.

  7. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Directory of Open Access Journals (Sweden)

    Chin-Soon Chee

    2014-01-01

    Full Text Available Glutathione transferases (GST were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW of 23 kDa. 2-dimensional (2-D gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5 and GST2 (pI 6.2 with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase and F0KKB0 (glutathione S-transferase III of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  8. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Science.gov (United States)

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  9. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Neelsen, Kai J; Teloni, Federico

    2015-01-01

    disordered proteins at DNA break sites. Demixing, which relies on electrostatic interactions between positively charged RGG repeats and negatively charged PAR, is amplified by aggregation-prone prion-like domains, and orchestrates the earliest cellular responses to DNA breakage. We propose that PAR...

  10. 211At-α-dose dependence of poly-ADP-ribosylation of human glioblastoma cells in vitro. Suitability in cancer therapy?

    International Nuclear Information System (INIS)

    Schneeweiss, F.H.A.

    1999-01-01

    Aim: It was intended to test the biological response (poly-ADP-ribosylation of cellular proteins) of α-particles from extracellular 211 At for enhanced damage to human glioblastoma cells in vitro and to discuss its suitability for potential application in therapy of high-grade gliomas. Materials and Methods: Confluent cultures of human glioblastoma cells were exposed to different doses of α-radiations from homogeneously distributed extracellular 211 At. Cellular poly-ADP-ribosylation of all proteins including histones was monitored since it is an indirect but sensitive indicator of chromatin damage and putative repair in both normal and malignant mammalian cells. Results: A significant diminution (average 85.6%) in poly-ADP-ribosylation of total cellular proteins relative to that for non-irradiated glioblastoma cells was observed following 0.025 to 1.0 Gy α-radiations. In the dose range of 0.0025 to 0.01 Gy there was an increase with a maximum value of approximately 119.0% at 0.0025 Gy. Below 0.0025 Gy no change in poly-ADP-ribosylation was observed. Conclusions: Level of cellular poly-ADP-ribosylation of proteins at 0.025 to 1.0 Gy of α-radiation dose from 211 At appears to cause enhanced damage by creating molecular conditions which are not conductive to repair of DNA damages in human glioblastoma cells in vitro. Therefore, it is assumed that clinical application of 211 At at least in this dose range might enhance clinical efficacy in radiotherapy of cancer. (orig.) [de

  11. Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration

    OpenAIRE

    Won, Seok Joon; Jang, Bong Geom; Yoo, Byung Hoon; Sohn, Min; Lee, Min Woo; Choi, Bo Young; Kim, Jin Hee; Song, Hong Ki; Suh, Sang Won

    2012-01-01

    Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD+...

  12. Cloning and expression of PARP-3 (Adprt3) and U3-55k, two genes closely linked on mouse chromosome 9

    Czech Academy of Sciences Publication Activity Database

    Urbánek, Pavel; Pačes, Jan; Králová, Jarmila; Dvořák, Michal; Pačes, Václav

    2002-01-01

    Roč. 48, č. 5 (2002), s. 182-191 ISSN 0015-5500 R&D Projects: GA AV ČR IAA5052802; GA ČR GA204/00/0554; GA MŠk(CZ) LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : poly(ADP-ribose) polymerase * U3 snoRNP * bi-directional promoter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.615, year: 2002

  13. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  14. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  15. Data-Driven Zero-Sum Neuro-Optimal Control for a Class of Continuous-Time Unknown Nonlinear Systems With Disturbance Using ADP.

    Science.gov (United States)

    Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei

    2016-02-01

    This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.

  16. The human NAD metabolome: Functions, metabolism and compartmentalization

    Science.gov (United States)

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  17. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression

    DEFF Research Database (Denmark)

    Sørensen, Kim I.; Hove-Jensen, Bjarne

    1996-01-01

    . The rpiB gene resided on a 4.6-kbp HindIII-EcoRV DNA fragment from phage lambda 10H5 (642) of the Kohara gene library and mapped at 92.85 min. Consistent with this map position, the cloned DNA fragment contained two divergent open reading frames of 149 and 296 codons, encoding ribose phosphate isomerase B...

  18. Characterization of MVP and VPARP assembly into vault ribonucleoprotein complexes.

    Science.gov (United States)

    Zheng, Chun-Lei; Sumizawa, Tomoyuki; Che, Xiao-Fang; Tsuyama, Shinichiro; Furukawa, Tatsuhiko; Haraguchi, Misako; Gao, Hui; Gotanda, Takenari; Jueng, Hei-Cheul; Murata, Fusayoshi; Akiyama, Shin-Ichi

    2005-01-07

    Vaults are barrel-shaped cytoplasmic ribonucleoprotein particles composed of three proteins: the major vault protein (MVP), the vault poly(ADP-ribose)polymerase (VPARP), and the telomerase-associated protein 1, together with one or more small untranslated RNAs. To date, little is known about the process of vault assembly or about the stability of vault components. In this study, we analyzed the biosynthesis of MVP and VPARP, and their half-lives within the vault particle in human ACHN renal carcinoma cells. Using an immunoprecipitation assay, we found that it took more than 4h for newly synthesized MVPs to be incorporated into vault particles but that biosynthesized VPARPs were completely incorporated into vaults within 1.5h. Once incorporated into the vault complex, both MVP and VPARP were very stable. Expression of human MVP alone in Escherichia coli resulted in the formation of particles that had a distinct vault morphology. The C-terminal region of VPARP that lacks poly(ADP-ribose)polymerase activity co-sedimented with MVP particles. This suggests that the activity of VPARP is not essential for interaction with MVP-self-assembled vault-like particles. In conclusion, our findings provide an insight into potential mechanisms of physiological vault assembly.

  19. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  20. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  1. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Geeta; Kumar, Ashutosh [Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062 (India); Sharma, Shyam S., E-mail: sssharma@niper.ac.in [Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062 (India)

    2010-01-01

    Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).

  2. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol.

    Directory of Open Access Journals (Sweden)

    Eszter Bognar

    Full Text Available Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about its effect on inflammatory processes and kinase signaling pathways. METHODS FINDINGS: The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production, mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation.These effects of malvidin may explain the previous findings and at least partially account for the positive effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes, hypertension and cardiovascular disease.

  3. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    Science.gov (United States)

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  4. Steroid sulfatase and sulfuryl transferase activities in human brain tumors

    Czech Academy of Sciences Publication Activity Database

    Kříž, L.; Bičíková, M.; Mohapl, M.; Hill, M.; Černý, Ivan; Hampl, R.

    2008-01-01

    Roč. 109, č. 1 (2008), s. 31-39 ISSN 0960-0760 Institutional research plan: CEZ:AV0Z40550506 Keywords : dehydroepiandrosterone * steroid sulfatase * steroid sulfuryl transferase * brain Subject RIV: CC - Organic Chemistry Impact factor: 2.827, year: 2008

  5. [The effect of 3-aminobenzamide on the mitotic cycle of Chinese hamster cells cultured on a medium with 5-bromodeoxyuridine following ionizing radiation action].

    Science.gov (United States)

    Kirillova, T V; Rozanov, Iu M; Spivak, I M

    1992-01-01

    A specific inhibitor of poly(ADP-ribose)polymerase-3-aminobenzamide (6 mM) has been shown to: 1) reduce survival of non-irradiated CHO-K1 cells, cultivated in medium containing 5-bromodeoxyuridine (10 mkM, BDU cells), and increase their radiosensitivity; 2) induce G2 delay in BDU cells while progressing through the cell cycle as analysed by the DNA flow cytometry; 3) increase to a great degree G2 delay in X-irradiated BDU cells. 3-Aminobenzamide is primarily effective when it is present during the first or two first cell cycles after the initial addition of BDU. The above data confirm the involvement, presumably an indirect one, of ADP-ribosylation in the DNA repair through affecting the chromatin structure.

  6. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Science.gov (United States)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  7. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    OpenAIRE

    Kyoung-jin Min; Ju-Ock Nam; Taeg Kyu Kwon

    2017-01-01

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (...

  8. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  9. ADP-ribosylation of nonhistone proteins from metaphase and interphase HeLa cells: factors responsible for differences

    International Nuclear Information System (INIS)

    Adolph, K.W.

    1986-01-01

    A striking reduction was previously detected for HeLa metaphase chromosomes, compared to interphase nuclei, in the number of modified nonhistone species. Several factors which could contribute to this cell cycle change in ADP-ribosylation have therefore been examined. In these experiments, mitotic or interphase cells were incubated with [ 32 P]NAD, chromosomes and nuclei were prepared, and the proteins were resolved by polyacrylamide gel electrophoresis. The level of incorporation of 32 P label was found to be substantially influenced by chromosome expansion, DNA nicking, disruption of chromosomes or nuclei, and the growth activity of cells. The level of ADP-ribosylation was not greatly affected by the presence of inhibitors of RNA, DNA, and protein synthesis. NAD concentration influenced the extent of labelling but not the pattern of labeled species. A similar change in the pattern from interphase to mitosis was observed for whole cells as well as for isolated chromosomes and nuclei. The procedure used to arrest cells in mitosis was not artifactually responsible for the results. The difference in metaphase and interphase ADP-ribosylation is not confined to HeLa cells, since comparable patterns were found for chromosomes and nuclei from Novikoff rat hepatoma cells

  10. Site of ADP-ribosylation and the RNA-binding site are situated in different domains of the elongation factor EF-2

    International Nuclear Information System (INIS)

    Davydova, E.K.

    1987-01-01

    One of the proteins participating in the process of elongation of polypeptide chains - elongation factor 2 (EF-2) - can be ADP-ribosylated at a unique amino acid residue - diphthamide. Since the ADP-ribosylation of EF-2 at dipthamide leads to a loss of affinity of the factor for RNA while the presence of RNA inhibits the ADP-ribosylation reaction, it seemed probable to the authors that diphthamide participated directly in the binding of EF-2 to DNA. The experiments presented in this article showed that this was not the case: diphthamide and the RNA-binding site are situated on different domains of EF-2. Thus, ADP-ribosylation of factor EF-2 in one domain leads to a loss of the ability to bind to RNA in the other. The authors investigated the mutual arrangement of diphthamide and the RNA-binding site on the EF-2 molecule by preparing a factor from rabbit reticulocytes and subjecting it to proteolytic digestion with elastase. The factor was incubated with elastase for 15 min at 37 0 C at an enzyme:substrate ratio of 1:100 in buffer solution containing 20 mM Tris-HCl, pH 7.6, 10 mM KCl, 1 mM MgCl 2 , and 2 mM dithiothreitol. The reaction was stopped by adding para-methylsulfonyl fluoride to 50 micro-M. The authors obtained a preparation as a result of proteolysis and applied it on a column with RNA-Sepharose and separated into two fractions: RNA-binding and without affinity for RNA. The initial preparation and its fractions were subjected to exhaustive ADP-ribosylation in the presence of diphtheria toxin and [U- 14 C] nicotinaide adenine dinucleotide ([ 14 C]NAD) (296 mCi/mmole). The samples were analyzed electrophoretically in a polyacrylamide gel gradient in the presence of sodium dodecyl sulfate. For the detection of [ 14 C] ADP-ribosylated components, the gels were dried and exposed with RM-V x-ray film

  11. Effects of the gelatin plasma substitutes Haemaccel, Plasmagel and Plasmion (Geloplasma) on collagen-, ADP- and adrenaline-induced aggregation of human platelets in vitro.

    Science.gov (United States)

    Stibbe, J; van der Plas, P M; Ong, G L; ten Hoor, F; Nauta, J; de Jong, D S; Krenning-Douma, E; Gomes, M

    1981-01-01

    The effect of some gelatin plasma substitutes (Haemaccel, plasmagel and Plasmion (Geloplasma), which are widely used in Europe) on collagen-, ADP- and adrenaline-induced platelet aggregation in human PRP in vitro was studied under controlled conditions (pH, electrolyte composition). Haemaccel inhibited these aggregations, both in citrated as well as in heparinised PRP, whereas they were enhanced by both Plasmagel and Plasmion as compared to the appropriate control. Increasing teh concentration of the inducer overcame the inhibition by Haemaccel. Haemaccel inhibited, while Plasmion enhanced 14C-serotonin release induced by collagen, ADP or adrenaline. Also in the presence of indomethacin (90 muM) Haemaccel inhibited aggregation induced by high concentrations of collagen and the primary aggregation induced by ADP and adrenaline, while Plasmion enhanced these aggregations induced by ADP and adrenaline, while Plasmion enhanced these aggregations. The inhibition by Haemaccel was not caused by binding of Ca2+ to haemaccel.

  12. Reference quantum chemical calculations on RNA base pairs directly involving the 2'-OH group of ribose

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Zgarbová, M.; Jurečka, Petr; Riley, K.E.; Šponer, Judit E.; Hobza, Pavel

    2009-01-01

    Roč. 5, č. 4 (2009), s. 1166-1179 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA AV ČR(CZ) IAA400550701; GA MŠk(CZ) LC06030; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : RNA * ribose * quantum calculations Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  13. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Kim D Allen

    Full Text Available Long-term memory (LTM formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose polymerase-1 (PARP-1, are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosylation (PAR dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP ribose molecules (pADPr after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA and extracellular signal-regulated kinase (ERK--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I, responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.

  14. Acrolein-detoxifying isozymes of glutathione transferase in plants.

    Science.gov (United States)

    Mano, Jun'ichi; Ishibashi, Asami; Muneuchi, Hitoshi; Morita, Chihiro; Sakai, Hiroki; Biswas, Md Sanaullah; Koeduka, Takao; Kitajima, Sakihito

    2017-02-01

    Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.

  15. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.; Schultz, R.M. (Univ. of Pennsylvania, Philadelphia (USA))

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.

  16. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    Science.gov (United States)

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    Science.gov (United States)

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  18. Cooperation of terminal deoxynucleotidyl transferase with DNA polymerase α in the replication of ultraviolet-irradiated DNA

    International Nuclear Information System (INIS)

    Yoshida, S.; Masaki, S.; Nakamura, H.; Morita, T.

    1981-01-01

    The amount of DNA synthesis in vitro with the ultraviolet-irradiated poly(dT).oligo(rA) template initiators catalysed by DNA polymerase α (Masaki, S. and Yoshida, S., Biochim. Biophys. Acta 521, 74-88) decreased with the dose of ultraviolet-irradiation. The ultraviolet irradiation to the template, however, did not affect the rate of incorporation of incorrect deoxynucleotides into the newly synthesized poly(dA). The addition of terminal deoxynucleotidyl transferase to this system enhanced the DNA synthesis to a level which is comparable to that of the control and it concomitantly increased the incorporation of the mismatched deoxynucleotide into the newly synthesized poly(dA) strands. On the other hand, with an unirradiated template initiator, the misincorporation was only slightly enhanced by the addition of terminal deoxynucleotidyl transferase. The sizes of newly synthesized DNA measured by the sedimentation velocities were found to be smaller with the ultraviolet-irradiated templates but they increased to the control level with the addition of terminal deoxynucleotidyl transferase to the systems. These results suggest that terminal deoxynucleotidyl transferase can help DNA polymerase α to bypass thymine dimers in vitro by the formation of mismatched regions at the positions opposite to pyrimidine dimers on the template. (Auth.)

  19. Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence

    Energy Technology Data Exchange (ETDEWEB)

    Benz, T; Hampp, R; Horsch, F; Filby, G; Fund, N; Gross, S; Hanisch, B; Kilz, E; Seidel, A [comps.

    1986-04-01

    Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence. Lyophilized needles of Picea abies (Kaelbelescheuer, southern Black Forest) were analyzed for their content of adenine nucleotides (ATP, ADP, AMP: AdN) and of inorganic phosphate (Psub(i)). The metabolite levels were related to needle age, vegetation period and degree of damage (chlorophyll content). The results were as follows: 1) With increasing needle age there is a general decrease in the total AdN-pool. This decrease is most pronounced in very young needles and occurs in both healthy and damaged tissue. 2) The ATP/ADP-ratio of damaged needle is significantly higher than that of healthy ones. 3) Both phosphorylation potential (ATP.(ADP.Psub(i))/sup -1/) and adenylate energy charge ((ATP + 0.5.ADP).(AdN)/sup -1/) are significantly reduced in damaged needles. This is due to relatively higher levels of Psub(i) and of AMP. The results, although incomplete and preliminary, indicate metabolic alterations which have been described for other tissues in response to pollution by photooxidants.

  20. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  1. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms

    DEFF Research Database (Denmark)

    Ross, Fiona A; Jensen, Thomas Elbenhardt; Hardie, D Grahame

    2016-01-01

    The g subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different g isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged ve...

  2. Molecular Toxicology of Chromatin: The Role of Poly(ADP-Ribose) in Gene Control.

    Science.gov (United States)

    1985-02-01

    Code) 103 Surge, 3rd and Parnassus Building 410 San Francisco, CA 94143 Bolling AFB, DC 20332-6448 go. NAME OF FUNDING/SPONSORING fib. OFFICE SYMBOL 9...UV-transfomed human fibroblasts do not exhibit .uortalit or unrestrained invasiveness In different species, similar to several types of human cancer...ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBIER(S) AFOSR-TR. 85 -0 4 6 G. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a

  3. Lectin Domains of Polypeptide GalNAc Transferases Exhibit Glycopeptide Binding Specificity

    DEFF Research Database (Denmark)

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G

    2011-01-01

    UDP-GalNAc:polypeptide a-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection...... of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence...... on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate...

  4. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T

    2014-01-01

    sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable......Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms....... Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal...

  5. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.

    Science.gov (United States)

    Poulsen, S M; Karlsson, M; Johansson, L B; Vester, B

    2001-09-01

    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.

  6. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Regulation of poly(ADP-ribose (PAR synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose polymerase-1 (PARP-1 occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β. The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS, or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.

  7. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  8. Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS

    Directory of Open Access Journals (Sweden)

    Valovka Taras

    2008-07-01

    Full Text Available Abstract Background The enzymes responsible for the synthesis of poly-ADP-ribose are named poly-ADP-ribose polymerases (PARP. PARP-2 is a nuclear protein, which regulates a variety of cellular functions that are mainly controlled by protein-protein interactions. A previously described non-conventional bipartite nuclear localization sequence (NLS lies in the amino-terminal DNA binding domain of PARP-2 between amino acids 1–69; however, this targeting sequence has not been experimentally examined or validated. Results Using a site-directed mutagenesis approach, we found that lysines 19 and 20, located within a previously described bipartite NLS, are not required for nuclear localization of PARP-2. In contrast, lysine 36, which is located within a predicted classical monopartite NLS, was required for PARP-2 nuclear localization. While wild type PARP-2 interacted with importin α3 and to a very weak extent with importin α1 and importin α5, the mutant PARP-2 (K36R did not interact with importin α3, providing a molecular explanation why PARP-2 (K36R is not targeted to the nucleus. Conclusion Our results provide strong evidence that lysine 36 of PARP-2 is a critical residue for proper nuclear targeting of PARP-2 and consequently for the execution of its biological functions.

  9. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS.

    Science.gov (United States)

    Pachkowski, Brian F; Tano, Keizo; Afonin, Valeriy; Elder, Rhoderick H; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2009-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase beta.

  10. Possible involvement of 12-lipoxygenase activation in glucose-deprivation/reload-treated neurons.

    Science.gov (United States)

    Nagasawa, Kazuki; Kakuda, Taichi; Higashi, Youichirou; Fujimoto, Sadaki

    2007-12-18

    The aim of this study was to clarify whether 12-lipoxygenase (12-LOX) activation was involved in reactive oxygen species (ROS) generation, extensive poly(ADP-ribose) polymerase (PARP) activation and neuronal death induced by glucose-deprivation, followed by glucose-reload (GD/R). The decrease of neuronal viability and accumulation of poly(ADP-ribose) induced by GD/R were prevented 3-aminobenzamide, a representative PARP inhibitor, demonstrating this treatment protocol caused the same oxidative stress with the previously reported one. The PARP activation, ROS generation and decrease of neuron viability induced by GD/R treatment were almost completely abolished by an extracellular zinc chelator, CaEDTA. p47(phox), a cytosolic component of NADPH oxidase was translocated the membrane fraction by GD/R, indicating its activation, but it did not generate detectable ROS. Surprisingly, pharmacological inhibition of NADPH oxidase with apocynin and AEBSF further decreased the decreased neuron viability induced by GD/R. On the other hand, AA861, a 12-LOX inhibitor, prevented ROS generation and decrease of neuron viability caused by GD/R. Interestingly, an antioxidant, N-acetyl-l-cysteine rescued the neurons from GD/R-induced oxidative stress, implying effectiveness of antioxidant administration. These findings suggested that activation of 12-LOX, but not NADPH oxidase, following to zinc release might play an important role in ROS generation and decrease of viability in GD/R-treated neurons.

  11. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  12. Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents.

    Science.gov (United States)

    Bhat, Rajeev; Karim, A A

    2014-07-01

    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.

  13. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes.

    Science.gov (United States)

    Meynier, Alexandra; Razik, Hafida; Cordelet, Catherine; Grégoire, Stéphane; Demaison, Luc

    2003-01-01

    Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 microM) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + alpha-ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 microM), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or alpha-ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place

  14. Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Pengchong Jiang

    Full Text Available Nerve injury is accompanied by a liberation of diverse nucleotides, some of which act as 'find/eat-me' signals in mediating neuron-glial interplay. Intercellular Ca2+ wave (ICW communication is the main approach by which glial cells interact and coordinate with each other to execute immune defense. However, the detailed mechanisms on how these nucleotides participate in ICW communication remain largely unclear. In the present work, we employed a mechanical stimulus to an individual BV-2 microglia to simulate localized injury. Remarkable ICW propagation was observed no matter whether calcium was in the environment or not. Apyrase (ATP/ADP-hydrolyzing enzyme, suramin (broad-spectrum P2 receptor antagonist, 2-APB (IP3 receptor blocker and thapsigargin (endoplasmic reticulum calcium pump inhibitor potently inhibited these ICWs, respectively, indicating the dependence of nucleotide signals and P2Y receptors. Then, we detected the involvement of five naturally occurring nucleotides (ATP, ADP, UTP, UDP and UDP-glucose by desensitizing receptors. Results showed that desensitization with ATP and ADP could block ICW propagation in a dose-dependent manner, whereas other nucleotides had little effect. Meanwhile, the expression of P2Y receptors in BV-2 microglia was identified and their contributions were analyzed, from which we suggested P2Y12/13 receptors activation mostly contributed to ICWs. Besides, we estimated that extracellular ATP and ADP concentration sensed by BV-2 microglia was about 0.3 μM during ICWs by analyzing calcium dynamic characteristics. Taken together, these results demonstrated that the nucleotides ATP and ADP were predominant signal transmitters in mechanical stimulation-induced ICW communication through acting on P2Y12/13 receptors in BV-2 microglia.

  15. The Anticancer Effects of Radachlorin-mediated Photodynamic Therapy in the Human Endometrial Adenocarcinoma Cell Line HEC-1-A.

    Science.gov (United States)

    Kim, Su-Mi; Rhee, Yun-Hee; Kim, Jong-Soo

    2017-11-01

    We investigated the effect of photodynamic therapy (PDT) using radachlorin on invasion, vascular formation and apoptosis by targeting epidermal growth factor receptor (EGFR)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathways in the HEC-1-A endometrial adenocarcinoma cell line. To investigate the apoptotic pathway, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and western blot analysis. We also evaluated the effects of PDT on tubular capillary formation in and invasion by HEC-1-A cells with a tube formation assay, invasion assay, prostaglandin E2 (PGE2) assay, and western blot analysis. PDT had anticancer effects on HEC-1-A through activation of the intrinsic pathway of apoptosis via caspase-9 and poly-(ADP-ribose) polymerase (PARP). PDT also inhibited tubular capillary formation in and invasion by HEC-1-A under VEGF pretreatment, that resulted from down-regulation of VEGFR2, EGFR, Ras homolog gene family/ member A (RhoA) and PGE2. These results are indicative of the specificity of radachlorin-mediated PDT to VEGF. The major advantage of radachlorin-mediated PDT is its selectivity for cancer tissue while maintaining adjacent normal endometrial tissue. Therefore, radachlorin-mediated PDT might offer high anticancer efficacy for endometrial adenocarcinoma and an especially useful modality for preserving fertility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway.

    Science.gov (United States)

    Ni, B; Bai, F F; Wei, Y; Liu, M J; Feng, Z X; Xiong, Q Y; Hua, L Z; Shao, G Q

    2015-09-25

    Lipid-associated membrane proteins (LAMPs) are important in the pathogenicity of the Mycoplasma genus of bacteria. We investigated whether Mycoplasma hyopneumoniae LAMPs have pathogenic potential by inducing apoptosis in a St. Jude porcine lung epithelial cell line (SJPL). LAMPs from a pathogenic strain of M. hyopneumoniae (strain 232) were used in the research. Our investigation made use of diamidino-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) analysis, and Annexin-V-propidium iodide staining. After LAMP treatment for 24 h, typical changes were induced, chromosomes were concentrated, apoptotic bodies were observed, the 3'-OH groups of cleaved genomes were exposed, and the percentage of apoptotic cells reached 36.5 ± 11.66%. Caspase 3 and caspase 8 were activated and cytochrome c (cyt c) was released from the mitochondria into the cytoplasm; poly ADP ribose polymerase (PARP) was digested into two fragments; p38 mitogen-activated protein kinase (MAPK) was phosphorylated; and the expression of pro-apoptosis protein Bax increased while the anti-apoptosis protein Bcl-2 decreased. LAMPs also stimulated SJPL cells to produce nitric oxide (NO) and superoxide. This study demonstrated that LAMPs from M. hyopneumoniae can induce apoptosis in SJPL cells through the activation of caspase 3, caspase 8, cyt c, Bax, and p38 MAPK, thereby contributing to our understanding of the pathogenesis of M. hyopneumoniae, which should improve the treatment of M. hyopneumoniae infections.

  17. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    International Nuclear Information System (INIS)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-01-01

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT TM , a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE 2 synthases, leukotriene (LT) A 4 hydrolase and LTC 4 synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.

  18. Parthanatos, a messenger of death

    OpenAIRE

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2009-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s multiple roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include, but are not limited to DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its active role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 over activation underlies cell death in experimental models of stroke, diabet...

  19. Hydrogen ADPs with Cu Kα data? Invariom and Hirshfeld atom modelling of fluconazole.

    Science.gov (United States)

    Orben, Claudia M; Dittrich, Birger

    2014-06-01

    For the structure of fluconazole [systematic name: 2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol] monohydrate, C13H12F2N6O·H2O, a case study on different model refinements is reported, based on single-crystal X-ray diffraction data measured at 100 K with Cu Kα radiation to a resolution of sin θ/λ of 0.6 Å(-1). The structure, anisotropic displacement parameters (ADPs) and figures of merit from the independent atom model are compared to `invariom' and `Hirshfeld atom' refinements. Changing from a spherical to an aspherical atom model lowers the figures of merit and improves both the accuracy and the precision of the geometrical parameters. Differences between results from the two aspherical-atom refinements are small. However, a refinement of ADPs for H atoms is only possible with the Hirshfeld atom density model. It gives meaningful results even at a resolution of 0.6 Å(-1), but requires good low-order data.

  20. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Liu W

    2014-11-01

    Full Text Available Weixi Liu,1 Menashi A Cohenford,1–3 Leslie Frost,3 Champika Seneviratne,4 Joel A Dain1 1Department of Chemistry, University of Rhode Island, Kingston, RI, USA; 2Department of Integrated Science and Technology, 3Department of Chemistry, Marshall University, Huntington, WV, USA; 4Department of Chemistry, College of the North Atlantic, Labrador, NL, Canada Abstract: Formation of advanced glycation end products (AGEs by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs on the D-ribose glycation of bovine serum albumin (BSA. A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. Keywords: gold nanoparticles, glycation, AGEs, GNPs, BSA

  1. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...... in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane...

  2. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    Science.gov (United States)

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    Science.gov (United States)

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  4. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    International Nuclear Information System (INIS)

    Torres, Rodrigo; Lan, Benson; Latif, Yama; Chim, Nicholas; Goulding, Celia W.

    2014-01-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  5. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Rodrigo; Lan, Benson; Latif, Yama; Chim, Nicholas [UC Irvine, 2212 Natural Sciences I, Irvine, CA 92697 (United States); Goulding, Celia W., E-mail: celia.goulding@uci.edu [UC Irvine, 2212 Natural Sciences I, Irvine, CA 92697 (United States); UC Irvine, 2302 Natural Sciences I, Irvine, CA 92697 (United States)

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  6. Co-factor engineering in lactobacilli: Effects of uncoupled ATPase activity on metabolic fluxes in Lactobacillus (L.) plantarum and L. sakei

    DEFF Research Database (Denmark)

    Rud, Ida; Solem, Christian; Jensen, Peter Ruhdal

    2008-01-01

    The hydrolytic F-1-part of the F1F0-ATPase was over-expressed in Lactobacillus (L.) plantarum NC8 and L. sakei Lb790x during fermentation of glucose or ribose, in order to study how changes in the intracellular levels of ATP and ADP affect the metabolic fluxes. The uncoupled ATPase activity...... resulted in a decrease in intracellular energy level (ATP/ADP ratio), biomass yield and growth rate. Interestingly, the glycolytic and ribolytic flux increased in L. plantarum with uncoupled ATPase activity compared to the reference strain by up to 20% and 50%, respectively. The ATP demand was estimated...... to have approximately 80% control on both the glycolytic and ribolytic flux in L. plantarum under these conditions. In contrast, the glycolytic and ribolytic flux decreased in L. sakei with uncoupled ATPase activity. (C) 2008 Elsevier Inc. All rights reserved....

  7. Differences in the stimulation of repair replication by 3-aminobenzamide in lymphoblastoid cells damaged by methylmethanesulfonate or ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Morgan, W.F.

    1987-09-01

    Human lymphoblastoid cells damaged by u.v. light accumulated DNA breaks in the presence of cytosine arabinoside and hydroxyurea at a frequency similar to that of cells damaged by methylmethanesulfonate. 3-Aminobenzamide (1 mM) reduced the net strand-break frequency detected after either kind of damage. Repair replication, however, was stimulated only in methylmethanesulfonate-damaged cells. This stimulation is therefore not related directly to the DNA strand-break frequencies and concomitant poly(ADP-ribose) synthesis, but depends on some other cellular response specific to alkylating agents.

  8. Genomic organization of plant aminopropyl transferases.

    Science.gov (United States)

    Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco

    2010-07-01

    Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the

  9. Structures of a putative ζ-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis

    International Nuclear Information System (INIS)

    Edwards, Thomas E.; Bryan, Cassie M.; Leibly, David J.; Dieterich, Shellie H.; Abendroth, Jan; Sankaran, Banumathi; Sivam, Dhileep; Staker, Bart L.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2011-01-01

    The pathogenic fungus C. immitis causes coccidioidomycosis, a potentially fatal disease. Here, apo and glutathione-bound crystal structures of a previously uncharacterized protein from C. immitis that appears to be a ζ-class glutathione S-transferase are presented. Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with ζ-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a ζ-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI)

  10. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola.

    Science.gov (United States)

    Calmes, Benoit; Morel-Rouhier, Mélanie; Bataillé-Simoneau, Nelly; Gelhaye, Eric; Guillemette, Thomas; Simoneau, Philippe

    2015-06-18

    Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.

  11. Yeast Mitochondrial ADP/ATP Carriers Are Monomeric in Detergents as Demonstrated by Differential Affinity Purification

    NARCIS (Netherlands)

    Bamber, Lisa; Slotboom, Dirk-Jan; Kunji, Edmund R.S.; Barber, L

    2007-01-01

    Most mitochondrial carriers carry out equimolar exchange of substrates and they are believed widely to exist as homo-dimers. Here we show by differential tagging that the yeast mitochondrial ADP/ATP carrier AAC2 is a monomer in mild detergents. Carriers with and without six-histidine or

  12. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism

    Czech Academy of Sciences Publication Activity Database

    Downey, Alan Michael; Pohl, Radek; Roithová, J.; Hocek, Michal

    2017-01-01

    Roč. 23, č. 16 (2017), s. 3910-3917 ISSN 0947-6539 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA16-00178S Institutional support: RVO:61388963 Keywords : epoxides * glycosylation * nucleosides * riboses * synthesis design Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 5.317, year: 2016

  13. A Simple and Rapid Determination of ATP, ADP and AMP Concentrations in Pericarp Tissue of Litchi Fruit by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Weibo Jiang

    2006-01-01

    Full Text Available A simple and rapid method using high performance liquid chromatography (HPLC was developed to determine levels of adenosine triphosphate (ATP, adenosine diphosphate (ADP and adenosine monophosphate (AMP in litchi fruit pericarp tissue. This HPLC method used acetonitrile gradient elution and shortened the time required for determinations of adenosine phosphates. This analysis exhibited good repeatability (coefficients of variation 1.28–1.80 % and recovery rate (94.7–97.1 %. The correlation coefficients of ATP, ADP and AMP with their peak areas at a range of 0–80 ng were 0.9946, 0.9994 and 0.9974, respectively. This method was applied to determine levels of adenosine phosphates in pericarp tissue of litchi fruit at harvest. There were 27.4 μg/g of ATP, 35.4 μg/g of ADP and 7.9 μg/g of AMP on a fresh mass basis.

  14. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  15. Global deletion of glutathione S-Transferase A4 exacerbates developmental nonalcoholic steatohepatitis

    Science.gov (United States)

    We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor a (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We us...

  16. The Impact of Type 2 Diabetes on the Efficacy of ADP Receptor Blockers in Patients with Acute ST Elevation Myocardial Infarction: A Pilot Prospective Study

    Directory of Open Access Journals (Sweden)

    Matej Samoš

    2016-01-01

    Full Text Available Background. The aim of this study was to validate the impact of type 2 diabetes (T2D on the platelet reactivity in patients with acute ST elevation myocardial infarction (STEMI treated with adenosine diphosphate (ADP receptor blockers. Methods. A pilot prospective study was performed. Totally 67 patients were enrolled. 21 patients had T2D. Among all study population, 33 patients received clopidogrel and 34 patients received prasugrel. The efficacy of ADP receptor blocker therapy had been tested in two time intervals using light transmission aggregometry with specific inducer and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P flow cytometry assay. Results. There were no significant differences in platelet aggregability among T2D and nondiabetic (ND group. The platelet reactivity index of VASP-P did not differ significantly between T2D and ND group (59.4±30.9% versus 60.0±25.2% and 33.9±25.3% versus 38.6±29.3% in second testing. The number of ADP receptor blocker nonresponders did not differ significantly between T2D and ND patients. The time interval from ADP receptor blocker loading dosing to the blood sampling was similar in T2D and ND patients in both examinations. Conclusion. This prospective study did not confirm the higher platelet reactivity and higher prevalence of ADP receptor blocker nonresponders in T2D acute STEMI patients.

  17. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS

    Energy Technology Data Exchange (ETDEWEB)

    Pachkowski, Brian F. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tano, Keizo [Research Reactor Institute, Kyoto University, Kumatori (Japan); Afonin, Valeriy [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Elder, Rhoderick H. [School of Environment and Life Sciences, University of Salford, Greater Manchester (United Kingdom); Takeda, Shunichi [Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Watanabe, Masami [Research Reactor Institute, Kyoto University, Kumatori (Japan); Swenberg, James A. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Nakamura, Jun, E-mail: ynakamur@email.unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States)

    2009-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase {beta}.

  18. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  19. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Diniz, Gabriela Placoná; Ricachenevsky, Felipe Klein; Pochmann, Daniela; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas

    2005-05-01

    The presence of severe neurological symptoms in thyroid diseases has highlighted the importance of thyroid hormones in the normal functioning of the mature brain. Since, ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system (CNS), the ectonucleotidase cascade that hydrolyzes ATP to adenosine, is also involved in the control of brain functions. Thus, we investigated the influence of hyper-and hypothyroidism on the ATP, ADP and AMP hydrolysis in hippocampal and cortical slices from adult rats. Hyperthyroidism was induced by daily injections of l-thyroxine (T4) 25 microg/100 g body weight, for 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Hypothyroid rats were hormonally replaced by daily injections of T4 (5 microg/100 g body weight, i.p.) for 5 days. Hyperthyroidism significantly inhibited the ATP, ADP and AMP hydrolysis in hippocampal slices. In brain cortical slices, hyperthyroidism inhibited the AMP hydrolysis. In contrast, hypothyroidism increased the ATP, ADP and AMP hydrolysis in both hippocampal and cortical slices and these effects were reverted by T4 replacement. Furthermore, hypothyroidism increased the expression of NTPDase1 and 5'-nucleotidase, whereas hyperthyroidism decreased the expression of 5'-nucleotidase in hippocampus of adult rats. These findings demonstrate that thyroid disorders may influence the enzymes involved in the complete degradation of ATP to adenosine and possibly affects the responses mediated by adenine nucleotides in the CNS of adult rats.

  20. Inhibition of CD38/Cyclic ADP-ribose Pathway Protects Rats against Ropivacaine-induced Convulsion

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-01-01

    Conclusions: The CD38/cADPR pathway is activated in ropivacaine-induced convulsion. Inhibiting this pathway alleviates ropivacaine-induced convulsion and protects the brain from apoptosis and oxidative stress.