WorldWideScience

Sample records for adiposity offaster longer-distanced

  1. Self-selection contributes significantly to the lower adiposity offaster, longer-distanced, male and female walkers

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.

    2006-01-06

    Although cross-sectional studies show active individuals areleaner than their sedentary counterparts, it remains to be determined towhat extent this is due to initially leaner men and women choosing toexercise longer and more intensely (self-selection bias). In this reportwalking volume (weekly distance) and intensity (speed) were compared tocurrent BMI (BMIcurrent) and BMI at the start of walking (BMIstarting) in20,353 women and 5,174 men who had walked regularly for exercise for 7.2and 10.6 years,respectively. The relationships of BMIcurrent andBMIstarting with distance and intensity were nonlinear (convex). Onaverage, BMIstarting explained>70 percent of the association betweenBMIcurrent and intensity, and 40 percent and 17 percent of theassociation between BMIcurrent and distance in women and men,respectively. Although the declines in BMIcurrent with distance andintensity were greater among fatter than leaner individuals, the portionsattributable to BMIstarting remained relatively constant regardless offatness. Thus self-selection bias accounts for most of the decline in BMIwith walking intensity and smaller albeit significant proportions of thedecline with distance. This demonstration of self-selection is germane toother cross-sectional comparisons in epidemiological research, givenself-selection is unlikely to be limited to weight or peculiar tophysical activity.

  2. The influence of socio-economic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips

    OpenAIRE

    Limtanakool, N.; Dijst, M.J.; Schwanen, T.

    2006-01-01

    This paper contributes to the limited number of investigations into the influence of the spatial configuration of land use and transport systems on mode choice for medium- and longer-distance travel (defined here as home-based trips of 50 km and over) in the Netherlands. We have employed data from the 1998 Netherlands National Travel Survey to address the question as to how socioeconomic factors, land use attributes, and travel time affect mode choice for medium- and longer-distance travel, a...

  3. The influence of socio-economic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips

    NARCIS (Netherlands)

    Limtanakool, N.; Dijst, M.J.; Schwanen, T.

    2006-01-01

    This paper contributes to the limited number of investigations into the influence of the spatial configuration of land use and transport systems on mode choice for medium- and longer-distance travel (defined here as home-based trips of 50 km and over) in the Netherlands. We have employed data from

  4. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  5. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  6. Methodologies to assess paediatric adiposity.

    LENUS (Irish Health Repository)

    Horan, M

    2014-05-04

    Childhood obesity is associated with increased risk of adult obesity, cardiovascular disease, diabetes and cancer. Appropriate techniques for assessment of childhood adiposity are required to identify children at risk. The aim of this review was to examine core clinical measurements and more technical tools to assess paediatric adiposity.

  7. Interactive effects of age and exercise on adiposity measures of41,582 physically active women

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.; Satariano William A.

    2004-06-01

    The objective of this report is to assess in women whether exercise affects the estimated age-related increase in adiposity, and contrariwise, whether age affects the estimated exercise-related decrease in adiposity. Cross-sectional analyses of 64,911 female runners who provided data on their body mass index (97.6 percent), waist (91.1percent), and chest circumferences (77.9 percent). Age affected the relationships between vigorous exercise and adiposity. The decline in BMI per km/wk run was linear in 18-25 year olds (-0.023+-0.002 kg/m2 perkm run) and became increasingly nonlinear (convex or upwardly concave) with age. The waist, hip and chest circumferences declined significantly with running distance across all age groups, but the declines were 52-58 percent greater in older than younger women (P<10-5). The relationships between body circumferences and running distance became increasingly convexity (upward concavity) in older women. Conversely, vigorous exercise diminished the apparent increase in adiposity with age. The rise in average BMI with age was greatest in women who ran less than 8 km/week (0.065+-0.005 kg/m2 per y), intermediate of women who ran 8-16km/wk (0.025+-0.004kg/m2 per y) or 16-32 km/wk (0.022+-0.003 kg/m2 pery), and least in those who averaged over 32 km/wk (0.017+-0.001 kg/m2 pery). Before age 45, waist circumference rose 0.055+-0.026 cm in for those who ran 0-8 km/wk, showed no significant change for those who ran 8-40km./wk, and declined -0.057+-0.012 and -0.069+-0.014 cm per year in those who ran 40 -56 and over 56 km/wk. The rise in hip and chest circumferences with age were significantly greater in women who ran under eight km/wk than longer distance runners for hip (0.231+-0.018 vs0.136+-0.004 cm/year) and chest circumferences (0.137+-0.013 vs0.053+-0.003 cm/year). These cross-sectional associations suggest that in women, age and vigorous exercise interact with each other in affecting adiposity. The extent that these cross

  8. White adipose tissue: Getting nervous

    NARCIS (Netherlands)

    Fliers, E.; Kreier, F.; Voshol, P. J.; Havekes, L. M.; Sauerwein, H. P.; Kalsbeek, A.; Buijs, R. M.; Romijn, J. A.

    2003-01-01

    Neuroendocrine research has altered the traditional perspective of white adipose tissue (WAT) as a passive store of triglycerides. In addition to fatty acids, WAT produces many hormones and can therefore be designated as a traditional endocrine gland actively participating in the integrative

  9. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  10. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  11. Cross-sectional relationships of exercise and age to adiposity in60,617 male runners

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.; Pate, Russell R.

    2004-06-01

    The objective of this report is to assess in men whether exercise affects the estimated age-related increase in adiposity, and contrariwise, whether age affects the estimated exercise-related decrease in adiposity. Cross-sectional analyses of 64,911 male runners who provided data on their body mass index (97.6 percent), waist (91.1 percent), hip (47.1 percent), and chest circumferences (77.9 percent). Between 18 to 55 years old, the decline in BMI with weekly distance run (slope+-SE) was significantly greater in men 25-55 years old (slope+-:-0.036+-0.001 kg/m2 per km/wk) than in younger men (-0.020+-0.002 kg/m 2 per km/wk). Declines in waist circumference with running distance were also significantly greater in older than younger men (P<10-9 for trend),i.e., the slopes decreased progressively from -0.035+-0.004 cm per km/wk in 18-25 year old men to -0.097+-0.003 cm per km/wk in 50-55 year old men. Increases in BMI with age were greater for men who ran under 16km/wk than for longer distance runners. Waist circumference increased with age at all running levels, but the increase appeared to diminish by running further (0.259+-0.015 cm per year if running<8 km/wk and 0.154+-0.003 cm per year for>16 km/wk). In men over 50 years old, BMI declined -0.038+-0.001 kg/m2 per km/wk run when adjusted for age and declined -0.054+-0.003 kg/m2 (increased 0.021+-0.007 cm) per year of age when adjusted for running distance. Their waist circumference declined-0.096+-0.002 cm per km/wk run when adjusted for age and increased 0.021+-0.007 cm per year of age when adjusted for running distance. These cross-sectional data suggest that age and vigorous exercise interact with each other in affecting mens adiposity, and support the proposition that vigorous physical activity must increase with age to prevent middle-age weight gain. We estimate that a man who ran 16 km/wk at age 25 would need to increase their weekly running distance by 65.7 km/wk by age 50 in order to maintain his same waist

  12. The Adipose Tissue in Farm Animals

    DEFF Research Database (Denmark)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura

    2014-01-01

    and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance...... in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal...... and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics...

  13. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    OpenAIRE

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated wi...

  14. Phenylalanine kinetics in human adipose tissue.

    OpenAIRE

    Coppack, S W; Persson, M; Miles, J M

    1996-01-01

    Very little is known about the regulation of protein metabolism in adipose tissue. In this study systemic, adipose tissue, and forearm phenylalanine kinetics were determined in healthy postabsorptive volunteers before and during a 2-h glucose infusion (7 mg.kg-1.min-1). [3H]Phenylalanine was infused and blood was sampled from a radial artery, a subcutaneous abdominal vein, and a deep forearm vein. Adipose tissue and forearm blood flow were measured with 133Xe and plethysmography, respectively...

  15. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  16. Adiposity distribution influences circulating adiponectin levels

    Science.gov (United States)

    Guenther, Mitchell; James, Roland; Marks, Jacqueline; Zhao, Shi; Szabo, Aniko; Kidambi, Srividya

    2015-01-01

    Thirty percent of obese individuals are metabolically healthy and were noted have increased peripheral obesity. Adipose tissue is the primary source of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Lower adiponectin levels are observed in individuals with obesity and those at risk for cardiovascular disease. Conversely, higher levels are noted in some obese individuals who are metabolically healthy. Our objective was to determine whether abdominal adiposity distribution, rather than BMI status, influences plasma adiponectin level. Four-hundred and twenty-four subjects (female: 255) of Northern European ancestry were recruited from “Take Off Pounds Sensibly” (TOPS) weight loss club members. Demographics, anthropometrics, and dual X-ray absorptiometry of the whole body and CT scan of the abdomen were performed to obtain total body fat content and to quantify subcutaneous adipose tissue and visceral adipose tissue respectively. Laboratory measurements included fasting plasma glucose, insulin, lipid panel, and adiponectin. Age- and gender-adjusted correlation analyses showed that adiponectin levels were negatively correlated with body mass index, waist circumference, triglycerides, total fat mass, and visceral adipose tissue. A positive correlation was noted with HDL-cholesterol and fat free mass (padipose tissue -to-visceral adipose tissue ratios were also significantly associated with adiponectin (r=0.13, p = 0.001). Further, the best positive predictors for plasma adiponectin were found to be subcutaneous adipose tissue -to-visceral adipose tissue ratios and gender by regression analyses (Padiposity distribution is an important predictor of plasma adiponectin and obese individuals with higher subcutaneous adipose tissue -to-visceral adipose tissue ratios may have higher adiponectin levels. PMID:24811003

  17. Overeating styles and adiposity among multiethnic youth.

    Science.gov (United States)

    Ledoux, Tracey; Watson, Kathy; Baranowski, Janice; Tepper, Beverly J; Baranowski, Tom

    2011-02-01

    Reasons for inconsistent associations between overeating styles and adiposity among youth may include differences in effects by age, gender, or ethnicity; failure to control for social desirability of response; or adiposity measurement limitations. This study examined the relationship between overeating styles and multiple measures of adiposity, after controlling for social desirability and testing for moderation by ethnicity, age, and gender. Data from 304 9-10 year old children and 264 17-18 year old adolescents equally representing African American, Hispanic, and White ethnic groups were extracted from a larger cross-sectional study. Measures included the Dutch Eating Behavior Questionnaire (restrained, external, and emotional overeating subscales), the "Lie Scale" from the Revised Children's Manifest Anxiety Scale, and measured weight, height, waist circumference, and triceps skinfold. BMI z-score and a global adiposity index were calculated. Mixed model linear regression showed restraint was positively and external eating was negatively related to measures of adiposity. African American youth had a stronger inverse association between emotional eating and adiposity than White or Hispanic youth. Relationships were not influenced by social desirability nor moderated by age or gender. Overeating styles are related to adiposity in nearly all youth but the nature of these associations are moderated by ethnicity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  19. Adipose tissue as an endocrine organ.

    Science.gov (United States)

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. HIV Persistence in Adipose Tissue Reservoirs.

    Science.gov (United States)

    Couturier, Jacob; Lewis, Dorothy E

    2018-02-01

    The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and

  1. White adipose tissue coloring by intermittent fasting.

    Science.gov (United States)

    Kivelä, Riikka; Alitalo, Kari

    2017-11-01

    Intermittent fasting (IF) has been shown to promote metabolic health in several organisms. Two recent papers show that IF induces white adipose tissue beiging and increases thermogenesis, which improves metabolic health in mice.

  2. Adenovirus 36 DNA in human adipose tissue.

    Science.gov (United States)

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  3. Adipose stem cells for bone tissue repair

    OpenAIRE

    Ciuffi, Simone; Zonefrati, Roberto; Brandi, Maria Luisa

    2017-01-01

    Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlik...

  4. Longer distance from home to invasive centre is associated with lower rate of coronary angiographies following acute coronary syndrome

    DEFF Research Database (Denmark)

    Hvelplund, Anders; Galatius, Søren; Madsen, Mette

    Purpose: We studied the unselected population of all acute coronary syndrome (ACS) patients of an entire nation in order to evaluate differences in coronary angiography (CAG) rate. Denmark (population 5.5 million) has a universal health insurance coverage system and uniform national guidelines...... for the treatment of ACS. There are 5 tertiary invasive centres performing CAG, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), 8 hospitals with diagnostic units performing CAG only, and a further 36 hospitals without these facilities receiving patients with ACS. We investigated...... in comparison to those living closest to the centres. Conclusion: Despite uniform national guidelines, patients hospitalised with a first acute ACS are treated with a less aggressive invasive diagnostic approach the farther away they live from an invasive centre. When planning the management of ACS patients...

  5. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  6. Visceral adiposity, insulin resistance and cancer risk

    LENUS (Irish Health Repository)

    Donohoe, Claire L

    2011-06-22

    Abstract Background There is a well established link between obesity and cancer. Emerging research is characterising this relationship further and delineating the specific role of excess visceral adiposity, as opposed to simple obesity, in promoting tumorigenesis. This review summarises the evidence from an epidemiological and pathophysiological perspective. Methods Relevant medical literature was identified from searches of PubMed and references cited in appropriate articles identified. Selection of articles was based on peer review, journal and relevance. Results Numerous epidemiological studies consistently identify increased risk of developing carcinoma in the obese. Adipose tissue, particularly viscerally located fat, is metabolically active and exerts systemic endocrine effects. Putative pathophysiological mechanisms linking obesity and carcinogenesis include the paracrine effects of adipose tissue and systemic alterations associated with obesity. Systemic changes in the obese state include chronic inflammation and alterations in adipokines and sex steroids. Insulin and the insulin-like growth factor axis influence tumorigenesis and also have a complex relationship with adiposity. There is evidence to suggest that insulin and the IGF axis play an important role in mediating obesity associated malignancy. Conclusions There is much evidence to support a role for obesity in cancer progression, however further research is warranted to determine the specific effect of excess visceral adipose tissue on tumorigenesis. Investigation of the potential mechanisms underpinning the association, including the role of insulin and the IGF axis, will improve understanding of the obesity and cancer link and may uncover targets for intervention.

  7. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  8. Aging, adiposity, and calorie restriction.

    Science.gov (United States)

    Fontana, Luigi; Klein, Samuel

    2007-03-07

    Excessive calorie intake and subsequent obesity increases the risk of developing chronic disease and decreases life expectancy. In rodent models, calorie restriction with adequate nutrient intake decreases the risk of developing chronic disease and extends maximum life span. To evaluate the physiological and clinical implications of calorie restriction with adequate nutrient intake. Search of PubMed (1966-December 2006) using terms encompassing various aspects of calorie restriction, dietary restriction, aging, longevity, life span, adiposity, and obesity; hand search of journals that focus on obesity, geriatrics, or aging; and search of reference lists of pertinent research and review articles and books. Reviewed reports (both basic science and clinical) included epidemiologic studies, case-control studies, and randomized controlled trials, with quality of data assessed by taking into account publication in a peer-reviewed journal, number of animals or individuals studied, objectivity of measurements, and techniques used to minimize bias. It is not known whether calorie restriction extends maximum life span or life expectancy in lean humans. However, calorie restriction in adult men and women causes many of the same metabolic adaptations that occur in calorie-restricted rodents and monkeys, including decreased metabolic, hormonal, and inflammatory risk factors for diabetes, cardiovascular disease, and possibly cancer. Excessive calorie restriction causes malnutrition and has adverse clinical effects. Calorie restriction in adult men and women causes beneficial metabolic, hormonal, and functional changes, but the precise amount of calorie intake or body fat mass associated with optimal health and maximum longevity in humans is not known. In addition, it is possible that even moderate calorie restriction may be harmful in specific patient populations, such as lean persons who have minimal amounts of body fat.

  9. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    Science.gov (United States)

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  10. Relationships between rodent white adipose fat pads and human white adipose fat depots

    Directory of Open Access Journals (Sweden)

    Daniella E. Chusyd

    2016-04-01

    Full Text Available The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of white adipose tissue. Thus, further research is warranted to more carefully define the strengths and limitations of rodent white adipose tissue as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.

  11. Developmental programming, adiposity, and reproduction in ruminants.

    Science.gov (United States)

    Symonds, M E; Dellschaft, N; Pope, M; Birtwistle, M; Alagal, R; Keisler, D; Budge, H

    2016-07-01

    Although sheep have been widely adopted as an animal model for examining the timing of nutritional interventions through pregnancy on the short- and long-term outcomes, only modest programming effects have been seen. This is due in part to the mismatch in numbers of twins and singletons between study groups as well as unequal numbers of males and females. Placental growth differs between singleton and twin pregnancies which can result in different body composition in the offspring. One tissue that is especially affected is adipose tissue which in the sheep fetus is primarily located around the kidneys and heart plus the sternal/neck region. Its main role is the rapid generation of heat due to activation of the brown adipose tissue-specific uncoupling protein 1 at birth. The fetal adipose tissue response to suboptimal maternal food intake at defined stages of development differs between the perirenal abdominal and pericardial depots, with the latter being more sensitive. Fetal adipose tissue growth may be mediated in part by changes in leptin status of the mother which are paralleled in the fetus. Then, over the first month of life plasma leptin is higher in females than males despite similar adiposity, when fat is the fastest growing tissue with the sternal/neck depot retaining uncoupling protein 1, whereas other depots do not. Future studies should take into account the respective effects of fetal number and sex to provide more detailed insights into the mechanisms by which adipose and related tissues can be programmed in utero. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sexual dimorphism in visceral adiposity measures, parameters and ...

    African Journals Online (AJOL)

    Visceral adipose tissue is considered the most important anatomic site of adipose tissue aggregation and is considered the hall mark of metabolic syndrome (MetS) phenotype. The aim of the study was to determine sexual dimorphism in visceral adiposity measures, parameters and biomarkers of metabolic syndrome ...

  13. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  14. Injectable biomaterials for adipose tissue engineering

    International Nuclear Information System (INIS)

    Young, D A; Christman, K L

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  15. Habituation to a stressor predicts adolescents' adiposity

    Science.gov (United States)

    Background and Objectives: Stress is associated with gains in adiposity. One factor that determines how much stress is experienced is how quickly an adolescent reduces responding (habituates) across repeated stressors. The purpose of this study was to determine the association of body mass index pe...

  16. Mycobacterium canettii Infection of Adipose Tissues.

    Science.gov (United States)

    Bouzid, Fériel; Brégeon, Fabienne; Poncin, Isabelle; Weber, Pascal; Drancourt, Michel; Canaan, Stéphane

    2017-01-01

    Adipose tissues were shown to host Mycobacterium tuberculosis which is persisting inside mature adipocytes. It remains unknown whether this holds true for Mycobacterium canettii , a rare representative of the M. tuberculosis complex responsible for lymphatic and pulmonary tuberculosis. Here, we infected primary murine white and brown pre-adipocytes and murine 3T3-L1 pre-adipocytes and mature adipocytes with M. canettii and M. tuberculosis as a positive control. Both mycobacteria were able to infect 18-22% of challenged primary murine pre-adipocytes; and to replicate within these cells during a 7-day experiment with the intracellular inoculums being significantly higher in brown than in white pre-adipocytes for M. canettii ( p = 0.02) and M. tuberculosis ( p = 0.03). Further in-vitro infection of 3T3-L1 mature adipocytes yielded 9% of infected cells by M. canettii and 17% of infected cells by M. tuberculosis ( p = 0.001). Interestingly, M. canettii replicated and accumulated intra-cytosolic lipid inclusions within mature adipocytes over a 12-day experiment; while M. tuberculosis stopped replicating at day 3 post-infection. These results indicate that brown pre-adipocytes could be one of the potential targets for M. tuberculosis complex mycobacteria; and illustrate differential outcome of M. tuberculosis complex mycobacteria into adipose tissues. While white adipose tissue is an unlikely sanctuary for M. canettii , it is still an open question whether M. canettii and M. tuberculosis could persist in brown adipose tissues.

  17. Dietary intake, FTO genetic variants and adiposity

    DEFF Research Database (Denmark)

    Qi, Qibin; Downer, Mary K; Oskari Kilpeläinen, Tuomas

    2015-01-01

    The FTO gene harbors variation with the strongest effect on adiposity and obesity risk. Previous data support a role for FTO variation in influencing food intake. We conducted a combined analysis of 16,094 boys and girls aged 1–18 years from 14 studies to examine the following: 1) the association...

  18. Correlates of adiposity among Latino preschool children

    Science.gov (United States)

    Childhood obesity is at record high levels in the US and disproportionately affects Latino children; however, studies examining Latino preschool children's obesity-related risk factors are sparse. This study determined correlates of Latino preschoolers' (ages 3-5 years) adiposity to inform future ob...

  19. Do assortative preferences contribute to assortative mating for adiposity?

    Science.gov (United States)

    Fisher, Claire I; Fincher, Corey L; Hahn, Amanda C; Little, Anthony C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Assortative mating for adiposity, whereby levels of adiposity in romantic partners tend to be positively correlated, has implications for population health due to the combined effects of partners' levels of adiposity on fertility and/or offspring health. Although assortative preferences for cues of adiposity, whereby leaner people are inherently more attracted to leaner individuals, have been proposed as a factor in assortative mating for adiposity, there have been no direct tests of this issue. Because of this, and because of recent work suggesting that facial cues of adiposity convey information about others' health that may be particularly important for mate preferences, we tested the contribution of assortative preferences for facial cues of adiposity to assortative mating for adiposity (assessed from body mass index, BMI) in a sample of romantic couples. Romantic partners' BMIs were positively correlated and this correlation was not due to the effects of age or relationship duration. However, although men and women with leaner partners showed stronger preferences for cues of low levels of adiposity, controlling for these preferences did not weaken the correlation between partners' BMIs. Indeed, own BMI and preferences were uncorrelated. These results suggest that assortative preferences for facial cues of adiposity contribute little (if at all) to assortative mating for adiposity. PMID:24168811

  20. Classification of different degrees of adiposity in sedentary rats

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, A.S.; Lima-Leopoldo, A.P. [Departamento de Desportos, Centro de Educação Física e Esportes, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Nascimento, A.F.; Luvizotto, R.A.M.; Sugizaki, M.M. [Instituto de Ciências da Saúde, Universidade Federal do Mato Grosso, Sinop, MT (Brazil); Campos, D.H.S.; Silva, D.C.T. da [Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Padovani, C.R. [Departamento de Bioestatística, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil); Cicogna, A.C. [Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2016-02-23

    In experimental studies, several parameters, such as body weight, body mass index, adiposity index, and dual-energy X-ray absorptiometry, have commonly been used to demonstrate increased adiposity and investigate the mechanisms underlying obesity and sedentary lifestyles. However, these investigations have not classified the degree of adiposity nor defined adiposity categories for rats, such as normal, overweight, and obese. The aim of the study was to characterize the degree of adiposity in rats fed a high-fat diet using cluster analysis and to create adiposity intervals in an experimental model of obesity. Thirty-day-old male Wistar rats were fed a normal (n=41) or a high-fat (n=43) diet for 15 weeks. Obesity was defined based on the adiposity index; and the degree of adiposity was evaluated using cluster analysis. Cluster analysis allowed the rats to be classified into two groups (overweight and obese). The obese group displayed significantly higher total body fat and a higher adiposity index compared with those of the overweight group. No differences in systolic blood pressure or nonesterified fatty acid, glucose, total cholesterol, or triglyceride levels were observed between the obese and overweight groups. The adiposity index of the obese group was positively correlated with final body weight, total body fat, and leptin levels. Despite the classification of sedentary rats into overweight and obese groups, it was not possible to identify differences in the comorbidities between the two groups.

  1. Classification of different degrees of adiposity in sedentary rats

    International Nuclear Information System (INIS)

    Leopoldo, A.S.; Lima-Leopoldo, A.P.; Nascimento, A.F.; Luvizotto, R.A.M.; Sugizaki, M.M.; Campos, D.H.S.; Silva, D.C.T. da; Padovani, C.R.; Cicogna, A.C.

    2016-01-01

    In experimental studies, several parameters, such as body weight, body mass index, adiposity index, and dual-energy X-ray absorptiometry, have commonly been used to demonstrate increased adiposity and investigate the mechanisms underlying obesity and sedentary lifestyles. However, these investigations have not classified the degree of adiposity nor defined adiposity categories for rats, such as normal, overweight, and obese. The aim of the study was to characterize the degree of adiposity in rats fed a high-fat diet using cluster analysis and to create adiposity intervals in an experimental model of obesity. Thirty-day-old male Wistar rats were fed a normal (n=41) or a high-fat (n=43) diet for 15 weeks. Obesity was defined based on the adiposity index; and the degree of adiposity was evaluated using cluster analysis. Cluster analysis allowed the rats to be classified into two groups (overweight and obese). The obese group displayed significantly higher total body fat and a higher adiposity index compared with those of the overweight group. No differences in systolic blood pressure or nonesterified fatty acid, glucose, total cholesterol, or triglyceride levels were observed between the obese and overweight groups. The adiposity index of the obese group was positively correlated with final body weight, total body fat, and leptin levels. Despite the classification of sedentary rats into overweight and obese groups, it was not possible to identify differences in the comorbidities between the two groups

  2. Is epicardial adipose tissue, assessed by echocardiography, a reliable method for visceral adipose tissue prediction?

    Science.gov (United States)

    Silaghi, Alina Cristina; Poantă, Laura; Valea, Ana; Pais, Raluca; Silaghi, Horatiu

    2011-03-01

    Epicardial adipose tissue is an ectopic fat storage at the heart surface in direct contact with the coronary arteries. It is considered a metabolically active tissue, being a local source of pro-inflammatory factors that contribute to the pathogenesis of coronary artery disease. The AIM of our study was to establish correlations between echocardiographic assessment of epicardial adipose tissue and anthropometric and ultrasound measurements of the central and peripheral fat depots. The study was conducted on 22 patients with or without coronaropathy. Epicardial adipose tissue was measured using Aloka Prosound α 10 machine with a 3.5-7.5 MHz variable-frequency transducer and subcutaneous and visceral fat with Esaote Megas GPX machine and 3.5-7.5 MHz variable frequency transducer. Epicardial adipose tissue measured by echocardiography is correlated with waist circumference (p < 0.05), visceral adipose tissue thickness measured by ultrasonography (US) and is not correlated with body mass index (p = 0.315), hip and thigh circumference or subcutaneous fat thickness measured by US. Our study confirms that US assessment of epicardial fat correlates with anthropometric and US measurements of the central fat, representing an indirect but reliable marker of the visceral fat.

  3. [Cancer cachexia and white adipose tissue browning].

    Science.gov (United States)

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research.

  4. Adiposity distribution influences circulating adiponectin levels

    OpenAIRE

    Guenther, Mitchell; James, Roland; Marks, Jacqueline; Zhao, Shi; Szabo, Aniko; Kidambi, Srividya

    2014-01-01

    Thirty percent of obese individuals are metabolically healthy and were noted have increased peripheral obesity. Adipose tissue is the primary source of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Lower adiponectin levels are observed in individuals with obesity and those at risk for cardiovascular disease. Conversely, higher levels are noted in some obese individuals who are metabolically healthy. Our objective was to determine whether abdominal adipos...

  5. Adiposity and psychosocial outcomes at ages 30 and 35.

    Science.gov (United States)

    McLeod, Geraldine F H; Fergusson, David M; John Horwood, L; Carter, Frances A

    2016-02-01

    To examine associations between adiposity and adult psychosocial outcomes (depressive symptoms, life satisfaction, self-esteem, household income, personal income, savings/investments) in a New Zealand birth cohort, by gender. Adiposity was assessed using Body Mass Index scores classified on a 3-point scale of BMI: depressive symptoms, life satisfaction, equivalized household income and savings/investments) remaining statistically significant (p < 0.05). In contrast, for males there was a significant (p = 0.008) positive association between adiposity and higher personal net weekly income after covariate adjustment. The findings suggest evidence of gender differences in the associations between adiposity and psychosocial outcomes. For females, there were small but pervasive tendencies for increasing adiposity to be related to more adverse mental health, psychological well-being and economic outcomes; whereas for males adiposity was either unrelated to these outcomes, or in the case of personal income, associated with greater economic advantage. The implications of these findings are discussed.

  6. Estimation of limb adiposity by bioimpedance spectroscopy in lymphoedema

    Science.gov (United States)

    Ward, L. C.; Essex, T.; Gaw, R.; Czerniec, S.; Dylke, E.; Abell, B.; Kilbreath, S. L.

    2013-04-01

    Lymphoedema is a chronic debilitating condition that may occur in approximately 25% of women treated for breast cancer. As the condition progresses, accumulated lymph fluid becomes fibrotic with infiltration of adipose tissue. Bioelectrical impedance spectroscopy is the preferred method for early detection of lymphoedema based on the measurement of impedance of extracellular fluid. The present study assessed whether these impedance measurements could also be used to estimate the adipose tissue content of the arm based on a model previously used to predict whole body composition. Estimates of arm adipose tissue in a cohort of women with lymphoedema were found to be highly correlated (r > 0.82) with measurements of adipose tissue obtained using the reference method of dual energy X-ray absorptiometry. Paired t-tests confirmed that there was no significant difference between the adipose tissue volumes obtained by the two methods. These results support the view that the method shows promise for the estimation of arm adiposity in lymphoedema.

  7. Characterization Of Bovine Adipose-Derived Stem Cells

    OpenAIRE

    Daniel Cebo

    2017-01-01

    Bovine adipose-derived stem cells were obtained from the subcutaneous abdominal adipose tissue. The cells were cultured by the modified tissue-explants method developed in our laboratory and then analyzed using optical microscopy and flow cytometry. These cells were able to replicate in our cell culture conditions. cell Flow cytometry showed that bovine adipose-derived stem cells expressed mesenchymal stem cell markers CD73 and CD90. Meanwhile haematopoietic markers CD45 and CD34 are absent f...

  8. Techniques developed to evaluate the fracture toughness offast breeder reactor duct

    International Nuclear Information System (INIS)

    Huang, F.H.; Wire, G.L.

    1979-01-01

    Large changes in strength and ductility of metals after irradiation are known to occur. The fracture toughness of irradiated metals, which is related to the combined strength and ductility of a material, may be significantly reduced and the potential for unstable crack extension increased. Therefore, the resistance of cladding and duct materials to fracture after exposure to fast neutron environments is of concern. Existing Type 316 stainless steel irradiated ducts are relatively thin and since this material retains substantial ductility, even after irradiation, the fracture behavior of the duct material cannot be analyzed by linear elastic fracture mechanics techniques. Instead, the multispecimen R-curve method and J-integral analysis were used to develop an experimental approach to evaluate the fracture toughness of thin breeder reactor duct materials irradiated at elevated temperatures. Alloy A-286 was chosen for these experiments because the alloy exhibits elastic/plastic behavior and the fracture toughness data of thicker (12 mm) specimens were available for comparison. Technical problems associated with specimen buckling and remote handling were treated in this work. The results are discussed in terms of thickness criterion for plane strain

  9. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2017-01-01

    Full Text Available Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.

  10. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  11. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Science.gov (United States)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  12. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  13. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    International Nuclear Information System (INIS)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-01-01

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT 1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  14. The role of adipose tissue in cancer-associated cachexia.

    Science.gov (United States)

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  15. Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures

    NARCIS (Netherlands)

    C. Monnereau; S. Vogelezang; C.J. Kruithof (Claudia); V.W.V. Jaddoe (Vincent); J.F. Felix (Janine)

    2016-01-01

    textabstractBackground: Results from genome-wide association studies (GWAS) identified many loci and biological pathways that influence adult body mass index (BMI). We aimed to identify if biological pathways related to adult BMI also affect infant growth and childhood adiposity measures. Methods:

  16. The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity

    Directory of Open Access Journals (Sweden)

    B. Gwen Windham

    2012-01-01

    Full Text Available While frank obesity is associated with reduced HRV, indicative of poorer autonomic nervous system (ANS function, the association between body mass index (BMI and HRV is less clear. We hypothesized that effects of adiposity on ANS are mostly mediated by visceral fat and less by subcutaneous fat; therefore, centrally distributed adipose tissue, that is, waist circumference (WC, should be more strongly associated with HRV than overall adiposity (BMI. To examine this hypothesis, we used data collected in a subset of the Baltimore Longitudinal Study of Aging to compare strength of association between HRV and WC to that of HRV and BMI. Time domain HRV variables SDNN (standard deviation of successive differences in normal-to-normal (N-N intervals and RMSSD (root mean square of successive differences in N-N intervals were calculated from 24-hour Holter recordings in 159 participants (29–96 years. Increasing WC was associated with decreasing SDNN and RMSSD in younger but not older participants (P value for WC-by-age interaction = 0.003. BMI was not associated with either SDNN or RMSSD at any age. In conclusion, central adiposity may contribute to sympathetic and parasympathetic ANS declines early in life.

  17. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue

    NARCIS (Netherlands)

    Gallagher, D.; Kuznia, P.; Heshka, S.; Albu, J.; Heymsfield, S.B.; Goodpaster, B.H.; Visser, M.; Harris, T.B.

    2005-01-01

    BACKGROUND: The manner in which fat depot volumes and distributions, particularly the adipose tissue (AT) between the muscles, vary by race is unknown. OBJECTIVE: The objective was to quantify a previously unstudied and novel intermuscular AT (IMAT) depot and subcutaneous AT, visceral AT (VAT), and

  18. Hormones of Adipose Tissue and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    O.S. Payenok

    2013-10-01

    Full Text Available Obesity and gestational diabetes are the risk factors for complications both in the mother and in the fetus. Adipose tissue hormones (leptin, adiponectin, resistin are secreted by the human placenta and regulate the function of trophoblast. The review presents data from the literature on the role of adipocytokines in the development of gestational diabetes and preeclampsia in obese women. The article considers the criteria and algorithms for the diagnosis of gestational diabetes recommended by the World Health Organization and the International Association of Diabetes and Pregnancy Study Group.

  19. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik

    2002-01-01

    exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue...... venous glycerol concentrations increased substantially from rest to exercise but were similar both at rest and during later stages of exercise. In contrast, during the initial approximately 40 min of exercise, calculated glycerol concentration was significantly lower (approximately 40%) than measured...... and continuous prolonged exercise. However, during shorter periods of exercise (

  20. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  1. Physical Activity Level and Adiposity: Are they Associated with ...

    African Journals Online (AJOL)

    Information on self-reported physical activity (PA) level in association with primary dysmenorrhea (PD) is not readily available on African populations, and there is a dearth of information on the association of adiposity with PD. This study explored the association of PA and adiposity indices with PD and associated menstrual ...

  2. Measures of abdominal adiposity and the risk of stroke

    DEFF Research Database (Denmark)

    Bodenant, Marie; Kuulasmaa, Kari; Wagner, Aline

    2011-01-01

    Excess fat accumulates in the subcutaneous and visceral adipose tissue compartments. We tested the hypothesis that indicators of visceral adiposity, namely, waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR), are better predictors of stroke risk than body mass in...

  3. Fetal metabolic influences of neonatal anthropometry and adiposity.

    LENUS (Irish Health Repository)

    Donnelly, Jean M

    2015-01-01

    Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence regional neonatal adiposity in a cohort of women with previous large for gestational age offspring.

  4. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    DEFF Research Database (Denmark)

    Arngrim, Nanna Bjørkbom; Simonsen, L; Holst, J J

    2013-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after ...... online publication, 3 July 2012; doi:10.1038/ijo.2012.98....

  5. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan

    2011-01-01

    of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...

  6. miRNAs in Human Subcutaneous Adipose Tissue

    DEFF Research Database (Denmark)

    Kristensen, Malene M.; Davidsen, Peter K.; Vigelso, Andreas

    2017-01-01

    Objective Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. Methods The miRNA expression in subcutaneous adipose ...

  7. Neutron organ dose and the influence of adipose tissue

    Science.gov (United States)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  8. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    Science.gov (United States)

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adipose tissue macrophages: going off track during obesity

    NARCIS (Netherlands)

    Boutens, L.; Stienstra, R.

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically

  10. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  11. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    DEFF Research Database (Denmark)

    Sun, Kai; Park, Jiyoung; Gupta, Olga T

    2014-01-01

    to demonstrate that endotrophin plays a pivotal role in shaping a metabolically unfavourable microenvironment in adipose tissue during consumption of a high-fat diet (HFD). Endotrophin serves as a powerful co-stimulator of pathologically relevant pathways within the 'unhealthy' adipose tissue milieu, triggering...

  12. Exploring the Relationship between Adiposity and Fitness in Young Children

    DEFF Research Database (Denmark)

    Fairchild, Timothy John; Klakk, Heidi; Heidemann, Malene Søborg

    2016-01-01

    PURPOSE: High levels of cardiorespiratory fitness (CRF) may attenuate the association between the excessive adiposity and the risks of cardiovascular and metabolic disease. The purpose of this study was to stratify children according to their body mass index (BMI) and adiposity (body fat percentage...

  13. Adipose tissue transcriptome changes during obesity development in female dogs.

    Science.gov (United States)

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2011-03-29

    During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P obesity development.

  14. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.

    Science.gov (United States)

    Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L

    2017-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  15. Mechanisms linking excess adiposity and carcinogenesis promotion

    Directory of Open Access Journals (Sweden)

    Ana I. Pérez-Hernández

    2014-05-01

    Full Text Available Obesity constitutes one of the most important metabolic diseases being associated to insulin resistance development and increased cardiovascular risk. Association between obesity and cancer has also been well-established for several tumor types, such as breast cancer in postmenopausal women, colorectal and prostate cancer. Cancer is the first death cause in developed countries and the second one in developing countries, with high incidence rates around the world. Furthermore, it has been estimated that 15-20% of all cancer deaths may be attributable to obesity. Tumor growth is regulated by interactions between tumor cells and their tissue microenvironment. In this sense, obesity may lead to cancer development through dysfunctional adipose tissue and altered signaling pathways. In this review, three main pathways relating obesity and cancer development are examined: i inflammatory changes leading to macrophage polarization and altered adipokine profile; ii insulin resistance development; and iii adipose tissue hypoxia. Since obesity and cancer present a high prevalence, the association between these conditions is of great public health significance and studies showing mechanisms by which obesity lead to cancer development and progression are needed to improve prevention and management of these diseases.

  16. Alkylphenols in adipose tissues of Italian population.

    Science.gov (United States)

    Ferrara, Fulvio; Ademollo, Nicoletta; Orrù, Maria Antonietta; Silvestroni, Leopoldo; Funari, Enzo

    2011-02-01

    Alkylphenols (APs) and AP ethoxylated compounds (APEs) were screened in human subcutaneous adipose tissue samples from Italy. The samples were collected during bariatric surgery from 16 subjects (three men and 13 women) and a total of seven alkylphenol compounds (APs) was detected. Nonylphenol (NP) was the compound found at the highest level (mean 122 ng g⁻¹ fresh weight; range 10-266 ng g⁻¹ fw). Several nonylphenol ethoxylates (NPEOs) were found in all the sample analysed though the frequency of detection decreased with the increasing number of ethoxylic groups. NP4EO was found only in four patients ranging from trace amounts to 41.3 ng g⁻¹ fw. Total nonylphenols (NPEs) ranged between 45 and 1131 ng g⁻¹ fw, whereas the concentration of total octylphenols (OPEs) was at least 10 times lower (range 6-80 ng g⁻¹ fw). Our findings show that the average concentration of NP is about two times higher than that found in women from Southern Spain and up to three times that of people from Switzerland. Similarly, OP mean level is two times that reported in Finland and Spain populations. This is the first study that reports the presence of alkylphenols in the Italian population adipose tissue and it draws a baseline for further researches in order to depict a trend in human exposure to these compounds and to investigate possible consequences for human health. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Correlation between maternal inflammatory markers and fetomaternal adiposity.

    LENUS (Irish Health Repository)

    Farah, Nadine

    2012-10-01

    Outside pregnancy, both obesity and diabetes mellitus are associated with changes in inflammatory cytokines. Obesity in pregnancy may be complicated by gestational diabetes mellitus (GDM) and\\/or fetal macrosomia. The objective of this study was to determine the correlation between maternal cytokines and fetomaternal adiposity in the third trimester in women where the important confounding variable GDM had been excluded. Healthy women with a singleton pregnancy and a normal glucose tolerance test at 28 weeks gestation were enrolled at their convenience. Maternal cytokines were measured at 28 and 37 weeks gestation. Maternal adiposity was assessed indirectly by calculating the Body Mass Index (BMI), and directly by bioelectrical impedance analysis. Fetal adiposity was assessed by ultrasound measurement of fetal soft tissue markers and by birthweight at delivery. Of the 71 women studied, the mean maternal age and BMI were 29.1 years and 29.2 kg\\/m(2) respectively. Of the women studied 32 (45%) were obese. Of the cytokines, only maternal IL-6 and IL-8 correlated with maternal adiposity. Maternal TNF-α, IL-β, IL-6 and IL-8 levels did not correlate with either fetal body adiposity or birthweight. In this well characterised cohort of pregnant non-diabetic women in the third trimester of pregnancy we found that circulating maternal cytokines are associated with maternal adiposity but not with fetal adiposity.

  18. Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity.

    Science.gov (United States)

    Aguilar, David; Fernandez, Maria Luz

    2014-09-01

    It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in preadipocytes revealed that cholesterol accumulation can impair adipocyte differentiation and maturation by affecting multiple transcription factors. Hypercholesterolemia has been observed to cause adipocyte hypertrophy, adipose tissue inflammation, and disruption of endocrine function in animal studies. Moreover, these effects can also be observed in obesity-independent conditions as confirmed by clinical trials. In humans, hypercholesterolemia disrupts adipose hormone secretion of visfatin, leptin, and adiponectin, adipokines that play a central role in numerous metabolic pathways and regulate basic physiologic responses such as appetite and satiety. Remarkably, treatment with cholesterol-lowering drugs has been shown to restore adipose tissue endocrine function. In this review the role of hypercholesterolemia on adipose tissue differentiation and maturation, as well as on hormone secretion and physiologic outcomes, in obesity and non–obesity conditions is presented.

  19. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  20. Adipose tissue and skeletal muscle blood flow during mental stress

    International Nuclear Information System (INIS)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  1. Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures

    OpenAIRE

    Monnereau, Claire; Vogelezang, Suzanne; Kruithof, Claudia J.; Jaddoe, Vincent W. V.; Felix, Janine F.

    2016-01-01

    Background Results from genome-wide association studies (GWAS) identified many loci and biological pathways that influence adult body mass index (BMI). We aimed to identify if biological pathways related to adult BMI also affect infant growth and childhood adiposity measures. Methods We used data from a population-based prospective cohort study among 3,975 children with a mean age of 6?years. Genetic risk scores were constructed based on the 97 SNPs associated with adult BMI previously identi...

  2. Brown adipose tissue in cetacean blubber.

    Directory of Open Access Journals (Sweden)

    Osamu Hashimoto

    Full Text Available Brown adipose tissue (BAT plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1, within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool

  3. Lysyl oxidase and adipose tissue dysfunction.

    Science.gov (United States)

    Pastel, Emilie; Price, Emily; Sjöholm, Kajsa; McCulloch, Laura J; Rittig, Nikolaj; Liversedge, Neil; Knight, Bridget; Møller, Niels; Svensson, Per-Arne; Kos, Katarina

    2018-01-01

    Lysyl oxidase (LOX) is an enzyme crucial for collagen fibre crosslinking and thus for fibrosis development. Fibrosis is characterised by a surplus of collagen fibre accumulation and is amongst others also a feature of obesity-associated dysfunctional adipose tissue (AT) which has been linked with type 2 diabetes. We hypothesised that in type 2 diabetes and obesity LOX expression and activity will be increased as a consequence of worsening AT dysfunction. This study aimed to provide a comprehensive characterisation of LOX in human AT. LOX mRNA expression was analysed in omental and abdominal subcutaneous AT obtained during elective surgery from subjects with a wide range of BMI, with and without diabetes. In addition, LOX expression was studied in subcutaneous AT before and 9.5months after bariatric surgery. To study the mechanism of LOX changes, its expression and activity were assessed after either hypoxia, recombinant human leptin or glucose treatment of AT explants. In addition, LOX response to acute inflammation was tested after stimulation by a single injection of lipopolysaccharide versus saline solution (control) in healthy men, in vivo. Quantity of mRNA was measured by RT-qPCR. LOX expression was higher in obesity and correlated with BMI whilst, in vitro, leptin at high concentrations, as a potential feedback mechanism, suppressed its expression. Neither diabetes status, nor hyperglycaemia affected LOX. Hypoxia and lipopolysaccharide-induced acute inflammation increased LOX AT expression, latter was independent of macrophage infiltration. Whilst LOX may not be affected by obesity-associated complications such as diabetes, our results confirm that LOX is increased by hypoxia and inflammation as underlying mechanism for its upregulation in adipose tissue with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    Science.gov (United States)

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  5. Insulin action in adipose tissue and muscle in hypothyroidism.

    Science.gov (United States)

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Boutati, Eleni; Maratou, Eirini; Panagiotakos, Demosthenes B; Koukkou, Efi; Tzanela, Marinela; Thalassinos, Nikos; Raptis, Sotirios A

    2006-12-01

    Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. The HO group had higher glucose and insulin levels than the EU group (P hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.

  6. MicroRNA expression profiling in neurogenesis of adipose tissue ...

    Indian Academy of Sciences (India)

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self ... Because of advantages in method and quantity of acquisition, ADSCs are gaining ...... miRNAs specifically related to neuron cell generation.

  7. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    ion-dependent breakdown and trans-nitrosation reactions are ... [McGrowder D, Ragoobirsingh D and Brown P 2006 Modulation of glucose uptake in adipose tissue by nitric oxide-generating ... Briefly, nicotinamide (Sigma Chemical Co.,.

  8. The Effects of Smoking Cessation on Visceral Adiposity Index Levels

    African Journals Online (AJOL)

    2018-06-11

    Jun 11, 2018 ... mass index (BMI), and high‑density lipoprotein cholesterol levels .... used to determine the relationship between not normally .... monoxide; VAI=Visceral adiposity index; TG=Triglyceride; HDL‑cholesterol=High density ...

  9. Physical Activity Level and Adiposity: Are they Associated with ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Keywords: Adiposity, Primary Dysmenorrhea, Physical Activity, Adolescence. Résumé. Les informations ... In addition, urinary frequency, irritability, nervous depression, abdominal .... years) was significantly higher than that of those without PD ...

  10. assessment of measures of adiposity that correlate with blood

    African Journals Online (AJOL)

    health risk.8 Furthermore, its correlation with adiposity .... Data Management: Data were analyzed using the ... had good blood pressure control with no gender .... Journal of internal medicine. ... consensus statement from shaping America's.

  11. relapse in adiposity of type 2 diabetes patients following withdrawa

    African Journals Online (AJOL)

    user

    In order to achieve optimum health status, Type 2 Diabetes (T2D) patients are usually encouraged to undergo ... This study investigated whether the gains of exercises on adiposity ..... the likelihood of morbidity, and prevention of weight gain.

  12. Do neighborhood characteristics in Amsterdam influence adiposity at preschool age?

    NARCIS (Netherlands)

    Hrudey, E. Jessica; Kunst, Anton E.; Stronks, Karien; Vrijkotte, Tanja G. M.

    2015-01-01

    Neighborhood characteristics may contribute to adiposity in young children, but results in the current literature are inconsistent. This study aimed to investigate whether objective (socioeconomic status (SES)) and subjective (perceived safety, satisfaction with green spaces and perceived physical

  13. Pituitary adenoma with adipose tissue: A new metaplastic variant.

    Science.gov (United States)

    Caporalini, Chiara; Buccoliero, Anna Maria; Pansini, Luigi; Moscardi, Selene; Novelli, Luca; Baroni, Gianna; Bordi, Lorenzo; Ammannati, Franco; Taddei, Gian Luigi

    2017-08-01

    Pituitary adenomas are benign tumors representing approximately 15-20% of intracranial neoplasms. There have been few reports of metaplastic osseous transformation and about 60 cases of neuronal metaplasia in pituitary adenoma but adipose metaplasia has not been previously described in the English literature. Here we report a case of pituitary adenoma with metaplastic adipose tissue in a 58-year-old male patient. Histologically this case fulfilled the criteria of a non-functioning pituitary adenoma, and moreover a central area of adipose tissue, made by mature adipocytes, and many tumor cells, containing fat droplet were evident. Lipomatous transformation of tumor cells in the CNS has been previously observed but, to the best of our knowledge, our case is the first pituitary adenoma with such change. The histogenesis of the adipose element in pituitary adenoma is not well understood, and could be a result of a metaplastic change or divergent differentiation from a common progenitor cell. © 2017 Japanese Society of Neuropathology.

  14. Meeting report of the 2016 bone marrow adiposity meeting.

    Science.gov (United States)

    van der Eerden, Bram; van Wijnen, André

    2017-10-02

    There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies.

  15. Adult adiposity linked to relationship hostility for low cortisol reactors

    OpenAIRE

    Slep, Amy; Lorber, Michael; Thorson, Katherine; Heyman, Richard

    2017-01-01

    Past research on the relation between hostility in intimate relationships and adiposity has yielded mixed findings. The present study investigated whether the association between relationship hostility and adiposity is moderated by people’s biological reactions to couple conflict. Cohabiting adult couples (N = 117 couples) engaged in two conflict interactions, before and after which salivary cortisol levels were measured. Results revealed an association between relationship hostility and adip...

  16. Substance for thermoluminescent dosimetry of photon radiation in adipose tissue

    International Nuclear Information System (INIS)

    Kalmykov, L.Z.; Kandel', T.G.

    1983-01-01

    Substance composition for thermoluminescent photon dosimetry in adipose tissue is proposed which makes it possible to simplify dosimetric measurements and to improve their accuracy. The substance consists of powder-like thermoluminophor Li 2 B 4 O 7 (0.03%Mn) 48-52 mass % and bistriethylammonium dodecahydrododecaborane - 48-52 mass %. The above substance is equivalent in respect to dosimetry to adipose tissue within the 10 keV - 10 MeV energy range

  17. Browning of Subcutaneous White Adipose Tissue in Humans

    OpenAIRE

    Sidossis, Labros S.; Porter, Craig; Saraf, Manish K.; Børsheim, Elisabet; Radhakrishnan, Ravi S.; Chao, Tony; Ali, Arham; Chondronikola, Maria; Mlcak, Ronald; Finnerty, Celeste C.; Hawkins, Hal K.; Toliver-Kinsky, Tracy; Herndon, David N.

    2015-01-01

    Since the presence of brown adipose tissue (BAT) was confirmed in adult humans, BAT has become a therapeutic target for obesity and insulin resistance. We examined whether human subcutaneous white adipose tissue (sWAT) can adopt a BAT-like phenotype using a clinical model of prolonged and severe adrenergic stress. sWAT samples were collected from severely burned and healthy individuals. A subset of burn victims were prospectively followed during their acute hospitalization. Browning of sWAT w...

  18. Exenatide with Metformin Ameliorated Visceral Adiposity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Xuan Du

    2018-01-01

    Full Text Available Background. To study the effectiveness of exenatide with metformin and sequential treatment with exenatide and glargine added to metformin and their influence on insulin sensitivity and adipose distribution. Methods. 20 newly diagnosed obese type 2 diabetic patients were enrolled, and 2-month washout treatment of metformin, 6-month exenatide treatment, and 6-month glargine treatment were administrated sequentially accompanied with previous metformin. Glucolipid metabolic parameters were compared among groups. Adipose distribution was quantified with computerized tomography according to anatomy, dividing into visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT, adding up to total adipose tissue (TAT. Results. The 6-month exenatide treatment dramatically ameliorated the glucose and lipid profile, improved insulin sensitivity, and mainly decreased VAT and also the ratio of VAT/SAT (RVS. The following 6-month glargine treatment increased VAT. The whole 12-month sequential treatment with exenatide and glargine added to metformin basically improved the insulin sensitivity and glucolipid control though VAT rebounded at the end, however without deteriorating the other parameters. Conclusion. Exenatide is an ideal treatment for obese type 2 diabetic patients in the aspect of adipose tissue distribution. Sequential treatment of exenatide and glargine could be an alternative for low-income patients who cannot afford GLP-1 agonist for long time. This trial is registered with ChiCTR-OOC-17013679.

  19. Triactome: neuro-immune-adipose interactions. Implication in vascular biology

    Directory of Open Access Journals (Sweden)

    George Nikov Chaldakov

    2014-04-01

    Full Text Available Understanding how the precise interactions of nerves, immune cells and adipose tissue account for cardiovascular and metabolic biology is a central aim of biomedical research at present. A long standing paradigm holds that the vascular wall is composed of three concentric tissue coats (tunicae: intima, media, and adventitia. However, large- and medium-sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded by periadventitial adipose tissue, we recently designated tunica adiposa (in brief, adiposa like intima, media, adventitia. According to present paradigm, atherosclerosis is an immune-mediated inflammatory disease featured by endothelial dysfunction/intimal thickening, medial atrophy and adventitial lesions associated with adipose dysfunction, whereas hypertension is characterized by hyperinnervation-associated medial thickening due to smooth muscle cell hypertrophy/hyperplasia. Periadventitial adipose tissue expansion is associated with increased infiltration of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and anti-inflammatory (metabotrophic signaling proteins collectively dubbed adipokines. However, the role of perivascular nerves and their interactions with immune cells and paracrine adipose tissue is not yet evaluated in such an integrated way. The present review attempts to briefly highlight the findings in basic and translational sciences in this area focusing on neuro-immune-adipose interactions, herein referred to as triactome. Triactome-targeted pharmacology may provide a novel therapeutic approach in cardiovascular disease.

  20. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  1. The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity.

    Science.gov (United States)

    Escobedo, Noelia; Oliver, Guillermo

    2017-10-03

    Obesity is a key risk factor for metabolic and cardiovascular diseases, and although we understand the mechanisms regulating weight and energy balance, the causes of some forms of obesity remain enigmatic. Despite the well-established connections between lymphatics and lipids, and the fact that intestinal lacteals play key roles in dietary fat absorption, the function of the lymphatic vasculature in adipose metabolism has only recently been recognized. It is well established that angiogenesis is tightly associated with the outgrowth of adipose tissue, as expanding adipose tissue requires increased nutrient supply from blood vessels. Results supporting a crosstalk between lymphatic vessels and adipose tissue, and linking lymphatic function with metabolic diseases, obesity, and adipose tissue, also started to accumulate in the last years. Here we review our current knowledge of the mechanisms by which defective lymphatics contribute to obesity and fat accumulation in mouse models, as well as our understanding of the lymphatic-adipose tissue relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ghrelin receptor regulates adipose tissue inflammation in aging.

    Science.gov (United States)

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  3. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose...

  4. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  5. New concepts in white adipose tissue physiology

    International Nuclear Information System (INIS)

    Proença, A.R.G.; Sertié, R.A.L.; Oliveira, A.C.; Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B.

    2014-01-01

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT

  6. Adiposity and different types of screen time.

    Science.gov (United States)

    Falbe, Jennifer; Rosner, Bernard; Willett, Walter C; Sonneville, Kendrin R; Hu, Frank B; Field, Alison E

    2013-12-01

    Few prospective studies have examined separate forms of screen time in relation to adiposity. Our objective was to assess independent relations of television, electronic games (video/computer), and digital versatile disc (DVD)/videos and total screen time with change in adolescent BMI. Using data from the 2004, 2006, and 2008 waves of the ongoing Growing up Today Study II, we assessed baseline and 2-year change in reported screen time in relation to concurrent change in BMI among 4287 girls and 3505 boys aged 9 to 16 years in 2004. Gender-specific models adjusted for previous BMI, age, race/ethnicity, growth/development, months between questionnaires, and physical activity. Among girls and boys, each hour per day increase in reported television viewing was associated with a 0.09 increase in BMI (Ps food advertising, was most consistently associated with BMI gains. Among girls, electronic games and DVDs/videos were also related to increased BMI, possibly due to influences of product placements and advergames on diet and/or distracted eating. Adolescents, especially overweight adolescents, may benefit from reduced time with multiple types of media.

  7. Cryolipolysis for reduction of excess adipose tissue.

    Science.gov (United States)

    Nelson, Andrew A; Wasserman, Daniel; Avram, Mathew M

    2009-12-01

    Controlled cold exposure has long been reported to be a cause of panniculitis in cases such as popsicle panniculitis. Cryolipolysis is a new technology that uses cold exposure, or energy extraction, to result in localized panniculitis and modulation of fat. Presently, the Zeltiq cryolipolysis device is FDA cleared for skin cooling, as well as various other indications, but not for lipolysis. There is, however, a pending premarket notification for noninvasive fat layer reduction. Initial animal and human studies have demonstrated significant reductions in the superficial fat layer thickness, ranging from 20% to 80%, following a single cryolipolysis treatment. The decrease in fat thickness occurs gradually over the first 3 months following treatment, and is most pronounced in patients with limited, discrete fat bulges. Erythema of the skin, bruising, and temporary numbness at the treatment site are commonly observed following treatment with the device, though these effects largely resolve in approximately 1 week. To date, there have been no reports of scarring, ulceration, or alterations in blood lipid or liver function profiles. Cryolipolysis is a new, noninvasive treatment option that may be of benefit in the treatment of excess adipose tissue.

  8. New concepts in white adipose tissue physiology

    Energy Technology Data Exchange (ETDEWEB)

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  9. Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism.

    Science.gov (United States)

    Alfadda, Assim A; Sallam, Reem M; Chishti, Muhammad Azhar; Moustafa, Amr S; Fatma, Sumbul; Alomaim, Waleed S; Al-Naami, Mohammed Y; Bassas, Abdulelah F; Chrousos, George P; Jo, Hyunsun

    2012-06-01

    Chemerin, a recognized chemoattractant, is expressed in adipose tissue and plays a role in adipocytes differentiation and metabolism. Gender- and adipose tissue-specific differences in human chemerin expression have not been well characterized. Therefore, these differences were assessed in the present study. The body mass index (BMI) and the circulating levels of chemerin and other inflammatory, adiposity and insulin resistance markers were assessed in female and male adults of varying degree of obesity. Chemerin mRNA expression was also measured in paired subcutaneous and visceral adipose tissue samples obtained from a subset of the study subjects. Serum chemerin concentrations correlated positively with BMI and serum leptin levels and negatively with high density lipoprotein (HDL)-cholesterol levels. No correlation was found between serum chemerin concentrations and fasting glucose, total cholesterol, low density lipoprotein (LDL)-cholesterol, triglycerides, insulin, C-reactive protein or adiponectin. Similarly, no relation was observed with the homeostasis model assessment for insulin resistance (HOMA-IR) values. Gender- and adipose tissue-specific differences were observed in chemerin mRNA expression levels, with expression significantly higher in women than men and in subcutaneous than visceral adipose tissue. Interestingly, we found a significant negative correlation between circulating chemerin levels and chemerin mRNA expression in subcutaneous fat. Among the subjects studied, circulating chemerin levels were associated with obesity markers but not with markers of insulin resistance. At the tissue level, fat depot-specific differential regulation of chemerin mRNA expression might contribute to the distinctive roles of subcutaneous vs. visceral adipose tissue in human obesity.

  10. The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF in the early stage of nonvascularized adipose transplantation.

    Directory of Open Access Journals (Sweden)

    Ziqing Dong

    Full Text Available INTRODUCTION: Adipose tissue transplantation is one of the standard procedures for soft-tissue augmentation, reconstruction, and rejuvenation. However, it is unknown as to how the graft survives after transplantation. We thus seek out to investigate the roles of different cellular components in the survival of graft. MATERIALS & METHODS: The ratios of stromal vascular fraction (SVF cellular components from human adipose tissue were evaluated using flow cytometry. Human liposuction aspirates that were either mixed with marked SVF cells or PBS were transplanted into nude mice. The graft was harvested and stained on days 1,4,7 and 14. The inflammation level of both SVF group and Fat-only group were also evaluated. RESULTS: Flow cytometric analysis showed SVF cells mainly contained blood-derived cells, adipose-derived stromal cells (ASCs, and endothelial cells. Our study revealed that most cells are susceptible to death after transplantation, although CD34+ ASCs can remain viable for 14 days. Notably, we found that ASCs migrated to the peripheral edge of the graft. Moreover, the RT-PCR and the immuno-fluorescence examination revealed that although the SVF did not reduce the number of infiltrating immune cells (macrophages in the transplant, it does have an immunoregulatory function of up-regulating the expression of CD163 and CD206 and down-regulating that of IL-1β, IL-6. CONCLUSIONS: Our study suggests that the survival of adipose tissue after nonvascularized adipose transplantation may be due to the ASCs in SVF cells. Additionally, the immunoregulatory function of SVF cells may be indirectly contributing to the remolding of adipose transplant, which may lead to SVF-enriched adipose transplantation.

  11. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Borruel, Susana; Fernández-Durán, Elena; Alpañés, Macarena; Martí, David; Alvarez-Blasco, Francisco; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2013-03-01

    Sexual dimorphism suggests a role for androgens in body fat distribution. Women with polycystic ovary syndrome (PCOS), a mainly androgen excess disorder, often present with abdominal obesity and visceral adiposity. We hypothesized that women with PCOS have a masculinized body fat distribution favoring the deposition of fat in visceral and organ-specific adipose tissue depots. This was a case-control study. The study was conducted at an academic hospital. Women with PCOS (n = 55), women without androgen excess (n = 25), and men (n = 26) presenting with similar body mass index participated in the study. There were no interventions. Ultrasound measurements of adipose tissue depots including sc (minimum and maximum), preperitoneal, ip, mesenteric, epicardial, and perirenal fat thickness were obtained and total body fat mass was estimated using a body fat monitor. Men and patients with PCOS had increased amounts of total body fat compared with control women. Men had increased thickness of intraabdominal adipose tissue depots compared with the control women, with the women with PCOS showing intermediate values that were also higher than those of control women in the case of ip and mesenteric fat thickness and was close to reaching statistical significance in the case of epicardial fat thickness. Women with PCOS also showed increased minimum sc fat thickness compared with the control women. Obesity increased the thickness of all of the adipose tissue depots in the 3 groups of subjects. Women with PCOS have higher global adiposity and increased amounts of visceral adipose tissue compared with control women, especially in the ip and mesenteric depots.

  13. Polychlorinated naphthalenes in human adipose tissue from New York, USA

    International Nuclear Information System (INIS)

    Kunisue, Tatsuya; Johnson-Restrepo, Boris; Hilker, David R.; Aldous, Kenneth M.; Kannan, Kurunthachalam

    2009-01-01

    Polychlorinated naphthalenes (PCNs) are persistent, bioaccumulative, and toxic contaminants. Prior to this study, the occurrence of PCNs in human adipose tissues from the USA has not been analyzed. Here, we have measured concentrations of PCNs in human adipose tissue samples collected in New York City during 2003-2005. Concentrations of PCNs were in the range of 61-2500 pg/g lipid wt. in males and 21-910 pg/g lipid wt. in females. PCN congeners 52/60 (1,2,3,5,7/1,2,4,6,7) and 66/67 (1,2,3,4,6,7/1,2,3,5,6,7) were predominant, collectively accounting for 66% of the total PCN concentrations. Concentrations of PCNs in human adipose tissues were 2-3 orders of magnitude lower than the previously reported concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Concentrations of PCNs were not correlated with PCB concentrations. The contribution of PCNs to dioxin-like toxic equivalents (TEQs) in human adipose tissues was estimated to be <1% of the polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F)-TEQs. - Polychlorinated naphthalenes have been measured in human adipose tissues from the USA for the first time

  14. Childhood predictors of adult adiposity: findings from a longitudinal study.

    Science.gov (United States)

    McLeod, Geraldine Fh; Fergusson, David M; Horwood, L John; Boden, Joseph M; Carter, Frances A

    2018-03-23

    The increasing prevalence of overweight and obesity has become a key challenge for New Zealand. The purpose of the present study was to examine childhood risk factors for adult adiposity in a longitudinal birth cohort. Data were gathered from the Christchurch Health and Development Study (CHDS), a birth cohort of 1,265 children born in Christchurch in 1977. Associations were examined between socio-demographic background, perinatal factors, infant and child characteristics, family functioning/child maltreatment and adiposity at ages 30 and 35 years. Adiposity was assessed using body mass index scores. At ages 30 and 35, approximately one-third of cohort members were overweight and one-fifth were obese. Generalised estimating equation models showed that statistically significant (p<.05) predictors of later adiposity and overweight/obesity were: male gender, being born into a single-parent family, having parents with larger body size, higher early infant growth, limited or no breastfeeding, lower levels of cognitive ability and exposure to severe sexual abuse. Overweight and obesity was associated with social and family background, biological endowment, cognitive ability and childhood adversity factors. These findings may assist in the development of structured adiposity intervention programmes in conjunction with established community organisations specialising in child and family health.

  15. Epicardial adipose tissue in endocrine and metabolic diseases.

    Science.gov (United States)

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  16. Lower rate of invasive revascularisation after coronary angiography, following acute coronary syndrome, the longer distance you live from an invasive centres

    DEFF Research Database (Denmark)

    Hvelplund, Anders; Galatius, Søren; Madsen, Mette

    guidelines for the treatment of ACS. There are 5 tertiary invasive centres performing CAG, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), 8 hospitals with diagnostic units performing CAG only, and a further 36 hospitals without these facilities receiving patients...... in tertiles according to distance to centre. From the Danish Heart Registry procedures (CAG, PCI and CABG) were identified along with information on the result of CAG. A Cox proportional-hazard models with revascularisation as outcome was used to estimate the difference related to distance within 60 days...

  17. Adipose tissue, the skeleton and cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  18. Adipose tissue, the skeleton and cardiovascular disease

    International Nuclear Information System (INIS)

    Wiklund, Peder

    2011-01-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  19. Adipose Tissue Insulin Resistance in Gestational Diabetes.

    Science.gov (United States)

    Tumurbaatar, Batbayar; Poole, Aaron T; Olson, Gayle; Makhlouf, Michel; Sallam, Hanaa S; Thukuntla, Shwetha; Kankanala, Sucharitha; Ekhaese, Obos; Gomez, Guillermo; Chandalia, Manisha; Abate, Nicola

    2017-03-01

    Gestational diabetes mellitus (GDM) is a metabolic disorder characterized by insulin resistance (IR) and altered glucose-lipid metabolism. We propose that ectonucleotide pyrophosphate phosphodiesterase-1 (ENPP1), a protein known to induce adipocyte IR, is a determinant of GDM. Our objective was to study ENPP1 expression in adipose tissue (AT) of obese pregnant women with or without GDM, as well as glucose tolerance in pregnant transgenic (Tg) mice with AT-specific overexpression of human ENPP1. AT biopsies and blood were collected from body mass index-matched obese pregnant women non-GDM (n = 6), GDM (n = 7), and nonpregnant controls (n = 6) undergoing cesarian section or elective surgeries, respectively. We measured the following: (1) Expression of key molecules involved in insulin signaling and glucose-lipid metabolism in AT; (2) Plasma glucose and insulin levels and calculation of homeostasis model assessment of IR (HOMA-IR); (3) Intraperitoneal glucose tolerance test in AtENPP1 Tg pregnant mice. We found that: (1) Obese GDM patients have higher AT ENPP1 expression than obese non-GDM patients, or controls (P = 0.01-ANOVA). (2) ENPP1 expression level correlated negatively with glucose transporter 4 (GLUT4) and positively with insulin receptor substrate-1 (IRS-1) serine phosphorylation, and to other adipocyte functional proteins involved in glucose and lipid metabolism (P Pregnant AT ENPP1 Tg mice showed higher plasma glucose than wild type animals (P = 0.046-t test on area under curve [AUC] glucose ). Our results provide evidence of a causative link between ENPP1 and alterations in insulin signaling, glucose uptake, and lipid metabolism in subcutaneous abdominal AT of GDM, which may mediate IR and hyperglycemia in GDM.

  20. Adipose tissue-derived stem cells in oral mucosa tissue engineering ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... stem cells (ADSCs) may play an important role in this field. In this research ..... Adipose tissue is derived from embryonic mesodermal precursors and .... Clonogenic multipotent stem cells in human adipose tissue differentiate ...

  1. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study

    NARCIS (Netherlands)

    Gast, K.B.; Smit, J.W.A.; Heijer, M. den; Middeldorp, S.; Rippe, R.C.; Cessie, S. le; Koning, E.J. de; Jukema, J.W.; Rabelink, T.J.; Roos, A. de; Rosendaal, F.R.; Mutsert, R. de; Assendelft, P.; et al.,

    2013-01-01

    OBJECTIVE: The relative importance of insulin resistance and hyperglycemia to the development of atherosclerosis remains unclear. Furthermore, adiposity may be responsible for observed associations. Our aim was to study the relative contributions of adiposity, insulin resistance and hyperglycemia to

  2. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study

    NARCIS (Netherlands)

    Gast, Karin B.; Smit, Johannes W. A.; den Heijer, Martin; Middeldorp, Saskia; Rippe, Ralph C. A.; le Cessie, Saskia; de Koning, Eelco J. P.; Jukema, J. W.; Rabelink, Ton J.; de Roos, Albert; Rosendaal, Frits R.; de Mutsert, Renée; Rosendaal, F. R.; de Mutsert, R.; Rabelink, T. J.; Smit, J. W. A.; Romijn, J. A.; Rabe, K. F.; de Roos, A.; le Cessie, S.; Hiemstra, P. S.; Kloppenburg, M.; Huizinga, T. W. J.; Pijl, H.; Tamsma, J. T.; de Koning, E. J. P.; Assendelft, W. J. J.; Reitsma, P. H.; van Dijk, K. Willems; de Vries, A. P. J.; Lamb, H. J.; Jazet, I. M.; Dekkers, O. M.; Biermasz, N. R.; Cobbaert, C. M.; Heijer, M. den; Dekker, J. M.; Penninx, B. W.

    2013-01-01

    The relative importance of insulin resistance and hyperglycemia to the development of atherosclerosis remains unclear. Furthermore, adiposity may be responsible for observed associations. Our aim was to study the relative contributions of adiposity, insulin resistance and hyperglycemia to

  3. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge

    DEFF Research Database (Denmark)

    Emmett, Matthew J.; Lim, Hee-Woong; Jager, Jennifer

    2017-01-01

    Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease1. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold...

  4. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice.

    Science.gov (United States)

    Gao, Mingming; Ma, Yongjie; Liu, Dexi

    2015-01-01

    High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.

  5. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice.

    Directory of Open Access Journals (Sweden)

    Mingming Gao

    Full Text Available High-fat diet (HFD has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.

  6. The effect of hypokinesia on lipid metabolism in adipose tissue

    Science.gov (United States)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  7. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    DEFF Research Database (Denmark)

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.

    1995-01-01

    The association between habitual fish and marine n-3 polyunsaturated fatty acid (PUFA) intake, and the fatty acid composition of subcutaneous fat was studied in 24 healthy young volunteers. Habitual dietary intakes were estimated from three 7-d weighed food records made at months 0, 5, and 8...... of the 8-mo study period. The adipose tissue fatty acid composition of each individual was determined by gas chromatography as the mean of two gluteal biopsies, obtained in the first and the last month of the study. The daily consumption of fish and of marine n-3 PUFAs in absolute terms (g....../d) was significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  8. Growth hormone and adipose tissue: beyond the adipocyte.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J

    2011-06-01

    The last two decades have seen resurgence in research focused on adipose tissue. In part, the enhanced interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters fat mass, newer findings revealing the complexity of adipose tissue requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and to summarize our current knowledge of how GH may influence and contribute to these newer complexities of this tissue with special focus on the available data from mice with altered GH action. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  10. Feast and famine: Adipose tissue adaptations for healthy aging.

    Science.gov (United States)

    Lettieri Barbato, Daniele; Aquilano, Katia

    2016-07-01

    Proper adipose tissue function controls energy balance with favourable effects on metabolic health and longevity. The molecular and metabolic asset of adipose tissue quickly and dynamically readapts in response to nutrient fluctuations. Once delivered into cells, nutrients are managed by mitochondria that represent a key bioenergetics node. A persistent nutrient overload generates mitochondrial exhaustion and uncontrolled reactive oxygen species ((mt)ROS) production. In adipocytes, metabolic/molecular reorganization is triggered culminating in the acquirement of a hypertrophic and hypersecretory phenotype that accelerates aging. Conversely, dietary regimens such as caloric restriction or time-controlled fasting endorse mitochondrial functionality and (mt)ROS-mediated signalling, thus promoting geroprotection. In this perspective view, we argued some important molecular and metabolic aspects related to adipocyte response to nutrient stress. Finally we delineated hypothetical routes by which molecularly and metabolically readapted adipose tissue promotes healthy aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  12. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  13. Dietary sodium, adiposity, and inflammation in healthy adolescents.

    Science.gov (United States)

    Zhu, Haidong; Pollock, Norman K; Kotak, Ishita; Gutin, Bernard; Wang, Xiaoling; Bhagatwala, Jigar; Parikh, Samip; Harshfield, Gregory A; Dong, Yanbin

    2014-03-01

    To determine the relationships of sodium intake with adiposity and inflammation in healthy adolescents. A cross-sectional study involved 766 healthy white and African American adolescents aged 14 to 18 years. Dietary sodium intake was estimated by 7-day 24-hour dietary recall. Percent body fat was measured by dual-energy x-ray absorptiometry. Subcutaneous abdominal adipose tissue and visceral adipose tissue were assessed using magnetic resonance imaging. Fasting blood samples were measured for leptin, adiponectin, C-reactive protein, tumor necrosis factor-α, and intercellular adhesion molecule-1. The average sodium intake was 3280 mg/day. Ninety-seven percent of our adolescents exceeded the American Heart Association recommendation for sodium intake. Multiple linear regressions revealed that dietary sodium intake was independently associated with body weight (β = 0.23), BMI (β = 0.23), waist circumference (β = 0.23), percent body fat (β = 0.17), fat mass (β = 0.23), subcutaneous abdominal adipose tissue (β = 0.25), leptin (β = 0.20), and tumor necrosis factor-α (β = 0.61; all Ps sodium intake and visceral adipose tissue, skinfold thickness, adiponectin, C-reactive protein, or intercellular adhesion molecule-1. All the significant associations persisted after correction for multiple testing (all false discovery rates sodium consumption of our adolescents is as high as that of adults and more than twice the daily intake recommended by the American Heart Association. High sodium intake is positively associated with adiposity and inflammation independent of total energy intake and sugar-sweetened soft drink consumption.

  14. Protein Kinase A Regulatory Subunits in Human Adipose Tissue

    Science.gov (United States)

    Mantovani, Giovanna; Bondioni, Sara; Alberti, Luisella; Gilardini, Luisa; Invitti, Cecilia; Corbetta, Sabrina; Zappa, Marco A.; Ferrero, Stefano; Lania, Andrea G.; Bosari, Silvano; Beck-Peccoz, Paolo; Spada, Anna

    2009-01-01

    OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects. RESEARCH DESIGN AND METHODS—The expression of the different PKA regulatory subunits was evaluated by immunohistochemistry, Western blot, and real-time PCR in subcutaneous and visceral adipose tissue samples from 20 nonobese and 67 obese patients. PKA activity and glycerol release were evaluated in total protein extract and adipocytes isolated from fresh tissue samples, respectively. RESULTS—Expression techniques showed that R2B was the most abundant regulatory protein, both at mRNA and protein level. Interestingly, R2B mRNA levels were significantly lower in both subcutaneous and visceral adipose tissues from obese than nonobese patients and negatively correlated with BMI, waist circumference, insulin levels, and homeostasis model assessment of insulin resistance. Moreover, both basal and stimulated PKA activity and glycerol release were significantly lower in visceral adipose tissue from obese patients then nonobese subjects. CONCLUSIONS—Our results first indicate that, in human adipose tissue, there are important BMI-related differences in R2B expression and PKA activation, which might be included among the multiple determinants involved in the different lipolytic response to β-adrenergic activation in obesity. PMID:19095761

  15. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Directory of Open Access Journals (Sweden)

    Kamila Wojciechowicz

    Full Text Available The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16 the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis, under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  16. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  17. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  18. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  1. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: Oth.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  3. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  5. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  6. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  12. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    NARCIS (Netherlands)

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG

  13. Epigenetic programming of adipose-derived stem cells in low birthweight individuals

    DEFF Research Database (Denmark)

    Broholm, Christa; Olsson, Anders H; Perfilyev, Alexander

    2016-01-01

    Aims/hypothesis: Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction...

  14. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  10. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  14. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  17. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  18. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  20. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  3. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  4. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  6. Nonviral transfection of adipose tissue stromal cells: an experimental study.

    Science.gov (United States)

    Lopatina, T V; Kalinina, N I; Parfyonova, E V

    2009-04-01

    Delivery of plasmid DNA and interfering RNA into adipose tissue stromal cells was carried out by the methods of lipofection, calcium phosphate method, and by electroporation. The percent of transfected cells after delivery of plasmid DNA by the calcium phosphate method and lipofection was 0 and 15%, respectively, vs. more than 50% after electroporation. Similar results were obtained for delivery of short-strand RNA into cells. These data indicate that electroporation is the most effective method of nonviral transfection of adipose tissue stromal cells.

  7. Examination of adipose depot-specific PPAR moieties

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, M.V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Vierck, J.L. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Hausman, G.J. [USDA-ARS, Richard B. Russell Agricultural Research Station, Athens, GA 30604 (United States); Guan, L.L. [Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada (Canada); Fernyhough, M.E. [The Hartz Mountain Corporation, Secaucus, NJ 07094 (United States); Poulos, S.P. [The Coca-Cola Company, Research and Technology, Atlanta, GA 30313 (United States); Mir, P.S. [Agriculture and Agri-Food Canada Research Centre, Lethbridge, CA T1J 4B1 (United States); Jiang, Z. [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2010-04-02

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  8. Examination of adipose depot-specific PPAR moieties

    International Nuclear Information System (INIS)

    Dodson, M.V.; Vierck, J.L.; Hausman, G.J.; Guan, L.L.; Fernyhough, M.E.; Poulos, S.P.; Mir, P.S.; Jiang, Z.

    2010-01-01

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  9. Association of lipids and antropometrics measures of adiposity in adolescents

    OpenAIRE

    Paulo César Barauce Bento; Maria de Fátima Aguiar Lopes; Suelen Meira Góes; Gerusa Eisfeld Milano; Fabrício Cieslak; Neiva Leite; Rosana Bento Radominski

    2009-01-01

    The arm of this study was to relate lipidic levels to global and central obesity in adolescents. Transversal, descriptive and co-relational study. 127 pubescent subjects took part in this study, 71 girls (13.39+1.81 years) and 56 boys (13.10+1.97 years). It was identified global adiposity through the body mass index (BMI) as well central adiposity through the waist circumference (WC), according to age, sex, and ethnics. It had been determined levels of total cholesterol (TC), high density lip...

  10. Junk food consumption and screen time: association with childhood adiposity.

    Science.gov (United States)

    Montoye, Alexander H; Pfeiffer, Karin A; Alaimo, Katherine; Betz, Heather Hayes; Paek, Hye-Jin; Carlson, Joseph J; Eisenmann, Joey C

    2013-05-01

    To determine the joint association of junk food consumption (JFC) and screen time (ST) with adiposity in children. Two hundred fourteen (121 girls, 93 boys) third-to-fifth-grade students (54% Hispanic, 35% African American, 8% white) completed a lifestyle behavior survey, which included self-reported JFC and ST, as part of a school-based lifestyle intervention program. Neither JFC nor ST, independently or jointly, was associated with adiposity measures. JFC and ST were significantly correlated (r = .375). The low achievement of physical activity and screen time recommendations and high prevalence of overweight/obesity in this mostly minority, low socioeconomic status population indicates a potential focus for intervention.

  11. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Directory of Open Access Journals (Sweden)

    Carolina De Fusco

    2017-01-01

    Full Text Available Osteopontin (OPN is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  12. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis.

    Science.gov (United States)

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  13. Exercise Regulation of Marrow Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Gabriel M Pagnotti

    2016-07-01

    Full Text Available Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell pool (MSC that gives rise also to osteoblasts, chondrocytes, and myocytes among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally-supportive tissues, inhibits bone resorption and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot, or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a 5-fold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  14. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  15. Visceral adiposity index as an indicator of cardiometabolic risk in patients treated for craniopharyngioma.

    Science.gov (United States)

    Ferraù, Francesco; Spagnolo, Federica; Cotta, Oana Ruxandra; Cannavò, Laura; Alibrandi, Angela; Russo, Giuseppina Tiziana; Aversa, Tommaso; Trimarchi, Francesco; Cannavò, Salvatore

    2017-11-01

    Craniopharyngioma is associated with metabolic alterations leading to increased cardiovascular mortality. Recently, the visceral adiposity index has been proposed as a marker of visceral adipose tissue dysfunction and of the related cardiometabolic risk. The role of the visceral adiposity index has never been explored in craniopharyngioma patients. We assessed the cardiometabolic risk on the basis of the visceral adiposity index in craniopharyngioma patients. We evaluated data of 24 patients treated for craniopharyngioma in a single-centre. We investigated the relationship among patients' clinical and biochemical features, cardiovascular risk -assessed by the Framingham and the atherosclerotic cardiovascular disease risk scores-, visceral adiposity index and adipose tissue dysfunction severity. Increased visceral adiposity index was found in 8 patients (33%). Adipose tissue dysfunction resulted to be severe, moderate or mild in 5, 2 and 1 cases. Increased visceral adiposity index significantly correlated with the occurrence of metabolic syndrome (p 0.027), IRI (p 0.001), triglycerides (p < 0.001), HOMA-IR (p < 0.001) and with lower ISI-Matsuda (p 0.005) and HDL-cholesterol (p < 0.001). Higher degree of adipose tissue dysfunction associated with increased insulin resistance. No gender difference was found for visceral adiposity index, adipose tissue dysfunction severity, and cardiovascular risk scores. Patients with adulthood onset craniopharyngioma showed higher Framingham risk score (p 0.004), atherosclerotic cardiovascular disease 10-year (p < 0.001) and lifetime (p 0.018) risk scores than those with childhood onset disease. Visceral adiposity index is increased in one third of our patients with craniopharyngioma, even if metabolic syndrome does not occur. Increased visceral adiposity index and adipose tissue dysfunction severity correlate with insulin sensitivity parameters, do not correlate with Framingham or atherosclerotic cardiovascular

  16. Spice Up Your Life: Adipose Tissue and Inflammation

    Science.gov (United States)

    Agarwal, Anil K.

    2014-01-01

    Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health. PMID:24701352

  17. Spice Up Your Life: Adipose Tissue and Inflammation

    Directory of Open Access Journals (Sweden)

    Anil K. Agarwal

    2014-01-01

    Full Text Available Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health.

  18. Early growth and childhood adiposity. The Generation R Study

    NARCIS (Netherlands)

    B. Durmus (Busra)

    2013-01-01

    textabstractThe World Health Organization defines overweight and obesity as abnormal or excessive accumulation of adipose tissue, which is an established risk factor for harmful health. Common health consequences of overweight and obesity include cardiometabolic diseases – mainly diabetes, stroke

  19. Do Neighborhood Characteristics in Amsterdam Influence Adiposity at Preschool Age?

    Directory of Open Access Journals (Sweden)

    E. Jessica Hrudey

    2015-05-01

    Full Text Available Background: Neighborhood characteristics may contribute to adiposity in young children, but results in the current literature are inconsistent. This study aimed to investigate whether objective (socioeconomic status (SES and subjective (perceived safety, satisfaction with green spaces and perceived physical disorder neighborhood characteristics directly influence child adiposity (as measured by BMI, percent body fat (%BF and waist-to-height ratio (WHtR. Methods: Data on child BMI, %BF and WHtR were obtained from the Amsterdam Born Children and their Development cohort at 5–6 years of age. Three thousand four hundred and sixty nine (3469 children were included in the analyses. Mixed models, using random intercepts for postal code area to account for neighborhood clustering effects, were used to analyze the relationships of interest. Results: Associations were observed for both perceived safety and neighborhood SES with %BF after adjustment for maternal education and ethnicity. All relationships were eliminated with the inclusion of individual covariates and parental BMI into the models. Conclusions: In general, child adiposity at age 5–6 years was not independently associated with neighborhood characteristics, although a small relationship between child %BF and both neighborhood SES and perceived safety cannot be ruled out. At this young age, familial and individual factors probably play a more important role in influencing child adiposity than neighborhood characteristics.

  20. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  1. Maternal nutritional manipulations program adipose tissue dysfunction in offspring

    Directory of Open Access Journals (Sweden)

    Simon eLecoutre

    2015-05-01

    Full Text Available Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates. Maternal nutritional manipulations reprogram offspring’s adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.

  2. Adipose tissue fatty acid patterns and changes in anthropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissu...

  3. Adipose-derived stem cells for treatment of chronic ulcers

    DEFF Research Database (Denmark)

    Holm, Jens Selch; Toyserkani, Navid Mohamadpour; Sorensen, Jens Ahm

    2018-01-01

    Chronic ulcers remain a difficult challenge in healthcare systems. While treatment options are limited, stem cells may be a novel alternative. Adipose-derived stem cells (ADSC) have become increasingly popular compared with bone marrow-derived stem cells as they are far easier to harvest...

  4. Ghrelin receptor regulates adipose tissue inflammation in aging

    Science.gov (United States)

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  5. A novel animal model linking adiposity to altered circadian rhythms

    Science.gov (United States)

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  6. Senescence and quiescence in adipose-derived stromal cells

    DEFF Research Database (Denmark)

    Søndergaard, Rebekka Harary; Follin, Bjarke; Lund, Lisbeth Drozd

    2017-01-01

    Background aims. Adipose-derived stromal cells (ASCs) are attractive sources for cell-based therapies. The hypoxic niche of ASCs in vivo implies that cells will benefit from hypoxia during in vitro expansion. Human platelet lysate (hPL) enhances ASC proliferation rates, compared with fetal bovine...

  7. Genome-wide association studies (GWAS) of adiposity

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Ingelsson, Erik

    2016-01-01

    Adiposity is strongly heritable and one of the leading risk factors for type 2 diabetes, cardiovascular disease, cancer, and premature death. In the past 8 years, genome-wide association studies (GWAS) have greatly increased our understanding of the genes and biological pathways that regulate...

  8. MicroRNA expression profiling in neurogenesis of adipose tissue

    Indian Academy of Sciences (India)

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we ...

  9. Increase in Adiposity of Type 2 Diabetes Patients following ...

    African Journals Online (AJOL)

    They were placed on a combination of endurance and strengthening exercises for 12 weeks. The participants were thereafter observed for another 12 weeks without exercises. The adiposity variables measured in both phases of the study include: body mass index (BMI), waist circumference (WC), waist-hip-ratio (WHR) and ...

  10. Quantification of visceral adipose tissue in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Frøssing, Signe; Nylander, Malin Chatarina; Chabanova, Elizaveta

    2018-01-01

    Background Polycystic ovary syndrome (PCOS) is associated with frequent overweight and abdominal obesity. Quantifying visceral adipose tissue (VAT) in PCOS patients can be a tool to assess metabolic risk and monitor effects of treatment. The latest dual-energy X-ray absorptiometry (DXA) technology...

  11. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  12. Myostatin Attenuation In Vivo Reduces Adiposity, but Activates Adipogenesis.

    Science.gov (United States)

    Li, Naisi; Yang, Qiyuan; Walker, Ryan G; Thompson, Thomas B; Du, Min; Rodgers, Buel D

    2016-01-01

    A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn(-/-) (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn(-/-) BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn(-/-) animals results from nutrient partitioning away from fat and in support of muscle.

  13. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  14. Is adipose tissue a place for Mycobacterium tuberculosis persistence?

    Directory of Open Access Journals (Sweden)

    Olivier Neyrolles

    Full Text Available BACKGROUND: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB, has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10-15% of the reactivation cases. METHODOLOGY/PRINCIPAL FINDINGS: We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals, and in 8/26 French samples (6/20 individuals. In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. CONCLUSIONS/SIGNIFICANCE: Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of

  15. Raldh1 promotes adiposity during adolescence independently of retinal signaling.

    Directory of Open Access Journals (Sweden)

    Di Yang

    Full Text Available All-trans-retinoic acid (RA inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO. The aldehyde dehydrogenase Raldh1 (Aldh1a1 functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.

  16. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Bai, Xiaowen; Alt, Eckhard

    2010-01-01

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  17. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  18. Does youth adiposity, or change in adiposity from youth to adulthood, predict metabolically healthy obesity in adulthood?

    Science.gov (United States)

    Smith, K J; Bessell, E; Magnussen, C G; Dwyer, T; Venn, A J

    2016-10-01

    Individuals with metabolically healthy obesity (MHO) do not have the metabolic complications usually associated with obesity. To examine whether youth adiposity, or change in adiposity from youth to adulthood, predicts MHO 20 years later. A national sample of 2410 Australian participants had height, weight and waist circumference (WC) measured in 1985 (7-15 years old) and 2004-2006 (26-36 years old). A fasting blood sample was taken in 2004-2006. MHO was defined as body mass index (BMI) ≥30 kg m(-2) , normal fasting glucose (1.036 mmol L(-1) men, > 1.295 mmol L(-1) women), blood pressure (youth BMI (or WC) z-score or change in BMI (or WC) z-score from youth to adulthood, adjusted for sex and youth age. In total 323 individuals were obese at follow-up, 79 (24.5%) were MHO. Adult MHO was not associated with youth BMI (RR: 1.00, 95%CI: 0.85-1.19) or WC (RR: 0.93, 95%CI: 0.79-1.11). Individuals were less likely to be MHO if they had larger increases in BMI (BMI RR: 0.74, 95%CI: 0.57-0.97) or WC (RR: 0.70, 95%CI: 0.55-0.90) from youth to adulthood. Change in adiposity from youth to adulthood predicted adult MHO better than youth adiposity alone. © 2015 World Obesity.

  19. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness.

    Science.gov (United States)

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-03-01

    Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to perform.

  20. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation

    Science.gov (United States)

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J.; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. PMID:19423085

  1. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose-tissue inflammation.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) gamma agonist. Hence, we hypothesized that F4/80(hi) and F4/80(lo) ATM differentially express PPAR gamma. This study phenotypically and functionally characterizes F4/80(hi) and F4/80(lo) ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80(lo) and F4/80(hi) ATM by quantitative real-time RT-PCR. We show that while F4/80(lo) macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80(lo) and F4/80(hi) ATM. Moreover, accumulation of F4/80(hi) ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80(hi) ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-alpha, MCP-1, and IL-10 than F4/80(lo) ATM. Gene expression analyses of the sorted populations revealed that only the F4/80(lo) population produced IL-4, whereas the F4/80(hi) ATM expressed greater amounts of PPAR gamma, delta, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR gamma in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR gamma is differentially expressed in F4/80(hi) versus F4/80(low) ATM subsets and its deficiency favors a predominance of M1 markers in WAT.

  2. Abdominal Adiposity Distribution in Diabetic/Prediabetic and Nondiabetic Populations: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Jane J. Lee

    2014-01-01

    Full Text Available Excess fat in the abdomen can be classified generally as visceral and subcutaneous adiposity. Evidence suggests that visceral adiposity has greater implications for diabetes than other fat depots. The purpose of this study is to explore the disparities in the distribution of abdominal adiposity in diabetic/prediabetic and nondiabetic populations and to identify moderators that influence the pattern of central obesity via a meta-analysis technique. The Hedges’ g was used as a measure of effect size and 95% confidence interval was computed. A total of 41 relevant studies with 101 effect sizes were retrieved. Pooled effect sizes for visceral and subcutaneous adiposity were 0.69 and 0.42, respectively. Diabetic/prediabetic populations exhibited greater visceral and subcutaneous adiposity compared to nondiabetic populations (Z=10.35, P<0.05. Significant moderator effects of gender (Z=-2.90 and assessment method of abdominal adiposity (Z=-2.17 were found for visceral fat (P<0.05, but not for subcutaneous fat. Type of health condition influenced both visceral (Z=-5.10 and subcutaneous (Z=-7.09 abdominal adiposity volumes (P<0.05. Abdominal adiposity distributions were significantly altered in the diabetic/prediabetic population compared to the nondiabetic population. Gender, assessment method of abdominal adiposity, and type of health conditions (diabetic/prediabetics were identified as crucial moderators that influence the degree of abdominal adiposity.

  3. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P

  4. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    Science.gov (United States)

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( Angus > F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams Angus-sired F dams). Intramuscular adipocyte volume ( Angus cattle. Additionally, several differences were observed in i.m. adipose tissue that were consistent with this being a less-developed adipose

  5. Road Traffic and Railway Noise Exposures and Adiposity in Adults

    DEFF Research Database (Denmark)

    Christensen, Jeppe S; Raaschou-Nielsen, Ole; Tjønneland, Anne

    2016-01-01

    and railway noise and adiposity. METHODS: In this cross-sectional study of 57,053 middle-aged people, height, weight, waist circumference, and bioelectrical impedance were measured at enrollment (1993-1997). Body mass index (BMI), body fat mass index (BFMI), and lean body mass index (LBMI) were calculated....... Residential exposure to road and railway traffic noise exposure was calculated using the Nordic prediction method. Associations between traffic noise and anthropometric measures at enrollment were analyzed using general linear models and logistic regression adjusted for demographic and lifestyle factors......, significant increases were also found for BFMI and LBMI. All associations followed linear exposure-response relationships. Exposure to railway noise was not linearly associated with adiposity measures. However, exposure > 60 dB was associated with a 0.71-cm wider waist circumference (95% CI: 0.23, 1...

  6. Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Delphine Duteil

    2016-10-01

    Full Text Available Previous work indicated that lysine-specific demethylase 1 (Lsd1 can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.

  7. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...

  8. A role of active brown adipose tissue in cancer cachexia?

    Directory of Open Access Journals (Sweden)

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  9. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism.

    Science.gov (United States)

    Suchacki, Karla J; Cawthorn, William P

    2018-01-01

    The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.

  10. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  11. Integrator complex plays an essential role in adipose differentiation

    International Nuclear Information System (INIS)

    Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Okubo, Hirofumi; Tsuchiya, Yoshihiro; Ohno, Haruya; Takahashi, Shin-Ichiro; Nishimura, Fusanori; Kamata, Hideaki; Katagiri, Hideki; Asano, Tomoichiro

    2013-01-01

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reduced to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps

  12. Leucine supplementation protects from insulin resistance by regulating adiposity levels.

    Directory of Open Access Journals (Sweden)

    Elke Binder

    Full Text Available BACKGROUND: Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. METHODOLOGY/PRINCIPAL FINDINGS: Male C57BL/6J mice were fed chow or a high-fat diet (HFD, supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3 in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. CONCLUSIONS/SIGNIFICANCE: These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation

  13. Technical note: Alternatives to reduce adipose tissue sampling bias.

    Science.gov (United States)

    Cruz, G D; Wang, Y; Fadel, J G

    2014-10-01

    Understanding the mechanisms by which nutritional and pharmaceutical factors can manipulate adipose tissue growth and development in production animals has direct and indirect effects in the profitability of an enterprise. Adipocyte cellularity (number and size) is a key biological response that is commonly measured in animal science research. The variability and sampling of adipocyte cellularity within a muscle has been addressed in previous studies, but no attempt to critically investigate these issues has been proposed in the literature. The present study evaluated 2 sampling techniques (random and systematic) in an attempt to minimize sampling bias and to determine the minimum number of samples from 1 to 15 needed to represent the overall adipose tissue in the muscle. Both sampling procedures were applied on adipose tissue samples dissected from 30 longissimus muscles from cattle finished either on grass or grain. Briefly, adipose tissue samples were fixed with osmium tetroxide, and size and number of adipocytes were determined by a Coulter Counter. These results were then fit in a finite mixture model to obtain distribution parameters of each sample. To evaluate the benefits of increasing number of samples and the advantage of the new sampling technique, the concept of acceptance ratio was used; simply stated, the higher the acceptance ratio, the better the representation of the overall population. As expected, a great improvement on the estimation of the overall adipocyte cellularity parameters was observed using both sampling techniques when sample size number increased from 1 to 15 samples, considering both techniques' acceptance ratio increased from approximately 3 to 25%. When comparing sampling techniques, the systematic procedure slightly improved parameters estimation. The results suggest that more detailed research using other sampling techniques may provide better estimates for minimum sampling.

  14. Systems genetic analysis of brown adipose tissue function

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Saba, L. M.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šilhavý, Jan; Šimáková, Miroslava; Strnad, Hynek; Trnovská, J.; Škop, V.; Hüttl, M.; Marková, I.; Oliyarnyk, O.; Malínská, H.; Kazdová, L.; Smith, H.; Tabakoff, B.

    2018-01-01

    Roč. 50, č. 1 (2018), s. 52-66 ISSN 1094-8341 R&D Projects: GA ČR(CZ) GA13-04420S Institutional support: RVO:67985823 Keywords : brown adipose tissue * coexpression modules * quantitative trait locus * recombinant inbred strains * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Human genetics Impact factor: 3.044, year: 2016

  15. School food environments associated with adiposity in Canadian children.

    Science.gov (United States)

    Fitzpatrick, C; Datta, G D; Henderson, M; Gray-Donald, K; Kestens, Y; Barnett, T A

    2017-07-01

    Targeting obesogenic features of children's environment that are amenable to change represents a promising strategy for health promotion. The school food environment, defined as the services and policies regarding nutrition and the availability of food in the school and surrounding neighborhood, is particularly important given that students travel through the school neighborhood almost daily and that they consume a substantial proportion of their calories at school. As part of the Quebec Adipose and Lifestyle Investigation in Youth (QUALITY) cohort study, we assessed features of school indoor dietary environment and the surrounding school neighborhoods, when children were aged 8-10 years (2005-2008). School principals reported on food practices and policies within the schools. The density of convenience stores and fast-food outlets surrounding the school was computed using a Geographical Information System. Indicators of school neighborhood deprivation were derived from census data. Adiposity outcomes were measured in a clinical setting 2 years later, when participants were aged 10-12 years (2008-2011). We conducted cluster analyses to identify school food environment types. Associations between school types and adiposity were estimated in linear regression models. Cluster analysis identified three school types with distinct food environments. Schools were characterized as: overall healthful (45%); a healthful food environment in the surrounding neighborhood, but an unhealthful indoor food environment (22%); or overall unhealthful (33%). Less healthful schools were located in more deprived neighborhoods and were associated with greater child adiposity. Despite regulatory efforts to improve school food environments, there is substantial inequity in dietary environments across schools. Ensuring healthful indoor and outdoor food environments across schools should be included in comprehensive efforts to reduce obesity-related health disparities.

  16. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia.

    Science.gov (United States)

    Tsoli, Maria; Swarbrick, Michael M; Robertson, Graham R

    2016-06-01

    Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  18. Breast Cancer and Estrogen Biosynthesis in Adipose Tissue

    Science.gov (United States)

    1998-10-01

    article must therefore be hereby marked " advertisement " in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. $ These two authors...activity in adipose tissue from breast quadrants: a link with tumor site. Br. Mcd . J. 296, 741 743. [12] Reed. M.J.. Topping, L., Coldham, N.G...Burkitt HG, Daniels VG. 1987 Connective tissue. In: Functional histology. A text and colour atlas, 2nd ed. Edinburgh, UK: Churchill Living- stone

  19. Brain–gut–adipose-tissue communication pathways at a glance

    Directory of Open Access Journals (Sweden)

    Chun-Xia Yi

    2012-09-01

    Full Text Available One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.

  20. Adipose tissue macrophages impair preadipocyte differentiation in humans.

    Directory of Open Access Journals (Sweden)

    Li Fen Liu

    Full Text Available The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation.Abdominal subcutaneous(SAT and visceral(VAT adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified.Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001. With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance.The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.

  1. Neighborhood Walkability and Adiposity in the Women's Health Initiative Cohort.

    Science.gov (United States)

    Sriram, Urshila; LaCroix, Andrea Z; Barrington, Wendy E; Corbie-Smith, Giselle; Garcia, Lorena; Going, Scott B; LaMonte, Michael J; Manson, JoAnn E; Sealy-Jefferson, Shawnita; Stefanick, Marcia L; Waring, Molly E; Seguin, Rebecca A

    2016-11-01

    Neighborhood environments may play a role in the rising prevalence of obesity among older adults. However, research on built environmental correlates of obesity in this age group is limited. The current study aimed to explore associations of Walk Score, a validated measure of neighborhood walkability, with BMI and waist circumference in a large, diverse sample of older women. This study linked cross-sectional data on 6,526 older postmenopausal women from the Women's Health Initiative Long Life Study (2012-2013) to Walk Scores for each participant's address (collected in 2012). Linear and logistic regression models were used to estimate associations of BMI and waist circumference with continuous and categorical Walk Score measures. Secondary analyses examined whether these relationships could be explained by walking expenditure or total physical activity. All analyses were conducted in 2015. Higher Walk Score was not associated with BMI or overall obesity after adjustment for sociodemographic, medical, and lifestyle factors. However, participants in highly walkable areas had significantly lower odds of abdominal obesity (waist circumference >88 cm) as compared with those in less walkable locations. Observed associations between walkability and adiposity were partly explained by walking expenditure. Findings suggest that neighborhood walkability is linked to abdominal adiposity, as measured by waist circumference, among older women and provide support for future longitudinal research on associations between Walk Score and adiposity in this population. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO 2 -FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO 2 -FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[ 14 C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO 2 -FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO 2 -OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO 2 -FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO 2 -OA-treated mice. This pattern of NO 2 -FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    Science.gov (United States)

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  4. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  5. Functionally enhanced brown adipose tissue in Ames dwarf mice.

    Science.gov (United States)

    Darcy, Justin; Bartke, Andrzej

    2017-01-02

    Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1 df/df ) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.

  6. Development, regulation, metabolism and function of bone marrow adipose tissues.

    Science.gov (United States)

    Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A

    2018-05-01

    Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  8. Recent Advances in Human Genetics and Epigenetics of Adiposity: Pathway to Precision Medicine?

    Science.gov (United States)

    Fall, Tove; Mendelson, Michael; Speliotes, Elizabeth K

    2017-05-01

    Obesity is a heritable trait that contributes to substantial global morbidity and mortality. Here, we summarize findings from the past decade of genetic and epigenetic research focused on unravelling the underpinnings of adiposity. More than 140 genetic regions now are known to influence adiposity traits. The genetics of general adiposity, as measured by body mass index, and that of abdominal obesity, as measured by waist-to-hip ratio, have distinct biological backgrounds. Gene expression associated with general adiposity is enriched in the nervous system. In contrast, genes associated with abdominal adiposity function in adipose tissue. Recent population-based epigenetic analyses have highlighted additional distinct loci. We discuss how associated genetic variants can lead to understanding causal mechanisms, and to disentangling reverse causation in epigenetic analyses. Discoveries emerging from population genomics are identifying new disease markers and potential novel drug targets to better define and combat obesity and related diseases. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. The Fat of the Matter: Obesity and Visceral Adiposity in Treated HIV Infection.

    Science.gov (United States)

    Lake, Jordan E

    2017-12-01

    The aim of this review is to summarize knowledge of the prevalence, relevant physiology, and consequences of obesity and visceral adiposity in HIV-infected adults, including highlighting gaps in current knowledge and future research directions. Similar to the general population, obesity prevalence is increasing among HIV-infected persons, and obesity and visceral adiposity are associated with numerous metabolic and inflammatory sequelae. However, HIV- and antiretroviral therapy (ART)-specific factors may contribute to fat gain and fat quality in treated HIV infection, particularly to the development of visceral adiposity, and sex differences may exist. Obesity and visceral adiposity commonly occur in HIV-infected persons and have significant implications for morbidity and mortality. Future research should aim to better elucidate the HIV- and ART-specific contributors to obesity and visceral adiposity in treated HIV infection, with the goal of developing targeted therapies for the prevention and treatment of obesity and visceral adiposity in the modern ART era.

  10. Visceral adiposity index as a predictor of clinical severity and therapeutic outcome of PCOS.

    Science.gov (United States)

    Zheng, Sai-Hua; Li, Xue-Lian

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disease which often accompany with abnormal fat distribution. Visceral adiposity has association with abnormal lipid metabolic, pro-inflammatory activity, insulin resistance (IR) and hyperandrogenism. Increased visceral adiposity raises the risk of metabolic syndrome, type 2 diabetes and cardiovascular (CV) events, and aggravates ovulatory dysfunction and hyperandrogenism in PCOS women. Visceral adiposity index (VAI), a simple surrogate maker of visceral adipose dysfunction and visceral adiposity, is a predictor of IR, and link hyperinsulinemia, hyperandrogenism and anovulation. This review aims to discuss the visceral adiposity situation in PCOS women, and suggests that VAI may be a useful predictor of clinical severity and therapeutic outcome of PCOS.

  11. Estimating adipose tissue in the chest wall using ultrasonic and alternate 40K and biometric measurements

    International Nuclear Information System (INIS)

    Anderson, A.L.; Campbell, G.W.

    1982-01-01

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in x-ray detection efficiency are common. Methods using simple 40 K and biometric measurement techniques were investigated to determine the adipose content in the human chest wall. These methods predict adipose content to within 15% of the absolute ultrasonic value. These new methods are discussed and compared with conventional ultrasonic measurement techniques

  12. The evolution of human adiposity and obesity: where did it all go wrong?

    OpenAIRE

    Wells, J. C.

    2012-01-01

    Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a co...

  13. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations.

    Science.gov (United States)

    Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R; List, Edward O; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J; Berryman, Darlene E

    2015-05-01

    White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.

  14. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring.

    Directory of Open Access Journals (Sweden)

    Ana Paula García

    Full Text Available Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy (CR dams. Body weight (BW, the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+ and NPY(+, suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+ and NPY(+. Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.

  15. Adiposity, insulin and lipid metabolism in post-menopausal women.

    Science.gov (United States)

    Lovegrove, J A; Silva, K D R R; Wright, J W; Williams, C M

    2002-04-01

    To investigate relationships between body fat and its distribution and carbohydrate and lipid tolerance using statistical comparisons in post-menopausal women. Sequential meal, postprandial study (600 min) which included a mixed standard breakfast (30 g fat) and lunch (44 g fat) given at 0 and 270 min, respectively, after an overnight fast. Twenty-eight post-menopausal women with a diverse range of body weight (body mass index (BMI), mean 27.2, range 20.5-38.8 kg/m2) and abdominal fat deposition (waist, mean 86.4, range 63.5-124.0 cm). Women with BMI 37 kg/m2, age > 80 y and taking hormone replacement therapy (HRT) were excluded. Anthropometric measurements were performed to assess total and regional fat deposits. The concentrations of plasma total cholesterol, high density lipoprotein (HDL) cholesterol, triacylglycerol (TAG), glucose, insulin (ins), non-esterified fatty acids (NEFA) and apolipoprotein (apo) B-48 were analysed in plasma collected at baseline (fasted state) and at 13 postprandial time points for a 600 min period. Insulin concentrations in the fasted and fed state were significantly correlated with all measures of adiposity (BMI, waist, waist-hip ratio (W/H), waist-height ratio (W/Ht) and sum of skinfold thickness (SSk)). After controlling for BMI, waist remained significantly and positively associated with fasted insulin (r=0.559) with waist contributing 53% to the variability after multiple regression analysis. After controlling for waist, BMI remained significantly correlated with postprandial (IAUC) insulin (r=0.535) contributing 66% of the variability of this measurement. No association was found between any measures of adiposity and glucose concentrations, although insulin concentration in relation to glucose concentration (glucose-insulin ratio) was significantly negatively correlated with all measures of adiposity. A significant positive correlation was found between fasted TAG and BMI (r=0.416), waist (r=0.393) and Ssk (r=0.457) and

  16. Vascular smooth muscle responsiveness to nitric oxide is reduced in healthy adults with increased adiposity

    OpenAIRE

    Christou, Demetra D.; Pierce, Gary L.; Walker, Ashley E.; Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Meade, Thomas H.; English, Mark; Seals, Douglas R.

    2012-01-01

    Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18–79 years; body mass index (BMI), 16.4–42.2 kg/m2], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI...

  17. Association between breast cancer, breast density, and body adiposity evaluated by MRI

    International Nuclear Information System (INIS)

    Zhu, Wenlian; Huang, Peng; Macura, Katarzyna J.; Artemov, Dmitri

    2016-01-01

    Despite the lack of reliable methods with which to measure breast density from 2D mammograms, numerous studies have demonstrated a positive association between breast cancer and breast density. The goal of this study was to study the association between breast cancer and body adiposity, as well as breast density quantitatively assessed from 3D MRI breast images. Breast density was calculated from 3D T1-weighted MRI images. The thickness of the upper abdominal adipose layer was used as a surrogate marker for body adiposity. We evaluated the correlation between breast density, age, body adiposity, and breast cancer. Breast density was calculated for 410 patients with unilateral invasive breast cancer, 73 patients with ductal carcinoma in situ (DCIS), and 361 controls without breast cancer. Breast density was inversely related to age and the thickness of the upper abdominal adipose layer. Breast cancer was only positively associated with body adiposity and age. Age and body adiposity are predictive of breast density. Breast cancer was not associated with breast density; however, it was associated with the thickness of the upper abdominal adipose layer, a surrogate marker for body adiposity. Our results based on a limited number of patients warrant further investigations. (orig.)

  18. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    Science.gov (United States)

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Madoka Ogawa; Robert Lester; Hiroshi Akima; Ashraf S. Gorgey

    2017-01-01

    Ectopic adiposity has gained considerable attention because of its tight association with metabolic and cardiovascular health in persons with spinal cord injury (SCI). Ectopic adiposity is characterized by the storage of adipose tissue in non-subcutaneous sites. Magnetic resonance imaging (MRI) has proven to be an effective tool in quantifying ectopic adiposity and provides the opportunity to measure different adipose depots including intermuscular adipose tissue (IMAT) and intramuscular adipose tissue (IntraMAT) or in-tramuscular fat (IMF). It is highly important to distinguish and clearly define these compartments, because controversy still exists on how to accurately quantify these adipose depots. Investigators have relied on separating muscle from fat pixels based on their characteristic signal intensities. A common technique is plotting a threshold histogram that clearly separates between muscle and fat peaks. The cut-offs to separate between muscle and fat peaks are still not clearly defined and different cut-offs have been identified. This review will outline and compare the Midpoint and Otsu techniques, two methods used to determine the threshold between muscle and fat pixels on T1 weighted MRI. The process of water/fat segmentation using the Dixon method will also be outlined. We are hopeful that this review will trigger more research towards accurately quantifying ectopic adiposity due to its high relevance to cardiometabolic health after SCI.

  20. The relations of child adiposity with parent-to-child and parent-to-parent hostility.

    Science.gov (United States)

    Lorber, Michael F; White-Ajmani, Mandi L; Dixon, Denise; Slep, Amy M S; Heyman, Richard E

    2017-11-01

    Investigate (1) the association of child adiposity with parent-to-child and parent-to-parent hostility, (2) the mediation of these associations by dietary behaviours and (3) moderation by gender. One hundred thirty-five couples with 6- to 14-year-old children completed measures of emotional and physical aggression, overreactive discipline and child diet. Parent-to-parent hostility was also coded from laboratory observations. Child adiposity was a combination of body mass index and waist-to-hip ratio. Mother-to-child hostility was associated with child adiposity. This association was concentrated in boys and was not significantly explained by child dietary factors. Mother-to-father hostility was not significantly associated with boys' or girls' adiposity. Girls' adiposity was not significantly associated with family hostility. Fathers' hostility was not linked to child adiposity. This is the first study to take a family-level approach to understanding the relation of hostility to child adiposity by examining relations among adiposity and both mothers' and fathers' hostility directed toward one another and toward their children. Our findings highlight the potential role played by mothers' emotional hostility in boys' adiposity and suggest that, if this role is further substantiated, mother-son emotional hostility may be a promising target for the prevention of child obesity.

  1. Body frame size in school children is related to the amount of adipose tissue in different depots but not to adipose distribution.

    Science.gov (United States)

    Guzmán-de la Garza, Francisco J; González Ayala, Alejandra E; Gómez Nava, Marisol; Martínez Monsiváis, Leislie I; Salinas Martínez, Ana M; Ramírez López, Erik; Mathiew Quirós, Alvaro; Garcia Quintanilla, Francisco

    2017-09-10

    The main aim of this study was to test the hypothesis that body frame size is related to the amount of fat in different adipose tissue depots and to fat distribution in schoolchildren. Children aged between 5 and 10 years were included in this cross-sectional study (n = 565). Body frame size, adiposity markers (anthropometric, skinfolds thickness, and ultrasound measures), and fat distribution indices were analyzed. Correlation coefficients adjusted by reliability were estimated and analyzed by sex; the significance of the difference between two correlation coefficients was assessed using the Fisher z-transformation. The sample included primarily urban children; 58.6% were normal weight, 16.1% overweight, 19.6% obese, and the rest were underweight. Markers of subcutaneous adiposity, fat mass and fat-free mass, and preperitoneal adiposity showed higher and significant correlations with the sum of the biacromial + bitrochanteric diameter than with the elbow diameter, regardless of sex. The fat distribution conicity index presented significant but weak correlations; and visceral adipose tissue, hepatic steatosis, and the waist-for-hip ratio were not significantly correlated with body frame size measures. Body frame size in school children was related to the amount of adipose tissue in different depots, but not adipose distribution. More studies are needed to confirm this relationship and its importance to predict changes in visceral fat deposition during growth. © 2017 Wiley Periodicals, Inc.

  2. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity.

    Science.gov (United States)

    Nazare, Julie-Anne; Smith, Jessica D; Borel, Anne-Laure; Haffner, Steven M; Balkau, Beverley; Ross, Robert; Massien, Christine; Alméras, Natalie; Després, Jean-Pierre

    2012-10-01

    Ethnic differences in cardiometabolic risk (CMR) may be related to patterns of ethnic-specific body fat distribution. We aimed to identify differences across ethnic groups in interrelations between BMI, abdominal adiposity, liver fat, and CMR profile. In the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity, 297 physicians recruited 4504 patients (from 29 countries). In the current cross-sectional analyses, 2011 whites, 166 African Caribbean blacks, 381 Hispanics, 1192 East Asians, and 347 Southeast Asians were included. Computed tomography was used to assess abdominal fat distribution and to estimate liver fat content. Anthropometric variables and CMR profile were measured. Higher ranges of BMI were associated with higher levels of visceral [visceral adipose tissue (VAT)] and deep subcutaneous [deep subcutaneous adipose tissue (DSAT)] adiposity, with significant ethnic differences regarding the slope of these relations. Despite lower absolute BMI values, East Asians presented the largest accumulation of VAT but the lowest accumulation of DSAT with increasing adiposity. The association of BMI with liver fat did not differ between ethnic groups. Liver fat and DSAT were positively correlated with VAT with no ethnic variation. All ethnic groups had a similar association between a 1-SD increase in VAT, DSAT, or liver fat with hypertension, type 2 diabetes, hypertriglyceridemia, low HDL-cholesterol concentration, or high C-reactive protein concentration. Ethnicity significantly affects abdominal adiposity and liver fat partitioning, and East Asians have the most deleterious abdominal fat distribution. Irrespective of ethnicity, abdominal and hepatic fat depots are strongly interrelated and increased with obesity. Higher amounts of VAT or liver fat are associated with a more deteriorated CMR profile in all ethnic groups.

  3. Relative abdominal adiposity is associated with chronic low back pain: a preliminary explorative study

    Directory of Open Access Journals (Sweden)

    Cristy Brooks

    2016-08-01

    Full Text Available Abstract Background Although previous research suggests a relationship between chronic low back pain (cLBP and adiposity, this relationship is poorly understood. No research has explored the relationship between abdominal-specific subcutaneous and visceral adiposity with pain and disability in cLBP individuals. The aim of this study therefore was to examine the relationship of regional and total body adiposity to pain and disability in cLBP individuals. Methods A preliminary explorative study design of seventy (n = 70 adult men and women with cLBP was employed. Anthropometric and adiposity measures were collected, including body mass index, waist-to-hip ratio, total body adiposity and specific ultrasound-based abdominal adiposity measurements. Self-reported pain and disability were measured using a Visual Analogue Scale (VAS and the Oswestry Disability Index (ODI questionnaires respectively. Relationships between anthropometric and adiposity measures with pain and disability were assessed using correlation and regression analyses. Results Significant correlations between abdominal to lumbar adiposity ratio (A-L variables and the waist-to-hip ratio with self-reported pain were observed. A-L variables were found to predict pain, with 9.1–30.5 % of the variance in pain across the three analysis models explained by these variables. No relationships between anthropometric or adiposity variables to self-reported disability were identified. Conclusions The findings of this study indicated that regional distribution of adiposity via the A-L is associated with cLBP, providing a rationale for future research on adiposity and cLBP.

  4. NAMPT-mediated NAD+ biosynthesis is indispensable for adipose tissue plasticity and development of obesity

    Directory of Open Access Journals (Sweden)

    Karen Nørgaard Nielsen

    2018-05-01

    Full Text Available Objective: The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+ biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT supports adipose plasticity and the pathological progression to obesity. Methods: We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results: Fat-specific Nampt knockout (FANKO mice were completely resistant to high fat diet (HFD-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions: These findings indicate that adipose NAMPT plays an essential role in

  5. Critical illness induces alternative activation of M2 macrophages in adipose tissue.

    Science.gov (United States)

    Langouche, Lies; Marques, Mirna B; Ingels, Catherine; Gunst, Jan; Derde, Sarah; Vander Perre, Sarah; D'Hoore, André; Van den Berghe, Greet

    2011-01-01

    We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2

  6. Obesity associated disease risk: the role of inherent differences and location of adipose depots.

    Science.gov (United States)

    Hill, Jessica H; Solt, Claudia; Foster, Michelle T

    2018-03-16

    Obesity and associated metabolic co-morbidities are a worldwide public health problem. Negative health outcomes associated with obesity, however, do not arise from excessive adiposity alone. Rather, deleterious outcomes of adipose tissue accumulation are a result of how adipocytes are distributed to individual regions in the body. Due to our increased understanding of the dynamic relationship that exists between specific adipose depots and disease risk, an accurate characterization of total body adiposity as well as location is required to properly evaluate a population's disease risk. Specifically, distinctive tissue depots within the body include the lower body, upper body and abdominal (deep and superficial) subcutaneous regions, as well as visceral (mesenteric and omental) regions. Upper body and visceral adipose tissues are highly associated with metabolic dysfunction and chronic disease development, whereas lower body gluteofemoral subcutaneous adipose tissue imparts protection against diet-induced metabolic derangement. Each adipose depot functions distinctly as an endocrine organ hence it has a different level of impact on health outcomes. Effluent from adipose tissue can modulate the functions of other tissues, whilst receiving differential communication from the rest of the body via central nervous system innervation, metabolites and other signaling molecules. More so, adipose depots contain a diverse reservoir of tissue-resident immune cells that play an integral part in both maintaining tissue homeostasis, as well as propagating metabolically-induced inflammation. Overall, the conceptualization of obesity and associated risks needs updating to reflect the complexities of obesity. We review adipose tissue characteristics that are linked to deleterious or beneficial adipose tissue distributions.

  7. Body mass index kinetics around adiposity rebound in Anorexia nervosa: A case-control study.

    Science.gov (United States)

    Neveu, Rémi; Neveu, Dorine; Carrier, Edouard; Ourrad, Nadia; Perroud, Alain; Nicolas, Alain

    2016-10-01

    Anorexia nervosa (AN) is associated with parameters involved in body mass index (BMI) regulation. Contrary to obesity, BMI kinetics around the adiposity rebound is not documented in AN. This study aimed at investigating which characteristics of BMI kinetics around the adiposity rebound are associated with AN. Multicentre case-control study with 101 inpatient women with AN onset after 10 years of age, and 101 healthy women, all free of overweight history and matched for age, level of education and fathers' socio-professional status. Age at adiposity rebound, pre- and post-adiposity rebound BMI velocities and accelerations (change in velocity over time) were estimated with linear mixed models using data recorded between 2 and 10 years of age. Patients had an earlier adiposity rebound (mean (standard deviation (SD)): 5.3 (1.3) vs 5.7 (1.1) years), a larger BMI at adiposity rebound (mean (SD): 15.3 [1] vs 14.9 (0.9) kg/m 2 ) and 29% lower BMI acceleration after adiposity rebound than controls. After adjustment, only BMI at adiposity rebound and BMI acceleration after adiposity rebound were associated with a higher risk of AN (Odds ratio [95% confidence interval]: 2.15 [1.41-3.46] for an increase of 1 kg/m 2 and 2.44 [1.56-4.02] for an increase of 0.1 kg/(m 2 *years 2 ) respectively). These two factors were not correlated in patients (r = 0.007, p = 0.96). A flattened evolution of BMI after adiposity rebound and higher BMI at adiposity rebound were associated with AN. Further prospective study is needed to confirm these findings. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  8. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    Science.gov (United States)

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  9. Child adiposity and maternal feeding practices: a longitudinal analysis.

    Science.gov (United States)

    Webber, Laura; Cooke, Lucy; Hill, Claire; Wardle, Jane

    2010-12-01

    Parental control has been hypothesized to cause weight gain in children by weakening self-regulatory processes. However, most studies that link control with weight have been cross-sectional, and therefore causation is uncertain. It remains possible that parental control is a response to child overweight rather than a cause. We investigated the direction of the association between parental feeding practices and children's adiposity in a longitudinal study. Three subscales of the Child Feeding Questionnaire (CFQ) that measure "pressure," "restriction," and "monitoring" were completed by 213 mothers of 7-9-y-old children as part of the Physical Exercise and Appetite in CHildren Study (PEACHES) and repeated by 113 mothers 3 y later. Baseline and follow-up anthropometric measurements [body mass index (BMI); fat mass index (FMI), and waist circumference (WC)] were made by researchers when the children were aged 7-9 y and 10-11 y. Regression analyses showed no association between any of the CFQ scales at baseline and change in child adiposity. In contrast, higher child BMI at baseline predicted a smaller decrease in follow-up CFQ "monitoring" (P = 0.003) and a larger decrease in "pressure to eat" (P = 0.04) after baseline scores were controlled for. Similar results were observed for FMI and WC, although they did not reach significance for WC. There were no significant longitudinal associations between child adiposity and the CFQ "restriction" subscale. The results were more consistent with a "child-responsive" model whereby a mother's choice of feeding practice is influenced by her child's weight status rather than her feeding practices influencing the child's weight gain.

  10. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Li, Liang; Foo, Selin Ee Min [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Dai, Yun; Tan, Timothy Thatt Yang [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Tan, Nguan Soon [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); KK Research Centre, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children' s Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Wong, Marcus Thien Chong [Plastic, Reconstructive & Aesthetic Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO{sub 2}) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO{sub 2}-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO{sub 2}-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO{sub 2}-treated ECM coating can be potentially used for various biomedical applications. The SC-CO{sub 2}-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO{sub 2}-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO{sub 2}-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall

  11. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    Science.gov (United States)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  12. Development of a 3D bone marrow adipose tissue model.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  13. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue

    International Nuclear Information System (INIS)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-01-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  14. Correlation of adiposity indices with cardiovascular disease risk factors in healthy adults of Singapore: a cross-sectional study

    OpenAIRE

    Bi, Xinyan; Tey, Siew Ling; Leong, Claudia; Quek, Rina; Loo, Yi Ting; Henry, Christiani Jeyakumar

    2016-01-01

    Background Obesity has long been highlighted for its association with increased incidence of cardiovascular disease (CVD). Nonetheless, the best adiposity indices to evaluate the CVD risk factors remain contentious and few studies have been performed in Asian populations. In the present study, we compared the association strength of percent body fat (PBF) to indirect anthropometric measures of general adiposity (body mass index (BMI) and body adiposity index (BAI)) and central adiposity (wais...

  15. An autoradiographic study of new fat cell formation in adipose tissue in adult mice during malnutrition and refeeding

    International Nuclear Information System (INIS)

    Kasubuchi, Yasuo; Mino, Masahiro; Yoshioka, Hiroshi; Kusunoki, Tomoichi

    1979-01-01

    The renewal of adipose cells in adult mice has been autoradiographically studied. The number of adipose cells was diminished by eighty percent during malnutrition and the same number of adipose cells proliferated during the refeeding stage. The results of our study showed that adipose tissue, which had previously been believed to be stable in cell number, has the capacity for cell proliferation according to changes in nutritional status. (author)

  16. Autoradiographic study of new fat cell formation in adipose tissue in adult mice during malnutrition and refeeding

    Energy Technology Data Exchange (ETDEWEB)

    Kasubuchi, Y; Mino, M; Yoshioka, H; Kusunoki, T [Kyoto Prefectural Univ. of Medicine (Japan)

    1979-10-01

    The renewal of adipose cells in adult mice has been autoradiographically studied. The number of adipose cells was diminished by eighty percent during malnutrition and the same number of adipose cells proliferated during the refeeding stage. The results of our study showed that adipose tissue, which had previously been believed to be stable in cell number, has the capacity for cell proliferation according to changes in nutritional status.

  17. Maternal high-fat diet modulates brown adipose tissue response to B-adrenergic agonist

    Science.gov (United States)

    Maternal obesity increases offspring risk for several metabolic diseases. We previously showed that offspring of obese dams are predisposed to obesity, liver and adipose tissue anomalies. However, the effect of maternal obesity on developmental programing brown adipose tissue (BAT) is poorly underst...

  18. Inflammation and race and gender differences in computerized tomography-measured adipose depots

    NARCIS (Netherlands)

    Beasley, L.E.; Koster, A.; Newman, A.B.; Javaid, M.K.; Ferucci, L.; Kritchevsky, S.B.; Kuller, L.H.; Pahor, M.; Visser, M.; Rubin, S.M.; Goodpaster, B.H.; Everhart, J.E.; Harris, T.B.

    2009-01-01

    A growing body of evidence has consistently shown a correlation between obesity and chronic subclinical inflammation. It is unclear whether the size of specific adipose depots is more closely associated with concentrations of inflammatory markers than overall adiposity. This study investigated the

  19. The Relationship of Body Size and Adiposity to Source of Self-Esteem in College Women

    Science.gov (United States)

    Moncur, Breckann; Bailey, Bruce W.; Lockhart, Barbara D.; LeCheminant, James D.; Perkins, Annette E.

    2013-01-01

    Background: Studies looking at self-esteem and body size or adiposity generally demonstrate a negative relationship. However, the relationship between the source of self-esteem and body size has not been examined in college women. Purpose: The purpose of this study was to evaluate the relationship of body size and adiposity to source of…

  20. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  1. Physical Activity, Adiposity, and Diabetes Risk in Middle-Aged and Older Chinese Population

    NARCIS (Netherlands)

    Qin, Li; Corpeleijn, Eva; Jiang, Chaoqiang; Thomas, G. Neil; Schooling, C. Mary; Zhang, Weisen; Cheng, Kar Keung; Leung, Gabriel M.; Stolk, Ronald P.; Lam, Tai Hing

    2010-01-01

    OBJECTIVE- Physical activity may modify the association of adiposity with type 2 diabetes. We investigated the independent and joint association of adiposity and physical activity with fasting plasma glucose, impaired fasting glucose, and type 2 diabetes in a Chinese population. RESEARCH DESIGN AND

  2. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Directory of Open Access Journals (Sweden)

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  3. Contact with existing adipose tissue is inductive for adipogenesis in matrigel.

    LENUS (Irish Health Repository)

    Kelly, John L

    2006-07-01

    The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.

  4. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2017-08-01

    Full Text Available Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders. Keywords: Body fatness, Adipose tissue, Sex-specific differences, Adipokines, Adipocytes, Obesity, Energy metabolism

  5. Sedentary Behaviors and Adiposity in Young People: Causality and Conceptual Model.

    Science.gov (United States)

    Biddle, Stuart J H; Pearson, Natalie; Salmon, Jo

    2018-01-01

    Research on sedentary behavior and adiposity in youth dates back to the 1980s. Sedentary behaviors, usually screen time, can be associated with adiposity. Although the association usually is small but significant, the field is complex, and results are dependent on what sedentary behaviors are assessed and may be mediated and moderated by other behaviors.

  6. Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

    Directory of Open Access Journals (Sweden)

    Heidi N. Bagley

    2013-01-01

    Full Text Available Intrauterine growth restriction (IUGR predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2 in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA, a PPARγ agonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI- induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1 normalizes IUGR-induced changes in adipose deposition and visceral PPARγ expression in male rats and (2 increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  7. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    Science.gov (United States)

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  8. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Science.gov (United States)

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  9. The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis

    NARCIS (Netherlands)

    M. Fall (Magnus); S. Hägg (Sara); R. Mägi (Reedik); A. Ploner (Alexander); K. Fischer (Krista); M. Horikoshi (Momoko); A.-P. Sarin; G. Thorleifsson (Gudmar); C. Ladenvall (Claes); M. Kals (Mart); M. Kuningas (Maris); G. Draisma (Gerrit); J.S. Ried (Janina); N.R. van Zuydam (Natalie); V. Huikari (Ville); M. Mangino (Massimo); E. Sonestedt (Emily); B. Benyamin (Beben); C.P. Nelson (Christopher P.); N.V. Rivera (Natalia); K. Kristiansson (Kati); H.-y. Shen (Huei-yi); A.S. Havulinna (Aki); A. Dehghan (Abbas); L.A. Donnelly (Louise); M. Kaakinen (Marika); M.-L. Nuotio (Marja-Liisa); N. Robertson (Neil); R.F.A.G. de Bruijn (Renée); M.A. Ikram (Arfan); N. Amin (Najaf); A.J. Balmforth (Anthony); P.S. Braund (Peter); A.S.F. Doney (Alex); A. Döring (Angela); P. Elliott (Paul); T. Esko (Tõnu); O.H. Franco (Oscar); S. Gretarsdottir (Solveig); A.L. Hartikainen; K. Heikkilä (Kauko); K.H. Herzig; H. Holm (Hilma); J.J. Hottenga (Jouke Jan); E. Hyppönen (Elina); T. Illig (Thomas); A.J. Isaacs (Aaron); B. Isomaa (Bo); L.C. Karssen (Lennart); J. Kettunen (Johannes); W. Koenig (Wolfgang); K. Kuulasmaa (Kari); T. Laatikainen (Tiina); J. Laitinen (Jaana); C. Lindgren (Cecilia); V. Lyssenko (Valeriya); E. Läärä (Esa); N.W. Rayner (Nigel William); S. Männistö (Satu); A. Pouta (Anneli); W. Rathmann (Wolfgang); F. Rivadeneira Ramirez (Fernando); A. Ruokonen (Aimo); M.J. Savolainen (Markku); E.J.G. Sijbrands (Eric); K.S. Small (Kerrin); J.H. Smit (Jan); V. Steinthorsdottir (Valgerdur); A.C. Syvanen; A. Taanila (Anja); M.D. Tobin (Martin); A.G. Uitterlinden (André); S.M. Willems (Sara); G.A.H.M. Willemsen (Gonneke); J.C.M. Witteman (Jacqueline); M. Perola (Markus); A. Evans (Andrew); J. Ferrières (Jean); J. Virtamo (Jarmo); F. Kee (F.); D.-A. Tregouet (David-Alexandre); D. Arveiler (Dominique); P. Amouyel (Philippe); F. Ferrario (Franco); P. Brambilla (Paolo); A. Hall (Anne); A.C. Heath (Andrew); P.A.F. Madden (Pamela); N.G. Martin (Nicholas); G.W. Montgomery (Grant); J. Whitfield (John); A. Jula (Antti); P. Knekt; B.A. Oostra (Ben); C.M. van Duijn (Cornelia); B.W.J.H. Penninx (Brenda); G. Davey-Smith (George); J. Kaprio (Jaakko); N.J. Samani (Nilesh); C. Gieger (Christian); A. Peters (Annette); H.E. Wichmann (Heinz Erich); D.I. Boomsma (Dorret); E.J.C. de Geus (Eco); T. Tuomi (Tiinamaija); C. Power (Christopher); C.J. Hammond (Christopher); T.D. Spector (Timothy); L. Lind (Lars); M. Orho-Melander (Marju); C.N.A. Palmer (Colin); A.D. Morris (Andrew); L. Groop (Leif); M.-R. Jarvelin (Marjo-Riitta); V. Salomaa (Veikko); E. Vartiainen (Erkki); A. Hofman (Albert); S. Ripatti (Samuli); A. Metspalu (Andres); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); N.L. Pedersen (Nancy); M.I. McCarthy (Mark); E. Ingelsson (Erik); I. Prokopenko (Inga)

    2013-01-01

    textabstractBackground:The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various

  10. Adenovirus 36 DNA in Adipose Tissue of Patient with Unusual Visceral Obesity

    Science.gov (United States)

    Salehian, Behrouz; Forman, Stephen J.; Kandeel, Fouad R.; Bruner, Denise E.; He, Jia

    2010-01-01

    Massive adipose tissue depositions in the abdomen and thorax sufficient to interfere with respiration developed in a patient with multiple medical problems. Biopsy of adipose tissue identified human adenovirus 36 (Adv 36) DNA. Adv 36 causes adipogenesis in animals and humans. Development of massive lipomatosis may be caused by Adv 36. PMID:20409382

  11. Ethnic variability in adiposity and cardiovascular risk: the variable disease selection hypothesis.

    Science.gov (United States)

    Wells, Jonathan C K

    2009-02-01

    Evidence increasingly suggests that ethnic differences in cardiovascular risk are partly mediated by adipose tissue biology, which refers to the regional distribution of adipose tissue and its differential metabolic activity. This paper proposes a novel evolutionary hypothesis for ethnic genetic variability in adipose tissue biology. Whereas medical interest focuses on the harmful effect of excess fat, the value of adipose tissue is greatest during chronic energy insufficiency. Following Neel's influential paper on the thrifty genotype, proposed to have been favoured by exposure to cycles of feast and famine, much effort has been devoted to searching for genetic markers of 'thrifty metabolism'. However, whether famine-induced starvation was the primary selective pressure on adipose tissue biology has been questioned, while the notion that fat primarily represents a buffer against starvation appears inconsistent with historical records of mortality during famines. This paper reviews evidence for the role played by adipose tissue in immune function and proposes that adipose tissue biology responds to selective pressures acting through infectious disease. Different diseases activate the immune system in different ways and induce different metabolic costs. It is hypothesized that exposure to different infectious disease burdens has favoured ethnic genetic variability in the anatomical location of, and metabolic profile of, adipose tissue depots.

  12. Lipids, adiposity and tendinopathy : is there a mechanistic link? Critical review

    NARCIS (Netherlands)

    Scott, Alex; Zwerver, Johannes; Grewal, Navi; de Sa, Agnetha; Alktebi, Thuraya; Granville, David J.; Hart, David A.

    Being overweight or obese is associated with an elevated risk of tendon pathology. However, for sportspeople the epidemiological data linking weight or adiposity on one hand, and risk of tendon pathology on the other, are less consistent. Indeed, the mechanistic links between diet, adiposity and

  13. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    Science.gov (United States)

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  14. Associations between adiposity indicators and elevated blood pressure among Chinese children and adolescents.

    Science.gov (United States)

    Dong, B; Wang, Z; Wang, H-J; Ma, J

    2015-04-01

    Adiposity is closely related to elevated blood pressure (BP); however, which adiposity indicator is the best predictor of elevated BP among children and adolescents is unclear. To clarify this, 99,366 participants aged 7-17 years from the Chinese National Survey on Students' Constitution and Health in 2010 were included in this study. The adiposity indicators, including weight, body mass index (BMI), waist circumference, waist-to-height ratio (WHtR), hip circumference, body adiposity index (BAI), waist-to-hip ratio (WHR) and skinfold thickness, were converted into z-scores before use. The associations between elevated BP and adiposity indicators z-scores were assessed by using logistic regression model and area under the receiver operating characteristic curve (AUC). In general, BAI, BMI and WHtR z-scores were superior for predicting elevated BP compared with weight, waist circumference, hip circumference, WHR and skinfold thickness z-scores. In both sexes, BMI z-score revealed slightly higher AUCs than other indicators. Our findings suggest that general adiposity indicators were equivalent, if not superior, to abdominal adiposity indicators to predict elevated BP. BMI could be a better predictor of elevated BP than other studied adiposity indicators in children.

  15. A role for TLR10 in obesity and adipose tissue morphology

    NARCIS (Netherlands)

    Boutens, Lily; Mirea, Andreea Manuela; Munckhof, van den Inge; Doppenberg-Oosting, Marije; Jaeger, Martin; Hijmans, Anneke; Netea, Mihai G.; Joosten, Leo A.B.; Stienstra, Rinke

    2018-01-01

    Toll like receptors (TLRs) are expressed in adipose tissue and promote adipose tissue inflammation during obesity. Recently, anti-inflammatory properties have been attributed to TLR10 in myeloid cells, the only member of the TLR family with inhibitory activity. In order to assess whether

  16. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Science.gov (United States)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  17. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); J.C. van den Beukel (Anneke); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  18. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  19. Impact of training state on fasting-induced regulation of adipose tissue metabolism in humans

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Stankiewicz, Tomasz

    2018-01-01

    Recruitment of fatty acids from adipose tissue is essential during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore, the aim of the present study was to investig......Recruitment of fatty acids from adipose tissue is essential during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore, the aim of the present study...... was to investigate 1) fasting-induced regulation of lipolysis and glyceroneogenesis in human adipose tissue as well as 2) the impact of training state on basal oxidative capacity and fasting-induced metabolic regulation in human adipose tissue. Untrained (VO2max 55ml......RNA content were higher in trained subjects than untrained subjects. In addition, trained subjects had higher adipose tissue hormone sensitive lipase Ser660 phosphorylation and adipose triglyceride lipase protein content as well as higher plasma free fatty acids concentration than untrained subjects during...

  20. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be

  1. Effect of training on epinephrine-stimulated lipolysis determined by microdialysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Simonsen, L; Bülow, J

    1995-01-01

    glycerol concentrations (Tr: 129 +/- 36 microM; Sed: 119 +/- 56) did not differ between groups. It is concluded that in intact subcutaneous adipose tissue epinephrine-stimulated blood flow is enhanced, whereas lipolytic sensitivity to epinephrine is the same in trained compared with untrained subjects.......Trained humans (Tr) have a higher fat oxidation during submaximal physical work than sedentary humans (Sed). To investigate whether this reflects a higher adipose tissue lipolytic sensitivity to catecholamines, we infused epinephrine (0.3 nmol.kg-1.min-1) for 65 min in six athletes and six...... sedentary young men. Glycerol was measured in arterial blood, and intercellular glycerol concentrations in abdominal subcutaneous adipose tissue were measured by microdialysis. Adipose tissue blood flow was measured by 133Xe-washout technique. From these measurements adipose tissue lipolysis was calculated...

  2. The effects of facial adiposity on attractiveness and perceived leadership ability.

    Science.gov (United States)

    Re, Daniel E; Perrett, David I

    2014-01-01

    Facial attractiveness has a positive influence on electoral success both in experimental paradigms and in the real world. One parameter that influences facial attractiveness and social judgements is facial adiposity (a facial correlate to body mass index, BMI). Overweight people have high facial adiposity and are perceived to be less attractive and lower in leadership ability. Here, we used an interactive design in order to assess whether the most attractive level of facial adiposity is also perceived as most leader-like. We found that participants reduced facial adiposity more to maximize attractiveness than to maximize perceived leadership ability. These results indicate that facial appearance impacts leadership judgements beyond the effects of attractiveness. We suggest that the disparity between optimal facial adiposity in attractiveness and leadership judgements stems from social trends that have produced thin ideals for attractiveness, while leadership judgements are associated with perception of physical dominance.

  3. Effects of a physiological GH pulse on interstitial glycerol in abdominal and femoral adipose tissue

    DEFF Research Database (Denmark)

    Gravhølt, C H; Schmitz, Ole; Simonsen, L

    1999-01-01

    .0005). Administration of GH induced an increase in interstitial glycerol in both abdominal and femoral adipose tissue (ANOVA: abdominal, P = 0. 04; femoral, P = 0.03). There was no overall difference in the response to GH in the two regions during the study period as a whole (ANOVA: P = 0.5), but during peak...... stimulation of lipolysis abdominal adipose tissue was, in absolute but not in relative terms, stimulated more markedly than femoral adipose tissue (ANOVA: P = 0. 03 from 45 to 225 min). Peak interstitial glycerol values of 253 +/- 37 and 336 +/- 74 micromol/l were seen after 135 and 165 min in femoral...... and abdominal adipose tissue, respectively. ATBF was not statistically different in the two situations (ANOVA: P = 0.7). In conclusion, we have shown that a physiological pulse of GH increases interstitial glycerol concentrations in both femoral and abdominal adipose tissue, indicating activated lipolysis...

  4. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  5. File list: NoD.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  6. File list: InP.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127367,SRX127370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: InP.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: NoD.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: NoD.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: InP.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  11. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study

    NARCIS (Netherlands)

    Meeks, Karlijn A. C.; Henneman, Peter; Venema, Andrea; Burr, Tom; Galbete, Cecilia; Danquah, Ina; Schulze, Matthias B.; Mockenhaupt, Frank P.; Owusu-Dabo, Ellis; Rotimi, Charles N.; Addo, Juliet; Smeeth, Liam; Bahendeka, Silver; Spranger, Joachim; Mannens, Marcel M. A. M.; Zafarmand, Mohammad H.; Agyemang, Charles; Adeyemo, Adebowale

    2017-01-01

    Background: Epigenome-wide association studies (EWAS) have identified DNA methylation loci involved in adiposity. However, EWAS on adiposity in sub-Saharan Africans are lacking despite the high burden of adiposity among African populations. We undertook an EWAS for anthropometric indices of

  12. Serum Visfatin and Leptin in Relation to Childhood Adiposity and Body Fat Distribution : The PIAMA Birth Cohort Study

    NARCIS (Netherlands)

    Willers, Saskia M.; Brunekreef, Bert; Abrahamse-Berkeveld, Marieke; van de Heijning, Bert; van der Beek, Eline; Postma, Dirkje S.; Kerkhof, Marjan; Smit, Henriette A.; Wijga, Alet H.

    2015-01-01

    Background/Aims: Visfatin has been suggested as a marker of visceral adiposity. We hypothesized that visfatin, but not leptin, would be specifically associated with visceral adiposity. We investigated the relation of serum visfatin and leptin with measures of adiposity and body fat distribution in

  13. Minimally invasive collection of adipose tissue facilitates the study of eco-physiology in small-bodied mammals

    Science.gov (United States)

    Jeff Clerc; Theodore J. Weller; Jeffrey B. Schineller; Joseph M. Szewczak; Diana Fisher

    2016-01-01

    Adipose tissue is the primary fuel storage for vertebrates and is an important component of energy budgets during periods of peak energetic demands. Investigating the composition of adipose tissue can provide information about energetics, migration, reproduction, and other life-history traits. Until now, most field methods for sampling the adipose tissue of...

  14. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: NoD.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  20. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity.

    Science.gov (United States)

    Vieira Potter, Victoria J; Strissel, Katherine J; Xie, Chen; Chang, Eugene; Bennett, Grace; Defuria, Jason; Obin, Martin S; Greenberg, Andrew S

    2012-09-01

    Menopause promotes central obesity, adipose tissue (AT) inflammation, and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages, T cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation and IR are poorly understood. Here we determined the temporal kinetics of fat accretion, AT inflammation, and IR over a 26-wk time course in ovariectomized (OVX) mice, a model of menopause. OVX and sham-operated (SHM) C57BL6 mice were fed a normal chow diet. Weight, body composition (magnetic resonance imaging), total and regional adiposity, activity, food intake, AT crown-like structures, biohumoral measures, and insulin sensitivity (insulin tolerance testing and homeostatic model assessment) were determined at wk 12, 20, and 26. Macrophages and T cells from perigonadal AT were immunophenotyped by fluorescence-associated cell sorting, and perigonadal adipose tissue (PGAT) gene expression was quantified by quantitative PCR. OVX mice (≈ 31 g) became fatter than SHM mice (≈ 26 g) by wk 12, but mice were equally insulin sensitive. PGAT of OVX mice contained more T cells but expressed higher levels of M2-MΦ (arginase-1) and T cell-regulatory (cytotoxic T-lymphocyte antigen 4) genes. At wk 20, both OVX and SHM mice weighed approximately 35 g and were equally insulin sensitive with comparable amounts of PGAT and total body fat. OVX mice became less insulin sensitive than SHM mice by wk 26, coincident with the down-regulation of PGAT arginase-1 (-20-fold) and cytotoxic T-lymphocyte antigen 4 (2-fold) and up-regulation of M1/Th1 genes CD11c (+2-fold), IL12p40 (+2-fold), and interferon-γ (+78-fold). Ovarian hormone loss in mice induces PGAT inflammation and IR by mechanisms that can be uncoupled from OVX-induced obesity.

  1. A low-protein, high-carbohydrate diet increases browning in perirenal adipose tissue but not in inguinal adipose tissue.

    Science.gov (United States)

    Pereira, Mayara P; Ferreira, Laís A A; da Silva, Flávia H S; Christoffolete, Marcelo A; Metsios, George S; Chaves, Valéria E; de França, Suélem A; Damazo, Amílcar S; Flouris, Andreas D; Kawashita, Nair H

    2017-10-01

    The aim of this study was to evaluate the browning and origin of fatty acids (FAs) in the maintenance of triacylglycerol (TG) storage and/or as fuel for thermogenesis in perirenal adipose tissue (periWAT) and inguinal adipose tissue (ingWAT) of rats fed a low-protein, high-carbohydrate (LPHC) diet. LPHC (6% protein, 74% carbohydrate) or control (C; 17% protein, 63% carbohydrate) diets were administered to rats for 15 d. The tissues were stained with hematoxylin and eosin for histologic analysis. The content of uncoupling protein 1 (UCP1) was determined by immunofluorescence. Levels of T-box transcription factor (TBX1), PR domain containing 16 (PRDM16), adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase, lipoprotein lipase (LPL), glycerokinase, phosphoenolpyruvate carboxykinase (PEPCK), glucose transporter 4, β 3 -adrenergic receptor (AR), β 1 -AR, protein kinase A (PKA), adenosine-monophosphate-activated protein kinase (AMPK), and phospho-AMPK were determined by immunoblotting. Serum fibroblast growth factor 21 (FGF21) was measured using a commercial kit (Student's t tests, P diet increased FGF21 levels by 150-fold. The presence of multilocular adipocytes, combined with the increased contents of UCP1, TBX1, and PRDM16 in periWAT of LPHC-fed rats, suggested the occurrence of browning. The contents of β 1 -AR and LPL were increased in the periWAT. The ingWAT showed higher ATGL and PEPCK levels, phospho-AMPK/AMPK ratio, and reduced β 3 -AR and PKA levels. These findings suggest that browning occurred only in the periWAT and that higher utilization of FAs from blood lipoproteins acted as fuel for thermogenesis. Increased glycerol 3-phosphate generation by glyceroneogenesis increased FAs reesterification from lipolysis, explaining the increased TG storage in the ingWAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: the Midspan Family Study.

    Science.gov (United States)

    Han, T S; Hart, C L; Haig, C; Logue, J; Upton, M N; Watt, G C M; Lean, M E J

    2015-11-02

    Obesity has some genetic basis but requires interaction with environmental factors for phenotypic expression. We examined contributions of gender-specific parental adiposity and smoking to adiposity and related cardiovascular risk in adult offspring. Cross-sectional general population survey. Scotland. 1456 of the 1477 first generation families in the Midspan Family Study: 2912 parents (aged 45-64 years surveyed between 1972 and 1976) who had 1025 sons and 1283 daughters, aged 30-59 years surveyed in 1996. Offspring body mass index (BMI), waist circumference (WC), cardiometabolic risk (lipids, blood pressure and glucose) and cardiovascular disease as outcome measures, and parental BMI and smoking as determinants. All analyses adjusted for age, socioeconomic status and family clustering and offspring birth weight. Regression coefficients for BMI associations between father-son (0.30) and mother-daughter (0.33) were greater than father-daughter (0.23) or mother-son (0.22). Regression coefficient for the non-genetic, shared-environment or assortative-mating relationship between BMIs of fathers and mothers was 0.19. Heritability estimates for BMI were greatest among women with mothers who had BMI either parents, offspring with two obese parents had adjusted OR of 10.25 (95% CI 6.56 to 13.93) for having WC ≥102 cm for men, ≥88 cm women, 2.46 (95% CI 1.33 to 4.57) for metabolic syndrome and 3.03 (95% CI 1.55 to 5.91) for angina and/or myocardial infarct (pparental adiposity nor smoking history determined adjusted offspring individual cardiometabolic risk factors, diabetes or stroke. Maternal, but not paternal, smoking had significant effects on WC in sons (OR=1.50; 95% CI 1.13 to 2.01) and daughters (OR=1.42; 95% CI 1.10 to 1.84) and metabolic syndrome OR=1.68; 95% CI 1.17 to 2.40) in sons. There are modest genetic/epigenetic influences on the environmental factors behind adverse adiposity. Maternal smoking appears a specific hazard on obesity and metabolic

  3. Vascular smooth muscle responsiveness to nitric oxide is reduced in healthy adults with increased adiposity.

    Science.gov (United States)

    Christou, Demetra D; Pierce, Gary L; Walker, Ashley E; Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Meade, Thomas H; English, Mark; Seals, Douglas R

    2012-09-15

    Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18-79 years; body mass index (BMI), 16.4-42.2 kg/m(2)], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI and percent body fat (percent BF via dual-energy X-ray absorptiometry)], and indexes of abdominal adiposity [waist circumference (WC) and waist-to-hip ratio (WHR)]. In a subgroup (n = 74), we also measured total abdominal fat (TAF), abdominal visceral fat (AVF), and subcutaneous fat (ASF) using computed tomography. Based on multiple linear regression, NID was negatively related to BMI [part correlation coefficient (r(part)) = -0.19, P = 0.004] and abdominal adiposity (WC, r(part) = -0.22; WHR, r(part) = -0.19; TAF, r(part) = -0.36; AVF, r(part) = -0.36; and ASF, r(part) = -0.30; all P ≤ 0.009) independent of sex, but only tended to be related to total percent BF (r(part) = -0.12, P = 0.07). In a subgroup of subjects with the highest compared with the lowest amount of AVF, NID was 35% lower (P = 0.003). Accounting for systolic blood pressure, HDL cholesterol, glucose, insulin resistance, adiponectin, and brachial artery diameter reduced or abolished some of the relations between NID and adiposity. In conclusion, NID is or tends to be negatively associated with measures of total adiposity (BMI and percent BF, respectively) but is consistently and more strongly negatively associated with abdominal adiposity. Adiposity may influence NID in part via other cardiovascular risk factors.

  4. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers.

    Directory of Open Access Journals (Sweden)

    Jeffrey Deiuliis

    2011-01-01

    Full Text Available The development of insulin resistance (IR in mouse models of obesity and type 2 diabetes mellitus (DM is characterized by progressive accumulation of inflammatory macrophages and subpopulations of T cells in the visceral adipose. Regulatory T cells (Tregs may play a critical role in modulating tissue inflammation via their interactions with both adaptive and innate immune mechanisms. We hypothesized that an imbalance in Tregs is a critical determinant of adipose inflammation and investigated the role of Tregs in IR/obesity through coordinated studies in mice and humans.Foxp3-green fluorescent protein (GFP "knock-in" mice were randomized to a high-fat diet intervention for a duration of 12 weeks to induce DIO/IR. Morbidly obese humans without overt type 2 DM (n = 13 and lean controls (n = 7 were recruited prospectively for assessment of visceral adipose inflammation. DIO resulted in increased CD3(+CD4(+, and CD3(+CD8(+ cells in visceral adipose with a striking decrease in visceral adipose Tregs. Treg numbers in visceral adipose inversely correlated with CD11b(+CD11c(+ adipose tissue macrophages (ATMs. Splenic Treg numbers were increased with up-regulation of homing receptors CXCR3 and CCR7 and marker of activation CD44. In-vitro differentiation assays showed an inhibition of Treg differentiation in response to conditioned media from inflammatory macrophages. Human visceral adipose in morbid obesity was characterized by an increase in CD11c(+ ATMs and a decrease in foxp3 expression.Our experiments indicate that obesity in mice and humans results in adipose Treg depletion. These changes appear to occur via reduced local differentiation rather than impaired homing. Our findings implicate a role for Tregs as determinants of adipose inflammation.

  5. Calcium sensing receptor as a novel mediator of adipose tissue dysfunction: mechanisms and potential clinical implications

    Directory of Open Access Journals (Sweden)

    Roberto Bravo

    2016-09-01

    Full Text Available Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue is an active endocrine organ, with a crucial influence on whole-body homeostasis. White adipose tissue dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease and some cancers. Among the regulators of white adipose tissue physiology, the calcium-sensing receptor has arisen as a potential mediator of white adipose tissue dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that calcium-sensing receptor activation in the visceral (i.e. unhealthy white adipose tissue is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to calcium-sensing receptor activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in white adipose tissue plays a key role in the development of white adipose tissue dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that calcium-sensing receptor may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.

  6. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  7. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  8. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome.

    Science.gov (United States)

    O'Reilly, Michael W; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E; Manolopoulos, Konstantinos N; Allwood, J William; Semple, Robert K; Hebenstreit, Daniel; Dunn, Warwick B; Tomlinson, Jeremy W; Arlt, Wiebke

    2017-09-01

    Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index-matched healthy controls, complemented by in vitro experiments. PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. Copyright © 2017 Endocrine Society

  9. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  10. Model of adipose tissue cellularity dynamics during food restriction.

    Science.gov (United States)

    Soula, H A; Géloën, A; Soulage, C O

    2015-01-07

    Adipose tissue and adipocytes play a central role in the pathogenesis of metabolic diseases related to obesity. Size of fat cells depends on the balance of synthesis and mobilization of lipids and can undergo important variations throughout the life of the organism. These variations usually occur when storing and releasing lipids according to energy demand. In particular when confronted to severe food restriction, adipocyte releases its lipid content via a process called lipolysis. We propose a mathematical model that combines cell diameter distribution and lipolytic response to show that lipid release is a surface (radius squared) limited mechanism. Since this size-dependent rate affects the cell׳s shrinkage speed, we are able to predict the cell size distribution evolution when lipolysis is the only factor at work: such as during an important food restriction. Performing recurrent surgical biopsies on rats, we measured the evolution of adipose cell size distribution for the same individual throughout the duration of the food restriction protocol. We show that our microscopic model of size dependent lipid release can predict macroscopic size distribution evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Aerobic exercise training performed by parents reduces mice offspring adiposity.

    Science.gov (United States)

    Romero, Paulo Vitor da Silva; Guariglia, Débora Alves; Da Rocha, Francielli Ferreira; Picoli, Caroline de Carvalho; Gilio, Gustavo Renan; Fabricio, Gabriel Sergio; Mathias, Paulo Cesar de Freitas; Moraes, Solange Marta Franzói de; Peres, Sidney Barnabé

    2018-07-01

    The present study aimed to determine the effects of physical training performed by parents on mice offspring adiposity. Male and female parents underwent an aerobic training protocol for 7 weeks. The trained and sedentary parents were allowed to mate and the resultant offspring divided in: S (Offspring from Sedentary Parents), T (Offspring from Trained Parents), ST (Offspring from Sedentary Father and Trained Mother) and TS (Offspring from Trained Father and Sedentary Mother). After weaning, offspring was euthanized, blood collected and samples of mesenteric and inguinal fat pads used to isolate adipocytes for morphologic and histological analyses. Lee index, mesenteric fat pad, sum of visceral fat and total fat weight of female T was reduced in comparison to the other groups (p < 0.05). Periepididymal and sum of visceral fat in male T group was also reduced when compared to the other groups (p < 0.05). The diameter of mesenteric and inguinal adipocytes of T group was smaller compared to all groups comparisons for both sexes (p < 0.05). In summary, exercise training performed by parents reduced visceral offspring adiposity, the diameter of subcutaneous adipocytes and improved metabolic parameters associated to metabolic syndrome.

  12. Effects of visceral adiposity on glycerol pathways in gluconeogenesis.

    Science.gov (United States)

    Neeland, Ian J; Hughes, Connor; Ayers, Colby R; Malloy, Craig R; Jin, Eunsook S

    2017-02-01

    To determine the feasibility of using oral 13 C labeled glycerol to assess effects of visceral adiposity on gluconeogenic pathways in obese humans. Obese (BMI ≥30kg/m 2 ) participants without type 2 diabetes underwent visceral adipose tissue (VAT) assessment and stratification by median VAT into high VAT-fasting (n=3), low VAT-fasting (n=4), and high VAT-refed (n=2) groups. Participants ingested [U- 13 C 3 ] glycerol and blood samples were subsequently analyzed at multiple time points over 3h by NMR spectroscopy. The fractions of plasma glucose (enrichment) derived from [U- 13 C 3 ] glycerol via hepatic gluconeogenesis, pentose phosphate pathway (PPP), and tricarboxylic acid (TCA) cycle were assessed using 13 C NMR analysis of glucose. Mixed linear models were used to compare 13 C enrichment in glucose between groups. Mean age, BMI, and baseline glucose were 49years, 40.1kg/m 2 , and 98mg/dl, respectively. Up to 20% of glycerol was metabolized in the TCA cycle prior to gluconeogenesis and PPP activity was minor (gluconeogenesis from glycerol in obese humans. Our findings provide preliminary evidence that excess visceral fat disrupts multiple pathways in hepatic gluconeogenesis from glycerol. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O

    2017-07-26

    Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.

  14. Adiposity signals predict vocal effort in Alston's singing mice.

    Science.gov (United States)

    Burkhard, Tracy T; Westwick, Rebecca R; Phelps, Steven M

    2018-04-25

    Advertisement displays often seem extravagant and expensive, and are thought to depend on the body condition of a signaller. Nevertheless, we know little about how signallers adjust effort based on condition, and few studies find a strong relationship between natural variation in condition and display. To examine the relationship between body condition and signal elaboration more fully, we characterized physiological condition and acoustic displays in a wild rodent with elaborate vocalizations, Alston's singing mouse, Scotinomys teguina We found two major axes of variation in condition-one defined by short-term fluctuations in caloric nutrients, and a second by longer-term variation in adiposity. Among acoustic parameters, song effort was characterized by high rates of display and longer songs. Song effort was highly correlated with measures of adiposity. We found that leptin was a particularly strong predictor of display effort. Leptin is known to influence investment in other costly traits, such as immune function and reproduction. Plasma hormone levels convey somatic state to a variety of tissues, and may govern trait investment across vertebrates. Such measures offer new insights into how animals translate body condition into behavioural and life-history decisions. © 2018 The Author(s).

  15. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  16. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  17. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  18. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  19. Fitness and adiposity as predictors of functional limitation in adults.

    Science.gov (United States)

    Maslow, Andréa L; Price, Anna E; Sui, Xuemei; Lee, Duck-chul; Vuori, Ikka; Blair, Steven N

    2011-01-01

    This study examined the associations of body mass index (BMI), waist circumference (WC), and cardiorespiratory fitness (CRF) with incident functional limitation (IFL) in adults. Patients (n = 2400), 30+ years [mean age, 45.2 (SD, 8.3); 12% women], completed a baseline health examination during 1979 to 1995. CRF was quantified by age-and sex-specific thirds for maximal treadmill exercise test duration. Adiposity was assessed by BMI and WC (grouped for analysis according to clinical guidelines). Incident IFL was identified from mail-back surveys during 1995, 1999, and 2004. After adjusting for potential confounders and either BMI or WC, CRF was inversely related to IFL (P trend < .001). The association between BMI and IFL was significant after adjusting for all confounders (P trend = .002), but not after additional adjustment for CRF (P trend = .23). After controlling for all confounders and CRF, high WC was associated with greater odds of IFL in those aged 30 to 49; normal WC was associated with greater odds of IFL in those aged 50+. CRF was a significant predictor of IFL in middle aged and older adults, independent of overall or abdominal adiposity. Clinicians should consider the importance of preserving functional capacity by recommending regular physical activity for normal-weight and overweight individuals. ©2011 Human Kinetics, Inc.

  20. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    Science.gov (United States)

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  1. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  2. Changes in lipolysis in rat adipose tissue during continuous irradiation

    International Nuclear Information System (INIS)

    Sedlakova, A.; Ahlers, I.; Praslicka, M.

    1980-01-01

    Changes in lipolysis were monitored by measuring the release of non-esterified fatty acids (NEFA) and glycerol under basal conditions and after stimulation with L-noradrenaline in rat adipose tissue in the course of continuous irradiation with daily gamma doses of 0.57 Gy (60 R) for 50 days. As compared with the control animals, lipolysis in the irradiated rats was lower on days 3 to 14, and higher on days 21 to 25 to 32 and at the end of the screening period (day 50) of continuous irradiation. The changes in lipolysis in the course of irradiation reflected individual stages of the general adaptation syndrome. Many changes were modified by the effect of non-specific factors due to the experimental field and the starvation prior to the analysis. Changes in lipolysis were connected with changes in the mobilization of fatty acids and the concentrations of NEFA in white adipose tissue with changes in serum lipids predominantly in the period of 21 to 25 days of continuous irradiation. (author)

  3. Remodeling of adipose tissue at experimental diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. A. Konovalova

    2013-08-01

    Full Text Available Introduction Diabetes mellitus (DM type 1 is chronіc disease whith progressive selective destruction of β- cells pancreatic islets (of Langerhans and whith development of absolute insulin failure. Active immune mechanisms take part in pathogenesis of this disease. Recently many publication appeared which report about the role of adipose tissue. In such way adipose tissue is not only the main metabolic regulator and endocrine organ synthesizing more than 30 regulatory proteins- adipokines, but it is one of the organs of immune system. Dysregulation of adipose tissue leads to morphological restructuring- remodeling of adipocytes, and the development of inflammation of adipose tissue in its turn is integral component of progression of many diseases. The aim of research The aim of this study was to investigate the morphological and functional state of parapancreatic fibre adipocytes in male Wistar rats in experimental diabetes mellitus. Materials and methods The study has been carried out on 20 male Wistar rats with weight 115-135 g. The animals were divided into 2 groups. The control group, which were injected 0,5 ml 0,1 М citrate buffer intraperitoneally (1group. Rats with 7 day experimental streptozotocin-induced diabetes mellitus were in the 2nd group. Adipose tissue was examined on the seventh day. For histological examination sections were colored with haematoxylin and eosin. Images were taken by using a fluorescence microscope PrimoStar(ZEISS,Germany with a computer-assisted video system AxioCam 5c (ZEISS,Germany including the NIH-Image software (NIH Image version 1·46. All statistical analyses were performed using EXCEL MS Office 2010 (Microsoft Corp., USA, STATISTICA 6.0 (Stat-Soft, 2001 software. Results were expressed as mean values ± SEM. Differences were considered statistically significant if the p value was <0.05. Results Injection of streptozotocin to experimental animals led to the development of experimental diabetes mellitus

  4. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance

    DEFF Research Database (Denmark)

    Vernochet, Cecile; Mourier, Arnaud; Bezy, Olivier

    2012-01-01

    Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated...... oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has...... positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity....

  5. Using genetic loci to understand the relationship between adiposity and psychological distress: a Mendelian Randomization study in the Copenhagen General Population Study of 53,221 adults

    DEFF Research Database (Denmark)

    Lawlor, Debbie A; Harbord, Roger M; Tybjærg-Hansen, Anne

    2011-01-01

    We used genetic variants that are robustly associated with adiposity to examine the causal association of adiposity with psychological distress.......We used genetic variants that are robustly associated with adiposity to examine the causal association of adiposity with psychological distress....

  6. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status.

    Science.gov (United States)

    Zachut, Maya

    2015-07-02

    Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.

  7. Excess abdominal adiposity remains correlated with altered lipid concentrations in healthy older women.

    Science.gov (United States)

    DiPietro, L; Katz, L D; Nadel, E R

    1999-04-01

    To determine associations between overall adiposity, absolute and relative abdominal adiposity, and lipid concentrations in healthy older women. Cross-sectional analysis of baseline data. Subjects were 21 healthy, untrained older women (71 +/- 1 y) entering a randomized, controlled aerobic training program. Overall adiposity was assessed by anthropometry and the body mass index (BMI=kg/m2). Absolute and relative abdominal adiposity was determined by computed tomography (CT) and circumference measures. Fasting serum lipid concentrations of total-, high density lipoprotein (HDL)-, and low density lipoprotein (LDL)-cholesterol (C) and triglycerides (TGs) were determined by standard enzymatic procedures. Compared to the measures of overall adiposity, we observed much stronger correlations between measures more specific to absolute or relative abdominal adiposity and lipid concentrations. Visceral fat area was the strongest correlate of HDL-C (r = -0.75; P HDL-C ratio (r = 0.86; P correlated with TGs (r = 0.54; P HDL-C (r= -0.69; P HDL-C ratio (r = 0.75; P adiposity remains an important correlate of lipid metabolism, even in healthy older women of normal weight. Thus, overall obesity is not a necessary condition for the correlation between excess abdominal fat and metabolic risk among postmenopausal women.

  8. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    Science.gov (United States)

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  9. Adipose tissue engineering: state of the art, recent advances and innovative approaches.

    Science.gov (United States)

    Tanzi, Maria Cristina; Farè, Silvia

    2009-09-01

    Adipose tissue is a highly specialized connective tissue found either in white or brown forms, the white form being the most abundant in adult humans. Loss or damage of white adipose tissue due to aging or pathological conditions needs reconstructive approaches. To date, two main strategies are being investigated for generating functional adipose tissue: autologous tissue/cell transplantation and adipose tissue engineering. Free-fat transplantation rarely achieves sufficient tissue augmentation owing to delayed neovascularization, with subsequent cell necrosis and graft volume shrinkage. Tissue engineering approaches represent, instead, a more suitable alternative for adipose tissue regeneration; they can be performed either with in situ or de novo adipogenesis. In situ adipogenesis or transplantation of encapsulated cells can be useful in healing small-volume defects, whereas restoration of large defects, where vascularization and a rapid volumetric gain are strict requirements, needs de novo strategies with 3D scaffold/filling matrix combinations. For adipose tissue engineering, the use of adult mesenchymal stem cells (both adipose- and bone marrow-derived stem cells) or of preadipocytes is preferred to the use of mature adipocytes, which have low expandability and poor ability for volume retention. This review intends to assemble and describe recent work on this topic, critically presenting successes obtained and drawbacks faced to date.

  10. Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2018-02-01

    Full Text Available Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction (p < 0.01. Cells differentiated in 5% oxygen conditions showed greater contraction effect (p < 0.01. Hypoxia influences differentiation of smooth muscle cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.

  11. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  12. Alcohol, Adipose Tissue and Lipid Dysregulation

    Directory of Open Access Journals (Sweden)

    Jennifer L. Steiner

    2017-02-01

    Full Text Available Chronic alcohol consumption perturbs lipid metabolism as it increases adipose tissue lipolysis and leads to ectopic fat deposition within the liver and the development of alcoholic fatty liver disease. In addition to the recognition of the role of adipose tissue derived fatty acids in liver steatosis, alcohol also impacts other functions of adipose tissue and lipid metabolism. Lipid balance in response to long‐term alcohol intake favors adipose tissue loss and fatty acid efflux as lipolysis is upregulated and lipogenesis is either slightly decreased or unchanged. Study of the lipolytic and lipogenic pathways has identified several regulatory proteins modulated by alcohol that contribute to these effects. Glucose tolerance of adipose tissue is also impaired by chronic alcohol due to decreased glucose transporter‐4 availability at the membrane. As an endocrine organ, white adipose tissue (WAT releases several adipokines that are negatively modulated following chronic alcohol consumption including adiponectin, leptin, and resistin. When these effects are combined with the enhanced expression of inflammatory mediators that are induced by chronic alcohol, a proinflammatory state develops within WAT, contributing to the observed lipodystrophy. Lastly, while chronic alcohol intake may enhance thermogenesis of brown adipose tissue (BAT, definitive mechanistic evidence is currently lacking. Overall, both WAT and BAT depots are impacted by chronic alcohol intake and the resulting lipodystrophy contributes to fat accumulation in peripheral organs, thereby enhancing the pathological state accompanying chronic alcohol use disorder.

  13. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  14. The evolution of human adiposity and obesity: where did it all go wrong?

    Directory of Open Access Journals (Sweden)

    Jonathan C. K. Wells

    2012-09-01

    Full Text Available Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a counterbalancing risk management strategy. The large number of individual alleles associated with adipose tissue illustrates its integration with diverse metabolic pathways. However, phenotypic variation in age, sex, ethnicity and social status is further associated with different strategies for storing and using energy. Adiposity therefore represents a key means of phenotypic flexibility within and across generations, enabling a coherent life-history strategy in the face of ecological stochasticity. The sensitivity of numerous metabolic pathways to ecological cues makes our species vulnerable to manipulative globalized economic forces. The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity. The disease component of obesity might lie not in adipose tissue itself, but in its perturbation by our modern industrialized niche. Efforts to combat obesity could be more effective if they prioritized ‘external’ environmental change rather than attempting to manipulate ‘internal’ biology through pharmaceutical or behavioral means.

  15. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice

    Science.gov (United States)

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061

  16. Evidence for the ectopic synthesis of melanin in human adipose tissue.

    Science.gov (United States)

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J; Baranova, Ancha

    2009-03-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also detected by in situ hybridization in visceral adipocytes. The presence of melanin in human adipose tissue was revealed both by Fontana-Masson staining and by permanganate degradation of melanin coupled with liquid chromatography/ultraviolet/mass spectrometry determination of the pyrrole-2,3,5-tricarboxylic acid (PTCA) derivative of melanin. We also compared melanogenic activities in adipose tissues and in other human tissues using the L-[U-(14)C] tyrosine assay. A marked heterogeneity in the melanogenic activities of individual adipose tissue extracts was noted. We hypothesize that the ectopic synthesis of melanin in obese adipose may serve as a compensatory mechanism that uses its anti-inflammatory and its oxidative damage-absorbing properties. In conclusion, our study demonstrates for the first time that the melanin biosynthesis pathway is functional in adipose tissue.

  17. The evolution of human adiposity and obesity: where did it all go wrong?

    Science.gov (United States)

    Wells, Jonathan C K

    2012-09-01

    Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a counterbalancing risk management strategy. The large number of individual alleles associated with adipose tissue illustrates its integration with diverse metabolic pathways. However, phenotypic variation in age, sex, ethnicity and social status is further associated with different strategies for storing and using energy. Adiposity therefore represents a key means of phenotypic flexibility within and across generations, enabling a coherent life-history strategy in the face of ecological stochasticity. The sensitivity of numerous metabolic pathways to ecological cues makes our species vulnerable to manipulative globalized economic forces. The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity. The disease component of obesity might lie not in adipose tissue itself, but in its perturbation by our modern industrialized niche. Efforts to combat obesity could be more effective if they prioritized 'external' environmental change rather than attempting to manipulate 'internal' biology through pharmaceutical or behavioral means.

  18. Creation of an Adiposity Index for Children Aged 6–8 Years: The Gateshead Millennium Study

    Directory of Open Access Journals (Sweden)

    Mark S. Pearce

    2013-01-01

    Full Text Available Objective. A number of measures of childhood adiposity are in use, but all are relatively imprecise and prone to bias. We constructed an adiposity index (AI using a number of different measures. Methods. Detailed body composition data on 460 of the Gateshead Millennium Study cohort at the age of 6–8 years were analysed. The AI was calculated using factor analysis on age plus thirteen measures of adiposity and/or size. Correlations between these variables, the AI, and more traditional measures of adiposity in children were investigated. Results. Based on the factor loading sizes, the first component, taken to be the AI, consisted mainly of measures of fat-mass (the skinfold measurements, fat mass score, and waist circumference. The second comprised variables measuring frame size, while the third consisted mainly of age. The AI had a high correlation with body mass index (BMI (rho = 0.81. Conclusions. While BMI is practical for assessing adiposity in children, the AI combines a wider range of data related to adiposity than BMI alone and appears both valid and valuable as a research tool for studies of childhood adiposity. Further research is necessary to investigate the utility of AI for research in other samples of children and also in adults.

  19. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    Science.gov (United States)

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  20. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity.

    Science.gov (United States)

    Luisa Bonet, M; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2015-04-15

    A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Association of lipids and antropometrics measures of adiposity in adolescents

    Directory of Open Access Journals (Sweden)

    Paulo César Barauce Bento

    2009-04-01

    Full Text Available The arm of this study was to relate lipidic levels to global and central obesity in adolescents. Transversal, descriptive and co-relational study. 127 pubescent subjects took part in this study, 71 girls (13.39+1.81 years and 56 boys (13.10+1.97 years. It was identified global adiposity through the body mass index (BMI as well central adiposity through the waist circumference (WC, according to age, sex, and ethnics. It had been determined levels of total cholesterol (TC, high density lipoprotein (HDL-C, low density lipoprotein (LDL-C and triglycerides (TG after twelve hours of overnight fasting. The date had been analyzed through Chi-square test and Pearson`s correlation, considering the significance level of p<0.05. It had been identified increased levels of TC in the obese group (boys=61.90%; girls=56.89% as well as in the non-obese group (boys=64.28%; girls=61.54%, without statistical difference. The HDL-C were lower in the boys obese group compared to the non-obese (64.29% vs 28.57%; p=0.019 and in the female obese group in relation to the non-obese (60.35% vs 23.08%; p=0.014. It was identified a greater proportion of TC surplus in he male obese group than in the non-obese (50% vs 14.29%; p=0.018. Positive associations were verified for logn TG and logn BMI (r=0.215; p<0.001 and logn TG e logn WC (r=0.210; p<0.001, negative relations were observed in logn HDL-C and logn BMI (r=-0.425; p<0.001 and logn TG and logn WC (r=-0.365; p<0.001. This study has shown greater proportion of decreased levels of TG in obese adolescents comparing to the non-obese. It was observed moderate inverse associations of HDL-C to the global and central adiposity.

  2. Association of lipids and antropometrics measures of adiposity in adolescents

    Directory of Open Access Journals (Sweden)

    Neiva Leite

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n2p127   The arm of this study was to relate lipidic levels to global and central obesity in adolescents. Transversal, descriptive and co-relational study. 127 pubescent subjects took part in this study, 71 girls (13.39+1.81 years and 56 boys (13.10+1.97 years. It was identified global adiposity through the body mass index (BMI as well central adiposity through the waist circumference (WC, according to age, sex, and ethnics. It had been determined levels of total cholesterol (TC, high density lipoprotein (HDL-C, low density lipoprotein (LDL-C and triglycerides (TG after twelve hours of overnight fasting. The date had been analyzed through Chi-square test and Pearson`s correlation, considering the significance level of p<0.05. It had been identified increased levels of TC in the obese group (boys=61.90%; girls=56.89% as well as in the non-obese group (boys=64.28%; girls=61.54%, without statistical difference. The HDL-C were lower in the boys obese group compared to the non-obese (64.29% vs 28.57%; p=0.019 and in the female obese group in relation to the non-obese (60.35% vs 23.08%; p=0.014. It was identified a greater proportion of TC surplus in he male obese group than in the non-obese (50% vs 14.29%; p=0.018. Positive associations were verified for logn TG and logn BMI (r=0.215; p<0.001 and logn TG e logn WC (r=0.210; p<0.001, negative relations were observed in logn HDL-C and logn BMI (r=-0.425; p<0.001 and logn TG and logn WC (r=-0.365; p<0.001. This study has shown greater proportion of decreased levels of TG in obese adolescents comparing to the non-obese. It was observed moderate inverse associations of HDL-C to the global and central adiposity.

  3. Cross-lagged associations between children's stress and adiposity: the Children's Body Composition and Stress study.

    Science.gov (United States)

    Michels, Nathalie; Sioen, Isabelle; Boone, Liesbet; Clays, Els; Vanaelst, Barbara; Huybrechts, Inge; De Henauw, Stefaan

    2015-01-01

    The public health threats stress and adiposity have previously been associated with each other. Longitudinal studies are needed to reveal whether this association is bidirectional and the moderating factors. In the longitudinal Children's Body Composition and Stress study, 316 children (aged 5-12 years) had measures of stress (questionnaires concerning negative life events, problem behavior, and emotions) and adiposity (body mass index, waist-to-height ratio, and fat percentage) in three waves at 1-year intervals. The bidirectionality of the association between stress and adiposity was examined using cross-lagged analyses. We tested moderation by cortisol and life-style (physical activity, screen time, food consumption, eating behavior and sleep duration). Adiposity (body mass index: β = 0.48 and fat percentage: β = 0.18; p stress levels, but stress was not directly related to subsequent increases in adiposity indices. Cortisol and life-style factors displayed a moderating effect on the association between stress and adiposity. Stress was positively associated with adiposity in children with high cortisol awakening patterns (β = 0.204; p = .020) and high sweet food consumption (β = 0.190; p = .031), whereas stress was associated with lower adiposity in the most active children (β = -0.163; p = .022). Stress is associated with the development of children's adiposity, but the effects depend on cortisol levels and life-style factors. This creates new perspectives for multifactorial obesity prevention programs. Our results also highlight the adverse effect of an unhealthy body composition on children's psychological well-being.

  4. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4.

    Science.gov (United States)

    Drager, Luciano F; Yao, Qiaoling; Hernandez, Karen L; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Gay, Jason; Sussan, Thomas E; Jun, Jonathan C; Myers, Allen C; Olivecrona, Gunilla; Schwartz, Alan R; Halberg, Nils; Scherer, Philipp E; Semenza, Gregg L; Powell, David R; Polotsky, Vsevolod Y

    2013-07-15

    Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.

  5. Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy.

    Science.gov (United States)

    Priglinger, Eleni; Schuh, Christina M A P; Steffenhagen, Carolin; Wurzer, Christoph; Maier, Julia; Nuernberger, Sylvia; Holnthoner, Wolfgang; Fuchs, Christiane; Suessner, Susanne; Rünzler, Dominik; Redl, Heinz; Wolbank, Susanne

    2017-09-01

    Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Adipose tissue content and distribution in children and adolescents with bronchial asthma.

    Science.gov (United States)

    Umławska, Wioleta

    2015-02-01

    The excess of adipose tissue and the pattern of adipose tissue distribution in the body seem to play an important role in the complicated dependencies between obesity and risk of developing asthma. The aim of the present study was to determine nutritional status in children and adolescents with bronchial asthma with special emphasis on adipose tissue distribution evaluated on the basis of skin-fold thicknesses, and to determine the relationships between patterns of adipose tissue distribution and the course of the disease. Anthropometric data on height, weight, circumferences and skin-fold thicknesses were extracted from the medical histories of 261 children diagnosed with asthma bronchitis. Values for children with asthma were compared to Polish national growth reference charts. Distribution of subcutaneous adipose tissue was evaluated using principal components analysis (PCA). Multivariate linear regression analyses tested the effect of three factors on subcutaneous adipose tissue distribution: type of asthma, the severity of the disease and the duration of the disease. Mean body height in the children examined in this study was lower than in their healthy peers. Mean BMI and skin-fold thicknesses were significantly higher and lean body mass was lower in the study group. Excess body fat was noted, especially in girls. Adipose tissue was preferentially deposited in the trunk in girls with severe asthma, as well as in those who had been suffering from asthma for a longer time. The type of asthma, atopic or non-atopic, had no observable effect on subcutaneous adipose tissue distribution in children examined. The data suggest that long-treated subjects and those with severe bronchial asthma accumulate more adipose tissue on the trunk. It is important to regularly monitor nutritional status in children with asthma, especially in those receiving high doses of systemic or inhaled glucocorticosteroids, and long-term treatment as well. Copyright © 2014 Elsevier Ltd. All

  7. Early-Life Phthalate Exposure and Adiposity at 8 Years of Age.

    Science.gov (United States)

    Shoaff, Jessica; Papandonatos, George D; Calafat, Antonia M; Ye, Xiaoyun; Chen, Aimin; Lanphear, Bruce P; Yolton, Kimberly; Braun, Joseph M

    2017-09-11

    Early-life phthalate exposure may influence child adiposity, but prior studies have not determined if there are periods of enhanced vulnerability to phthalates. To examine the relationship between child adiposity at 8 y of age and repeated urinary biomarkers of phthalate exposure from gestation through childhood to determine if there are distinct periods of vulnerability. In 219 mother-child pairs from Cincinnati, Ohio, we quantified nine urinary phthalate metabolites up to two times prenatally and six times from 1-8 y of age. We measured child body mass index (BMI), waist circumference, and percent body fat at 8 y of age. To identify periods of vulnerability, we used two statistical methods to estimate phthalate-adiposity associations at each visit, test differences in phthalate-adiposity associations across visits, and model trajectories of phthalate concentrations for children at different levels of adiposity. Prenatal phthalate concentrations were not associated with excess child adiposity. Monobenzyl phthalate (MBzP) concentrations during pregnancy and childhood were inversely associated with adiposity. The associations of di(2-ethylhexyl) phthalate (∑DEHP) metabolites and monoethyl phthalate (MEP) with child adiposity depended on the timing of exposure. A 10-fold increase in ∑DEHP at 1 and 5 y was associated with a 2.7% decrease [95% confidence interval (CI): -4.8, -0.5] and 2.9% increase (95% CI: 0.3, 5.5) in body fat, respectively. MEP concentrations at 5 and 8 y of age were associated with higher child adiposity, but earlier childhood concentrations were not. In this cohort, we did not find evidence of an obesogenic effect of prenatal phthalate exposure. Positive associations between postnatal MEP and ∑DEHP concentrations depended on the timing of exposure. https://doi.org/10.1289/EHP1022.

  8. Utility of Body Mass Index in Identifying Excess Adiposity in Youth Across the Obesity Spectrum.

    Science.gov (United States)

    Ryder, Justin R; Kaizer, Alexander M; Rudser, Kyle D; Daniels, Stephen R; Kelly, Aaron S

    2016-10-01

    To determine the proportion of youth within a given body mass index (BMI) obesity category with excess adiposity using dual energy x-ray absorptiometry (DXA). Furthermore, to examine whether mean differences in cardiometabolic risk factors based upon various excess adiposity cutpoints were present. DXA data from the National Health and Nutrition Examination Survey 1999-2006 (n = 10 465; 8-20 years of age) were used for this analysis. Obesity categories were defined using Centers for Disease Control and prevention definitions for age and sex. Excess adiposity was defined using cohort-specific cutpoints at 75th, 85th, and 90th percentiles of DXA body fat (%) by age and sex using quantile regression models. Additionally, we examined differences in cardiometabolic risk factors among youth (BMI percentile >85th) above and below various excess adiposity cutpoints. Nearly all youth with class 3 obesity (100% male, 100% female; 97% male, 99% female; and 95% male, 96% female; using the 75th, 85th, and 90th DXA percentiles, respectively) and a high proportion of those with class 2 obesity (98% male, 99% female; 92% male, 91% female; and 76% male, 76% female) had excess adiposity. Significant discordance was observed between BMI categorization and DXA-derived excess adiposity among youth with class 1 obesity or overweight. Elevated cardiometabolic risk factors were present in youth with excess adiposity, regardless of the cutpoint used. BMI correctly identifies excess adiposity in most youth with class 2 and 3 obesity but a relatively high degree of discordance was observed in youth with obesity and overweight. Cardiometabolic risk factors are increased in the presence of excess adiposity, regardless of the cutpoint used. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum

    Science.gov (United States)

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-01-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet+ cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  10. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering.

    Science.gov (United States)

    Qi, Dianjun; Wu, Shaohua; Kuss, Mitchell A; Shi, Wen; Chung, Soonkyu; Deegan, Paul T; Kamenskiy, Alexey; He, Yini; Duan, Bin

    2018-05-26

    Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and the addition of PEG-4A improved the robustness and mechanical properties. The cryogels supported human adipose progenitor cell (HWA) and adipose derived mesenchymal stromal cell adhesion, proliferation, and adipogenic differentiation and maturation, regardless of the addition of PEG-4A. The HWA laden cryogels facilitated the co-culture of human umbilical vein endothelial cells (HUVEC) and capillary-like network formation, which in return also promoted adipogenesis. We further combined cryogels with 3D bioprinting to generate handleable adipose constructs with clinically relevant size. 3D bioprinting enabled the deposition of multiple bioinks onto the cryogels. The bioprinted flap-like constructs had an integrated structure without delamination and supported vascularization. Adipose tissue engineering is promising for reconstruction of soft tissue defects, and also challenging for restoring and maintaining soft tissue volume and shape, and achieving vascularization and integration. In this study, we fabricated cryogels with mechanical robustness, injectability, and stretchability by using cryopolymerization. The cryogels promoted cell adhesion, proliferation, and adipogenic

  11. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  12. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  13. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  14. Brown adipose tissue: The heat is on the heart.

    Science.gov (United States)

    Thoonen, Robrecht; Hindle, Allyson G; Scherrer-Crosbie, Marielle

    2016-06-01

    The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart. Copyright © 2016 the American Physiological Society.

  15. Adipose-derived mesenchymal stem cells and regenerative medicine.

    Science.gov (United States)

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Adaptation of human adipose tissue to hypocaloric diet.

    Science.gov (United States)

    Rossmeislová, L; Mališová, L; Kračmerová, J; Štich, V

    2013-05-01

    Hypocaloric diet is a key component of the weight-reducing treatment of obesity and obesity-related disorders. Hypocaloric diets and the associated weight reduction promote improvement of metabolic profile of obese individuals. Among the mechanisms that underlie this beneficial metabolic outcome, the diet-induced modifications of morphological and functional characteristics of human adipose tissue (AT) are believed to have an important role. Prospective studies of hypocaloric weight-reducing dietary intervention demonstrate effects on adipocyte metabolism, namely lipolysis and lipogenesis, and associated changes of the adipocyte size. The endocrine function of AT, which involves cytokine and adipokine production by adipocytes, as well as by cells of stromavascular fraction, is also regulated by dietary intervention. Related inflammatory status of AT is modulated also as a consequence of the changes in recruitment of immune cells, mainly macrophages, in AT. Here, we give an overview of metabolic and endocrine modifications in human AT induced by a variety of hypocaloric diets.

  17. Screen time and adiposity in adolescents in Mexico

    Science.gov (United States)

    Lajous, Martín; Chavarro, Jorge; Peterson, Karen E; Hernández-Prado, Bernardo; Cruz-Valdéz, Aurelio; Hernández-Ávila, Mauricio; Lazcano-Ponce, Eduardo

    2014-01-01

    Objective To assess the association of time spent viewing television, videos and videogames with measures of fat mass [body mass index (BMI)] and distribution [triceps and subscapular skin folds (TSF, SSF)]. Design Cross-sectional validated survey, self-administered to students to assess screen time (TV, videos and videogames) and lifestyle variables. Trained personnel obtained anthropometry. The association of screen time with fat mass and distribution, stratified by sex, was modeled with multivariable linear regression, adjusting for potential confounders and correlation of observations within schools. Subjects and setting 3519 males and 5613 females aged 11 to 18 years attending urban and rural schools in the State of Morelos, Mexico Results In males, ≥5 hr/day compared with Mexico. Maturational tempo appears to affect the relationship of screen time with adiposity in boys and girls. Findings suggest obesity preventive interventions in the Mexican context should explore strategies to reduce screen time among youth in early adolescence. PMID:19232154

  18. Imaging of Brown Adipose Tissue: State of the Art.

    Science.gov (United States)

    Sampath, Srihari C; Sampath, Srinath C; Bredella, Miriam A; Cypess, Aaron M; Torriani, Martin

    2016-07-01

    The rates of diabetes, obesity, and metabolic disease have reached epidemic proportions worldwide. In recent years there has been renewed interest in combating these diseases not only by modifying energy intake and lifestyle factors, but also by inducing endogenous energy expenditure. This approach has largely been stimulated by the recent recognition that brown adipose tissue (BAT)-long known to promote heat production and energy expenditure in infants and hibernating mammals-also exists in adult humans. This landmark finding relied on the use of clinical fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography, and imaging techniques continue to play a crucial and increasingly central role in understanding BAT physiology and function. Herein, the authors review the origins of BAT imaging, discuss current preclinical and clinical strategies for imaging BAT, and discuss imaging methods that will provide crucial insight into metabolic disease and how it may be treated by modulating BAT activity. (©) RSNA, 2016.

  19. Perivascular adipose tissue: more than just structural support.

    Science.gov (United States)

    Szasz, Theodora; Webb, R Clinton

    2012-01-01

    PVAT (perivascular adipose tissue) has recently been recognized as a novel factor in vascular biology, with implications in the pathophysiology of cardiovascular disease. Composed mainly of adipocytes, PVAT releases a wide range of biologically active molecules that modulate vascular smooth muscle cell contraction, proliferation and migration. PVAT exerts an anti-contractile effect in various vascular beds which seems to be mediated by an as yet elusive PVRF [PVAT-derived relaxing factor(s)]. Considerable progress has been made on deciphering the nature and mechanisms of action of PVRF, and the PVRFs proposed until now are reviewed here. However, complex pathways seem to regulate PVAT function and more than one mechanism is probably responsible for PVAT actions in vascular biology. The present review describes our current knowledge on the structure and function of PVAT, with a focus on its role in modulating vascular tone. Potential involvements of PVAT dysfunction in obesity, hypertension and atherosclerosis will be highlighted.

  20. Bone and adipose tissue – more and more interdependence

    Directory of Open Access Journals (Sweden)

    Joanna Dytfeld

    2014-11-01

    Full Text Available In bone marrow, osteoblasts and adipocytes originate from common progenitor cells – mesenchymal stem cells (MSCs. The further cell differentiation towards one of the two lines, depending on numerous factors, might have an impact on pathologies of bone in further life. Evidence from experimental and clinical studies indicates multiple reciprocal links between skeleton and adipose tissue. Numerous adipocyte products – leptin, adiponectin, etc. – directly or indirectly affect bone formation and resorption, which take place constantly. This knowledge verifies our views on obesity, osteoporosis and fragility fractures. We also know that bone remodeling, a process that requires energy, is heavily dependent on insulin; moreover, bone is a source of osteocalcin, a hormone whose role goes far beyond determining the level of bone turnover. The endocrine role of the skeleton becomes a reality.

  1. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    Science.gov (United States)

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  2. The evolution of the adipose tissue: a neglected enigma.

    Science.gov (United States)

    Ottaviani, Enzo; Malagoli, Davide; Franceschi, Claudio

    2011-10-01

    The complexity of the anatomical distribution and functions of adipose tissue (AT) has been rarely analyzed in an evolutionary perspective. From yeast to man lipid droplets are stored mainly in the form of triglycerides in order to provide energy during periods when energy demands exceed caloric intake. This simple scenario is in agreement with the recent discovery of a highly conserved family of proteins for fat storage in both unicellular and multicellular organisms. However, the evolutionary history of organs such as the fat body in insects, playing a role in immunity and other functions besides energy storage and thermal insulation, and of differently distributed subtypes of AT in vertebrates is much less clear. These topics still await a systematic investigation using up-to-date technologies and approaches that would provide information useful for understanding the role of different AT subtypes in normal/physiological conditions or in metabolic pathologies of humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Adiposity and Glycemic Control in Children Exposed to Perfluorinated Compounds

    DEFF Research Database (Denmark)

    Timmermann, Clara Amalie G.; Rossing, Laura I.; Grontved, Anders

    2014-01-01

    , waist circumference, leptin, adiponectin, insulin, glucose, and triglyceride concentrations were assessed in 8- to 10-year-old children in 1997 in a subset of the European Youth Heart Study, Danish component. Plasma PFC concentrations were available from 499 children. Linear regression models were......Objective: Our objective was to explore whether childhood exposure to perfluorinated and polyfluorinated compounds (PFCs), widely used stain- and grease-repellent chemicals, is associated with adiposity and markers of glycemic control. Materials and Methods: Body mass index, skinfold thickness...... perfluorooctane sulfonic acid/mL plasma was associated with 16.2% (95% confidence interval [CI], 5.2%-28.3%) higher insulin concentration, 12.0% (95% CI, 2.4%-22.4%) higher β-cell activity, 17.6% (95% CI, 5.8%-30.8%) higher insulin resistance, and 8.6% (95% CI, 1.2%-16.5%) higher triglyceride concentrations...

  4. Adipose tissue expandability and the early origins of PCOS.

    Science.gov (United States)

    de Zegher, Francis; Lopez-Bermejo, Abel; Ibáñez, Lourdes

    2009-11-01

    The most prevalent phenotypes of polycystic ovary syndrome (PCOS) are characterized by insulin resistance and androgen excess. The adipose tissue (AT) expandability hypothesis explains the development of insulin resistance in obesity and in cases of AT deficit. In line with this hypothesis, we propose that hyperinsulinemic androgen excess in PCOS is often underpinned by exhaustion of the capacity to expand subcutaneous AT in a metabolically safe way. Such exhaustion might occur when a positive energy imbalance meets a normal fat-storage capacity and/or when a normal energy balance faces a low fat storage capacity. This concept thus explains how PCOS phenotypes might result from obesity, prenatal growth restraint or a genetic lipodystrophy, or, experimentally, from prenatal androgen excess.

  5. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  6. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation.

    Science.gov (United States)

    Hamaguchi, Yuhei; Kaido, Toshimi; Okumura, Shinya; Kobayashi, Atsushi; Shirai, Hisaya; Yagi, Shintaro; Kamo, Naoko; Okajima, Hideaki; Uemoto, Shinji

    2017-03-01

    Skeletal muscle depletion has been shown to be an independent risk factor for poor survival in various diseases. However, in surgery, the significance of other body components including visceral and subcutaneous adipose tissue remains unclear. This retrospective study included 250 adult patients undergoing living donor liver transplantation (LDLT) between January 2008 and April 2015. Using preoperative plain computed tomography imaging at the third lumbar vertebra level, skeletal muscle mass, muscle quality, and visceral adiposity were evaluated by the skeletal muscle mass index (SMI), intramuscular adipose tissue content (IMAC), and visceral to subcutaneous adipose tissue area ratio (VSR), respectively. The cutoff values of these parameters were determined for men and women separately using the data of 657 healthy donors for LDLT between 2005 and 2016. Impact of these parameters on outcomes after LDLT was analyzed. VSR was significantly correlated with patient age (P = 0.041), neutrophil-lymphocyte ratio (P mass index (P normal group. On multivariate analysis, low SMI (hazard ratio [HR], 2.367, P = 0.002), high IMAC (HR, 2.096, P = 0.004), and high VSR (HR, 2.213, P = 0.003) were identified as independent risk factors for death after LDLT. Preoperative visceral adiposity, as well as low muscularity, was closely involved with posttransplant mortality.

  8. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    International Nuclear Information System (INIS)

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14 C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  9. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    DEFF Research Database (Denmark)

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    , a subcutaneous abdominal vein and a femoral vein. Adipose tissue metabolism and skeletal muscle (leg) metabolism were measured using Fick's principle. The results show that the lipolytic rate in adipose tissue during exercise was the same in each experiment. Post-exercise, there was a very fast decrease......One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...... metabolism during a 3 h post-exercise period. Six subjects were studied twice. In one experiment, they exercised for 90 min at 40% of maximal O2 consumption (VO2,max) and in the other experiment they exercised at 60% VO2,max for 60 min. For both experiments, catheters were inserted in an artery...

  10. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance

    DEFF Research Database (Denmark)

    Ahlqvist, Emma; Osmark, Peter; Kuulasmaa, Tiina

    2013-01-01

    Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis...... and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher...... for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue...

  11. Theoretical model of ruminant adipose tissue metabolism in relation to the whole animal.

    Science.gov (United States)

    Baldwin, R L; Yang, Y T; Crist, K; Grichting, G

    1976-09-01

    Based on theoretical considerations and experimental data, estimates of contributions of adipose tissue to energy expenditures in a lactating cow and a growing steer were developed. The estimates indicate that adipose energy expenditures range between 5 and 10% of total animal heat production dependent on productive function and diet. These energy expenditures can be partitioned among maintenance (3%), lipogenesis (1-5%) and lipolysis and triglyceride resynthesis (less thatn 1.0%). Specific sites at which acute and chronic effectors can act to produce changes in adipose function, and changes in adipose function produced by diet and during pregnancy, lactation and aging were discussed with emphasis being placed on the need for additional, definitive studies of specific interactions among pregnancy, diet, age, lactation and growth in producing ruminants.

  12. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    DEFF Research Database (Denmark)

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente

    2009-01-01

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however......, whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77......+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue...

  13. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun

    2012-01-01

    Adipose tissue represents an abundant, accessible source of multipotent adipose-derived stromal cells (ADSCs). Animal studies have suggested that ADSCs have the potential to differentiate in vivo into endothelial cells and cardiomyocytes. This makes ADSCs a promising new cell source...... for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  14. The Pericytic Phenotype of Adipose Tissue-Derived Stromal Cells Is Promoted by NOTCH2

    NARCIS (Netherlands)

    Terlizzi, Vincenzo; Kolibabka, Matthias; Burgess, Janette Kay; Hammes, Hans Peter; Harmsen, Martin Conrad

    Long-term diabetes leads to macrovascular and microvascular complication. In diabetic retinopathy (DR), persistent hyperglycemia causes permanent loss of retinal pericytes and aberrant proliferation of microvascular endothelial cells (ECs). Adipose tissue-derived stromal cells (ASCs) may serve to

  15. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  16. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance

    DEFF Research Database (Denmark)

    Kunešová, M; Hlavatý, P; Tvrzická, E

    2012-01-01

    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants...... of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP....../HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7...

  17. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue

    Directory of Open Access Journals (Sweden)

    Colin J. Palmer

    2017-10-01

    Conclusions: Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity.

  18. The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance

    Czech Academy of Sciences Publication Activity Database

    Chmelař, Jindřich; Chung, K.-J.; Chavakis, T.

    2013-01-01

    Roč. 109, č. 3 (2013), s. 399-406 ISSN 0340-6245 Institutional support: RVO:60077344 Keywords : Obesity * adipose tissue * inflammation * review * leukocytes Subject RIV: EC - Immunology Impact factor: 5.760, year: 2013

  19. Ethical, legal and practical issues of establishing an adipose stem cell bank for research.

    Science.gov (United States)

    West, C C; Murray, I R; González, Z N; Hindle, P; Hay, D C; Stewart, K J; Péault, B

    2014-06-01

    Access to human tissue is critical to medical research, however the laws and regulations surrounding gaining ethical and legal access to tissue are often poorly understood. Recently, there has been a huge increase in the interest surrounding the therapeutic application of adipose tissue, and adipose-derived stem cells. To facilitate our own research interests and possibly assist our local colleagues and collaborators, we established a Research Tissue Bank (RTB) to collect, store and distribute human adipose tissue derived cells with all the appropriate ethical approval for subsequent downstream research. Here we examine the legal, ethical and practical issues relating to the banking of adipose tissue for research in the UK, and discuss relevant international guidelines and policies. We also share our experiences of establishing an RTB including the necessary infrastructure and the submission of an application to a Research Ethics Committee (REC). Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Adipose tissue and adrenal glands: novel pathophysiological mechanisms and clinical applications.

    Science.gov (United States)

    Kargi, Atil Y; Iacobellis, Gianluca

    2014-01-01

    Hormones produced by the adrenal glands and adipose tissues have important roles in normal physiology and are altered in many disease states. Obesity is associated with changes in adrenal function, including increase in adrenal medullary catecholamine output, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, elevations in circulating aldosterone together with changes in adipose tissue glucocorticoid metabolism, and enhanced adipocyte mineralocorticoid receptor activity. It is unknown whether these changes in adrenal endocrine function are in part responsible for the pathogenesis of obesity and related comorbidities or represent an adaptive response. In turn, adipose tissue hormones or "adipokines" have direct effects on the adrenal glands and interact with adrenal hormones at several levels. Here we review the emerging evidence supporting the existence of "cross talk" between the adrenal gland and adipose tissue, focusing on the relevance and roles of their respective hormones in health and disease states including obesity, metabolic syndrome, and primary disorders of the adrenals.

  1. Circadian Clocks and the Interaction between Stress Axis and Adipose Function

    Directory of Open Access Journals (Sweden)

    Isa Kolbe

    2015-01-01

    Full Text Available Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism’s environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.

  2. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  3. Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture

    Directory of Open Access Journals (Sweden)

    Andrea V. Rozo

    2017-07-01

    Conclusion: These observations suggest that the acute activation of GLP1R in neonates durably alters hypothalamic architecture to limit adult weight gain and adiposity, identifying GLP1R as a therapeutic target for obesity prevention.

  4. From the Cover: Adipose tissue mass can be regulated through the vasculature

    Science.gov (United States)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  5. Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Joanna Gertow

    2017-11-01

    Discussion: These findings demonstrate that adipose tissue of CKD patients shows signs of inflammation and disturbed functionality, thus potentially contributing to the unfavorable metabolic profile and increased risk of CVD in these patients.

  6. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  7. Anatomy and histology of the newly discovered adipose sac structure within the labia majora: international original research.

    Science.gov (United States)

    Ostrzenski, Adam; Krajewski, Pawel; Davis, Kern

    2016-09-01

    To determine whether there is any new anatomical structure present within the labia majora. A case serial study was executed on eleven consecutive fresh human female cadavers. Stratum-by-stratum dissections of the labia majora were performed. Twenty-two anatomic dissections of labia majora were completed. Eosin and Hematoxylin agents were used to stain newly discovered adipose sac's tissues of the labia majora and the cylinder-like structures, which cover condensed adipose tissues. The histology of these two structures was compared. All dissected labia majora demonstrated the presence of the anatomic existence of the adipose sac structure. Just under the dermis of the labia majora, the adipose sac was located, which was filled with lobules containing condensed fatty tissues in the form of cylinders. The histological investigation established that the well-organized fibro-connective-adipose tissues represented the adipose sac. The absence of descriptions of the adipose sac within the labia majora in traditional anatomic and gynecologic textbooks was noted. In this study group, the newly discovered adipose sac is consistently present within the anatomical structure of the labia majora. The well-organized fibro-connective-adipose tissue represents microscopic characteristic features of the adipose sac.

  8. Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: a meta-analysis

    OpenAIRE

    van Dijk, S. B.; Takken, T.; Prinsen, E. C.; Wittink, H.

    2012-01-01

    Objectives To investigate which anthropometric adiposity measure has the strongest association with cardiovascular disease (CVD) risk factors in Caucasian men and women without a history of CVD. Design Systematic review and meta-analysis. Methods We searched databases for studies reporting correlations between anthropometric adiposity measures and CVD risk factors in Caucasian subjects without a history of CVD. Body mass index (BMI), waist circumference, waist-to-hip ratio, waist-to-height ra...

  9. The association of visceral adiposity with cardiovascular events in patients with peripheral artery disease.

    Directory of Open Access Journals (Sweden)

    Oliver Cronin

    Full Text Available BACKGROUND: Previous studies have suggested that patients with peripheral artery disease (PAD suffer from a high incidence of cardiovascular events (CVE. Visceral adiposity has been implicated in promoting CVEs. This study aimed to assess the association of relative visceral adipose volume with incident cardiovascular events in patients with peripheral artery disease. METHODS: This was a prospective cohort study including 260 patients with PAD who presented between 2003 and 2012. Cases were patients with diagnosed PAD including symptomatic lower limb athero-thrombosis and asymptomatic abdominal aortic aneurysm. All patients underwent computed tomography angiography (CTA. Abdominal visceral to total adipose volume ratio (relative visceral adipose volume was estimated from CTAs using a previously validated workstation protocol. Cardiovascular risk factors were recorded at entry. The association of visceral adiposity with major CVEs (death, non-fatal myocardial infarction or stroke was examined using Kaplan Meier and Cox proportional hazard analyses. RESULTS: A total of 92 major CVEs were recorded in 76 patients during a median follow-up of 2.8 (IQR 1.2 to 4.8 years, including myocardial infarction (n = 26, stroke (n = 10 and death (n = 56. At 3 years the incidence of major CVEs stratified by relative visceral adipose volume quartiles were 15% [Quartile (Q 1], 17% (Q2, 11% (Q3 and 15% (Q4 (P = 0.517. Relative visceral adipose volume was not associated with major CVEs after adjustment for other risk factors. CONCLUSION: This study suggests that visceral adiposity does not play a central role in the predisposition for major CVEs in patients with PAD.

  10. Resistin in Dairy Cows: Plasma Concentrations during Early Lactation, Expression and Potential Role in Adipose Tissue

    Science.gov (United States)

    Reverchon, Maxime; Ramé, Christelle; Cognié, Juliette; Briant, Eric; Elis, Sébastien; Guillaume, Daniel; Dupont, Joëlle

    2014-01-01

    Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP) and at five months of gestation (5 MG). We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA) levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6) in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase) and HSL (hormone-sensitive lipase) in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro. PMID:24675707

  11. Resistin in dairy cows: plasma concentrations during early lactation, expression and potential role in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Maxime Reverchon

    Full Text Available Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP and at five months of gestation (5 MG. We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6 in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase and HSL (hormone-sensitive lipase in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro.

  12. Influence on Adiposity and Atherogenic Lipaemia of Fatty Meals and Snacks in Daily Life

    OpenAIRE

    Laguna-Camacho, Antonio

    2017-01-01

    The present work reviewed the connections of changes in consumption of high-fat food with changes in adiposity and lipaemia in adults with overweight or obesity. Hyperlipaemia from higher fat meals and excessive adiposity contributes to atherogenic process. Low-fat diet interventions decrease body fat, lipaemia, and atherosclerosis markers. Inaccuracy of physical estimates of dietary fat intake remains, however, a limit to establishing causal connections. To fill this gap, tracking fat-rich e...

  13. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0251 TITLE: “Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA...Heterogeneity in Metabolic Disease Using Single- Cell RNA-Seq 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Linus Tzu-Yen...ABSTRACT We have developed a robust protocol to generate single cell transcriptional profiles from subcutaneous adipose tissue samples of both human

  14. Short-and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    OpenAIRE

    Gathercole, LL; Morgan, SA; Bujalska, IJ; Stewart, PM; Tomlinson, JW

    2011-01-01

    Background: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. Objectives: We have therefore compared the ...

  15. Adipose Tissue and Adrenal Glands: Novel Pathophysiological Mechanisms and Clinical Applications

    OpenAIRE

    Kargi, Atil Y.; Iacobellis, Gianluca

    2014-01-01

    Hormones produced by the adrenal glands and adipose tissues have important roles in normal physiology and are altered in many disease states. Obesity is associated with changes in adrenal function, including increase in adrenal medullary catecholamine output, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, elevations in circulating aldosterone together with changes in adipose tissue glucocorticoid metabolism, and enhanced adipocyte mineralocorticoid receptor activity. It is unkn...

  16. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    OpenAIRE

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-...

  17. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    OpenAIRE

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized gluco...

  18. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing

    Directory of Open Access Journals (Sweden)

    Elsie Gonzalez-Hurtado

    2018-01-01

    Full Text Available Objective: To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Methods: Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2A−/−, that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Results: Chronic administration of β3-adrenergic (CL-316243 or thyroid hormone (GC-1 agonists induced a loss of BAT morphology and UCP1 expression in Cpt2A−/− mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C stimulation induced UCP1 and thermogenic programming in both control and Cpt2A−/− adipose tissue albeit to a lesser extent in Cpt2A−/− mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2A−/− mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2A−/− BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2A−/− mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Conclusion: Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Keywords: Fatty acid oxidation, Brown adipose tissue, Cold induced thermogenesis, Adrenergic signaling, Adipose macrophage

  19. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  20. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels.

    Directory of Open Access Journals (Sweden)

    María Isabel Queipo-Ortuño

    Full Text Available BACKGROUND: FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE: In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS: The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS: In obesity FABP4 expression was down-regulated (at both mRNA and protein levels, with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION: The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.

  1. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia

    OpenAIRE

    Asp, Michelle L.; Tian, Min; Kliewer, Kara L.; Belury, Martha A.

    2011-01-01

    Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoc...

  2. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    Science.gov (United States)

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking physical activity with adiposity markers in older adults was stronger when physical activity was assessed by accelerometer compared with questionnaire, suggesting that physical activity might be more important for adiposity than previously estimated. PMID:25752539

  3. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats

    OpenAIRE

    Peixoto, T.C.; Moura, E.G.; Oliveira, E.; Younes-Rapozo, V.; Soares, P.N.; Rodrigues, V.S.T.; Santos, T.R.; Peixoto-Silva, N.; Carvalho, J.C.; Calvino, C.; Conceição, E.P.S.; Guarda, D.S.; Claudio-Neto, S.; Manhães, A.C.; Lisboa, P.C.

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower ...

  4. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Directory of Open Access Journals (Sweden)

    Remesar Xavier

    2007-08-01

    Full Text Available Abstract Background Short-term OE (oleoyl-estrone treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL were decreased by 52%, those of Fatty Acid Synthase (FAS by 95%, those of Hormone Sensible Lipase (HSL by 32%, those of Acetyl CoA Carboxylase (ACC by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b by 45%, and those of Fatty Acid Transport Protein 1 (FATP1 and Adipocyte Fatty Acid Binding Protein (FABP4 by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα values showed overexpression (198%. Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  5. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.

    Science.gov (United States)

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-08-28

    Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  6. Body fat and blood rheology: Evaluation of the association between different adiposity indices and blood viscosity.

    Science.gov (United States)

    Tripolino, Cesare; Irace, Concetta; Carallo, Claudio; Scavelli, Faustina Barbara; Gnasso, Agostino

    2017-01-01

    In recent years, new measures of body adiposity have been introduced: lipid accumulation product (LAP), body adiposity index (BAI) and body shape index (ABSI). These indices have been demonstrated to better associate with cardiovascular disease than other measures of adiposity. The aim of the present study was to evaluate if LAP or BAI better associate with blood viscosity than other measures of adiposity (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, W/HR; waist-to-height ratio, W/HtR). 344 subjects were recruited for the present investigation. Exclusion criteria were: diabetes, elevated triglycerides, smoking and drug use. Blood lipids and glucose were measured by routine methods. Blood and plasma viscosity were measured by a cone-plate viscometer. Adiposity measures were computed as previously described. In simple correlation analyses, blood viscosity (BV) correlated with BMI, BAI, and LAP in males and with LAP in females. Correlations between plasma viscosity and adiposity indices were weak and not statistically significant. Other variables significantly related with BV were: gender, HDL- and LDL-Cholesterol, and triglycerides (p index is strongly associated to blood viscosity. This result, along with previous evidence, identifies LAP index as a potential cardiovascular risk marker.

  7. Depression and serum adiponectin and adipose omega-3 and omega-6 fatty acids in adolescents.

    Science.gov (United States)

    Mamalakis, George; Kiriakakis, Michael; Tsibinos, George; Hatzis, Christos; Flouri, Sofia; Mantzoros, Christos; Kafatos, Anthony

    2006-10-01

    The purpose of the present study was to investigate for a possible relationship between depression and serum adiponectin and adipose tissue omega-3 and omega-6 PUFA. The sample consisted of 90 healthy adolescent volunteers from the island of Crete. There were 54 girls and 36 boys, aged 13 to 18. The mean age was 15.2 years. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D). Fatty acids were determined by gas chromatography in adipose tissue. CES-D correlated with dihomo-gamma linolenic acid (DGLA). Multiple linear regression analyses showed that BDI was negatively associated with eicosapentaenoic acid (EPA), while CES-D was positively associated with DGLA in adipose tissue. Serum adiponectin was not significantly associated with depression. The negative relationship between adipose EPA and depression in adolescents, is in line with findings of previous studies involving adult and elderly subjects, demonstrating negative relations between depression and adipose omega-3 PUFA. This is the first literature report of a relationship between depression and an individual omega-3 fatty acid in adolescents. The inverse relationship between adipose EPA and depression indicates that a low long-term dietary intake of EPA is associated with an increased risk for depression in adolescents.

  8. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue.

    Science.gov (United States)

    Miranda, Diego A; Kim, Ji-Hyun; Nguyen, Long N; Cheng, Wang; Tan, Bryan C; Goh, Vera J; Tan, Jolene S Y; Yaligar, Jadegoud; Kn, Bhanu Prakash; Velan, S Sendhil; Wang, Hongyan; Silver, David L

    2014-04-04

    Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.

  9. The relationship between bone mineral density and adipose tissue of postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hwa [Dept. of Radiology, HwaMyeong Iisin christian Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological Science, Catholic University of Pusan, Busan (Korea, Republic of); Im, In Chul [Dept. of Radiological Science, Dong Eui University, Busan (Korea, Republic of)

    2017-06-15

    Postmenopausal women are at increased risk for osteoporosis and obesity due to changes in hormones. The relationship between osteoporosis and body weight is known, and its relation with body fat mass is discussed. The purpose of this study was to evaluate the bone mineral density(BMD) changes of epicardial adipose tissue(EAT) and abdominal subcutaneous fat. The subjects of this study were 160 postmenopausal women who underwent BMD and echocardiography. The thickness of the epicardial adipose tissue was measured in three sections and the BMD were meassured according to the diagnostic criteria. The results of this study that age increase the risk of osteoporosis increases, and as the weight and BMI decrease, the risk of osteoporosis increases(p<0.05). The relationship between changes in bone mineral density and adipose tissue in postmenopausal women, increased epicardial adipose tissue was negatively correlated with the bone mineral density(p<0.05). conversely, increased abdominal subcutaneous fat thickness was positively correlated with bone mineral density(p<0.05). In other words, the effect of bone mineral density on the location of adipose tissue was different. If Echocardiography is used to periodically examine changes in the thickness of the epicardial adipose tissue, it may be prevented before proceeding to osteoporosis.

  10. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    Science.gov (United States)

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  11. Evaluation of body adiposity index (BAI) to estimate percent body fat in an indigenous population.

    Science.gov (United States)

    Kuhn, Patricia C; Vieira Filho, João Paulo B; Franco, Luciana; Dal Fabbro, Amaury; Franco, Laercio J; Moises, Regina S

    2014-04-01

    The aim of this study was to evaluate the usefulness of Body Adiposity Index (BAI) as a predictor of body fat in Xavante Indians and to investigate which anthropometric measures of adiposity best correlate with body fat in this population. We evaluated 974 individuals (476 male), aged 42.3 ± 19.5 years. Percentage of body fat (%BF) determined by bioimpedance analysis (BIA) was used as the reference measure of adiposity. Bland-Altman analysis was used to assess the agreement between the two methods: BAI and BIA. Associations between anthropometric measures of adiposity were investigated by Pearson correlation analysis. BAI overestimates %BF (mean difference: 4.10%), mainly at lower levels of adiposity. Significant correlations were found between %BF and all measurements, being the strongest correlation with BAI. However, stratified analyses according to gender showed that among men waist circumference has the strongest correlation (r = 0.73, p < 0.001) and among women BAI (r = 0.71, p < 0.001), BMI (r = 0.69, p < 0.001) and waist circumference (r = 0.70, p < 0.001) performed similarly. BAI can be a useful tool to predict %BF in Xavante Indians, although it has some limitations. However, it is not a better predictor of adiposity than waist circumference in men or BMI and waist circumference in women. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    Science.gov (United States)

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  14. Association between anthropometric indicators of adiposity and hypertension in a Brazilian population: Baependi Heart Study.

    Directory of Open Access Journals (Sweden)

    Camila Maciel de Oliveira

    Full Text Available Recently, some studies have evaluated the role of adiposity measures in the prediction of hypertension risk, but the results are conflicting. Thus, the aim of this study was to compare which of the four indicators of adiposity (waist circumference-WC, body mass index-BMI, body adiposity index-BAI, and visceral adiposity index-VAI were better associated with hypertension in a Brazilian population.For this study, were selected 1627 individuals (both genders, and aged over 18 years resident in the municipality of Baependi, a city located in the Southeast of Brazil. WC, BMI, BAI and VAI were determined according to a standard protocol. Hypertension was defined as mean systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg, and/or antihypertensive drug use. The indicators of adiposity WC, BMI, BAI, and VAI were higher in hypertensive when compared to non-hypertensive individuals. In addition, WC and BMI were most strongly associated with hypertension in men and women, respectively. The area under the curve (AUC of WC was significantly higher than VAI in men. In women, both AUC of BMI and WC showed higher discriminatory power to predict hypertension than BAI and VAI.The indicators of adiposity WC and BMI were better associated with hypertension than BAI and VAI, in both genders, and it could be a useful tools for the screening of hypertensive patients.

  15. Differential gene expression profile in pig adipose tissue treated with/without clenbuterol

    Directory of Open Access Journals (Sweden)

    Deng Xue M

    2007-11-01

    Full Text Available Abstract Background Clenbuterol, a beta-agonist, can dramatically reduce pig adipose accumulation at high dosages. However, it has been banned in pig production because people who eat pig products treated with clenbuterol can be poisoned by the clenbuterol residues. To understand the molecular mechanism for this fat reduction, cDNA microarray, real-time PCR, two-dimensional electrophoresis and mass spectra were used to study the differential gene expression profiles of pig adipose tissues treated with/without clenbuterol. The objective of this research is to identify novel genes and physiological pathways that potentially facilitate clenbuterol induced reduction of adipose accumulation. Results Clenbuterol was found to improve the lean meat percentage about 10 percent (P Conclusion Pig fat accumulation was reduced dramatically with clenbuterol treatment. Histological sections and global evaluation of gene expression after administration of clenbuterol in pigs identified profound changes in adipose cells. With clenbuterol stimulation, adipose cell volumes decreased and their gene expression profile changed, which indicate some metabolism processes have been also altered. Although the biological functions of the differentially expressed genes are not completely known, higher expressions of these molecules in adipose tissue might contribute to the reduction of fat accumulation. Among these genes, five lipid metabolism related genes were of special interest for further study, including apoD and apoR. The apoR expression was increased at both the RNA and protein levels. The apoR may be one of the critical molecules through which clenbuterol reduces fat accumulation.

  16. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  17. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization

    DEFF Research Database (Denmark)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Fisker, Sanne

    2007-01-01

    of the metabolic syndrome. Our objective was to compare 11beta-HSD1 gene expression in different fat depots (visceral, subcutaneous abdominal, and subcutaneous gluteal) in lean and obese men and women. RESEARCH METHODS AND PROCEDURES: A cross-sectional study design was used for healthy patients undergoing minor...... women had lower 11beta-HSD1 gene expression in subcutaneous adipose tissue compared with men (62% lower, p difference was found between obese men and women. 11Beta-HSD1 mRNA in human adipose tissue was higher in obese subjects compared with lean subjects in both women...... and men and in both subcutaneous and visceral adipose tissue. No difference in mRNA expression of 11beta-HSD1 between visceral and subcutaneous adipose tissue or between subcutaneous adipose tissue from different depots was found. CONCLUSIONS: 11Beta-HSD1 in adipose tissue is increased in obesity in both...

  18. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    Science.gov (United States)

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This

  19. Visceral Adiposity Index (VAI) Is Predictive of an Altered Adipokine Profile in Patients with Type 2 Diabetes

    OpenAIRE

    Amato, M.; Pizzolanti, G.; Torregrossa, V.; Misiano, G.; Milano, S.; Giordano, C.

    2014-01-01

    AIMS: Although there is still no clear definition of "adipose tissue dysfunction" or ATD, the identification of a clinical marker of altered fat distribution and function may provide the needed tools for early identification of a condition of cardiometabolic risk. Our aim was to evaluate the correlations among various anthropometric indices [BMI, Waist Circumference (WC), Hip Circumference (HC), Waist/Hip ratio (WHR), Body Adiposity Index (BAI) and Visceral adiposity Index (VAI)] and several ...

  20. The effect of diet on the acute and chronic responses to exercise with a particular focus on adipose tissue

    OpenAIRE

    Chen, Yung-Chih

    2016-01-01

    Long-term excessive positive energy balance results in overweight and obesity, which is caused by adipose tissue deposition. This increases the occurrence of cardiovascular diseases and type 2 diabetes. Adipose tissue plays an active role in the development of these diseases and so it is important to understand how this tissue responds to relevant stimuli such as feeding, fasting and physical activity. The study in Chapter 4 examined the impact of fasting and feeding, on adipose tissue respon...

  1. Central Nervous System Mechanisms Linking the Consumption of Palatable High-Fat Diets to the Defense of Greater Adiposity

    OpenAIRE

    Ryan, Karen K.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in envir...

  2. Adipose-Derived Stem Cells Respond to Increased Osmolarities.

    Directory of Open Access Journals (Sweden)

    Urška Potočar

    Full Text Available Cell therapies present a feasible option for the treatment of degenerated cartilaginous and intervertebral disc (IVD tissues. Microenvironments of these tissues are specific and often differ from the microenvironment of cells that, could be potentially used for therapy, e.g. human adipose-derived stem cells (hASC. To ensure safe and efficient implantation of hASC, it is important to evaluate how microenvironmental conditions at the site of implantation affect the implanted cells. This study has demonstrated that cartilaginous tissue-specific osmolarities ranging from 400-600 mOsm/L affected hASC in a dose- and time-dependent fashion in comparison to 300 mOsm/L. Increased osmolarities resulted in transient (nuclear DNA and actin reorganisation and non-transient, long-term morphological changes (vesicle formation, increase in cell area, and culture morphology, as well as reduced proliferation in monolayer cultures. Increased osmolarities diminished acid proteoglycan production and compactness of chondrogenically induced pellet cultures, indicating decreased chondrogenic potential. Viability of hASC was strongly dependent on the type of culture, with hASC in monolayer culture being more tolerant to increased osmolarity compared to hASC in suspension, alginate-agarose hydrogel, and pellet cultures, thus emphasizing the importance of choosing relevant in vitro conditions according to the specifics of clinical application.

  3. Leptin receptor in peripheral adipose tissues of obese subjects

    International Nuclear Information System (INIS)

    Du Tongxin; Sun Junjiang; Wang Zizheng; Wang Shukui; Fu Lei; Han Liu

    2002-01-01

    Objective: To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density B max and dissociation constant K d in peripheral adipose tissue in subjects with different body weight mass (BMI). Methods: Leptin receptor density B max and K d were assayed via radioligand method in 71 cases, including 32 classified as obese, 19 over-weight and 20 normal control. Results: With the escalating of BMI, the leptin receptor density significantly decreased in obese and over-weight group compared with that in normal control (both P d values were of no differences among all three groups suggesting no correlation between the binding ability of leptin to its receptor and BMI. A negative correlation between BMI and B max (r=-0.76, P<0.01) displayed after all. Conclusion: Leptin receptor density correlates with the BMI in obese cases and it suggests that the down-regulation of leptin receptor may contribute to the occurrence of leptin resistance and obesity after-wards

  4. Adipose derived stem cells in radiotherapy injury: a new frontier

    Directory of Open Access Journals (Sweden)

    Lipi eShukla

    2015-01-01

    Full Text Available Radiotherapy is increasingly used to treat numerous human malignancies. In addition to the beneficial anti-cancer effects, there are a series of undesirable effects on normal host tissues surrounding the target tumour. Whilst the early effects of radiotherapy (desquamation, erythema and hair loss typically resolve, the chronic effects persist as unpredictable and often troublesome sequelae of cancer treatment, long after oncological treatment has been completed. Plastic surgeons are often called upon to treat the problems subsequently arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contracture and/or lymphoedema. Recently, it was anecdotally noted - then validated in more robust animal and human studies - that fat grafting can ameliorate some of these chronic tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action remains poorly understood. This review provides an overview of the current understanding of (i mechanisms of chronic radiation injury and its clinical manifestations; (ii biological properties of fat grafts and their key constituent, Adipose-Derived Stem Cells (ADSCs; (iii the role of ADSCs in radiotherapy-induced soft-tissue injury.

  5. Human lipodystrophies: genetic and acquired diseases of adipose tissue

    Science.gov (United States)

    Capeau, Jacqueline; Magré, Jocelyne; Caron-Debarle, Martine; Lagathu, Claire; Antoine, Bénédicte; Béréziat, Véronique; Lascols, Olivier; Bastard, Jean-Philippe; Vigouroux, Corinne

    2010-01-01

    Human lipodystrophies represent a heterogeneous group of diseases characterized by generalized or partial fat loss, with fat hypertrophy in other depots when partial. Insulin resistance, dyslipidemia and diabetes are generally associated, leading to early complications. Genetic forms are uncommon: recessive generalized congenital lipodystrophies result in most cases from mutations in the genes encoding seipin or the 1-acyl-glycerol-3-phosphate-acyltransferase 2 (AGPAT2). Dominant partial familial lipodystrophies result from mutations in genes encoding the nuclear protein lamin A/C or the adipose transcription factor PPARγ. Importantly, lamin A/C mutations are also responsible for metabolic laminopathies, resembling the metabolic syndrome and progeria, a syndrome of premature aging. A number of lipodystrophic patients remain undiagnosed at the genetic level. Acquired lipodystrophy can be generalized, resembling congenital forms, or partial, as the Barraquer-Simons syndrome, with loss of fat in the upper part of the body contrasting with accumulation in the lower part. Although their aetiology is generally unknown, they could be associated with signs of auto-immunity. The most common forms of lipodystrophies are iatrogenic. In human immunodeficiency virus-infected patients, some first generation antiretroviral drugs were strongly related with peripheral lipoatrophy and metabolic alterations. Partial lipodystrophy also characterize patients with endogenous or exogenous long-term corticoid excess. Treatment of fat redistribution can sometimes benefit from plastic surgery. Lipid and glucose alterations are difficult to control leading to early occurrence of diabetic, cardio-vascular and hepatic complications. PMID:20551664

  6. Adipose-derived stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  7. Impact of Growth Hormone on Regulation of Adipose Tissue.

    Science.gov (United States)

    Troike, Katie M; Henry, Brooke E; Jensen, Elizabeth A; Young, Jonathan A; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2017-06-18

    Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  8. Adipose tissue-derived stem cells in neural regenerative medicine.

    Science.gov (United States)

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  9. Association between Blood Mercury Level and Visceral Adiposity in Adults

    Directory of Open Access Journals (Sweden)

    Jong Suk Park

    2017-01-01

    Full Text Available BackgroundFew studies have examined the association between mercury exposure and obesity. The aim of this study is to investigate the association between blood mercury concentrations and indices of obesity in adults.MethodsA total of 200 healthy subjects, aged 30 to 64 years, who had no history of cardiovascular or malignant disease, were examined. Anthropometric and various biochemical profiles were measured. Visceral adipose tissue (VAT was measured using dual-energy X-ray absorptiometry (DXA.ResultsAll subjects were divided into three groups according to blood mercury concentrations. Compared with the subjects in the lowest tertile of mercury, those in the highest tertile were more likely to be male; were current alcohol drinkers and smokers; had a higher body mass index (BMI, waist circumference (WC, and VAT; had higher levels of blood pressure, fasting glucose, and insulin resistance; and consumed more fish. The blood mercury concentration was significantly associated with anthropometric parameters, showing relationships with BMI, WC, and VAT. After adjusting for multiple risk factors, the odds ratios (ORs for high mercury concentration was significantly higher in the highest VAT tertile than in the lowest VAT tertile (OR, 2.66; 95% confidence interval, 1.05 to 6.62; P<0.05.ConclusionThe blood mercury concentration was significantly associated with VAT in healthy adults. Further studies are warranted to confirm our findings.

  10. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.

    Science.gov (United States)

    Mironava, Tatsiana; Hadjiargyrou, Michael; Simon, Marcia; Rafailovich, Miriam H

    2014-03-01

    Gold nanoparticles (AuNPs) are currently used in numerous medical applications. Herein, we describe their in vitro impact on human adipose-derived stromal cells (ADSCs) using 13 nm and 45 nm citrate-coated AuNPs. In their non-differentiated state, ADSCs were penetrated by the AuNPs and stored in vacuoles. The presence of the AuNPs in ADSCs resulted in increased population doubling times, decreased cell motility and cell-mediated collagen contraction. The degree to which the cells were impacted was a function of particle concentration, where the smaller particles required a sevenfold higher concentration to have the same effect as the larger ones. Furthermore, AuNPs reduced adipogenesis as measured by lipid droplet accumulation and adiponectin secretion. These effects correlated with transient increases in DLK1 and with relative reductions in fibronectin. Upon removal of exogenous AuNPs, cellular NP levels decreased and normal ADSC functions were restored. As adiponectin helps regulate energy metabolism, local fluctuations triggered by AuNPs can lead to systemic changes. Hence, careful choice of size, concentration and clinical application duration of AuNPs is warranted.

  11. The influence of perivascular adipose tissue on vascular homeostasis.

    Science.gov (United States)

    Szasz, Theodora; Bomfim, Gisele Facholi; Webb, R Clinton

    2013-01-01

    The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

  12. Molecular imaging of brown adipose tissue in health and disease

    International Nuclear Information System (INIS)

    Bauwens, Matthias; Wierts, Roel; Brans, Boudewijn; Royen, Bart van; Backes, Walter; Bucerius, Jan; Mottaghy, Felix

    2014-01-01

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, 18 F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to 18 F-FDG, other radiopharmaceuticals such as 99m Tc-sestamibi, 123 I-metaiodobenzylguanidine (MIBG), 18 F-fluorodopa and 18 F-14(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  13. Molecular imaging of brown adipose tissue in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  14. Adiposity rebound and the development of metabolic syndrome.

    Science.gov (United States)

    Koyama, Satomi; Ichikawa, Go; Kojima, Megumi; Shimura, Naoto; Sairenchi, Toshimi; Arisaka, Osamu

    2014-01-01

    The age of adiposity rebound (AR) is defined as the time at which BMI starts to rise after infancy and is thought to be a marker of later obesity. To determine whether this age is related to future occurrence of metabolic syndrome, we investigated the relationship of the timing of AR with metabolic consequences at 12 years of age. A total of 271 children (147 boys and 124 girls) born in 1995 and 1996 were enrolled in the study. Serial measurements of BMI were conducted at the ages of 4 and 8 months and 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 years, based on which age of AR was calculated. Plasma lipids and blood pressure were measured at 12 years of age. An earlier AR (high-density lipoprotein cholesterol in boys and elevated apolipoprotein B in girls at 12 years of age. The earlier AR was also related to elevated blood pressure in boys. This longitudinal population-based study indicates that children who exhibit AR at a younger age are predisposed to future development of metabolic syndrome. Therefore, monitoring of AR may be an effective method for the early identification of children at risk for metabolic syndrome.

  15. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  16. Polycystic ovary syndrome, adipose tissue and metabolic syndrome.

    Science.gov (United States)

    Delitala, Alessandro P; Capobianco, Giampiero; Delitala, Giuseppe; Cherchi, Pier Luigi; Dessole, Salvatore

    2017-09-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects women of reproductive age and is characterized by ovulatory dysfunction and/or androgen excess or polycystic ovaries. Women with PCOS present a number of systemic symptoms in addition to those related to the reproductive system. It has been associated with functional derangements in adipose tissue, metabolic syndrome, type 2 diabetes, and an increased risk of cardiovascular disease (CVD). A detailed literature search on Pubmed was done for articles about PCOS, adipokines, insulin resistance, and metabolic syndrome. Original articles, reviews, and meta-analysis were included. PCOS women are prone to visceral fat hypertrophy in the presence of androgen excess and the presence of these conditions is related to insulin resistance and worsens the PCO phenotype. Disturbed secretion of many adipocyte-derived substances (adipokines) is associated with chronic low-grade inflammation and contributes to insulin resistance. Abdominal obesity and insulin resistance stimulate ovarian and adrenal androgen production, and may further increase abdominal obesity and inflammation, thus creating a vicious cycle. The high prevalence of metabolic disorders mainly related to insulin resistance and CVD risk factors in women with PCOS highlight the need for early lifestyle changes for reducing metabolic risks in these patients.

  17. Adipose tissue and sustainable development: a connection that needs protection

    Directory of Open Access Journals (Sweden)

    Angelo eTremblay

    2015-05-01

    Full Text Available Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants (POPs. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health and well-being or global ecological protection.

  18. Wound healing potential of adipose tissue stem cell extract.

    Science.gov (United States)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Measurement of subcutaneous adipose tissue thickness by near-infrared

    International Nuclear Information System (INIS)

    Wang, Yu; Ying, Zeqiang; Hao, Dongmei; Zhang, Song; Yang, Yimin; Zeng, Yanjun

    2013-01-01

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5–11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  20. The sexually dimorphic adipose fin is an androgen target tissue in the brown trout (Salmo trutta fario).

    Science.gov (United States)

    Hisar, Olcay; Sönmez, Adem Yavuz; Hisar, Şükriye Aras; Budak, Harun; Gültepe, Nejdet

    2013-04-01

    An investigation has been described on the relationship of body length, age and sex with adipose fin length and the number of androgen receptor (AR)-containing cells in the adipose fin as a secondary sexual characteristic for brown trout (Salmo trutta fario). Firstly, body and adipose fin lengths of 2- to 5-year-old brown trout were measured. Thereafter, these fish were killed by decapitation, then their sexes were determined, and adipose fins were excised. The cellular bases of AR binding activities in the adipose fins were analyzed with an antibody against human/rat AR peptide. Immunocytochemistry and western blotting techniques were performed with this antibody. Analysis of morphological measurements indicated that body length and age had a linear relationship with adipose fin length. The coefficients of determination for the body length and age were 0.92 and 0.85 in the male fish and 0.76 and 0.73 in the female fish against the adipose fin length, respectively. At 2 years of age, cells in the adipose fin did not exhibit AR immunoreactivity. However, AR-immunopositive cells were abundant in the adipose fin of 3- to 5-year-old fish. Moreover, the number of AR-immunopositive cells was significantly (P brown trout is a probable target for androgen action and that tissue function or development may to some extent be androgen dependent. In addition, it is likely that such an effect will be mediated by specific androgen receptors.

  1. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  2. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  3. Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans

    NARCIS (Netherlands)

    Vink, R.G.; Roumans, N.J.; Čajlaković, M.; Cleutjens, J.P.M.; Boekschoten, M.V.; Fazelzadeh, P.; Vogel, M.A.A.; Blaak, E.E.; Mariman, E.C.; Baak, van M.A.; Goossens, G.H.

    2017-01-01

    Background/objectives: Although adipose tissue (AT) hypoxia is present in rodent models of obesity, evidence for this in humans is limited. Here, we investigated the effects of diet-induced weight loss (WL) on abdominal subcutaneous AT oxygen tension (pO 2), AT blood flow (ATBF), AT capillary

  4. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Jie Yu

    Full Text Available Prolonged and excessive glucocorticoids (GC exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g were administrated with 100 µg/ml corticosterone (CORT or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.

  5. Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio.

    Science.gov (United States)

    Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Aizpurúa, Marcelo; Maciel, Pablo M; Reaven, Gerald M

    2014-02-01

    The plasma concentration ratio of triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C) can identify cardiometabolic risk and cardiovascular disease. The visceral adiposity index is a sex-specific index, in which measurements of body mass index and waist circumference are combined with TG and HDL-C concentrations. The current analysis was initiated to see if the visceral adiposity index would improve the ability of the TG/HDL-C to identify increased cardiometabolic risk and outcome. Cardiometabolic data were obtained in 2003 from 926 apparently healthy individuals, 796 of whom were evaluated in 2012 for evidence of incident cardiovascular disease. The relationship between TG/HDL-C and values for visceral adiposity index was evaluated by Pearson's correlation coefficient. The relative risks for first cardiovascular event between individuals above and below the TG/HDL-C sex-specific cut points, and in the top quartile of visceral adiposity index versus the remaining 3 quartiles, were estimated using Cox proportional hazard models. TG/HDL-C concentration and visceral adiposity index were highly correlated (r = 0.99) in both men and women. Although more men (133 vs121) and women (73 vs 59) were identified as being at "high risk" by an elevated TG/HDL-C ratio, the individual cardiometabolic risk factors were essentially identical with either index used. However, the hazard ratio of developing cardiovascular disease was significantly increased in individuals with an elevated TG/HDL-C, whereas it was not the case when the visceral adiposity index was used to define "high risk." The visceral adiposity index does not identify individuals with an adverse cardiometabolic profile any better than the TG/HDL-C. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    Science.gov (United States)

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  7. Early Overfeed-Induced Obesity Leads to Brown Adipose Tissue Hypoactivity in Rats

    Directory of Open Access Journals (Sweden)

    Douglas L. de Almeida

    2013-12-01

    Full Text Available Background/Aims: Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Methods: Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups and small (3 pups litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Results: Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C and dark (NL 38°C vs. SL 37.6°C periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (pConclusion: Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults.

  8. Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats.

    Science.gov (United States)

    de Almeida, Douglas L; Fabrício, Gabriel S; Trombini, Amanda B; Pavanello, Audrei; Tófolo, Laize P; da Silva Ribeiro, Tatiane A; de Freitas Mathias, Paulo C; Palma-Rigo, Kesia

    2013-01-01

    Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults. © 2013 S. Karger AG, Basel.

  9. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    Directory of Open Access Journals (Sweden)

    Yang Rongze

    2011-10-01

    Full Text Available Abstract Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1 and fatty acid amide hydrolase (FAAH are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9, caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13, or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8. Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729.

  10. Effect of centrifugation and washing on adipose graft viability: a new method to improve graft efficiency.

    Science.gov (United States)

    Hoareau, Laurence; Bencharif, Karima; Girard, Anne-Claire; Gence, Lydie; Delarue, Pierre; Hulard, Olivier; Festy, Franck; Roche, Regis

    2013-05-01

    Adipose tissue grafting is a promising method in the field of surgical filling. We studied the effect of centrifugation on fat grafts, and we propose an optimised protocol for the improvement of adipose tissue viability. Adipose tissue was subjected to different centrifugations, and the volumes of interstitial liquid and oil released were measured to choose the optimal condition. Tissue from this condition was then compared to tissue obtained from two traditional techniques: strong centrifugation (commonly 3 min at 3000 rpm/900 g), and decantation, by injecting into immunodeficient mice. The cytokine interleukin-6 (IL-6) and chemokine monocyte chemotactic protein-1 (MCP-1) were assayed 24 h post-injection, and after 1 month of grafting the state of the lipografts was evaluated through macroscopic and histological analysis, with oil gap area measurement. Strong centrifugation (900 g, 1800 g) is deleterious for adipose tissue because it leads to until threefold more adipocyte death compared to low centrifugation (100 g, 400 g). In addition, mice injected with strong centrifuged and non-centrifuged adipose tissue have higher rates of blood IL-6 and MCP-1, compared to those grafted with soft centrifuged fat. Moreover, extensive lipid vacuoles were detectable on histological sections of the non-centrifuged lipografts, whereas lipografts from soft centrifugation contain a higher amount of connective tissue containing collagen fibres. It is necessary to wash and centrifuge adipose tissue before reinjection in order to remove infiltration liquid and associated toxic molecules, which in the long term are deleterious for the graft. However, strong centrifugation is not recommended since it leads very quickly to greater adipocyte death. Thus, soft centrifugation (400 g/1 min), preceded by washings, seems to be the most appropriate protocol for the reinjection of adipose tissue. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published

  11. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Juan; Antonio; Paniagua[1,2

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat.Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia,hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose.Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering highdensity lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS.

  12. Generating an Engineered Adipose Tissue Flap Using an External Suspension Device.

    Science.gov (United States)

    Wan, Jinlin; Dong, Ziqing; Lei, Chen; Lu, Feng

    2016-07-01

    The tissue-engineering chamber technique can generate large volumes of adipose tissue, which provides a potential solution for the complex reconstruction of large soft-tissue defects. However, major drawbacks of this technique are the foreign-body reaction and the volume limitation imposed by the chamber. In this study, the authors developed a novel tissue-engineering method using a specially designed external suspension device that generates an optimized volume of adipose flap and avoids the implantation of foreign material. The rabbits were processed using two different tissue-engineering methods, the external suspension device technique and the traditional tissue-engineering chamber technique. The adipose flaps generated by the external suspension device had a normal adipose tissue structure that was as good as that generated by the traditional tissue-engineering chamber, but the flap volume was much larger. The final volume of the engineered adipose flap grew between weeks 0 and 36 from 5.1 ml to 30.7 ml in the traditional tissue-engineering chamber group and to 80.5 ml in the external suspension device group. During the generation process, there were no marked differences between the two methods in terms of structural and cellular changes of the flap, except that the flaps in the traditional tissue-engineering chamber group had a thicker capsule at the early stage. In addition, the enlarged flaps generated by the external suspension device could be reshaped into specific shapes by the implant chamber. This minimally invasive external suspension device technique can generate large-volume adipose flaps. Combined with a reshaping method, this technique should facilitate clinical application of adipose tissue engineering.

  13. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients.

    Science.gov (United States)

    Fusaru, Ana Marina; Pisoschi, Cătălina Gabriela; Bold, Adriana; Taisescu, C; Stănescu, R; Hîncu, Mihaela; Crăiţoiu, Stefania; Baniţă, Ileana Monica

    2012-01-01

    VEGF is one the pro-inflammatory adipokines synthesized by the "adipose secretoma" of obese subjects as a response to hypoxic conditions; but the main function of VEGF is angiogenesis, being recognized as the most important factor increasing blood capillaries in the adipose tissue by stimulating endothelial cell growth. In this paper, we propose a comparative study of the vascular response to VEGF synthesis in the subcutaneous and central-peritoneal adipose depots in lean, obese and obese diabetic patients. We used CD31 to label the endothelial cells in order to evaluate the response of the vascular network to VEGF synthesis. Our results showed an increase of VEGF protein synthesis in obese and obese-diabetic patients compared to lean subjects where the protein was absent. The positivity for VEGF in obese diabetic samples was observed in numerous structures from the adipose depots, both in the stromal vascular fraction--blood vessels and stromal cells--as well as in the cytoplasm of adipocytes. Positivity in the vascular wall was observed more frequently in areas of perivascular and intralobular fibrosis. Obese and diabetic patients showed similar incidence of CD31 immunoreactivity with lean subjects in both subcutaneous and peritoneal depots. In conclusion, human adipose depots show a different incidence of VEGF positive cells in relation with their disposal and the metabolic status. VEGF synthesis in visceral adipose tissue is inefficient being not followed by angiogenesis to counterbalance tissue hypoxia. We suggest that may be a pathogenic link between the degrees of intralobular fibrosis in adipose depots and VEGF expression.

  14. Epicardial adipose tissue is associated with visceral fat, metabolic syndrome, and insulin resistance in menopausal women.

    Science.gov (United States)

    Fernández Muñoz, María J; Basurto Acevedo, Lourdes; Córdova Pérez, Nydia; Vázquez Martínez, Ana Laura; Tepach Gutiérrez, Nayive; Vega García, Sara; Rocha Cruz, Alberto; Díaz Martínez, Alma; Saucedo García, Renata; Zárate Treviño, Arturo; González Escudero, Eduardo Alberto; Degollado Córdova, José Antonio

    2014-06-01

    Epicardial adipose tissue has been associated with several obesity-related parameters and with insulin resistance. Echocardiographic assessment of this tissue is an easy and reliable marker of cardiometabolic risk. However, there are insufficient studies on the relationship between epicardial fat and insulin resistance during the postmenopausal period, when cardiovascular risk increases in women. The objective of this study was to examine the association between epicardial adipose tissue and visceral adipose tissue, waist circumference, body mass index, and insulin resistance in postmenopausal women. A cross sectional study was conducted in 34 postmenopausal women with and without metabolic syndrome. All participants underwent a transthoracic echocardiogram and body composition analysis. A positive correlation was observed between epicardial fat and visceral adipose tissue, body mass index, and waist circumference. The values of these correlations of epicardial fat thickness overlying the aorta-right ventricle were r = 0.505 (P < .003), r = 0.545 (P < .001), and r = 0.515 (P < .003), respectively. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome than in those without this syndrome (mean [standard deviation], 544.2 [122.9] vs 363.6 [162.3] mm(2); P = .03). Epicardial fat thickness measured by echocardiography was associated with visceral adipose tissue and other obesity parameters. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome. Therefore, echocardiographic assessment of epicardial fat may be a simple and reliable marker of cardiovascular risk in postmenopausal women. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  15. Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality.

    Science.gov (United States)

    Biddle, Stuart J H; García Bengoechea, Enrique; Wiesner, Glen

    2017-03-28

    Sedentary behaviour (sitting time) has becoming a very popular topic for research and translation since early studies on TV viewing in children in the 1980s. The most studied area for sedentary behaviour health outcomes has been adiposity in young people. However, the literature is replete with inconsistencies. We conducted a systematic review of systematic reviews and meta-analyses to provide a comprehensive analysis of evidence and state-of-the-art synthesis on whether sedentary behaviours are associated with adiposity in young people, and to what extent any association can be considered 'causal'. Searches yielded 29 systematic reviews of over 450 separate papers. We analysed results by observational (cross-sectional and longitudinal) and intervention designs. Small associations were reported for screen time and adiposity from cross-sectional evidence, but associations were less consistent from longitudinal studies. Studies using objective accelerometer measures of sedentary behaviour yielded null associations. Most studies assessed BMI/BMI-z. Interventions to reduce sedentary behaviour produced modest effects for weight status and adiposity. Accounting for effects from sedentary behaviour reduction alone is difficult as many interventions included additional changes in behaviour, such as physical activity and dietary intake. Analysis of causality guided by the classic Bradford Hill criteria concluded that there is no evidence for a causal association between sedentary behaviour and adiposity in youth, although a small dose-response association exists. Associations between sedentary behaviour and adiposity in children and adolescents are small to very small and there is little to no evidence that this association is causal. This remains a complex field with different exposure and outcome measures and research designs. But claims for 'clear' associations between sedentary behaviour and adiposity in youth, and certainly for causality, are premature or misguided.

  16. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  17. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes.

    Science.gov (United States)

    Jayabalan, Nanthini; Nair, Soumyalekshmi; Nuzhat, Zarin; Rice, Gregory E; Zuñiga, Felipe A; Sobrevia, Luis; Leiva, Andrea; Sanhueza, Carlos; Gutiérrez, Jaime Agustín; Lappas, Martha; Freeman, Dilys Jane; Salomon, Carlos

    2017-01-01

    Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue

  18. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes

    Directory of Open Access Journals (Sweden)

    Nanthini Jayabalan

    2017-09-01

    Full Text Available Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR. Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM. Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body’s major energy reservoir. The role of adipose tissue, however, is not restricted to a “bag of fat.” The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between

  19. Involvement of Visceral Adipose Tissue in Immunological Modulation of Inflammatory Cascade in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Katsuhiko Naruse

    2015-01-01

    Full Text Available Objectives. The pathophysiology of preeclampsia is characterized by abnormal placentation, an exaggerated inflammatory response, and generalized dysfunction of the maternal endothelium. We investigated the effects of preeclampsia serum on the expression of inflammation-related genes by adipose tissue. Materials and Methods. Visceral adipose tissue was obtained from the omentum of patients with early ovarian cancer without metastasis. Adipose tissue was incubated with sera obtained from either five women affected with severe preeclampsia or five women from control pregnant women at 37°C in a humidified incubator at 5% CO2 for 24 hours. 370 genes in total mRNA were analyzed with quantitative RT-PCR (Inflammatory Response & Autoimmunity gene set. Results. Gene expression analysis revealed changes in the expression levels of 30 genes in adipose tissue treated with preeclampsia sera. Some genes are related to immune response, oxidative stress, insulin resistance, and adipogenesis, which plays a central role in excessive systemic inflammatory response of preeclampsia. In contrast, other genes have shown beneficial effects in the regulation of Th2 predominance, antioxidative stress, and insulin sensitivity. Conclusion. In conclusion, visceral adipose tissue offers protection against inflammation, oxidative insults, and other forms of cellular stress that are central to the pathogenesis of preeclampsia.

  20. Associations Between Adiposity and Metabolic Syndrome Over Time: The Healthy Twin Study.

    Science.gov (United States)

    Song, Yun-Mi; Sung, Joohon; Lee, Kayoung

    2017-04-01

    We evaluated the association between changes in adiposity traits including anthropometric and fat mass indicators and changes in metabolic syndrome traits including metabolic syndrome clustering and individual components over time. We also assessed the shared genetic and environmental correlations between the two traits. Participants were 284 South Korean twin individuals and 279 nontwin family members had complete data for changes in adiposity traits and metabolic syndrome traits of the Healthy Twin study. Mixed linear model and bivariate variance-component analysis were applied. Over a period of 3.1 ± 0.6 years of study, changes in adiposity traits [body mass index (BMI), waist circumference, total fat mass, and fat mass to lean mass ratio] had significant associations with changes in metabolic syndrome clustering [high blood pressure, high serum glucose, high triglycerides (TG), and low high-density lipoprotein cholesterol] after adjusting for intra-familial and sibling correlations, age, sex, baseline metabolic syndrome clustering, and socioeconomic factors and health behaviors at follow-up. Change in BMI associated significantly with changes in individual metabolic syndrome components compared to other adiposity traits. Change in metabolic syndrome component TG was a better predictor of changes in adiposity traits compared to changes in other metabolic components. These associations were explained by significant environmental correlations but not by genetic correlations. Changes in anthropometric and fat mass indicators were positively associated with changes in metabolic syndrome clustering and those associations appeared to be regulated by environmental influences.

  1. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Directory of Open Access Journals (Sweden)

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  2. Human adipose cells in vitro are either refractory or responsive to insulin, reflecting host metabolic state.

    Directory of Open Access Journals (Sweden)

    Vladimir A Lizunov

    Full Text Available While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI.

  3. Changes in adiposity levels in schoolchildren according to nutritional status: analysis over a 30-year period

    Directory of Open Access Journals (Sweden)

    Gerson Luis de Moraes Ferrari

    2013-05-01

    Full Text Available The aim of this study was to analyze changes in adiposity levels over a 30-year period in schoolchildren according to nutritional status. This study is part of Projeto Misto Longitudinal de Crescimento, Desenvolvimento e Aptidão Física de Ilhabela. 1.144 schoolchildren of both sexes, aged between 10 and 11 years, met the following inclusion criteria: (a have at least one complete evaluation in one of the analyzed periods; (b be in the prepubertal stage of sexual maturation;and (c be apparently healthy. Analyzed periods were 1978/1980 (Baseline,1988/1990 (10 years, 1998/2000 (20 years, 2008/2010 (30 years. Analyzed variables were: body mass (kg, height (cm and adiposity levels (mm. Children were classified into three categories: eutrophic, overweight and obese, according to nutritional status, using World Health Organization (WHO body mass index (BMI curves for age and sex. For a comparison between periods, Two-Factor Analysis of Variance and Bonferroni’s test were used. In both sexes, the most significant increase in adiposity levels occurred among the eutrophic group, followed by the overweight group and obese group. Results showed an increase in adiposity levels over a 30-year period, even with nutritional status control. It shows that individuals with a similar BMI may vary in proportion and distribution of subcutaneous adipose tissue.

  4. Changes in adiposity levels in schoolchildren according to nutritional status: analysis over a 30-year period

    Directory of Open Access Journals (Sweden)

    Gerson Luis de Moraes Ferrari

    2013-04-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2013v15n4p405 The aim of this study was to analyze changes in adiposity levels over a 30-year period in schoolchildren according to nutritional status. This study is part of Projeto Misto Longitudinal de Crescimento, Desenvolvimento e Aptidão Física de Ilhabela. 1.144 schoolchildren of both sexes, aged between 10 and 11 years, met the following inclusion criteria: (a have at least one complete evaluation in one of the analyzed periods; (b be in the prepubertal stage of sexual maturation;and (c be apparently healthy. Analyzed periods were 1978/1980 (Baseline,1988/1990 (10 years, 1998/2000 (20 years, 2008/2010 (30 years. Analyzed variables were: body mass (kg, height (cm and adiposity levels (mm. Children were classified into three categories: eutrophic, overweight and obese, according to nutritional status, using World Health Organization (WHO body mass index (BMI curves for age and sex. For a comparison between periods, Two-Factor Analysis of Variance and Bonferroni’s test were used. In both sexes, the most significant increase in adiposity levels occurred among the eutrophic group, followed by the overweight group and obese group. Results showed an increase in adiposity levels over a 30-year period, even with nutritional status control. It shows that individuals with a similar BMI may vary in proportion and distribution of subcutaneous adipose tissue.

  5. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  6. Biology and function of adipose tissue macrophages, dendritic cells and B cells.

    Science.gov (United States)

    Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R

    2018-04-01

    The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    Science.gov (United States)

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  8. The relationship between iron status and adiposity in women from developing countries: a review.

    Science.gov (United States)

    Aderibigbe, Olaide Ruth; Pisa, Pedro T; Vorster, Hester H; Kruger, Salome H

    2014-01-01

    Scientific reports have shown that iron deficiency is positively associated with adiposity. With the high prevalence of iron deficiency and obesity in developing countries and women being particularly affected, this review was carried out with the aim of elucidating the link between iron status and adiposity in women from developing countries and to examine factors influencing this relationship. An extensive literature search was conducted using several search engines. A systematic approach with prespecified inclusion criteria was used in selecting relevant literature. Eight studies that met the inclusion criteria were selected for review. The relationship between iron status indices and adiposity in women in developing countries varied widely. While some studies observed negative relationships, some reported positive relationships, and others no significant relationships. Furthermore, other factors such as infection, alcohol consumption, type of diet, and genes were shown to affect the relationship between iron status and adiposity in women in developing countries. In conclusion, the possibility of iron status playing a role in adiposity in women from developing countries is likely, and it may be influenced by several other factors as described in the results. Thus, it is recommended that a special research effort should be directed toward this area.

  9. Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis.

    Science.gov (United States)

    Holtrup, Brandon; Church, Christopher D; Berry, Ryan; Colman, Laura; Jeffery, Elise; Bober, Jeremy; Rodeheffer, Matthew S

    2017-07-03

    Over the past 2 decades, the incidence of childhood obesity has risen dramatically. This recent rise in childhood obesity is particularly concerning as adults who were obese during childhood develop type II diabetes that is intractable to current forms of treatment compared with individuals who develop obesity in adulthood. While the mechanisms responsible for the exacerbated diabetic phenotype associated with childhood obesity is not clear, it is well known that childhood is an important time period for the establishment of normal white adipose tissue in humans. This association suggests that exposure to obesogenic stimuli during adipose development may have detrimental effects on adipose function and metabolic homeostasis. In this study, we identify the period of development associated with puberty, postnatal days 18-34, as critical for the establishment of normal adipose mass in mice. Exposure of mice to high fat diet only during this time period results in metabolic dysfunction, increased leptin expression, and increased adipocyte size in adulthood in the absence of sustained increased fat mass or body weight. These findings indicate that exposure to obesogenic stimuli during critical developmental periods have prolonged effects on adipose tissue function that may contribute to the exacerbated metabolic dysfunctions associated with childhood obesity.

  10. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Titos, Esther; Clària, Joan

    2013-12-01

    Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    Science.gov (United States)

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  12. Adrenal gland volume, intra-abdominal and pericardial adipose tissue in major depressive disorder.

    Science.gov (United States)

    Kahl, Kai G; Schweiger, Ulrich; Pars, Kaweh; Kunikowska, Alicja; Deuschle, Michael; Gutberlet, Marcel; Lichtinghagen, Ralf; Bleich, Stefan; Hüper, Katja; Hartung, Dagmar

    2015-08-01

    Major depressive disorder (MDD) is associated with an increased risk for the development of cardio-metabolic diseases. Increased intra-abdominal (IAT) and pericardial adipose tissue (PAT) have been found in depression, and are discussed as potential mediating factors. IAT and PAT are thought to be the result of a dysregulation of the hypothalamus-pituitary-adrenal axis (HPAA) with subsequent hypercortisolism. Therefore we examined adrenal gland volume as proxy marker for HPAA activation, and IAT and PAT in depressed patients. Twenty-seven depressed patients and 19 comparison subjects were included in this case-control study. Adrenal gland volume, pericardial, intraabdominal and subcutaneous adipose tissue were measured by magnetic resonance imaging. Further parameters included factors of the metabolic syndrome, fasting cortisol, fasting insulin, and proinflammatory cytokines. Adrenal gland and pericardial adipose tissue volumes, serum concentrations of cortisol and insulin, and serum concentrations tumor-necrosis factor-α were increased in depressed patients. Adrenal gland volume was positively correlated with intra-abdominal and pericardial adipose tissue, but not with subcutaneous adipose tissue. Our findings point to the role of HPAA dysregulation and hypercortisolism as potential mediators of IAT and PAT enlargement. Further studies are warranted to examine whether certain subtypes of depression are more prone to cardio-metabolic diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2017-01-01

    Full Text Available Aims. Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD. Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21 is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT lipolysis. Methods. Mice were given 2.5% dextran sulfate sodium (DSS ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21 treatment; lipolysis was assessed. Results. DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions. Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.

  14. A role of low dose chemical mixtures in adipose tissue in carcinogenesis.

    Science.gov (United States)

    Lee, Duk-Hee; Jacobs, David R; Park, Ho Yong; Carpenter, David O

    2017-11-01

    The Halifax project recently hypothesized a composite carcinogenic potential of the mixture of low dose chemicals which are commonly encountered environmentally, yet which are not classified as human carcinogens. A long neglected but important fact is that adipose tissue is an important exposure source for chemical mixtures. In fact, findings from human studies based on several persistent organic pollutants in general populations with only background exposure should be interpreted from the viewpoint of chemical mixtures because serum concentrations of these chemicals can be seen as surrogates for chemical mixtures in adipose tissue. Furthermore, in conditions such as obesity with dysfunctional adipocytes or weight loss in which lipolysis is increased, the amount of the chemical mixture released from adipose tissue to circulation is increased. Thus, both obesity and weight loss can enhance the chance of chemical mixtures reaching critical organs, however paradoxical this idea may be when fat mass is the only factor considered. The complicated, interrelated dynamics of adipocytes and chemical mixtures can explain puzzling findings related to body weight among cancer patients, including the obesity paradox. The contamination of fat in human diet with chemical mixtures, occurring for reasons similar to contamination of human adipose tissue, may be a missing factor which affects the association between dietary fat intake and cancer. The presence of chemical mixtures in adipose tissue should be considered in future cancer research, including clinical trials on weight management among cancer survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Behfar

    2011-11-01

    Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.

  16. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas

    International Nuclear Information System (INIS)

    Veld, Joyce; Vossen, Josephina A.; Torriani, Martin; Bredella, Miriam A.; De Amorim Bernstein, Karen; Halpern, Elkan F.

    2016-01-01

    To assess CT-attenuation of abdominal adipose tissue and psoas muscle as predictors of mortality in patients with sarcomas of the extremities. Our study was IRB approved and HIPAA compliant. The study group comprised 135 patients with history of extremity sarcoma (mean age: 53 ± 17 years) who underwent whole body PET/CT. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and psoas muscle attenuation (HU) was assessed on non-contrast, attenuation-correction CT. Clinical information including survival, tumour stage, sarcoma type, therapy and pre-existing comorbidities were recorded. Cox proportional hazard models were used to determine longitudinal associations between adipose tissue and muscle attenuation and mortality. There were 47 deaths over a mean follow-up period of 20 ± 17 months. Higher SAT and lower psoas attenuation were associated with increased mortality (p = 0.03 and p = 0.005, respectively), which remained significant after adjustment for age, BMI, sex, tumor stage, therapy, and comorbidities (p = 0.002 and p = 0.02, respectively). VAT attenuation was not associated with mortality. Attenuation of SAT and psoas muscle, assessed on non-contrast CT, are predictors of mortality in patients with extremity sarcomas, independent of other established prognostic factors, suggesting that adipose tissue and muscle attenuation could serve as novel biomarkers for mortality in patients with sarcomas. (orig.)

  17. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    Science.gov (United States)

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  18. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Veld, Joyce; Vossen, Josephina A.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); De Amorim Bernstein, Karen [Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Francis H Burr Proton Therapy Center, Boston, MA (United States); Halpern, Elkan F. [Massachusetts General Hospital and Harvard Medical School, Institute of Technology Assessment, Boston, MA (United States)

    2016-12-15

    To assess CT-attenuation of abdominal adipose tissue and psoas muscle as predictors of mortality in patients with sarcomas of the extremities. Our study was IRB approved and HIPAA compliant. The study group comprised 135 patients with history of extremity sarcoma (mean age: 53 ± 17 years) who underwent whole body PET/CT. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and psoas muscle attenuation (HU) was assessed on non-contrast, attenuation-correction CT. Clinical information including survival, tumour stage, sarcoma type, therapy and pre-existing comorbidities were recorded. Cox proportional hazard models were used to determine longitudinal associations between adipose tissue and muscle attenuation and mortality. There were 47 deaths over a mean follow-up period of 20 ± 17 months. Higher SAT and lower psoas attenuation were associated with increased mortality (p = 0.03 and p = 0.005, respectively), which remained significant after adjustment for age, BMI, sex, tumor stage, therapy, and comorbidities (p = 0.002 and p = 0.02, respectively). VAT attenuation was not associated with mortality. Attenuation of SAT and psoas muscle, assessed on non-contrast CT, are predictors of mortality in patients with extremity sarcomas, independent of other established prognostic factors, suggesting that adipose tissue and muscle attenuation could serve as novel biomarkers for mortality in patients with sarcomas. (orig.)

  19. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    Science.gov (United States)

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  20. OXIDATIVE STRESS: ITS ROLE IN INSULIN SECRETION, HORMONE RECEPTION BY ADIPOCYTES AND LIPOLYSIS IN ADIPOSE TISSUE

    Directory of Open Access Journals (Sweden)

    V. V. Ivanov

    2014-01-01

    Full Text Available Oxidative stress is one of the pathogenetic components of many diseases during which generation of reactive oxigen species increases and the capacity of the antioxidant protection system diminishes. In the research of the last decades special attention has been given to adipose tissue, production of adipokines by it and their role in development of immunoresistance associated with formation of the metabolic syndrome and diabetes.Search for methods of therapeutic correction of adipokine secretion disorders, their influence on metabolism of separate cells and the organism on the whole as well as development of new approaches to correction of disorders in cell sensitivity to insulin are extremely topical nowadays. Systematization and consolidation of accumulated data allow to determine the strategies of further research more accurately; as a result, we have attempted to summarize and analyze the accumulated data on the role of adipose tissue in oxidative stress development.On the basis of literature data and the results of the personal investigations, the role of adipose tissue in forming oxidative stress in diabetes has been analyzed in the article. Brief description of adipose tissue was given as a secretory organ regulating metabolic processes in adipocytes and influencing functions of various organs and systems of the body. Mechanisms of disorder in insulin secretion as well as development of insulin sesistance in type I diabetes were described along with the contribution of lipolysis in adipose tissue to these processes.