WorldWideScience

Sample records for adoptive cell therapy

  1. Adoptive Cell Therapies for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Kevin James Bielamowicz

    2013-11-01

    Full Text Available Glioblastoma (GBM is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard-of-care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients(1. Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly self, it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer (LAK cells, natural killer (NK cells, cytotoxic T lymphocytes (CTL, and transgenic chimeric antigen receptor (CAR- or αβ T cell receptor (TCR grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system towards the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.

  2. PET imaging of adoptive progenitor cell therapies

    International Nuclear Information System (INIS)

    Gelovani, Juri G.

    2008-01-01

    The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive 'tracking' of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging

  3. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  4. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  5. Adoptive T cell therapy targeting CD1 and MR1

    Directory of Open Access Journals (Sweden)

    Tingxi eGuo

    2015-05-01

    Full Text Available Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential.

  6. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L

    2013-01-01

    Further development of adoptive T-cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TILs) has the potential to markedly change the long-term prognosis of patients with metastatic melanoma, and modifications of the original protocol that can improve its clinical efficacy are highly...... desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...

  7. Advances in evidence-based cancer adoptive cell therapy.

    Science.gov (United States)

    Ge, Chunlei; Li, Ruilei; Song, Xin; Qin, Shukui

    2017-04-01

    Adoptive cell therapy (ACT) has been developed in cancer treatment by transferring/infusing immune cells into cancer patients, which are able to recognize, target, and destroy tumor cells. Recently, sipuleucel-T and genetically-modified T cells expressing chimeric antigen receptors (CAR) show a great potential to control metastatic castration-resistant prostate cancer and hematologic malignancies in clinic. This review summarized some of the major evidence-based ACT and the challenges to improve cell quality and reduce the side effects in the field. This review also provided future research directions to make sure ACT widely available in clinic.

  8. Risky business: target choice in adoptive cell therapy.

    Science.gov (United States)

    Morgan, Richard A

    2013-11-14

    In this issue of Blood, Casucci et al present an elegant study that describes a potential new target for adoptive cell transfer (ACT), in this case CD44 splice variant 6 (CD44v6), and detail why it may be a good target for ACT and how to manage expected off-tumor/on-target toxicities.

  9. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors

    Science.gov (United States)

    Harris, Daniel T.; Kranz, David M.

    2016-01-01

    The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both. PMID:26705086

  10. Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia

    Directory of Open Access Journals (Sweden)

    Philipp Koehler

    2012-01-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19+ leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19+ B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells.

  11. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy

    Czech Academy of Sciences Publication Activity Database

    Vávrová, K.; Vrabcova, P.; Filipp, Dominik; Bartunkova, J.; Horváth, R.

    2016-01-01

    Roč. 33, č. 12 (2016), č. článku 136. ISSN 1357-0560 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : Cancer Immunotherapy * Prostate cancer * Adoptive T cell therapy * Tumor-specific T cell expansion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.634, year: 2016

  12. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  13. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.

    Directory of Open Access Journals (Sweden)

    Shujing Shi

    Full Text Available INTRODUCTION: Cytokine-induced killer cells (CIK cells are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. METHODS: We combined recombinant human endostatin (rh-endostatin and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. RESULTS: Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. CONCLUSIONS: Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells

  14. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    OpenAIRE

    Mélanie Saint-Jean; Anne-Chantal Knol; Christelle Volteau; Gaëlle Quéreux; Lucie Peuvrel; Anabelle Brocard; Marie-Christine Pandolfino; Soraya Saiagh; Jean-Michel Nguyen; Christophe Bedane; Nicole Basset-Seguin; Amir Khammari; Brigitte Dréno

    2018-01-01

    Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs). This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2) regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous ...

  15. Management of patients with non-Hodgkin’s lymphoma: focus on adoptive T-cell therapy

    Directory of Open Access Journals (Sweden)

    Perna SK

    2015-03-01

    Full Text Available Serena Kimi Perna,1 Leslie E Huye,1,† Barbara Savoldo1,2 1Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, 2Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA  †Leslie E Huye passed away on January 1st, 2015 Abstract: Non-Hodgkin's lymphoma (NHL represents a heterogeneous group of malignancies with high diversity in terms of biology, clinical responses, and prognosis. Standard therapy regimens produce a 5-year relative survival rate of only 69%, with the critical need to increase the treatment-success rate of this patient population presenting at diagnosis with a median age of 66 years and many comorbidities. The evidence that an impaired immune system favors the development of NHL has opened the stage for new therapeutics, and specifically for the adoptive transfer of ex vivo-expanded antigen-specific T-cells. In this review, we discuss how T-cells specific for viral-associated antigens, nonviral-associated antigens expressed by the tumor, T-cells redirected through the expression of chimeric antigen receptors, and transgenic T-cell receptors against tumor cells have been developed and used in clinical trials for the treatment of patients with NHLs. Keywords: adoptive immunotherapy, cytotoxic T lymphocytes (CTLs, chimeric antigen receptor (CAR, transgenic T-cell receptors 

  16. Characterization and comparison of "Standard" and "Young" tumor infiltrating lymphocytes for adoptive cell therapy at a Danish Translational Research Institution

    DEFF Research Database (Denmark)

    Donia, Marco; Junker, Niels; Ellebaek, Eva

    2012-01-01

    Adoptive cell therapy (ACT) with ex vivo expanded tumor infiltrating lymphocytes (TILs) in combination with IL-2 is an effective treatment for patients with metastatic melanoma. Modified protocols of cell expansion may allow treatment of most enrolled patients and improve the efficacy of adoptive...

  17. Large-scale Isolation of Highly Pure "Untouched" Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy.

    Science.gov (United States)

    Haase, Doreen; Puan, Kia Joo; Starke, Mireille; Lai, Tuck Siong; Soh, Melissa Yan Ling; Karunanithi, Iyswariya; San Luis, Boris; Poh, Tuang Yeow; Yusof, Nurhashikin; Yeap, Chun Hsien; Phang, Chew Yen; Chye, Willis Soon Yuan; Chan, Marieta; Koh, Mickey Boon Chai; Goh, Yeow Tee; Bertin-Maghit, Sebastien; Nardin, Alessandra; Ho, Liam Pock; Rotzschke, Olaf

    2015-01-01

    Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.

  18. Combining α-Radioimmunotherapy and Adoptive T Cell Therapy to Potentiate Tumor Destruction.

    Directory of Open Access Journals (Sweden)

    Jérémie Ménager

    Full Text Available Ionizing radiation induces direct and indirect killing of cancer cells and for long has been considered as immunosuppressive. However, this concept has evolved over the past few years with the demonstration that irradiation can increase tumor immunogenicity and can actually favor the implementation of an immune response against tumor cells. Adoptive T-cell transfer (ACT is also used to treat cancer and several studies have shown that the efficacy of this immunotherapy was enhanced when combined with radiation therapy. α-Radioimmunotherapy (α-RIT is a type of internal radiotherapy which is currently under development to treat disseminated tumors. α-particles are indeed highly efficient to destroy small cluster of cancer cells with minimal impact on surrounding healthy tissues. We thus hypothesized that, in the setting of α-RIT, an immunotherapy like ACT, could benefit from the immune context induced by irradiation. Hence, we decided to further investigate the possibilities to promote an efficient and long-lasting anti-tumor response by combining α-RIT and ACT. To perform such study we set up a multiple myeloma murine model which express the tumor antigen CD138 and ovalbumine (OVA. Then we evaluated the therapeutic efficacy in the mice treated with α-RIT, using an anti-CD138 antibody coupled to bismuth-213, followed by an adoptive transfer of OVA-specific CD8+ T cells (OT-I CD8+ T cells. We observed a significant tumor growth control and an improved survival in the animals treated with the combined treatment. These results demonstrate the efficacy of combining α-RIT and ACT in the MM model we established.

  19. Characterization of Postinfusion Phenotypic Differences in Fresh Versus Cryopreserved TCR Engineered Adoptive Cell Therapy Products.

    Science.gov (United States)

    Nowicki, Theodore S; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S; Ribas, Antoni; Comin-Anduix, Begoña

    2018-02-21

    Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort's superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the

  20. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mingxue Fan

    2017-08-01

    Full Text Available Abstract Currently, conventional therapies for acute myeloid leukemia (AML have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.

  1. Rapid generation of NY-ESO-1-specific CD4+ THELPER1 cells for adoptive T-cell therapy

    Science.gov (United States)

    Kayser, Simone; Boβ, Cristina; Feucht, Judith; Witte, Kai-Erik; Scheu, Alexander; Bülow, Hans-Jörg; Joachim, Stefanie; Stevanović, Stefan; Schumm, Michael; Rittig, Susanne M; Lang, Peter; Röcken, Martin; Handgretinger, Rupert; Feuchtinger, Tobias

    2015-01-01

    Tumor-associated antigens such as NY-ESO-1 are expressed in a variety of solid tumors but absent in mature healthy tissues with the exception of germline cells. The immune system anti-cancer attack is mediated by cell lysis or induction of growth arrest through paralysis of tumor cells, the latter of which can be achieved by tumor-specific CD4+, IFNγ-producing THelper type 1 (TH1) cells. Translation of these immune-mediated mechanisms into clinical application has been limited by availability of immune effectors, as well as the need for complex in vitro protocols and regulatory hurdles. Here, we report a procedure to generate cancer-testis antigen NY-ESO-1-targeting CD4+ TH1 cells in vitro for cancer immunotherapy in the clinic. After in vitro sensitization by stimulating T cells with protein-spanning, overlapping peptide pools of NY-ESO-1 in combination with IL-7 and low dose IL-2, antigen-specific T cells were isolated using IFNγ capture technique and subsequently expanded with IL-2, IL-7 and IL-15. Large numbers of NY-ESO-1-specific CD4+ T cells with a TH1 cytokine profile and lower numbers of cytokine-secreting CD8+ T cells could be generated from healthy donors with a high specificity and expansion potential. Manufactured CD4+ T cells showed strong specific TH1-responses with IFNγ+, TNFα+, IL-2+ and induced cell cycle arrest and apoptosis in tumor cells. The protocol is GMP-grade and approved by the regulatory authorities. The tumor-antigen specific CD4+ TH1 lymphocytes can be adoptively transferred as a T-cell therapy to boost anticancer immunity and this novel cancer treatment approach is applicable to both T cells from healthy allogeneic donors as well as to autologous T cells derived from cancer patients. PMID:26155389

  2. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Mélanie Saint-Jean

    2018-01-01

    Full Text Available Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs. This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2 regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous metastasis, TILs were produced according to a previously described method and then infused into the patient who also received a complementary subcutaneous IL-2 regimen. Nine women and 1 man were treated for unresectable stage IIIC (n=4 or IV (n=6 melanoma. All but 1 patient with unresectable stage III melanoma (1st line had received at least 2 previous treatments, including anti-CTLA-4 antibody for 4. The number of TILs infused ranged from 0.23 × 109 to 22.9 × 109. Regarding safety, no serious adverse effect was reported. Therapeutic responses included a complete remission, a partial remission, 2 stabilizations, and 6 progressions. Among these 4 patients with clinical benefit, 1 is still alive with 9 years of follow-up and 1 died from another cause after 8 years of follow-up. Notably, patients treated with high percentages of CD4 + CD25 + CD127lowFoxp3+ T cells among their TILs had significantly shorter OS. The therapeutic effect of combining TILs with new immunotherapies needs further investigation.

  3. BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy

    Directory of Open Access Journals (Sweden)

    Jan Dörrie

    2018-01-01

    Full Text Available BRAF and MEK inhibitors (BRAFi/MEKi, the standard treatment for patients with BRAFV600 mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra and trametinib (Tram vs. vemurafenib (Vem and cobimetinib (Cobi on the activation and functionality of chimeric antigen receptor (CAR-transfected T cells. We co-cultured CAR-transfected CD8+ T cells and target cells with clinically relevant concentrations of the inhibitors and determined the antigen-induced cytokine secretion. All BRAFi/MEKi reduced this release as single agents, with Dabra having the mildest inhibitory effect, and Dabra + Tram having a clearly milder inhibitory effect than Vem + Cobi. A similar picture was observed for the upregulation of the activation markers CD25 and CD69 on CAR-transfected T cells after antigen-specific stimulation. Most importantly, the cytolytic capacity of the CAR-T cells was significantly inhibited by Cobi and Vem + Cobi, whereas the other kinase inhibitors showed no effect. Therefore, the combination Dabra + Tram would be more suitable for combining with T-cell-based immunotherapy than Vem + Cobi.

  4. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

    Directory of Open Access Journals (Sweden)

    Corinne J Smith

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  5. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients.

    Science.gov (United States)

    Ellebaek, Eva; Iversen, Trine Zeeberg; Junker, Niels; Donia, Marco; Engell-Noerregaard, Lotte; Met, Özcan; Hölmich, Lisbet Rosenkrantz; Andersen, Rikke Sick; Hadrup, Sine Reker; Andersen, Mads Hald; thor Straten, Per; Svane, Inge Marie

    2012-08-21

    Adoptive cell therapy may be based on isolation of tumor-specific T cells, e.g. autologous tumor infiltrating lymphocytes (TIL), in vitro activation and expansion and the reinfusion of these cells into patients upon chemotherapy induced lymphodepletion. Together with high-dose interleukin (IL)-2 this treatment has been given to patients with advanced malignant melanoma and impressive response rates but also significant IL-2 associated toxicity have been observed. Here we present data from a feasibility study at a Danish Translational Research Center using TIL adoptive transfer in combination with low-dose subcutaneous IL-2 injections. This is a pilot trial (ClinicalTrials.gov identifier: NCT00937625) including patients with metastatic melanoma, PS ≤1, age involvement of the central nervous system. Six patients were treated with lymphodepleting chemotherapy, TIL infusion, and 14 days of subcutaneous low-dose IL-2 injections, 2 MIU/day. Low-dose IL-2 considerably decreased the treatment related toxicity with no grade 3-4 IL-2 related adverse events. Objective clinical responses were seen in 2 of 6 treated patients with ongoing complete responses (30+ and 10+ months), 2 patients had stable disease (4 and 5 months) and 2 patients progressed shortly after treatment. Tumor-reactivity of the infused cells and peripheral lymphocytes before and after therapy were analyzed. Absolute number of tumor specific T cells in the infusion product tended to correlate with clinical response and also, an induction of peripheral tumor reactive T cells was observed for 1 patient in complete remission. Complete and durable responses were induced after treatment with adoptive cell therapy in combination with low-dose IL-2 which significantly decreased toxicity of this therapy.

  6. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients

    Directory of Open Access Journals (Sweden)

    Ellebaek Eva

    2012-08-01

    Full Text Available Abstract Background Adoptive cell therapy may be based on isolation of tumor-specific T cells, e.g. autologous tumor infiltrating lymphocytes (TIL, in vitro activation and expansion and the reinfusion of these cells into patients upon chemotherapy induced lymphodepletion. Together with high-dose interleukin (IL-2 this treatment has been given to patients with advanced malignant melanoma and impressive response rates but also significant IL-2 associated toxicity have been observed. Here we present data from a feasibility study at a Danish Translational Research Center using TIL adoptive transfer in combination with low-dose subcutaneous IL-2 injections. Methods This is a pilot trial (ClinicalTrials.gov identifier: NCT00937625 including patients with metastatic melanoma, PS ≤1, age Results Low-dose IL-2 considerably decreased the treatment related toxicity with no grade 3–4 IL-2 related adverse events. Objective clinical responses were seen in 2 of 6 treated patients with ongoing complete responses (30+ and 10+ months, 2 patients had stable disease (4 and 5 months and 2 patients progressed shortly after treatment. Tumor-reactivity of the infused cells and peripheral lymphocytes before and after therapy were analyzed. Absolute number of tumor specific T cells in the infusion product tended to correlate with clinical response and also, an induction of peripheral tumor reactive T cells was observed for 1 patient in complete remission. Conclusion Complete and durable responses were induced after treatment with adoptive cell therapy in combination with low-dose IL-2 which significantly decreased toxicity of this therapy.

  7. T-cell Responses in the Microenvironment of Primary Renal Cell Carcinoma-Implications for Adoptive Cell Therapy

    DEFF Research Database (Denmark)

    Andersen, Rikke; Westergaard, Marie Christine Wulff; Kjeldsen, Julie Westerlin

    2018-01-01

    . Immune recognition of autologous TCLs or fresh tumor digests was observed in CD8+ TILs from 82% of patients (18/22). Cytotoxicity assays confirmed the tumoricidal capacity of RCC-TILs. The overall expansion capacity of RCC-TILs was similar to MM-TILs. However, the magnitude, polyfunctionality......-/oligofunctional pattern. The ability to select and expand polyfunctional T cells may improve cell therapy for RCC. Cancer Immunol Res; 1-14. ©2018 AACR....

  8. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  9. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Noemi

    2016-12-19

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through

  10. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    International Nuclear Information System (INIS)

    Bender, Noemi

    2016-01-01

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through

  11. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia.

    Science.gov (United States)

    Li, Peiying; Mao, Leilei; Zhou, Guoqing; Leak, Rehana K; Sun, Bao-Liang; Chen, Jun; Hu, Xiaoming

    2013-12-01

    Cerebral ischemia has been shown to result in peripheral inflammatory responses followed by long-lasting immunosuppression. Our recent study demonstrated that intravenous delivery of regulatory T cells (Tregs) markedly protected against transient cerebral ischemia by suppressing neutrophil-derived matrix metallopeptidase 9 production in the periphery. However, the effect of Tregs on systemic inflammatory responses and immune status has not been fully characterized. Cerebral ischemia was induced by middle cerebral artery occlusion for 60 minutes in mice or 120 minutes in rats. Tregs were isolated from donor animals by CD4 and CD25 double selection and transferred intravenously to ischemic recipients at 2 hours after middle cerebral artery occlusion. Animals were euthanized on different days after reperfusion. The effects of Tregs on systemic inflammation and immune status were evaluated using flow cytometry, ELISAs, and immunohistochemistry. Systemic administration of purified Tregs raises functional Tregs in the blood and peripheral organs, including spleen and lymph nodes. These exogenous Tregs remain in the blood and peripheral organs for ≥12 days. Functionally, Treg adoptive transfer markedly inhibits middle cerebral artery occlusion-induced elevation of inflammatory cytokines (interleukin-6 and tumor necrosis factor α) in the blood. Furthermore, Treg treatment corrects long-term lymphopenia and improves cellular immune functions after ischemic brain injury. As a result, Treg-treated animals exhibit decreased bacterial loads in the blood during recovery from cerebral ischemic attack. Treg treatment did not exacerbate poststroke immunosuppression. On the contrary, Treg-treated animals displayed improved immune status after focal cerebral ischemia.

  12. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Science.gov (United States)

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  13. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy

    Directory of Open Access Journals (Sweden)

    Howard R. Seay

    2017-03-01

    Full Text Available Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR. Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.

  14. Toxicity and Efficacy Probability Interval Design for Phase I Adoptive Cell Therapy Dose-Finding Clinical Trials.

    Science.gov (United States)

    Li, Daniel H; Whitmore, James B; Guo, Wentian; Ji, Yuan

    2017-01-01

    Recent trials of adoptive cell therapy (ACT), such as the chimeric antigen receptor (CAR) T-cell therapy, have demonstrated promising therapeutic effects for cancer patients. A main issue in the product development is to determine the appropriate dose of ACT. Traditional phase I trial designs for cytotoxic agents explicitly assume that toxicity increases monotonically with dose levels and implicitly assume the same for efficacy to justify dose escalation. ACT usually induces rapid responses, and the monotonic dose-response assumption is unlikely to hold due to its immunobiologic activities. We propose a toxicity and efficacy probability interval (TEPI) design for dose finding in ACT trials. This approach incorporates efficacy outcomes to inform dosing decisions to optimize efficacy and safety simultaneously. Rather than finding the maximum tolerated dose (MTD), the TEPI design is aimed at finding the dose with the most desirable outcome for safety and efficacy. The key features of TEPI are its simplicity, flexibility, and transparency, because all decision rules can be prespecified prior to trial initiation. We conduct simulation studies to investigate the operating characteristics of the TEPI design and compare it to existing methods. In summary, the TEPI design is a novel method for ACT dose finding, which possesses superior performance and is easy to use, simple, and transparent. Clin Cancer Res; 23(1); 13-20. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Minimally invasive liver resection to obtain tumor-infiltrating lymphocytes for adoptive cell therapy in patients with metastatic melanoma

    Directory of Open Access Journals (Sweden)

    Alvarez-Downing Melissa M

    2012-06-01

    Full Text Available Abstract Background Adoptive cell therapy (ACT with tumor-infiltrating lymphocytes (TIL in patients with metastatic melanoma has been reported to have a 56% overall response rate with 20% complete responders. To increase the availability of this promising therapy in patients with advanced melanoma, a minimally invasive approach to procure tumor for TIL generation is warranted. Methods A feasibility study was performed to determine the safety and efficacy of laparoscopic liver resection to generate TIL for ACT. Retrospective review of a prospectively maintained database identified 22 patients with advanced melanoma and visceral metastasis (AJCC Stage M1c who underwent laparoscopic liver resection between 1 October 2005 and 31 July 2011. The indication for resection in all patients was to receive postoperative ACT with TIL. Results Twenty patients (91% underwent resection utilizing a closed laparoscopic technique, one required hand-assistance and another required conversion to open resection. Median intraoperative blood loss was 100 mL with most cases performed without a Pringle maneuver. Median hospital stay was 3 days. Three (14% patients experienced a complication from resection with no mortality. TIL were generated from 18 of 22 (82% patients. Twelve of 15 (80% TIL tested were found to have in vitro tumor reactivity. Eleven patients (50% received the intended ACT. Two patients were rendered no evidence of disease after surgical resection, with one undergoing delayed ACT with generated TIL after relapse. Objective tumor response was seen in 5 of 11 patients (45% who received TIL, with one patient experiencing an ongoing complete response (32+ months. Conclusions Laparoscopic liver resection can be performed with minimal morbidity and serve as an effective means to procure tumor to generate therapeutic TIL for ACT to patients with metastatic melanoma.

  16. Combination of Ipilimumab and Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes for Patients with Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    John E. Mullinax

    2018-03-01

    Full Text Available PurposeAdoptive cell therapy (ACT using tumor-infiltrating lymphocytes (TIL for metastatic melanoma can be highly effective, but attrition due to progression before TIL administration (32% in prior institutional experience remains a limitation. We hypothesized that combining ACT with cytotoxic T lymphocyte-associated antigen 4 blockade would decrease attrition and allow more patients to receive TIL.Experimental designThirteen patients with metastatic melanoma were enrolled. Patients received four doses of ipilimumab (3 mg/kg beginning 2 weeks prior to tumor resection for TIL generation, then 1 week after resection, and 2 and 5 weeks after preconditioning chemotherapy and TIL infusion followed by interleukin-2. The primary endpoint was safety and feasibility. Secondary endpoints included of clinical response at 12 weeks and at 1 year after TIL transfer, progression free survival (PFS, and overall survival (OS.ResultsAll patients received at least two doses of ipilimumab, and 12 of the 13 (92% received TIL. A median of 6.5 × 1010 (2.3 × 1010 to 1.0 × 1011 TIL were infused. At 12 weeks following infusion, there were five patients who experienced objective response (38.5%, four of whom continued in objective response at 1 year and one of which became a complete response at 52 months. Median progression-free survival was 7.3 months (95% CI 6.1–29.9 months. Grade ≥ 3 immune-related adverse events included hypothyroidism (3, hepatitis (2, uveitis (1, and colitis (1.ConclusionIpilimumab plus ACT for metastatic melanoma is feasible, well tolerated, and associated with a low rate of attrition due to progression during cell expansion. This combination approach serves as a model for future efforts to improve the efficacy of ACT.

  17. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  18. CT halo sign as an imaging marker for response to adoptive cell therapy in metastatic melanoma with pulmonary metastases

    Energy Technology Data Exchange (ETDEWEB)

    Shrot, Shai; Apter, Sara [Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer (Israel); Schachter, Jacob; Shapira-Frommer, Ronnie [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Besser, Michal J. [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Sackler School of Medicine, Tel Aviv University, Department of Clinical Microbiology and Immunology, Tel Aviv (Israel)

    2014-06-15

    The halo sign refers to a zone of ground-glass attenuation surrounding a pulmonary nodule. Pulmonary metastatic nodules exhibiting a halo sign are seen mainly in hypervascular tumours. We describe the appearance of a halo sign following treatment of adoptive transfer of autologous tumour-infiltrating lymphocytes (TIL) to melanoma patients with lung metastases. The study included 29 melanoma patients with pulmonary metastases who received TIL therapy. Pre- and post-treatment chest CTs were retrospectively reviewed for the presence of a halo sign and its correlation with therapeutic response. A pulmonary halo sign was not seen in any pre-treatment CT. It was observed in four of 12 patients who responded to the therapy but not in those who failed to respond. Significant differences were found between response ratio in patients in whom post-TIL halo sign appeared compared with those without the halo sign (p = 0.02). The appearance of a CT halo sign in melanoma with lung metastases following TIL therapy may indicate antitumoral effect and a good response to therapy. Our findings emphasize the importance of applying new assessment criteria for immunological anticancer therapies. (orig.)

  19. [Attachment and Adoption: Diagnostics, Psychopathology, and Therapy].

    Science.gov (United States)

    Brisch, Karl-Heinz

    2015-01-01

    This presentation describes the development of attachment between adopted children and their adoptive parents with a focus on the particular issues seen in international adoptions. The questions of settling in, trauma in the country of origin, and the motivations of the adoptive parents will be discussed. Diagnosis and various psychopathological manifestations will be examined, as will outpatient and inpatient modes of therapy. The treatment of children of various ages will be covered along with the necessity for intensive counseling and psychotherapy for the adoptive parents. This will enable the parents to work through early trauma, which will give them and their adopted child the basis for developing healthy attachment patterns. This in turn will enable the child to mature and integrate into society. Possibilities of prevention are discussed. Many of the approaches discussed here regarding attachment and adoption may be applied to foster children and their foster parents.

  20. Circulating CD8+CD28- suppressor T cells tied to poorer prognosis among metastatic breast cancer patients receiving adoptive T-cell therapy: A cohort study.

    Science.gov (United States)

    Song, Qingkun; Ren, Jun; Zhou, Xinna; Wang, Xiaoli; Song, Guohong; Hobeika, Amy; Yuan, Yanhua; Lyerly, Herbert Kim

    2018-01-01

    This study aimed to determine the prognostic value of circulating CD8 + CD28 - T lymphocytes among breast cancer patients treated with adoptive T-lymphocyte immunotherapy after chemotherapy. Two hundred and thirty-two breast cancer patients underwent adoptive T-cell immunotherapy. Circulating CD8 + CD28 - proportion was measured by flow cytometry. Median proportion of CD8 + CD28 - was 24.2% and set as the categorical cutoff value for further analysis. The median survival was estimated by Kaplan-Meier curve, with difference detection and hazard ratio estimation by log-rank test and Cox hazard proportion regression model. With adoptive T-cell therapy, patients with higher CD8 + CD28 - levels experienced median progression-free and overall survival of 7.1 months and 26.9 months, respectively-significantly shorter than patients with lower levels (11.8 and 36.2 months). CD8 + CD28 - proportion >24.2% demonstrated a hazard ratio (HR) of 2.06 (95% confidence interval [CI] 1.31-3.12) for progression and an HR of 1.97 (95% CI 1.06-3.67) for death. Among patients who had received previous first-line chemotherapy, CD8 + CD28 - proportion >24.2% demonstrated an HR of 2.66 (95% CI 1.45-4.88) for progression. Among patients exposed to previous second-line or higher chemotherapy, CD8 + CD28 - proportion >24.2% demonstrated a 486% higher risk for death (HR = 5.86, 95% CI 1.77-19.39). A 1% increase in suppressive T cells was associated with a 5% increased risk of death. Elevated peripheral blood CD8 + CD28 - was associated with poorer prognosis for metastatic breast cancer, especially for higher risk of progression among patients with first-line chemotherapy and higher risk of death among patients with more than second-line chemotherapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  2. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    Science.gov (United States)

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO

  3. Adoptive T Cell Immunotherapy for Cancer

    Directory of Open Access Journals (Sweden)

    Karlo Perica

    2015-01-01

    Full Text Available Harnessing the immune system to recognize and destroy tumor cells has been the central goal of anti-cancer immunotherapy. In recent years, there has been an increased interest in optimizing this technology in order to make it a clinically feasible treatment. One of the main treatment modalities within cancer immunotherapy has been adoptive T cell therapy (ACT. Using this approach, tumor-specific cytotoxic T cells are infused into cancer patients with the goal of recognizing, targeting, and destroying tumor cells. In the current review, we revisit some of the major successes of ACT, the major hurdles that have been overcome to optimize ACT, the remaining challenges, and future approaches to make ACT widely available.

  4. Rational combinations of in vivo cancer antigen priming and adoptive T-cell therapy mobilize immune and clinical responses in terminal cancers.

    Science.gov (United States)

    Ruan, Qing Zhao; Fu, Jian Qian; Wu, Xiao Xuan; Huang, Li Ping; Ruan, Run Sheng

    2018-03-06

    It is now recognized that solid tumors encroach on the host's immune microenvironment to favor its own proliferation. Strategies to enhance the specificity of the endogenous T-cell population against tumors have been met with limited clinical success. We aimed to devise a two-tier protocol coupling in vivo whole antigen priming with ex vivo cellular expansion to clinically evaluate survival in patients following re-infusion of primed, autologous T cells, thereby determining treatment efficacy. Treatment commenced with the acquisition of whole tumor antigens from tumor cell lines corresponding with patients' primary malignancy. Lysate mixture was inoculated intradermally, while peripheral blood mononuclear cells (PBMCs) were periodically extracted via phlebotomy and expanded in culture ex vivo for re-infusion. Post-treatment tumor-specific T-cell response and cytotoxicity was confirmed via Elispot and real-time cell analyzing (RTCA) assay. Serum cytokine levels and cytotoxicity scores were evaluated for associations with survival status and duration. There was a significant increase in cytotoxicity exhibited by T cells measured using both Elispot and RTCA following treatment. Correlation analysis determined significant association between higher post-treatment cytotoxicity scores and survival status (R = 0.52, p = 0.0028) as well as longer survival duration in months (R = 0.59, p = 0.005). Our treatment protocol successfully demonstrated significant correlation between tumor-associated antigen-specific immune response and objective prolongation of survival. Whole-cell cancer antigen priming and adoptive T-cell therapy is, therefore, a highly feasible clinical model which can be easily replicated to positively influence outcome in end-stage malignancy.

  5. HIV Sequence Variation Associated With env Antisense Adoptive T-cell Therapy in the hNSG Mouse Model

    OpenAIRE

    Mukherjee, Rithun; Plesa, Gabriela; Sherrill-Mix, Scott; Richardson, Max W; Riley, James L; Bushman, Frederic D

    2010-01-01

    The first use of lentiviral vectors in humans involved transduction of mature T-cells with an human immunodeficiency virus (HIV)–derived env antisense (envAS) vector to protect cells from HIV infection. In that study, only a minority of the patient T-cell population could be gene-modified, raising the question of whether the altered cells could affect replicating HIV populations. We investigated this using humanized NOD/SCID IL-2Rγnull (hNSG) mice reconstituted with ~4–11% envAS-modified huma...

  6. Adoptive cell transfer in the treatment of metastatic melanoma

    DEFF Research Database (Denmark)

    Straten, Per thor; Becker, Jürgen C

    2009-01-01

    Adoptive cell therapy (ACT) for metastatic cancer is the focus of considerable research effort. Rosenberg's laboratory demonstrated a 50% response rate in stage IV melanoma patients treated with in vitro expanded tumor-infiltrating lymphocytes (TILs) and high-dose IL-2 administered after...

  7. Scientists adopt new strategy to find Huntington's disease therapies

    Science.gov (United States)

    ... News Releases News Release Friday, August 7, 2015 Scientists adopt new strategy to find Huntington’s disease therapies A skyline view of Huntington’s disease. Scientists searched the chromosomes of Huntington’s disease patients to ...

  8. Towards adoptive cellular therapy of chronic autoimmune arthritis

    NARCIS (Netherlands)

    Flierman, Roelof

    2008-01-01

    Rheumatoid arthritis (RA) is a relatively common disease that is characterized by chronic inflammation of joints. The research as described in this thesis focused on the question of whether adoptive cellular therapy is effective in a mouse model of RA. The most generally known type of adoptive

  9. The Media Adoption Stage Model of Technology for Art Therapy

    Science.gov (United States)

    Peterson, Brent Christian

    2010-01-01

    This study examined survey data from professional credentialed members of the American Art Therapy Association and 8 follow up interviews to determine how art therapists adopt or reject technology and/or new digital media for therapeutic use with their clients. Using Rogers's (2003) "diffusion of innovation" model, the author identified a…

  10. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy.

    Directory of Open Access Journals (Sweden)

    Jessica Ann Chacon

    Full Text Available Adoptive T-cell therapy (ACT using tumor-infiltrating lymphocytes (TIL can induce tumor regression in up to 50% or more of patients with unresectable metastatic melanoma. However, current methods to expand melanoma TIL, especially the "rapid expansion protocol" (REP were not designed to enhance the generation of optimal effector-memory CD8(+ T cells for infusion. One approach to this problem is to manipulate specific co-stimulatory signaling pathways to enhance CD8(+ effector-memory T-cell expansion. In this study, we determined the effects of activating the TNF-R family member 4-1BB/CD137, specifically induced in activated CD8(+ T cells, on the yield, phenotype, and functional activity of expanded CD8(+ T cells during the REP. We found that CD8(+ TIL up-regulate 4-1BB expression early during the REP after initial TCR stimulation, but neither the PBMC feeder cells in the REP or the activated TIL expressed 4-1BB ligand. However, addition of an exogenous agonistic anti-4-1BB IgG4 (BMS 663513 to the REP significantly enhanced the frequency and total yield of CD8(+ T cells as well as their maintenance of CD28 and increased their anti-tumor CTL activity. Gene expression analysis found an increase in bcl-2 and survivin expression induced by 4-1BB that was associated with an enhanced survival capability of CD8(+ post-REP TIL when re-cultured in the absence or presence of cytokines. Our findings suggest that adding an agonistic anti-4-1BB antibody during the time of TIL REP initiation produces a CD8(+ T cell population capable of improved effector function and survival. This may greatly improve TIL persistence and anti-tumor activity in vivo after adoptive transfer into patients.

  11. A case of malignant melanoma of the maxilla treated by adoptive immunotherapy after fast neutron therapy

    International Nuclear Information System (INIS)

    Morifuji, Masayo; Ohishi, Masamichi; Higuchi, Yoshinori; Ozeki, Satoru; Tashiro, Hideo

    1992-01-01

    A 77-year-old male patient with malignant melanoma was treated by fast neutron therapy and immunotherapy. Total dose of fast neutron applied to the primary lesion was 1905 cGy per 21 fractionation for 46 days. For adoptive immunotherapy, lymphocytes were collected from the peripheral blood drawn from the patient 2 days after the injection of cyclophosphamide. T cells were further purified by passing the lymphocytes through nylon wool. Cytotoxic T cells were induced by incubating the T cells mixed with allogeneic malignant melanoma cells and a small number of patient's adherent cells, and activated with recombinant interleukin-2 (γ IL-2). Our patient and the patient from whom stimulating melanoma cells were derived shared A locous 24 and B locous 51 of MHC class I antigens in common. Thus prepared cytotoxic T cells were inoculated to the patient via the maxillary artery, 3 to 4 times a week for one month. Total amount of cells transferred was 5.6 x 10 8 (97% lymphocytes). Primary lesion reduced markedly by the therapies. During adoptive immunotherapy, increase in natural killer cells and decrease in both suppressor/inducer T-cells and macrophages were observed. However, lung metastases appeared 3 months after adoptive immunotherapy. While the nonspecific immunotherapy (OK-432 injection) was being conducted thereafter, growth of the metastatic lesions of the lung was kept gentle but became obvious after the suspension of the treatment. (author)

  12. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study

    Directory of Open Access Journals (Sweden)

    Benjamin M Davies

    2014-09-01

    Full Text Available There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.

  13. Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Ellebæk, Eva

    2016-01-01

    with progressive treatment-refractory metastatic melanoma, good clinical performance, age ... partial responses (ORR 42%). Median overall survival was 21.8 months. Tumor regression was associated with a higher absolute number of infused tumor-reactive T cells. Moreover, induction and persistence of antimelanoma T-cell responses in the peripheral blood was strongly correlated to clinical response...... to treatment. CONCLUSIONS: TIL-ACT with a reduced IL2 decrescendo regimen results in long-lasting complete responses in patients with treatment-refractory melanoma. Larger randomized trials are needed to elucidate whether clinical efficacy is comparable with TIL-ACT followed by HD bolus IL2. Clin Cancer Res...

  14. Adoption

    Science.gov (United States)

    ... adopted to want to know more about their birth history. Usually a big question is why the birth ... of people want to know about their health history. When people are curious about their birth family, it doesn't mean they don't ...

  15. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Science.gov (United States)

    Ye, Baixin; Gao, Qingping; Wang, Qiongyu; Zeng, Zhi

    2017-01-01

    A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs) play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR) T-cell therapy and engineered T-cell receptor (TCR) T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1) provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2) provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3) evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies. PMID:28116322

  16. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  17. Cell Therapy in Dermatology

    Science.gov (United States)

    Petrof, Gabriela; Abdul-Wahab, Alya; McGrath, John A.

    2014-01-01

    Harnessing the regenerative capacity of keratinocytes and fibroblasts from human skin has created new opportunities to develop cell-based therapies for patients. Cultured cells and bioengineered skin products are being used to treat patients with inherited and acquired skin disorders associated with defective skin, and further clinical trials of new products are in progress. The capacity of extracutaneous sources of cells such as bone marrow is also being investigated for its plasticity in regenerating skin, and new strategies, such as the derivation of inducible pluripotent stem cells, also hold great promise for future cell therapies in dermatology. This article reviews some of the preclinical and clinical studies and future directions relating to cell therapy in dermatology, particularly for inherited skin diseases associated with fragile skin and poor wound healing. PMID:24890834

  18. Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques.

    Directory of Open Access Journals (Sweden)

    Carolina Berger

    Full Text Available The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8(+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4(+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8(+ effector T (T(CM/E cells is enhanced in vivo by administering IL-15. T(CM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8(+ T(CM/E cells in lymphoreplete hosts.

  19. Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    Masaaki Kitada

    2012-01-01

    Full Text Available Cell transplantation is a strategy with great potential for the treatment of Parkinson's disease, and many types of stem cells, including neural stem cells and embryonic stem cells, are considered candidates for transplantation therapy. Mesenchymal stem cells are a great therapeutic cell source because they are easy accessible and can be expanded from patients or donor mesenchymal tissues without posing serious ethical and technical problems. They have trophic effects for protecting damaged tissues as well as differentiation ability to generate a broad spectrum of cells, including dopamine neurons, which contribute to the replenishment of lost cells in Parkinson's disease. This paper focuses mainly on the potential of mesenchymal stem cells as a therapeutic cell source and discusses their potential clinical application in Parkinson's disease.

  20. Adiabatic quantum-flux-parametron cell library adopting minimalist design

    International Nuclear Information System (INIS)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-01-01

    We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits

  1. Adoptive Transfer of Dying Cells Causes Bystander-Induced Apoptosis

    Science.gov (United States)

    Schwulst, Steven J.; Davis, Christopher G.; Coopersmith, Craig M.; Hotchkiss, Richard S.

    2009-01-01

    The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death from several noxious stimuli. Intriguingly, Bcl-2 overexpression in one cell type has been reported to protect against cell death in neighboring non-Bcl-2 overexpressing cell types. The mechanism of this “trans” protection has been speculated to be secondary to the release of a cytoprotective factor by Bcl-2 overexpressing cells. We employed a series of adoptive transfer experiments in which lymphocytes that overexpress Bcl-2 were administered to either wild type mice or mice lacking mature T and B cells (Rag-1-/-) to detect the presence or absence of the putative protective factor. We were unable to demonstrate “trans” protection. However, adoptive transfer of apoptotic or necrotic cells exacerbated the degree of apoptotic death in neighboring non-Bcl-2 overexpressing cells (p≤0.05). Therefore, this data suggests that dying cells emit signals triggering cell death in neighboring non-Bcl-2 overexpressing cells, i.e. a “trans” destructive effect. PMID:17194455

  2. Adoptive immunotherapy with virus-specific T cells.

    Science.gov (United States)

    Fuji, Shigeo; Kapp, Markus; Grigoleit, Götz Ulrich; Einsele, Hermann

    2011-09-01

    Viral infections are still common causes of morbidity and mortality in immunosuppressed patients after allogeneic hematopoietic stem cell transplantation. Infections caused by virus such as cytomegalovirus, adenovirus and Epstein-Barr virus are well-known. In addition, several other viruses such as polyomavirus and human herpesvirus 6 have been recently reported to be causes of significant complications. As the delay in recovery of virus-specific cellular immune response after transplant is associated with viral reactivation and viral disease, adoptive immunotherapy to restore virus-specific cellular immunity is an attractive option. Recent clinical trials showed the safety and effectiveness of adoptive immunotherapy against viral diseases. In this review, we summarize the current status of adoptive immunotherapy against several viral diseases including cytomegalovirus, adenovirus, Epstein-Barr virus and polyomavirus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Acceptance and Commitment Therapy: Western adoption of Buddhist tenets?

    Science.gov (United States)

    Fung, Kenneth

    2015-08-01

    Acceptance and Commitment Therapy (ACT) is a psychological intervention that has wide clinical applications with emerging empirical support. It is based on Functional Contextualism and is derived as a clinical application of the Relational Frame Theory, a behavioral account of the development of human thought and cognition. The six core ACT therapeutic processes include: Acceptance, Defusion, Present Moment, Self-as-Context, Values, and Committed Action. In addition to its explicit use of the concept of mindfulness, the therapeutic techniques of ACT implicitly incorporate other aspects of Buddhism. This article describes the basic principles and processes of ACT, explores the similarities and differences between ACT processes and some of the common tenets in Buddhism such as the Four Noble Truths and No-Self, and reports on the experience of running a pilot intervention ACT group for the Cambodian community in Toronto in partnership with the community's Buddhist Holy Monk. Based on this preliminary exploration in theory and the reflections of the group experience, ACT appears to be consistent with some of the core tenets of Buddhism in the approach towards alleviating suffering, with notable differences in scope reflecting their different aims and objectives. Further development of integrative therapies that can incorporate psychological and spiritual as well as diverse cultural perspectives may help the continued advancement and evolution of more effective psychotherapies that can benefit diverse populations. © The Author(s) 2014.

  4. Cell therapies for Chagas disease.

    Science.gov (United States)

    Carvalho, Adriana Bastos; Goldenberg, Regina Coeli Dos Santos; Campos de Carvalho, Antonio Carlos

    2017-11-01

    In this review of cell therapies in Chagas disease, we cover aspects related to the disease, its treatment and world demographics, before proceeding to describe the preclinical and clinical trials performed using cell therapies in the search for an alternative therapy for the most severe and lethal form of this disease, chronic chagasic cardiomyopathy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Fuel Cell Electric Vehicles: Drivers and Impacts of Adoption.

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    We present scenario and parametric analyses of the US light duty vehicle (LDV) stock, sim- ulating the evolution of the stock in order to assess the potential role and impacts of fuel cell electric vehicles (FCEVs). The analysis probes the competition of FCEVs with other LDVs and the effects of FCEV adoption on LDV fuel use and emissions. We parameterize commodity and technology prices in order to explore the sensitivities of FCEV sales and emissions to oil, natural gas, battery technology, fuel cell technology, and hydrogen produc- tion prices. We additionally explore the effects of vehicle purchasing incentives for FCEVs, identifying potential impacts and tipping points. Our analyses lead to the following conclu- sions: (1) In the business as usual scenario, FCEVs comprise 7% of all new LDV sales by 2050. (2) FCEV adoption will not substantially impact green house gas emissions without either policy intervention, significant increases in natural gas prices, or technology improve- ments that motivate low carbon hydrogen production. (3) FCEV technology cost reductions have a much greater potential for impact on FCEV sales than hydrogen fuel cost reductions. (4) FCEV purchasing incentives must be both substantial and sustained in order to motivate lasting changes to FCEV adoption.

  6. Adoption of motivational interviewing and motivational enhancement therapy following clinical trials.

    Science.gov (United States)

    Guydish, Joseph; Jessup, Martha; Tajima, Barbara; Manser, Sarah Turcotte

    2010-09-01

    The National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) is designed to test drug abuse treatment interventions in multisite clinical trials and to support the translation of effective interventions into practice. In this study, qualitative methods were applied to examine adoption of motivational interviewing and motivational enhancement therapy (MI/MET) in five clinics where these interventions were tested. Participants were clinic staff (n=17) who were interviewed about the MI/MET study, and about whether MI/MET was adopted after the study ended. Although clinics' participation in a clinical trial includes many elements thought to be necessary for later adoption of the intervention, we found that there was "adoption" in one clinic, "partial adoption" in one clinic, "counselor adoption" in one clinic, and "no adoption" in two clinics. These findings highlight a distinction between adoption at the organizational and counselor levels, and suggest that a range of adoption outcomes may be observed in the field. Findings are relevant to clinical staff, program directors, administrators and policy makers concerned with improvement of drug abuse treatment systems through adoption of evidence-based practices.

  7. Adoption of the 2015 World Health Organization guidelines on antiretroviral therapy: Programmatic implications for India.

    Science.gov (United States)

    Rewari, Bharat Bhushan; Agarwal, Reshu; Shastri, Suresh; Nagaraja, Sharath Burugina; Rathore, Abhilakh Singh

    2017-04-01

    The therapeutic and preventive benefits of early initiation of antiretroviral therapy (ART) for HIV are now well established. Reflecting new research evidence, in 2015 the World Health Organization (WHO) recommended initiation of ART for all people living with HIV (PLHIV), irrespective of their clinical staging and CD4 cell count. The National AIDS Control Programme (NACP) in India is currently following the 2010 WHO ART guidelines for adults and the 2013 guidelines for pregnant women and children. This desk study assessed the number of people living with HIV who will additionally be eligible for ART on adoption of the 2015 WHO recommendations on ART. Data routinely recorded for all PLHIV registered under the NACP up to 31 December 2015 were analysed. Of the 250 865 individuals recorded in pre-ART care, an estimated 135 593 would be eligible under the WHO 2013 guidelines. A further 100 221 would be eligible under the WHO 2015 guidelines. Initiating treatment for all PLHIV in pre-ART care would raise the number on ART from 0.92 million to 1.17 million. In addition, nearly 0.07 million newly registered PLHIV will become eligible every year if the WHO 2015 guidelines are adopted, of which 0.028 million would be attributable to implementation of the WHO 2013 guidelines alone. In addition to drugs, there will be a need for additional CD4 tests and tests of viral load, as the numbers on ART will increase significantly. The outlay should be seen in the context of potential health-care savings due to early initiation of ART, in terms of the effect on disease progression, complications, deaths and new infections. While desirable, adoption of the new guidance will have significant programmatic and resource implications for India. The programme needs to plan and strengthen the service-delivery mechanism, with emphasis on newer and innovative approaches before implementation of these guidelines.

  8. Cell Therapy in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Hoda Madani

    2014-05-01

    Full Text Available   Recently, cell therapy has sparked a revolution in ischemic heart disease that will in the future help clinicians to cure patients. Earlier investigations in animal models and clinical trials have suggested that positive paracrine effects such as neoangiogenesis and anti-apoptotic can improve myocardial function. In this regard the Royan cell therapy center designed a few trials in collaboration with multi hospitals such as Baqiyatallah, Shahid Lavasani, Tehran Heart Center, Shahid rajaee, Masih daneshvari, Imam Reza, Razavi and Sasan from 2006. Their results were interesting. However, cardiac stem cell therapy still faces great challenges in optimizing the treatment of patients. Keyword: Cardiovascular disease, Cell therapy.  

  9. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  10. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  11. Learning, Misallocation, and Technology Adoption: Evidence from New Malaria Therapy in Tanzania.

    Science.gov (United States)

    Adhvaryu, Achyuta

    I study how the misallocation of new technology to individuals who have low ex post returns to its use affects learning and adoption behavior. I focus on antimalarial treatment, which is frequently over-prescribed in many low-income country contexts where diagnostic tests are inaccessible. I show that misdiagnosis reduces average therapeutic effectiveness, because only a fraction of adopters actually have malaria, and slows the rate of social learning due to increased noise. I use data on adoption choices, the timing and duration of fever episodes, and individual blood slide confirmations of malarial status from a pilot study for a new malaria therapy in Tanzania to show that individuals whose reference groups experienced fewer misdiagnoses exhibited stronger learning effects and were more likely to adopt.

  12. Predictors of Adoption and Reach Following Dialectical Behavior Therapy Intensive Training™.

    Science.gov (United States)

    Navarro-Haro, Maria V; Harned, Melanie S; Korslund, Kathryn E; DuBose, Anthony; Chen, Tianying; Ivanoff, André; Linehan, Marsha M

    2018-03-05

    Dialectical behavior therapy (DBT) is an evidence-based treatment for borderline personality disorder. The DBT Intensive Training™ is widely used to train community clinicians to deliver DBT, but little is known about its effectiveness. This study prospectively evaluated predictors of adoption and reach of DBT among 52 community teams (212 clinicians) after DBT Intensive Training™. Pre-post training questionnaires were completed by trainees and a follow-up survey by team leaders approximately 8 months later. Overall, 75% of teams adopted all DBT modes and delivered DBT to an average of 118 clients. Lower training and program needs, fewer bachelor's-level clinicians, and greater prior DBT experience predicted adoption of more DBT modes. More prior DBT experience, smaller team size, more negative team functioning, and staff with lower job satisfaction, growth, efficacy, and influence predicted greater DBT reach. DBT Intensive Training™ appears effective in promoting DBT adoption and reach in routine clinical practice settings.

  13. Learning, Misallocation, and Technology Adoption: Evidence from New Malaria Therapy in Tanzania

    Science.gov (United States)

    Adhvaryu, Achyuta

    2014-01-01

    I study how the misallocation of new technology to individuals who have low ex post returns to its use affects learning and adoption behavior. I focus on antimalarial treatment, which is frequently over-prescribed in many low-income country contexts where diagnostic tests are inaccessible. I show that misdiagnosis reduces average therapeutic effectiveness, because only a fraction of adopters actually have malaria, and slows the rate of social learning due to increased noise. I use data on adoption choices, the timing and duration of fever episodes, and individual blood slide confirmations of malarial status from a pilot study for a new malaria therapy in Tanzania to show that individuals whose reference groups experienced fewer misdiagnoses exhibited stronger learning effects and were more likely to adopt. PMID:25729112

  14. T Cell Therapy for Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    S Basso, M Zecca, P Merli, A Gurrado, S Secondino, G Quartuccio, I Guido, P Guerini, G Ottonello, N Zavras, R Maccario, P Pedrazzoli, P Comoli

    2011-01-01

    Full Text Available Among the novel biologic therapeutics that will increase our ability to cure human cancer in the years to come, T cell therapy is one of the most promising approaches. However, with the possible exception of tumor-infiltrating lymphocytes therapy for melanoma, clinical trials of adoptive T-cell therapy for solid tumors have so far provided only clear proofs-of-principle to build on with further development. Epstein-Barr virus (EBV-associated malignancies offer a unique model to develop T cell-based immune therapies, targeting viral antigens expressed on tumor cells. In the last two decades, EBV-specific cytotoxic T-lymphocytes (CTL have been successfully employed for the prophylaxis and treatment of EBV-related lymphoproliferative disorders in immunocompromised hosts. More recently, this therapeutic approach has been applied to the setting of EBV-related solid tumors, such as nasopharyngeal carcinoma. The results are encouraging, although further improvements to the clinical protocols are clearly necessary to increase anti-tumor activity. Promising implementations are underway, including harnessing the therapeutic potential of CTLs specific for subdominant EBV latent cycle epitopes, and delineating strategies aimed at targeting immune evasion mechanisms exerted by tumor cells.

  15. Adoption of Motivational Interviewing and Motivational Enhancement Therapy Following Clinical Trials†

    Science.gov (United States)

    Guydish, Joseph; Jessup, Martha; Tajima, Barbara; Manser, Sarah Turcotte

    2012-01-01

    The National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) is designed to test drug abuse treatment interventions in multisite clinical trials and to support the translation of effective interventions into practice. In this study, qualitative methods were applied to examine adoption of motivational interviewing and motivational enhancement therapy (MI/MET) in five clinics where these interventions were tested. Participants were clinic staff (n = 17) who were interviewed about the MI/MET study, and about whether MI/MET was adopted after the study ended. Although clinics’ participation in a clinical trial includes many elements thought to be necessary for later adoption of the intervention, we found that there was “adoption” in one clinic, “partial adoption” in one clinic, “counselor adoption” in one clinic, and “no adoption” in two clinics. These findings highlight a distinction between adoption at the organizational and counselor levels, and suggest that a range of adoption outcomes may be observed in the field. Findings are relevant to clinical staff, program directors, administrators and policy makers concerned with improvement of drug abuse treatment systems through adoption of evidence-based practices. PMID:21138198

  16. Use and Adoption of an Assisted Cognition System to Support Therapies for People with Dementia

    Directory of Open Access Journals (Sweden)

    René F. Navarro

    2016-01-01

    Full Text Available The cognitive deficits in persons with dementia (PwD can produce significant functional impairment from early stages. Although memory decline is most prominent, impairments in attention, orientation, language, reasoning, and executive functioning are also common. Dementia is also characterized by changes in personality and behavioral functioning that can be very challenging for caregivers and patients. This paper presents results on the use and adoption of an assisted cognition system to support occupational therapy to address psychological and behavioral symptoms of dementia. During 16 weeks, we conducted an in situ evaluation with two caregiver-PwD dyads to assess the adoption and effectiveness of the system to ameliorate challenging behaviors and reducing caregiver burden. Evaluation results indicate that intervention personalization and a touch-based interface encouraged the adoption of the system, helping reduce challenging behaviors in PwD and caregiver burden.

  17. Use and Adoption of an Assisted Cognition System to Support Therapies for People with Dementia.

    Science.gov (United States)

    Navarro, René F; Rodríguez, Marcela D; Favela, Jesús

    2016-01-01

    The cognitive deficits in persons with dementia (PwD) can produce significant functional impairment from early stages. Although memory decline is most prominent, impairments in attention, orientation, language, reasoning, and executive functioning are also common. Dementia is also characterized by changes in personality and behavioral functioning that can be very challenging for caregivers and patients. This paper presents results on the use and adoption of an assisted cognition system to support occupational therapy to address psychological and behavioral symptoms of dementia. During 16 weeks, we conducted an in situ evaluation with two caregiver-PwD dyads to assess the adoption and effectiveness of the system to ameliorate challenging behaviors and reducing caregiver burden. Evaluation results indicate that intervention personalization and a touch-based interface encouraged the adoption of the system, helping reduce challenging behaviors in PwD and caregiver burden.

  18. Adoption of Motivational Interviewing and Motivational Enhancement Therapy Following Clinical Trials†

    OpenAIRE

    Guydish, Joseph; Jessup, Martha; Tajima, Barbara; Manser, Sarah Turcotte

    2010-01-01

    The National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) is designed to test drug abuse treatment interventions in multisite clinical trials and to support the translation of effective interventions into practice. In this study, qualitative methods were applied to examine adoption of motivational interviewing and motivational enhancement therapy (MI/MET) in five clinics where these interventions were tested. Participants were clinic staff (n = 17) who were interviewed about t...

  19. Multifunctional T-cell Analyses to Study Response and Progression in Adoptive Cell Transfer Immunotherapy

    Science.gov (United States)

    Ma, Chao; Cheung, Ann F.; Chodon, Thinle; Koya, Richard C.; Wu, Zhongqi; Ng, Charles; Avramis, Earl; Cochran, Alistair J.; Witte, Owen N.; Baltimore, David; Chmielowski, Bartosz; Economou, James S.; Comin-Anduix, Begonya; Ribas, Antoni; Heath, James R.

    2013-01-01

    Adoptive cell transfer (ACT) of genetically engineered T cells expressing cancer-specific T-cell receptors (TCR) is a promising cancer treatment. Here, we investigate the in vivo functional activity and dynamics of the transferred cells by analyzing samples from 3 representative patients with melanoma enrolled in a clinical trial of ACT with TCR transgenic T cells targeted against the melanosomal antigen MART-1. The analyses included evaluating 19 secreted proteins from individual cells from phenotypically defined T-cell subpopulations, as well as the enumeration of T cells with TCR antigen specificity for 36 melanoma antigens. These analyses revealed the coordinated functional dynamics of the adoptively transferred, as well as endogenous, T cells, and the importance of highly functional T cells in dominating the antitumor immune response. This study highlights the need to develop approaches to maintaining antitumor T-cell functionality with the aim of increasing the long-term efficacy of TCR-engineered ACT immunotherapy. SIGNIFICANCE A longitudinal functional study of adoptively transferred TCR–engineered lymphocytes yielded revealing snapshots for understanding the changes of antitumor responses over time in ACT immunotherapy of patients with advanced melanoma. PMID:23519018

  20. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... Chicago Learn More Close The American Society of Gene & Cell Therapy ASGCT is the primary membership organization for scientists, ... Therapeutics Official Journal of the American Society of Gene & Cell Therapy Molecular Therapy is the leading journal for gene ...

  1. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  2. Stem cell therapy for inflammatory bowel disease

    NARCIS (Netherlands)

    Duijvestein, Marjolijn

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal (MSC) cell therapy are currently under investigation as novel therapies for inflammatory bowel diseases (IBD). Hematopoietic stem cells are thought to repopulate the immune system and reset the immunological response to luminal

  3. The Past, Present, and Future of NK Cells in Hematopoietic Cell Transplantation and Adoptive Transfer.

    Science.gov (United States)

    Cichocki, Frank; Verneris, Michael R; Cooley, Sarah; Bachanova, Veronika; Brunstein, Claudio G; Blazar, Bruce R; Wagner, John; Schlums, Heinrich; Bryceson, Yenan T; Weisdorf, Daniel J; Miller, Jeffrey S

    2016-01-01

    Hematopoietic cell transplantation (HCT) has been used as a part of cancer therapy for over half a decade. Beyond the necessity for donor-derived cells to reconstitute hematopoiesis after radiation and chemotherapy, immunologic reconstitution from allogeneic cells is important for the elimination of residual tumor cells. Natural killer (NK) cells are first among lymphocytes to reconstitute post-transplant and protect against cancer relapse. In this review, we provide a historical perspective on the role of NK cells in cancer control in the transplant setting and focus on current research aimed at improving NK cell responses for therapeutic benefit.

  4. Dynamic imaging for CAR-T-cell therapy.

    Science.gov (United States)

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans. © 2016 Authors; published by Portland Press Limited.

  5. Cell Density Plays a Critical Role in Ex Vivo Expansion of T Cells for Adoptive Immunotherapy

    Directory of Open Access Journals (Sweden)

    Qiangzhong Ma

    2010-01-01

    Full Text Available The successful ex vivo expansion of a large numbers of T cells is a prerequisite for adoptive immunotherapy. In this study, we found that cell density had important effects on the process of expansion of T cells in vitro. Resting T cells were activated to expand at high cell density but failed to be activated at low cell density. Activated T cells (ATCs expanded rapidly at high cell density but underwent apoptosis at low cell density. Our studies indicated that low-cell-density related ATC death is mediated by oxidative stress. Antioxidants N-acetylcysteine, catalase, and albumin suppressed elevated reactive oxygen species (ROS levels in low-density cultures and protected ATCs from apoptosis. The viability of ATCs at low density was preserved by conditioned medium from high-density cultures of ATCs in which the autocrine survival factor was identified as catalase. We also found that costimulatory signal CD28 increases T cell activation at lower cell density, paralleled by an increase in catalase secretion. Our findings highlight the importance of cell density in T cell activation, proliferation, survival and apoptosis and support the importance of maintaining T cells at high density for their successful expansion in vitro.

  6. Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug.

    Science.gov (United States)

    Tanaka, Yoshimasa; Murata-Hirai, Kaoru; Iwasaki, Masashi; Matsumoto, Kenji; Hayashi, Kosuke; Kumagai, Asuka; Nada, Mohanad H; Wang, Hong; Kobayashi, Hirohito; Kamitakahara, Hiroshi; Okamura, Haruki; Sugie, Tomoharu; Minato, Nagahiro; Toi, Masakazu; Morita, Craig T

    2018-03-01

    Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) -unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor-α and interferon-γ in response to PTA-treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA-matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice.

    Science.gov (United States)

    Klebanoff, Christopher A; Gattinoni, Luca; Palmer, Douglas C; Muranski, Pawel; Ji, Yun; Hinrichs, Christian S; Borman, Zachary A; Kerkar, Sid P; Scott, Christopher D; Finkelstein, Steven E; Rosenberg, Steven A; Restifo, Nicholas P

    2011-08-15

    Adoptive cell transfer (ACT) of tumor infiltrating or genetically engineered T cells can cause durable responses in patients with metastatic cancer. Multiple clinically modifiable parameters can comprise this therapy, including cell dose and phenotype, in vivo antigen restimulation, and common gamma-chain (γ(c)) cytokine support. However, the relative contributions of each these individual components to the magnitude of the antitumor response have yet to be quantified. To systematically and quantitatively appraise each of these variables, we employed the Pmel-1 mouse model treating large, established B16 melanoma tumors. In addition to cell dose and magnitude of in vivo antigen restimulation, we also evaluated the relative efficacy of central memory (T(CM)), effector memory (T(EM)), and stem cell memory (T(SCM)) subsets on the strength of tumor regression as well as the dose and type of clinically available γ(c) cytokines, including IL-2, IL-7, IL-15, and IL-21. We found that cell dose, T-cell differentiation status, and viral vaccine titer each were correlated strongly and significantly with the magnitude of tumor regression. Surprisingly, although the total number of IL-2 doses was correlated with tumor regression, no significant benefit to prolonged (≥6 doses) administration was observed. Moreover, the specific type and dose of γ(c) cytokine only moderately correlated with response. Collectively, these findings elucidate some of the key determinants of successful ACT immunotherapy for the treatment of cancer in mice and further show that γ(c) cytokines offer a similar ability to effectively drive antitumor T-cell function in vivo. ©2011 AACR.

  8. Monoclonal T-cell receptors: new reagents for cancer therapy.

    Science.gov (United States)

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells.

  9. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma.

    Science.gov (United States)

    Orlando, Domenico; Miele, Evelina; De Angelis, Biagio; Guercio, Marika; Boffa, Iolanda; Sinibaldi, Matilde; Po, Agnese; Caruana, Ignazio; Abballe, Luana; Carai, Andrea; Caruso, Simona; Camera, Antonio; Moseley, Annemarie; Hagedoorn, Renate S; Heemskerk, Mirjam H M; Giangaspero, Felice; Mastronuzzi, Angela; Ferretti, Elisabetta; Locatelli, Franco; Quintarelli, Concetta

    2018-04-03

    Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 medulloblastoma patients. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY cells as well as primary HLA-A*02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T cell-related toxicity,an inducible caspase 9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically-modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating HLA-A*02+ medulloblastoma patients. Copyright ©2018, American Association for Cancer Research.

  10. Stem cells: sources and therapies

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-01-01

    Full Text Available The historical, lexical and conceptual issues embedded in stem cell biology are reviewed from technical, ethical, philosophical, judicial, clinical, economic and biopolitical perspectives. The mechanisms assigning the simultaneous capacity to self-renew and to differentiate to stem cells (immortal template DNA and asymmetric division are evaluated in the light of the niche hypothesis for the stemness state. The induction of cell pluripotency and the different stem cells sources are presented (embryonic, adult and cord blood. We highlight the embryonic and adult stem cell properties and possible therapies while we emphasize the particular scientific and social values of cord blood donation to set up cord blood banks. The current scientific and legal frameworks of cord blood banks are reviewed at an international level as well as allogenic, dedicated and autologous donations. The expectations and the challenges in relation to present-day targeted diseases like diabetes mellitus type I, Parkinson's disease and myocardial infarction are evaluated in the light of the cellular therapies for regenerative medicine.

  11. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.

    Science.gov (United States)

    Lynch, Adam; Hawk, William; Nylen, Emily; Ober, Sean; Autin, Pierre; Barber, Amorette

    2017-11-01

    Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies. © 2017 John Wiley & Sons Ltd.

  12. Stem-cell therapy for neurologic diseases

    Directory of Open Access Journals (Sweden)

    Shilpa Sharma

    2015-01-01

    Full Text Available With the advent of research on stem cell therapy for various diseases, an important need was felt in the field of neurological diseases. While congenital lesion may not be amenable to stem cell therapy completely, there is a scope of partial improvement in the lesions and halt in further progression. Neuro degenerative lesions like Parkinson′s disease, multiple sclerosis and amyotrophic lateral sclerosis have shown improvement with stem cell therapy. This article reviews the available literature and summarizes the current evidence in the various neurologic diseases amenable to stem cell therapy, the plausible mechanism of action, ethical concerns with insights into the future of stem cell therapy.

  13. Adoption of Intensity Modulated Radiation Therapy For Early-Stage Breast Cancer From 2004 Through 2011

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Elyn H. [Yale School of Medicine, New Haven, Connecticut (United States); Mougalian, Sarah S. [Yale School of Medicine, New Haven, Connecticut (United States); Yale Cancer Center, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Soulos, Pamela R. [Yale School of Medicine, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut (United States); Smith, Benjamin D. [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Haffty, Bruce G. [Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Gross, Cary P. [Yale School of Medicine, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut (United States); Yu, James B., E-mail: james.b.yu@yale.edu [Yale School of Medicine, New Haven, Connecticut (United States); Cancer Outcomes, Public Policy, and Effectiveness Research Center at Yale, New Haven, Connecticut (United States); Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut (United States)

    2015-02-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base from 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status.

  14. Adoption of Intensity Modulated Radiation Therapy For Early-Stage Breast Cancer From 2004 Through 2011

    International Nuclear Information System (INIS)

    Wang, Elyn H.; Mougalian, Sarah S.; Soulos, Pamela R.; Smith, Benjamin D.; Haffty, Bruce G.; Gross, Cary P.; Yu, James B.

    2015-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base from 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status

  15. Stem cells therapy for ALS.

    Science.gov (United States)

    Mazzini, Letizia; Vescovi, Angelo; Cantello, Roberto; Gelati, Maurizio; Vercelli, Alessandro

    2016-01-01

    Despite knowledge on the molecular basis of amyotrophic lateral sclerosis (ALS) having quickly progressed over the last few years, such discoveries have not yet translated into new therapeutics. With the advancement of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS. We discuss in detail the therapeutic potential of different types of stem cells in preclinical and clinical works. Moreover, we address many open questions in clinical translation. SC therapy is a potentially promising new treatment for ALS and the need to better understand how to develop cell-based experimental treatments, and how to implement them in clinical trials, becomes more pressing. Mesenchymal stem cells and neural fetal stem cells have emerged as safe and potentially effective cell types, but there is a need to carry out appropriately designed experimental studies to verify their long-term safety and possibly efficacy. Moreover, the cost-benefit analysis of the results must take into account the quality of life of the patients as a major end point. It is our opinion that a multicenter international clinical program aime d at fine-tuning and coordinating transplantation procedures and protocols is mandatory.

  16. An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites.

    Science.gov (United States)

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2015-01-20

    Adoptive T-cell therapy has shown promises for cancer treatment. However, for treating solid tumors, there is a need for improving the ability of the adoptively transferred T cells to home to tumor sites. We explored the possibility of using an oncolytic virus derived from HSV-2, which can actively pull T effector cells to the site of infection, as a local attractant for migration of adoptively transferred T cells. Our data show that intratumoral administration of this virus can indeed attract active migration of the adoptively transferred T cells to the treated tumor. Moreover, once attracted to the tumor site by the virus, T cells persisted in there significantly longer than in mock-treated tumor. Chemokine profiling identified significant elevation of CXCL9 and CXCL10, as well as several other chemokines belonging to the inflammatory chemokine family in the virus-treated tumors. These chemokines initially guided the T-cell migration to and then maintained their persistence in the tumor site, leading to a significantly enhanced therapeutic effect. Our data suggests that this virotherapy may be combined with adoptive T-cell therapy to potentiate its therapeutic effect against solid tumors that are otherwise difficult to manage with the treatment alone.

  17. Photodynamic therapy for basal cell carcinoma.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  18. Enhancing adoptive cancer immunotherapy with V?2V?2 T cells through pulse zoledronate stimulation

    OpenAIRE

    Nada, Mohanad H.; Wang, Hong; Workalemahu, Grefachew; Tanaka, Yoshimasa; Morita, Craig T.

    2017-01-01

    Background Human ?? T cells expressing V?2V?2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with V?2V?2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand V?2V?2 cells where zoledronate is slowly diluted over the course of the culture. Zoledr...

  19. [Stem cell therapy for neurodegenerative disorders].

    Science.gov (United States)

    Meyer, Morten; Jensen, Pia; Rasmussen, Jens Zimmer

    2010-09-20

    Intrastriatal, foetal neural transplants can ameliorate symptoms in patients with Parkinson's and Huntington's disease, although not stop the primary cell-loss. Several issues must, however, be addressed before general or extended clinical use of cell therapy in neurodegenerative diseases can become a reality. Improvements include standardized and safe master cell-lines derived from human embryonic stem cells, induced pluripotent stem cells and neural stem cells. Cells from these sources are expected to become available for cell replacement therapies or therapeutic production of trophic, anti-inflammatory and restorative factors within a few years.

  20. Summit on cell therapy for cancer: The importance of the interaction of multiple disciplines to advance clinical therapy.

    Science.gov (United States)

    Melief, Cornelis J M; O'Shea, John J; Stroncek, David F

    2011-07-08

    The field of cellular therapy of cancer is moving quickly and the issues involved with its advancement are complex and wide ranging. The growing clinical applications and success of adoptive cellular therapy of cancer has been due to the rapid evolution of immunology, cancer biology, gene therapy and stem cell biology and the translation of advances in these fields from the research laboratory to the clinic. The continued development of this field is dependent on the exchange of ideas across these diverse disciplines, the testing of new ideas in the research laboratory and in animal models, the development of new cellular therapies and GMP methods to produce these therapies, and the testing of new adoptive cell therapies in clinical trials. The Summit on Cell Therapy for Cancer to held on November 1 and 2, 2011 at the National Institutes of Health (NIH) campus will include a mix of perspectives, concepts and ideas related to adoptive cellular therapy that are not normally presented together at any single meeting. This novel assembly will generate new ideas and new collaborations and possibly increase the rate of advancement of this field.

  1. Stem cell therapy for inflammatory bowel disease

    OpenAIRE

    Duijvestein, Marjolijn

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) and mesenchymal stromal (MSC) cell therapy are currently under investigation as novel therapies for inflammatory bowel diseases (IBD). Hematopoietic stem cells are thought to repopulate the immune system and reset the immunological response to luminal antigens. MSCs have the capacity to differentiate into a wide variety of distinct cell lineages and to suppress immune responses in vitro and in vivo. The main goal of this thesis was to study the s...

  2. Chimeric antigen receptor engineered stem cells: a novel HIV therapy.

    Science.gov (United States)

    Zhen, Anjie; Carrillo, Mayra A; Kitchen, Scott G

    2017-03-01

    Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients' quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication. However, HIV adopts numerous strategies to evade immune surveillance. Engineered immunity via genetic manipulation could offer a functional cure by generating cells that have enhanced antiviral activity and are resistant to HIV infection. Recently, encouraging reports from several human clinical trials using an anti-CD19 chimeric antigen receptor (CAR) modified T-cell therapy for treating B-cell malignancies have provided valuable insights and generated remarkable enthusiasm in engineered T-cell therapy. In this review, we discuss the development of HIV-specific chimeric antigen receptors and the use of stem cell based therapies to generate lifelong anti-HIV immunity.

  3. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation.

    Science.gov (United States)

    Nada, Mohanad H; Wang, Hong; Workalemahu, Grefachew; Tanaka, Yoshimasa; Morita, Craig T

    2017-01-01

    Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those

  4. Cell-Based Therapies for Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Stella Bernardi

    2012-01-01

    Full Text Available In recent years, accumulating experimental evidence supports the notion that diabetic patients may greatly benefit from cell-based therapies, which include the use of adult stem and/or progenitor cells. In particular, mesenchymal stem cells and the circulating pool of endothelial progenitor cells have so far been the most studied populations of cells proposed for the treatment of vascular complications affecting diabetic patients. We review the evidence supporting their use in this setting, the therapeutic benefits that these cells have shown so far as well as the challenges that cell-based therapies in diabetic complications put out.

  5. Learning for supplying as a motive to be the early adopter of a new energy technology: A study on the adoption of stationary fuel cells

    International Nuclear Information System (INIS)

    Huang, A.Y.-J.; Liu, R.-H.

    2008-01-01

    By early adopting a new technology, firms may attempt to improve their production efficiency and become further involved in the supply chain of the technology. These two different advantages derived from learning a new technology are identified as motives for adopting the technology. When learning for supplying (LFS) (becoming involved in the supply chain of the new technology) highlighted in this paper is significant enough, potential adopters may still be willing to adopt the new technology, even though learning for using (LFU) (increasing current production efficiency) is not significant. This paper identifies LFS as a motive for early adopters of the new technology. Firms may adopt a new technology for the purpose of learning how to become the suppliers of the relevant parts, materials, or equipment for the new technology. By investigating the adoption decision of a new energy technology (namely, phosphoric acid fuel cells (PAFC)), our arguments are supported by both observation of early adopters' attributes and a survey of Taiwanese firms' willingness to adopt new technology

  6. Nonclinical safety strategies for stem cell therapies

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Michaela E., E-mail: michaela_sharpe@yahoo.com [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom); Morton, Daniel [Exploratory Drug Safety, Drug Safety Research and Development, Pfizer Inc, Cambridge, 02140 (United States); Rossi, Annamaria [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom)

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  7. Nonclinical safety strategies for stem cell therapies

    International Nuclear Information System (INIS)

    Sharpe, Michaela E.; Morton, Daniel; Rossi, Annamaria

    2012-01-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  8. Technical Considerations for the Generation of Adoptively Transferred T Cells in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Anthony Visioni

    2016-09-01

    Full Text Available A significant function of the immune system is the surveillance and elimination of aberrant cells that give rise to cancer. Even when tumors are well established and metastatic, immune-mediated spontaneous regressions have been documented. While there are have been various forms of immunotherapy, one of the most widely studied for almost 40 years is adoptive cellular immunotherapy, but its success has yet to be fully realized. Adoptive cell transfer (ACT is a therapeutic modality that has intrigued physicians and researchers for its many theoretical benefits. Preclinical investigations and human trials have utilized natural killer (NK cells, dendritic cells (DC, macrophages, T-cells or B-cells for ACT with the most intense research focused on T-cell ACT. T-cells are exquisitely specific to the target of its T-cell receptor (TCR, thus potentially reducing the amount of collateral damage and off-target effects from treatment. T-cells also possess a memory subset that may reduce the risk of recurrence of a cancer after the successful treatment of the primary disease. There are several options for the source of T-cells used in the generation of cells for ACT. Perhaps the most widely known source is T-cells generated from tumor-infiltrating lymphocytes (TILs. However, studies have also employed peripheral blood mononuclear cells (PBMCs, lymph nodes, and even induced pluripotent stem cells (IPSCs as a source of T-cells. Several important technical considerations exist regarding benefits and limitations of each source of T-cells. Unique aspects of T-cells factor into their ability to be efficacious in ACT including the total number of cells available for ACT, the anti-tumor efficacy on a per cell basis, the repertoire of TCRs specific to tumor cells, and their ability to traffic to various organs that harbor tumor. Current research is attempting to unlock the full potential of these cells to effectively and safely treat cancer.

  9. Rural residence and adoption of a novel HIV therapy in a national, equal-access healthcare system.

    Science.gov (United States)

    Ohl, Michael; Lund, Brian; Belperio, Pamela S; Goetz, Matthew Bidwell; Rimland, David; Richardson, Kelly; Justice, Amy; Perencevich, Eli; Vaughan-Sarrazin, Mary

    2013-01-01

    Rural persons with HIV face barriers to care that may influence adoption of advances in therapy. We performed a retrospective cohort study to determine rural-urban variation in adoption of raltegravir-the first HIV integrase inhibitor-in national Veterans Affairs (VA) healthcare. There were 1,222 veterans with clinical indication for raltegravir therapy at time of its FDA approval in October 2007, of whom 223 (19.1%) resided in rural areas. Urban persons were more likely than rural to initiate raltegravir within 180 days (17.3% vs. 11.2%, P = 0.02) and 360 days (27.5% vs. 19.7%, P = 0.02), but this gap narrowed slightly at 720 days (36.3% vs. 31.8%, P = 0.19). In multivariable analysis adjusting for patient characteristics, urban residence predicted raltegravir adoption within 180 days (odds ratio 1.72, 95% CI 1.09-2.70) and 360 days (OR 1.63, 95% CI 1.13-2.34), but not 720 days (OR 1.26, 95% CI 0.84-1.87). Efforts are needed to reduce geographic variation in adoption of advances in HIV therapy.

  10. Gene therapy for sickle cell disease.

    Science.gov (United States)

    Olowoyeye, Abiola; Okwundu, Charles I

    2016-11-14

    Sickle cell disease encompasses a group of genetic disorders characterized by the presence of at least one hemoglobin S (Hb S) allele, and a second abnormal allele that could allow abnormal hemoglobin polymerisation leading to a symptomatic disorder.Autosomal recessive disorders (such as sickle cell disease) are good candidates for gene therapy because a normal phenotype can be restored in diseased cells with only a single normal copy of the mutant gene. This is an update of a previously published Cochrane Review. The objectives of this review are:to determine whether gene therapy can improve survival and prevent symptoms and complications associated with sickle cell disease;to examine the risks of gene therapy against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises of references identified from comprehensive electronic database searches and searching relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 15 August 2016. All randomised or quasi-randomised clinical trials (including any relevant phase 1, 2 or 3 trials) of gene therapy for all individuals with sickle cell disease, regardless of age or setting. No trials of gene therapy for sickle cell disease were found. No trials of gene therapy for sickle cell disease were reported. No randomised or quasi-randomised clinical trials of gene therapy for sickle cell disease were reported. Thus, no objective conclusions or recommendations in practice can be made on gene therapy for sickle cell disease. This systematic review has identified the need for well-designed, randomised controlled trials to assess the benefits and risks of gene therapy for sickle cell disease.

  11. Stem cell therapy to treat heart ischaemia

    DEFF Research Database (Denmark)

    Ali Qayyum, Abbas; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...... to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted....

  12. Accumulation of adoptively transferred adherent, lymphokine-activated killer cells in murine metastases

    DEFF Research Database (Denmark)

    Basse, P; Herberman, R B; Nannmark, U

    1991-01-01

    was seen after i.v. injection, significant infiltration of liver metastases was seen only after intraportal injection of the A-LAK cells indicating impaired traffic of intravenous injected A-LAK cells through the lung capillaries. These results present direct evidence that A-LAK cells, upon a proper route......While close contact between lymphokine-activated killer (LAK)/adherent, lymphokine-activated killer (A-LAK) cells and tumor cells is believed to be a prerequisite for initiating the events leading to tumor cell lysis, clear evidence for the ability of these effector cells to infiltrate tumors...... carcinoma lines. Thus, 5- to 10-fold higher numbers of A-LAK cells were found in the malignant lesions compared to the surrounding normal tissue. The infiltration seemed very heterogeneous after intravenous injection of moderate numbers of A-LAK cells (15 x 10(6)). However, after adoptive transfer of 45...

  13. Current Biosafety Considerations in Stem Cell Therapy

    Science.gov (United States)

    Mousavinejad, Masoumeh; Andrews, Peter W.; Shoraki, Elham Kargar

    2016-01-01

    Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient’s life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies. PMID:27540533

  14. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  15. Adoption of Hypofractionated Radiation Therapy for Breast Cancer After Publication of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Falchook, Aaron D.; Hendrix, Laura H. [Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Curry, Heather [Radiation Oncology, Eviti, Inc, Philadelphia, Pennsylvania (United States); Chen, Ronald C. [Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States)

    2014-12-01

    Purpose: Large randomized trials have established the noninferiority of shorter courses of “hypofractionated” radiation therapy (RT) to the whole breast compared to conventional courses using smaller daily doses in the adjuvant treatment of selected breast cancer patients undergoing lumpectomy. Hypofractionation is more convenient and less costly. Therefore, we sought to determine uptake of hypofractionated breast RT over time. Methods and Materials: In the Surveillance, Epidemiology, and End Results (SEER)-Medicare-linked database, we identified 16,096 women with node-negative breast cancer and 4269 with ductal carcinoma in situ (DCIS) who received lumpectomy followed by more than 12 fractions of RT between 2004 and 2010. Based on Medicare claims, we determined the number of RT treatments given and grouped patients into those receiving hypofractionation (13-24) or those receiving conventional fractionation (≥25). We also determined RT technique (intensity modulated RT or not) using Medicare claims. We evaluated patterns and correlates of hypofractionation receipt using bivariate and multivariable analyses. Results: Hypofractionation use was similar in patients with DCIS and those with invasive disease. Overall, the use of hypofractionation increased from 3.8% in 2006 to 5.4% in 2007, to 9.4% in 2008, and to 13.6% in 2009 and 2010. Multivariable analysis showed increased use of hypofractionation in recent years and in patients with older age, smaller tumors, increased comorbidity, higher regional education, and Western SEER regions. However, even in patients over the age of 80, the hypofractionation rate in 2009 to 2010 was only 25%. Use of intensity modulated RT (IMRT) also increased over time (from 9.4% in 2004 to 22.7% in 2009-2010) and did not vary significantly between patients receiving hypofractionation and those receiving traditional fractionation. Conclusions: Hypofractionation use increased among low-risk older US breast cancer patients with

  16. Market access pathways for cell therapies in France.

    Science.gov (United States)

    Rémuzat, Cécile; Toumi, Mondher; Jørgensen, Jesper; Kefalas, Panos

    2015-01-01

    ) system through Missions of General Interest and Support to Contracting (MIGAC). For minimally manipulated cells, four different funding processes are applicable, depending on the type of activity: (1) inclusion in a DRG; (2) inclusion in the list of products and services qualifying for reimbursement (LPPR) (as a medical device); (3) an annual lump sum provided by regional health agencies; and (4) a financial allowance under Missions of General Interest (MIG). Cell therapy is a diverse and promising category of medical interventions. Its heterogeneity and complexity mean that several funding options and market access pathways apply. The main challenges facing cell therapies relate to (1) the identification of the most appropriate path to reimbursement, and (2) price setting, whereas high manufacturing costs of these therapies will dictate a high price that could only be achieved by a product that leads to important additional patient benefits compared to available treatment options. More specific funding options could emerge as the number of cell therapies increases and the authorities face the need to structure and stabilise funding. It will be vital for manufacturers to have a clear understanding of the various temporary funding opportunities early in a product's lifecycle for the adoption of a stepwise approach to secure permanent funding. Furthermore, due to the very limited Health Technology Assessment (HTA) bodies experience for cell therapies, manufacturers should enter into dialogues with HTA agencies at an early stage to optimise market access conditions.

  17. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S.C.L. Langeveld (Sabine); C.M. Groot-van Ruijven (Corrien); J.E.M.A. Debets (Reno); S. Sleijfer (Stefan); J.W. Gratama (Jan-Willem)

    2007-01-01

    textabstractAbstract BACKGROUND: We have treated three patients with carboxy-anhydrase-IX (CAIX) positive metastatic renal cell cancer (RCC) by adoptive transfer of autologous T-cells that had been gene-transduced to express a single-chain antibody-G250 chimeric receptor [scFv(G250)], and

  18. Organizational Dimensions of Innovative Practice: A Qualitative Investigation of the Processes Supporting Innovation Adoption in Outpatient Physical Therapy Practice.

    Science.gov (United States)

    Sabus, Carla; Spake, Ellen

    2018-01-01

    The ability to innovate and adapt practice is a requirement of the progressive healthcare provider. Innovative practice by rehabilitation providers has largely been approached as personal professional development; this study extends that perspective by examining innovation uptake from the organizational level. The varied professions can be expected to have distinct qualities of innovation adoption that reflect professional norms, values, and expectations. The purpose of this qualitative study was to describe the organizational processes of innovation uptake in outpatient physical therapy practice. Through nomination, two outpatient, privately owned physical therapy clinics were identified as innovation practices. Eighteen physical therapists, three owners, and a manager participated in the study. The two clinics served as case studies within a grounded theory approach. Data were collected through observation, unstructured questioning, work flow analysis, focus group sessions, and artifact analysis. Data were analyzed and coded among the investigators. A theoretical model of the innovation adoption process in outpatient physical therapy practice was developed. Elements of the model included (1) change grounded in relationship-centered care, (2) clinic readiness to accept change, and (3) clinic adaptability and resilience. A social paradigm of innovation adoption informed through this research complements the concentration on personal professional development.

  19. [Magnetic nanoparticles as tools for cell therapy].

    Science.gov (United States)

    Wilhelm, Claire; Gazeau, Florence

    2012-01-01

    Labelling living cells with magnetic nanoparticles creates opportunities for numerous biomedical applications such as Magnetic Resonance Imaging (MRI) cell tracking, cell manipulation, cell patterning for tissue engineering and magnetically-assisted cell delivery. The unique advantage of magnetic-based methods is to activate or monitor cell behavior by a remote stimulus, the magnetic field. Cell labelling methods using superparamagnetic nanoparticles have been widely developed, showing no adverse effect on cell proliferation and functionalities while conferring magnetic properties to various cell types. This paper first describes how cells can become responsive to magnetic field by safely internalizing magnetic nanoparticles. We next show how magnetic cells can be detected by MRI, giving the opportunity for non-invasive in vivo monitoring of cell migration. We exemplify the fact that MRI cell tracking has become a method of choice to follow the fate of administrated cells in cell therapy assay, whether the cells are grafted locally or administrated in the circulation. Finally we give different examples of magnetic manipulation of cells and their applications to regenerative medicine. Magnetic cell manipulation are forecasted to be more and more developed, in order to improve tissue engineering technique and assist cell-based therapies. Owing to the clinical approval of iron-oxide nanoparticles as MRI contrast agent, there is no major obstacle in the translation to human clinics of the magnetic methods summarized in this paper. © Société de Biologie, 2013.

  20. Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Kim Julian A

    2004-11-01

    Full Text Available Abstract T cell-mediated cancer immunotherapy is dose dependent and optimally requires participation of antigen-specific CD4+ and CD8+ T cells. Here, we isolated tumor-sensitized T cells and activated them in vitro using conditions that led to greater than 108-fold numerical hyperexpansion of either the CD4+ or CD8+ subset while retaining their capacity for in vivo therapeutic efficacy. Murine tumor-draining lymph node (TDLN cells were segregated to purify the CD62Llow subset, or the CD4+ subset thereof. Cells were then propagated through multiple cycles of anti-CD3 activation with IL-2 + IL-7 for the CD8+ subset, or IL-7 + IL-23 for the CD4+ subset. A broad repertoire of TCR Vβ families was maintained throughout hyperexpansion, which was similar to the starting population. Adoptive transfer of hyper-expanded CD8+ T cells eliminated established pulmonary metastases, in an immunologically specific fashion without the requirement for adjunct IL-2. Hyper-expanded CD4+ T cells cured established tumors in intracranial or subcutaneous sites that were not susceptible to CD8+ T cells alone. Because accessibility and antigen presentation within metastases varies according to anatomic site, maintenance of a broad repertoire of both CD4+ and CD8+ T effector cells will augment the overall systemic efficacy of adoptive immunotherapy.

  1. Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma.

    Science.gov (United States)

    Koike, Nobusada; Pilon-Thomas, Shari; Mulé, James J

    2008-05-01

    We demonstrated previously that dendritic cell (DC)-based vaccines could mediate a specific and long-lasting antitumor immune response during early lymphoid reconstitution after lethal irradiation and bone marrow transplant. The purpose of this current study was to examine the potential therapeutic efficacy of DC-based vaccines in combination with sublethal lymphodepletion and T-cell transfer. In an aggressive model of melanoma, treatment with the combination of 200 mg/kg cyclophosphamide (Cy) and 100 mg/kg fludarabine (Flu) led to a lymphopenic state lasting approximately 14 days, but had no effect on the growth of an established M05 melanoma. Addition of ovalbumin (OVA) peptide-pulsed DC-based immunization resulted in a delay in tumor growth but did not enhance overall survival in this model. To improve treatment, adoptively transferred naive T cells were added. After induction of lymphopenia with Cy and Flu, transferred T cells demonstrated an activated memory phenotype including high expression of CD44 and low expression of CD62L. Induction of lymphopenia with Cy and Flu in combination with adoptive transfer of naive T cells and OVA peptide-pulsed DCs immunization led to an enhancement in the number of OVA specific, CD8 T cells that demonstrated specific cytotoxic activity, proliferation, and interferon-gamma production in response to the OVA expressing M05 melanoma. This combination therapy also led to tumor regression and enhanced survival in mice bearing M05 melanoma.

  2. FDA Warns About Stem Cell Therapies

    Science.gov (United States)

    ... the FDA published a perspective article in the New England Journal of Medicine . The FDA will continue to help with the development and licensing of new stem cell therapies where the scientific evidence supports ...

  3. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma

    DEFF Research Database (Denmark)

    Andersen, Rikke; Donia, Marco; Westergaard, Marie Christine Wulff

    2015-01-01

    stimulated the interest in developing this approach for other indications. Here, we summarize the early clinical data in the field of adoptive cell transfer therapy (ACT) using tumor-infiltrating lymphocytes for patients with renal cell carcinoma (RCC) and ovarian cancer (OC). In addition we describe...

  4. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients

    DEFF Research Database (Denmark)

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy......-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens...

  5. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology.

    Science.gov (United States)

    Kalos, Michael; June, Carl H

    2013-07-25

    Adoptivecell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Cell based therapy in Parkinsonism

    NARCIS (Netherlands)

    de Munter, J.P.J.M.; Lee, C.; Wolters, E.C.

    2013-01-01

    Parkinson's disease (PD) is a synucleinopathy-induced chronic progressive neurodegenerative disorder, worldwide affecting about 5 million humans. As of yet, actual therapies are symptomatic, and neuroprotective strategies are an unmet need. Due to their capability to transdifferentiate, to immune

  7. External determinants for the adoption of stationary fuel cells-Infrastructure and policy issues

    International Nuclear Information System (INIS)

    Karger, Cornelia R.; Bongartz, Richard

    2008-01-01

    This paper investigates the relevance of external determinants for the adoption of stationary fuel cells (FCs) by different user groups with respect to the marketability of this innovative technology. FCs allow electricity and heat to be decentrally generated in an energy-efficient and potentially environmentally friendly manner. European energy policy is undertaking efforts to increase the proportion of combined heat and power (CHP) plants. A series of studies have spoken of their considerable market potential. A qualitative study was conducted with six focus groups consisting of 49 commercial users and six focus groups with 54 private consumers. The results of the study show that the specific infrastructure required for decentralisation and policy issues are highly relevant for the user adoption of FCs. Security of supply when energy generation is more strongly decentralised, reliable maintenance of the system, and clear political objectives are examples of factors that are considered essential prerequisites for the adoption of this technology

  8. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  9. Basal cell carcinoma after radiation therapy

    International Nuclear Information System (INIS)

    Shimbo, Keisuke; Terashi, Hiroto; Ishida, Yasuhisa; Tahara, Shinya; Osaki, Takeo; Nomura, Tadashi; Ejiri, Hirotaka

    2008-01-01

    We reported two cases of basal cell carcinoma (BCC) that developed after radiation therapy. A 50-year-old woman, who had received an unknown amount of radiation therapy for the treatment of intracranial germinoma at the age of 22, presented with several tumors around the radiation ulcer. All tumors showed BCC. A 33-year-old woman, who had received an unknown amount of radiation therapy on the head for the treatment of leukemia at the age of 2, presented with a black nodule within the area of irradiation. The tumor showed BCC. We discuss the occurrence of BCC after radiation therapy. (author)

  10. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Zheng Z Wei

    2017-01-01

    Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  11. Stem Cell Therapy: An emerging science

    International Nuclear Information System (INIS)

    Khan, Muhammad M.

    2007-01-01

    The research on stem cells is advancing knowledge about the development of an organism from a single cell and to how healthy cells replace damaged cells in adult organisms. Stem cell therapy is emerging rapidly nowadays as a technical tool for tissue repair and replacement. The purpose of this review to provide a framework of understanding for the challenges behind translating fundamental stem cell biology and its potential use into clinical therapies, also to give an overview on stem cell research to the scientists of Saudi Arabia in general. English language MEDLINE publications from 1980 through January 2007 for experimental, observational and clinical studies having relation with stem cells with different diseases were reviewed. Approximately 85 publications were reviewed based on the relevance, strength and quality of design and methods, 36 publications were selected for inclusion. Stem cells reside in a specific area of each tissue where they may remain undivided for several years until they are activated by disease or tissue injury. The embryonic stem cells are typically derived from four or five days old embryos and they are pluripotent. The adult tissues reported to contain stem cells brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin and liver. The promise of stem cell therapies is an exciting one, but significant technical hurdles remain that will only be overcome through years of intensive research. (author)

  12. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  13. A simple method for unbiased quantitation of adoptively transferred cells in solid tissues

    DEFF Research Database (Denmark)

    Petersen, Mikkel; Petersen, Charlotte Christie; Agger, Ralf

    2006-01-01

    node at six different time points following adoptive transfer (from 60 s to 1 week), providing a quantitative estimate of the organ distribution of the transferred cells over time. These estimates were obtained by microscopy of uniform samples of thick sections from the respective organs. Importantly......, the samples were chosen and prepared in accordance with the optical fractionator principle. We demonstrate that the method is simple, precise, and well suited for quantitative immunological studies.......In a mouse model, we demonstrate how to obtain a direct, unbiased estimate of the total number of adoptively transferred cells in a variety of organs at different time points. The estimate is obtained by a straightforward method based on the optical fractionator principle. Specifically, non...

  14. The Adoption of New Adjuvant Radiation Therapy Modalities Among Medicare Beneficiaries With Breast Cancer: Clinical Correlates and Cost Implications

    International Nuclear Information System (INIS)

    Roberts, Kenneth B.; Soulos, Pamela R.; Herrin, Jeph; Yu, James B.; Long, Jessica B.; Dostaler, Edward

    2013-01-01

    Purpose: New radiation therapy modalities have broadened treatment options for older women with breast cancer, but it is unclear how clinical factors, geographic region, and physician preference affect the choice of radiation therapy modality. Methods and Materials: We used the Surveillance, Epidemiology, and End Results-Medicare database to identify women diagnosed with stage I-III breast cancer from 1998 to 2007 who underwent breast-conserving surgery. We assessed the temporal trends in, and costs of, the adoption of intensity modulated radiation therapy (IMRT) and brachytherapy. Using hierarchical logistic regression, we evaluated the relationship between the use of these new modalities and patient and regional characteristics. Results: Of 35,060 patients, 69.9% received conventional external beam radiation therapy (EBRT). Although overall radiation therapy use remained constant, the use of IMRT increased from 0.0% to 12.6% from 1998 to 2007, and brachytherapy increased from 0.7% to 9.0%. The statistical variation in brachytherapy use attributable to the radiation oncologist and geographic region was 41.4% and 9.5%, respectively (for IMRT: 23.8% and 22.1%, respectively). Women undergoing treatment at a free-standing radiation facility were significantly more likely to receive IMRT than were women treated at a hospital-based facility (odds ratio for IMRT vs EBRT: 3.89 [95% confidence interval, 2.78-5.45]). No such association was seen for brachytherapy. The median radiation therapy cost per treated patient increased from $5389 in 2001 to $8539 in 2007. Conclusions: IMRT and brachytherapy use increased substantially from 1998 to 2007; overall, radiation therapy costs increased by more than 50%. Radiation oncologists played an important role in treatment choice for both types of radiation therapy, whereas geographic region played a bigger role in the use of IMRT than brachytherapy

  15. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  16. Adult stem cell therapy for periodontal disease.

    Science.gov (United States)

    Kim, Su-Hwan; Seo, Byoung-Moo; Choung, Pill-Hoon; Lee, Yong-Moo

    2010-05-01

    Periodontal disease is a major cause of tooth loss and characterized by inflammation of tooth-supporting structures. Recently, the association between periodontal disease and other health problems has been reported, the importance of treating periodontal disease for general health is more emphasized. The ultimate goal of periodontal therapy is regeneration of damaged periodontal tissues. The development of adult stem cell research enables to improve the cell-based tissue engineering for periodontal regeneration. In this review, we present the results of experimental pre-clinical studies and a brief overview of the current state of stem cells therapy for periodontal diseases.

  17. Sustained adoption of an evidence-based treatment: a survey of clinicians certified in problem-solving therapy.

    Science.gov (United States)

    Crabb, Rebecca M; Areán, Patricia A; Hegel, Mark T

    2012-01-01

    Training models that incorporate case supervision in addition to didactic instruction appear to be effective in maximizing clinicians' proficiency in evidence-based treatments (EBTs). However, it is unknown the extent to which these models promote sustained adoption of EBTs. We describe the results of an online survey on post-training utilization of an EBT, problem-solving therapy (PST), among 40 clinicians highly trained in PST. Seventy-five percent of the survey's 40 respondents reported that they continued to use PST in their clinical practices. Many PST-trained clinicians reported that they had modified the PST protocol in their clinical practices according to patient characteristics or preferences. Considering these results, we recommend emphasizing patient variability and treatment tailoring throughout the training process as a means for promoting clinicians' sustained adoption of EBTs.

  18. Addition of Interleukin-21 for Expansion of T-Cells for Adoptive Immunotherapy of Murine Melanoma

    Directory of Open Access Journals (Sweden)

    Christine Kathryn Zoon

    2015-04-01

    Full Text Available We previously demonstrated that interleukin (IL-7/15 was superior to IL-2 for expansion of T cells in vitro for adoptive immunotherapy. We sought to ascertain whether IL-21 would further improve yield and therapeutic efficacy of T cells in culture. Naïve T cell receptor (TcR transgenic splenocytes or antigen-sensitized lymph node cells were harvested from PMEL-1 mice and exposed to bryostatin-1 and ionomycin (B/I for 18 h. Cells were then cultured in IL-2, IL-21, IL-7/15 or IL-7/15/21 for six days. Harvested cells were analyzed by flow cytometry and used to treat C57Bl/6 mice injected intravenously with B16 melanoma. Lungs were harvested and metastases counted 14 days after treatment. Culturing lymphocytes in IL-7/15/21 increased expansion compared to IL-2 or IL-7/15. IL-21 and IL-7/15/21 increased CD8+ cells compared to IL-2 or IL-7/15. IL-21 preferentially expanded a CD8+CD44−CD62L+ T “naïve” population, whereas IL-7/15/21 increased CD8+CD44+CD62Lhigh central-memory T cells. T cells grown in IL-7/15/21 were more effective at reducing metastases than IL-2. The addition of IL-21 to IL-7/15 induced greater expansion of lymphocytes in culture and increased the yield of CD8+ T central-memory cells vs. IL-7/15 alone. This may have significant impact on future clinical trials of adoptive immunotherapy, particularly for generating adequate numbers of lymphocytes for treatment.

  19. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  20. How we make cell therapy in Italy

    Directory of Open Access Journals (Sweden)

    Montemurro T

    2015-08-01

    Full Text Available Tiziana Montemurro, Mariele Viganò, Silvia Budelli, Elisa Montelatici, Cristiana Lavazza, Luigi Marino, Valentina Parazzi, Lorenza Lazzari, Rosaria GiordanoCell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, ItalyAbstract: In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product.Keywords: advanced therapy medicinal product, good manufacturing practices, stem cells

  1. Conversation focused aphasia therapy: investigating the adoption of strategies by people with agrammatism.

    Science.gov (United States)

    Beeke, Suzanne; Beckley, Firle; Johnson, Fiona; Heilemann, Claudia; Edwards, Susan; Maxim, Jane; Best, Wendy

    2015-03-04

    Background : A recent review of interaction (or conversation)-focused therapy highlighted the potential of programmes targeting the person with aphasia (PWA) directly. However, it noted the key limitations of current work in this field to be a reliance on single case analyses and qualitative evidence of change, a situation that is not unusual when a complex behavioural intervention is in the early stages of development and evaluation. Aims : This article aims to evaluate an intervention that targeted a PWA and their conversation partner (CP), a dyad, as equals in a novel conversation therapy for agrammatic aphasia, using both quantitative and qualitative evidence of change. The intervention aimed to increase the insight of a dyad into facilitator and barrier conversation behaviours, to increase the understanding of the effect of agrammatism on communication, and to support each speaker to choose three strategies to work on in therapy to increase mutual understanding and enhance conversation. Methods & Procedures : Quantitative and qualitative methods are used to analyse multiple pre-therapy and follow up assessments of conversation for two dyads. Outcomes & Results : Results show that one person with severe and chronic agrammatic aphasia was able to select and practise strategies that led to qualitative and quantitative changes in his post-therapy conversations. The other PWA showed a numerical increase in one of his three strategies post therapy, but no significant quantitative change. Although both CPs significantly reduced barrier behaviours in their post-therapy conversations, neither showed a significant increase in the strategies they chose to work on. For one CP, there was qualitative evidence of the use of different turn types. Conclusions : Individually tailored input from a speech and language therapist can assist some people with chronic agrammatism to develop conversational strategies that enhance communication. Outcomes are influenced by the severity

  2. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.

    Science.gov (United States)

    Mock, Ulrike; Nickolay, Lauren; Philip, Brian; Cheung, Gordon Weng-Kit; Zhan, Hong; Johnston, Ian C D; Kaiser, Andrew D; Peggs, Karl; Pule, Martin; Thrasher, Adrian J; Qasim, Waseem

    2016-08-01

    Novel cell therapies derived from human T lymphocytes are exhibiting enormous potential in early-phase clinical trials in patients with hematologic malignancies. Ex vivo modification of T cells is currently limited to a small number of centers with the required infrastructure and expertise. The process requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, automation of these procedures is being developed. The CliniMACS Prodigy (Miltenyi Biotec) has recently been adapted for lentiviral transduction of T cells and here we analyse the feasibility of a clinically compliant T-cell engineering process for the manufacture of T cells encoding chimeric antigen receptors (CAR) for CD19 (CAR19), a widely targeted antigen in B-cell malignancies. Using a closed, single-use tubing set we processed mononuclear cells from fresh or frozen leukapheresis harvests collected from healthy volunteer donors. Cells were phenotyped and subjected to automated processing and activation using TransAct, a polymeric nanomatrix activation reagent incorporating CD3/CD28-specific antibodies. Cells were then transduced and expanded in the CentriCult-Unit of the tubing set, under stabilized culture conditions with automated feeding and media exchange. The process was continuously monitored to determine kinetics of expansion, transduction efficiency and phenotype of the engineered cells in comparison with small-scale transductions run in parallel. We found that transduction efficiencies, phenotype and function of CAR19 T cells were comparable with existing procedures and overall T-cell yields sufficient for anticipated therapeutic dosing. The automation of closed-system T-cell engineering should improve dissemination of emerging immunotherapies and greatly widen applicability. Copyright © 2016. Published by Elsevier Inc.

  3. Microencapsulation of Stem Cells for Therapy.

    Science.gov (United States)

    Leslie, Shirae K; Kinney, Ramsey C; Schwartz, Zvi; Boyan, Barbara D

    2017-01-01

    An increasing demand to regenerate tissues from patient-derived sources has led to the development of cell-based therapies using autologous stem cells, thereby decreasing immune rejection of scaffolds coupled with allogeneic stem cells or allografts. Adult stem cells are multipotent and are readily available in tissues such as fat and bone marrow. They possess the ability to repair and regenerate tissue through the production of therapeutic factors, particularly vasculogenic proteins. A major challenge in cell-based therapies is localizing the delivered stem cells to the target site. Microencapsulation of cells provides a porous polymeric matrix that can provide a protected environment, localize the cells to one area, and maintain their viability by enabling the exchange of nutrients and waste products between the encapsulated cells and the surrounding tissue. In this chapter, we describe a method to produce injectable microbeads containing a tunable number of stem cells using the biopolymer alginate. The microencapsulation process involves extrusion of the alginate suspension containing cells from a microencapsulator, a syringe pump to control its flow rate, an electrostatic potential to overcome capillary forces and a reduced Ca ++ cross-linking solution containing a nutrient osmolyte, to form microbeads. This method allows the encapsulated cells to remain viable up to three weeks in culture and up to three months in vivo and secrete growth factors capable of supporting tissue regeneration.

  4. Metastasis Targeted Therapies in Renal Cell Cancer

    OpenAIRE

    K. Fehmi Narter; Bora Özveren

    2018-01-01

    Metastatic renal cell cancer is a malignant disease and its treatment has been not been described clearly yet. These patients are generally symptomatic and resistant to current treatment modalities. Radiotherapy, chemotherapy, and hormonal therapy are not curative in many of these patients. A multimodal approach consisting of cytoreductive nephrectomy, systemic therapy (immunotherapy or targeted molecules), and metastasectomy has been shown to be hopeful in prolonging the survival and improvi...

  5. Analyzing Reasons for Non-Adoption of Distance Delivery Formats in Occupational Therapy Assistant (OTA) Education

    Science.gov (United States)

    Gergen, Theresa; Roblyer, M. D.

    2013-01-01

    Though distance education formats could help address an urgent need for growth in the occupational therapy assistant (OTA) workforce, distance methods are not as accepted in these programs as they are in other professional and clinical programs. This study investigated whether beliefs and levels of experience of OTA program directors shaped their…

  6. Hairy cell leukemia – immunotargets and therapies

    Directory of Open Access Journals (Sweden)

    Basheer F

    2014-06-01

    Full Text Available Faisal Basheer, David M Bloxham, Mike A Scott, George A FollowsDepartment of Haematology, Addenbrookes Hospital, University of Cambridge, Cambridge, UKAbstract: Hairy cell leukemia (HCL is an indolent low-grade B-cell lymphoproliferative disorder that is reasonably sensitive to standard first-line purine analog therapy. However, in many cases, repeat relapses occur, requiring multiple courses of purine analog therapy, promoting eventual drug resistance. This, coupled with the concerning side effects of repeated purine analog exposure, has prompted the search for alternative targets and therapies that may provide deeper remissions. Novel strategies employing immune-mediated targeting via monoclonal antibody therapies and recombinant immunotoxins appear promising in HCL and are currently under investigation. More recently, the concept of targeted kinase inhibition using small-molecule inhibitors in HCL has emerged as another potentially viable option. As a deeper understanding of the aberrant molecular pathways contributing to the pathogenesis of HCL develops, the landscape of management for HCL, particularly in the relapse setting, may change significantly in the future as a result of these promising immunotargets and therapies.Keywords: hairy cell leukemia, immunotargets, therapies

  7. Poststroke Cell Therapy of the Aged Brain

    Directory of Open Access Journals (Sweden)

    Aurel Popa-Wagner

    2015-01-01

    Full Text Available During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC, the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs, mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.

  8. ERBB2/HER2-SPECIFIC NATURAL KILLER CELLS FOR ADOPTIVE IMMUNOTHERAPY OF GLIOBLASTOMA

    Science.gov (United States)

    Steinbach, Joachim P.; Zhang, Congcong; Burger, Michael; Jennewein, Lukas; Schönfeld, Kurt; Genßler, Sabrina; Sahm, Christiane; Brendel, Christian; Naundorf, Sonja; Odendahl, Marcus; Köhl, Ulrike; Nowakowska, Paulina; Seifried, Erhard; Bönig, Halvard; Tonn, Torsten; Grez, Manuel; Mittelbronn, Michel; Wels, Winfried S.

    2014-01-01

    and in vivo. CONCLUSIONS: Adoptive immunotherapy with application of ErbB2-specific NK-92/5.28.z cells may be a promising new immunotherapy approach for ErB2 positive glioblastoma. A phase I trial for glioblastoma patients with local injections of NK-92/5.28.z cells is in preparation. SECONDARY CATEGORY: Preclinical Experimental Therapeutics.

  9. Brain repair: cell therapy in stroke

    Directory of Open Access Journals (Sweden)

    Kalladka D

    2014-02-01

    Full Text Available Dheeraj Kalladka, Keith W Muir Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom Abstract: Stroke affects one in every six people worldwide, and is the leading cause of adult disability. Some spontaneous recovery is usual but of limited extent, and the mechanisms of late recovery are not completely understood. Endogenous neurogenesis in humans is thought to contribute to repair, but its extent is unknown. Exogenous cell therapy is promising as a means of augmenting brain repair, with evidence in animal stroke models of cell migration, survival, and differentiation, enhanced endogenous angiogenesis and neurogenesis, immunomodulation, and the secretion of trophic factors by stem cells from a variety of sources, but the potential mechanisms of action are incompletely understood. In the animal models of stroke, both mesenchymal stem cells (MSCs and neural stem cells (NSCs improve functional recovery, and MSCs reduce the infarct volume when administered acutely, but the heterogeneity in the choice of assessment scales, publication bias, and the possible confounding effects of immunosuppressants make the comparison of effects across cell types difficult. The use of adult-derived cells avoids the ethical issues around embryonic cells but may have more restricted differentiation potential. The use of autologous cells avoids rejection risk, but the sources are restricted, and culture expansion may be necessary, delaying treatment. Allogeneic cells offer controlled cell numbers and immediate availability, which may have advantages for acute treatment. Early clinical trials of both NSCs and MSCs are ongoing, and clinical safety data are emerging from limited numbers of selected patients. Ongoing research to identify prognostic imaging markers may help to improve patient selection, and the novel imaging techniques may identify biomarkers of recovery and the mechanism of action for cell

  10. Successful immunotherapy of autoimmune cholangitis by adoptive transfer of forkhead box protein 3+ regulatory T cells

    Science.gov (United States)

    Tanaka, H; Zhang, W; Yang, G-X; Ando, Y; Tomiyama, T; Tsuneyama, K; Leung, P; Coppel, R L; Ansari, A A; Lian, Z X; Ridgway, W M; Joh, T; Gershwin, M E

    2014-01-01

    Treatment of primary biliary cirrhosis (PBC) has lagged behind that of other autoimmune diseases. In this study we have addressed the potential utility of immunotherapy using regulatory T cells (Treg) to treat murine autoimmune cholangitis. In particular, we have taken advantage of our ability to produce portal inflammation and bile duct cell loss by transfer of CD8+ T cells from the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice to recombination-activating gene (Rag)1–/– recipients. We then used this robust established adoptive transfer system and co-transferred CD8+ T cells from dnTGF-βRII mice with either C57BL/6 or dnTGF-βRII forkhead box protein 3 (FoxP3+) T cells. Recipient mice were monitored for histology, including portal inflammation and intralobular biliary cell damage, and also included a study of the phenotypical changes in recipient lymphoid populations and local and systemic cytokine production. Importantly, we report herein that adoptive transfer of Treg from C57BL/6 but not dnTGF-βRII mice significantly reduced the pathology of autoimmune cholangitis, including decreased portal inflammation and bile duct damage as well as down-regulation of the secondary inflammatory response. Further, to define the mechanism of action that explains the differential ability of C57BL/6 Treg versus dnTGF-βRII Treg on the ability to down-regulate autoimmune cholangitis, we noted significant differential expression of glycoprotein A repetitions predominant (GARP), CD73, CD101 and CD103 and a functionally significant increase in interleukin (IL)-10 in Treg from C57BL/6 compared to dnTGF-βRII mice. Our data reflect the therapeutic potential of wild-type CD4+ FoxP3+ Treg in reducing the excessive T cell responses of autoimmune cholangitis, which has significance for the potential immunotherapy of PBC. PMID:25041369

  11. Successful immunotherapy of autoimmune cholangitis by adoptive transfer of forkhead box protein 3(+) regulatory T cells.

    Science.gov (United States)

    Tanaka, H; Zhang, W; Yang, G-X; Ando, Y; Tomiyama, T; Tsuneyama, K; Leung, P; Coppel, R L; Ansari, A A; Lian, Z X; Ridgway, W M; Joh, T; Gershwin, M E

    2014-11-01

    Treatment of primary biliary cirrhosis (PBC) has lagged behind that of other autoimmune diseases. In this study we have addressed the potential utility of immunotherapy using regulatory T cells (Treg ) to treat murine autoimmune cholangitis. In particular, we have taken advantage of our ability to produce portal inflammation and bile duct cell loss by transfer of CD8(+) T cells from the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice to recombination-activating gene (Rag)1(-/-) recipients. We then used this robust established adoptive transfer system and co-transferred CD8(+) T cells from dnTGF-βRII mice with either C57BL/6 or dnTGF-βRII forkhead box protein 3 (FoxP3(+) ) T cells. Recipient mice were monitored for histology, including portal inflammation and intralobular biliary cell damage, and also included a study of the phenotypical changes in recipient lymphoid populations and local and systemic cytokine production. Importantly, we report herein that adoptive transfer of Treg from C57BL/6 but not dnTGF-βRII mice significantly reduced the pathology of autoimmune cholangitis, including decreased portal inflammation and bile duct damage as well as down-regulation of the secondary inflammatory response. Further, to define the mechanism of action that explains the differential ability of C57BL/6 Treg versus dnTGF-βRII Treg on the ability to down-regulate autoimmune cholangitis, we noted significant differential expression of glycoprotein A repetitions predominant (GARP), CD73, CD101 and CD103 and a functionally significant increase in interleukin (IL)-10 in Treg from C57BL/6 compared to dnTGF-βRII mice. Our data reflect the therapeutic potential of wild-type CD4(+) FoxP3(+) Treg in reducing the excessive T cell responses of autoimmune cholangitis, which has significance for the potential immunotherapy of PBC. © 2014 British Society for Immunology.

  12. Advances in umbilical cord blood cell therapy: the present and the future.

    Science.gov (United States)

    Berglund, Sofia; Magalhaes, Isabelle; Gaballa, Ahmed; Vanherberghen, Bruno; Uhlin, Michael

    2017-06-01

    Umbilical cord blood (UCB), previously seen as medical waste, is increasingly recognized as a valuable source of cells for therapeutic use. The best-known application is in hematopoietic stem cell transplantation (HSCT), where UCB has become an increasingly important graft source in the 28 years since the first umbilical cord blood transplantation (UCBT) was performed. Recently, UCB has been increasingly investigated as a putative source for adoptive cell therapy. Areas covered: This review covers the advances in umbilical cord blood transplantation (UCBT) to overcome the limitation regarding cellular dose, immunological naivety and additional cell doses such as DLI. It also provides an overview regarding the progress in adoptive cellular therapy using UCB. Expert opinion: UCB has been established as an important source of stem cells for HSCT. Successful strategies to overcome the limitations of UCBT, such as the limited cell numbers and naivety of the cells, are being developed, including novel methods to perform in vitro expansion of progenitor cells, and to improve their homing to the bone marrow. Promising early clinical trials of adoptive therapies with UCB cells, including non-immunological cells, are currently performed for viral infections, malignant diseases and in regenerative medicine.

  13. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  14. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  15. Tumor-specific allogeneic cells for cancer therapy.

    Science.gov (United States)

    Marcus, Assaf; Eshhar, Zelig

    2011-12-01

    Adoptive cell transfer (ACT) therapy involves transfer of therapeutic lymphocytes to patients mostly for the treatment of cancer and viral infections. One modality to generate therapeutic lymphocytes is to genetically engineer them to express a chimeric antigen receptor (CAR) capable of recognizing the desired target. Current ACT approaches employ the patient's own (syngeneic) lymphocytes, which is both economically and technically challenging. Using foreign (allogeneic) lymphocytes in ACT is problematic because of the severe immunological reaction that occurs between genetically mismatched individuals. However, recently our group has developed a protocol, which allows for safe and effective ACT therapy in a murine model of metastatic disease using allogeneic T cells redirected with a human EGFR2/neuregulin (Her2/neu)-specific CAR. Mild preconditioning of the recipient delayed the rejection of the allogeneic donor T cells such that they had enough time to destroy the tumor, but not enough to cause significant damage to the host. By modulating lymphocyte migration using FTY720, we were actually able to exploit the allogeneic anti-host reaction in order to augment therapeutic benefit while concurrently improving the safety of the treatment. Therefore, we suggest that CAR-based allogeneic ACT therapy could be universally used as a safe and potent 'off-the-shelf' treatment for cancer.

  16. Stem cell therapy: facts and fiction.

    Science.gov (United States)

    Spits, C

    2012-01-01

    This opinion paper is a brief overview of the current state of the translation of stem cell therapy from the bench to the clinic. The hype generated by the great medical potential of stem cells has lead to hundreds of clinics worldwide claiming to have the cure for every imaginable condition. This fraudulent practice is far from the reality of scientists and bona fide companies. Much effort is put into addressing all the hurdles we have been encountering for the safe use of stem cells in therapy. By now, a significant number of clinical trials are booking very exciting progress, opening a realistic path to the use of these amazing cells in regenerative medicine.

  17. Stem Cells and Herbal Acupuncture Therapy

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-12-01

    Full Text Available Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.

  18. Radiation therapy following targeted therapy in oligometastatic renal cell carcinoma.

    Science.gov (United States)

    Gravis, Gwenaelle; Faure, Marjorie; Rybikowski, Stanislas; Dermeche, Slimane; Tyran, Marguerite; Calderon, Benoit; Thomassin, Jeanne; Walz, Jochen; Salem, Naji

    2015-11-01

    Up to 40% of patients with renal cell carcinoma (RCC) with initially localized disease eventually develop metastasis following nephrectomy. The current standard of care for metastatic RCC (mRCC) is targeted therapy. However, complete response remains rare. A state of oligometastatic disease may exist, in which metastases are present in a limited number of locations; such cases may benefit from metastasis-directed local therapy, based on the evidence supporting resection of limited-volume metastases, allowing for improved disease control. We retrospectively analyzed 7 cases of response of RCC metastases, in patients treated with targeted therapies followed by radiation therapy (RT) of residual metastatic lesions in Paoli-Calmettes Institute (Marseille, France). We analyzed disease response rates, response to sequential strategy, relapse at the irradiated locations and disease evolution. The median follow-up was 34.1 months (range, 19.2-54.5 months). No progression at the irradiated sites was observed. A total of 5 patients had stable disease at the irradiated locations at the last follow-up; 3 remained in complete remission at the assessment, and 2 were stable. Excellent local response and clinical benefit may be achieved without added toxicity. In conclusion, sequential therapeutic strategies with RT following systemic treatment using sunitinib appear to be highly effective in patients with progressive mRCC and prompt the conduction of further confirmatory trials.

  19. Stem cell route to neuromuscular therapies.

    Science.gov (United States)

    Partridge, Terence A

    2003-02-01

    As applied to skeletal muscle, stem cell therapy is a reincarnation of myoblast transfer therapy that has resulted from recent advances in the cell biology of skeletal muscle. Both strategies envisage the reconstruction of damaged muscle from its precursors, but stem cell therapy employs precursors that are earlier in the developmental hierarchy. It is founded on demonstrations of apparently multipotential cells in a wide variety of tissues that can assume, among others, a myogenic phenotype. The main demonstrated advantage of such cells is that they are capable of colonizing many tissues, including skeletal and cardiac muscle via the blood vascular system, thereby providing the potential for a body-wide distribution of myogenic progenitors. From a practical viewpoint, the chief disadvantage is that such colonization has been many orders of magnitude too inefficient to be useful. Proposals for overcoming this drawback are the subject of much speculation but, so far, relatively little experimentation. This review attempts to give some perspective to the status of the stem cell as a therapeutic instrument for neuromuscular disease and to identify issues that need to be addressed for application of this technology.

  20. Stem cell therapy for myocardial infarction

    NARCIS (Netherlands)

    A.D. Moelker (Amber)

    2007-01-01

    textabstractCoronary heart disease and heart failure continue to be significant burdens to healthcare systems in the Western world and are predicted to become so in emerging economies. Despite mixed results in both experimental and clinical studies, stem cell therapy is a promising option for

  1. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    DEFF Research Database (Denmark)

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  2. PI3Kδ Inhibition Enhances the Antitumor Fitness of Adoptively Transferred CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Jacob S. Bowers

    2017-09-01

    Full Text Available Phosphatidylinositol-3-kinase p110δ (PI3Kδ inhibition by Idelalisib (CAL-101 in hematological malignancies directly induces apoptosis in cancer cells and disrupts immunological tolerance by depleting regulatory T cells. Yet, little is known about the direct impact of PI3Kδ blockade on effector T cells from CAL-101 therapy. Herein, we demonstrate a direct effect of p110δ inactivation via CAL-101 on murine and human CD8+ T cells that promotes a strong undifferentiated phenotype (elevated CD62L/CCR7, CD127, and Tcf7. These CAL-101 T cells also persisted longer after transfer into tumor bearing mice in both the murine syngeneic and human xenograft mouse models. The less differentiated phenotype and improved engraftment of CAL-101 T cells resulted in stronger antitumor immunity compared to traditionally expanded CD8+ T cells in both tumor models. Thus, this report describes a novel direct enhancement of CD8+ T cells by a p110δ inhibitor that leads to markedly improved tumor regression. This finding has significant implications to improve outcomes from next generation cancer immunotherapies.

  3. Recent Progress in Cell Reprogramming Technology for Cell Transplantation Therapy.

    Science.gov (United States)

    Yamashita, Toru; Abe, Koji

    2016-01-01

    The discovery of induced pluripotent stem (iPS) cells opened the gate for reprogramming technology with which we can change the cell fate through overexpression of master transcriptional factors. Now we can prepare various kinds of neuronal cells directly induced from somatic cells. It has been reported that overexpression of a neuron-specific transcriptional factors might change the cell fate of endogenous astroglia to neuronal cells in vivo. In addition, some research groups demonstrated that chemical compound can induce chemical-induced neuronal cells, without transcriptional factors overexpression. In this review, we briefly review recent progress in the induced neuronal (iN) cells, and discuss the possibility of application for cell transplantation therapy.

  4. Cell therapy worldwide: an incipient revolution.

    Science.gov (United States)

    Rao, Mahendra; Mason, Chris; Solomon, Susan

    2015-01-01

    The regenerative medicine field is large, diverse and active worldwide. A variety of different organizational and product models have been successful, and pioneering entrepreneurs have shown both what can work and, critically, what does not. Evolving regulations, novel funding mechanisms combined with new technological breakthroughs are keeping the field in a state of flux. The field struggles to cope with the lack of infrastructure and investment, it nevertheless has evolved from its roots in human stem cell therapy and tissue and organ transplants to a field composed of a variety of products from multiple cell sources with approval for use in numerous countries. Currently, tens of thousands of patients have been treated with some kind of cell therapy.

  5. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  6. Radiation Therapy of Suprasellar Germ Cell Tumors

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Choi, Doo Ho; Choi, Eun Kyung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il

    1988-01-01

    A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10 patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delivered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain, The tumor was not controlled and he had spinal recurrence. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available

  7. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma.

    Science.gov (United States)

    Hegde, Meenakshi; Corder, Amanda; Chow, Kevin K H; Mukherjee, Malini; Ashoori, Aidin; Kew, Yvonne; Zhang, Yi Jonathan; Baskin, David S; Merchant, Fatima A; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Wu, Meng Fen; Liu, Hao; Heslop, Helen E; Gottschalk, Stephen; Gottachalk, Stephen; Yvon, Eric; Ahmed, Nabil

    2013-11-01

    Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.

  8. Duchenne muscular dystrophy: current cell therapies.

    Science.gov (United States)

    Sienkiewicz, Dorota; Kulak, Wojciech; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Kawnik, Katarzyna

    2015-07-01

    Duchenne muscular dystrophy is a genetically determined X-linked disease and the most common, progressive pediatric muscle disorder. For decades, research has been conducted to find an effective therapy. This review presents current therapeutic methods for Duchenne muscular dystrophy, based on scientific articles in English published mainly in the period 2000 to 2014. We used the PubMed database to identify and review the most important studies. An analysis of contemporary studies of stem cell therapy and the use of granulocyte colony-stimulating factor (G-CSF) in muscular dystrophy was performed.

  9. Alloreactive natural killer cells for the treatment of acute myeloid leukemia: from stem cell transplantation to adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Loredana eRuggeri

    2015-10-01

    Full Text Available Natural killer cells express activating and inhibitory receptors which recognize MHC class I alleles, termed Killer cell Immunoglobulin-like Receptors (KIRs. Preclinical and clinical data from haploidentical T-cell depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched natural killer cells play a major role as effectors against acute myeloid leukemia. Outside the transplantation setting, several reports have proven the safety and feasibility of natural killer cell infusion in acute myeloid leukemia patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. Aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts of exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against acute myeloid leukemia. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of acute myeloid leukemia.

  10. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  11. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    Science.gov (United States)

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  12. Stem cell therapy: From bench to bedside

    International Nuclear Information System (INIS)

    Tamarat, R.; Lataillade, J. J.; Bey, E.; Gourmelon, P.; Benderitter, M.

    2012-01-01

    Several countries have increased efforts to develop medical countermeasures to protect against radiation toxicity due to acts of bio-terrorism as well as cancer treatment. Both acute radiation injuries and delayed effects such as cutaneous effects and impaired wound repair depend, to some extent, on angiogenesis deficiency. Vascular damage influences levels of nutrients, oxygen available to skin tissue and epithelial cell viability. Consequently, the evolution of radiation lesions often becomes uncontrolled and surgery is the final option-amputation leading to a disability. Therefore, the development of strategies designed to promote healing of radiation injuries is a major therapeutic challenge. Adult mesenchymal stem cell therapy has been combined with surgery in some cases and not in others and successfully applied in patients with accidental radiation injuries. Although research in the field of radiation skin injury management has made substantial progress in the past 10 y, several strategies are still needed in order to enhance the beneficial effect of stem cell therapy and to counteract the deleterious effect of an irradiated tissue environment. This review summarises the current and evolving advances concerning basic and translational research based on stem cell therapy for the management of radiological burns. (authors)

  13. Allogenicity & immunogenicity in regenerative stem cell therapy.

    Science.gov (United States)

    Charron, Dominique

    2013-11-01

    The development of regenerative medicine relies in part on the capacity of stem cells to differentiate into specialized cell types and reconstitute tissues and organs. The origin of the stem cells matters. While autologous cells were initially the preferred ones the need for "off the shelf" cells is becoming prevalent. These cells will be immediately available and they originate from young non diseased individuals. However their allogenicity can be viewed as a limitation to their use. Recent works including our own show that allogenicity of stem cell can be viewed as on one hand detrimental leading to their elimination and on the other hand beneficial through a paracrine effect that can induce a local tissue regenerative effect from endogenous stem cells. Also their immune modulatory capacity can be harnessed to favor regeneration. Therefore the immune phenotype of stem cells is an important criteria to be considered before their clinical use. Immuno monitoring of the consequences of their in vivo injection needs to be taken into account. Transplantation immunology knowledge will be instrumental to enable the development of safe personalized regenerative stem cell therapy.

  14. A mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available OBJECTIVE: Tolerogenic dendritic cells (tDCs are immunosuppressive cells with potent tolerogenic ability and are promising immunotherapeutic tools for treating rheumatoid arthritis (RA. However, it is currently unknown whether allogeneic tDCs (allo-tDCs induce tolerance in RA, and whether the numbers of adoptively transferred allo-tDCs, or the requirement for pulsing with relevant auto-antigens are important. METHODS: tDCs were derived from bone marrow precursors of C57BL/B6 mice, which were induced in vitro by GM-CSF, IL-10 and TGF-β1. Collagen-induced arthritis (CIA was modeled in D1 mice by immunization with type II collagen (CII to test the therapeutic ability of allo-tDCs against CIA. Clinical and histopathologic scores, arthritic incidence, cytokine and anti-CII antibody secretion, and CD4(+Th subsets were analyzed. RESULTS: tDCs were characterized in vitro by a stable immature phonotype and a potent immunosuppressive ability. Following adoptive transfer of low doses (5×10(5 of CII-loaded allo-tDCs, a remarkable anti-arthritic activity, improved clinical scores and histological end-points were found. Serological levels of inflammatory cytokines and anti-CII antibodies were also significantly lower in CIA mice treated with CII-pulsed allo-tDCs as compared with allo-tDCs. Moreover, treatment with allo-tDCs altered the proportion of Treg/Th17 cells. CONCLUSION: These findings suggested that allo-tDCs, especially following antigen loading, reduced the severity of CIA in a dose-dependent manner. The dampening of CIA was associated with modulated cytokine secretion, Treg/Th17 polarization and inhibition of anti-CII secretion. This study highlights the potential therapeutic utility of allo-tDCs in autoimmune arthritis and should facilitate the future design of allo-tDC immunotherapeutic strategies against RA.

  15. Stem cell therapy for treatment of epilepsy.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-09-01

    Full Text Available Epilepsy as one of the most common neurological disorders affects more than 50 million people worldwide with a higher prevalence rate in low-income countries. Excessive electrical discharges in neurons following neural cell damage or loss cause recurrent seizures. One of the most common and difficult to treat types of epilepsy is temporal lobe epilepsy (TLE which results from hippocampal sclerosis. Nowadays, similar to other diseases, epilepsy also is a candidate for treatment with different types of stem cells. Various stem cell types were used for treatment of epilepsy in basic and experimental researches. Two major roles of stem cell therapy in epilepsy are prophylaxis against chronic epilepsy and amelioration cognitive function after the occurrence of TLE. Several animal studies have supported the use of these cells for treating drug-resistant TLE. Although stem cell therapy seems like a promising approach for treatment of epilepsy in the future however, there are some serious safety and ethical concerns that are needed to be eliminated before clinical application.

  16. Mesenchymal stem cell therapy for laryngotracheal stenosis

    DEFF Research Database (Denmark)

    Jakobsen, Kathrine Kronberg; Grønhøj, Christian; Jensen, David H

    2017-01-01

    studies addressing the effect of MSC therapy on the airway. We assessed effect on inflammation, fibrosis, and MSC as a component in tissue engineering for treating defects in the airway. RESULTS: We identified eleven studies (n = 256 animals) from eight countries evaluating the effect of MSCs......BACKGROUND: Laryngotracheal stenosis (LTS) can be either congenital or acquired. Laryngeal stenosis is most often encountered after prolonged intubation. The mechanism for stenosis following intubation is believed to be hypertrophic scarring. Mesenchymal stem cells (MSCs) therapy has shown...... promising results in regenerative medicine. We aimed to systematically review the literature on MSC therapy for stenosis of the conductive airways. METHODS: PubMed, EMBASE, Google Scholar and the Cochrane Library were systematically searched from January 1980-January 2017 with the purpose of identifying all...

  17. T-cell involvement in adoptive transfer of line 10 tumor immunity in strain 2 guinea pigs

    International Nuclear Information System (INIS)

    de Jong, W.H.; Steerenberg, P.A.; van de Plas, M.M.; Kruizinga, W.; Ruitenberg, J.

    1985-01-01

    Several aspects of adoptive transfer of tumor immunity were studied in the line 10 hepatocarcinoma in the syngeneic Sewall-Wright strain 2 guinea pig. In particular, the need for cooperation between donor and recipient T-cells was investigated. Donor immune spleen cells remained immunologically capable of inducing tumor rejection for at least 160 days after adoptive transfer. Irradiated (1,000 rad) or mitomycin-treated immune spleen cells lacked tumor-rejection activity, which is indicative of the necessity for in vivo proliferation after adoptive transfer of immunity. Furthermore, adoptive transfer of tumor immunity was abrogated after treatment of the line 10 immune spleen cells with rabbit anti-guinea pig-thymocyte serum (ATS) plus complement. The role of recipient T-cells was investigated in strain 2 guinea pigs which were T-cell depleted by thymectomy, irradiation, and bone marrow reconstitution (T-XBM animals). Severe suppression of T-cell activity was present at 2 and 6 weeks after irradiation and bone marrow reconstitution. At 10 weeks nonspecific T-cell activity was partially restored. The induction of antigen-specific responses, measured by delayed-type hypersensitivity skin testing in vivo and antigenic stimulation in vitro, was suppressed at 2 weeks after irradiation and bone marrow reconstitution. Additional in vivo treatment of T-XBM animals with a rabbit ATS improved the T-cell depletion only moderately. Tumor growth and tumor rejection after adoptive transfer of immunity were equal in normal and T-cell-deprived recipient animals, thus indicating that recipient T-cells are not needed for tumor rejection after adoptive transfer of line 10 tumor immunity

  18. Large animal models for stem cell therapy.

    Science.gov (United States)

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  19. Renal Preservation Therapy for Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yichun Chiu

    2012-01-01

    Full Text Available Renal preservation therapy has been a promising concept for the treatment of localized renal cell carcinoma (RCC for 20 years. Nowadays partial nephrectomy (PN is well accepted to treat the localized RCC and the oncological control is proved to be the same as the radical nephrectomy (RN. Under the result of well oncological control, minimal invasive method gains more popularity than the open PN, like laparoscopic partial nephrectomy (LPN and robot assisted laparoscopic partial nephrectomy (RPN. On the other hand, thermoablative therapy and cryoablation also play an important role in the renal preservation therapy to improve the patient procedural tolerance. Novel modalities, but limited to small number of patients, include high-intensity ultrasound (HIFU, radiosurgery, microwave therapy (MWT, laser interstitial thermal therapy (LITT, and pulsed cavitational ultrasound (PCU. Although initial results are encouraging, their real clinical roles are still under evaluation. On the other hand, active surveillance (AS has also been advocated by some for patients who are unfit for surgery. It is reasonable to choose the best therapeutic method among varieties of treatment modalities according to patients' age, physical status, and financial aid to maximize the treatment effect among cancer control, patient morbidity, and preservation of renal function.

  20. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Exploiting tumor cell senescence in anticancer therapy

    Science.gov (United States)

    Lee, Minyoung; Lee, Jae-Seon

    2014-01-01

    Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59] PMID:24411464

  2. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome.

    Science.gov (United States)

    Wang, Linan; Ma, Ning; Okamoto, Sachiko; Amaishi, Yasunori; Sato, Eiichi; Seo, Naohiro; Mineno, Junichi; Takesako, Kazutoh; Kato, Takuma; Shiku, Hiroshi

    2016-01-01

    Carcinoembryonic antigen (CEA) is a cell surface antigen highly expressed in various cancer cell types and in healthy tissues. It has the potential to be a target for chimeric antigen receptor (CAR)-modified T-cell therapy; however, the safety of this approach in terms of on-target/off-tumor effects needs to be determined. To address this issue in a clinically relevant model, we used a mouse model in which the T cells expressing CEA-specific CAR were transferred into tumor-bearing CEA-transgenic (Tg) mice that physiologically expressed CEA as a self-antigen. The adoptive transfer in conjunction with lymphodepleting and myeloablative preconditioning mediated significant tumor regression but caused weight loss in CEA-Tg, but not in wild-type mice. The weight loss was not associated with overt inflammation in the CEA-expressing gastrointestinal tract but was associated with malnutrition, reflected in elevated systemic levels of cytokines linked to anorexia, which could be controlled by the administration of an anti-IL-6 receptor monoclonal antibody without compromising efficacy. The apparent relationship between lymphodepleting and myeloablative preconditioning, efficacy, and off-tumor toxicity of CAR-T cells would necessitate the development of CEA-specific CAR-T cells with improved signaling domains that require less stringent preconditioning for their efficacy. Taken together, these results suggest that CEA-specific CAR-based adoptive T-cell therapy may be effective for patients with CEA + solid tumors. Distinguishing the fine line between therapeutic efficacy and off-tumor toxicity would involve further modifications of CAR-T cells and preconditioning regimens.

  3. Stem Cell Therapy for Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Gunduz E

    2011-01-01

    Full Text Available IntroductionHeart failure is a major cardiovascular health problem. Coronary artery disease is the leading cause of congestive heart failure (CHF [1]. Cardiac transplantation remains the most effective long-term treatment option, however is limited primarily by donor availability, rejection and infections. Mechanical circulatory support has its own indications and limitations [2]. Therefore, there is a need to develop more effective therapeutic strategies.Recently, regenerative medicine has received considerable scientific attention in the cardiovascular arena. We report here our experience demonstrating the beneficial effects of cardiac stem cell therapy on left ventricular functions in a patient with Hodgkin’s lymphoma (HL who developed CHF due to ischemic heart disease during the course of lymphoma treatment. Case reportA 58-year-old male with relapsed HL was referred to our bone marrow transplantation unit in October 2009. He was given 8 courses of combination chemotherapy with doxorubicin, bleomycin, vincristine, and dacarbazine (ABVD between June 2008 and February 2009 and achieved complete remission. However, his disease relapsed 3 months after completing the last cycle of ABVD and he was decided to be treated with DHAP (cisplatin, cytarabine, dexamethasone followed autologous stem cell transplantation (SCT. After the completion of first course of DHAP regimen, he developed acute myocardial infarction (AMI and coronary artery bypass grafting (CABG was performed. After his cardiac function stabilized, 3 additional courses of DHAP were given and he was referred to our centre for consideration of autologous SCT. Computed tomography scans obtained after chemotherapy confirmed complete remission. Stem cells were collected from peripheral blood after mobilization with 10 µg/kg/day granulocyte colony-stimulating factor (G-CSF subcutaneously. Collection was started on the fifth day of G-CSF and performed for 3 consecutive days. Flow cytometric

  4. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Wu Jun; An Rui

    2006-01-01

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  5. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  6. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells

    Science.gov (United States)

    Mitchell, Gabriel

    2017-01-01

    Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. PMID:29190284

  7. Hydroxyurea therapy for sickle cell anemia.

    Science.gov (United States)

    McGann, Patrick T; Ware, Russell E

    2015-01-01

    Sickle cell anemia (SCA) is a severe, inherited hemoglobin disorder affecting 100,000 persons in the US and millions worldwide. Hydroxyurea, a once daily oral medication, has emerged as the primary disease-modifying therapy for SCA. The accumulated body of evidence over 30 years demonstrates that hydroxyurea is a safe and effective therapy for SCA, but hydroxyurea remains underutilized for a variety of reasons. In this review, we summarize the available evidence regarding the pharmacology, clinical, and laboratory benefits, and safety of hydroxyurea therapy for the treatment of SCA. The purpose of this review is to provide the reader a comprehensive understanding of hydroxyurea and to reinforce the fact that hydroxyurea is a safe and effective medication for the treatment of SCA. In our opinion, hydroxyurea therapy should be considered standard-of-care for SCA, representing an essential component of patient management. Early initiation and broader use of hydroxyurea will alter the natural history of SCA, so affected children can live longer and healthier lives. In addition, hydroxyurea use should be extended to low-resource settings such as sub-Saharan Africa, where the burden of SCA and the need for hydroxyurea is arguably the greatest.

  8. Cell Therapy Strategies to Combat Immunosenescence.

    Science.gov (United States)

    Stahl, Elizabeth C; Brown, Bryan N

    2015-01-01

    Declining function of the immune system, termed "immunosenescence," leads to a higher incidence of infection, cancer, and autoimmune disease related mortalities in the elderly population. (1) Increasing interest in the field of immunosenescence is well-timed, as 20% of the United States population is expected to surpass the age of 65 by the year 2030. (2) Our current understanding of immunosenescence involves a shift in function of both adaptive and innate immune cells, leading to a reduced capacity to recognize new antigens and widespread chronic inflammation. The present review focuses on changes that occur in haematopoietic stem cells, macrophages, and T-cells using knowledge gained from both rodent and human studies. The review will discuss emerging strategies to combat immunosenescence, focusing on cellular and genetic therapies, including bone marrow transplantation and genetic reprogramming. A better understanding of the mechanisms and implications of immunosenescence will be necessary to combat age-related mortalities in the future.

  9. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujiwara

    2014-12-01

    Full Text Available Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs, transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  10. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  11. Dual Functional Capability of Dendritic Cells - Cytokine-Induced Killer Cells in Improving Side Effects of Colorectal Cancer Therapy.

    Science.gov (United States)

    Mosińska, Paula; Gabryelska, Agata; Zasada, Malwina; Fichna, Jakub

    2017-01-01

    The aim of cancer therapy is to eradicate cancer without affecting healthy tissues. Current options available for treating colorectal cancer (CRC), including surgery, chemotherapy or radiotherapy, usually elicit multiple adverse effects and frequently fail to completely remove the tumor cells. Thus, there is a constant need for seeking cancer cell-specific therapeutics to improve the course of cancer therapy and reduce the risk of relapse. In this review we elaborate on the mechanisms underlying the immunotherapy with dendritic cells (DCs) and cytokine-induced killer (CIK) cells, and summarize their effectiveness and tolerability available clinical studies. Finally, we discuss the up-to-date combinatorial adoptive anti-cancer immunotherapy with CIK cells co-cultured with DCs that recently showed encouraging efficacy and usefulness in treating malignant disease, including CRC.

  12. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  13. Optimizing hydroxyurea therapy for sickle cell anemia.

    Science.gov (United States)

    Ware, Russell E

    2015-01-01

    Hydroxyurea has proven efficacy in numerous clinical trials as a disease-modifying treatment for patients with sickle cell anemia (SCA) but is currently under-used in clinical practice. To improve the effectiveness of hydroxyurea therapy, efforts should be directed toward broadening the clinical treatment indications, optimizing the daily dosage, and emphasizing the benefits of early and extended treatment. Here, various issues related to hydroxyurea treatment are discussed, focusing on both published evidence and clinical experience. Specific guidance is provided regarding important but potentially unfamiliar aspects of hydroxyurea treatment for SCA, such as escalating to maximum tolerated dose, treating in the setting of cerebrovascular disease, switching from chronic transfusions to hydroxyurea, and using serial phlebotomy to alleviate iron overload. Future research directions to optimize hydroxyurea therapy are also discussed, including personalized dosing based on pharmacokinetic modeling, prediction of fetal hemoglobin responses based on pharmacogenomics, and the risks and benefits of hydroxyurea for non-SCA genotypes and during pregnancy/lactation. Another critical initiative is the introduction of hydroxyurea safely and effectively into global regions that have a high disease burden of SCA but limited resources, such as sub-Saharan Africa, the Caribbean, and India. Final considerations emphasize the long-term goal of optimizing hydroxyurea therapy, which is to help treatment become accepted as standard of care for all patients with SCA. © 2015 by The American Society of Hematology. All rights reserved.

  14. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  15. A balanced review of the status T cell-based therapy against cancer

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2005-04-01

    Full Text Available Abstract A recent commentary stirred intense controversy over the status of anti-cancer immunotherapy. The commentary suggested moving beyond current anti-cancer vaccines since active-specific immunization failed to match expectations toward a more aggressive approach involving the adoptive transfer of in vitro expanded tumor antigen-specific T cells. Although the same authors clarified their position in response to others' rebuttal more discussion needs to be devoted to the current status of T cell-based anti-cancer therapy. The accompanying publications review the status of adoptive transfer of cancer vaccines on one hand and active-specific immunization on the other. Hopefully, reading these articles will offer a balanced view of the current status of antigen-specific ant-cancer therapies and suggest future strategies to foster unified efforts to complement either approach with the other according to specific biological principles.

  16. The Cell Therapy Catapult: growing a U.K. cell therapy industry generating health and wealth.

    Science.gov (United States)

    Thompson, Keith; Foster, Emma Palmer

    2013-12-01

    In a recent report on the regenerative medicine sector, the U.K. House of Lords made several recommendations to enable the United Kingdom to become a global leader in this important industry. Its recommendations in this regard were many and various, covering the regulatory system, clinical trials, manufacturing, funding, approval, and reimbursement. In its mission to tackle what it sees as three main types of barriers to the development of the cell therapy industry in the United Kingdom, the Cell Therapy Catapult is tackling many of these issues. Established as a center of excellence in the United Kingdom in 2012, the Cell Therapy Catapult is a research organization expected to grow to a team of around 100 experts. Its core financing of £ 70 million over the next 5 years is provided by the Technology Strategy Board, the United Kingdom's innovation agency, and with additional contract research income and access to collaborative funds, the Catapult expects to build up to annual revenues of around £ 30 million. Along with its sister Catapult programs in other areas of the economy, the Cell Therapy Catapult was established after identification of the massive early-stage expertise the country has, as well as an acute market failure-the lack of expertise to translate early-stage cell therapy research into commercial success. In this article, in addition to showing our progress so far, we will discuss the hurdles the industry faces-grouped into business, manufacturing/supply chain issues, and clinical/regulatory issues-and what we are doing to help the United Kingdom leap over them.

  17. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  18. Advances in adoptive immunotherapy to accelerate T-cellular immune reconstitution after HLA-incompatible hematopoietic stem cell transplantation.

    Science.gov (United States)

    Reimann, Christian; Dal Cortivo, Liliane; Hacein-Bey-Abina, Salima; Fischer, Alain; André-Schmutz, Isabelle; Cavazzana-Calvo, Marina

    2010-07-01

    Although partially HLA-mismatched hematopoietic stem cell transplantation (HSCT) has become an important therapeutic option for children with primary immunodeficiencies, delayed reconstitution of the T-cell compartment remains a major clinical concern. Adoptive immunotherapies to provide recipients with a protective and diverse T-cell repertoire in the months following HSCT are warranted. In order to improve T-cell reconstitution after T-cell-depleted HSCT, different strategies are currently being studied. Some are based on administration of modified mature T cells (e.g., allodepleted T cells or pathogen-specific T cells). Others aim at accelerating de novo thymopoiesis from donor-derived hematopoietic stem cells in vivo via the administration of thymopoietic agents or the transfer of large numbers of T-cell precursors generated ex vivo. The present article will provide a brief summary of recent advances in the field of allodepletion and adoptive transfer of pathogen-specific T cells and a detailed discussion of strategies for enhancing thymopoiesis in vivo.

  19. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  20. Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics

    Directory of Open Access Journals (Sweden)

    LM Benneker

    2014-05-01

    Full Text Available Intervertebral disc (IVD degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.

  1. Towards stem-cell therapy in the endocrine pancreas

    NARCIS (Netherlands)

    Gangaram-Panday, Shanti T.; Faas, Marijke M.; de Vos, Paul

    Many approaches of stem-cell therapy for the treatment of diabetes have been described. One is the application of stem cells for replacement of nonfunctional islet cells in the native endogenous pancreas; another one is the use of stem cells as an inexhaustible source for islet-cell transplantation.

  2. Sequential Therapy in Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Bradford R Hirsch

    2016-04-01

    Full Text Available The treatment of metastatic renal cell carcinoma (mRCC has changed dramatically in the past decade. As the number of available agents, and related volume of research, has grown, it is increasingly complex to know how to optimally treat patients. The authors are practicing medical oncologists at the US Oncology Network, the largest community-based network of oncology providers in the country, and represent the leadership of the Network's Genitourinary Research Committee. We outline our thought process in approaching sequential therapy of mRCC and the use of real-world data to inform our approach. We also highlight the evolving literature that will impact practicing oncologists in the near future.

  3. Improving the Safety of Cell Therapy Products by Suicide Gene Transfer

    Directory of Open Access Journals (Sweden)

    Antonio eDi Stasi

    2014-11-01

    Full Text Available Adoptive T-cell therapy can involve donor lymphocyte infusion (DLI after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte (TILs expanded ex-vivo, or more recently the use of T cell receptor (TCR or chimeric antigen receptor (CAR redirected T cells. However cellular therapies can pose significant risks, including graft-versus-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The ‘ideal’ suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of ‘all’ and ‘only’ the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase (HSV-TK and inducible-caspase-9 (iCasp9.

  4. Improving the safety of cell therapy products by suicide gene transfer.

    Science.gov (United States)

    Jones, Benjamin S; Lamb, Lawrence S; Goldman, Frederick; Di Stasi, Antonio

    2014-01-01

    Adoptive T-cell therapy can involve donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte expanded ex-vivo, or more recently the use of T cell receptor or chimeric antigen receptor redirected T cells. However, cellular therapies can pose significant risks, including graft-vs.-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The "ideal" suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of "all" and "only" the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase and inducible-caspase-9.

  5. Development of Antigen Presenting Cells for Adoptive Immunotherapy in Prostate Cancer

    National Research Council Canada - National Science Library

    Oelke, Mathias

    2006-01-01

    While adoptive immunotherapy holds promise as a treatment for cancer and infectious diseases, development has been impeded by the lack of reproducible methods for generating therapeutic numbers of antigen-specific CD8+ CTL...

  6. Nanomedicine-mediated cancer stem cell therapy.

    Science.gov (United States)

    Shen, Song; Xia, Jin-Xing; Wang, Jun

    2016-01-01

    Circumstantial evidence suggests that most tumours are heterogeneous and contain a small population of cancer stem cells (CSCs) that exhibit distinctive self-renewal, proliferation and differentiation capabilities, which are believed to play a crucial role in tumour progression, drug resistance, recurrence and metastasis in multiple malignancies. Given that the existence of CSCs is a primary obstacle to cancer therapy, a tremendous amount of effort has been put into the development of anti-CSC strategies, and several potential approaches to kill therapeutically-resistant CSCs have been explored, including inhibiting ATP-binding cassette transporters, blocking essential signalling pathways involved in self-renewal and survival of CSCs, targeting CSCs surface markers and destroying the tumour microenvironment. Meanwhile, an increasing number of therapeutic agents (e.g. small molecule drugs, nucleic acids and antibodies) to selectively target CSCs have been screened or proposed in recent years. Drug delivery technology-based approaches hold great potential for tackling the limitations impeding clinical applications of CSC-specific agents, such as poor water solubility, short circulation time and inconsistent stability. Properly designed nanocarrier-based therapeutic agents (or nanomedicines) offer new possibilities of penetrating CSC niches and significantly increasing therapeutic drug accumulation in CSCs, which are difficult for free drug counterparts. In addition, intelligent nanomedicine holds great promise to overcome pump-mediated multidrug resistance which is driven by ATP and to decrease detrimental effects on normal somatic stem cells. In this review, we summarise the distinctive biological processes related to CSCs to highlight strategies against inherently drug-resistant CSCs. We then focus on some representative examples that give a glimpse into state-of-the-art nanomedicine approaches developed for CSCs elimination. A perspective on innovative therapeutic

  7. Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Chen, Aiping; Zhang, Yonghui; Meng, Gang; Jiang, Dengxu; Zhang, Hailin; Zheng, Meihong; Xia, Mao; Jiang, Aiqin; Wu, Junhua; Beltinger, Christian; Wei, Jiwu

    2017-07-12

    There is an urgent need for novel effective treatment for hepatocellular carcinoma (HCC). Oncolytic viruses (OVs) not only directly lyse malignant cells, but also induce potent antitumour immune responses. The potency and precise mechanisms of antitumour immune activation by attenuated measles virus remain unclear. In this study, we investigated the potency of the measles virus vaccine strain Edmonston (MV-Edm) in improving adoptive CD8 + NKG2D + cells for HCC treatment. We show that MV-Edm-infected HCC enhanced the antitumour activity of CD8 + NKG2D + cells, mediated by at least three distinct mechanisms. First, MV-Edm infection compelled HCC cells to express the specific NKG2D ligands MICA/B, which may contribute to the activation of CD8 + NKG2D + cells. Second, MV-Edm-infected HCC cells stimulated CD8 + NKG2D + cells to express high level of FasL resulting in enhanced induction of apoptosis. Third, intratumoural administration of MV-Edm enhanced infiltration of intravenously injected CD8 + NKG2D + cells. Moreover, we found that MV-Edm and adoptive CD8 + NKG2D + cells, either administered alone or combined, upregulated the immune suppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in HCC. Elimination of IDO1 by fludarabine enhanced antitumour responses. Taken together, our data provide a novel and clinically relevant strategy for treatment of HCC.

  8. Cell therapy for avascular osteonecrosis of femoral head

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2009-04-01

    Full Text Available Avascular osteonecrosis of femoral head causes severe musculoskeletal disability. There is not standard treatment to cure avascular osteonecrosis.? Recently, cell therapy using bone marrow stromal cells has begun for this disease.

  9. Cell therapy for avascular osteonecrosis of femoral head

    OpenAIRE

    Tomoki Aoyama; Junya Toguchida

    2009-01-01

    Avascular osteonecrosis of femoral head causes severe musculoskeletal disability. There is not standard treatment to cure avascular osteonecrosis.? Recently, cell therapy using bone marrow stromal cells has begun for this disease.

  10. Present and future of allogeneic natural killer cell therapy

    Directory of Open Access Journals (Sweden)

    Okjae eLim

    2015-06-01

    Full Text Available Natural killer (NK cells are innate lymphocytes that are capable of eliminating tumor cells and are therefore used for cancer therapy. Although many early investigators used autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were not satisfactory. Meanwhile, human leukocyte antigen (HLA-haploidentical hematopoietic stem cell transplantation revealed the anti-tumor effect of allogeneic NK cells, and HLA-haploidentical, killer cell immunoglobulin-like receptor (KIR ligand-mismatched allogeneic NK cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK cells from non-HLA-related healthy donors have been recently used in cancer therapy. The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells for instant administration without delay for ex vivo expansion. In cancer therapy with allogeneic NK cells, optimal matching of donors and recipients is important to maximize the efficacy of the therapy. In this review, we summarize the present state of allogeneic NK cell therapy and its future directions.

  11. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  12. Stem Cell Therapy for Myocardial Infarction: Are We Missing Time?

    NARCIS (Netherlands)

    ter Horst, Kasper W.

    2010-01-01

    The success of stem cell therapy in myocardial infarction (MI) is modest, and for stem cell therapy to be clinically effective fine-tuning in regard to timing, dosing, and the route of administration is required. Experimental studies suggest the existence of a temporal window of opportunity bound by

  13. Evolving Industry Partnerships and Investments in Cell and Gene Therapies.

    Science.gov (United States)

    Smith, Devyn M; Culme-Seymour, Emily J; Mason, Chris

    2018-04-12

    Cell and gene therapies hold the promise of providing significant and durable health gains to patients in many disease states and have recently elicited significant investor and partner interest. We cover the current state of industry partnerships and investments, highlight what makes a partnership advantageous, and discuss implications for stem cell therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. T-cell-directed therapies in systemic lupus erythematosus.

    Science.gov (United States)

    Nandkumar, P; Furie, R

    2016-09-01

    Drug development for the treatment of systemic lupus erythematosus (SLE) has largely focused on B-cell therapies. A greater understanding of the immunopathogenesis of SLE coupled with advanced bioengineering has allowed for clinical trials centered on other targets for SLE therapy. The authors discuss the benefits and shortcomings of focusing on T-cell-directed therapies in SLE and lupus nephritis clinical trials. © The Author(s) 2016.

  15. Adoptive parenting.

    Science.gov (United States)

    Grotevant, Harold D; Lo, Albert Yh

    2017-06-01

    Challenges in adoptive parenting continue to emerge as adoption policies and practices evolve. We review three areas of research in adoptive parenting that reflect contemporary shifts in adoption. First, we highlight recent findings concerning openness in adoption contact arrangements, or contact between a child's families of birth and rearing. Second, we examine research regarding racial and cultural socialization in transracial and international adoptions. Finally, we review investigations of parenting experiences of lesbian and gay adoptive parents. Overall, parenting processes (e.g., supportive vs. problematic family interaction) are better predictors of child adjustment than are group differences (e.g., open vs. closed adoptions; adoption by heterosexual vs. same-sex parents). The distinctive needs of adopted children call for preparation of adoption-competent mental health, casework, education, and health care professionals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC.

    Science.gov (United States)

    Klippel, Z K; Chou, J; Towlerton, A M; Voong, L N; Robbins, P; Bensinger, W I; Warren, E H

    2014-03-01

    Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1(+) multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8(+) T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T-cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity (LOH) in the major histocompatibility complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although LOH involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T-cell therapy.

  17. Stem cell and gene therapies for diabetes mellitus.

    Science.gov (United States)

    Calne, Roy Y; Gan, Shu Uin; Lee, Kok Onn

    2010-03-01

    In this Perspectives article, we comment on the progress in experimental stem cell and gene therapies that might one day become a clinical reality for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Finally, gene therapy shows some promise for the generation of insulin-producing cells. Here, we discuss two of the most frequently used approaches: in vitro gene delivery into cells which are then transplanted into the recipient and direct delivery of genes in vivo.

  18. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  19. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  20. Improving the efficacy and safety of engineered T cell therapy for cancer.

    Science.gov (United States)

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Anti-inflammatory effects of cell-based therapy with tyrosine hydroxylase-positive catecholaminergic cells in experimental arthritis.

    Science.gov (United States)

    Jenei-Lanzl, Zsuzsa; Capellino, Silvia; Kees, Frieder; Fleck, Martin; Lowin, Torsten; Straub, Rainer H

    2015-02-01

    Studies in rheumatoid arthritis (RA), osteoarthritis (OA) and mice with arthritis demonstrated tyrosine hydroxylase-positive (TH(+)) cells in arthritic synovium and parallel loss of sympathetic nerve fibres. The exact function of TH(+) cells and mode of TH induction are not known. Synovial cells of RA/OA were isolated and cultured under normoxic/hypoxic conditions with/without stimulating enzyme cofactors of TH and inhibitors of TH. We studied TH expression and release of cytokines/catecholamines. In vivo function was tested by cell therapy with TH(+) neuronal precursor cells (TH(+) neuronal cells) in DBA/1 mice with collagen type II-induced arthritis (CIA). Compared with normoxic conditions, hypoxia increased TH protein expression and catecholamine synthesis and decreased release of tumour necrosis factor (TNF) in OA/RA synovial cells. This inhibitory effect on TNF was reversed by TH inhibition with α-methyl-para-tyrosine (αMPT), which was particularly evident under hypoxic conditions. Incubation with specific TH cofactors (tetrahydrobiopterin and Fe(2+)) increased hypoxia-induced inhibition of TNF, which was also reversed by αMPT. To address a possible clinical role of TH(+) cells, murine TH(+) neuronal cells were generated from mesenchymal stem cells. TH(+) neuronal cells exhibited a typical catecholaminergic phenotype. Adoptive transfer of TH(+) neuronal cells markedly reduced CIA in mice, and 6-hydroxydopamine, which depletes TH(+) cells, reversed this effect. The anti-inflammatory effect of TH(+) neuronal cells on experimental arthritis has been presented for the first time. In RA/OA, TH(+) synovial cells have TH-dependent anti-inflammatory capacities, which are augmented under hypoxia. Using generated TH(+) neuronal cells might open new avenues for cell-based therapy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Adoptive transfer of splenocytes to study cell-mediated immune responses in hepatitis C infection using HCV transgenic mice

    OpenAIRE

    Naas, Turaya; Ghorbani, Masoud; Soare, Catalina; Scherling, Nicole; Muller, Rudy; Ghorbani, Peyman; Diaz-Mitoma, Francisco

    2010-01-01

    Background Hepatitis C virus (HCV) is a major cause of chronic hepatitis and a health problem affecting over 170 million people around the world. We previously studied transgenic mice that express HCV Core, Envelope 1 and Envelope 2 proteins predominantly in the liver, resulting in steatosis, liver and lymphoid tumors, and hepatocellular carcinoma. Herein, the immune-mediated cell response to hepatitis C antigens was evaluated by adoptive transfers of carboxyfluorescein succinimidyl ester (CF...

  3. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    Science.gov (United States)

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  4. Challenges in the translation and commercialization of cell therapies.

    Science.gov (United States)

    Dodson, Brittany P; Levine, Aaron D

    2015-08-07

    Cell therapies are an emerging form of healthcare that offer significant potential to improve the practice of medicine and provide benefits to patients who currently have limited or no treatment options. Ideally, these innovative therapies can complement existing small molecule, biologic and device approaches, forming a so-called fourth pillar of medicine and allowing clinicians to identify the best treatment approach for each patient. Despite this potential, cell therapies are substantially more complex than small molecule or biologic interventions. This complexity poses challenges for scientists and firms developing cell therapies and regulators seeking to oversee this growing area of medicine. In this project, we retrospectively examined the development of seven cell therapies - including three autologous interventions and four allogeneic interventions - with the aim of identifying common challenges hindering attempts to bring new cell therapies to market. We complemented this analysis with a series of qualitative interviews with experts in various aspects of cell therapy. Through our analysis, which included review of extant literature collected from company documents, newspapers, journals, analyst reports and similar sources, and analysis of the qualitative interviews, we identified several common challenges that cell therapy firms must address in both the pre- and post-market stages. Key pre-market challenges included identifying and maintaining stable funding to see firms through lengthy developmental timelines and uncertain regulatory processes. These challenges are not unique to cell therapies, of course, but the novelty of cell-based interventions complicates these efforts compared to small molecule or biologic approaches. The atypical nature of cell therapies also led to post-market difficulties, including challenges navigating the reimbursement process and convincing providers to change their treatment approaches. In addition, scaling up production

  5. Clinical manufacturing of CAR T cells: foundation of a promising therapy

    Directory of Open Access Journals (Sweden)

    Xiuyan Wang

    2016-01-01

    Full Text Available The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality.

  6. Clinical manufacturing of CAR T cells: foundation of a promising therapy

    Science.gov (United States)

    Wang, Xiuyan; Rivière, Isabelle

    2016-01-01

    The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality. PMID:27347557

  7. REIMBURSEMENT OF CELL-BASED REGENERATIVE THERAPY IN THE UK AND FRANCE.

    Science.gov (United States)

    Mahalatchimy, Aurélie

    2016-01-01

    Cell-based regenerative therapies are presented as being able to cure the diseases of the twenty-first century, especially those coming from the degeneration of the aging human body. But their specific nature based on biological materials raises particular challenging issues on how regulation should frame biomedical innovation for society's benefit regarding public health. The European Union (EU) supports the development of cell-based regenerative therapies that are medicinal products with a specific regulation providing their wide access to the European market for European patients. However, once these medicinal products have obtained a European marketing authorisation, they are still far away from being fully accessible to European patients in all EU Member States. Whereas there is much written on the EU regulatory system for new biotechnologies, there is no systematic legal study comparing the insurance provisions in two EU countries. Focussing on the situation in the UK and France that are based on two different healthcare systems, this paper is based on a comparative methodological approach. It raises the question of regulatory reimbursement mechanisms that determine access to innovative treatments and their consequences for social protection systems in the general context of public health. After having compared the French and English regulations of cell-based regenerative therapy regarding pricing and reimbursement, this papers analyses how England and France are addressing two main challenges of cell-based regenerative therapy, to take into account their long-term benefit through their potential curative nature and their high upfront cost, towards their adoption within the English and French healthcare systems. It concludes that England and France have different general legal frameworks that are not specific to the reimbursement of cell-based regenerative therapy, although their two current and respective trends would bring more convergence between the two

  8. Selections of appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast cancer: reargument of such contentious therapeutic preferences.

    Science.gov (United States)

    Ren, Jun; Di, Lijun; Song, Guohong; Yu, Jing; Jia, Jun; Zhu, Yuling; Yan, Ying; Jiang, Hanfang; Liang, Xu; Che, Li; Zhang, Jie; Wan, Fengling; Wang, Xiaoli; Zhou, Xinna; Lyerly, Herbert Kim

    2013-10-01

    We hypothesized that combination of dendritic cell (DC) with autologous cytokine-induced killer (CIK) immunotherapy in setting of high-dose chemotherapy (HDC) would be effective for selected metastatic breast cancer (MBC) patients. Our previous work showed thiotepa could eradicate breast cancer stem cells. From 2004 to 2009, 79 patients received standard dose chemotherapy (SDC) of 75 mg/m(2) docetaxel and 75 mg/m(2) thiotepa versus 87 patients of HDC + DC/CIK: 120 mg/m(2) docetaxel to mobilize peripheral CD34(+) progenitor cells, a sequence of HDC (120 mg/m(2) docetaxel, plus 175 mg/m(2) thiotepa) + DC/CIK, with or without 400 mg/m(2) carboplatin depending upon bone marrow function. The endpoints were response rates (RR), progression-free survival (PFS), and overall survival (OS). Compared with SDC, PFS and OS were improved in HDC + DC/CIK (median PFS 10.2 vs. 3.7 months, P < 0.001; median OS 33.1 vs. 15.2 months, P < 0.001). Patients of pre-menopausal, HDC as first-line treatment after metastasis, or with visceral metastasis showed prolonged PFS and OS. SDC group also achieved the similar response as previous reports. Our study demonstrated the novel combination of HDC with DC/CIK to be an effective choice for the selected MBC population, in which choosing appropriate chemo regimens played important roles, and also specific HDC regimen plus DC/CIK immunotherapy showed the clinical benefits compared with chemotherapy alone.

  9. Stem Cell-Based Therapies in Chagasic Cardiomyopathy.

    Science.gov (United States)

    de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos

    2015-01-01

    Chagas disease is caused by Trypanosoma cruzi and can lead to a dilated cardiomyopathy decades after the prime infection by the parasite. As with other dilated cardiomyopathies, conventional pharmacologic therapies are not always effective and as heart failure progresses patients need heart transplantation. Therefore alternative therapies are highly desirable and cell-based therapies have been investigated in preclinical and clinical studies. In this paper we review the main findings of such studies and discuss future directions for stem cell-based therapies in chronic chagasic cardiomyopathy.

  10. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  11. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... (CSCs), is considered to be of particular significance for tumour initiation, progression and metastasis. CSCs are considered in particular to be therapy-resistant and may drive disease recurrence, which positions CSCs in the focus of anti-cancer research, but successful CSC-targeting therapies...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  12. Stem cell therapy in treatment of different diseases.

    Science.gov (United States)

    Larijani, Bagher; Esfahani, Ensieh Nasli; Amini, Peyvand; Nikbin, Behrouz; Alimoghaddam, Kamran; Amiri, Somayeh; Malekzadeh, Reza; Yazdi, Nika Mojahed; Ghodsi, Maryam; Dowlati, Yahya; Sahraian, Mohammad Ali; Ghavamzadeh, Ardeshir

    2012-01-01

    Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia). In this paper the goal is evaluation of cell therapy in treatment of Parkinson's disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  13. Stem Cell Therapy in Treatment of Different Diseases

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sahraian

    2012-02-01

    Full Text Available Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia. In this paper the goal is evaluation of cell therapy in treatment of Parkinsons disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  14. CAR-T cell therapy in ovarian cancer: from the bench to the bedside.

    Science.gov (United States)

    Zhu, Xinxin; Cai, Han; Zhao, Ling; Ning, Li; Lang, Jinghe

    2017-09-08

    Ovarian cancer (OC) is the most lethal gynecological malignancy and is responsible for most gynecological cancer deaths. Apart from conventional surgery, chemotherapy, and radiotherapy, chimeric antigen receptor-modified T (CAR-T) cells as a representative of adoptive cellular immunotherapy have received considerable attention in the research field of cancer treatment. CARs combine antigen specificity and T-cell-activating properties in a single fusion molecule. Several preclinical experiments and clinical trials have confirmed that adoptive cell immunotherapy using typical CAR-engineered T cells for OC is a promising treatment approach with striking clinical efficacy; moreover, the emerging CAR-Ts targeting various antigens also exert great potential. However, such therapies have side effects and toxicities, such as cytokine-associated and "on-target, off-tumor" toxicities. In this review, we systematically detail and highlight the present knowledge of CAR-Ts including the constructions, vectors, clinical applications, development challenges, and solutions of CAR-T-cell therapy for OC. We hope to provide new insight into OC treatment for the future.

  15. Stem cell therapies for treating osteoarthritis: prescient or premature?

    Science.gov (United States)

    Whitworth, Deanne J; Banks, Tania A

    2014-12-01

    There has been unprecedented interest in recent years in the use of stem cells as therapy for an array of diseases in companion animals. Stem cells have already been deployed therapeutically in a number of clinical settings, in particular the use of mesenchymal stem cells to treat osteoarthritis in horses and dogs. However, an assessment of the scientific literature highlights a marked disparity between the purported benefits of stem cell therapies and their proven abilities as defined by rigorously controlled scientific studies. Although preliminary data generated from clinical trials in human patients are encouraging, therapies currently available to treat animals are supported by very limited clinical evidence, and the commercialisation of these treatments may be premature. This review introduces the three main types of stem cells relevant to veterinary applications, namely, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells, and draws together research findings from in vitro and in vivo studies to give an overview of current stem cell therapies for the treatment of osteoarthritis in animals. Recent advances in tissue engineering, which is proposed as the future direction of stem cell-based therapy for osteoarthritis, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Markert, Chad; Atala, Anthony; Cann, Jennifer K.; Christ, George; Furth, Mark; Ambrosio, Fabrisia; Childers, Martin K.

    2009-01-01

    Multipotent cells that can give rise to bone, cartilage, fat, connective tissue, skeletal and cardiac muscle are termed mesenchymal stem cells (MSCs). These cells were first identified in the bone marrow, distinct from blood-forming stem cells. Based on the embryologic derivation, availability, and various pro-regenerative characteristics, research exploring their use in cell therapy shows great promise for patients with degenerative muscle diseases and a number of other conditions. In this r...

  17. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    Energy Technology Data Exchange (ETDEWEB)

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity.

  18. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    International Nuclear Information System (INIS)

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity

  19. Recent advances in cell-based therapy for Parkinson disease

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Cooper, Oliver; Vinuela, Angel

    2008-01-01

    In this review, the authors discuss recent advances in the field of cell therapy for Parkinson disease (PD). They compare and contrast recent clinical trials using fetal dopaminergic neurons. They attribute differences in cell preparation techniques, cell type specification, and immunosuppression...

  20. Apoptosis and cancer stem cells : Implications for apoptosis targeted therapy

    NARCIS (Netherlands)

    Kruyt, Frank A. E.; Schuringa, Jan Jacob

    2010-01-01

    Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited

  1. Human embryonic stem cell therapies for neurodegenerative diseases.

    Science.gov (United States)

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  2. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  3. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  4. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology.

    Science.gov (United States)

    Jadczyk, T; Faulkner, A; Madeddu, P

    2013-05-01

    Regenerative medicine holds great promise as a way of addressing the limitations of current treatments of ischaemic disease. In preclinical models, transplantation of different types of stem cells or progenitor cells results in improved recovery from ischaemia. Furthermore, experimental studies indicate that cell therapy influences a spectrum of processes, including neovascularization and cardiomyogenesis as well as inflammation, apoptosis and interstitial fibrosis. Thus, distinct strategies might be required for specific regenerative needs. Nonetheless, clinical studies have so far investigated a relatively small number of options, focusing mainly on the use of bone marrow-derived cells. Rapid clinical translation resulted in a number of small clinical trials that do not have sufficient power to address the therapeutic potential of the new approach. Moreover, full exploitation has been hindered so far by the absence of a solid theoretical framework and inadequate development plans. This article reviews the current knowledge on cell therapy and proposes a model theory for interpretation of experimental and clinical outcomes from a pharmacological perspective. Eventually, with an increased association between cell therapy and traditional pharmacotherapy, we will soon need to adopt a unified theory for understanding how the two practices additively interact for a patient's benefit. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  5. CAR-T cells and combination therapies: What's next in the immunotherapy revolution?

    Science.gov (United States)

    Ramello, Maria C; Haura, Eric B; Abate-Daga, Daniel

    2018-03-01

    Cancer immunotherapies are dramatically reshaping the clinical management of oncologic patients. For many of these therapies, the guidelines for administration, monitoring, and management of associated toxicities are still being established. This is especially relevant for adoptively transferred, genetically-modified T cells, which have unique pharmacokinetic properties, due to their ability to replicate and persist long-term, following a single administration. Furthermore, in the case of CAR-T cells, the use of synthetic immune receptors may impact signaling pathways involved in T cell function and survival in unexpected ways. We, herein, comment on the most salient aspects of CAR-T cell design and clinical experience in the treatment of solid tumors. In addition, we discuss different possible scenarios for combinations of CAR-T cells and other treatment modalities, with a special emphasis on kinase inhibitors, elaborating on the strategies to maximize synergism. Finally, we discuss some of the technologies that are available to explore the molecular events governing the success of these therapies. The young fields of synthetic and systems biology are likely to be major players in the advancement of CAR-T cell therapies, providing the tools and the knowledge to engineer patients' T lymphocytes into intelligent cancer-fighting micromachines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Adoption of the Q Transcriptional System for Regulating Gene Expression in Stem Cells.

    Science.gov (United States)

    Fitzgerald, Michael; Gibbs, Chelsea; Shimpi, Adrian A; Deans, Tara L

    2017-11-17

    The field of mammalian synthetic biology seeks to engineer enabling technologies to create novel approaches for programming cells to probe, perturb, and regulate gene expression with unprecedented precision. To accomplish this, new genetic parts continue to be identified that can be used to build novel genetic circuits to re-engineer cells to perform specific functions. Here, we establish a new transcription-based genetic circuit that combines genes from the quinic acid sensing metabolism of Neorospora crassa and the bacterial Lac repressor system to create a new orthogonal genetic tool to be used in mammalian cells. This work establishes a novel genetic tool, called LacQ, that functions to regulate gene expression in Chinese hamster ovarian (CHO) cells, human embryonic kidney 293 (HEK293) cells, and in mouse embryonic stem (ES) cells.

  7. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication.

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    Full Text Available For adoptive cell transfer (ACT immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.

  8. Stem cell therapy-present status.

    Science.gov (United States)

    Aejaz, H M; Aleem, A K; Parveen, N; Khaja, M N; Narusu, M Lakshmi; Habibullah, C M

    2007-04-01

    Stem cell research is a new field that is advancing at an incredible pace with new discoveries being reported from all over the world. Scientists have for years looked for ways to use stem cells to replace cells and tissues that are damaged or diseased. Stem cells are the foundation cells for every organ, tissue, and cell in the body. Stem cells are undifferentiated, "blank" cells that do not yet have a specific function. Under proper conditions, stem cells begin to develop into specialized tissues and organs. They are self-sustaining and can replicate themselves for long periods of time. Embryonic stem cells are pluripotent cells, isolated from the inner cell mass of the blastocyst-stage mammalian embryo. They have the ability to differentiate into several somatic or somatic-like functional cells such as neurons, hepatocytes, cardiomyocytes, and others. Adult stem cells are specialized cells found within many tissues of the body where they function in tissue homeostasis and repair. They are precursor cells capable of differentiation into several different cells. The knowledge of stem cells from various sources offered a new hope for the treatment of various diseases.

  9. Research progress in targeted therapy for liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    SHAO Ping

    2015-11-01

    Full Text Available Liver cancer is a malignant tumor. The current operation or chemoradiotherapy cannot achieve a satisfactory effect, and relapse and metastasis are always big problems in the treatment of liver cancer. According to the recent theory of liver cancer stem cells, the genesis, development, relapse, metastasis, and prognosis of liver cancer are all related to liver cancer stem cells. If the liver cancer stem cells are treated by targeted therapy, which would reduce the number of or destroy the stem cells, the relapse, metastasis, and drug resistance after tumor resection may be reduced or eliminated. The progress in targeted therapy for liver cancer stem cells is reviewed here. Although there are many types of targeted therapies for liver cancer stem cells, it is still a key problem that the targeting is not strong enough, which needs to be solved urgently. Whether the dual- or multi-targeting would solve this problem still needs to be confirmed by further experimental studies.

  10. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  11. Cell-based therapies for chronic kidney disease

    NARCIS (Netherlands)

    van Koppen, A.N.|info:eu-repo/dai/nl/314088350

    2013-01-01

    Chronic kidney disease (CKD) may lead to end-stage renal failure, requiring renal replacement strategies. Development of new therapies to reduce progression of CKD is therefore a major global public health target. The aim of this thesis was to investigate whether cell-based therapies have the

  12. Hydroxyurea therapy in adult Nigerian sickle cell disease: a ...

    African Journals Online (AJOL)

    Background: The clinical prospects of hydroxyurea therapy in the management of sickle cell disease (SCD) require evaluation in the Nigerian setting to develop indigenous guidelines. This survey examines the pattern of hydroxyurea therapy, its clinico-haematologic benefits and safety profile in Nigerian SCD subjects.

  13. Adoption into clinical practice of two therapies to manage swallowing disorders: exercise based swallowing rehabilitation and electrical stimulation

    Science.gov (United States)

    Crary, Michael A.; Carnaby, Giselle D.

    2014-01-01

    Purpose of review This article reviews recent literature depicting a shift in dysphagia rehabilitation in adults. Distinguishing rehabilitation from compensation in dysphagia management, a review of basic exercise principles is followed by description of recent publications depicting exercise based therapies. Subsequently, transcutaneous electrical stimulation is reviewed as it may contribute to exercise based dysphagia rehabilitation in adults. Recent findings Surveys have documented extensive variability in the clinical application of dysphagia therapy techniques. Despite this variability, two trends are emerging in dysphagia rehabilitation research: 1- documentation of physiologic plus functional changes within the swallowing mechanism subsequent to therapy; and 2- prophylactic exercise based therapies. In addition, extensive efforts have emerged describing the potential application of transcutaneous electrical stimulation in dysphagia rehabilitation. Though results of these efforts are conflicted, transcutaneous electrical stimulation may serve a useful role as an adjunct to well-developed exercise based rehabilitation for dysphagia. Summary The focus of dysphagia rehabilitation in adults is changing. Current efforts indicate that exercise based therapies should incorporate multiple principles of exercise physiology and document physiologic change within the impaired swallowing mechanism. Transcutaneous electrical stimulation may function as an adjunctive modality; however, current practices should be evaluated to develop additional parameters of stimulation that are focused toward specific dysphagia impairments. PMID:24675153

  14. Adoption into clinical practice of two therapies to manage swallowing disorders: exercise-based swallowing rehabilitation and electrical stimulation.

    Science.gov (United States)

    Crary, Michael A; Carnaby, Giselle D

    2014-06-01

    To review recent literature depicting a shift in dysphagia rehabilitation in adults. Distinguishing rehabilitation from compensation in dysphagia management, a review of basic exercise principles is followed by description of recent publications depicting exercise-based therapies. Subsequently, transcutaneous electrical stimulation (TES) is reviewed as it may contribute to exercise-based dysphagia rehabilitation in adults. Surveys have documented extensive variability in the clinical application of dysphagia therapy techniques. Despite this variability, two trends are emerging in dysphagia rehabilitation research: documentation of physiologic and functional changes within the swallowing mechanism subsequent to therapy; and prophylactic exercise-based therapies. In addition, extensive efforts have emerged describing the potential application of TES in dysphagia rehabilitation. Though results of these efforts are conflicted, TES may serve a useful role as an adjunct to well developed exercise-based rehabilitation for dysphagia. The focus of dysphagia rehabilitation in adults is changing. Current efforts indicate that exercise-based therapies should incorporate multiple principles of exercise physiology and document physiologic change within the impaired swallowing mechanism. TES may function as an adjunctive modality; however, current practices should be evaluated to develop additional parameters of stimulation that are focused toward specific dysphagia impairments.

  15. Adipose derived stem cells for regenerative therapy in osteoarticular diseases.

    Science.gov (United States)

    Pers, Yves-Marie; Jorgensen, Christian

    2016-12-01

    In the recent years, adipose derived stem cells (ASCs) led to significant findings in the field of regenerative therapy. ASCs have various biological properties and capacity as differentiation in three lineages (chondrocytes, osteocytes and adipocytes) or immunomodulation by releasing paracrine factors. Osteoarthritis (OA) is the most frequent osteoarticular disease characterized by none curative treatment. We reviewed all current data on the proof of concept of ASCs in OA pathophysiology as well as an inventory of ASC promising cell therapy in OA.

  16. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation.

    Science.gov (United States)

    Feuchtinger, Tobias; Opherk, Kathrin; Bethge, Wolfgang A; Topp, Max S; Schuster, Friedhelm R; Weissinger, Eva M; Mohty, Mohamad; Or, Reuven; Maschan, Michael; Schumm, Michael; Hamprecht, Klaus; Handgretinger, Rupert; Lang, Peter; Einsele, Hermann

    2010-11-18

    Cytomegalovirus (CMV) disease and infection refractory to antiviral treatment after allogeneic stem cell transplantation (allo-SCT) is associated with a high mortality. Adoptive transfer of CMV-specific T cells could reconstitute viral immunity after SCT and could protect from CMV-related complications. However, logistics of producing virus-specific T-cell grafts limited the clinical application. We treated 18 patients after allo-SCT from human leukocyte antigen-mismatched/haploidentical or human leukocyte antigen-matched unrelated donors with polyclonal CMV-specific T cells generated by ex vivo stimulation with pp65, followed by isolation of interferon-γ-producing cells. Patients with CMV disease or viremia refractory to antiviral chemotherapy or both were eligible for adoptive T-cell transfer and received a mean of 21 × 10³/kg pp65-specific T cells. In 83% of cases CMV infection was cleared or viral burden was significantly reduced, even in cases of CMV encephalitis (n = 2). Viral control was associated with in vivo expansion of CMV-specific T lymphocytes in 12 of 16 evaluable cases, resulting in reconstitution of antiviral T-cell responses, without graft-versus-host disease induction or acute side effects. Our findings indicate that the infusion of low numbers of CMV-specific T cells is safe, feasible, and effective as a treatment on demand for refractory CMV infection and CMV disease after allo-SCT.

  17. Clinical trials for stem cell therapies.

    Science.gov (United States)

    Trounson, Alan; Thakar, Rahul G; Lomax, Geoff; Gibbons, Don

    2011-05-10

    In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun.

  18. Changes in T-cell subsets after radiation therapy

    International Nuclear Information System (INIS)

    Yang, S.J.; Rafla, S.; Youssef, E.; Selim, H.; Salloum, N.; Chuang, J.Y.

    1988-01-01

    The T-cell subsets of 129 patients with cancer were counted before and after radiation therapy. The cells were labeled with monoclonal antibodies that were specific for each type of T cell. Significant changes after therapy were decreases in the proportion of T-helper/inducer cells, pan-T cells, and in the ratio of T-helper/inducer to T-suppressor/cytotoxic cells. There was an increase in the percentage of T-suppressor/cytotoxic cells. When the site of the primary cancer was considered, genitourinary cancer and cancer of the head and neck both showed a decreased percentage of T-helper/inducer cells and a reduced ratio of T-helper/inducer to T-suppressor/cytotoxic cells. The percentage of pan-T cells in head and neck cancer and the ratio of T-helper/inducer to T-suppressor/cytotoxic cells in breast cancer were decreased. The percentage of T-helper cells was particularly decreased by radiation therapy in advanced stages of cancer, in higher grade tumors, and in larger tumors. The absolute numbers of various T-cell subsets were decreased in all groups

  19. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  20. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Portillo

    2014-08-01

    Full Text Available Treatments for neonatal hypoxic ischemic encephalopathy (HIE have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke providing insights on the potential of cell therapy, currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS, which have been recently modified to Baby STEPS to cater for the neonatal symptoms of HIE. These guidelines recognized that neonatal HIE exhibits distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials, and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.

  1. Cell therapy to induce allograft tolerance: Time to switch to plan B?

    Directory of Open Access Journals (Sweden)

    Antoine eSicard

    2015-04-01

    Full Text Available Organ transplantation is widely acknowledged as the best option for end stage failure of vital organs. Long-term graft survival is however limited by graft rejection, a destructive process resulting from the response of recipient’s immune system against donor-specific alloantigens. Prevention of rejection currently relies exclusively on immunosuppressive drugs that lack antigen specificity and therefore increase the risk for infections and cancers. Induction of donor-specific tolerance would provide indefinite graft survival without morbidity and therefore represents the Grail of transplant immunologists.Progresses in the comprehension of immunoregulatory mechanisms over the last decades have paved the way for cell therapies to induce allograft tolerance. The first part of the present article reviews the promising results obtained in experimental models with adoptive transfer of ex vivo-expanded regulatory CD4+ T cells (CD4+ Tregs and discuss which source and specificity should be preferred for transferred CD4+ Tregs. Interestingly, B cells have recently emerged as potent regulatory cells, able to establish a privileged crosstalk with CD4+ T cells. The second part of the present article reviews the evidences demonstrating the crucial role of regulatory B cells in transplantation tolerance. We propose the possibility to harness B cell regulatory functions to improve cell-based therapies aiming at inducing allograft tolerance.

  2. Stem Cell-Based Therapies for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2014-01-01

    Full Text Available In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs, inducible pluripotent stem cells (iPSCs, neural stem cells (NSCs, and mesenchymal stem cell (MSCs might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.

  3. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  4. Training and Utilization of the Physical Therapy Assistant; Policy Statement Adopted by the 1967 House of Delegates.

    Science.gov (United States)

    American Physical Therapy Association, New York, NY.

    The physical therapy assistant is defined as a skilled technical worker who assists the professional physical therapist in patient related activities and carries out designated tasks within a service administered by a professional physical therapist. Training standards require a 2-year college level program administered by a qualified physical…

  5. Methods for Stem Cell Production and Therapy

    Science.gov (United States)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  6. Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype.

    Science.gov (United States)

    Gołąb, Karolina; Grose, Randall; Placencia, Veronica; Wickrema, Amittha; Solomina, Julia; Tibudan, Martin; Konsur, Evelyn; Ciepły, Kamil; Marek-Trzonkowska, Natalia; Trzonkowski, Piotr; Millis, J Michael; Fung, John; Witkowski, Piotr

    2018-02-09

    The first clinical trials with adoptive Treg therapy have shown safety and potential efficacy. Feasibility of such therapy could be improved if cells are cryopreserved and stored until optimal timing for infusion. Herein, we report the evaluation of two cell-banking strategies for Treg therapy: 1) cryopreservation of CD4 + cells for subsequent Treg isolation/expansion and 2) cryopreservation of ex-vivo expanded Tregs (CD4 + CD25 hi CD127 lo/- cells). First, we checked how cryopreservation affects cell viability and Treg markers expression. Then, we performed Treg isolation/expansion with the final products release testing. We observed substantial decrease in cell number recovery after thawing and overnight culture. This observation might be explained by the high percentage of necrotic and apoptotic cells found just after thawing. Furthermore, we noticed fluctuations in percentage of CD4 + CD25 hi CD127 - and CD4 + FoxP3 + cells obtained from cryopreserved CD4 + as well as Treg cells. However, after re-stimulation Tregs expanded well, presented a stable phenotype and fulfilled the release criteria at the end of expansions. Cryopreservation of CD4 + cells for subsequent Treg isolation/expansion and cryopreservation of expanded Tregs with re-stimulation and expansion after thawing, are promising solutions to overcome detrimental effects of cryopreservation. Both of these cell-banking strategies for Treg therapy can be applied when designing new clinical trials.

  7. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    , genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...... of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health....

  8. Immunomodulatory Effects of Hemagglutinin- (HA- Modified A20 B-Cell Lymphoma Expanded as a Brain Tumor on Adoptively Transferred HA-Specific CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Valentin P. Shichkin

    2014-01-01

    Full Text Available Previously, the mouse A20 B-cell lymphoma engineered to express hemagglutinin (HA antigen (A20HA was used as a systemic tumor model. In this work, we used the A20HA cells as a brain tumor. HA-specific CD4+ T cells were transferred intravenously in a tail vein 5 days after A20HA intracranial inoculation and analyzed on days 2, 9, and 16 after the adoptive transfer by different methods. The transferred cells demonstrated state of activation as early as day 2 after the adoptive transfer and most the of viable HA-specific cells became anergic on day 16. Additionally, symptoms of systemic immunosuppression were observed in mice with massive brain tumors at a late stage of the brain tumor progression (days 20–24 after the A20HA inoculation. Despite that, a deal of HA-specific CD4+ T cells kept the functional activity even at the late stage of A20HA tumor growth. The activated HA-specific CD4+ T cells were found also in the brain of brain-tumor-bearing mice. These cells were still responding to reactivation with HA-peptide in vitro. Our data support an idea about sufficient role of both the tumor-specific and -nonspecific mechanisms inducing immunosuppression in cancer patients.

  9. CAR T-Cell Therapy: Progress and Prospects.

    Science.gov (United States)

    Wilkins, Olivia; Keeler, Allison M; Flotte, Terence R

    2017-04-01

    Lentivirus-mediated transduction of autologous T cells with a chimeric antigen receptor (CAR) to confer a desired epitope specificity as a targeted immunotherapy for cancer has been among the first human gene therapy techniques to demonstrate widespread therapeutic efficacy. Other approaches to using gene therapy to enhance antitumor immunity have been less specific and less effective. These have included amplification, marking, and cytokine transduction of tumor infiltrating lymphocytes, recombinant virus-based expression of tumor antigens as a tumor vaccine, and transduction of antigen-presenting cells with tumor antigens. Unlike any of those methods, the engineering of CAR T cells combine specific monoclonal antibody gene sequences to confer epitope specificity and other T-cell receptor and activation domains to create a self-contained single vector approach to produce a very specific antitumor response, as is seen with CD19-directed CAR T cells used to treat CD19-expressing B-cell malignancies. Recent success with these therapies is the culmination of a long step-wise iterative process of improvement in the design of CAR vectors. This review aims to summarize this long series of advances in the development of effective CAR vector since their initial development in the 1990s, and to describe emerging approaches to design that promise to enhance and widen the human gene therapy relevance of CAR T-cell therapy in the future.

  10. The first decade of advanced cell therapy clinical trials using perinatal cells (2005-2015).

    Science.gov (United States)

    Couto, Pedro S; Bersenev, Alexey; Verter, Frances

    2017-12-01

    The first review of advanced cell therapy trials with perinatal cells. We compiled 281 clinical trials of advanced cell therapy with perinatal cells that were registered in 2005-2015. The most common cell source in these trials is cord blood, but the cell type that provides the mechanism of action in the majority of trials is mesenchymal stem/stromal cells. We analyze trends among the 15 parameters we compiled for these trials. Advanced cell therapy with perinatal cells is a new field that covers a wide range of diagnoses but where most of the trials are early Phase. Researchers in different countries tend to work with a preferred cell source and cell type.

  11. Stem cell-based therapies for osteoarthritis: challenges and opportunities.

    Science.gov (United States)

    Diekman, Brian O; Guilak, Farshid

    2013-01-01

    Regenerative medicine offers the exciting potential of developing alternatives to total joint replacement for treating osteoarthritis. In this article, we highlight recent work that addresses key challenges of stem cell-based therapies for osteoarthritis and provide examples of innovative ways in which stem cells can aid in the treatment of osteoarthritis. Significant progress has been made in understanding the challenges to successful stem cell therapy, such as the effects of age or disease on stem cell properties, altered stem cell function due to an inflammatory joint environment and phenotypic instability in vivo. Novel scaffold designs have been shown to enhance the mechanical properties of tissue-engineered cartilage and have also improved the integration of newly formed tissue within the joint. Emerging strategies such as injecting stem cells directly into the joint, manipulating endogenous stem cells to enhance regenerative capacity and utilizing stem cells for drug discovery have expanded the potential uses of stem cells in treating osteoarthritis. Several recent studies have greatly advanced the development and preclinical evaluation of potential stem cell-based treatments for osteoarthritis through novel approaches focused on cell therapy, tissue engineering and drug discovery.

  12. Ethical issues in stem cell research and therapy.

    Science.gov (United States)

    King, Nancy Mp; Perrin, Jacob

    2014-07-07

    Rapid progress in biotechnology has introduced a host of pressing ethical and policy issues pertaining to stem cell research. In this review, we provide an overview of the most significant issues with which the stem cell research community should be familiar. We draw on a sample of the bioethics and scientific literatures to address issues that are specific to stem cell research and therapy, as well as issues that are important for stem cell research and therapy but also for translational research in related fields, and issues that apply to all clinical research and therapy. Although debate about the moral status of the embryo in human embryonic stem cell research continues to have relevance, the discovery of other highly multipotent stem cell types and alternative methods of isolating and creating highly multipotent stem cells has raised new questions and concerns. Induced pluripotent stem cells hold great promise, but care is needed to ensure their safety in translational clinical trials, despite the temptation to move quickly from bench to bedside. A variety of highly multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from amniotic fluid, umbilical cord blood, adipose tissue, or urine - present the opportunity for widespread biobanking and increased access. With these increased opportunities, however, come pressing policy issues of consent, control, and justice. The imperatives to minimize risks of harm, obtain informed consent, reduce the likelihood of the therapeutic misconception, and facilitate sound translation from bench to bedside are not unique to stem cell research; their application to stem cell research and therapy nonetheless merits particular attention. Because stem cell research is both scientifically promising and ethically challenging, both the application of existing ethical frameworks and careful consideration of new ethical implications are necessary as this broad and diverse field moves forward.

  13. CMV-specific T cell therapy.

    Science.gov (United States)

    Einsele, Hermann; Kapp, Markus; Grigoleit, Götz Ulrich

    2008-01-01

    Human cytomegalovirus (CMV) infection continues to be one of the most important and life threatening complications after allogeneic stem cell transplantation (SCT). The reconstitution of CMV-specific T cell responses after SCT has been demonstrated to be protective against the development of CMV disease. To improve T cell immunity against CMV in bone marrow transplant patients, different strategies were explored. On one hand, CMV-specific T cells can be selected from the donor, and can be transferred to the patient without any further in vitro expansion. On the other hand, CMV-specific T cells can be activated and expanded in vitro by stimulation with antigen presenting cells (APCs) loaded with specific proteins or peptides. Here, we review the therapeutic application of CMV-specific T cells to fight CMV infection.

  14. Mesenchymal stem cell secretome and regenerative therapy after cancer.

    Science.gov (United States)

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T; Donnenberg, Vera S; Donnenberg, Albert D

    2013-12-01

    Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus

  15. Comparison of Alternative Mesenchymal Stem Cell Sources for Cell Banking and Musculoskeletal Advanced Therapies

    NARCIS (Netherlands)

    Cavallo, Carola; Cuomo, Carmela; Fantini, Sara; Ricci, Francesca; Tazzari, Pier Luigi; Lucarelli, Enrico; Donati, Davide; Facchini, Andrea; Lisignoli, Gina; Fornasari, Pier Maria; Grigolo, Brunella; Moroni, Lorenzo

    2011-01-01

    With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into

  16. Arrhythmogenic consequences of stem cell therapy for cardiac regeneration

    NARCIS (Netherlands)

    Smit, N.W.

    2018-01-01

    A third of the patients that survive a myocardial infarction develop heart failure for which no effective treatment exists. Stem cell therapy could be a possible solution by regeneration of the myocardium. However, the possible electrophysiological effects of interactions between stem cells and

  17. Marching towards regenerative cardiac therapy with human pluripotent stem cells.

    Science.gov (United States)

    Maher, Kevin O; Xu, Chunhui

    2013-06-01

    Damage in cardiac tissues from ischemia or other pathological conditions leads to heart failure; and cell loss or dysfunction in pacemaker tissues due to congenital heart defects, aging, and acquired diseases can cause severe arrhythmias. The promise of successful therapies with stem cells to treat these conditions has remained elusive to the scientific community. However, recent advances in this field have opened new opportunities for regenerative cardiac therapy. Transplantation of cardiomyocytes derived from human pluripotent stem cells has the potential to alleviate heart disease. Since the initial derivation of human embryonic stem cells, significant progress has been made in the generation and characterization of enriched cardiomyocytes and the demonstration of the ability of these cardiomyocytes to survive, integrate, and function in animal models. The scope of therapeutic potential from pluripotent stem cell-derived cardiomyocytes has been further expanded with the invention of induced pluripotent stem cells, which can be induced to generate functional cardiomyocytes for regenerative cardiac therapy in a patient specific manner. The reprogramming technology has also inspired the recent discovery of direct conversion of fibroblasts into cardiomyocyte-like cells, which may allow endogenous cardiac repair. Regenerative cardiac therapy with human pluripotent stem cells is now moving closer to clinic testing.

  18. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  19. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy.

    Science.gov (United States)

    Gautron, Anne-Sophie; Juillerat, Alexandre; Guyot, Valérie; Filhol, Jean-Marie; Dessez, Emilie; Duclert, Aymeric; Duchateau, Philippe; Poirot, Laurent

    2017-12-15

    Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of "off-the-shelf" CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC). Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells' functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    Science.gov (United States)

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  1. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  2. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...

  3. CAR-T Cell Therapies From the Transfusion Medicine Perspective.

    Science.gov (United States)

    Fesnak, Andrew; Lin, ChieYu; Siegel, Don L; Maus, Marcela V

    2016-07-01

    The use of chimeric antigen receptor (CAR)-T cell therapy for the treatment of hematologic malignancies has generated significant excitement over the last several years. From a transfusion medicine perspective, the implementation of CAR-T therapy as a potential mainstay treatment for not only hematologic but also solid-organ malignancies represents a significant opportunity for growth and expansion. In this review, we will describe the rationale for the development of genetically redirected T cells as a cancer therapeutic, the different elements that are required to engineer these cells, as well as an overview of the process by which patient cells are harvested and processed to create and subsequently validate CAR-T cells. Finally, we will briefly describe some of the toxicities and clinical efficacy of CAR-T cells in the setting of patients with advanced malignancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Gautron

    2017-12-01

    Full Text Available Using a TALEN-mediated gene-editing approach, we have previously described a process for the large-scale manufacturing of “off-the-shelf” CAR T cells from third-party donor T cells by disrupting the gene encoding TCRα constant chain (TRAC. Taking advantage of a previously described strategy to control TALEN targeting based on the exclusion capacities of non-conventional RVDs, we have developed highly efficient and specific nucleases targeting a key T cell immune checkpoint, PD-1, to improve engineered CAR T cells’ functionalities. Here, we demonstrate that this approach allows combined TRAC and PDCD1 TALEN processing at the desired locus while eliminating low-frequency off-site processing. Thus, by replacing few RVDs, we provide here an easy and rapid redesign of optimal TALEN combinations. We anticipate that this method can greatly benefit multiplex editing, which is of key importance especially for therapeutic applications where high editing efficiencies need to be associated with maximal specificity and safety.

  5. Two novel approaches targeting cancer cell membrane for tumor therapy.

    Science.gov (United States)

    Feng, Yingzhu; Wang, Bochu; Cao, Yang; He, Rui

    2013-04-01

    Disruption of normal cell function by chemicals, UV radiation or viruses can cause various cancer. Drugs that have been developed for cancer therapy bind to various targets to correct disorder cell behavior, repair damaged DNA or promote cell apoptosis. However, there is rare study that focuses on cancer cell membrane as target. We propose two approaches for achieving our goal. One is to use phospholipase A2 (PLA2) to cleave phospholipid heads of the bilayer of cancer cells. Because PLA2 has unique Ca(2+) catalytic site and the pH of healthy tissue cells should be slightly alkaline at 7.2-7.5, it can be easily protected by CO3(2-) in the form of PLA2-CaCO3. While PLA2-CaCO3 accumulate in cancer cells in the acidic microenvironment of which the pH is below 7, it could be converted to active state (PLA2-Ca(2+)) which can intensively damage the cancer cell membrane. The other one is to use both monoclonal antibodies and dimethylsulfoxide (DMSO). The internalization of targeted cancer cell antibodies could change the curvature of cell membrane from order state to disorder state, therefore strong detergent DMSO can destroy cancer cells at extreme low concentration. These two approaches present no harm for normal cells, therefore, drugs targeted cancer cell membrane might become a new and high effective clinical cancer therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Dental regenerative therapy: Stem cell transplantation and bioengineered tooth replacement

    OpenAIRE

    Kazuhisa Nakao; Takashi Tsuji

    2008-01-01

    For clinical treatment of tooth defects and tooth loss, nonbiotechnological approaches, such as the use of prostheses and implants, have generally been employed. Dental regenerative therapies which restore or replace defective teeth using autologous explants are being investigated using current understandings of developmental biology, stem cell biology, and regenerative medicine. Recently, dental tissue stem/progenitor cells, which can differentiate into dental cell lineages, have been identi...

  7. Anti-B cell antibody therapies for inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Jayne, David R W

    2014-01-01

    Several monoclonal antibodies targeting B cells have been tested as therapeutics for inflammatory rheumatic diseases. We review important observations from randomized clinical trials regarding the efficacy and safety of anti-B cell antibody-based therapies for rheumatoid arthritis, systemic lupus...... and functions in rheumatic disorders. Future studies should also evaluate how to maintain disease control by means of conventional and/or biologic immunosuppressants after remission-induction with anti-B cell antibodies....

  8. Duchenne muscular dystrophy: current cell therapies

    OpenAIRE

    Sienkiewicz, Dorota; Kulak, Wojciech; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Kawnik, Katarzyna

    2015-01-01

    Duchenne muscular dystrophy is a genetically determined X-linked disease and the most common, progressive pediatric muscle disorder. For decades, research has been conducted to find an effective therapy. This review presents current therapeutic methods for Duchenne muscular dystrophy, based on scientific articles in English published mainly in the period 2000 to 2014. We used the PubMed database to identify and review the most important studies. An analysis of contemporary studies of stem cel...

  9. Emerging Stem Cell Therapies: Treatment, Safety, and Biology

    Directory of Open Access Journals (Sweden)

    Joel Sng

    2012-01-01

    Full Text Available Stem cells are the fundamental building blocks of life and contribute to the genesis and development of all higher organisms. The discovery of adult stem cells has led to an ongoing revolution of therapeutic and regenerative medicine and the proposal of novel therapies for previously terminal conditions. Hematopoietic stem cell transplantation was the first example of a successful stem cell therapy and is widely utilized for treating various diseases including adult T-cell leukemia-lymphoma and multiple myeloma. The autologous transplantation of mesenchymal stem cells is increasingly employed to catalyze the repair of mesenchymal tissue and others, including the lung and heart, and utilized in treating various conditions such as stroke, multiple sclerosis, and diabetes. There is also increasing interest in the therapeutic potential of other adult stem cells such as neural, mammary, intestinal, inner ear, and testicular stem cells. The discovery of induced pluripotent stem cells has led to an improved understanding of the underlying epigenetic keys of pluripotency and carcinogenesis. More in-depth studies of these epigenetic differences and the physiological changes that they effect will lead to the design of safer and more targeted therapies.

  10. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mauricio P. Pinto

    2016-09-01

    Full Text Available Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1 upregulation of compensatory/alternative pathways for angiogenesis; (2 vasculogenic mimicry; and (3 vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.

  11. Progress toward cell-directed therapy for phenylketonuria

    Science.gov (United States)

    Harding, CO

    2009-01-01

    Phenylketonuria (PKU) is one of the most common inborn errors of metabolism with an annual incidence of approximately 1:16,000 live births in North America. Contemporary therapy relies upon lifelong dietary protein restriction and supplementation with phenylalanine-free medical foods. This therapy is expensive and unpalatable; dietary compliance is difficult to maintain throughout life. Non-adherence to the diet is associated with learning disabilities, adult-onset neurodegenerative disease, and maternal PKU syndrome. The fervent dream of many individuals with PKU is a more permanent cure for this disease. This paper will review ongoing efforts to develop viable cell-directed therapies, in particular cell transplantation and gene therapy, for the treatment of PKU. PMID:18498375

  12. Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO2Shells for T-Cell Therapy.

    Science.gov (United States)

    Youn, Wongu; Ko, Eun Hyea; Kim, Mi-Hee; Park, Matthew; Hong, Daewha; Seisenbaeva, Gulaim A; Kessler, Vadim G; Choi, Insung S

    2017-08-28

    Lymphocytes, such as T cells and natural killer (NK) cells, have therapeutic promise in adoptive cell transfer (ACT) therapy, where the cells are activated and expanded in vitro and then infused into a patient. However, the in vitro preservation of labile lymphocytes during transfer, manipulation, and storage has been one of the bottlenecks in the development and commercialization of therapeutic lymphocytes. Herein, we suggest a cell-in-shell (or artificial spore) strategy to enhance the cell viability in the practical settings, while maintaining biological activities for therapeutic efficacy. A durable titanium oxide (TiO 2 ) shell is formed on individual Jurkat T cells, and the CD3 and other antigens on cell surfaces remain accessible to the antibodies. Interleukin-2 (IL-2) secretion is also not hampered by the shell formation. This work suggests a chemical toolbox for effectively preserving lymphocytes in vitro and developing the lymphocyte-based cancer immunotherapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The role of stem cells in glioma progression and therapy

    Directory of Open Access Journals (Sweden)

    Mateja Obrez

    2013-02-01

    Full Text Available The concepts of tumour origin and stochastic nature of carcinogenesis are being challenged today by hierarchical models that predict the existence of cancer stem cells (CSCs, which are postulated as unique cell population capable of infinite self renewal, multilineage differentiation and having a higher resistance to conventional cancer therapy thus facilitating malignant growth and therapy resistance. Accordingly, successful treatment of adult brain tumour–glioma and its most malignant stage–glioblastoma multiforme (GBM, would require the elimination of CSCs to avoid tumour relapse. Yet, with available therapy (i.e. surgery in GBMs this cannot be achieved, due to infiltrative growth of a subpopluation of GBM cells with highly expressed migratory genes (migratome into the normal brain tissue.Besides CSCs – a proven prerequisite for tumour development and progression, tumour bulk mass also comprises haematopoietic stem cells, endothelial progenitor cells and mesenchymal stem cells (MSCs. The role of these other types of stem cell was shown to largely depend on the tumour microenvironment, where their contradictory anti-tumour action was evidenced. Yet, the exact mechanisms and MSC’s role in cell-mediated modulation of tumour behaviour via paracrine and direct interactions with GBM (stem cells still remain unknown. Nevertheless these stem cells, particularly MSCs, may represent novel therapeutic vectors for enhanced target-site delivery of chemotherapeutics, which are urgently needed to improve efficiency of current glioma treatment. So far, cell therapy using MSCs appears promising, due to MSC’s selective tumour tropism and their immuno-modulatory potential regarding treatment of GBM, which will be discussed in this review.

  14. Improve T Cell Therapy in Neuroblastoma

    Science.gov (United States)

    2014-07-01

    curative treatment is available currently. Hai and colleagues found that the Hedgehog signaling pathway in salivary glands was activated during... salivary gland hypofunction by preserving salivary stem/progenitor cells and the parasympathetic innervation in mice. Similar effects on expression of genes...cytotoxic T lymphocytes without enhancement of regulatory T-cell inhibition. Clin Cancer Res. Clin Cancer Res. 2014 Jan 1;20(1):131-9. Highlited article

  15. Clinical application of cell, gene and tissue therapies in Spain.

    Science.gov (United States)

    Gálvez-Martín, P; Ruiz, A; Clares, B

    2017-10-12

    Scientific and technical advances in the areas of biomedicine and regenerative medicine have enabled the development of new treatments known as "advanced therapies", which encompass cell therapy, genetics and tissue engineering. The biologic products that can be manufactured from these elements are classified from the standpoint of the Spanish Agency of Medication and Health Products in advanced drug therapies, blood products and transplants. This review seeks to provide scientific and administrative information for clinicians on the use of these biologic resources. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  16. Small cell carcinoma of the larynx: results of therapy

    International Nuclear Information System (INIS)

    Sole, J.; Juergens, A.; Musulen, E.; Lacasta, A.; Guedea, F.; Quer, M.; Leon, X.; Lopez Pousa, A.; Lerma, E.

    1994-01-01

    Small cell carcinoma is a rare malignant tumor of the larynx. Since this lesion was first described, only 58 cases have been reported in the literature. Between December 1985 and March 1992, five patients with small cell carcinoma of the larynx were treated at the Hospital de la Santa Creu i Sant Pau in Barcelona, Spain. One patient was treated with radiation therapy alone, three patients with chemotherapy and radiation therapy, and one patient with surgery, chemotherapy and radiation therapy. Local and distant control was achieved in only one patient who was observed for 12 months after radiation therapy. Four patients died, one of local disease without distant metastasis at 6 months following treatment, one of local and distant disease at 53 months after radiation therapy, and two of distant metastasis without local disease at 22 and 36 months following treatment. In spite of the fact that only one of the five patients presented in this series is alive and free of disease 12 months following treatment, recent published information suggests that chemotherapy and radiotherapy are currently the most effective form of therapy for small cell carcinoma of the larynx. 16 Refs

  17. Adoptive immunotherapy with interleukin-2 & induced killer cells in non-small cell lung cancer: A systematic review & meta-analysis

    Directory of Open Access Journals (Sweden)

    Denghai Mi

    2016-01-01

    Interpretation & conclusions: The meta-analysis showed that IL-2 or induced killer cells combination therapy was efficacious in treating NSCLC and improved overall survival. Further analysis of trials having adequate information and data need to be done to confirm these findings.

  18. Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy

    Science.gov (United States)

    Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.

    2011-01-01

    Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727

  19. PET molecular imaging in stem cell therapy for neurological diseases

    International Nuclear Information System (INIS)

    Wang, Jiachuan; Zhang, Hong; Tian, Mei

    2011-01-01

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  20. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  1. Squamous cell carcinoma following radiation therapy for the infiltrative thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Shinji; Kitao, Takeshi (Kitagata National Sanatorium, Fukui (Japan))

    1992-02-01

    This report represents one case of infiltrative thymoma followed by squamous cell carcinoma of the lungs. A 69-year-old man suffered from infiltrative thymoma which reduced by the radiation therapy. Seven years later its replase and the onset of squamous cell carcinoma were found simultaneously. Infiltrative thymoma metastasized not only to the mediastinum but also to the liver and bronchus. Squamous cell carcinoma developed in the right upper lobe. In spite of chemotherapy against them, the patient died. There are many cases in which infiltrative thymoma is accompanied by squamous cell carcinoma of the lung simultaneously; however, secondary onset of squamous cell carcinoma after the radiation therapy of infiltrative thymoma is rare. Secondary carcinogenesis of this case was considered to be closely related with immunological abnormalities caused by thymoma, effects of radiation, smoking and so on. (author).

  2. Squamous cell carcinoma following radiation therapy for the infiltrative thymoma

    International Nuclear Information System (INIS)

    Ozawa, Shinji; Kitao, Takeshi

    1992-01-01

    This report represents one case of infiltrative thymoma followed by squamous cell carcinoma of the lungs. A 69-year-old man suffered from infiltrative thymoma which reduced by the radiation therapy. Seven years later its replase and the onset of squamous cell carcinoma were found simultaneously. Infiltrative thymoma metastasized not only to the mediastinum but also to the liver and bronchus. Squamous cell carcinoma developed in the right upper lobe. In spite of chemotherapy against them, the patient died. There are many cases in which infiltrative thymoma is accompanied by squamous cell carcinoma of the lung simultaneously; however, secondary onset of squamous cell carcinoma after the radiation therapy of infiltrative thymoma is rare. Secondary carcinogenesis of this case was considered to be closely related with immunological abnormalities caused by thymoma, effects of radiation, smoking and so on. (author)

  3. Nanoelectroablation therapy for murine basal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nuccitelli, Richard, E-mail: rich@bioelectromed.com [BioElectroMed Corp., 849 Mitten Rd., Suite 104, Burlingame, CA 94010 (United States); Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela [BioElectroMed Corp., 849 Mitten Rd., Suite 104, Burlingame, CA 94010 (United States); Chang, Kris S.; Epstein, Ervin H. [The Children' s Hospital Oakland Research Institute, Oakland, CA 94609 (United States); Tang, Jean Y. [The Children' s Hospital Oakland Research Institute, Oakland, CA 94609 (United States); Stanford University, Stanford, CA 94305 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nanoelectroablation is a new, non-thermal therapy that triggers apoptosis in tumors. Black-Right-Pointing-Pointer Low energy, ultrashort, high voltage pulses ablate the tumor with little or no scar. Black-Right-Pointing-Pointer Nanoelectroablation eliminates 99.8% of the BCC but may leave a few remnants behind. Black-Right-Pointing-Pointer Pilot clinical trials on human BCCs are ongoing and leave no remnants in most cases. -- Abstract: When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1{sup +/-}K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology and in response to drug therapy . We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 {+-} 5 (SEM) mm{sup 3} shrunk by 76 {+-} 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

  4. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse.

    Science.gov (United States)

    Martelli, Massimo F; Di Ianni, Mauro; Ruggeri, Loredana; Falzetti, Franca; Carotti, Alessandra; Terenzi, Adelmo; Pierini, Antonio; Massei, Maria Speranza; Amico, Lucia; Urbani, Elena; Del Papa, Beatrice; Zei, Tiziana; Iacucci Ostini, Roberta; Cecchini, Debora; Tognellini, Rita; Reisner, Yair; Aversa, Franco; Falini, Brunangelo; Velardi, Andrea

    2014-07-24

    Posttransplant relapse is still the major cause of treatment failure in high-risk acute leukemia. Attempts to manipulate alloreactive T cells to spare normal cells while killing leukemic cells have been unsuccessful. In HLA-haploidentical transplantation, we reported that donor-derived T regulatory cells (Tregs), coinfused with conventional T cells (Tcons), protected recipients against graft-versus-host disease (GVHD). The present phase 2 study investigated whether Treg-Tcon adoptive immunotherapy prevents posttransplant leukemia relapse. Forty-three adults with high-risk acute leukemia (acute myeloid leukemia 33; acute lymphoblastic leukemia 10) were conditioned with a total body irradiation-based regimen. Grafts included CD34(+) cells (mean 9.7 × 10(6)/kg), Tregs (mean 2.5 × 10(6)/kg), and Tcons (mean 1.1 × 10(6)/kg). No posttransplant immunosuppression was given. Ninety-five percent of patients achieved full-donor type engraftment and 15% developed ≥grade 2 acute GVHD. The probability of disease-free survival was 0.56 at a median follow-up of 46 months. The very low cumulative incidence of relapse (0.05) was significantly better than in historical controls. These results demonstrate the immunosuppressive potential of Tregs can be used to suppress GVHD without loss of the benefits of graft-versus-leukemia (GVL) activity. Humanized murine models provided insights into the mechanisms underlying separation of GVL from GVHD, suggesting the GVL effect is due to largely unopposed Tcon alloantigen recognition in bone marrow. © 2014 by The American Society of Hematology.

  5. Adoptive transfer of dendritic cells modulates immunogenesis and tolerogenesis in a neonatal model of murine cutaneous leishmaniasis

    Science.gov (United States)

    Ponce, Loida V; Corado, José; Díaz, Nilka L; Tapia, Felix J

    2005-01-01

    We evaluated the adoptive transfer of DCs on Leishmania (L.) mexicana-infected neonatal BALB/c mice. DCs were isolated and purified from the spleens of the following donor groups: a) Adult BALB/c mice infected during adulthood with L. (L) mexicana; b) Adult BALB/c mice infected during neonatal life; c) Healthy neonatal BALB/c mice; d) Healthy adult BALB/c mice. A neonatal model of infection, generated after inoculation with 5 × 105 promastigotes of L. (L) mexicana, was used as the infection control group. Sixteen hours after intraperitoneal transfer of DCs (1 × 103, 1 × 105, or 1 × 106 cells/ml), neonatal recipient BALB/c mice were infected. The adoptive transfer of DCs diminished disease progression in neonatal mice. This reduction depends on the quantity and provenance of transferred DCs, since the effect was more evident with high numbers of DCs from adult mice infected during adulthood and healthy neonatal mice. Protection was significantly reduced in animals receiving DCs from healthy adult mice but it was absent in mice receiving DCs from adult mice infected during neonatal life. These results suggest that genetic susceptibility to Leishmania infection can be modified during neonatal life, and that the period of life when antigens are encountered is crucial in influencing the capacity of DCs to induce resistance or tolerance. PMID:15670331

  6. Superficial resection combined with photodynamic therapy for successful treatment of facial lupus vulgaris with squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Qian; Xu, Xiulian; Zeng, Rong; Bu, Wenbo; Fang, Fang

    2018-02-21

    Skin squamous cell carcinoma is the second most common non-melanoma skin tumor worldwide. Most skin squamous cell carcinoma patients have underlying diseases. Here, we reported that a 56 year-old patient diagnosed by skin squamous cell carcinoma with a 30 year course of neglected lupus vulgaris, which was very rare. In this case, we adopted a treatment strategy involving a small wound: superficial resection combined with photodynamic therapy with a satisfied result. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. B cells in multiple sclerosis therapy-A comprehensive review.

    Science.gov (United States)

    Rahmanzadeh, R; Weber, M S; Brück, W; Navardi, S; Sahraian, M A

    2018-03-07

    For decades, B cells were ignored in multiple sclerosis (MS) pathogenesis, and the disease was always regarded as a T cell-mediated disorder. Recent evidence shows that there is an antigen-driven B-cell response in the central nervous system of patients with MS, and memory B cells/plasma cells are detectable in MS lesions. The striking efficacy of B cell-depleting therapies in reducing the inflammatory activity of the disease highlights that B cells may play more pathogenetic roles than expected. B cells express several unique characteristic markers on their surface, for example, CD19, CD20 molecules, that provide selective targets for monoclonal antibodies. In this respect, several B cell-targeted therapies emerged, including anti-CD20 antibodies (rituximab, ocrelizumab, and ofatumumab), anti-CD19 antibody (inebilizumab), and agents targeting the BAFF/APRIL signaling pathway (atacicept, belimumab, and LY2127399). In this review, we discuss, in detail, the immunobiology of B cells and their protective and destructive roles in MS pathogenesis. In the second part, we list the completed and ongoing clinical trials investigating the safety and efficacy of B cell-related monoclonal antibodies in MS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. [Preclinical experience in stem cell therapy for digestive tract diseases].

    Science.gov (United States)

    Jeon, Myung Shin; Hong, Soon Sun

    2011-09-25

    Adult stem cells are multipotent and self-renewing cells that contain several functions; i) migration and homing potential: stem cells can migrate to injured and inflamed tissues. ii) differentiation potential: stem cells which migrated to injured tissues can be differentiated into multiple cell types for repairing and regenerating the tissues. iii) immunomodulatory properties: stem cells, especially mesenchymal stem cells can suppress immune system such as inflammation. All those characteristics might be useful for the treatment of the digestive tract diseases which are complex and encompass a broad spectrum of different pathogenesis. Preclinical stem cell therapy showed some promising results, especially in liver failure, pancreatitis, sepsis, and inflammatory bowel disease. If we can understand more about the mechanism of stem cell action, stem cell therapy can become a promising alternative treatment for refractory digestive disease in the near future. In this review, we summarized current preclinical experiences in diseases of the digestive tract using stem cells. (Korean J Gastroenterol 2011;58:133-138).

  9. Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Arjen F. Nikkels

    2010-06-01

    Full Text Available Langerhans cell histiocytosis is a rare group of proliferative disorders. Beside cutaneous involvement, other internal organs can be affected. The treatment of cutaneous lesions is difficult and relies on topical corticosteroids, carmustine, nitrogen mustard, and photochemotherapy. Systemic steroids and vinblastine are used for recalcitrant skin lesions. However, some cases fail to respond. An 18-month old boy presented a CD1a+, S100a+ Langerhans cell histocytosis with cutaneous and severe scalp involvement. Topical corticosteroids and nitrogen mustard failed to improve the skin lesions. Systemic corticosteroids and vinblastine improved the truncal involvement but had no effect on the scalp lesions. Methyl-aminolevulinate (MAL based photodynamic therapy (PDT resulted in a significant regression of the scalp lesions. Control histology revealed an almost complete clearance of the tumor infiltrate. Clinical follow-up after six months showed no recurrence. Although spontaneous regression of cutaneous Langerhans cell histiocytosis is observed, the rapid effect of photodynamic therapy after several failures of other treatment suggests that photodynamic therapy was successful. As far as we know this is the first report of photodynamic therapy for refractory skin lesions. Larger series are needed to determine whether photodynamic therapy deserves a place in the treatment of multiresistant cutaneous Langerhans cell histiocytosis.

  10. Mesenchymal Stromal Cell Therapy for Pancreatitis: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Sara M. Ahmed

    2018-01-01

    Full Text Available Background. Based on animal studies, adult mesenchymal stromal cells (MSCs are promising for the treatment of pancreatitis. However, the best type of this form of cell therapy and its mechanism of action remain unclear. Methods. We searched the PubMed, Web of Science, Scopus, Google Scholar, and Clinical Trials.gov websites for studies using MSCs as a therapy for both acute and chronic pancreatitis published until September 2017. Results. We identified 276 publications; of these publications, 18 met our inclusion criteria. In animal studies, stem cell therapy was applied more frequently for acute pancreatitis than for chronic pancreatitis. No clinical trials were identified. MSC therapy ameliorated pancreatic inflammation in acute pancreatitis and pancreatic fibrosis in chronic pancreatitis. Bone marrow and umbilical cord MSCs were the most frequently administered cell types. Due to the substantial heterogeneity among the studies regarding the type, source, and dose of MSCs used, conducting a meta-analysis was not feasible to determine the best type of MSCs. Conclusion. The available data were insufficient for determining the best type of MSCs for the treatment of acute or chronic pancreatitis; therefore, clinical trials investigating the use of MSCs as therapy for pancreatitis are not warranted.

  11. Phase I clinical trial of fibronectin CH296-stimulated T cell therapy in patients with advanced cancer.

    Directory of Open Access Journals (Sweden)

    Takeshi Ishikawa

    Full Text Available BACKGROUND: Previous studies have demonstrated that less-differentiated T cells are ideal for adoptive T cell transfer therapy (ACT and that fibronectin CH296 (FN-CH296 together with anti-CD3 resulted in cultured cells that contain higher amounts of less-differentiated T cells. In this phase I clinical trial, we build on these prior results by assessing the safety and efficacy of FN-CH296 stimulated T cell therapy in patients with advanced cancer. METHODS: Patients underwent fibronectin CH296-stimulated T cell therapy up to six times every two weeks and the safety and antitumor activity of the ACT were assessed. In order to determine immune function, whole blood cytokine levels and the number of peripheral regulatory T cells were analyzed prior to ACT and during the follow up. RESULTS: Transferred cells contained numerous less-differentiated T cells greatly represented by CD27+CD45RA+ or CD28+CD45RA+ cell, which accounted for approximately 65% and 70% of the total, respectively. No ACT related severe or unexpected toxicities were observed. The response rate among patients was 22.2% and the disease control rate was 66.7%. CONCLUSIONS: The results obtained in this phase I trial, indicate that FN-CH296 stimulated T cell therapy was very well tolerated with a level of efficacy that is quite promising. We also surmise that expanding T cell using CH296 is a method that can be applied to other T- cell-based therapies. TRIAL REGISTRATION: UMIN UMIN000001835.

  12. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  13. The ADOPT trial (Assessment of Efficacies of Cardiac Resynchronization Therapies (CRT-P/D for Heart Failure Patients in China: rationale, design, and end-points

    Directory of Open Access Journals (Sweden)

    Liu B

    2011-06-01

    Full Text Available Bing Liu1*, Fu Yi1*, Hongwei Cai2, Wenyi Guo1, Weijie Li1, Min Shen1, Jielai Xia3, Liwen Liu4, Haichang Wang1, on behalf of The ADOPT Study Steering Committee and Investigators1Department of Cardiology, Xijing Hospital, FMMU, Xi’an, China; 2Department of Information, School of Stomatology, FMMU, Xi’an, China; 3Department of Statistics, FMMU, Xi’an, China; 4Department of Ultrasound, Xijing Hospital, FMMU, Xi’an, ChinaClinicalTrials.gov number, NCT01018667*Both authors contributed equally to this workBackground: Cardiac resynchronization therapy (CRT is a novel nonpharmacological treatment for patients with chronic heart failure (CHF. Some clinical trials conducted in Western countries have demonstrated that CRT could improve CHF patients’ symptoms and reduce mortality. However, due to the differences in economic and social conditions as well as inconsistencies in CHF etiologies between China and Western countries, there is an urgent need to conduct a large-scale CRT clinical study in Chinese patients with CHF. The ADOPT Trial (Assessment of Efficacies of Cardiac Resynchronization Therapies (CRT-P/D for Heart Failure Patients in China is designed to observe whether CRT can further improve syptoms and reduce mortality in Chinese patients in addition to optimal pharmalogical therapy.Methods: The ADOPT study is a prospective, nested, case-controlled, open-label clinical trial. About 40 centers across China participate in this study with a planned 800 Chinese cases to be enrolled. All patients will receive optimal medical treatment. Patients who have successful CRT-P/D implant will be assigned to the CRT group. According to the baseline evaluation, matched cases will be selected from the enrolled optimal pharmaceutical therapy alone group (Group for Selection. After successful match, the cases in Group for Selection enter into follow-up and become the control group. The unmatched cases in the Group for Selection will be removed. If patients

  14. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  15. Nation-Scale Adoption of Shorter Breast Radiation Therapy Schedules Can Increase Survival in Resource Constrained Economies: Results From a Markov Chain Analysis

    International Nuclear Information System (INIS)

    Khan, Atif J.; Rafique, Raza; Zafar, Waleed; Shah, Chirag; Haffty, Bruce G.; Vicini, Frank; Jamshed, Arif; Zhao, Yao

    2017-01-01

    Purpose: Hypofractionated whole breast irradiation and accelerated partial breast irradiation (APBI) offer women options for shorter courses of breast radiation therapy. The impact of these shorter schedules on the breast cancer populations of emerging economies with limited radiation therapy resources is unknown. We hypothesized that adoption of these schedules would improve throughput in the system and, by allowing more women access to life-saving treatments, improve patient survival within the system. Methods and Materials: We designed a Markov chain model to simulate the different health states that a postlumpectomy or postmastectomy patient could enter over the course of a 20-year follow-up period. Transition rates between health states were adapted from published data on recurrence rates. We used primary data from a tertiary care hospital in Lahore, Pakistan, to populate the model with proportional use of mastectomy versus breast conservation and to estimate the proportion of patients suitable for APBI. Sensitivity analyses on the use of APBI and relative efficacy of APBI were conducted to study the impact on the population. Results: The shorter schedule resulted in more women alive and more women remaining without evidence of disease (NED) compared with the conventional schedule, with an absolute difference of about 4% and 7% at 15 years, respectively. Among women who had lumpectomies, the chance of remaining alive and with an intact breast was 62% in the hypofractionation model and 54% in the conventional fractionation model. Conclusions: Increasing throughput in the system can result in improved survival, improved chances of remaining without evidence of disease, and improved chances of remaining alive with a breast. These findings are significant and suggest that adoption of hypofractionation in emerging economies is not simply a question of efficiency and cost but one of access to care and patient survivorship.

  16. Nation-Scale Adoption of Shorter Breast Radiation Therapy Schedules Can Increase Survival in Resource Constrained Economies: Results From a Markov Chain Analysis.

    Science.gov (United States)

    Khan, Atif J; Rafique, Raza; Zafar, Waleed; Shah, Chirag; Haffty, Bruce G; Vicini, Frank; Jamshed, Arif; Zhao, Yao

    2017-02-01

    Hypofractionated whole breast irradiation and accelerated partial breast irradiation (APBI) offer women options for shorter courses of breast radiation therapy. The impact of these shorter schedules on the breast cancer populations of emerging economies with limited radiation therapy resources is unknown. We hypothesized that adoption of these schedules would improve throughput in the system and, by allowing more women access to life-saving treatments, improve patient survival within the system. We designed a Markov chain model to simulate the different health states that a postlumpectomy or postmastectomy patient could enter over the course of a 20-year follow-up period. Transition rates between health states were adapted from published data on recurrence rates. We used primary data from a tertiary care hospital in Lahore, Pakistan, to populate the model with proportional use of mastectomy versus breast conservation and to estimate the proportion of patients suitable for APBI. Sensitivity analyses on the use of APBI and relative efficacy of APBI were conducted to study the impact on the population. The shorter schedule resulted in more women alive and more women remaining without evidence of disease (NED) compared with the conventional schedule, with an absolute difference of about 4% and 7% at 15 years, respectively. Among women who had lumpectomies, the chance of remaining alive and with an intact breast was 62% in the hypofractionation model and 54% in the conventional fractionation model. Increasing throughput in the system can result in improved survival, improved chances of remaining without evidence of disease, and improved chances of remaining alive with a breast. These findings are significant and suggest that adoption of hypofractionation in emerging economies is not simply a question of efficiency and cost but one of access to care and patient survivorship. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nation-Scale Adoption of Shorter Breast Radiation Therapy Schedules Can Increase Survival in Resource Constrained Economies: Results From a Markov Chain Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Atif J., E-mail: atif.j.khan@rutgers.edu [Department of Radiation Oncology, Robert Wood Johnson Medical School/Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Rafique, Raza [Suleman Dawood School of Business, Lahore University of Management Sciences, Lahore (Pakistan); Zafar, Waleed [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore (Pakistan); Shah, Chirag [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio (United States); Haffty, Bruce G. [Department of Radiation Oncology, Robert Wood Johnson Medical School/Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Vicini, Frank [Michigan HealthCare Professionals, Farmington Hills, Michigan (United States); Jamshed, Arif [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore (Pakistan); Zhao, Yao [Rutgers University School of Business, Newark, New Jersey (United States)

    2017-02-01

    Purpose: Hypofractionated whole breast irradiation and accelerated partial breast irradiation (APBI) offer women options for shorter courses of breast radiation therapy. The impact of these shorter schedules on the breast cancer populations of emerging economies with limited radiation therapy resources is unknown. We hypothesized that adoption of these schedules would improve throughput in the system and, by allowing more women access to life-saving treatments, improve patient survival within the system. Methods and Materials: We designed a Markov chain model to simulate the different health states that a postlumpectomy or postmastectomy patient could enter over the course of a 20-year follow-up period. Transition rates between health states were adapted from published data on recurrence rates. We used primary data from a tertiary care hospital in Lahore, Pakistan, to populate the model with proportional use of mastectomy versus breast conservation and to estimate the proportion of patients suitable for APBI. Sensitivity analyses on the use of APBI and relative efficacy of APBI were conducted to study the impact on the population. Results: The shorter schedule resulted in more women alive and more women remaining without evidence of disease (NED) compared with the conventional schedule, with an absolute difference of about 4% and 7% at 15 years, respectively. Among women who had lumpectomies, the chance of remaining alive and with an intact breast was 62% in the hypofractionation model and 54% in the conventional fractionation model. Conclusions: Increasing throughput in the system can result in improved survival, improved chances of remaining without evidence of disease, and improved chances of remaining alive with a breast. These findings are significant and suggest that adoption of hypofractionation in emerging economies is not simply a question of efficiency and cost but one of access to care and patient survivorship.

  18. Scientific considerations for the regulatory evaluation of cell therapy products.

    Science.gov (United States)

    Petricciani, John; Hayakawa, Takao; Stacey, Glyn; Trouvin, Jean-Hugues; Knezevic, Ivana

    2017-11-01

    Cell therapy involves the administration of a viable somatic cell preparation to a patient for the treatment of a disease or traumatic damage. Because cell therapies are complex and very different from traditional biological products, they present significant challenges for regulatory authorities, manufacturers, developers, health care providers, and patients involved in their application. Like other emerging areas of biomedical research and development, there are many issues where regulatory views and decisions among countries and regions may differ due to minimal scientific evidence to support safety and efficacy, and lack of experience with these novel treatments. A brief overview of the current regulatory landscape for cell-based therapies is presented, and the need for a global effort to develop a set of common principles that may serve to facilitate the regulatory evaluation and market availability of these products is identified. In addition, a number of elements that could form a core consensus package of requirements for evaluating human cell therapy products is presented in the supplemental material which should be read in conjunction with the manuscript. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy

    Directory of Open Access Journals (Sweden)

    Mark J Dobrzanski

    2013-03-01

    Full Text Available The importance of CD4 T cells in orchestrating the immune system and their role in inducing effective T cell-mediated therapies for the treatment of patients with select established malignancies are undisputable. Through a complex and balanced array of direct and indirect mechanisms of cellular activation and regulation, this functionally diverse family of lymphocytes can potentially promote tumor eradication, long-term tumor immunity and aid in establishing and/or rebalancing immune cell homeostasis through interaction with other immune cell populations within the highly dynamic tumor environment. However, recent studies have uncovered additional functions and roles for CD4 T cells, some of which are independent of other lymphocytes, that can not only influence and contribute to tumor immunity but paradoxically promote tumor growth and progression. Here, we review the recent advances in our understanding of the various CD4 T cell lineages and their signature cytokines in disease progression and/or regression. We discuss their direct and indirect mechanistic interplay among themselves and with other responding cells of the antitumor response, their potential roles and abilities for "plasticity" and memory cell generation within the hostile tumor environment and their potentials in cancer treatment and adoptive immunotherapies.

  20. Understanding the application of stem cell therapy in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Sharma RK

    2012-10-01

    Full Text Available Rakesh K Sharma, Donald J Voelker, Roma Sharma, Hanumanth K ReddyUniversity of Arkansas for Medical Sciences, Medical Center of South Arkansas, El Dorado, AR, USAAbstract: Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.Keywords: stem cell therapy, stem cell delivery, cardiovascular diseases, myocardial infarction, cardiomyopathy

  1. Perspectives of stem cell therapy in Duchenne muscular dystrophy.

    Science.gov (United States)

    Meregalli, Mirella; Farini, Andrea; Belicchi, Marzia; Parolini, Daniele; Cassinelli, Letizia; Razini, Paola; Sitzia, Clementina; Torrente, Yvan

    2013-09-01

    Muscular dystrophies are heritable and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle, usually caused by mutations in the proteins forming the link between the cytoskeleton and the basal lamina. As a result of mutations in the dystrophin gene, Duchenne muscular dystrophy patients suffer from progressive muscle atrophy and an exhaustion of muscular regenerative capacity. No efficient therapies are available. The evidence that adult stem cells were capable of participating in the regeneration of more than their resident organ led to the development of potential stem cell treatments for degenerative disorder. In the present review, we describe the different types of myogenic stem cells and their possible use for the progression of cell therapy in Duchenne muscular dystrophy. © 2012 The Authors Journal compilation © 2012 FEBS.

  2. Optimal Radiation Therapy for Small Cell Lung Cancer.

    Science.gov (United States)

    Gensheimer, Michael F; Loo, Billy W

    2017-04-01

    Radiation therapy plays an important role in the management of both limited stage and extensive stage small cell lung cancer. For limited stage disease, there has been a trend toward reduced size of thoracic radiation fields, which has the potential to reduce toxicity. FDG-PET staging helps make this possible by more accurately identifying areas of nodal and metastatic involvement. Trials have demonstrated similar outcomes using a range of radiation fractionation schedules, allowing flexibility in individualizing treatment. Using advanced radiation therapy techniques such as intensity-modulated radiation therapy, it may be possible to deliver fewer, higher dose fractions and achieve similar results to the hyperfractionated regimen. For extensive stage disease, consolidative thoracic radiation therapy after chemotherapy was recently shown to improve overall survival in certain patient subsets. Prophylactic cranial irradiation continues to play an important role in management of all stages of small cell lung cancer. Debate continues about the neurocognitive effects of this treatment, and whether MRI surveillance is an acceptable alternative. Strategies such as hippocampal avoidance may reduce the cognitive effects of prophylactic cranial irradiation in the future. Finally, in the last few years stereotactic ablative radiation therapy followed by chemotherapy has emerged as a promising treatment for stage I small cell lung cancer. This radiation treatment is usually given over 1-5 fractions and appears to provide a good rate of local control with a low rate of serious toxicity.

  3. Stem cell and genetic therapies for the fetus.

    Science.gov (United States)

    Pearson, Erik G; Flake, Alan W

    2013-02-01

    The prenatal diagnosis and management of congenital disease has made significant progress over the previous decade. Currently, fetal therapy (including open surgery and fetoscopic intervention) provides therapeutic options for a range of congenital anomalies; however, it is restricted to the treatment of fetal pathophysiology. Improvements in prenatal screening and the early diagnosis of genetic disease allow for preemptive treatment of anticipated postnatal disease by stem cell or genetic therapy. While currently awaiting clinical application, in utero stem cell therapy has made significant advances in overcoming the engraftment and immunologic barriers in both murine and pre-clinical large animal models. Likewise, proof in principle for fetal gene therapy has been demonstrated in rodent and large animal systems as a method to prevent the onset of inherited genetic disease; however, safety and ethical risks still need to be addressed prior to human application. In this review, we examine the current status and future direction of stem cell and genetic therapy for the fetus. Copyright © 2013. Published by Elsevier Inc.

  4. New development in CAR-T cell therapy

    Directory of Open Access Journals (Sweden)

    Zhenguang Wang

    2017-02-01

    Full Text Available Abstract Chimeric antigen receptor (CAR-engineered T cells (CAR-T cells have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

  5. New development in CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Wu, Zhiqiang; Liu, Yang; Han, Weidong

    2017-02-21

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

  6. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.

  7. New Advanced Technologies in Stem Cell Therapy

    Science.gov (United States)

    2014-11-01

    placenta capillaries leads to defects in sinusoidal integrity, a phenotype often observed during pregnancy complications due to diabetes, postmaturity, or...fromhuman adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo,” PLoS ONE, vol. 4, no. 7, Article ID e6278, 2009. [160] S. Tottey...canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. J Clin Invest 121:4685

  8. Alzheimer's Disease and Stem Cell Therapy

    OpenAIRE

    Choi, Sung S.; Lee, Sang-Rae; Kim, Seung U.; Lee, Hong J.

    2014-01-01

    The loss of neuronal cells in the central nervous system may occur in many neurodegenerative diseases. Alzheimer's disease is a common senile disease in people over 65 years, and it causes impairment characterized by the decline of mental function, including memory loss and cognitive impairment, and affects the quality of life of patients. However, the current therapeutic strategies against AD are only to relieve symptoms, but not to cure it. Because there are only a few therapeutic strategie...

  9. All-in-one processing of heterogeneous human cell grafts for gene and cell therapy

    Directory of Open Access Journals (Sweden)

    Ekaterina Y Lukianova-Hleb

    2016-01-01

    Full Text Available Current cell processing technologies for gene and cell therapies are often slow, expensive, labor intensive and are compromised by high cell losses and poor selectivity thus limiting the efficacy and availability of clinical cell therapies. We employ cell-specific on-demand mechanical intracellular impact from laser pulse-activated plasmonic nanobubbles (PNB to process heterogeneous human cell grafts ex vivo with dual simultaneous functionality, the high cell type specificity, efficacy and processing rate for transfection of target CD3+ cells and elimination of subsets of unwanted CD25+ cells. The developed bulk flow PNB system selectively processed human cells at a rate of up to 100 million cell/minute, providing simultaneous transfection of CD3+ cells with the therapeutic gene (FKBP12(V36-p30Caspase9 with the efficacy of 77% and viability 95% (versus 12 and 60%, respectively, for standard electroporation and elimination of CD25+ cells with 99% efficacy. PNB flow technology can unite and replace several methodologies in an all-in-one universal ex vivo simultaneous procedure to precisely and rapidly prepare a cell graft for therapy. PNB's can process various cell systems including cord blood, stem cells, and bone marrow.

  10. Myocardium repair with stem cell therapy

    International Nuclear Information System (INIS)

    Peix, Amalia; Hidalgo, Jose; Dorticos, Elvira; Llerena, Lorenzo; Paredes, Angel; Torres, Maritza; Macias, Consuelo; Del Valle, Lazaro; Cabrera, Lazaro O; Carrillo, Regla; Mena, Eric; Fernandez, Yoel

    2006-01-01

    With the aim of assessing the efficacy of bone marrow-derived stem cells transplantation in patients with myocardial infarction and severe chronic heart failure through nuclear cardiology techniques, 15 revascularized patients were studied: nine (Group I) received autologous bone marrow-derived stem cells. The other six were controls (Group II). All underwent a clinical evaluation, radionuclide ventriculography, and gated-SPECT myocardial perfusion scintigraphy (MIBI-technetium99m, two-day protocol: dipyridamole - rest), before and three months after the procedure. At three months there was a clinical improvement in 89% of patients from Group I. The left ventricular ejection fraction increased: from 32±9% to 44±13% (p=0.03; Group I) and from 38±2% to 48±14% (p NS; Group II). The peak filling rate improved from 120±11 to 196±45 EDV/sec (p=0.03; Group I). The dipyridamole summed score diminished significantly only in Group I (from 35±5 to 23±14; p=0.02). The perfusion improvement was related to the implantation site in 60% of cases. We conclude that the bone marrow-derived stem cells transplantation is effective in patients with severe chronic heart failure of ischemic origin (au)

  11. Regulatory issues in cell-based therapy for clinical purposes.

    Science.gov (United States)

    Casaroli-Marano, Ricardo P; Tabera, Jaime; Vilarrodona, Anna; Trias, Esteve

    2014-01-01

    Rapid development in the fields of cellular and molecular biology, biotechnology, and bioengineering medicine has brought new, highly innovative treatments and medicinal products, some of which contain viable cells and tissues associated with scaffolds and devices. These new cell-based therapy approaches in regenerative medicine have great potential for use in the treatment of a number of diseases that at present cannot be managed effectively. Given the unique challenges associated with the development of human cell-based medicinal products, great care is required in the development of procedures, practices, and regulation. In cell therapy, appropriate methodologies in the areas of production, reproducibility, maintenance, and delivery are essential for accurate definition and reliable assurance of the suitability and quality of the final products. Recently, the official European Community agencies (EMA) and the relevant authority in the USA (FDA) have made significant efforts to establish regulatory guidance for use in the application of the cell-based therapies for human patients. The guidelines surrounding cell-based therapy take into account the current legislation, but focus less on the heterogeneity and requirements of individual human cell-based products, including specific combination products and applications. When considering guidelines and regulation, a risk assessment approach is an effective method of identifying priority areas for the development of human cell-based medicinal products. Additionally, effective design and thorough validation of the manufacturing process in line with existing Good Manufacturing Practices (GMPs) and quality control regimes and a program that ensures the traceability and biovigilance of the final products are also all essential elements to consider. © 2014 S. Karger AG, Basel.

  12. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  13. Osteoarthritis and Mesenchymal Stem Cell Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Putri Purwanthi

    2017-08-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis that affects cartilage joints and leads to disability. OA becomes the major public health problem, as it is the most leading cause of disability and morbidity worldwide. Treatment choices for OA can be classified into several categories such as non-pharmacologic, pharmacologic, surgical therapy, and cell-based therapy. There is no curative treatment for OA, while conventional treatments that are commonly used focus on alleviating the pain as the main symptom of the disease. Mesenchymal stem cells (MSCs that can be found in several tissues of human body offer a new strategy for OA treatment owing to their ability to differentiate into chondrocytes. This article provides an overview about the basic concept of osteoarthritis as well as an insight about the MSCs therapy, including their basic characteristics, source, and transplantation strategies in the OA area.

  14. Photothermal therapy of cancer cells using magnetic carbon nanoparticles

    Science.gov (United States)

    Vardarajan, V.; Gu, L.; Kanneganti, A.; Mohanty, S. K.; Koymen, A. R.

    2011-03-01

    Photothermal therapy offers a solution for the destruction of cancer cells without significant collateral damage to otherwise healthy cells. Several attempts are underway in using carbon nanoparticles (CNPs) and nanotubes due to their excellent absorption properties in the near-infrared spectrum of biological window. However, minimizing the required number of injected nanoparticles, to ensure minimal cytotoxicity, is a major challenge. We report on the introduction of magnetic carbon nanoparticles (MCNPs) onto cancer cells, localizing them in a desired region by applying an external magnetic field and irradiating them with a near-infrared laser beam. The MCNPs were prepared in Benzene, using an electric plasma discharge, generated in the cavitation field of an ultrasonic horn. The CNPs were made ferromagnetic by use of Fe-electrodes to dope the CNPs, as confirmed by magnetometry. Transmission electron microscopy measurements showed the size distribution of these MCNPs to be in the range of 5-10 nm. For photothermal irradiation, a tunable continuous wave Ti: Sapphire laser beam was weakly focused on to the cell monolayer under an inverted fluorescence microscope. The response of different cell types to photothermal irradiation was investigated. Cell death in the presence of both MCNPs and laser beam was confirmed by morphological changes and propidium iodide fluorescence inclusion assay. The results of our study suggest that MCNP based photothermal therapy is a promising approach to remotely guide photothermal therapy.

  15. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Hiroshi, Fujishima; Kazuo, Tsubota

    1996-01-01

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  16. Psychological Ramifications of Adoption and Implications for Counseling.

    Science.gov (United States)

    Helwig, Andrew A.; Ruthven, Dorothy H.

    1990-01-01

    Examines adoption issues including family member loss, infertility, transracial adoptions, special-needs adoptions, older child adoption, inherited traits, adoptive family, biological parents, and open adoption. Suggests specific therapeutic interventions including redefinition, use of paradox, family therapy approaches, group therapy, and…

  17. Density-gradient centrifugation enables the purification of cultured corneal endothelial cells for cell therapy by eliminating senescent cells

    Science.gov (United States)

    Okumura, Naoki; Kusakabe, Ayaka; Hirano, Hiroatsu; Inoue, Ryota; Okazaki, Yugo; Nakano, Shinichiro; Kinoshita, Shigeru; Koizumi, Noriko

    2015-01-01

    The corneal endothelium is essential for maintaining corneal transparency; therefore, corneal endothelial dysfunction causes serious vision loss. Tissue engineering-based therapy is potentially a less invasive and more effective therapeutic modality. We recently started a first-in-man clinical trial of cell-based therapy for treating corneal endothelial dysfunction in Japan. However, the senescence of corneal endothelial cells (CECs) during the serial passage culture needed to obtain massive quantities of cells for clinical use is a serious technical obstacle preventing the push of this regenerative therapy to clinical settings. Here, we show evidence from an animal model confirming that senescent cells are less effective in cell therapy. In addition, we propose that density-gradient centrifugation can eliminate the senescent cells and purify high potency CECs for clinical use. This simple technique might be applicable for other types of cells in the settings of regenerative medicine. PMID:26443440

  18. Mesenchymal stem cell in venous leg ulcer: An intoxicating therapy.

    Science.gov (United States)

    Athanerey, Anjali; Patra, Pradeep Kumar; Kumar, Awanish

    2017-08-01

    Venous leg ulcers (VLU) are a prevalent and reoccurring type of complicated wound, turning as a considerable public healthcare issue, with critical social and economic concern. There are both medical and surgical therapies to treat venous leg ulcers; however, a cure does not yet exist. Mesenchymal stem cells (MSC) are capable and proved of accelerating wound healing in vivo and their study with human chronic wounds is currently awaited. MSCs are a promising source of adult progenitor cells for cellular therapy and have been demonstrated to differentiate into various mesenchymal cell lineages. They have a crucial and integral role in native wound healing by regulating immune response and inflammation. Improved understanding of the cellular and molecular mechanisms at work in delayed wound healing compels to the development of cellular therapy in VLU. This review focuses on the current treatment option of VLU and further emphasizing the role of MSCs in accelerating the healing process. With further understanding of the mechanism of action of these cells in wound improvement and, the involvement of cytokines can also be revealed that could be used for the therapeutic purpose for VLU healing. Clinical uses of MSCs have been started already, and induced MSCs are surely a promising tool or compelling therapy for VLU. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  19. Axitinib in sequential therapy in metastatic renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Agata Kuchar

    2015-05-01

    Full Text Available Efficacy of new molecularly targeted drugs in the treatment of renal cell carcinoma (RCC, confirmed in clinical studies in relation to survival and prolongation of time to progression, has became a big chance for patients with metastatic renal cell cancer. Axitinib is a potent and selective receptor tyrosine kinase for vascular endothelial growth factor (VEGFR-1, -2, -3, platelet-derived growth factor  (PDGRF- and c-KIT. This is a case report of a 57-year old female patient with a history of left nephrectomy due to clear cell renal cell carcinoma. The patient had received three prior systemic treatments (interferon – sorafenib – everolimus. After consecutive progression the patient was qualified to 4th line therapy – axitinib at a dose of 5 mg twice daily. Partial response to treatment was achieved. After 6 months therapy was stopped due to the disease progression. The total time to progression was 37.5 months. The total survival time from the disease diagnosis was 45 months. Based on literature date and own experience we showed that sequential treatment RCC is associated with improved survival. In summary, axitinib may be an effective drug after failure of tyrosine-kinase inhibitor (TKI therapy in previous lines of therapy.

  20. Global Regulatory Differences for Gene- and Cell-Based Therapies

    DEFF Research Database (Denmark)

    Coppens, Delphi G M; De Bruin, Marie L; Leufkens, Hubert G M

    2017-01-01

    Gene- and cell-based therapies (GCTs) offer potential new treatment options for unmet medical needs. However, the use of conventional regulatory requirements for medicinal products to approve GCTs may impede patient access and therapeutic innovation. Furthermore, requirements differ between juris...

  1. Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

    Science.gov (United States)

    Denton, Paul W.; Long, Julie M.; Wietgrefe, Stephen W.; Sykes, Craig; Spagnuolo, Rae Ann; Snyder, Olivia D.; Perkey, Katherine; Archin, Nancie M.; Choudhary, Shailesh K.; Yang, Kuo; Hudgens, Michael G.; Pastan, Ira; Haase, Ashley T.; Kashuba, Angela D.; Berger, Edward A.; Margolis, David M.; Garcia, J. Victor

    2014-01-01

    Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies. PMID:24415939

  2. CD4 + CELL RESPONSE TO ANTI-RETROVIRAL THERAPY (ARTs ...

    African Journals Online (AJOL)

    East African Medical Journal Vol. 90 No. 12 (Supplement) December 2013. CD4 + CELL RESPONSE TO ANTI-RETROVIRAL THERAPY (ARTs) IN ROUTINE CLINICAL CARE OVER ONE YEAR. PERIOD IN A COHORT OF HAART NAIVE, HIV POSITIVE KENYAN PATIENTS. C. F. Otieno, MBChB, MMed (Int. Med), ...

  3. Stem cell therapy for cardiovascular disease : answering basic questions regarding cell behavior

    NARCIS (Netherlands)

    Bogt, Koen Elzert Adriaan van der

    2010-01-01

    Stem cell therapy has raised enthusiasm as a potential treatment for cardiovascular diseases. However, questions remain about the in vivo behavior of the cells after transplantation and the mechanism of action with which the cells could potentially alleviate disease symptoms. The objective of the

  4. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy.

    Directory of Open Access Journals (Sweden)

    Shou-Hui Du

    Full Text Available Gamma delta (γδ T cells and cytokine-induced killer (CIK cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs using Zometa, interferon-gamma (IFN-γ, interleukin 2 (IL-2, anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR, anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer.

  5. Dental regenerative therapy: Stem cell transplantation and bioengineered tooth replacement

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakao

    2008-07-01

    Full Text Available For clinical treatment of tooth defects and tooth loss, nonbiotechnological approaches, such as the use of prostheses and implants, have generally been employed. Dental regenerative therapies which restore or replace defective teeth using autologous explants are being investigated using current understandings of developmental biology, stem cell biology, and regenerative medicine. Recently, dental tissue stem/progenitor cells, which can differentiate into dental cell lineages, have been identified in both impacted and erupted human teeth, and these cells can be used to regenerate some dental tissues. Tissue engineering using scaffold and cell aggregate methods may also be used to produce bioengineered teeth from dissociated cells for therapeutic applications of whole tooth replacement. Recent breakthroughs in single cell manipulation methods for the reconstitution of bioengineered tooth germ and the investigation of in vivo development of artificial tooth germ in the adult oral environment have been reported. These researches and developments will ultimately lead to the realization of dental regenerative therapies for partial repair by stem cell transplantation and for whole tooth replacement using bioengineered tooth germ.

  6. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy

    Science.gov (United States)

    2017-01-01

    Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047

  7. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy.

    Directory of Open Access Journals (Sweden)

    Daniel Rodríguez-Martínez

    Full Text Available Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE, a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80% and yield (>70%. Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies.

  8. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  9. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A

    2014-01-01

    cell transplantation will require optimizing the best cell type and site for engraftment, overcoming limitations to cell migration and tissue integration, and occasionally needing to control immunologic reactivity, as well as a number of other challenges. Collaboration among scientists, clinicians...

  10. Stem cells: Potential therapy for age-related diseases

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2006-01-01

    -engineered organs) to restore the functions of damaged or defective tissues and organs and thus to "rejuvenate" the failing aging body. One of the most important sources for cellular medicine is embryonic and adult (somatic) stem cells (SSCs). One example of SCCs with enormous clinical potential is the mesenchymal...... stem cells (MSCs) that are present in the bone marrow and are able to differentiate into cell types such as osteoblasts, chondrocytes, endothelial cells, and probably also neuron-like cells. Because of the ease of their isolation and their extensive differentiation potential, MSCs are among the first...... stem cell types to be introduced in the clinic. Some recent studies have demonstrated the possible use of MSCs in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols, or to generate transplantable tissues...

  11. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...... with initial versus delayed radiotherapy. No survival differences in the larger study of the two studies were detected, which compared alternating with sequential delivery of radiotherapy (n = 335). The optimal way to deliver radiotherapy still must be defined. Two small, randomized studies on dose intensity......-agent etoposide compared with intravenous multiagent treatment. Thus, oral etoposide has a very limited role as single-agent treatment in the palliative setting. Convincing data have emerged regarding the camptothecins. Randomized studies of both the camptothecins and the taxanes in combination with established...

  12. A guide to manufacturing CAR T cell therapies.

    Science.gov (United States)

    Vormittag, Philipp; Gunn, Rebecca; Ghorashian, Sara; Veraitch, Farlan S

    2018-02-17

    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Glucosamine-Based Supramolecular Nanotubes for Human Mesenchymal Cell Therapy.

    Science.gov (United States)

    Talloj, Satish Kumar; Cheng, Bill; Weng, Jen-Po; Lin, Hsin-Chieh

    2018-04-23

    Herein, we demonstrate an example of glucosamine-based supramolecular hydrogels that can be used for human mesenchymal cell therapy. We designed and synthesized a series of amino acid derivatives based on a strategy of capping d-glucosamine moiety at the C-terminus and fluorinated benzyl group at the N-terminus. From a systematic study on chemical structures, we discovered that the glucosamine-based supramolecular hydrogel [pentafluorobenzyl (PFB)-F-Glu] self-assembled with one-dimensional nanotubular structures at physiological pH. The self-assembly of a newly discovered PFB-F-Glu motif is attributed to the synergistic effect of π-π stacking and extensive intermolecular hydrogen bonding network in aqueous medium. Notably, PFB-F-Glu nanotubes are proven to be nontoxic to human mesenchymal stem cells (hMSCs) and have been shown to enhance hMSC proliferation while maintaining their pluripotency. Retaining of pluripotency capabilities provides potentially unlimited source of undifferentiated cells for the treatment of future cell therapies. Furthermore, hMSCs cultured on PFB-F-Glu are able to secrete paracrine factors that downregulate profibrotic gene expression in lipopolysaccharide-treated human skin fibroblasts, which demonstrates that PFB-F-Glu nanotubes have the potential to be used for wound healing applications. Overall, this article addresses the importance of chemical design to generate supramolecular biomaterials for stem cell therapy.

  14. Regeneration of irradiated salivary glands by stem cell therapy

    OpenAIRE

    Lombaert, Isabelle Madeleine Armand

    2008-01-01

    Yearly, worldwide more than 500.000 new head and neck cancer patients are treated with radiotherapy. Co-irradiation of salivary glands may lead to xerostomia (=dry mouth syndrome), resulting in permanent loss of saliva production. This loss of gland function after radiation is thought to be due to a loss of stem cells that are no longer able to replenish saliva-producing acinar cells. Therefore, stem cell therapy could be utilized to prevent radiation-induced damage to the salivary gland. Bon...

  15. Mesenchymal stromal cell therapy in ischemic heart disease

    DEFF Research Database (Denmark)

    Kastrup, Jens; Mygind, Naja Dam; Ali Qayyum, Abbas

    2016-01-01

    is very costly for the health care system. Therefore, new treatment options and strategies are being researched intensely. Stem cell therapy to improve myocardial perfusion and stimulate growth of new cardiomyocytes could be a new way to go. Nevertheless, the results from clinical studies have varied...... considerably, probably due to the use of many different cell lines obtained from different tissues and the different patient populations. The present review will focus on treatment with the mesenchymal stromal cell from bone marrow and adipose tissue in animal and patients with acute and chronic IHD (CIHD)....

  16. Potential for Stem Cell-Based Periodontal Therapy

    Science.gov (United States)

    Bassir, Seyed Hossein; Wisitrasameewong, Wichaya; Raanan, Justin; Ghaffarigarakani, Sasan; Chung, Jamie; Freire, Marcelo; Andrada, Luciano C.; Intini, Giuseppe

    2015-01-01

    Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue. However, achieving complete and functional periodontal regeneration is challenging because the periodontium is a complex apparatus composed of different tissues, including bone, cementum, and periodontal ligament. Stem cell-based regenerative therapy may represent an effective therapeutic tool for periodontal regeneration due to their plasticity and ability to differentiate into different cell lineages. This review presents and critically analyzes the available information on stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for the development of more effective therapeutic protocols. PMID:26058394

  17. Recent developments in small molecule therapies for renal cell carcinoma.

    Science.gov (United States)

    Song, Minsoo

    2017-12-15

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is known to be the 10th most common type of cancer in the world. Most of the currently available RCC drugs are tyrosine kinase inhibitors (TKIs). However, combination therapies of TKIs and immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors are the focus of most of the final stage clinical trials. Meanwhile, other small molecule therapies for RCC that target indoleamine-2,3-dioxygenase (IDO1), glutaminase, C-X-C chemokine receptor 4 (CXCR4), and transglutaminase 2 (TG2) are emerging as the next generation of therapeutics. In this review, these three major streams for the development of small molecule drugs for RCC are described. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Recent Progress Using Pluripotent Stem Cells for Cardiac Regenerative Therapy.

    Science.gov (United States)

    Ichimura, Hajime; Shiba, Yuji

    2017-06-23

    Pluripotent stem cells (PSCs) have gained interest for cell-based regenerative therapies because of their capacity to differentiate into most somatic cell types, including cardiomyocytes. Remarkable progress in the generation of PSC-derived cardiomyocytes has been made in this decade, and recent preclinical transplantation studies using various animal models have provided proof-of-principle for their use in heart regeneration. However, several obstacles preclude their effective and safe clinical application for cardiac repair, including the need for approaches that prevent tumorigenesis, arrhythmogenesis, and immune rejection. In this review, we focus on recent progress in the field of PSC-based cardiac regenerative therapy, including the remaining hurdles and potential approaches to circumventing them.

  19. The cell based therapy and the policy implications in India.

    Science.gov (United States)

    Mukhopadhyay, Bratati; Basak, Saroj K; Ganguly, Nirmal K

    2011-01-01

    The recent scientific development using stem or other differentiated cells has generated great hopes for treatment of various diseases. Major thrust has been given to formulate country specific laws and regulations considering international guidelines to conduct research and clinical applications of "Cell Based Therapy" (CBT) all over the world. Attempts have made in this review to discuss the current policies that are practiced by various countries in the areas related to CBT with special emphasis on CBT related research and development in India. The two major funding agencies of Government of India e.g. Department of Biotechnology (DBT) and Indian Council of Medical Research (ICMR), have jointly formulated the "Guidelines for Stem Cell Research and Therapy" in 2007 which requires update and revision. Based on the review of the current world scenario of CBT research and development, suggestions have been made for the development of a new CBT policy that will help in progress of research and patient treatment in India.

  20. Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner

    Science.gov (United States)

    McDonald-Hyman, Cameron; Flynn, Ryan; Panoskaltsis-Mortari, Angela; Peterson, Nicholas; MacDonald, Kelli P. A.; Hill, Geoffrey R.; Luznik, Leo; Serody, Jonathan S.; Murphy, William J.; Maillard, Ivan; Munn, David H.; Turka, Laurence A.; Koreth, John; Cutler, Corey S.; Soiffer, Robert J.; Antin, Joseph H.; Ritz, Jerome

    2016-01-01

    Chronic graft-versus-host disease (cGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation. In cGVHD, alloreactive T cells and germinal center (GC) B cells often participate in GC reactions to produce pathogenic antibodies. Although regulatory T cells (Tregs) can inhibit GC reactions, Treg numbers are reduced in cGVHD, contributing to cGVHD pathogenesis. Here, we explored 2 means to increase Tregs in cGVHD: interleukin-2/monoclonal antibody (IL-2/mAb) complexes and donor Treg infusions. IL-2/mAb complexes given over 1 month were efficacious in expanding Tregs and treating established cGVHD in a multi-organ-system disease mouse model characterized by GC reactions, antibody deposition, and lung dysfunction. In an acute GVHD (aGVHD) model, IL-2/mAb complexes given for only 4 days resulted in rapid mortality, indicating IL-2/mAb complexes can drive conventional T-cell (Tcon)-mediated injury. In contrast, Treg infusions, which uniformly suppress aGVHD, increased Treg frequency and were effective in preventing the onset of, and treating, established cGVHD. Efficacy was dependent upon CXCR5-sufficient Tregs homing to, and inhibiting, GC reactions. These studies indicate that the infusion of Tregs, especially ones enriched for GC homing, may be desirable for cGVHD therapy. Although IL-2/mAb complexes can be efficacious in cGVHD, a cautious approach needs to be taken in settings in which aGVHD elements, and associated Tcon, are present. PMID:27385791

  1. Personalizing Therapy in Advanced Non–Small Cell Lung Cancer

    Science.gov (United States)

    Villaruz, Liza C.; Burns, Timothy F.; Ramfidis, Vasilis S.; Socinski, Mark A.

    2016-01-01

    The recognition that non–small cell lung cancer (NSCLC) is not a single disease entity, but rather a collection of distinct molecularly driven neoplasms, has permanently shifted the therapeutic landscape of NSCLC to a personalized approach. This personalization of NSCLC therapy is typified by the dramatic response rates seen in EGFR mutant NSCLC when treated with targeted tyrosine kinase inhibitor therapy and in ALK translocation–driven NSCLC when treated with ALK inhibitors. Targeted therapeutic approaches in NSCLC necessitate consideration of more invasive biopsy techniques aimed at providing sufficient tissue for both histological determination and molecular profiling in all patients with stage IV disease both at the time of diagnosis and at the time of disease progression. Comprehensive genotyping efforts have identified oncogenic drivers in 62% lung adenocarcinomas and an increasing proportion of squamous cell carcinomas of the lung. The identification of these oncogenic drivers and the triage of patients to clinical trials evaluating novel targeted therapeutic approaches will increasingly mold a landscape of personalized lung cancer therapy where each genotype has an associated targeted therapy. This review outlines the state of personalized lung cancer therapy as it pertains to individual NSCLC genotypes. PMID:24258572

  2. Modulation of cell sialoglycophenotype: a stylish mechanism adopted by Trypanosoma cruzi to ensure its persistence in the infected host

    Directory of Open Access Journals (Sweden)

    Leonardo eFreire-de-Lima

    2016-05-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia. To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS. Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules present on the parasite's cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialylglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection.

  3. Trimodal therapy in squamous cell carcinoma of the esophagus

    Directory of Open Access Journals (Sweden)

    Matuschek C

    2011-10-01

    Full Text Available Abstract Patients with ESCC (squamous cell carcinoma of the esophagus are most commonly diagnosed with locally advanced tumor stages. Early metastatic disease and late diagnosis are common reasons responsible for this tumor's poor clinical outcome. The prognosis of esophageal cancer is very poor because patients usually do not have symptoms in early disease stages. Squamous cell carcinoma of the esophagus frequently complicates patients with multiple co-morbidities and these patients often require interdisciplinary diagnosis and treatment procedures. At present time, neoadjuvant radiation therapy and chemotherapy followed by surgery are regarded as the international standard of care. Meta-analyses have confirmed that this approach provides the patient with better local tumor control and an increased overall survival rate. It is recommended that patients with positive tumor response to neoadjuvant therapy and who are poor surgical candidates should consider definitive radiochemotherapy without surgery as a treatment option. In future, EGFR antibodies may also be administered to patients during therapy to improve the current treatment effectiveness. Positron-emission tomography proves to be an early response-imaging tool used to evaluate the effect of the neoadjuvant therapy and could be used as a predictive factor for the survival rate in ESCC. The percentage proportions of residual tumor cells in the histopathological analyses represent a gold standard for evaluating the response rate to radiochemotherapy. In the future, early response evaluation and molecular biological tests could be important diagnostic tools in influencing the treatment decisions of ESCC patients.

  4. Neoadjuvant targeted therapy in patients with renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2015-01-01

    Full Text Available Cytoreductive nephrectomy as an independent option in patients with metastatic renal cell carcinoma (mRCC cannot be considered as the only effective method, with rare exception, of a few patients with solitary metastases. Cytoreductive nephrectomy is now part of a multimodal approach encompassing surgical treatment and systemic drug therapy. Many retrospective and two prospective studies have demonstrated that it is expedient to perform cytoreductive nephrectomy. Immunotherapy should not be used as preoperatively in the era of cytokine therapy for mRCC due to that fact that it has no impact on primary tumor. In the current targeted therapy era, many investigators have concentrated attentionon the role of neoadjuvant targeted therapy for the treatment of patients with both localized and locally advanced mRCC. The potential benefits of neoadjuvant therapy for localized and locally advanced RCC include to make surgery easier and to increase the possibility of organsparing treatment, by decreasing the stage of primary tumor and the size of tumors. The possible potential advantages of neoadjuvant targeted therapy in patients with mRCC include prompt initiation of necessary systemic therapy; identification of patients with primary refractory tumors; and a preoperative reduction in the stage of primary tumor. Numerous retrospective and some prospective phase II studies have shown that neoadjuvant targeted therapy in patients with localized and locally advanced RCC is possible and tolerable and surgical treatment after neoadjuvant targeted therapy is safe and executable with a low incidence of complications. If neoadjuvant therapy is to be performed, it should be done within 2–4 months before surgery. Sorafenib and sunitinib are now most tested and suitable for neoadjuvant targeted therapy. Sorafenib is a more preferred drug due to its shorter half-life and accordingly to the possibility of discontinuing the drug immediately prior to

  5. Cell therapy medicinal product regulatory framework in Europe and its application for MSC based therapy development

    Directory of Open Access Journals (Sweden)

    Janis eAncans

    2012-08-01

    Full Text Available Advanced therapy medicinal products (ATMPs, including cell therapy products, form a new class of medicines in the European Union. Since ATMPs are at the forefront of scientific innovation in medicine, specific regulatory framework has been developed for these medicines and implemented from 2009. The Committee for Advanced Therapies (CAT has been established at European Medicines Agency (EMA for centralized classification, certification and evaluation procedures, and other ATMP related tasks. Guidance documents, initiatives and interaction platforms are available to make the new framework more accessible for small and medium-sized enterprises, academia, hospitals and foundations. Good understanding of centralised and national components of the regulatory system is required to plan product development. It is in the best interests of cell therapy developers to utilise provided resources starting with the preclinical stage. Whilst there have not been mesenchymal stem cell (MSC based medicine authorisations in the EU, three MSC products have received marketing approval in other regions since 2011. Information provided on regulatory requirements, procedures and initiatives is aimed to facilitate MSC based medicinal product development and authorisation in the EU.

  6. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  7. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shroff G

    2018-02-01

    Full Text Available Geeta Shroff Department of Stem Cell Therapy, Nutech Mediworld, New Delhi, India Abstract: Multiple sclerosis (MS, a complex disorder of the central nervous system (CNS, is characterized with axonal loss underlying long-term progressive disability. Currently available therapies for its management are able to slow down the progression but fail to treat it completely. Moreover, these therapies are associated with major CNS and cardiovascular adverse events, and prolonged use of these treatments may cause life-threatening diseases. Recent research has shown that cellular therapies hold a potential for CNS repair and may be able to provide protection from inflammatory damage caused after injury. Human embryonic stem cell (hESC transplantation is one of the promising cell therapies; hESCs play an important role in remyelination and help in preventing demylenation of the axons. In this study, an overview of the current knowledge about the unique properties of hESC and their comparison with other cell therapies has been presented for the treatment of patients with MS. Keywords: multiple sclerosis, stem cells, human embryonic stem cells, remyelination, axonal loss, neurological disorder

  8. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Clinical applications of stem cells from human exfoliated deciduous teeth in stem cell therapy].

    Science.gov (United States)

    Xiaoxia, Li; Jiaozi, Fangteng; Shi, Yu; Yuming, Zhao; Lihong, Ge

    2017-10-01

    Stem cells from human exfoliated deciduous teeth (SHED) are one category of dental stem cells. They belong to ectodermal mesenchymal stem cells. As an ideal stem cell source, SHED possess great potential in stem cell therapy. This review demonstrates the biological characteristics and advantages of SHED in stem cell therapy and discusses its multiple functions in tissue regeneration and repair, including multiple differentiation potentiality, cell secretion of cytokines, and immunomodulatory ability. Furthermore, this article introduces the main findings regarding the potential clinical applications of SHED to a variety of diseases. This article demonstrates research progress in dentin-pulp regeneration, maxillofacial bone regeneration, and treatment of nervous system and immune system diseases with SHED for stem cell transplantation.

  10. Potential implications of cell therapy for osteogenesis imperfecta

    Science.gov (United States)

    Niyibizi, Christopher; Li, Feng

    2009-01-01

    Osteogenesis imperfecta (OI) is a brittle-bone disease whose hallmark is bone fragility. Since the disease is genetic, there is currently no available cure. Several pharmacological agents have been tried with not much success, except the recent use of bisphosphonates. Stem cells have been suggested as an alternative OI treatment, but many hurdles remain before this technology can be applied for treating patients with OI. This review summarizes what is known at present regarding the application of stem cells to treat OI using animal models, clinical trials using mesenchymal stem cells to treat patients with OI and the knowledge gained from the clinical trials. Application of gene therapy in combination with stem cells is also discussed. The hurdles to be overcome to bring stem cells close to the clinic and future perspectives are discussed. PMID:20490372

  11. Allogeneic stem cell transplantation with fludarabine-based, less intensive conditioning regimens as adoptive immunotherapy in advanced Hodgkin's disease.

    Science.gov (United States)

    Anderlini, P; Giralt, S; Andersson, B; Ueno, N T; Khouri, I; Acholonu, S; Cohen, A; Körbling, M J; Manning, J; Romaguera, J; Sarris, A; Rodriguez; Hagemeister, F; Mclaughlin, P; Cabanillas, F; Champlin, R E

    2000-09-01

    Six patients with advanced Hodgkin's disease in which multiple conventional treatments (median prior chemotherapy regimens: seven), radiation therapy, and a prior autologous stem cell transplantation (SCT) had failed underwent allogeneic SCT following a fludarabine-based conditioning regimen. Median age was 29 years (22-30). Median time to progression after autologous SCT was 6 months (4-21). Disease status at transplant was refractory relapse (n = 3) and sensitive relapse (n = 3). Cell source was filgrastim-mobilized peripheral blood stem cells from an HLA-identical sibling (n = 4) or matched unrelated donor marrow (n = 2). Conditioning regimens were fludarabine-cyclophosphamide-antithymocyte globulin (n = 4), fludarabine-melphalan (n = 1) and fludarabine-cytarabine-idarubicin (n = 1). Myeloid recovery was prompt, with an absolute neutrophil count > or =500/microl on day 12 (11-15). Median platelet recovery to > or =20000/microl was on day 9 (0-60). Chimerism studies on day 30 indicated 100% donor-derived hematopoiesis in 4/5 evaluable patients (4/4 non-progressors). All responders (3/3) have ongoing 100% donor-derived chimerism. Acute graft-versus-host disease (GVHD) was diagnosed in 4/6 evaluable patients. Chronic GVHD was present in 2/4 evaluable patients. There were no regimen-related deaths. Overall day 100 transplant-related mortality was 2/6 (33%). Three patients have expired and three are alive and progression-free with a median follow-up of 9 months (6-26) post transplant. We conclude that allogeneic stem cell transplantation with fludarabine-based preparative regimens is feasible in these high-risk, heavily pretreated HD patients.

  12. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  13. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  14. Anti-HLA antibodies in regenerative medicine stem cell therapy.

    Science.gov (United States)

    Charron, Dominique; Suberbielle-Boissel, Caroline; Tamouza, Ryad; Al-Daccak, Reem

    2012-12-01

    Research on stem cell therapies for regenerative medicine is progressing rapidly. Although the use of autologous stem cells is a tempting choice, there are several instances in which they are either defective or not available in due time. Allogenic stem cells derived from healthy donors presents a promising alternative. Whether autologous or allogenic, recent advances have proven that stem cells are not as immune privileged as they were thought. Therefore understanding the interactions of these cells with the recipient immune system is paramount to their clinical application. Transplantation of stem cells induces humoral as well as cellular immune response. This review focuses on the humoral response elicited by stem cells upon their administration and consequences on the survival and maintenance of the graft. Current transplantation identifies pre- and post-transplantation anti-HLA antibodies as immune rejection and cell signaling effectors. These two mechanisms are likely to operate similarly in the context of SC therapeutics. Ultimately this knowledge will help to propose novel strategies to mitigate the allogenic barriers. Immunogenetics selection of the donor cell and immunomonitoring are key factors to allow the implementation of regenerative stem cell in the clinics. Copyright © 2012. Published by Elsevier Inc.

  15. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku, E-mail: nakagawa@phs.osaka-u.ac.jp; Okada, Naoki, E-mail: okada@phs.osaka-u.ac.jp

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  16. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    International Nuclear Information System (INIS)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8 + CAR-T cells had antigen-specific cytotoxic activity. • CD4 + CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  17. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    Science.gov (United States)

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  18. Efficiency of stem cell based therapy in the treatment of diabetic foot ulcer: a meta-analysis.

    Science.gov (United States)

    Shu, Xuan; Shu, Shenyou; Tang, Shijie; Yang, Lvjun; Liu, Dan; Li, Ke; Dong, Zejun; Ma, Zhongchao; Zhu, Zhensen; Din, Jialong

    2018-01-22

    Diabetic foot ulcer is a chronic, refractory, frequent complication in diabetic patient. Its treatment often requires multidisciplinary joint efforts, diverse strategies have been adopted to address this annoying issue, including stem cell-based therapy/acellular dermal matrix/negative pressure wound therapy etc. However, consensus has not been reached. To assess the current evidence regarding the efficiency and potential advantages of stem cell-based therapy compared with conventional standard treatment and/or placebo in the treatment of diabetic foot ulcer. A comprehensive search in PubMed, EmBase, Cochrane Central and Web of Science databases was conducted during December 2016 and a systematic review and meta-analysis of all relevant studies were performed. A total of 7 studies that involved 224 diabetic foot patients, classified as Wagner grades 1-5, were analyzed. The pooled results confirmed the benefits of using the stem cell treatment. Partial and/or complete healing were significantly higher in the stem cell group compared with the control group (77.4% vs. 31.9%; RR: 2.22; 95% CI, 1.65-2.98). Subgroup analysis on ABI and TCP02 also confirmed the results. The present meta-analysis indicates that stem cell-based therapy can enhance the healing of diabetic foot ulcers and is associated with lesser pain, lower amputation rate and improved prognosis compared with normal treatment. Well-designed randomized controlled trials are required in the future in order to confirm and update these findings.

  19. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  20. Superior Therapeutic Index in Lymphoma Therapy: CD30(+) CD34(+) Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack.

    Science.gov (United States)

    Hombach, Andreas A; Görgens, André; Chmielewski, Markus; Murke, Florian; Kimpel, Janine; Giebel, Bernd; Abken, Hinrich

    2016-08-01

    Recent clinical trials with chimeric antigen receptor (CAR) redirected T cells targeting CD19 revealed particular efficacy in the treatment of leukemia/lymphoma, however, were accompanied by a lasting depletion of healthy B cells. We here explored CD30 as an alternative target, which is validated in lymphoma therapy and expressed by a broad variety of Hodgkin's and non-Hodgkin's lymphomas. As a safty concern, however, CD30 is also expressed by lymphocytes and hematopoietic stem and progenitor cells (HSPCs) during activation. We revealed that HRS3scFv-derived CAR T cells are superior since they were not blocked by soluble CD30 and did not attack CD30(+) HSPCs while eliminating CD30(+) lymphoma cells. Consequently, normal hemato- and lymphopoiesis was not affected in the long-term in the humanized mouse; the number of blood B and T cells remained unchanged. We provide evidence that the CD30(+) HSPCs are protected against a CAR T-cell attack by substantially lower CD30 levels than lymphoma cells and higher levels of the granzyme B inactivating SP6/PI9 serine protease, which furthermore increased upon activation. Taken together, adoptive cell therapy with anti-CD30 CAR T cells displays a superior therapeutic index in the treatment of CD30(+) malignancies leaving healthy activated lymphocytes and HSPCs unaffected.

  1. Superior Therapeutic Index in Lymphoma Therapy: CD30+ CD34+ Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack

    Science.gov (United States)

    Hombach, Andreas A; Görgens, André; Chmielewski, Markus; Murke, Florian; Kimpel, Janine; Giebel, Bernd; Abken, Hinrich

    2016-01-01

    Recent clinical trials with chimeric antigen receptor (CAR) redirected T cells targeting CD19 revealed particular efficacy in the treatment of leukemia/lymphoma, however, were accompanied by a lasting depletion of healthy B cells. We here explored CD30 as an alternative target, which is validated in lymphoma therapy and expressed by a broad variety of Hodgkin's and non-Hodgkin's lymphomas. As a safty concern, however, CD30 is also expressed by lymphocytes and hematopoietic stem and progenitor cells (HSPCs) during activation. We revealed that HRS3scFv-derived CAR T cells are superior since they were not blocked by soluble CD30 and did not attack CD30+ HSPCs while eliminating CD30+ lymphoma cells. Consequently, normal hemato- and lymphopoiesis was not affected in the long-term in the humanized mouse; the number of blood B and T cells remained unchanged. We provide evidence that the CD30+ HSPCs are protected against a CAR T-cell attack by substantially lower CD30 levels than lymphoma cells and higher levels of the granzyme B inactivating SP6/PI9 serine protease, which furthermore increased upon activation. Taken together, adoptive cell therapy with anti-CD30 CAR T cells displays a superior therapeutic index in the treatment of CD30+ malignancies leaving healthy activated lymphocytes and HSPCs unaffected. PMID:27112062

  2. Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future.

    Science.gov (United States)

    Tang, Jun-Nan; Cores, Jhon; Huang, Ke; Cui, Xiao-Lin; Luo, Lan; Zhang, Jin-Ying; Li, Tao-Sheng; Qian, Li; Cheng, Ke

    2018-02-22

    Stem cell therapy is a promising strategy for tissue regeneration. The therapeutic benefits of cell therapy are mediated by both direct and indirect mechanisms. However, the application of stem cell therapy in the clinic is hampered by several limitations. This concise review provides a brief introduction into stem cell therapies for ischemic heart disease. It summarizes cell-based and cell-free paradigms, their limitations, and the benefits of using them to target disease. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Towards a more specific therapy: targeting nonmelanoma skin cancer cells.

    Science.gov (United States)

    Szeimies, R M; Karrer, S

    2006-05-01

    Epithelial cancers of the skin, e.g. basal cell carcinoma and squamous cell carcinoma, are the most common tumours in humans with increasing incidence. Hence the development of new therapeutic strategies is of utmost interest. For many years the most often used conventional therapies for these diseases were surgical procedures such as curettage and electrodesiccation, excision or, with so far the best outcome in terms of remission rates, micrographic surgery. Other ablative treatment modalities are cryotherapy, radiation therapy or the use of lasers (Er:YAG, CO(2)). All those above-mentioned treatments have in common that they are quite unspecific and do not target the tumour itself or its environment, thus leading to unwanted effects in the surrounding tissue such as scar formation or other cosmetically disfiguring events. Therefore, the development of novel, more pathogenesis-based therapies such as the use of retinoids, cyclooxygenase inhibitors, topical immunomodulators, inhibitors of the sonic-hedgehog signalling pathway or photodynamic therapy are challenging new approaches.

  4. Potential of Stem Cell-Based Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Hany E. Marei

    2018-02-01

    Full Text Available Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs, mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

  5. Potential of Stem Cell-Based Therapy for Ischemic Stroke.

    Science.gov (United States)

    Marei, Hany E; Hasan, A; Rizzi, R; Althani, A; Afifi, N; Cenciarelli, C; Caceci, Thomas; Shuaib, Ashfaq

    2018-01-01

    Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs), mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s) by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

  6. Mesenchymal stem cell therapy: Two steps forward, one step back

    Science.gov (United States)

    Ankrum, James; Karp, Jeffrey M.

    2010-01-01

    Mesenchymal stem cell (MSC) therapy is poised to establish a new clinical paradigm; however, recent trials have produced mixed results. Although MSC were originally considered to treat connective tissue defects, preclinical studies revealed potent immunomodulatory properties that prompted the use of MSC to treat numerous inflammatory conditions. Unfortunately, although clinical trials have met safety endpoints, efficacy has not been demonstrated. We believe the challenge to demonstrate efficacy can be attributed in part to an incomplete understanding of the fate of MSC following infusion. Here, we highlight the clinical status of MSC therapy and discuss the importance of cell-tracking techniques, which have advanced our understanding of the fate and function of systemically infused MSC and might improve clinical application. PMID:20335067

  7. Regulating the advertising and promotion of stem cell therapies.

    Science.gov (United States)

    von Tigerstrom, Barbara

    2017-10-01

    There are widespread concerns with the ways in which 'unproven' stem cell therapies are advertised to patients. This article explores the potential and limits of using laws that regulate advertising and promotion as a tool to address these concerns. It examines general consumer protection laws and laws and policies on advertising medical products and services, focusing on the USA, Canada and Australia. The content of existing laws and policies covers most of the marketing practices that cause concern, but several systemic factors are likely to limit enforcement efforts. Potential reforms in Australia that would prevent direct-to-consumer advertising of autologous cell therapies are justified in principle and should be considered by other jurisdictions, but again face important practical limits to their effectiveness.

  8. Increased T cell trafficking as adjunct therapy for HIV-1

    Science.gov (United States)

    Wolinsky, Steven M.; McLean, Angela R.

    2018-01-01

    Although antiretroviral drug therapy suppresses human immunodeficiency virus-type 1 (HIV-1) to undetectable levels in the blood of treated individuals, reservoirs of replication competent HIV-1 endure. Upon cessation of antiretroviral therapy, the reservoir usually allows outgrowth of virus and approaches to targeting the reservoir have had limited success. Ongoing cycles of viral replication in regions with low drug penetration contribute to this persistence. Here, we use a mathematical model to illustrate a new approach to eliminating the part of the reservoir attributable to persistent replication in drug sanctuaries. Reducing the residency time of CD4 T cells in drug sanctuaries renders ongoing replication unsustainable in those sanctuaries. We hypothesize that, in combination with antiretroviral drugs, a strategy to orchestrate CD4 T cell trafficking could contribute to a functional cure for HIV-1 infection. PMID:29499057

  9. Autologous Intravenous Mononuclear Stem Cell Therapy in Chronic Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Bhasin A

    2012-01-01

    Full Text Available Background: The regenerative potential of brain has led to emerging therapies that can cure clinico-motor deficits after neurological diseases. Bone marrow mononuclear cell therapy is a great hope to mankind as these cells are feasible, multipotent and aid in neurofunctional gains in Stroke patients. Aims: This study evaluates safety, feasibility and efficacy of autologous mononuclear (MNC stem cell transplantation in patients with chronic ischemic stroke (CIS using clinical scores and functional imaging (fMRI and DTI. Design: Non randomised controlled observational study Study: Twenty four (n=24 CIS patients were recruited with the inclusion criteria as: 3 months–2years of stroke onset, hand muscle power (MRC grade at least 2; Brunnstrom stage of recovery: II-IV; NIHSS of 4-15, comprehendible. Fugl Meyer, modified Barthel Index (mBI and functional imaging parameters were used for assessment at baseline, 8 weeks and at 24 weeks. Twelve patients were administered with mean 54.6 million cells intravenously followed by 8 weeks of physiotherapy. Twelve patients served as controls. All patients were followed up at 24 weeks. Outcomes: The laboratory and radiological outcome measures were within normal limits in MNC group. Only mBI showed statistically significant improvement at 24 weeks (p<0.05 whereas the mean FM, MRC, Ashworth tone scores in the MNC group were high as compared to control group. There was an increased number of cluster activation of Brodmann areas BA 4, BA 6 post stem cell infusion compared to controls indicating neural plasticity. Cell therapy is safe and feasible which may facilitate restoration of function in CIS.

  10. T Cell Gene Therapy to Eradicate Disseminated Breast Cancers

    Science.gov (United States)

    2012-05-01

    completely enclosed systems, which reduces the opportunity for microbial contamination, and they may be placed flat on the incubator floor or hung on a...Characterization of receptor for dengue virus-induced macrophage cytotoxin. Council of Scientific and Industrial Research, India. • Determine the cell death...vector-mediated gene transfer of pigment epithelial derived growth factor (PEDF). Molecular Therapy, 13(S1): S313 – S314, 2006. • Fujimura, S

  11. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer

    Science.gov (United States)

    2014-09-01

    Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs; Jeffrey Karp ...clinical trials for CRPC. The team is composed of Drs. Jeffrey Karp Co-Director of Regenerative Therapeutics at the Brigham & Women’s Hospital...encapsulating a PSA-activated thapsigargin-based prodrug (G115, Fig. 5) were generated by the Karp lab with the properties outlined in Table 7. These

  12. Genome-editing Technologies for Gene and Cell Therapy

    OpenAIRE

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanis...

  13. Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies?

    DEFF Research Database (Denmark)

    Lepperdinger, Günter; Brunauer, Regina; Jamnig, Angelika

    2008-01-01

    The prospective clinical use of multipotent mesenchymal stromal stem cells (MSC) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. However, the challenges and risks for cell-based therapies are multifaceted. The risks for patients receiving stem...

  14. Cell therapy of periodontium: from animal to human?

    Science.gov (United States)

    Trofin, Elena A.; Monsarrat, Paul; Kémoun, Philippe

    2013-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft and hard tissues supporting the teeth, which often leads to tooth loss. Its significant impact on the patient's general health and quality of life point to a need for more effective management of this condition. Existing treatments include scaling/root planning and surgical approaches but their overall effects are relatively modest and restricted in application. The goal of regenerative therapy of periodontal defects is to enhance endogenous progenitors and thus promote optimal wound healing. Considering that the host or tissue might be defective in the periodontitis context, it has been proposed that grafting exogenous stem cells would produce new tissues and create a suitable microenvironment for tissue regeneration. Thus, cell therapy of periodontium has been assessed in many animal models and promising results have been reported. However, the methodological diversity of these studies makes the conversion to clinical practice difficult. The aim of this review is to highlight the primary requirements to be satisfied before the leap to clinical trials can be made. We therefore review cell therapy applications for periodontal regeneration in animal models and the concerns to be addressed before undertaking human experiments. PMID:24298258

  15. Stem Cell Therapy for Interstitial Cystitis/Bladder Pain Syndrome.

    Science.gov (United States)

    Kim, Aram; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a disease characterized by pelvic pain, usually with urinary frequency. These symptoms make patients suffer from a poor quality of life. However, there is still a lack of consensus on the pathophysiology and curable treatment of IC/BPS. We have reviewed several candidates for the pathophysiology of this disease and also treatments that have been used. Although several oral medications, bladder instillation therapies, fulguration for Hunner's lesion, and hydrodistention have been tried as IC/BPS treatments, their outcomes have not been satisfactory. As the application of stem cell therapy is expanding into the urologic field, innovative strategies have been tested with animal models of IC/BPS and have shown promising therapeutic effects for reversing the symptoms of this disorder. Although several concerns about stem cell sources and their safety should be addressed before initiating human clinical trials, we introduce stem cell therapy as a valuable future treatment approach for IC/BPS.

  16. Photodynamic therapy for basal cell skin cancer ENT-organs

    Directory of Open Access Journals (Sweden)

    V. N. Volgin

    2014-01-01

    Full Text Available Results of photodynamic therapy in 96 patients with primary and recurrent basal cell skin cancer of ENT-organs are represented. For photodynamic therapy the Russian-made photosensitizer Photoditazine at dose of 0.6–1.4 mg/kg was used. Parameters were selected taking into account type and extent of tumor and were as follows: output power – 0.1–3.0 W, power density – 0.1–1.3 W/cm2, light dose – 100–400 J/cm2. The studies showed high efficacy of treatment for primary and recurrent basal cell skin cancer of nose, ear and external auditory canal – from 87.5 to 94.7% of complete regression. Examples of efficacy of the method are represented in the article. High efficacy and good cosmetic effects allowed to make a conclusion about perspectivity of photodynamic therapy for recurrent basal cell skin cancer of ENT-organs. 

  17. Genome-editing Technologies for Gene and Cell Therapy.

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  18. Conventional and novel stem cell based therapies for androgenic alopecia

    Directory of Open Access Journals (Sweden)

    Talavera-Adame D

    2017-08-01

    Full Text Available Dodanim Talavera-Adame,1 Daniella Newman,2 Nathan Newman1 1American Advanced Medical Corp. (Private Practice, Beverly Hills, CA, 2Western University of Health Sciences, Pomona, CA, USA Abstract: The prevalence of androgenic alopecia (AGA increases with age and it affects both men and women. Patients diagnosed with AGA may experience decreased quality of life, depression, and feel self-conscious. There are a variety of therapeutic options ranging from prescription drugs to non-prescription medications. Currently, AGA involves an annual global market revenue of US$4 billion and a growth rate of 1.8%, indicating a growing consumer market. Although natural and synthetic ingredients can promote hair growth and, therefore, be useful to treat AGA, some of them have important adverse effects and unknown mechanisms of action that limit their use and benefits. Biologic factors that include signaling from stem cells, dermal papilla cells, and platelet-rich plasma are some of the current therapeutic agents being studied for hair restoration with milder side effects. However, most of the mechanisms exerted by these factors in hair restoration are still being researched. In this review, we analyze the therapeutic agents that have been used for AGA and emphasize the potential of new therapies based on advances in stem cell technologies and regenerative medicine. Keywords: stem cells, stem cell therapies, hair follicle, dermal papilla, androgenic alopecia, laser, hair regeneration

  19. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  20. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  1. Efficient photodynamic therapy on human retinoblastoma cell lines.

    Science.gov (United States)

    Walther, Jan; Schastak, Stanislas; Dukic-Stefanovic, Sladjana; Wiedemann, Peter; Neuhaus, Jochen; Claudepierre, Thomas

    2014-01-01

    Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.

  2. Efficient photodynamic therapy on human retinoblastoma cell lines.

    Directory of Open Access Journals (Sweden)

    Jan Walther

    Full Text Available Photodynamic therapy (PDT has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.

  3. Targeted therapy for orbital and periocular basal cell carcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Yin, Vivian T; Pfeiffer, Margaret L; Esmaeli, Bita

    2013-01-01

    To review the literature on targeted therapy for orbital and periocular basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC) and provide examples of patients recently treated with such therapy. The authors reviewed the literature on clinical results of targeted therapy and the molecular basis for targeted therapy in orbital and periocular BCC and cutaneous SCC. The authors also present representative cases from their practice. Mutation in the patched 1 gene (PTCH1) has been implicated in BCC, and overexpression of epidermal growth factor receptor (EGFR) has been shown in SCC. Vismodegib, an inhibitor of smoothened, which is activated upon binding of hedgehog to Ptc, has been shown to significantly decrease BCC tumor size or even produce complete resolution, especially in cases of basal cell nevus syndrome. Similarly, EGFR inhibitors have been shown to significantly decrease SCC tumor size in cases of locally advanced and metastatic disease. The authors describe successful outcomes after vismodegib treatment in a patient with basal cell nevus syndrome with numerous bulky lesions of the eyelid and periocular region and erlotinib (EGFR inhibitor) treatment in a patient with SCC who was deemed not to be a good surgical candidate because of advanced SCC of the orbit with metastasis to the regional lymph nodes, advanced age, and multiple medical comorbidities. Targeted therapy using hedgehog pathway and EGFR inhibitors shows significant promise in treatment of orbital and periocular BCC and cutaneous SCC, respectively. Such targeted therapy may be appropriate for patients who are not good candidates for surgery.

  4. Genetically modified T cells in cancer therapy: opportunities and challenges

    Science.gov (United States)

    Sharpe, Michaela; Mount, Natalie

    2015-01-01

    Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies. PMID:26035842

  5. Genetically modified T cells in cancer therapy: opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Michaela Sharpe

    2015-04-01

    Full Text Available Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR or through introducing antibody-like recognition in chimeric antigen receptors (CARs have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.

  6. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  7. Stem cell therapy for heart failure: Ensuring regenerative proficiency.

    Science.gov (United States)

    Terzic, Andre; Behfar, Atta

    2016-07-01

    Patient-derived stem cells enable promising regenerative strategies, but display heterogenous cardiac reparative proficiency, leading to unpredictable therapeutic outcomes impeding practice adoption. Means to establish and certify the regenerative potency of emerging biotherapies are thus warranted. In this era of clinomics, deconvolution of variant cytoreparative performance in clinical trials offers an unprecedented opportunity to map pathways that segregate regenerative from non-regenerative states informing the evolution of cardio-regenerative quality systems. A maiden example of this approach is cardiopoiesis-mediated lineage specification developed to ensure regenerative performance. Successfully tested in pre-clinical and early clinical studies, the safety and efficacy of the cardiopoietic stem cell phenotype is undergoing validation in pivotal trials for chronic ischemic cardiomyopathy offering the prospect of a next-generation regenerative solution for heart failure. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    Science.gov (United States)

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  9. Autologous bone marrow cell therapy for peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Botti C

    2012-09-01

    Full Text Available C Botti, C Maione, A Coppola, V Sica, G CobellisDepartment of General Pathology, Second University of Naples, Naples, ItalyAbstract: Inadequate blood supply to tissues caused by obstruction of arterioles and/or capillaries results in ischemic injuries – these injuries can range from mild (eg, leg ischemia to severe conditions (eg, myocardial infarction, stroke. Surgical and/or endovascular procedures provide cutting-edge treatment for patients with vascular disorders; however, a high percentage of patients are currently not treatable, owing to high operative risk or unfavorable vascular involvement. Therapeutic angiogenesis has recently emerged as a promising new therapy, promoting the formation of new blood vessels by the introduction of bone marrow–derived stem and progenitor cells. These cells participate in the development of new blood vessels, the enlargement of existing blood vessels, and sprouting new capillaries from existing blood vessels, providing evidence of the therapeutic utility of these cells in ischemic tissues. In this review, the authors describe peripheral arterial disease, an ischemic condition affecting the lower extremities, summarizing different aspects of vascular regeneration and discussing which and how stem cells restore the blood flow. The authors also present an overview of encouraging results from early-phase clinical trials using stem cells to treat peripheral arterial disease. The authors believe that additional research initiatives should be undertaken to better identify the nature of stem cells and that an intensive cooperation between laboratory and clinical investigators is needed to optimize the design of cell therapy trials and to maximize their scientific rigor. Only this will allow the results of these investigations to develop best clinical practices. Additionally, although a number of stem cell therapies exist, many treatments are performed outside international and national regulations and many

  10. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppressing Th1 and Th17 and enhancing regulatory T cell differentiation

    Science.gov (United States)

    Chen, Maogen; Su, Wenru; Lin, Xiaohong; Guo, Zhiyong; Wang, Julie; Zhang, Qunzhou; Brand, David; Ryffel, Bernhard; Huang, Jiefu; Liu, Zhongmin; He, Xiaoshun; Le, Anh D.; Zheng, Song Guo

    2015-01-01

    Objective Current approaches offer no cures for rheumatoid arthritis (RA). Accumulating evidence has revealed that manipulation of bone-marrow mesenchymal stem cells (BMSCs) may have the potential to treat RA. While BMSC-based therapy faces many challenges such as limited cell availability and reduced clinical feasibility, we herein demonstrate that substitution of gingival-derived mesenchymal stem cells (GMSCs) results in significantly improved therapeutic effects on established collagen-induced arthritis (CIA). Methods CIA has been induced with the immunization of type II collagen (CII) and CFA in DBA/1J mice. GMSCs were injected i.v. into mice on day 14 after immunization. In some experiments, injection of PC61 (anti-CD25 antibody) i.p. was used to delete Tregs in arthritic mice. Results Infusion of GMSCs in DBA/1J mice with CIA significantly decreased the severity of arthritis and pathology scores, and down-regulated inflammatory cytokine (IFN-γ, IL-17A) production. Infusion of GMSCs resulted in an increase in CD4+CD39+Foxp3+ cells in arthritic mice. These increases were noted early in spleen and LN and later in synovial fluid. The increased frequency of Foxp3+ Treg cells consisted of cells that were mainly Helios negative. Infusion of GMSCs partially interfered with the progress of CIA when Treg cells were depleted. Pre-treatment of GMSCs with CD39 or CD73 inhibitor significantly reversed the protective effect of GMSCs on CIA. Conclusion The role of GMSCs in controlling CIA pathology mostly depends upon CD39/CD73 signals and partially upon the induction of CD4+CD39+Foxp3+ Treg cells. GMSCs provide a promising approach for the treatment of autoimmune diseases. PMID:23400582

  11. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  12. Can yoga therapy stimulate stem cell trafficking from bone marrow?

    Directory of Open Access Journals (Sweden)

    Nitya Shree

    2016-07-01

    Full Text Available It has been established that mesenchymal stromal cells (MSCs from bone marrow enter the peripheral circulation intermittently for possible tissue regeneration, repair and to take care of daily wear and tear. This is evident from the detection of MSCs from peripheral blood. The factors governing this migration remain elusive. These MSCs carry out the work of policing and are supposed to repair the injured tissues. Thus, these cells help in maintaining the tissue and organ homeostasis. Yoga and pranayama originated in India and is now being practiced all over the world for positive health. So far, the chemical stimulation of bone marrow has been widely used employing injection of colony stimulating factor. However, the role of physical factors such as mechanical stimulation and stretching has not been substantiated. It is claimed that practicing yoga delays senescence, improves the physiological functions of heart and lung and yoga postures make the body elastic. It remains to be seen whether the yoga therapy promotes trafficking of the stem cells from bone marrow for possible repair and regeneration of worn out and degenerating tissues. We cover in this short review, mainly the role of physical factors especially the yoga therapy on stem cells trafficking from bone marrow.

  13. Can yoga therapy stimulate stem cell trafficking from bone marrow?

    Science.gov (United States)

    Shree, Nitya; Bhonde, Ramesh R

    It has been established that mesenchymal stromal cells (MSCs) from bone marrow enter the peripheral circulation intermittently for possible tissue regeneration, repair and to take care of daily wear and tear. This is evident from the detection of MSCs from peripheral blood. The factors governing this migration remain elusive. These MSCs carry out the work of policing and are supposed to repair the injured tissues. Thus, these cells help in maintaining the tissue and organ homeostasis. Yoga and pranayama originated in India and is now being practiced all over the world for positive health. So far, the chemical stimulation of bone marrow has been widely used employing injection of colony stimulating factor. However, the role of physical factors such as mechanical stimulation and stretching has not been substantiated. It is claimed that practicing yoga delays senescence, improves the physiological functions of heart and lung and yoga postures make the body elastic. It remains to be seen whether the yoga therapy promotes trafficking of the stem cells from bone marrow for possible repair and regeneration of worn out and degenerating tissues. We cover in this short review, mainly the role of physical factors especially the yoga therapy on stem cells trafficking from bone marrow. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  14. Cell Therapy in Spinal Cord Injury: a Mini- Reivew

    Directory of Open Access Journals (Sweden)

    Soraya Mehrabi

    2013-04-01

    Full Text Available Spinal cord injury (SCI is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provide a suitable microenvironment for axons to regenerate. Here, we reviewed the last approaches applied by our colleagues and others in order to improve axonal regeneration following SCI. We used different types of stem cells via different methods. First, fetal olfactory mucosa, schwann, and bone marrow stromal cells were transplanted into the injury sites in SCI models. In later studies, was applied simultaneous transplantation of stem cells with chondroitinase ABC in SCI models with the aid of nanoparticles. Using these approaches, considerable functional recovery was observed. However, considering some challenges in stem cell therapy such as rejection, infection, and development of a new cancer, our more recent strategy was application of cytokines. We observed a significant improvement in motor function of rats when stromal derived factor-1 was used to attract innate stem cells to the injury site. In conclusion, it seems that co-transplantation of different cells accompanies with other factors like enzymes and growth factors via new delivery systems may yield better results in SCI.

  15. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2012-03-01

    Full Text Available Abstract A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL, are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs, chimeric antibody-T cell receptors (CARs and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies.

  16. Advances in the Use of Regulatory T-Cells for the Prevention and Therapy of Graft-vs.-Host Disease.

    Science.gov (United States)

    Ramlal, Reshma; Hildebrandt, Gerhard C

    2017-05-16

    Regulatory T (Tregs) cells play a crucial role in immunoregulation and promotion of immunological tolerance. Adoptive transfer of these cells has therefore been of interest in the field of bone marrow and solid organ transplantation, autoimmune diseases and allergy medicine. In bone marrow transplantation, Tregs play a pivotal role in the prevention of graft-verus-host disease (GvHD). This has generated interest in using adoptive Treg cellular therapy in the prevention and treatment of GvHD. There have been several barriers to the feasibility of Treg cellular therapy in the setting of hematopoietic stem cell transplantation (HSCT) which include low Treg concentration in peripheral blood, requiring expansion of the Treg population; instability of the expanded product with loss of FoxP3 expression; and issues related to the purity of the expanded product. Despite these challenges, investigators have been able to successfully expand these cells both in vivo and in vitro and have demonstrated that they can be safely infused in humans for the prevention and treatment of GvHD with no increase in relapse risk or infections risk.

  17. Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions.

    Science.gov (United States)

    Hassan, Sally; Simaria, Ana S; Varadaraju, Hemanthram; Gupta, Siddharth; Warren, Kim; Farid, Suzanne S

    2015-01-01

    To develop a decisional tool to identify the most cost effective process flowsheets for allogeneic cell therapies across a range of production scales. A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. Tangential flow filtration was generally more cost-effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large commercial lot sizes requiring multiple large bioreactors. The DSP contribution to the cost of goods/dose ranged between 20-55%, and 50-80% for planar and bioreactor flowsheets, respectively. This analysis can facilitate early decision-making during process development.

  18. The Implications of Cancer Stem Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wenjing Jiang

    2012-12-01

    Full Text Available Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs, a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.

  19. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  20. Endoscopic Sleeve Gastroplasty (ESG) Is a Reproducible and Effective Endoscopic Bariatric Therapy Suitable for Widespread Clinical Adoption: a Large, International Multicenter Study.

    Science.gov (United States)

    Sartoretto, Adrian; Sui, Zhixian; Hill, Christine; Dunlap, Margo; Rivera, Angielyn R; Khashab, Mouen A; Kalloo, Anthony N; Fayad, Lea; Cheskin, Lawrence J; Marinos, George; Wilson, Erik; Kumbhari, Vivek

    2018-02-15

    Endoscopic sleeve gastroplasty (ESG), an incisionless endoscopic bariatric procedure, has shown impressive results in case series. This study examines the reproducibility, efficacy, and safety in three centers across two countries, and identifies key determinants for procedural success. Patients who underwent ESG between February 2016 and May 2017 at one of three centers (Australia and USA) were retrospectively analyzed. All procedures were performed on an outpatient basis using the Apollo OverStitch device (Apollo Endosurgery, Austin, TX). Primary outcomes included absolute weight loss (ΔWeight, kg), change in body mass index (∆BMI, in kg/m 2 ), total body weight loss (TBWL, %), excess weight loss (EWL, in %), and immediate and delayed adverse events. In total, 112 consecutive patients (male 31%, age 45.1 ± 11.7 years, baseline BMI 37.9 ± 6.7 kg/m 2 ) underwent ESG. At 1, 3, and 6 months, Δweight was 9.0 ± 4.6 kg (TBWL 8.4 ± 4.1%), 12.9 ± 6.4 kg (TBWL 11.9 ± 4.5%), and 16.4 ± 10.7 kg (TBWL 14.9 ± 6.1%), respectively. The proportion of patients who attained greater than 10% TBWL and 25% EWL was 62.2 and 78.0% at 3 months post-ESG and 81.0 and 86.5% at 6 months post-ESG. Weight loss was similar between the three centers. Multivariable analysis showed that male sex, greater baseline body weight, and lack of prior endoscopic bariatric therapy were predictors of greater Δweight at 6 months. Three (2.7%) severe adverse events were observed. ESG is an effective, reproducible, and safe weight loss therapy that is suitable for widespread clinical adoption.

  1. Photothermal therapy of cancer cells using novel hollow gold nanoflowers

    Directory of Open Access Journals (Sweden)

    Han J

    2014-01-01

    Full Text Available Jing Han,1 Jinru Li,1 Wenfeng Jia,1 Liangming Yao,2 Xiaoqin Li,1 Long Jiang,1 Yong Tian21Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, 2Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of ChinaAbstract: This article presents a new strategy for fabricating large gold nanoflowers (AuNFs that exhibit high biological safety under visible light and very strong photothermal cytotoxicity to HeLa cells under irradiation with near-infrared (NIR light. This particular type of AuNF was constructed using vesicles produced from a multiamine head surfactant as a template followed by depositing gold nanoparticles (AuNPs and growing their crystallites on the surface of vesicles. The localized surface plasmon-resonance spectrum of this type of AuNF can be easily modulated to the NIR region by controlling the size of the AuNFs. When the size of the AuNFs increased, biosafety under visible light improved and cytotoxicity increased under NIR irradiation. Experiments in vitro with HeLa cells and in vivo with small mice have been carried out, with promising results. The mechanism for this phenomenon is based on the hypothesis that it is difficult for larger AuNFs to enter the cell without NIR irradiation, but they enter the cell easily at the higher temperatures caused by NIR irradiation. We believe that these effects will exist in other types of noble metallic NPs and cancer cells. In addition, the affinity between AuNPs and functional biomolecules, such as aptamers and biomarkers, will make this type of AuNF a good recognition device in cancer diagnosis and therapy.Keywords: HeLa cells, endocytosis, cytotoxicity, AuNFs, NIR, cancer therapy

  2. Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Rao G

    2017-02-01

    Full Text Available Gautam Rao, Sherwin Mashkouri, David Aum, Paul Marcet, Cesar V Borlongan Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA Abstract: Epilepsy is a debilitating disease that impacts millions of people worldwide. While unprovoked seizures characterize its cardinal symptom, an important aspect of epilepsy that remains to be addressed is the neuropsychiatric component. It has been documented for millennia in paintings and literature that those with epilepsy can suffer from bouts of aggression, depression, and other psychiatric ailments. Current treatments for epilepsy include the use of antiepileptic drugs and surgical resection. Antiepileptic drugs reduce the overall firing of the brain to mitigate the rate of seizure occurrence. Surgery aims to remove a portion of the brain that is suspected to be the source of aberrant firing that leads to seizures. Both options treat the seizure-generating neurological aspect of epilepsy, but fail to directly address the neuropsychiatric components. A promising new treatment for epilepsy is the use of stem cells to treat both the biological and psychiatric components. Stem cell therapy has been shown efficacious in treating experimental models of neurological disorders, including Parkinson’s disease, and neuropsychiatric diseases, such as depression. Additional research is necessary to see if stem cells can treat both neurological and neuropsychiatric aspects of epilepsy. Currently, there is no animal model that recapitulates all the clinical hallmarks of epilepsy. This could be due to difficulty in characterizing the neuropsychiatric component of the disease. In advancing stem cell therapy for treating epilepsy, experimental testing of the safety and efficacy of allogeneic and autologous transplantation will require the optimization of cell dosage, delivery, and timing of transplantation in a

  3. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  4. Medical Therapies for Endometriosis Differentially Inhibit Stem Cell Recruitment.

    Science.gov (United States)

    Ersoy, Gulcin Sahin; Zolbin, Masoumeh Majidi; Cosar, Emine; Mamillapalli, Ramanaiah; Taylor, Hugh S

    2017-06-01

    To determine the effect of the 3 well-known endometriosis treatments on stem cell recruitment to endometriotic lesions. C57BL/6 mice (aged 8 weeks, n = 20) underwent bone marrow transplant following submyeloablation with 5-fluorouracil using 20 × 10 6 bone marrow stem cells from green fluorescent protein (GFP) mice. Two weeks after transplantation, experimental endometriosis was created in mice by suturing segments of the uterine horn into the peritoneal cavity. Mice were then randomized to receive treatment with medroxyprogesterone acetate (MPA), leuprolide acetate (Gonadotrophin-Releasing Hormone Analogue [GnRHa]), letrozole, or vehicle control (dimethyl sulfoxide). After 3 weeks of treatment, the mice were killed and the endometriosis lesions evaluated. All 3 treatments resulted in a significant reduction in lesion volume and weight. Estrogen deprivation using GnRHa or letrozole resulted in greater lesion regression than the progestin MPA. The GFP + /CD45 - bone marrow-derived stem cells (BMDSCs) engrafted the lesions of endometriosis. Estrogen deprivation using GnRHa or letrozole significantly reduced BMDSC engraftment in the endometriosis lesions. MPA failed to significantly reduce stem cell number in endometriosis. The superiority of estrogen deprivation over progestin therapy in depriving the lesions of stem cells may have implications for the long-term treatment of endometriosis. Reduced stem cell engraftment is likely to result in long-term regression of the lesions, whereas progestins may only prevent their growth acutely.

  5. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  6. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients.

    Science.gov (United States)

    El-Kheir, Wael Abo; Gabr, Hala; Awad, Mohamed Reda; Ghannam, Osama; Barakat, Yousef; Farghali, Haithem A M A; El Maadawi, Zeinab M; Ewes, Ibrahim; Sabaawy, Hatem E

    2014-04-01

    Spinal cord injuries (SCI) cause sensory loss and motor paralysis. They are normally treated with physical therapy, but most patients fail to recover due to limited neural regeneration. Here we describe a strategy in which treatment with autologous adherent bone marrow cells is combined with physical therapy to improve motor and sensory functions in early stage chronic SCI patients. In a phase I/II controlled single-blind clinical trial (clinicaltrials.gov identifier: NCT00816803), 70 chronic cervical and thoracic SCI patients with injury durations of at least 12 months were treated with either intrathecal injection(s) of autologous adherent bone marrow cells combined with physical therapy or with physical therapy alone. Patients were evaluated with clinical and neurological examinations using the American Spinal Injury Association (ASIA) Impairment Scale (AIS), electrophysiological somatosensory-evoked potential, magnetic resonance imaging (MRI), and functional independence measurements. Chronic cervical and thoracic SCI patients (15 AIS A and 35 AIS B) treated with autologous adherent bone marrow cells combined with physical therapy showed functional improvements over patients in the control group (10 AIS A and 10 AIS B) treated with physical therapy alone, and there were no long-term cell therapy-related side effects. At 18 months posttreatment, 23 of the 50 cell therapy-treated cases (46%) showed sustained functional improvement. Compared to those patients with cervical injuries, a higher rate of functional improvement was achieved in thoracic SCI patients with shorter durations of injury and smaller cord lesions. Therefore, when combined with physical therapy, autologous adherent bone marrow cell therapy appears to be a safe and promising therapy for patients with chronic SCI of traumatic origin. Randomized controlled multicenter trials are warranted.

  7. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Electrogene therapy with interleukin-12 in canine mast cell tumors

    International Nuclear Information System (INIS)

    Pavlin, Darja; Cemazar, Maja; Cör, Andrej; Sersa, Gregor; Pogacnik, Azra; Tozon, Natasa

    2010-01-01

    Mast cell tumors (MCT) are the most common malignant cutaneous tumors in dogs with extremely variable biological behaviour. Different treatment approaches can be used in canine cutaneous MCT, with surgical excision being the treatment of choice. In this study, electrogene therapy (EGT) as a new therapeutic approach to canine MCTs, was established. Eight dogs with a total of eleven cutaneous MCTs were treated with intratumoral EGT using DNA plasmid encoding human interleukin-12 (IL-12). The local response to the therapy was evaluated by repeated measurements of tumor size and histological examination of treated tumors. A possible systemic response was assessed by determination of IL-12 and interferon- γ (IFN-γ) in patients’ sera. The occurence of side effects was monitored with weekly clinical examinations of treated animals and by performing basic bloodwork, consisting of the complete bloodcount and determination of selected biochemistry parameters. Intratumoral EGT with IL-12 elicits significant reduction of treated tumors’ size, ranging from 13% to 83% (median 50%) of the initial tumor volume. Additionally, a change in the histological structure of treated nodules was seen. There was a reduction in number of malignant mast cells and inflammatory cell infiltration of treated tumors. Systemic release of IL-12 in four patients was detected, without any noticeable local or systemic side effects. These data suggest that intratumoral EGT with plasmid encoding IL-12 may be useful in the treatment of canine MCTs, exerting a local antitumor effect

  9. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Science.gov (United States)

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  10. Definitive radiation therapy for squamous cell carcinoma of the vagina

    International Nuclear Information System (INIS)

    Frank, Steven J.; Jhingran, Anuja; Levenback, Charles; Eifel, Patricia J.

    2005-01-01

    Purpose: To evaluate outcome and describe clinical treatment guidelines for patients with primary squamous cell carcinoma of the vagina treated with definitive radiation therapy. Methods and Materials: Between 1970 and 2000, a total of 193 patients were treated with definitive radiation therapy for squamous cell carcinoma of the vagina at The University of Texas M. D. Anderson Cancer Center. The patients' medical records were reviewed to obtain information about patient, tumor, and treatment characteristics, as well as outcome and patterns of recurrence. Surviving patients were followed for a median of 137 months. Survival rates were calculated using the Kaplan-Meier method, with differences assessed using log-rank tests. Results: Disease-specific survival (DSS) and pelvic disease control rates correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and tumor size. At 5 years, DSS rates were 85% for the 50 patients with Stage I, 78% for the 97 patients with Stage II, and 58% for the 46 patients with Stage III-IVA disease (p = 0.0013). Five-year DSS rates were 82% and 60% for patients with tumors ≤4 cm or >4 cm, respectively (p = 0.0001). At 5 years, pelvic disease control rates were 86% for Stage I, 84% for Stage II, and 71% for Stage III-IVA (p = 0.027). The predominant mode of relapse after definitive radiation therapy was local-regional (68% and 83%, respectively, for patients with stages I-II or III-IVA disease). The incidence of major complications was correlated with FIGO stage; at 5 years, the rates of major complications were 4% for Stage I, 9% for Stage II, and 21% for Stage III-IVA (p < 0.01). Conclusions: Excellent outcomes can be achieved with definitive radiation therapy for invasive squamous cell carcinoma of the vagina. However, to achieve these results, treatment must be individualized according to the site and size of the tumor at presentation and the response to initial external-beam radiation therapy. Brachytherapy

  11. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ...] Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop AGENCY: Food and Drug... Biologics Evaluation and Research (CBER) is announcing a public workshop entitled ``Cell and Gene Therapy... Institutional Review Boards (IRBs), gene and cellular therapy clinical researchers, and other stakeholders...

  12. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies.

    Science.gov (United States)

    Negroni, Elisa; Gidaro, Teresa; Bigot, Anne; Butler-Browne, Gillian S; Mouly, Vincent; Trollet, Capucine

    2015-04-01

    Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies. © 2014 British Neuropathological Society.

  13. Allogeneic adipose stem cell therapy in acute myocardial infarction.

    Science.gov (United States)

    Rigol, Montserrat; Solanes, Núria; Roura, Santiago; Roqué, Mercè; Novensà, Laura; Dantas, Ana Paula; Martorell, Jaume; Sitges, Marta; Ramírez, José; Bayés-Genís, Antoni; Heras, Magda

    2014-01-01

    Stem cell therapy offers a promising approach to reduce the long-term mortality rate associated with heart failure after acute myocardial infarction (AMI). To date, in vivo translational studies have not yet fully studied the immune response to allogeneic adipose tissue-derived mesenchymal stem cells (ATMSCs). We analysed the immune response and the histological and functional effects of allogeneic ATMSCs in a porcine model of reperfused AMI and determine the effect of administration timing. Pigs that survived AMI (24/26) received intracoronary administration of culture medium after reperfusion (n = 6), ATMSCs after reperfusion (n = 6), culture medium 7 days after AMI (n = 6) or ATMSCs 7 days after AMI (n = 6). At 3-week follow-up, cardiac function, alloantibodies and histological analysis were evaluated. Administration of ATMSCs after reperfusion and 7 days after AMI resulted in similar rates of cell engraftment; some of those cells expressed endothelial, smooth muscle and cardiomyogenic cell lineage markers. Delivery of ATMSCs after reperfusion compared with that performed at 7 days was more effective in increasing: vascular density (249 ± 64 vs. 161 ± 37 vessels/mm2; P < 0.01), T lymphocytes (1 ± 0.4 vs. 0.4 ± 0.3% of area CD3(+) ; P < 0.05) and expression of vascular endothelial growth factor (VEGF; 32 ± 7% vs. 20 ± 4% of area VEGF(+) ; P < 0.01). Allogeneic ATMSC-based therapy did not change ejection fraction but generated alloantibodies. The present study is the first to demonstrate that allogeneic ATMSCs elicit an immune response and, when administered immediately after reperfusion, are more effective in increasing VEGF expression and neovascularization. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  14. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  15. Muscle Stem Cell Therapy for the Treatment of DMD Associated Cardiomyopathy

    Science.gov (United States)

    2015-12-01

    Translating Stem Cells and Regenerative Therapies to the Treatment of Liver Diseases”, Cleveland, OH, April 12-13, 2015. 36. Invited Speaker, Gene, Cell ...Award Number: W81XWH-11-1-0803 TITLE: Muscle Stem Cell Therapy for the Treatment of DMD Associated Cardiomyopathy PRINCIPAL INVESTIGATOR... Stem Cell Therapy for the Treatment of DMD Associated Cardiomyopathy 5a. CONTRACT NUMBER Cardiomyopathy 5b. GRANT NUMBER W81XWH-11-1-0803

  16. Progress in stem cell therapy for the diabetic foot.

    Science.gov (United States)

    Jiang, Xiao-Yan; Lu, De-Bin; Chen, Bing

    2012-07-01

    The diabetic foot is a common and severe complication of diabetes comprising a group of lesions including vasculopathy, neuropathy, tissue damage and infection. Vasculopathy due to ischemia is a major contributor to the pathogenesis, natural history and outcome of the diabetic foot. Despite conventional revascularization interventions including angioplasty, stenting, atherectomy and bypass grafts to vessels, a high incidence of amputation persists. The need to develop alternative therapeutic options is compelling; stem cell therapy aims to increase revascularization and alleviate limb ischemia or improve wound healing by stimulating new blood vessel formation, and brings new hope for the treatment of the diabetic foot. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  18. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.

  19. Engineering pancreatic tissues from stem cells towards therapy

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2016-03-01

    Full Text Available Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES or induced pluripotent stem (iPS cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy.

  20. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer.

    Science.gov (United States)

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V

    2016-12-14

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration.

  1. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    Directory of Open Access Journals (Sweden)

    Robert Sullivan

    2016-12-01

    Full Text Available Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration.

  2. Bases da terapia celular em cardiologia Cell therapy in cardiology

    Directory of Open Access Journals (Sweden)

    Antonio Carlos C. Carvalho

    2009-05-01

    this new therapy obtained over the last decade, many questions remain unanswered. We still know very little about the mechanisms of action that may lead to positive results after cell therapy. Additionally, the best route for cell transplantation, the best number and concentration of cells and the best cell type for transplant remain important questions that are still undefined. It is a fact that many bone marrow cells exert their effects through paracrine mechanisms, and that a complex mechanism of interaction, contact and signal release exists between these cells and other cell populations in damaged organs. Currently the majority of human studies are focused on the use of adult and autologous cells in contrast to the use of embryonic cells. This review describes the main clinical trials that have been performed using bone marrow-derived cells in the setting of four distinct heart diseases: acute and chronic ischemic heart disease and chagasic and dilated cardiomyopathies. Results from these studies demonstrate the procedure to be safe and feasible, and potentially efficacious. Undoubtedly more pre-clinical and clinical studies are necessary to assess the real potential benefit of this new therapeutic model.

  3. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells.

    Science.gov (United States)

    Dos Santos, Ancély F; Terra, Letícia F; Wailemann, Rosangela A M; Oliveira, Talita C; Gomes, Vinícius de Morais; Mineiro, Marcela Franco; Meotti, Flávia Carla; Bruni-Cardoso, Alexandre; Baptista, Maurício S; Labriola, Leticia

    2017-03-15

    Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm 2 . We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. Finally, our observations underscore the potential of MB

  4. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice

    DEFF Research Database (Denmark)

    Parish, Clare L; Castelo-Branco, Gonçalo; Rawal, Nina

    2008-01-01

    Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation...... and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD....

  5. Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer

    DEFF Research Database (Denmark)

    Junker, Niels; Andersen, Mads Hald; Wenandy, Lynn

    2011-01-01

    tumors in high-dose interleukin (IL)-2. Secondly, selected bulk cultures were rapidly expanded using anti-CD3 antibody, feeder cells and high-dose IL-2. T-cell subsets were phenotypically characterized using flow cytometry. T-cell receptor (TCR) clonotype mapping was applied to examine clonotype dynamics...... of tumor-specific T-cell cultures from TIL from patients with head and neck squamous cell carcinoma (HNSCC) using a more rapid expansion procedure compared with previous HNSCC studies. Methods. In a two-step expansion process, initially TIL bulk cultures were established from primary and recurrent HNSCC...

  6. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies

    Czech Academy of Sciences Publication Activity Database

    Žižková, Martina; Suchá, Rita; Tylečková, Jiřina; Jarkovská, Karla; Mairychová, Kateřina; Kotrčová, Eva; Marsala, M.; Gadher, S. J.; Kovářová, Hana

    2015-01-01

    Roč. 12, č. 1 (2015), s. 83-95 ISSN 1478-9450 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell therapy * immunomodulation * neural stem cell differentiation * neural subpopulation * neurodegenerative disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.465, year: 2015

  7. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...... compliant medium for MSC cultivation, expansion and differentiation. The expanded and differentiated MSCs can be used in autologous mesenchymal stromal cell therapy in patients with ischaemic heart disease Udgivelsesdato: 2008...

  8. PHOTODYNAMIC THERAPY WITH PHOTOSENSITIZER PHOTOLON FOR BASAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    D. A. Tzerkovsky

    2017-01-01

    Full Text Available The short-term and long-term outcomes of treatment in 130 patients with basal cell carcinoma (T1N0M0, I stage using photodynamic therapy with photosensitizer photolon based on chlorine e6 are represented in the article. The session of photodynamic therapy was performed 2.5-3 h after intravenous injection of photolon at dose of 2-2.5 mg/kg using semiconductor laser (λ=660±5 nm, laser power density — from 0.1 to 0.52 W/cm2, light dose — from 50 to 300 J/cm2. Complete regression of primary and recurrent carcinomas was observed in 90.9% and 88.9% of patients, respectively. For follow-up period of 3 to 76 months the local recurrence of the tumor was in detected in 6.9% of cases. Patients, who followed the light regimen for 2–3 days after photolon administration avoiding direct sun light exposure, had no manifestation of phototoxicity. Ten patients who failed to follow the light regimen had mild hyperemia, itching and burning in the exposed skin area selflimiting in several hours. Cosmetic results of photodynamic therapy with photolon are superior to those for traditional treatment methods for this disease.

  9. Cell Therapy in Patients with Critical Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Rita Compagna

    2015-01-01

    Full Text Available Critical limb ischemia (CLI represents the most advanced stage of peripheral arterial obstructive disease (PAOD with a severe obstruction of the arteries which markedly reduces blood flow to the extremities and has progressed to the point of severe rest pain and/or even tissue loss. Recent therapeutic strategies have focused on restoring this balance in favor of tissue survival using exogenous molecular and cellular agents to promote regeneration of the vasculature. These are based on stimulation of angiogenesis by extracellular and cellular components. This review article carries out a systematic analysis of the most recent scientific literature on the application of stem cells in patients with CLI. The results obtained from the detailed analysis of the recent literature data have confirmed the beneficial role of cell therapy in reducing the rate of major amputations in patients with CLI and improving their quality of life.

  10. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy.

    Science.gov (United States)

    Eichler, Florian; Duncan, Christine; Musolino, Patricia L; Orchard, Paul J; De Oliveira, Satiro; Thrasher, Adrian J; Armant, Myriam; Dansereau, Colleen; Lund, Troy C; Miller, Weston P; Raymond, Gerald V; Sankar, Raman; Shah, Ami J; Sevin, Caroline; Gaspar, H Bobby; Gissen, Paul; Amartino, Hernan; Bratkovic, Drago; Smith, Nicholas J C; Paker, Asif M; Shamir, Esther; O'Meara, Tara; Davidson, David; Aubourg, Patrick; Williams, David A

    2017-10-26

    In X-linked adrenoleukodystrophy, mutations in ABCD1 lead to loss of function of the ALD protein. Cerebral adrenoleukodystrophy is characterized by demyelination and neurodegeneration. Disease progression, which leads to loss of neurologic function and death, can be halted only with allogeneic hematopoietic stem-cell transplantation. We enrolled boys with cerebral adrenoleukodystrophy in a single-group, open-label, phase 2-3 safety and efficacy study. Patients were required to have early-stage disease and gadolinium enhancement on magnetic resonance imaging (MRI) at screening. The investigational therapy involved infusion of autologous CD34+ cells transduced with the elivaldogene tavalentivec (Lenti-D) lentiviral vector. In this interim analysis, patients were assessed for the occurrence of graft-versus-host disease, death, and major functional disabilities, as well as changes in neurologic function and in the extent of lesions on MRI. The primary end point was being alive and having no major functional disability at 24 months after infusion. A total of 17 boys received Lenti-D gene therapy. At the time of the interim analysis, the median follow-up was 29.4 months (range, 21.6 to 42.0). All the patients had gene-marked cells after engraftment, with no evidence of preferential integration near known oncogenes or clonal outgrowth. Measurable ALD protein was observed in all the patients. No treatment-related death or graft-versus-host disease had been reported; 15 of the 17 patients (88%) were alive and free of major functional disability, with minimal clinical symptoms. One patient, who had had rapid neurologic deterioration, had died from disease progression. Another patient, who had had evidence of disease progression on MRI, had withdrawn from the study to undergo allogeneic stem-cell transplantation and later died from transplantation-related complications. Early results of this study suggest that Lenti-D gene therapy may be a safe and effective alternative to

  11. Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities.

    Science.gov (United States)

    Harrison, Richard P; Ruck, Steven; Medcalf, Nicholas; Rafiq, Qasim A

    2017-10-01

    Decentralized or "redistributed" manufacturing has the potential to revolutionize the manufacturing approach for cell and gene therapies (CGTs), moving away from the "Fordist" paradigm, delivering health care locally, customized to the end user and, by its very nature, overcoming many of the challenges associated with manufacturing and distribution of high volume goods. In departing from the traditional centralized model of manufacturing, decentralized manufacturing divides production across sites or geographic regions. This paradigm shift imposes significant structural and organisational changes on a business presenting both hidden challenges that must be addressed and opportunities to be embraced. By profoundly adapting business practices, significant advantages can be realized through a democratized value chain, creation of professional-level jobs without geographic restriction to the central hub and a flexibility in response to external pressures and demands. To realize these potential opportunities, however, advances in manufacturing technology and support systems are required, as well as significant changes in the way CGTs are regulated to facilitate multi-site manufacturing. Decentralized manufacturing is likely to be the manufacturing platform of choice for advanced health care therapies-in particular, those with a high degree of personalization. The future success of these promising products will be enhanced by adopting sound business strategies early in development. To realize the benefits that decentralized manufacturing of CGTs has to offer, it is important to examine both the risks and the substantial opportunities present. In this research, we examine both the challenges and the opportunities this shift in business strategy represents in an effort to maximize the success of adoption. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  13. Anti-cancer effects of oncolytic viral therapy combined with photodynamic therapy in human pancreatic cancer cell lines.

    Science.gov (United States)

    Khaled, Yazan S; Wright, Kathleen; Melcher, Alan; Jayne, David

    2015-02-26

    Oncolytic viral therapy and photodynamic therapy are potential therapies for inoperable or advanced pancreatic cancer. Our aim was to investigate the anti-cancer killing effects of reovirus therapy combined with protoporphyrin IX (PpIX)-mediated photodynamic therapy on a variety of human pancreatic cancer cell lines. Pancreatic cancer cell lines (PsPC-1 and BXPC-3) and a non-cancer control cell line (HEK293) were infected with reovirus serotype 3 strain Dearing (T3D) at 0, 0·1, 1, and 10 plaque-forming units (PFU) per cell for 48 h. Cells were incubated with PpIX pro-drug 5-aminolevulinic acid (5-ALA) at 0, 1, 2, 3, and 4 mM for 4 h. Then, cells were photo-irradiated for 15 min with visible red light-emitting diodes with a light-fluence of 0·54 J/cm(2) of 653 nm (PpIX optimal excitation wavelength). The killing effects of reovirus combined with PpIX-mediated photodynamic therapy were analysed in methylthiazoltetrazolium (MTT) and trypan blue assays. The effect of adding reovirus after photodynamic therapy was also assessed. The statistical significance of the difference between groups was assessed with the two-tailed Student's t test. pphotodynamic therapy resulted in a significantly increased cytotoxic effect compared with reovirus monotherapy and photodynamic therapy (p=0·042) with 100% cell death observed across pancreatic cell lines with 10 PFU per cell combined with 1 and 2 mM 5-ALA. There was no difference in cytotoxicity observed between added reovirus before or after photodynamic therapy. To our knowledge, this is the first in-vitro study to combine reovirus oncolytic viral therapy with PpIX-mediated photodynamic therapy to treat pancreatic cancer. These results show a significant additive effect in cell killing and they provide initial evidence for a novel combined therapeutic intervention. National Institute for Health Research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects

    NARCIS (Netherlands)

    Benderitter, Marc; Caviggioli, Fabio; Chapel, Alain; Coppes, Robert P.; Guha, Chandan; Klinger, Marco; Malard, Olivier; Stewart, Fiona; Tamarat, Radia; Van Luijk, Peter; Limoli, Charles L.

    2014-01-01

    Significance: Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for

  15. Regenerative Therapies in Dry Eye Disease: From Growth Factors to Cell Therapy

    Directory of Open Access Journals (Sweden)

    Antonio J. Villatoro

    2017-10-01

    Full Text Available Dry eye syndrome is a complex and insidious pathology with a high level of prevalence among the human population and with a consequently high impact on quality of life and economic cost. Currently, its treatment is symptomatic, mainly based on the control of lubrication and inflammation, with significant limitations. Therefore, the latest research is focused on the development of new biological strategies, with the aim of regenerating affected tissues, or at least restricting the progression of the disease, reducing scar tissue, and maintaining corneal transparency. Therapies range from growth factors and cytokines to the use of different cell sources, in particular mesenchymal stem cells, due to their multipotentiality, trophic, and immunomodulatory properties. We will review the state of the art and the latest advances and results of these promising treatments in this pathology.

  16. An Interventional Study Using Cell-Mediated Immunity to Personalize Therapy for Cytomegalovirus Infection After Transplantation.

    Science.gov (United States)

    Kumar, D; Mian, M; Singer, L; Humar, A

    2017-09-01

    Cell-mediated immune responses predict clinical cytomegalovirus (CMV) events but have not been adopted into routine practice due to lack of interventional studies. Our objective was to demonstrate the safety and feasibility of early discontinuation of antivirals based on the real-time measurement of CMV-specific cell-mediated immunity (CMI) in patients with CMV viremia. Transplant patients were enrolled at the onset of CMV viremia requiring antiviral therapy. CD8 T cell responses were determined using the Quantiferon-CMV assay, and results were used to guide subsequent management. A total of 27 patients (median viral load at onset 10 900 International Units/mL) were treated until viral load negative. At end of treatment, 14/27 (51.9%) had a positive CMV-CMI response and had antivirals discontinued. The remaining 13/27 (48.1%) patients had a negative CMV-CMI response and received 2 months of secondary antiviral prophylaxis. In those with a positive CMI and early discontinuation of antivirals, only a single patient experienced a low-level asymptomatic recurrence. In contrast, recurrence was observed in 69.2% of CMI-negative patients despite more prolonged antivirals (p = 0.001). In conclusion, this is the first study to demonstrate the feasibility and safety of real-time CMV-specific CMI assessment to guide changes to the management of CMV infection. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    Directory of Open Access Journals (Sweden)

    Mohammad G. Mohammad

    2012-12-01

    Full Text Available Multiple sclerosis (MS is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE, the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs, the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.

  18. Therapy of murine squamous cell carcinomas with 2-difluoromethylornithine

    Directory of Open Access Journals (Sweden)

    Chen Yan

    2004-06-01

    Full Text Available Abstract Targeted overexpression of an ornithine decarboxylase (ODC transgene to mouse skin (the K6/ODC mouse significantly enhances susceptibility to carcinogenesis. While in most strain backgrounds the predominant tumor type resulting from initiation-promotion protocols is benign squamous papilloma, K6/ODC mice on a FVB/N background develop malignant squamous cell carcinomas (SCCs rapidly and in high multiplicity after carcinogen treatment. We have investigated the utility of polyamine-based therapy against SCCs in this model using the ODC inhibitor 2-difluoromethylornithine delivered orally. At a 2% concentration in drinking water, DFMO caused rapid tumor regression, but in most cases, tumors eventually regrew rapidly even in the presence of DFMO. The tumors that regrew were spindle cell carcinomas, an aggressive undifferentiated variant of SCC. At 1% DFMO in the drinking water, tumors also responded rapidly, but tumor regrowth did not occur. The majority of DFMO-treated SCCs were classified as complete responses, and in some cases, apparent tumor cures were achieved. The enzymatic activity of ODC, the target of DFMO, was substantially reduced after treatment with 1% DFMO and the high SCC polyamine levels, especially putrescine, were also significantly lowered. Based on the results of BrdUrd labeling and TUNEL assays, the effect of DFMO on SCC growth was accompanied by a significant reduction in tumor proliferation with no increase in the apoptotic index. These results demonstrate that SCCs, at least in the mouse, are particularly sensitive to polyamine-based therapy.

  19. Mesenchymal Stromal Cell Therapy in Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Pascal Rowart

    2015-01-01

    Full Text Available Ischemia/reperfusion injury (IRI represents a worldwide public health issue of increasing incidence. IRI may virtually affect all organs and tissues and is associated with significant morbidity and mortality. Particularly, the duration of blood supply deprivation has been recognized as a critical factor in stroke, hemorrhagic shock, or myocardial infarction, as well as in solid organ transplantation (SOT. Pathophysiologically, IRI causes multiple cellular and tissular metabolic and architectural changes. Furthermore, the reperfusion of ischemic tissues induces both local and systemic inflammation. In the particular field of SOT, IRI is an unavoidable event, which conditions both short- and long-term outcomes of graft function and survival. Clinically, the treatment of patients with IRI mostly relies on supportive maneuvers since no specific target-oriented therapy has been validated thus far. In the present review, we summarize the current literature on mesenchymal stromal cells (MSC and their potential use as cell therapy in IRI. MSC have demonstrated immunomodulatory, anti-inflammatory, and tissue repair properties in rodent studies and in preliminary clinical trials, which may open novel avenues in the management of IRI and SOT.

  20. Psychological therapies for sickle cell disease and pain.

    Science.gov (United States)

    Anie, Kofi A; Green, John

    2015-05-08

    Sickle cell disease comprises a group of genetic blood disorders. It occurs when the sickle haemoglobin gene is inherited from both parents. The effects of the condition are: varying degrees of anaemia which, if severe, can reduce mobility; a tendency for small blood capillaries to become blocked causing pain in muscle and bone commonly known as 'crises'; damage to major organs such as the spleen, liver, kidneys, and lungs; and increased vulnerability to severe infections. There are both medical and non-medical complications, and treatment is usually symptomatic and palliative in nature. Psychological interventions for individuals with sickle cell disease might complement current medical treatment, and studies of their efficacy have yielded encouraging results. This is an update of a previously published Cochrane Review. To examine the evidence that psychological interventions improve the ability of people with sickle cell disease to cope with their condition. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises references identified from comprehensive electronic database searches and the Internet, handsearches of relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 17 February 2015. All randomised or quasi-randomised controlled trials comparing psychological interventions with no (psychological) intervention in people with sickle cell disease. Both authors independently extracted data and assessed the risk of bias of the included studies. Twelve studies were identified in the searches and seven of these were eligible for inclusion in the review. Five studies, involving 260 participants, provided data for analysis. One study showed that cognitive behaviour therapy significantly reduced the affective component of pain (feelings about pain), mean difference -0.99 (95% confidence interval -1.62 to -0.36), but

  1. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model.

    Directory of Open Access Journals (Sweden)

    Goichi Yanai

    Full Text Available Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes

  2. A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.

    Science.gov (United States)

    Lu, Tangying Lily; Pugach, Omar; Somerville, Robert; Rosenberg, Steven A; Kochenderfer, James N; Better, Marc; Feldman, Steven A

    2016-12-01

    The treatment of B-cell malignancies by adoptive cell transfer (ACT) of anti-CD19 chimeric antigen receptor T cells (CD19 CAR-T) has proven to be a highly successful therapeutic modality in several clinical trials. 1-6 The anti-CD19 CAR-T cell production method used to support initial trials relied on numerous manual, open process steps, human serum, and 10 days of cell culture to achieve a clinical dose. 7 This approach limited the ability to support large multicenter clinical trials, as well as scale up for commercial cell production. Therefore, studies were completed to streamline and optimize the original National Cancer Institute production process by removing human serum from the process in order to minimize the risk of viral contamination, moving process steps from an open system to functionally closed system operations in order to minimize the risk of microbial contamination, and standardizing additional process steps in order to maximize process consistency. This study reports a procedure for generating CD19 CAR-T cells in 6 days, using a functionally closed manufacturing process and defined, serum-free medium. This method is able to produce CD19 CAR-T cells that are phenotypically and functionally indistinguishable from cells produced for clinical trials by the previously described production process.

  3. Stem cell-transplantation therapy for adrenoleukodystrophy: current perspectives

    Directory of Open Access Journals (Sweden)

    Miller W

    2017-01-01

    Full Text Available Weston Miller Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA Abstract: Adrenoleukodystrophy (ALD is a rare, X-linked peroxisomal disorder of impaired very long-chain fatty-acid metabolism. It results from various mutations in the ABCD1 gene (Xq28. All males with the biochemical defect of ALD are at risk of developing cerebral white-matter disease (cALD during their lifetime. Thirty-five percent of ALD patients develop cALD in boyhood, a life-threatening phenotype characterized by rapidly expanding, neuroinflammatory demyelination and irreversible clinical neurologic decline. The ABCD1 genotype does not predict susceptibility to or protection from the childhood cALD phenotype; therefore, clinicians must remain ever vigilant for its development when monitoring ALD patients. Currently, allogeneic hematopoietic cell transplantation (HCT is the standard of care for boyhood cALD. While HCT provides dramatic functional survival benefit in boys with early, presymptomatic cALD, outcomes are less favorable and less predictable for those with more advanced disease. Furthermore, little is known about how successful HCT in childhood might impact the onset of central nervous system disease in adulthood. Finally, investigations of experimental gene-therapy strategies are ongoing. This review explores current perspectives of stem cell transplantation in cALD. Keywords: adrenoleukodystrophy, cerebral adrenoleukodystrophy, stem cell transplantation, bone marrow transplantation, umbilical cord-blood transplantation, hematopoietic cell transplantation 

  4. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    Science.gov (United States)

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-01

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  5. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  6. Metabolic and structural integrity of magnetic nanoparticle-loaded primary endothelial cells for targeted cell therapy.

    Science.gov (United States)

    Orynbayeva, Zulfiya; Sensenig, Richard; Polyak, Boris

    2015-05-01

    To successfully translate magnetically mediated cell targeting from bench to bedside, there is a need to systematically assess the potential adverse effects of magnetic nanoparticles (MNPs) interacting with 'therapeutic' cells. Here, we examined in detail the effects of internalized polymeric MNPs on primary rat endothelial cells' structural intactness, metabolic integrity and proliferation potential. The intactness of cytoskeleton and organelles was studied by fluorescent confocal microscopy, flow cytometry and high-resolution respirometry. MNP-loaded primary endothelial cells preserve intact cytoskeleton and organelles, maintain normal rate of proliferation, calcium signaling and mitochondria energy metabolism. This study provides supportive evidence that MNPs at doses necessary for targeting did not induce significant adverse effects on structural integrity and functionality of primary endothelial cells - potential cell therapy vectors.

  7. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy

    NARCIS (Netherlands)

    de Vries, I. Jolanda M.; Lesterhuis, W. Joost; Barentsz, Jelle O.; Verdijk, Pauline; van Krieken, J. Han; Boerman, Otto C.; Oyen, Wim J. G.; Bonenkamp, Johannes J.; Boezeman, Jan B.; Adema, Gosse J.; Bulte, Jeff W. M.; Scheenen, Tom W. J.; Punt, Cornelis J. A.; Heerschap, Arend; Figdor, Carl G.

    2005-01-01

    The success of cellular therapies will depend in part on accurate delivery of cells to target organs. In dendritic cell therapy, in particular, delivery and subsequent migration of cells to regional lymph nodes is essential for effective stimulation of the immune system. We show here that in vivo

  8. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy.

    NARCIS (Netherlands)

    Vries, I.J.M. de; Lesterhuis, W.J.; Barentsz, J.O.; Verdijk, P.; Krieken, J.H.J.M. van; Boerman, O.C.; Oyen, W.J.G.; Bonenkamp, J.J.; Boezeman, J.B.M.; Adema, G.J.; Bulte, J.W.; Scheenen, T.W.J.; Punt, C.J.A.; Heerschap, A.; Figdor, C.G.

    2005-01-01

    The success of cellular therapies will depend in part on accurate delivery of cells to target organs. In dendritic cell therapy, in particular, delivery and subsequent migration of cells to regional lymph nodes is essential for effective stimulation of the immune system. We show here that in vivo

  9. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  10. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  11. Clinical significance of metallothioneins in cell therapy and nanomedicine

    Directory of Open Access Journals (Sweden)

    Sharma S

    2013-04-01

    Full Text Available Sushil Sharma,1 Afsha Rais,1 Ranbir Sandhu,1 Wynand Nel,1 Manuchair Ebadi21Saint James School of Medicine, Bonaire, The Netherlands; 2Department of Pharmacology, Physiology, and Therapeutics, Center of Excellence in Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USAAbstract: Mammalian metallothioneins (MTs are low molecular weight (6–7 kDa cysteine-rich proteins that are specifically induced by metal nanoparticles (NPs. MT induction in cell therapy may provide better protection by serving as antioxidant, anti-inflammatory, antiapoptotic agents, and by augmenting zinc-mediated transcriptional regulation of genes involved in cell proliferation and differentiation. Liposome-encapsulated MT-1 promoter has been used extensively to induce growth hormone or other genes in culture and gene-manipulated animals. MTs are induced as a defensive mechanism in chronic inflammatory conditions including neurodegenerative diseases, cardiovascular diseases, cancer, and infections, hence can serve as ea