WorldWideScience

Sample records for adipose tissue treatment

  1. Adipose tissue fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The increasing prevalence of obesity causes a majorinterest in white adipose tissue biology. Adipose tissuecells are surrounded by extracellular matrix proteinswhose composition and remodeling is of crucial importancefor cell function. The expansion of adipose tissue inobesity is linked to an inappropriate supply with oxygenand hypoxia development. Subsequent activation ofhypoxia inducible factor 1 (HIF-1) inhibits preadipocytedifferentiation and initiates adipose tissue fibrosis. Therebyadipose tissue growth is limited and excess triglyceridesare stored in ectopic tissues. Stressed adipocytes andhypoxia contribute to immune cell immigration andactivation which further aggravates adipose tissuefibrosis. There is substantial evidence that adipose tissuefibrosis is linked to metabolic dysfunction,both in rodentmodels and in the clinical setting. Peroxisome proliferatoractivated receptor gamma agonists and adiponectin bothreduce adipose tissue fibrosis, inflammation and insulinresistance. Current knowledge suggests that antifibroticdrugs, increasing adipose tissue oxygen supply or HIF-1antagonists will improve adipose tissue function andthereby ameliorate metabolic diseases.

  2. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Directory of Open Access Journals (Sweden)

    Remesar Xavier

    2007-08-01

    Full Text Available Abstract Background Short-term OE (oleoyl-estrone treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL were decreased by 52%, those of Fatty Acid Synthase (FAS by 95%, those of Hormone Sensible Lipase (HSL by 32%, those of Acetyl CoA Carboxylase (ACC by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b by 45%, and those of Fatty Acid Transport Protein 1 (FATP1 and Adipocyte Fatty Acid Binding Protein (FABP4 by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα values showed overexpression (198%. Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  3. Targeting adipose tissue

    Directory of Open Access Journals (Sweden)

    Haas Bodo

    2012-10-01

    Full Text Available Abstract Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT is generally known and stores excess energy in the form of triacylglycerol (TG, insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP. The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET, however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs, activators of peroxisome proliferator-activated receptor γ (PPARγ a ‘master’ regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity.

  4. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically foc

  5. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  6. Investigations of the endocannabinoid system in adipose tissue: effects of obesity/ weight loss and treatment options.

    Science.gov (United States)

    Bennetzen, Marianne Faurholt

    2011-04-01

    Obesity is a world wide epidemic; it is becoming more usual to be overweight or obese than to be normal weight. Obesity increases the risk of an extensive range of diseases such as cardiovascular disease, diabetes mellitus type 2, hypertension, depression and some types of cancer. Adipose tissue is more than a storage organ for surplus energy - it is also a setting for complex metabolic processes and adipose tissue releases substances that interact with other parts of the body to influence several systems including food intake and energy metabolism. The endocannabinoid system (ECS) is one of the signalling systems that control feeding behaviour. The ECS is implicated in many functions, such as pain, memory, addiction, inflammation, and feeding, and could be considered a stress recovery system. It also seems to integrate nutrient intake, metabolism and storage maintaining homeostatic balance. The ECS is a recently discovered system, and research indicates hyperactivity in obesity. The aim of this thesis is to elaborate on the relationships of this widespread system and its elements in adipose tissue in obesity. Study I is a 4 weeks rat intervention study to investigate whether weight independent effect of Rimonabant treatment exists. We found that food intake-tolerance development could be circumvented by cyclic administration of Rimonabant and implications of weight independent effects of treatment. Study II is a cross-sectional study to establish the expression of cannabinoid receptor 1 from various adipose tissue depots of lean and obese persons. In this study we conclude, that the subcutaneous adipose tissue express more CBR1 than the visceral depot in lean, but comparable levels in obese. Study III is a 10 weeks human intervention study to asses the effects on the ECS of 10% weight loss. We found reduction in the ECS in obesity that normalised with weight loss. Our results clearly show the presence of all the components of the ECS in human adipose tissue, and

  7. The role of adipose tissue and obesity in causing treatment resistance of acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Xia eSheng

    2014-06-01

    Full Text Available Obesity is responsible for ~90,000 cancer deaths per year, increasing cancer incidence and impairing its treatment. Obesity has also been shown to impact hematological malignancies, through as yet unknown mechanisms. Adipocytes are present in bone marrow and the microenvironments of many types of cancer, and have been found to promote cancer cell survival. In this review, we explore several ways in which obesity might cause leukemia treatment resistance. Obese patients may be at a treatment disadvantage due to altered pharmacokinetics of chemotherapy and dosage capping based on ideal body weight. The adipose tissue provides fuel to cancer cells in the form of amino acids and free fatty acids. Adipocytes have been shown to cause cancer cells to resist chemotherapy-induced apoptosis. In addition, obese adipose tissue is phenotypically altered, producing a milieu of pro-inflammatory adipokines and cytokines, some of which have been linked to cancer progression. Given the prevalence of obesity, understanding its role and adipose tissue in ALL treatment is necessary for evaluating current treatment regimen and revealing new therapeutic targets.

  8. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    Science.gov (United States)

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.

  9. Adipose Tissue Metabolism During Hypobaria

    Directory of Open Access Journals (Sweden)

    D. P. Chattopadhyay

    1974-10-01

    Full Text Available Possible factors affecting the metabolism of adipose tissue under hypobaric conditions have been reviewed. The hormonal changes brought into play under hypoxic stress generally stress generally increase the adipose tissue lipolysis.

  10. Foraging at wastewater treatment works affects brown adipose tissue fatty acid profiles in banana bats.

    Science.gov (United States)

    Hill, Kate; van Aswegen, Sunet; Schoeman, M Corrie; Claassens, Sarina; Jansen van Rensburg, Peet; Naidoo, Samantha; Vosloo, Dalene

    2016-01-06

    In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW), such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT) in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT) mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage.

  11. Foraging at wastewater treatment works affects brown adipose tissue fatty acid profiles in banana bats

    Directory of Open Access Journals (Sweden)

    Kate Hill

    2016-02-01

    Full Text Available In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW, such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage.

  12. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  13. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations.

    Science.gov (United States)

    Fowler, Jason D; Krueth, Stacy B; Bernlohr, David A; Katz, Stephen A

    2009-02-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two RAS components, renin and angiotensinogen (AGT), to determine the influence of their plasma concentrations on adipose and cardiac tissue levels in both perfused (plasma removed) and nonperfused samples. Variation of plasma RAS components was accomplished by four treatment groups: normal, DOCA salt, bilateral nephrectomy, and losartan. Adipose and cardiac tissue AGT concentrations correlated positively with plasma values. Perfusion of adipose tissue decreased AGT concentrations by 11.1%, indicating that adipose tissue AGT was in equilibrium with plasma. Cardiac tissue renin levels positively correlated with plasma renin concentration for all treatments. In contrast, adipose tissue renin levels did not correlate with plasma renin, with the exception of extremely high plasma renin concentrations achieved in the losartan-treated group. These results suggest that adipose tissue may control its own local renin concentration independently of plasma renin as a potential mechanism for maintaining a functional local adipose RAS.

  14. Steroid biosynthesis in adipose tissue.

    Science.gov (United States)

    Li, Jiehan; Papadopoulos, Vassilios; Vihma, Veera

    2015-11-01

    Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.

  15. Adipose tissue plasticity from WAT to BAT and in between.

    Science.gov (United States)

    Lee, Yun-Hee; Mottillo, Emilio P; Granneman, James G

    2014-03-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  16. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment.

    Science.gov (United States)

    Yu, Jinhai; Zhang, Shuyan; Cui, Liujuan; Wang, Weiyi; Na, Huimin; Zhu, Xiaotong; Li, Linghai; Xu, Guoheng; Yang, Fuquan; Christian, Mark; Liu, Pingsheng

    2015-05-01

    Brown adipose tissue (BAT) maintains animal body temperature by non-shivering thermogenesis, which is through uncoupling protein 1 (UCP1) that uncouples oxidative phosphorylation and utilizes β-oxidation of fatty acids released from triacylglycerol (TAG) in lipid droplets (LDs). Increasing BAT activity and "browning" other tissues such as white adipose tissue (WAT) can enhance the expenditure of excess stored energy, and in turn reduce prevalence of metabolic diseases. Although many studies have characterized the biology of BAT and brown adipocytes, BAT LDs especially their activation induced by cold exposure remain to be explored. We have isolated LDs from mouse interscapular BAT and characterized the full proteome using mass spectrometry. Both morphological and biochemical experiments showed that the LDs could tightly associate with mitochondria. Under cold treatment mouse BAT started expressing LD structure protein PLIN-2/ADRP and increased expression of PLIN1. Both hormone sensitive lipase (HSL) and adipose TAG lipase (ATGL) were increased in LDs. In addition, isolated BAT LDs showed increased levels of the mitochondrial protein UCP1, and prolonged cold exposure could stimulate BAT mitochondrial cristae biogenesis. These changes were in agreement with the data from transcriptional analysis. Our results provide the BAT LD proteome for the first time and show that BAT LDs facilitate heat production by coupling increasing TAG hydrolysis through recruitment of ATGL and HSL to the organelle and expression of another LD resident protein PLIN2/ADRP, as well as by tightly associating with activated mitochondria. These findings will benefit the study of BAT activation and the interaction between LDs and mitochondria.

  17. Improvement of Liquid Fructose-Induced Adipose Tissue Insulin Resistance by Ginger Treatment in Rats Is Associated with Suppression of Adipose Macrophage-Related Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Jianwei Wang

    2013-01-01

    Full Text Available Adipose tissue insulin resistance (Adipo-IR results in excessive release of free fatty acids from adipose tissue, which plays a key role in the development of “lipotoxicity.” Therefore, amelioration of Adipo-IR may benefit the treatment of other metabolic abnormalities. Here we found that treatment with the alcoholic extract of ginger (50 mg/kg/day, by oral gavage for five weeks attenuated liquid fructose-induced hyperinsulinemia and an increase in the homeostasis model assessment of insulin resistance (HOMA-IR index in rats. More importantly, ginger reversed the increases in the Adipo-IR index and plasma nonesterified fatty acid concentrations during the oral glucose tolerance test assessment. Adipose gene/protein expression profiles revealed that ginger treatment suppressed CD68 and F4/80, two important macrophage accumulation markers. Consistently, the macrophage-associated cytokines tissue necrosis factor alpha and interleukin-6 were also downregulated. In contrast, insulin receptor substrate (IRS-1, but not IRS-2, was upregulated. Moreover, monocyte chemotactic protein (MCP-1 and its receptor chemokine (C-C motif receptor-2 were also suppressed. Thus these results suggest that amelioration of fructose-induced Adipo-IR by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines.

  18. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Science.gov (United States)

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.

  19. Bioengineering Beige Adipose Tissue Therapeutics.

    Science.gov (United States)

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  20. Pioglitazone treatment reduces adipose tissue inflammation through reduction of mast cell and macrophage number and by improving vascularity.

    Directory of Open Access Journals (Sweden)

    Michael Spencer

    Full Text Available Adipose tissue in insulin resistant subjects contains inflammatory cells and extracellular matrix components. This study examined adipose pathology of insulin resistant subjects who were treated with pioglitazone or fish oil.Adipose biopsies were examined from nine insulin resistant subjects before/after treatment with pioglitazone 45 mg/day for 12 weeks and also from 19 subjects who were treated with fish oil (1,860 mg EPA, 1,500 mg DHA daily. These studies were performed in a clinical research center setting.Pioglitazone treatment increased the cross-sectional area of adipocytes by 18% (p = 0.01, and also increased capillary density without affecting larger vessels. Pioglitazone treatment decreased total adipose macrophage number by 26%, with a 56% decrease in M1 macrophages and an increase in M2 macrophages. Mast cells were more abundant in obese versus lean subjects, and were decreased from 24 to 13 cells/mm(2 (p = 0.02 in patients treated with pioglitazone, but not in subjects treated with FO. Although there were no changes in total collagen protein, pioglitazone increased the amount of elastin protein in adipose by 6-fold.The PPARγ agonist pioglitazone increased adipocyte size yet improved other features of adipose, increasing capillary number and reducing mast cells and inflammatory macrophages. The increase in elastin may better permit adipocyte expansion without triggering cell necrosis and an inflammatory reaction.

  1. WJD 5th Anniversary Special Issues(1): Insulin Benefits of healthy adipose tissue in the treatment of diabetes

    Institute of Scientific and Technical Information of China (English)

    Subhadra; C; Gunawardana

    2014-01-01

    The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin.Insulin deficiency is either absolute due to destruction or failure of pancreaticβcells,or relative due to decreased sensitivity of peripheral tissues to insulin.The primary lesion being related to insulin,treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin.These therapies have their own limitations and complications,some of which can be life-threatening.For example,exogenous insulin administration can lead to fatal hypoglycemic episodes;islet/pancreas transplantation requires life-long immunosuppressive therapy;and anti-diabetic drugs have dangerous side effects including edema,heart failure and lactic acidosis.Thus the need remains for better safer long term treatments for diabetes.The ultimate goal in treating diabetes is to re-establish glucose homeostasis,preferably through endogenously generated hormones.Recent studies increasingly show that extra-pancreatic hormones,particularly those arising from adipose tissue,can compensate for insulin,or entirely replace the function of insulin under appropriate circumstances.Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism.While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines,healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties,which can complement and/or compensate for the function of insulin.Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes,and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin.Although specific adipokines may correct diabetes,administration of individual adipokines still carries risks similar to those of insulin monotherapy.Thus a better approach is to

  2. Brown adipose tissue and its therapeutic potential.

    Science.gov (United States)

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  3. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects.

    Science.gov (United States)

    Rogers, Robert S; Beaudoin, Marie-Soleil; Wheatley, Joshua L; Wright, David C; Geiger, Paige C

    2015-01-01

    Heat treatments (HT) and the induction of heat shock proteins (HSPs) improve whole body and skeletal muscle insulin sensitivity while decreasing white adipose tissue (WAT) mass. However, HSPs in WAT have been understudied. The purpose of the present study was to examine patterns of HSP expression in WAT depots, and to examine the effects of a single in vivo HT on WAT metabolism. Male Wistar rats received HT (41°C, 20 min) or sham treatment (37°C), and 24 h later subcutaneous, epididymal, and retroperitoneal WAT depots (SCAT, eWAT, and rpWAT, respectively) were removed for ex vivo experiments and Western blotting. SCAT, eWAT, and rpWAT from a subset of rats were also cultured separately and received a single in vitro HT or sham treatment. HSP72 and HSP25 expression was greatest in more metabolically active WAT depots (i.e., eWAT and rpWAT) compared with the SCAT. Following HT, HSP72 increased in all depots with the greatest induction occurring in the SCAT. In addition, HSP25 increased in the rpWAT and eWAT, while HSP60 increased in the rpWAT only in vivo. Free fatty acid (FFA) release from WAT explants was increased following HT in the rpWAT only, and fatty acid reesterification was decreased in the rpWAT but increased in the SCAT following HT. HT increased insulin responsiveness in eWAT, but not in SCAT or rpWAT. Differences in HSP expression and induction patterns following HT further support the growing body of literature differentiating distinct WAT depots in health and disease.

  4. Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition.

    Science.gov (United States)

    Reynolds, C M; Li, M; Gray, C; Vickers, M H

    2013-08-01

    It is well established that early-life nutritional alterations lead to increased risk of obesity and metabolic disorders in adult life. Although it is clear that obesity gives rise to chronic low-grade inflammation, there is little evidence regarding the role of inflammation in the adipose tissue of undernourished (UN) offspring. GH reduces fat mass and has antiinflammatory properties. The present study examined the effect of maternal UN on adipose inflammation in adult offspring and whether GH treatment during a critical period of developmental plasticity could ameliorate metabolic dysfunction associated with a poor start to life. Sprague Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (control saline [CS]/UN) or GH (2.5 μg/g/d; control growth hormone [CGH]/undernourished growth hormone [UNGH]) from days 3-21. Postweaning males were further randomized and fed either chow or high-fat diet until day 160. An ex vivo glucose uptake assay demonstrated adipose tissue from UN offspring displayed attenuated insulin-stimulated glucose uptake compared with CS, CGH, and UNGH. This was associated with increased insulin receptor, glucose transporter 4, and insulin receptor substrate 1 gene expression. Furthermore, UN demonstrated enhanced TNFα and IL-1β secretion from adipose explants and stromal vascular fraction cultures accompanied by increased adipose tissue gene expression of several key proinflammatory genes and markers of macrophage infiltration. Overall, UN offspring displayed a more potent immunophenotype, which correlated with decreased insulin sensitivity. Preweaning GH treatment negates these detrimental effects, indicating the potential for reversing metabolic dysfunction in UN adult offspring.

  5. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment.

    Science.gov (United States)

    Slocum, Nikki; Durrant, Jessica R; Bailey, David; Yoon, Lawrence; Jordan, Holly; Barton, Joanna; Brown, Roger H; Clifton, Lisa; Milliken, Tula; Harrington, Wallace; Kimbrough, Carie; Faber, Catherine A; Cariello, Neal; Elangbam, Chandikumar S

    2013-07-01

    Drug-induced weight loss in humans has been associated with undesirable side effects not present in weight loss from lifestyle interventions (caloric restriction or exercise). To investigate the mechanistic differences of weight loss by drug-induced and lifestyle interventions, we examined the gene expression (mRNA) in brown adipose tissue (BAT) and conducted histopathologic assessments in diet-induced obese (DIO) mice given ephedrine (18 mg/kg/day orally), treadmill exercise (10 m/min, 1-h/day), and dietary restriction (DR: 26% dietary restriction) for 7 days. Exercise and DR mice lost more body weight than controls and both ephedrine and exercise reduced percent body fat. All treatments reduced BAT and liver lipid accumulation (i.e., cytoplasmic lipids in brown adipocytes and hepatocytes) and increased oxygen consumption (VO2 ml/kg/h) compared with controls. Mitochondrial biogenesis/function-related genes (TFAM, NRF1 and GABPA) were up-regulated in the BAT of all groups. UCP-1 was up-regulated in exercise and ephedrine groups, whereas MFSD2A was up-regulated in ephedrine and DR groups. PGC-1α up-regulation was observed in exercise and DR groups but not in ephedrine group. In all experimental groups, except for ephedrine, fatty acid transport and metabolism genes were up-regulated, but the magnitude of change was higher in the DR group. PRKAA1 was up-regulated in all groups but not significantly in the ephedrine group. ADRß3 was slightly up-regulated in the DR group only, whereas ESRRA remained unchanged in all groups. Although our data suggest a common pathway of BAT activation elicited by ephedrine treatment, exercise or DR, mRNA changes were indicative of additional nutrient-sensing pathways in exercise and DR.

  6. Successful application of subcutaneous adipose tissue with fibrin glue in conservative treatment of tracheobronchial rupture.

    Science.gov (United States)

    Tokuishi, Keita; Yamamoto, Satoshi; Anami, Kentaro; Moroga, Toshihiko; Miyawaki, Michiyo; Chujo, Masao; Yamashita, Shin-Ichi; Kawahara, Katsunobu

    2012-11-01

    An 84-year-old woman underwent aortic and mitral valve replacement. After weaning from cardiopulmonary bypass, hemorrhage was observed in the endobronchial tube. The bleeding bronchus was isolated to protect the airway using the blocker cuff of a Univent tube (Fuji Systems Corp, Tokyo, Japan). Computed tomography showed a pulmonary pseudoaneurysm in the left upper lobe. She underwent selective pulmonary angiography and embolization of the pseudoaneurysm. Bronchoscopy revealed a 5-mm bronchial rupture at the left upper lobe bronchus. The laceration was filled with adipose tissue and fibrin glue. Bronchoscopy showed a completely reepithelialized membrane, and she was discharged 38 days postoperatively.

  7. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous...

  8. Hypothalamic control of adipose tissue.

    Science.gov (United States)

    Stefanidis, A; Wiedmann, N M; Adler, E S; Oldfield, B J

    2014-10-01

    A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.

  9. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  10. Effects of anabolic steroid treatment associated with physical training in adipose tissue of male Wistar rats

    Directory of Open Access Journals (Sweden)

    Marcela de Paiva Foletto

    2015-06-01

    Full Text Available Anabolic androgenic-steroids (AAS include a broad class of synthetic derivatives of testosterone, being nandrolone decanoate the most widely used in sports environment. The aim of this study was to evaluate the metabolic effects of nandrolone decanoate in sedentary and trained adult male rats. We established four experimental groups: sedentary control, sedentary treated, trained control and trained treated. The training had consisted of running on a treadmill for nine weeks. Treated animals received intramuscular injections of nandrolone decanoate (0.5 mg kg-1 during the last four weeks of physical training. The training time as the drug used were not sufficient to significantly reduce body weight gain, but caused a significative decrease on diameter of adipocytes and in the amount of adipose tissue stored, as well as decreased the plasma levels of glucose and total cholesterol.

  11. Adipose Tissue Redistribution and Ectopic Lipid Deposition in Active Acromegaly and Effects of Surgical Treatment

    Science.gov (United States)

    Reyes-Vidal, Carlos M.; Mojahed, Hamed; Shen, Wei; Jin, Zhezhen; Arias-Mendoza, Fernando; Fernandez, Jean Carlos; Gallagher, Dympna; Bruce, Jeffrey N.; Post, Kalmon D.

    2015-01-01

    Context: GH and IGF-I have important roles in the maintenance of substrate metabolism and body composition. However, when in excess in acromegaly, the lipolytic and insulin antagonistic effects of GH may alter adipose tissue (AT) deposition. Objectives: The purpose of this study was to examine the effect of surgery for acromegaly on AT distribution and ectopic lipid deposition in liver and muscle. Design: This was a prospective study before and up to 2 years after pituitary surgery. Setting: The setting was an academic pituitary center. Patients: Participants were 23 patients with newly diagnosed, untreated acromegaly. Main Outcome Measures: We determined visceral (VAT), subcutaneous (SAT), and intermuscular adipose tissue (IMAT), and skeletal muscle compartments by total-body magnetic resonance imaging, intrahepatic and intramyocellular lipid by proton magnetic resonance spectroscopy, and serum endocrine, metabolic, and cardiovascular risk markers. Results: VAT and SAT masses were lower than predicted in active acromegaly, but increased after surgery in male and female subjects along with lowering of GH, IGF-I, and insulin resistance. VAT and SAT increased to a greater extent in men than in women. Skeletal muscle mass decreased in men. IMAT was higher in active acromegaly and decreased in women after surgery. Intrahepatic lipid increased, but intramyocellular lipid did not change after surgery. Conclusions: Acromegaly may present a unique type of lipodystrophy characterized by reduced storage of AT in central depots and a shift of excess lipid to IMAT. After surgery, this pattern partially reverses, but differentially in men and women. These findings have implications for understanding the role of GH in body composition and metabolic risk in acromegaly and other clinical settings of GH use. PMID:26037515

  12. Adipose tissue, diet and aging.

    Science.gov (United States)

    Zamboni, Mauro; Rossi, Andrea P; Fantin, Francesco; Zamboni, Giulia; Chirumbolo, Salvatore; Zoico, Elena; Mazzali, Gloria

    2014-01-01

    Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.

  13. Quantification of adipose tissue insulin sensitivity.

    Science.gov (United States)

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.

  14. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H; O'Rourke, R W; Lumeng, C N; Sandoval, D A; Seeley, R J

    2016-09-01

    Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.

  15. Adipose Tissue Immunity and Cancer

    Directory of Open Access Journals (Sweden)

    Victoria eCatalan

    2013-10-01

    Full Text Available Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete proinflammatory adipokines and cytokines providing a microenvironment favourable for tumour growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching towards M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumour growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumour cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumour microenvironment with more sophisticated and selective anti-tumoural drugs.

  16. Hounsfield unit dynamics of adipose tissue and non-adipose soft tissue in growing pigs

    DEFF Research Database (Denmark)

    Mcevoy, Fintan; Madsen, Mads T.; Strathe, Anders Bjerring;

    2008-01-01

    Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs.......Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs....

  17. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  18. Adipose tissues as endocrine target organs.

    Science.gov (United States)

    Lanthier, Nicolas; Leclercq, Isabelle A

    2014-08-01

    In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.

  19. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness

    DEFF Research Database (Denmark)

    Randsoe, T; Hyldegaard, O

    2009-01-01

    for nitrogen causing faster nitrogen tissue desaturation. In anesthetized rats decompressed from a 60-min hyperbaric exposure breathing air at 385 kPa, we visually followed the resolution of micro-air bubbles injected into abdominal adipose tissue while the rats breathed either air, oxygen, or oxygen breathing...

  20. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Science.gov (United States)

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  1. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations

    OpenAIRE

    Fowler, Jason D.; Krueth, Stacy B.; Bernlohr, David A.; Katz, Stephen A.

    2009-01-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two ...

  2. AUTOTRANSPLANTATION OF MESENCHYMAL STEM CELLS FROM ADIPOSE TISSUE – INNOVATIVE PATHOGENETIC METHOD OF TREATMENT OF PATIENTS WITH INCISIONAL HERNIAS (FIRST CASES REPORT

    Directory of Open Access Journals (Sweden)

    V. G. Bogdan

    2012-01-01

    Full Text Available In the article a complex technology of receiving a biological transplant with autologous mesenchymal stem cells from the adipose tissue is presented. Possibility of successful clinical performance of reconstruction of extensive defects of anterior belly wall with the use of a multicomponent biological transplant with autologous mesenchy- mal stem cells from the adipose tissue, differentiated in the fibroblast direction is shown. The use of the proposed method of plasticity promotes the improvement of quality of surgical treatment, expansies the scope of cellular technologies in practical health care, improves the patients quality of life in the postoperative period. 

  3. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    Science.gov (United States)

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  4. Development and differentiation of adipose tissue

    Directory of Open Access Journals (Sweden)

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  5. Adipose tissue: cell heterogeneity and functional diversity.

    Science.gov (United States)

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  6. Mitochondria and endocrine function of adipose tissue.

    Science.gov (United States)

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  7. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  8. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  9. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice

    DEFF Research Database (Denmark)

    Erikstrup, Lise Tornvig; Mosekilde, Leif; Justesen, J;

    2001-01-01

    proliferator activated receptor-gamma (PPARgamma). Histomorphometric analysis of proximal tibia was performed in order to quantitate the amount of trabecular bone volume per total volume (BV/TV %), adipose tissue volume per total volume (AV/TV %), and hematopoietic marrow volume per total volume (HV...

  10. Imaging white adipose tissue with confocal microscopy.

    Science.gov (United States)

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents.

  11. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  12. USE OF AUTOLOGOUS ADIPOSE TISSUE DERIVED STROMAL VASCULAR FRACTION IN TREATMENT OF KNEE OSTEOARTHRITIS AND CHONDRAL LESIONS

    Directory of Open Access Journals (Sweden)

    Vinay

    2015-10-01

    Full Text Available Osteoarthritis is a joint inflammation that results from cartilage degeneration. It can be caused by aging, heredity and injury from trauma or disease. Stromal vascular fraction (SVF, containing large amount of stem cells and other regenerative cells, can be easily obtained from loose connective tissue that is associated with adipose tissue. Here we evaluated safety and clinical efficacy of freshly isolated autologous SVF cells in patients with grade 2 - 4 degenerative osteoarthritis (OA. A total of 31 patients underwent standard liposuction under local anesthesia and SVF cells were isolated and prepared for application into joints. A total of 61 joints, mainly knee and hip joints, were treated with a single dose of SVF cells. 19 patients were fol lowed for minimum 6 weeks for safety and efficacy. Modified KOOS Clinical Score was used to evaluate clinical effect and was based on pain, non - steroid analgesic usage, limping, extent of joint movement, and stiffness evaluation before and at pre - operative , 1 week post - op, 1 month and 6 weeks after the treatment. No serious side effects, systemic infection or cancer was associated with SVF cell therapy. All patients improved after the treatment. Average KOOS score improved from pre - operative 37.5 to post - op erative 6 week average 66.6. All sub scale parameter for pain, symptoms, activity of living & quality of life are also improved. Higher grade of OA were associated with slower healing. In conclusion, here we report a novel and promising treatment approach for patients with degenerative OA that is safe, cost - effective, and relying only on autologous cells, and can be used as one of the minimal invasive treatment modality for osteoarthritis

  13. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity.

    Science.gov (United States)

    Hatem, Stéphane N; Redheuil, Alban; Gandjbakhch, Estelle

    2016-04-01

    The amount of adipose tissue that accumulates around the atria is associated with the risk, persistence, and severity of atrial fibrillation (AF). A strong body of clinical and experimental evidence indicates that this relationship is not an epiphenomenon but is the result of complex crosstalk between the adipose tissue and the neighbouring atrial myocardium. For instance, epicardial adipose tissue is a major source of adipokines, inflammatory cytokines, or reactive oxidative species, which can contribute to the fibrotic remodelling of the atrial myocardium. Fibro-fatty infiltrations of the subepicardium could also contribute to the functional disorganization of the atrial myocardium. The observation that obesity is associated with distinct structural and functional remodelling of the atria has opened new perspectives of treating AF substrate with aggressive risk factor management. Advances in cardiac imaging should lead to an improved ability to visualize myocardial fat depositions and to localize AF substrates.

  14. Adipose tissue as an endocrine organ.

    Science.gov (United States)

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling.

  15. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    Science.gov (United States)

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  16. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    Science.gov (United States)

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  17. The Adipose Tissue in Farm Animals

    DEFF Research Database (Denmark)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura

    2014-01-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products...... secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well...... as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors...

  18. Transplantation of neural progenitor cells differentiated from adipose tissue-derived stem cells for treatment of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Shasha Dong§; Na Liu§; Yang Hu ; Ping Zhang; Chao Pan; Youping Zhang; Yingxin Tang; Zhouping Tang 

    2016-01-01

    Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult. Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoration at peripheral nerve injury sites. Methods:In this study, adipose tissue-derived stem cells were induced to differentiate into neural progenitor cells, transfected with a green fluorescent protein-containing lentivirus, and then transplanted into the lesions of rats with sciatic nerve compression injury. Results: Fluorescence microscopy revealed that the transplanted cells survived, migrated, and differentiated in rats. At two weeks post-operation, a large number of transplanted cells had migrated to the injured lesions; at six weeks post-operation, transplanted cells were visible around the injured nerve and several cells were observed to express a Schwann cell marker. Sciatic function index and electrophysiological outcomes of the transplantation group were better than those of the control group. Cell transplantation promoted the recovery of motor nerve conduction velocity and com-pound muscle action potential amplitude, and reduced gastrocnemius muscle atrophy. Conclusions: Our experimental findings indicate that neural progenitor cells, differentiated from adipose tissue-derived stem cells, are potential seed stem cells that can be transplanted into lesions to treat sciatic nerve injury. This provides a theoretical basis for their use in clinical applications.

  19. Aetiological factors behind adipose tissue inflammation

    DEFF Research Database (Denmark)

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  20. Immunological contributions to adipose tissue homeostasis.

    Science.gov (United States)

    DiSpirito, Joanna R; Mathis, Diane

    2015-09-01

    Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of "adipocyte" encompasses three primary types - white, brown, and beige - with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.

  1. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues.

    Science.gov (United States)

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.

  2. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn's fistula.

    Science.gov (United States)

    Lee, Woo Yong; Park, Kyu Joo; Cho, Yong Beom; Yoon, Sang Nam; Song, Kee Ho; Kim, Do Sun; Jung, Sang Hun; Kim, Mihyung; Yoo, Hee-Won; Kim, Inok; Ha, Hunjoo; Yu, Chang Sik

    2013-11-01

    Fistula is a representative devastating complication in Crohn's patients due to refractory to conventional therapy and high recurrence. In our phase I clinical trial, adipose tissue-derived stem cells (ASCs) demonstrated their safety and therapeutic potential for healing fistulae associated with Crohn's disease. This study was carried out to evaluate the efficacy and safety of ASCs in patients with Crohn's fistulae. In this phase II study, forty-three patients were treated with ASCs. The amount of ASCs was proportioned to fistula size and fistula tract was filled with ASCs in combination with fibrin glue after intralesional injection of ASCs. Patients without complete closure of fistula at 8 weeks received a second injection of ASCs containing 1.5 times more cells than the first injection. Fistula healing at week 8 after final dose injection and its sustainability for 1-year were evaluated. Healing was defined as a complete closure of external opening without any sign of drainage and inflammation. A modified per-protocol analysis showed that complete fistula healing was observed in 27/33 patients (82%) by 8 weeks after ASC injection. Of 27 patients with fistula healing, 26 patients completed additional observation study for 1-year and 23 patients (88%) sustained complete closure. There were no adverse events related to ASC administration. ASC treatment for patients with Crohn's fistulae was well tolerated, with a favorable therapeutic outcome. Furthermore, complete closure was well sustained. These results strongly suggest that autologous ASC could be a novel treatment option for the Crohn's fistula with high-risk of recurrence.

  3. Brown adipose tissue growth and development.

    Science.gov (United States)

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  4. Brown Adipose Tissue Growth and Development

    Directory of Open Access Journals (Sweden)

    Michael E. Symonds

    2013-01-01

    Full Text Available Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  5. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    Science.gov (United States)

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  6. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  7. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue.

    Science.gov (United States)

    Mori, Shinobu; Kiuchi, Satomi; Ouchi, Atsushi; Hase, Tadashi; Murase, Takatoshi

    2014-01-01

    Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.

  8. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism.

    Science.gov (United States)

    Zhang, Wei; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.

  9. A stringent validation of mouse adipose tissue identity markers.

    Science.gov (United States)

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  10. [White adipose tissue dysfunction observed in obesity].

    Science.gov (United States)

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  11. Epicardial adipose tissue in endocrine and metabolic diseases.

    Science.gov (United States)

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  12. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  13. Sustainable three-dimensional tissue model of human adipose tissue.

    Science.gov (United States)

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  14. The Facial Adipose Tissue: A Revision.

    Science.gov (United States)

    Kruglikov, Ilja; Trujillo, Oscar; Kristen, Quick; Isac, Kerelos; Zorko, Julia; Fam, Maria; Okonkwo, Kasie; Mian, Asima; Thanh, Hyunh; Koban, Konstantin; Sclafani, Anthony P; Steinke, Hanno; Cotofana, Sebastian

    2016-12-01

    Recent advantages in the anatomical understanding of the face have turned the focus toward the subcutaneous and deep facial fat compartments. During facial aging, these fat-filled compartments undergo substantial changes along with other structures in the face. Soft tissue filler and fat grafting are valid methods to fight the signs of facial aging, but little is known about their precise effect on the facial fat. This narrative review summarizes the current knowledge about the facial fat compartments in terms of anatomical location, histologic appearance, immune-histochemical characteristics, cellular interactions, and therapeutic options. Three different types of facial adipose tissue can be identified, which are located either superficially (dermal white adipose tissue) or deep (subcutaneous white adipose tissue): fibrous (perioral locations), structural (major parts of the midface), and deposit (buccal fat pad and deep temporal fat pad). These various fat types differ in the size of the adipocytes and the collagenous composition of their extracellular matrix and thus in their mechanical properties. Minimal invasive (e.g., soft tissue fillers or fat grafting) and surgical interventions aiming to restore the youthful face have to account for the different fat properties in various facial areas. However, little is known about the macro- and microscopic characteristics of the facial fat tissue in different compartments and future studies are needed to reveal new insights to better understand the process of aging and how to fight its signs best.

  15. Physiological and pathological impact of exosomes of adipose tissue.

    Science.gov (United States)

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  16. Browning of white adipose tissue: role of hypothalamic signaling.

    Science.gov (United States)

    Bi, Sheng; Li, Lin

    2013-10-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through nonshivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent observations indicate the importance of the dorsomedial hypothalamus (DMH) in thermoregulation. We have found that the orexigenic neuropeptide Y (NPY) in the DMH has distinct actions in modulating adiposity and BAT thermogenesis. Knockdown of NPY in the DMH elevates the thermogenic activity of classic BAT and promotes the development of brown adipocytes in WAT, leading to increased thermogenesis. These findings identify a novel potential target for combating obesity.

  17. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity.

    Science.gov (United States)

    Peinado, Juan R; Pardo, María; de la Rosa, Olga; Malagón, Maria M

    2012-02-01

    The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.

  18. Oestrone sulphate, adipose tissue, and breast cancer.

    Science.gov (United States)

    Hawkins, R A; Thomson, M L; Killen, E

    1985-01-01

    Oestrone sulphate, the oestrogen in highest concentration in the plasma, may play a role in the induction and growth of breast cancers. By enzymolysis and radioimmunoassay, oestrone sulphate concentrations were measured in 3 biological fluids. High concentrations of the conjugate (up to 775 nmol/l) were detected in breast cyst fluids from some premenopausal women, the concentrations in blood plasma (0.91-4.45 nmol/l) being much lower. Concentrations in the plasmas from postmenopausal women with (0.23-4.63 nmol/l) or without (0.18-1.27 nmol/l) breast cancer were still lower. Oestrone sulphate concentration in cow's milk or cream (0.49-0.67 nmol/l) was also low: dietary intake in these fluids is probably of little consequence. The capacity of breast tissues for hydrolysis of oestrone sulphate was examined in two ways: In tissue slices incubated with 85 pM (3H) oestrone sulphate solution at 37 degrees C, cancers (131-412 fmol/g tissue/hr) and adipose tissues (23-132 fmol/g tissue/hr) hydrolysed significantly more sulphate than did benign tissues (1-36 fmol/g tissue/hr). In tissue homogenates incubated with 5-25 microM [3H] oestrone sulphate at 37 degrees much higher capacities for hydrolysis (nmol/g tissue/hr) were demonstrated with a Km of 2-16.5 microM: cancers (34-394) and benign tissues (9-485) had significantly higher sulphatase activities than adipose tissues (9-39). On a protein basis, however, the sulphatase activities in the 3 tissues were comparable. It is concluded that oestrone sulphate is present in breast cysts and blood plasma and that in vitro, the conjugated hormone can be hydrolysed by breast tissues. The biological significance of these findings in vivo remains to be established.

  19. Sex dimorphism and depot differences in adipose tissue function.

    Science.gov (United States)

    White, Ursula A; Tchoukalova, Yourka D

    2014-03-01

    Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as type 2 diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal-femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex-dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  20. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    Science.gov (United States)

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  1. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  2. Organ-specific candidate biomarkers of inflammation found by comparative analyses of the human hepatic and adipose tissue transcriptome and secretome during LPS treatment

    NARCIS (Netherlands)

    Vonk, Roelf; Szalowska, Ewa; Dijkstra, Martijn L.; Weening, Desireé; de Vries, Marcel; Roelofsen, Han; Bruinenberg, Marcel; Hoek, Annemieke; Elferink, Maria; Groothuis, Genoveva

    2011-01-01

    Insulin resistance (IR) is accompanied by chronic low grade systemic inflammation and deregulation of total body energy homeostasis. We induced inflammation in human adipose and liver tissue in vitro in order to mimic inflammation in vivo with the aim to identify tissue-specific processes and biomar

  3. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes.

    Science.gov (United States)

    Corvera, Silvia; Gealekman, Olga

    2014-03-01

    The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  4. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  5. Microarray Evidences the Role of Pathologic Adipose Tissue in Insulin Resistance and Their Clinical Implications

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Mathur

    2011-01-01

    Full Text Available Clustering of insulin resistance and dysmetabolism with obesity is attributed to pathologic adipose tissue. The morphologic hallmarks of this pathology are adipocye hypertrophy and heightened inflammation. However, it's underlying molecular mechanisms remains unknown. Study of gene function in metabolically active tissues like adipose tissue, skeletal muscle and liver is a promising strategy. Microarray is a powerful technique of assessment of gene function by measuring transcription of large number of genes in an array. This technique has several potential applications in understanding pathologic adipose tissue. They are: (1 transcriptomic differences between various depots of adipose tissue, adipose tissue from obese versus lean individuals, high insulin resistant versus low insulin resistance, brown versus white adipose tissue, (2 transcriptomic profiles of various stages of adipogenesis, (3 effect of diet, cytokines, adipokines, hormones, environmental toxins and drugs on transcriptomic profiles, (4 influence of adipokines on transcriptomic profiles in skeletal muscle, hepatocyte, adipose tissue etc., and (5 genetics of gene expression. The microarray evidences of molecular basis of obesity and insulin resistance are presented here. Despite the limitations, microarray has potential clinical applications in finding new molecular targets for treatment of insulin resistance and classification of adipose tissue based on future risk of insulin resistance syndrome.

  6. Adipose tissue and its role in organ crosstalk.

    Science.gov (United States)

    Romacho, T; Elsen, M; Röhrborn, D; Eckel, J

    2014-04-01

    The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

  7. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...

  8. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  9. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    OpenAIRE

    Lumeng, Carey N.; Bodzin, Jennifer L.; Alan R Saltiel

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, i...

  10. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    Science.gov (United States)

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  11. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Directory of Open Access Journals (Sweden)

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  12. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Science.gov (United States)

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  13. Heterogeneity of white adipose tissue: molecular basis and clinical implications.

    Science.gov (United States)

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-03-11

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.

  14. Exercise Regulation of Marrow Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Gabriel M Pagnotti

    2016-07-01

    Full Text Available Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell pool (MSC that gives rise also to osteoblasts, chondrocytes, and myocytes among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally-supportive tissues, inhibits bone resorption and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot, or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a 5-fold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  15. Exercise Regulation of Marrow Adipose Tissue

    Science.gov (United States)

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  16. Brown adipose tissue in cetacean blubber.

    Directory of Open Access Journals (Sweden)

    Osamu Hashimoto

    Full Text Available Brown adipose tissue (BAT plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1, within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool

  17. Brown adipose tissue in cetacean blubber.

    Science.gov (United States)

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  18. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation.

    Science.gov (United States)

    Huang, Zhi H; Reardon, Catherine A; Getz, Godfrey S; Maeda, Nobuyo; Mazzone, Theodore

    2015-02-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state.

  19. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation

    Science.gov (United States)

    Huang, Zhi H.; Reardon, Catherine A.; Getz, Godfrey S.; Maeda, Nobuyo; Mazzone, Theodore

    2015-01-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state. PMID:25421060

  20. Macrophage elastase suppresses white adipose tissue expansion with cigarette smoking.

    Science.gov (United States)

    Tsuji, Takao; Kelly, Neil J; Takahashi, Saeko; Leme, Adriana S; Houghton, A McGarry; Shapiro, Steven D

    2014-12-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots.

  1. Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice

    DEFF Research Database (Denmark)

    Gozal, D; Qiao, Z; Almendros, I

    2016-01-01

    BACKGROUND: Sleep fragmentation (SF), a frequent occurrence in multiple sleep and other diseases leads to increased food intake and insulin resistance via increased macrophage activation and inflammation in visceral white adipose tissue (VWAT). Free fatty acid receptor 4 (FFA4) is reduced...

  2. Adipokines and the Endocrine Role of Adipose Tissues.

    Science.gov (United States)

    Giralt, Marta; Cereijo, Rubén; Villarroya, Francesc

    2016-01-01

    The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.

  3. Brain–gut–adipose-tissue communication pathways at a glance

    Directory of Open Access Journals (Sweden)

    Chun-Xia Yi

    2012-09-01

    Full Text Available One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.

  4. Comparison of different fabrication techniques for human adipose tissue engineering in severe combined immunodeficient mice.

    Science.gov (United States)

    Frerich, Bernhard; Winter, Karsten; Scheller, Konstanze; Braumann, Ulf-Dietrich

    2012-03-01

    Adipose tissue engineering has been advocated for soft-tissue augmentation and for the treatment of soft tissue defects. The efficacy in terms of persistence of the engineered fat is, however, not yet understood and could depend on the nature of fabrication and application. The high metabolic demand of adipose tissue also points to the problem of vascularization. Endothelial cell (EC) cotransplantation could be a solution. Human adipose tissue-derived stromal cells were seeded on collagen microcarriers and submitted to adipogenic differentiation ("microparticles"). In a first run of experiments, these microparticles were implanted under the skin of severe combined immunodeficient (SCID) mice (n = 45) with and without the addition of human umbilical vein ECs (HUVECs). A group of carriers without any cells served as control. In a second run, adipose tissue constructs were fabricated by embedding microparticles in fibrin matrix with and without the addition of HUVEC, and were also implanted in SCID mice (n = 30). The mice were sacrificed after 12 days, 4 weeks, and 4 months. Mature adipose tissue, fibrous tissue, and acellular regions were quantified on whole-specimen histological sections. The implantation of microparticles showed a better sustainment of tissue volume and a higher degree of mature adipose tissue compared with adipose tissue constructs. Immunohistology proved obviously perfused human tissue-engineered vessels. There was a limited but not significant advantage in EC cotransplantation after 4 weeks in terms of tissue volume. In groups with EC cotransplantation, there were significantly fewer acellular/necrotic areas after 4 weeks and 4 months. In conclusion, the size of the implanted tissue equivalents is a crucial parameter, affecting volume maintenance and the gain of mature adipose tissue. EC cotransplantation leads to functional stable vascular networks connecting in part to the host vasculature and contributing to tissue perfusion; however

  5. Berberine activates thermogenesis in white and brown adipose tissue.

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  6. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan;

    2011-01-01

    of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...

  7. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  8. Characterization of the human visceral adipose tissue secretome

    NARCIS (Netherlands)

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  9. Relations between antioxidant vitamins in adipose tissue, plasma, and diet

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Veer, P. van 't; Brants, H.A.M.; Berg, H. van den; Schoonhoven, J. van; Hermus, R.J.J.

    1995-01-01

    For an evaluation of fat-soluble vitamin concentrations in adipose tissue as biomarkers of intake, estimates of usual intake of β-carotene, total vitamin A, and vitamin E (assessed by food frequency questionnaire) were compared with plasma and adipose tissue concentrations of β-carotene, retinol, an

  10. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  11. Local and systemic effects of visceral and perivascular adipose tissue

    NARCIS (Netherlands)

    Verhagen, S.N.

    2012-01-01

    Rather than being solely a storage depot for triglycerides, adipose tissue is able to secrete pro- and anti-inflammatory cytokines and adipokines. A state of low grade inflammation associated with excess adipose tissue is involved in the increase in the incidences of atherosclerotic diseases and typ

  12. Involvement of mast cells in adipose tissue fibrosis.

    Science.gov (United States)

    Hirai, Shizuka; Ohyane, Chie; Kim, Young-Il; Lin, Shan; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kim, Chu-Sook; Kang, Jihey; Yu, Rina; Kawada, Teruo

    2014-02-01

    Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.

  13. The role of adipose tissue in cancer-associated cachexia.

    Science.gov (United States)

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  14. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    DEFF Research Database (Denmark)

    Arngrim, N; Simonsen, L; Holst, Jens Juul;

    2012-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after...... an oral glucose load. Adipose-tissue blood flow was measured in the anterior subcutaneous abdominal adipose tissue by the (133)Xe-washout technique. ATLD was measured as the disappearance rate of (99m)Tc-labelled nanoaggregated human albumin, during fasting and after an oral glucose load. A significant...... the lymphatic system in obese subjects. Furthermore, they suggest that postprandial changes in ATLD taking place in lean subjects are not observed in obese subjects. This may have a role in the development of obesity-related inflammation in hypertrophic adipose tissue.International Journal of Obesity advance...

  15. Resistin induces lipolysis and suppresses adiponectin secretion in cultured human visceral adipose tissue.

    Science.gov (United States)

    Chen, Neng; Zhou, Lingmei; Zhang, Zixiang; Xu, Jiaying; Wan, Zhongxiao; Qin, Liqiang

    2014-11-01

    Resistin is an adipokine secreted from adipose tissue, which is likely involved in the development of obesity and insulin resistance via its interaction with other organs, as well as affecting adipose tissue function. The impact of resistin treatment on lipolysis and adiponectin secretion in human visceral adipose tissue is currently unknown. Mesenteric adipose tissue samples were obtained from 14 male subjects [age 54±6 yr, body mass index (BMI) 23.59±0.44 kg/m(2)] undergoing abdominal surgeries. Adipose tissues were cultured and treated with resistin (100 ng/mL, 24h) in the absence or presence of different signaling inhibitors: H89 (1 μM), PD98059 (25 μM) and SB201290 (20 μM) for glycerol and non-esterified fatty acid (NEFA) measurement. Adiponectin level from media at 24 h was also measured via ELISA. Adipose tissue minces after resistin incubation (100 ng/mL, 24 h) were also collected for further Western blotting analysis. Resistin resulted in significant induction of glycerol (3.62±0.57 vs. 5.30±1.11 mmol/L/g tissue, ptissue, ptissue, ptissues via its effect on adipose tissue function.

  16. FEEDING INFLUENCES ADIPOSE TISSUE RESPONSES TO EXERCISE IN OVERWEIGHT MEN.

    Science.gov (United States)

    Chen, Yung-Chih; Travers, Rebecca L; Walhin, Jean-Philippe; Gonzalez, Javier T; Koumanov, Francoise; Betts, James A; Thompson, Dylan

    2017-03-14

    Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and one hour post-exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or adiponectin in response to exercise. This is the first study to show that feeding prior to acute exercise affects post-exercise adipose tissue gene expression and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.

  17. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP- 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Vicente Castrejón-Tellez

    2016-07-01

    Full Text Available Uncoupling proteins (UCPs are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS. We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV and quercetin (QRC. We found that UCP2 was the predominantly expressed isoform, UCP3 was present at very low levels, and UCP1 was undetectable. The treatment with RSV + QRC did not modify UCP3 levels; however, it significantly increased UCP2 mRNA in control and MetS rats in association with an increase in oleic and linoleic fatty acids. WAT from MetS rats showed a significantly increased expression of peroxisome proliferator-activated receptor (PPAR-α and PPAR-γ when compared to the control group. Furthermore, PPAR-α protein levels were increased by the highest dose of RSV + QRC in the control and MetS groups. PPAR-γ expression was only increased in the control group. We conclude that the RSV + QRC treatment leads to overexpression of UCP2, which is associated with an increase in MUFA and PUFA, which might increase PPAR-α expression.

  18. Inflammatory peptides derived from adipose tissue

    Directory of Open Access Journals (Sweden)

    Barzilai Nir

    2005-01-01

    Full Text Available Abstract The low-grade inflammation seen with aging is noted particularly in subjects with the metabolic syndrome of aging. Insulin resistance, obesity/abdominal obesity, and risks for many age-related diseases characterize this common syndrome. It is becoming clear that this increased adipose tissue is not simply a reservoir for excess nutrients, but rather an active and dynamic organ capable of expressing several cytokines and other fat-derived peptides (FDP. Some, but not all, FDP may have a role in development of the metabolic syndrome but there is no evidence that these FDP are causing inflammation directly. We suggest that high levels of inflammatory peptides are markers for obesity/abdominal obesity seen with aging, but some may not necessarily have a causative role in the development of inflammation.

  19. The Ontogeny of Brown Adipose Tissue.

    Science.gov (United States)

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  20. Porous decellularized adipose tissue foams for soft tissue regeneration.

    Science.gov (United States)

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  1. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Miroslav Šram

    2015-01-01

    Full Text Available Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT and visceral adipose tissue (VAT, the latter being highly associated with coronary artery disease (CAD. Expansion of epicardial adipose tissue (EAT is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1 the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2 determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  2. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    Science.gov (United States)

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  3. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  4. M1-M2 balancing act in white adipose tissue browning – a new role for RIP140

    OpenAIRE

    Liu, Pu-Ste; LIN, YI-WEI; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A “Holy Grail” sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophage...

  5. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    Science.gov (United States)

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  6. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  7. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders.

    Science.gov (United States)

    Roman, Sabiniano; Agil, Ahmad; Peran, Macarena; Alvaro-Galue, Eduardo; Ruiz-Ojeda, Francisco J; Fernández-Vázquez, Gumersindo; Marchal, Juan A

    2015-04-01

    In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.

  8. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf; Astrup, A;

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue...

  9. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP-) 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats

    OpenAIRE

    2016-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS). We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT) from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV) and quercetin (QRC). We found that U...

  10. The mechanism of functional vasodilatation in rabbit epigastric adipose tissue.

    Science.gov (United States)

    Lewis, G P; Mattews, J

    1970-03-01

    1. The effect of close-arterial infusions of fat-mobilizing substances has been examined on the release of free fatty acids and blood flow in the epigastric adipose tissue of rabbits.2. All the fat mobilizers in addition to causing the release of free fatty acids also caused an increased blood flow in the fat tissue.3. Both the fat mobilization and the vasodilatation continued for an hour or so after the end of infusion.4. Although no vasodilator substance could be detected in the venous effluent from the activated adipose tissue, a vasodilator could be detected in acid-ether extracts of adipose tissue excised during a period of fat mobilization.5. It is suggested that a vasodilator substance is released or formed in adipose tissue during fat mobilization and that this substance accounts for the vasodilatation accompanying activity in the tissue.

  11. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  12. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Directory of Open Access Journals (Sweden)

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  13. Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue.

    Science.gov (United States)

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Zaniewicz-Kaniewska, Katarzyna; Prohorec-Sobieszek, Monika; Saied, Fadhil; Maśliński, Włodzimierz

    2013-06-01

    For many years, it was thought that synovial cells and chondrocytes are the only sources of proinflammatory cytokines and growth factors found in the synovial fluid in patients suffering from osteoarthritis and rheumatoid arthritis. Currently, it is more and more frequently indicated that adipose tissue plays a significant role in the pathogenesis of these diseases as well as that a range of pathological processes that take place in the adipose tissue, synovial membrane and cartilage are interconnected. The adipose tissue is considered a specialized form of the connective tissue containing various types of cells which produce numerous biologically active factors. The latest studies reveal that, similarly to the synovial membrane, articular adipose tissue may take part in the local inflammatory response and affect the metabolism of the cartilage and subchondral osseous tissue. In in vitro conditions, the explants of this tissue obtained from patients suffering from osteoarthritis and rheumatoid arthritis produce similar pro- and anti-inflammatory cytokines to the explants of the synovial membrane. At this stage already, knowledge translates into imaging diagnostics. In radiological images, the shadowing of the periarticular soft tissues may not only reflect synovial membrane pathologies or joint effusion, but may also suggest inflammatory edema of the adipose tissue. On ultrasound examinations, abnormal presentation of the adipose tissue, i.e. increased echogenicity and hyperemia, may indicate its inflammation. Such images have frequently been obtained during ultrasound scanning and have been interpreted as inflammation, edema, hypertrophy or fibrosis of the adipose tissue. At present, when the knowledge concerning pathogenic mechanisms is taken into account, abnormal echogenicity and hyperemia of the adipose tissue may be considered as a proof of its inflammation. In the authors' own practice, the inflammation of the adipose tissue usually accompanies synovitis

  14. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    Full Text Available Macrophage migration inhibitory factor (MIF is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a

  15. Interleukin-6 production in human subcutaneous abdominal adipose tissue

    DEFF Research Database (Denmark)

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    The interleukin-6 (IL-6) output from subcutaneous, abdominal adipose tissue was studied in nine healthy subjects before, during and for 3 h after 1 h two-legged bicycle exercise at 60 % maximal oxygen consumption. Seven subjects were studied in control experiments without exercise. The adipose ti...

  16. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    Science.gov (United States)

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  17. Hypoxia and adipose tissue function and dysfunction in obesity.

    Science.gov (United States)

    Trayhurn, Paul

    2013-01-01

    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.

  18. TAF7L modulates brown adipose tissue formation

    OpenAIRE

    ZHOU, HAIYING; Wan, Bo; Grubisic, Ivan; Kaplan, Tommy; Tjian, Robert

    2014-01-01

    eLife digest Mammals produce two distinct types of adipose tissue: white adipose tissue (white fat) is the more common type and is used to store energy; brown adipose tissue (brown fat) is mostly found in young animals and infants, and it plays an important role in dissipating energy as heat rather than storing it in fat for future use. In adults, higher levels of brown fat are associated with lower levels of fat overall, so there is considerable interest in learning more about this form of f...

  19. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    Science.gov (United States)

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  20. Altered white adipose tissue protein profile in C57BL/6J mice displaying delipidative, inflammatory, and browning characteristics after bitter melon seed oil treatment.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Hsieh

    Full Text Available OBJECTIVE: We have previously shown that bitter melon seed oil (BMSO, which is rich in cis-9, trans-11, trans-13 conjugated linolenic acid, is more potent than soybean oil in attenuating body fat deposition in high-fat diet-induced obese C57BL/6J mice. The aim of this study was to obtain a comprehensive insight into how white adipose tissue (WAT is affected by BMSO administration and to explore the underlying mechanisms of the anti-adiposity effect of BMSO. METHODS AND RESULTS: A proteomic approach was used to identify proteins differentially expressed in the WAT of mice fed diets with or without BMSO for 11 wks. The WAT was also analyzed histologically for morphological changes. Two-dimensional gel electrophoresis (pH 4-7 revealed 32 spots showing a statistically significant difference (P2-fold change. Combined with histological evidence of macrophage infiltration and brown adipocyte recruitment, the proteomic and immunoblotting data showed that the WAT in mice subjected to long-term high dose BMSO administration was characterized by reduced caveolae formation, increased ROS insult, tissue remodeling/repair, mitochondria uncoupling, and stabilization of the actin cytoskeleton, this last change being putatively related to an increased inflammatory response. CONCLUSION: The anti-adiposity effect of BMSO is associated with WAT delipidation, inflammation, and browning. Some novel proteins participating in these processes were identified. In addition, the BMSO-mediated WAT browning may account for the increased inflammation without causing adverse metabolic effects.

  1. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  2. Adipose tissue lymphocytes: types and roles.

    Science.gov (United States)

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  3. New concepts in white adipose tissue physiology

    Energy Technology Data Exchange (ETDEWEB)

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  4. The role of dietary fat in adipose tissue metabolism.

    Science.gov (United States)

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  5. Assessment of in situ adipose tissue inflammation by microdialysis

    DEFF Research Database (Denmark)

    Langkilde, Anne; Andersen, Ove; Henriksen, Jens H;

    2015-01-01

    Inflammation, and specifically adipose tissue (AT) inflammation, is part of the pathophysiology of obesity and HIV-associated lipodystrophy. Local AT protein assessment methods are limited, and AT inflammation studies have therefore primarily examined inflammatory gene expression. We therefore...

  6. Morphological and inflammatory changes in visceral adipose tissue during obesity.

    Science.gov (United States)

    Revelo, Xavier S; Luck, Helen; Winer, Shawn; Winer, Daniel A

    2014-03-01

    Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called "crown-like structure", a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.

  7. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    Science.gov (United States)

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.

  8. The adipose tissue in farm animals: a proteomic approach.

    Science.gov (United States)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura; Ceciliani, Fabrizio

    2014-03-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal structure for the mammary gland and on its role in participating in and regulating of energy metabolism and other functions. Moreover, as pig has recently become an important model organism to study human diseases, the knowledge of adipose tissue metabolism in pig is relevant for the study of obesity and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in

  9. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  10. (Brown) adipose tissue associated metabolic dysfunction and risk of cardiovascular disease in high risk patients

    NARCIS (Netherlands)

    Franssens, B.T.

    2016-01-01

    In this thesis it was shown that (brown) adipose tissue associated metabolic dysfunction increases the risk on development of cardiovascular disease in high risk patients. Quantity of adipose tissue is an important risk factor for adipose tissue dysfunction but functionality of adipose tissue not so

  11. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    Science.gov (United States)

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.

  12. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  13. Exercise and Adipose Tissue Macrophages: New Frontiers in Obesity Research?

    Science.gov (United States)

    Goh, Jorming; Goh, Kian Peng; Abbasi, Asghar

    2016-01-01

    Obesity is a major public health problem in the twenty-first century. Mutations in genes that regulate substrate metabolism, subsequent dysfunction in their protein products, and other factors, such as increased adipose tissue inflammation, are some underlying etiologies of this disease. Increased inflammation in the adipose tissue microenvironment is partly mediated by the presence of cells from the innate and adaptive immune system. A subset of the innate immune population in adipose tissue include macrophages, termed adipose tissue macrophages (ATMs), which are central players in adipose tissue inflammation. Being extremely plastic, their responses to diverse molecular signals in the microenvironment dictate their identity and functional properties, where they become either pro-inflammatory (M1) or anti-inflammatory (M2). Endurance exercise training exerts global anti-inflammatory responses in multiple organs, including skeletal muscle, liver, and adipose tissue. The purpose of this review is to discuss the different mechanisms that drive ATM-mediated inflammation in obesity and present current evidence of how exercise training, specifically endurance exercise training, modulates the polarization of ATMs from an M1 to an M2 anti-inflammatory phenotype.

  14. Endoplasmic reticulum stress in adipose tissue augments lipolysis.

    Science.gov (United States)

    Bogdanovic, Elena; Kraus, Nicole; Patsouris, David; Diao, Li; Wang, Vivian; Abdullahi, Abdikarim; Jeschke, Marc G

    2015-01-01

    The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.

  15. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Ballak, Dov B; Stienstra, Rinke; Tack, Cees J; Dinarello, Charles A; van Diepen, Janna A

    2015-10-01

    Obesity is characterized by a chronic, low-grade inflammation that contributes to the development of insulin resistance and type 2 diabetes. Cytokines and chemokines produced by immunocompetent cells influence local as well as systemic inflammation and are therefore critical contributors to the pathogenesis of type 2 diabetes. Hence, cytokines that modulate inflammatory responses are emerging as potential targets for intervention and treatment of the metabolic consequences of obesity. The interleukin-1 (IL-1) family of cytokines and receptors are key mediators of innate inflammatory responses and exhibit both pro- and anti-inflammatory functions. During the last decades, mechanistic insights into how the IL-1 family affects the initiation and progression of obesity-induced insulin resistance have increased significantly. Here, we review the current knowledge and understanding, with emphasis on the therapeutic potential of individual members of the IL-1 family of cytokines for improving insulin sensitivity in patients with diabetes.

  16. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    Science.gov (United States)

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  17. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    Science.gov (United States)

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  18. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    Science.gov (United States)

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  19. Adipose tissue, the skeleton and cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  20. From neutrophils to macrophages: differences in regional adipose tissue depots.

    Science.gov (United States)

    Dam, V; Sikder, T; Santosa, S

    2016-01-01

    Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.

  1. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  2. Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver.

    Directory of Open Access Journals (Sweden)

    Andrew M Shore

    Full Text Available Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT, white adipose (WAT and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05 up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver. Gene ontology analysis revealed for the first time significant (P<0.05 down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production.

  3. Adipose tissues differentiated by adipose-derived stemcells harvested from transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LU Feng; GAO Jian-hua; Rei Ogawa; Hiroshi Mizuro; Hiki Hykusoku

    2006-01-01

    Objective: To induce adipocyte differentiation in vitro by adipose-derived stromal cells (ASCs) harvested from transgenic mice with green fluorescent protein (GFP)and assess the possibility of constructing adipose tissues via attachment of ASCs to type Ⅰ collagen scaffolds.Methods: Inguinal fat pads from GFP transgenic mice were digested by enzymes for isolation of ASCs (primary culture). After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks, and the adipocyte differentiation by ASCs in vitro was assessed by morphological observation and Oil Red O staining. Then they were attached to collagen scaffolds and co-cultured for 12 hours, followed by hypodermic implantation to the dorsal skin of nude mice for 2 months. The newly-formed tissues were detected by HE staining.Results: The cultured primary stem cells were fibroblast-like and showed active proliferation. After being incubated in an adipocyte differentiation medium, the lipid droplets in the cytoplasm accumulated gradually and finally developed into mature adipocytes, which showed positive in Oil Red O staining. A 0.5-cm3 new tissue clot was found under the dorsal skin of the nude mice and it was confirmed as mature adipose tissues by fluorescent observation and HE staining.Conclusions: ASCs can successfully differentiate adipose tissues into mature adipocytes, which exhibit an adipocyte-like morphology and express as intracytoplasmic lipid droplets. It is an efficient model of adipose tissues engineered with ASCs and type Ⅰ collagen scaffolds.

  4. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  5. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency.

    Science.gov (United States)

    Shi, Li Bing; Cai, Hong Xia; Chen, Long Kun; Wu, Yan; Zhu, Shou An; Gong, Xiao Nan; Xia, Ya Xian; Ouyang, Hong Wei; Zou, Xiao Hui

    2014-02-01

    In this study we developed a tissue engineered bulking agent that consisted of adipose-derived stem cells (ADSCs) and silk fibroin microspheres to treat stress urinary incontinence caused by severe intrinsic sphincter deficiency (ISD). ISD models were established by completely transection of the bilateral pudendal nerve (PNT) and confirmed by the decreased leak-point pressure (LPP) and increased lumen area of urethra. Injection of silk fibroin microspheres could recover LPP and lumen area at 4 weeks but its efficacy disappears at 8, 12 weeks. Moreover, it was exciting to find that tissue engineered bulking agent brought long-term efficacy (at 4, 8, 12 weeks post-injection) on the recovery of LPP and lumen area. Concomitantly with the function, tissue engineered bulking agent treated group also improved the urethral sphincter structure as exhibited by better tissue regeneration. The findings showed that silk fibroin microspheres alone could work effectively in short-term, while tissue engineered bulking agent that combined silk fibroin microspheres with ADSCs exhibited promising long-term efficacy. This study developed a new strategy of tissue engineered bulking agent for future ISD therapy.

  6. Adipose tissue, obesity and adipokines: role in cancer promotion.

    Science.gov (United States)

    Booth, Andrea; Magnuson, Aaron; Fouts, Josephine; Foster, Michelle

    2015-01-01

    Adipose tissue is a complex organ with endocrine, metabolic and immune regulatory roles. Adipose depots have been characterized to release several adipocytokines that work locally in an autocrine and paracrine fashion or peripherally in an endocrine fashion. Adipocyte hypertrophy and excessive adipose tissue accumulation, as occurs during obesity, dysregulates the microenvironment within adipose depots and systemically alters peripheral tissue metabolism. The term "adiposopathy" is used to describe this promotion of pathogenic adipocytes and associated adipose - elated disorders. Numerous epidemiological studies confirm an association between obesity and various cancer forms. Proposed mechanisms that link obesity/adiposity to high cancer risk and mortality include, but are not limited to, obesity-related insulin resistance, hyperinsulinemia, sustained hyperglycemia, glucose intolerance, oxidative stress, inflammation and/or adipocktokine production. Several epidemiological studies have demonstrated a relationship between specific circulating adipocytokines and cancer risk. The aim of this review is to define the function, in normal weight and obesity states, of well-characterized and novel adipokines including leptin, adiponectin, apelin, visfatin, resistin, chemerin, omentin, nesfatin and vaspin and summarize the data that relates their dysfunction, whether associated or direct effects, to specific cancer outcomes. Overall research suggests most adipokines promote cancer cell progression via enhancement of cell proliferation and migration, inflammation and anti-apoptosis pathways, which subsequently can prompt cancer metastasis. Further research and longitudinal studies are needed to define the specific independent and additive roles of adipokines in cancer progression and reoccurrence.

  7. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    Science.gov (United States)

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  8. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  9. Natural killer T cells in adipose tissue prevent insulin resistance.

    Science.gov (United States)

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  10. Regulation of brown adipose tissue by stress and sex

    NARCIS (Netherlands)

    J.C. van den Beukel (Anneke)

    2016-01-01

    textabstractDue to the increasing incidence of obesity, more means of treating obesity are necessary. Brown adipose tissue (BAT) is a potential target tissue via which obesity can be treated due to its unique ability to use energy to produce heat. Not much is known however about the mechanisms via w

  11. Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

    Science.gov (United States)

    2015-08-01

    oncogenes; inactivation of tumor suppression genes; and interaction between cancer cells and tumor-associated stroma and tumor- associated macrophages ...into inflamed tissue and dif- ferentiate into macrophages , which coordinate inflammatory re- sponses by producing chemokines and clearing debris by...AWARD NUMBER: W81XWH-10-1-0275 TITLE: Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions PRINCIPAL INVESTIGATOR

  12. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...

  13. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    Science.gov (United States)

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis.

  14. Effect of diethylstilboestrol on adipose-tissue lipids.

    Science.gov (United States)

    Sink, J D; Huston, C K; Shigley, J W

    1965-11-01

    1. The effect of diethylstilboestrol on the fatty acid composition of adipose-tissue lipids of the ox (Bos taurus) was studied. 2. The capsula adiposa (perirenal) was shown to contain more total saturated fatty acids, whereas more total unsaturated fatty acids were found in the panniculus adiposus (subcutaneous). 3. Significantly more stearic acid and linolenic acid were obtained from the capsula adiposa, whereas the panniculus adiposus contained more myristoleic acid, palmitoleic acid and oleic acid. 4. Implanting diethylstilboestrol significantly increased the deposition of the saturated fatty acids, particularly stearic acid. 5. A decrease in the deposition of total unsaturated fatty acids, myristoleic acid, palmitoleic acid and linoleic acid can also be attributed to the diethylstilboestrol treatment.

  15. Bovine dedifferentiated adipose tissue (DFAT) cells

    Science.gov (United States)

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  16. Regional differences and up-regulation of progesterone receptors in adipose tissues from oestrogen-treated sheep.

    Science.gov (United States)

    Mayes, J S; McCann, J P; Ownbey, T C; Watson, G H

    1996-01-01

    Differing risk factors between men and women for a number of vascular and metabolic diseases have been linked to regional obesity. The differences in the distribution of adipose tissues between men (abdominal or upper-body obesity) and women (gluteal/femoral or lower body obesity) suggest a role for sex steroids in the regional distribution of fat. Previous work from this laboratory has shown the presence of oestrogen receptor (ER) in gluteal, perirenal and omental adipose tissues of ewes with similar physical characteristics to the ER in uterine tissue. The concentration profile for adipose ER was gluteal > perirenal > omental. In this report, we determined the physiological significance of adipose ERs by showing an up-regulation of the progesterone receptor (PR) in adipose tissues after oestrogen treatment in a fashion similar to that seen in a major responsive tissue such as uterus. Using PR antibodies (PR-6 and C-262), Western blot analysis of PR from oestrogen-treated sheep indicated that PR was induced in uterus > gluteal adipose > perirenal adipose consistent with the concentration of ER contained in these tissues. PR could not be detected by Western blotting in omental adipose tissue from oestrogen-treated animals or in gluteal, perirenal and omental adipose tissues from untreated animals. Sucrose gradient profiles of progestin (R-5020) binding from uterus and gluteal adipose tissues of oestrogen-treated ewes showed specific binding in both the 5S and 9S regions of the gradient, while perirenal and omental adipose tissue had only the 5S peak. The amount of specific binding was increased with oestrogen treatment in all the tissues. When gluteal adipose tissue cytosol was preincubated with PR antibody (C-262) to prevent binding of ligand and subjected to sucrose gradient analysis, both the 5S and 9S regions were diminished, suggesting that both peaks contained PR. Dilution of uterine cytosol resulted in an increase in the ratio of the 5S to the 9S peak

  17. Biomarkers of Habitual Fish Intake in Adipose-Tissue

    DEFF Research Database (Denmark)

    Marckmann, P.; Lassen, Anne Dahl; Haraldsdottir, H.;

    1995-01-01

    of the 8-mo study period. The adipose tissue fatty acid composition of each individual was determined by gas chromatography as the mean of two gluteal biopsies, obtained in the first and the last month of the study. The daily consumption of fish and of marine n-3 PUFAs in absolute terms (g......The association between habitual fish and marine n-3 polyunsaturated fatty acid (PUFA) intake, and the fatty acid composition of subcutaneous fat was studied in 24 healthy young volunteers. Habitual dietary intakes were estimated from three 7-d weighed food records made at months 0, 5, and 8....../d) was significantly associated with adipose tissue docosahexaenoic acid content (DHA; r = 0.55 and 0.58, respectively, P acid contents. Our study indicates that the adipose tissue DHA content is the biomarker of choice for the assessment of long...

  18. Bovine dedifferentiated adipose tissue (DFAT) cells

    OpenAIRE

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S.; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J.; Elabd, Elham M Youssef; Bergen, Werner G.; Basu, Urmila; Dodson, Michael V.

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repea...

  19. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  20. Natural killer T cells in adipose tissue are activated in lean mice.

    Science.gov (United States)

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  1. Chagas disease, adipose tissue and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Fnu Nagajyothi

    2009-07-01

    Full Text Available Trypanosoma cruzi infection of the adipose tissue of mice triggers the local expression of inflammatory mediators and a reduction in the expression of the adipokine adiponectin. T. cruzi can be detected in adipose tissue by PCR 300 days post-infection. Infection of cultured adipocytes results in increased expression of cytokines and chemokines and a reduction in the expression of adiponectin and the peroxisome proliferator-activated receptor ³, both of which are negative regulators of inflammation. Infection also results in the upregulation of cyclin D1, the Notch pathway, and extracellular signal-regulated kinase and a reduction in the expression of caveolin-1. Thus, T. cruzi infection of cultured adipocytes leads to an upregulation of the inflammatory process. Since adiponectin null mice have a cardiomyopathic phenotype, it is possible that the reduction in adiponectin contributes to the pathogenesis of chagasic cardiomyopathy. Adipose tissue may serve as a reservoir for T. cruzi from which parasites can become reactivated during periods of immunosuppression. T. cruzi infection of mice often results in hypoglycemia. In contrast, hyperglycemia as observed in diabetes results in increased parasitemia and mortality. Adipose tissue is an important target tissue of T. cruzi and the infection of this tissue is associated with a profound impact on systemic metabolism, increasing the risk of metabolic syndrome.

  2. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    DEFF Research Database (Denmark)

    Sun, Kai; Park, Jiyoung; Gupta, Olga T;

    2014-01-01

    We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonst......We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model...

  3. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate......Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...

  4. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Science.gov (United States)

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  5. Vitamin D and adipose tissue - more than storage

    Directory of Open Access Journals (Sweden)

    Shivaprakash Jagalur Mutt

    2014-06-01

    Full Text Available The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OHD, no evidence was obtained for a BMI lowering effect by higher 25(OHD. Some of the physiological functions of 1,25(OH2D3 (1,25-dihydroxycholecalciferol or calcitriol via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g. in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH2D3, vitamin D binding proteins (VDBPs and nuclear vitamin D receptor (VDR after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR -/- and CYP27B1 knock out (CYP27B1 -/- mouse models: Both VDR -/- and CYP27B1 -/- models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH2D3. Experimental studies demonstrate that 1,25(OH2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  6. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Liu, Pin; Ji, Hong; Li, Chao; Tian, Jingjing; Wang, Yifei; Yu, Ping

    2015-08-01

    To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.

  7. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    Science.gov (United States)

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  8. b-Series gangliosides crucially regulate leptin secretion in adipose tissues.

    Science.gov (United States)

    Ji, Shuting; Ohkawa, Yuki; Tokizane, Kyohei; Ohmi, Yuhsuke; Banno, Ryoichi; Furukawa, Keiko; Kiyama, Hiroshi; Furukawa, Koichi

    2015-04-01

    Gangliosides are widely involved in the regulation of cells and organs. However, little is known about their roles in leptin secretion from adipose tissues. Genetic deletion of b-series gangliosides resulted in the marked reduction of serum leptin. Expression analysis of leptin revealed that leptin accumulated in the adipose tissues of GD3 synthase-knockout (GD3S KO) mice. Analysis of primary cultured stromal vascular fractions (SVF) derived from GD3S KO mice revealed that leptin secretion was reduced, although leptin amounts in cells were increased compared with those of wild type. Interestingly, addition of b-series gangliosides to the culture medium of differentiated SVF resulted in the restoration of leptin secretion. Results of methyl-β-cyclodextrin treatment of differentiated 3T3-L1 cells as well as immunocytostaining of leptin and caveolin-1 suggested that b-series gangliosides regulate the leptin secretion from adipose tissues in lipid rafts.

  9. Differential effects of a gelatinase inhibitor on adipocyte differentiation and adipose tissue development.

    Science.gov (United States)

    Van Hul, Matthias; Bauters, Dries; Lijnen, Roger H

    2013-10-01

    (1) A potential role for the gelatinases in adipocyte differentiation in vitro and adipose tissue development in vivo was investigated using the gelatinase inhibitor tolylsam ((R)-3-methyl-2-[4-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-benzenesulphonylamino]-butyric acid). (2) Differentiation of murine 3T3-F442A preadipocytes (12 days after reaching confluence) into mature adipocytes in vitro was promoted in the presence of tolylsam (10-100 μmol/L). (3) De novo development of fat tissue in nude mice injected with preadipocytes and kept on a high-fat diet was significantly impaired following treatment with tolylsam (100 mg/kg per day for 4 weeks). (4) Adipose tissue development in matrix metalloproteinase (MMP)-2 deficient mice, kept on a high-fat diet, was significantly impaired following administration of tolylsam (100 mg/kg per day for 15 weeks). This was associated with markedly enhanced metabolic rate. (5) Treatment of MMP-2-deficient mice with tolylsam (100 mg/kg per day, 15 weeks) was associated with the preservation of collagen and a reduction in blood vessel size in adipose tissues in vivo. (6) Furthermore, plasma levels of triglycerides and free fatty acids were reduced by tolylsam treatment of MMP-2-deficient mice (100 mg/kg per day, 15 weeks), whereas nutrient adsorption in the intestine was not affected. (7) The results of the present study indicate that tolylsam promotes preadipocyte differentiation in vitro, but impairs adipose tissue development in vivo.

  10. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  11. Subcutaneous abdominal adipose tissue lipolysis during exercise determined by arteriovenous measurements in older women

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    To characterize the lipolytic response in the subcutaneous abdominal adipose tissue in older women to endurance exercise.......To characterize the lipolytic response in the subcutaneous abdominal adipose tissue in older women to endurance exercise....

  12. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  13. Adipose Tissue Dysfunction : Clinical Relevance and Diagnostic Possibilities

    NARCIS (Netherlands)

    Schrover, I. M.; Spiering, W.; Leiner, T.; Visseren, F. L J

    2016-01-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity

  14. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    Science.gov (United States)

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  15. Spice Up Your Life: Adipose Tissue and Inflammation

    Directory of Open Access Journals (Sweden)

    Anil K. Agarwal

    2014-01-01

    Full Text Available Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health.

  16. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis

    NARCIS (Netherlands)

    Khedoe, P.P.S.J.; Hoeke, Geerte; Kooijman, Sander; Dijk, Wieneke; Buijs, Jeroen T.; Kersten, Sander; Havekes, Louis M.; Hiemstra, Pieter S.; Berbée, Jimmy F.P.; Boon, Mariëtte R.; Rensen, Patrick C.N.

    2015-01-01

    Brown adipose tissue (BAT) produces heat by burning TGs that are stored within intracellular lipid droplets and need to be replenished by the uptake of TG-derived FA from plasma. It is currently unclear whether BAT takes up FA via uptake of TG-rich lipoproteins (TRLs), after lipolysis-mediated li

  17. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Maternal obesity and gestational diabetes mellitus (GDM are two increasingly common and important obstetric complications that are associated with severe long-term health risks to mothers and babies. IL-1β, which is increased in obese and GDM pregnancies, plays an important role in the pathophysiology of these two pregnancy complications. In non-pregnant tissues, endoplasmic (ER stress is increased in diabetes and can induce IL-1β via inflammasome activation. The aim of this study was to determine whether ER stress is increased in omental adipose tissue of women with GDM, and if ER stress can also upregulate inflammasome-dependent secretion of IL-1β. ER stress markers IRE1α, GRP78 and XBP-1s were significantly increased in adipose tissue of obese compared to lean pregnant women. ER stress was also increased in adipose tissue of women with GDM compared to BMI-matched normal glucose tolerant (NGT women. Thapsigargin, an ER stress activator, induced upregulated secretion of mature IL-1α and IL-1β in human omental adipose tissue explants primed with bacterial endotoxin LPS, the viral dsRNA analogue poly(I:C or the pro-inflammatory cytokine TNF-α. Inhibition of capase-1 with Ac-YVAD-CHO resulted in decreased IL-1α and IL-1β secretion, whereas inhibition of pannexin-1 with carbenoxolone suppressed IL-1β secretion only. Treatment with anti-diabetic drugs metformin and glibenclamide also reduced IL-1α and IL-1β secretion in infection and cytokine-primed adipose tissue. In conclusion, this study has demonstrated ER stress to activate the inflammasome in pregnant adipose tissue. Therefore, increased ER stress may contribute towards the pathophysiology of obesity in pregnancy and GDM.

  18. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  19. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    Science.gov (United States)

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  20. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    Science.gov (United States)

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  1. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    Science.gov (United States)

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  2. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Directory of Open Access Journals (Sweden)

    Yine Qu

    2016-04-01

    Full Text Available The functions of interleukin-17A (IL-17A in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice or a high-fat diet (n = 6, obese mice for 30 weeks. Subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  3. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Science.gov (United States)

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  4. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  6. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  10. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  11. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  12. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  15. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  16. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  17. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  18. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    NARCIS (Netherlands)

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG

  19. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue, White...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White http://dbarchi...ve.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. Adipose tissue and metabolic syndrome: too much, too little or neither.

    Science.gov (United States)

    Grundy, Scott M

    2015-11-01

    Obesity is strongly associated with metabolic syndrome. Recent research suggests that excess adipose tissue plays an important role in development of the syndrome. On the other hand, persons with a deficiency of adipose tissue (e.g. lipodystrophy) also manifest the metabolic syndrome. In some animal models, expansion of adipose tissue pools mitigates adverse metabolic components (e.g. insulin resistance, hyperglycaemia and dyslipidemia). Hence, there are conflicting data as to whether adipose tissue worsens the metabolic syndrome or protects against it. This conflict may relate partly to locations of adipose tissue pools. For instance, lower body adipose tissue may be protective whereas upper body adipose tissue may promote the syndrome. One view holds that in either case, the accumulation of ectopic fat in muscle and liver is the driving factor underlying the syndrome. If so, there may be some link between adipose tissue fat and ectopic fat. But the mechanisms underlying this connection are not clear. A stronger association appears to exist between excessive caloric intake and ectopic fat accumulation. Adipose tissue may act as a buffer to reduce the impact of excess energy consumption by fat storage; but once a constant weight has been achieved, it is unclear whether adipose tissue influences levels of ectopic fat. Another mechanism whereby adipose tissue could worsen the metabolic syndrome is through release of adipokines. This is an intriguing mechanism, but the impact of adipokines on metabolic syndrome risk factors is uncertain. Thus, many potential connections between adipose tissue and metabolic syndrome remain to unravelled.

  18. Photoinduced cell morphology alterations quantified within adipose tissues by spectral optical coherence tomography.

    Science.gov (United States)

    Yanina, Irina Yu; Trunina, Natalia A; Tuchin, Valery V

    2013-11-01

    Morphological changes of the adipose tissue at phototreatment are studied in vitro using optical coherence tomography. The 200 to 600 μm fat tissue slices are used in the experiments. The observed change in the tissue structure was associated with fat cell lipolysis and destruction caused by the photodynamic effect. It is found that overall heating of a sample from room to physiological temperature leads to deeper and faster morphology tissue changes if other processing conditions are kept constant. These data support the hypothesis that photodynamic/photothermal treatment induces fat cell lipolysis during some period after treatment.

  19. Regulation of visceral adipose tissue-derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue.

    Science.gov (United States)

    González, C R; Caminos, J E; Vázquez, M J; Garcés, M F; Cepeda, L A; Angel, A; González, A C; García-Rendueles, M E; Sangiao-Alvarellos, S; López, M; Bravo, S B; Nogueiras, R; Diéguez, C

    2009-07-15

    Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a recently discovered adipocytokine mainly secreted from visceral adipose tissue, which plays a main role in insulin sensitivity. In this study, we have investigated the regulation of vaspin gene expression in rat white adipose tissue (WAT) in different physiological (nutritional status, pregnancy, age and gender) and pathophysiological (gonadectomy, thyroid status and growth hormone deficiency) settings known to be associated with energy homeostasis and alterations in insulin sensitivity. We have determined vaspin gene expression by real-time PCR. Vaspin was decreased after fasting and its levels were partially recovered after leptin treatment. Chronic treatment with metformin increased vaspin gene expression. Vaspin mRNA expression reached the highest peak at 45 days in both sexes after birth and its expression was higher in females than males, but its levels did not change throughout pregnancy. Finally, decreased levels of growth hormone and thyroid hormones suppressed vaspin expression. These findings suggest that WAT vaspin mRNA expression is regulated by nutritional status, and leptin seems to be the nutrient signal responsible for those changes. Vaspin is influenced by age and gender, and its expression is increased after treatment with insulin sensitizers. Finally, alterations in pituitary functions modify vaspin levels. Understanding the molecular mechanisms regulating vaspin will provide new insights into the pathogenesis of the metabolic syndrome.

  20. Heterogeneous response of adipose tissue to cancer cachexia

    Directory of Open Access Journals (Sweden)

    P.S. Bertevello

    2001-09-01

    Full Text Available Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES, retroperitoneal (RPAT, and epididymal (EAT adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections and EAT (nuclear bodies.

  1. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues.

    Science.gov (United States)

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J; Zang, Jingwu; Cao, Yihai

    2014-10-14

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs.

  2. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  3. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    Science.gov (United States)

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  4. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423

    Directory of Open Access Journals (Sweden)

    Mengle Shao

    2017-01-01

    Conclusions: Our results reveal that Zfp423 is essential for the terminal differentiation of subcutaneous white adipocytes during fetal adipose tissue development. Moreover, our data highlight the striking adverse effects of pathological subcutaneous adipose tissue remodeling on visceral adipose function and systemic nutrient homeostasis in obesity. Importantly, these data reveal the distinct phenotypes that can occur when adiponectin driven transgenes are activated in fetal vs. adult adipose tissue.

  5. Adipose tissue biglycan as a potential anti-inflammatory target of sodium salicylate in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Adapala Venkata J

    2012-04-01

    Full Text Available Abstract Background Inflammation in adipose tissue (AT during obesity causes impaired AT function. Although multiple extracellular matrix (ECM proteins are expressed in AT their potential role in adipose tissue inflammation is unclear. Biglycan, a pro-inflammatory ECM gene, is highly enriched in adipose tissue. However, whether it is correlated with adipose tissue inflammation is unknown. We provide evidence in support of a strong association between biglycan expression and inflammatory status of adipose tissue. Methods C57BL6 mice were fed either a control (10% fat calories or a high fat diet (HFD (60% fat calories for 8 weeks. Adipose tissue was analyzed for the expression of biglycan, IL-6 and TNFα. Biglycan knockout or wild type were also fed a high fat diet for 8 weeks and the expression of inflammatory genes in the mesenteric adipose tissue was examined. To test anti-inflammatory treatment on biglycan expression, a group of mice were fed either the low fat or high fat diet for eight weeks supplemented with either saline or sodium salicylate @ 25mg/100ml in their drinking water. Results Mice on HFD had an increase in ECM genes (BGN and COL1A1, inflammatory genes (IL-6 and TNFα in both the subcutaneous and epididymal depots. However, correlation analysis only shows a positive correlation between biglycan, IL-6 and TNFα expression. In addition, lower expression of IL-6 and CD68 was found in the mesenteric adipose tissue of biglycan knockout mice compared to the wild type. Sodium salicylate treatment reduced subcutaneous adipose tissue expression of BGN, COL1A1, and COL6A1 and a concurrent downregulation of TNFα and IL-6 and TLR4 expression. Salicylate also lowered the serum TGFβ1 levels. Conclusion Biglycan expression correlates with adipose tissue inflammation, especially in the subcutaneous depot compared to the epididymal depot. This is supported by the greater effect of sodium salicylate in attenuating both inflammatory and ECM gene

  6. Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.

    Science.gov (United States)

    Chen, Ying-Ying; Yan, Yan; Zhao, Zheng; Shi, Mei-Jing; Zhang, Yu-Bin

    2016-06-01

    The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  7. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available AIMS: To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity. MATERIALS AND METHODS: Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice. RESULTS: Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice. CONCLUSIONS: Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  8. [The adipose tissue as a regulatory center of the metabolism].

    Science.gov (United States)

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  9. Treatment of rats with a self-selected hyperlipidic diet, increases the lipid content of the main adipose tissue sites in a proportion similar to that of the lipids in the rest of organs and tissues.

    Science.gov (United States)

    Romero, María Del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María Del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in "other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the "rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.

  10. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    Science.gov (United States)

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (padipose tissue than in s.c. adipose tissue (padipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (padipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers. Contrary to our original hypothesis, palm oil did not promote adipogenic gene expression in s.c. and i.m. adipose tissue.

  11. Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Delphine Duteil

    2016-10-01

    Full Text Available Previous work indicated that lysine-specific demethylase 1 (Lsd1 can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.

  12. Id transcriptional regulators in adipogenesis and adipose tissue metabolism.

    Science.gov (United States)

    Patil, Mallikarjun; Sharma, Bal Krishan; Satyanarayana, Ande

    2014-06-01

    Id proteins (Id1-Id4) are helix-loop-helix (HLH) transcriptional regulators that lack a basic DNA binding domain. They act as negative regulators of basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibit their DNA binding and transcriptional activity. Id proteins are implicated in the regulation of various cellular mechanisms such as cell proliferation, cellular differentiation, cell fate determination, angiogenesis and tumorigenesis. A handful of recent studies also disclosed that Id proteins have critical functions in adipocyte differentiation and adipose tissue metabolism. Here, we reviewed the progress made thus far in understanding the specific functions of Id proteins in adipose tissue differentiation and metabolism. In addition to reviewing the known mechanisms of action, we also discuss possible additional mechanisms in which Id proteins might participate in regulating adipogenic and metabolic pathways.

  13. Prolactin (PRL) in adipose tissue: regulation and functions.

    Science.gov (United States)

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  14. Mechanisms of perivascular adipose tissue dysfunction in obesity.

    Science.gov (United States)

    Fernández-Alfonso, Maria S; Gil-Ortega, Marta; García-Prieto, Concha F; Aranguez, Isabel; Ruiz-Gayo, Mariano; Somoza, Beatriz

    2013-01-01

    Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT) was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity.

  15. Mechanisms of Perivascular Adipose Tissue Dysfunction in Obesity

    Directory of Open Access Journals (Sweden)

    Maria S. Fernández-Alfonso

    2013-01-01

    Full Text Available Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity.

  16. A role of active brown adipose tissue in cancer cachexia?

    Directory of Open Access Journals (Sweden)

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  17. Molecular clock integration of brown adipose tissue formation and function.

    Science.gov (United States)

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation.

  18. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  19. Phosphatase and Tension Homolog Overexpression in Insulin Resistant Diabetic Adipose Tissue

    Institute of Scientific and Technical Information of China (English)

    Jing-bo Zeng; Yun Zhang; Qi Sun; and Yu-xiu Li

    2014-01-01

    Objective To investigate the expression of phosphatase and tension homolog (PTEN) in adipose tissue of KKAy diabetic mice, a mouse model of type 2 diabetes. Methods KKAy diabetic mice were fed with high fat diet for 4 weeks. After blood glucose met the criteria of diabetes (over 16.7 mmol/L), mice were randomly divided into 3 groups:a control group (without any treatment), a rosiglitazone group (treated with rosiglitazone 12.5 mg/kg·d once per day), and a metformin group (treated with metformin 3 g/kg·d twice daily). After 4 weeks, we then determined the expression of PTEN and phosphoserine 473-Akt (pS473-Akt) in the epididymal adipose tissue with Western blots. The mice in each group were further divided into the insulin (-) subgroup and insulin (+) subgroup, which were intraperitoneally injected with saline and insulin (5 mU/g body weight), respectively. Results The expression of PTEN was elevated in the epididymal adipose tissue obtained from KKAy diabetic mice compared with that from the C57BL/6J mice (P Conclusion PTEN may play an important role in the development of insulin resistance in adipose tissue of type 2 diabetes mice model.

  20. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    Science.gov (United States)

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

  1. Adipose Tissue Macrophages in Rheumatoid Arthritis: Prevalence, Disease Related Indicators, and Associations with Cardiometabolic Risk Factors.

    Science.gov (United States)

    Giles, Jon T; Ferrante, Antony W; Broderick, Rachel; Zartoshti, Afshin; Rose, Janine; Downer, Kendall; Zhang, Hui-Zhu; Winchester, Robert J

    2017-04-07

    Objective Adipose tissue macrophages (ATMs) are a potent source of inflammatory cytokines with profound effects on adipose tissue function, yet their potential role in rheumatoid arthritis (RA) pathobiology is largely unstudied. Methods Periumbilical subcutaneous adipose tissue was obtained from 36 RA patients and 22 non-RA controls frequency matched on demographics and BMI. Samples were stained for the macrophage marker CD68 and the average proportion of ATMs, crown-like structures (CLSs: peri-adipocyte aggregates of three or more ATMs), and fibrosis were compared between groups. Results The adjusted proportion of ATMs among all nucleated cells was 76% higher in RA vs. non-RA samples (37.7 vs. 21.3%, respectively; pleflunomide, and TNF inhibitors had a significantly lower proportion of ATMs compared with non-users. CLSs were significantly higher in patients seropositive for rheumatoid factor and those with C-reactive protein levels≥10 mg/L, and significantly lower among those treated with statins. Linear ATMs were significantly associated with whole-body insulin resistance, but not with serum lipids. Conclusions ATMs and CLSs were more abundant in RA and associated with systemic inflammation, autoimmunity, and whole-body insulin resistance, suggesting possible contributions to the RA disease process. Lower levels of ATMs and CLSs associated with specific RA treatments suggest that adipose tissue inflammation may be ameliorated by immunomodulation. This article is protected by copyright. All rights reserved.

  2. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    Science.gov (United States)

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  3. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.

    Science.gov (United States)

    Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth

    2015-11-01

    Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (Padipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors.

  4. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue.

    Science.gov (United States)

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-03-22

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids.

  5. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  6. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  7. Adipose tissue-liver axis in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Alcoholic liver disease (ALD) remains an important healthproblem worldwide. The disease spectrum is featuredby early steatosis, steatohepatitis (steatosis with inflammatorycells infiltration and necrosis), with someindividuals ultimately progressing to fibrosis/cirrhosis.Although the disease progression is well characterized,no effective therapies are currently available for thetreatment in humans. The mechanisms underlying theinitiation and progression of ALD are multifactorial andcomplex. Emerging evidence supports that adiposetissue dysfunction contributes to the pathogenesis ofALD. In the first part of this review, we discuss themechanisms whereby chronic alcohol exposure contributedto adipose tissue dysfunction, including cell death,inflammation and insulin resistance. It has been longknown that aberrant hepatic methionine metabolismis a major metabolic abnormality induced by chronicalcohol exposure and plays an etiological role in thepathogenesis of ALD. The recent studies in our groupdocumented the similar metabolic effect of chronicalcohol drinking on methionine in adipose tissue. Inthe second part of this review, we also briefly discussthe recent research progress in the field with a focuson how abnormal methionine metabolism in adiposetissue contributes to adipose tissue dysfunction and liverdamage.

  8. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  9. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  10. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[(14)C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.

  11. Repairing nerve gaps by vein conduits filled with lipoaspirate-derived entire adipose tissue hinders nerve regeneration.

    Science.gov (United States)

    Papalia, Igor; Raimondo, Stefania; Ronchi, Giulia; Magaudda, Ludovico; Giacobini-Robecchi, Maria G; Geuna, Stefano

    2013-05-01

    In spite of great recent advancements, the definition of the optimal strategy for bridging a nerve defect, especially across long gaps, still remains an open issue since the amount of autologous nerve graft material is limited while the outcome after alternative tubulization techniques is often unsatisfactory. The aim of this study was to investigate a new tubulization technique based on the employment of vein conduits filled with whole subcutaneous adipose tissue obtained by lipoaspiration. In adult rats, a 1cm-long defect of the left median nerve was repaired by adipose tissue-vein-combined conduits and compared with fresh skeletal muscle tissue-vein-combined conduits and autologous nerve grafts made by the excised nerve segment rotated by 180°. Throughout the postoperative period, functional recovery was assessed using the grasping test. Regenerated nerve samples were withdrawn at postoperative month-6 and processed for light and electron microscopy and stereology of regenerated nerve fibers. Results showed that functional recovery was significantly slower in the adipose tissue-enriched group in comparison to both control groups. Light and electron microscopy showed that a large amount of adipose tissue was still present inside the vein conduits at postoperative month-6. Stereology showed that all quantitative morphological predictors analyzed performed significantly worse in the adipose tissue-enriched group in comparison to the two control groups. On the basis of this experimental study in the rat, the use of whole adipose tissue for tissue engineering of peripheral nerves should be discouraged. Pre-treatment of adipose tissue aimed at isolating stromal vascular fraction and/or adipose derived stem/precursor cells should be considered a fundamental requisite for nerve repair.

  12. Deep sequencing of the transcriptome reveals inflammatory features of porcine visceral adipose tissue.

    Science.gov (United States)

    Wang, Tao; Jiang, Anan; Guo, Yanqin; Tan, Ya; Tang, Guoqing; Mai, Miaomiao; Liu, Haifeng; Xiao, Jian; Li, Mingzhou; Li, Xuewei

    2013-01-01

    Functional differences in the different types of adipose tissue and the impact of their dysfunction on metabolism are associated with the regional distribution of adipose depots. Here we show a genome-wide comparison between the transcriptomes of one source of subcutaneous and two sources of visceral adipose tissue in the pig using an RNA-seq approach. We obtained ~32.3 million unique mapped reads which covered ~80.2% of the current annotated transcripts across these three sources of adipose tissue. We identified various genes differentially expressed between subcutaneous and visceral adipose tissue, which are potentially associated with the inflammatory features of visceral adipose tissue. These results are of benefit for understanding the phenotypic, metabolic and functional differences between different types of adipose tissue that are deposited in different body sites.

  13. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... the basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain...

  14. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Science.gov (United States)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  15. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    Science.gov (United States)

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.

  16. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    Science.gov (United States)

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  17. Identification of cathepsin K as a novel marker of adiposity in white adipose tissue.

    Science.gov (United States)

    Chiellini, Chiara; Costa, Mario; Novelli, Silvia E; Amri, Ez-Zoubir; Benzi, Luca; Bertacca, Anna; Cohen, Paul; Del Prato, Stefano; Friedman, Jeffrey M; Maffei, Margherita

    2003-05-01

    In obesity, adipocytes undergo dramatic morphological and molecular changes associated with alterations in their gene expression profile. To identify genes differentially modulated in white adipose tissue (WAT) of obese db/db mice compared to wild type (wt) mice, we utilized RNA fingerprinting. Among the 52 candidates that we identified, we focused here on cathepsin K (ctsk), a cysteine protease, prevalently localized in lysosomes and involved in bone extracellular matrix degradation. In db/db mice, WAT ctsk mRNA was elevated 5.9-fold, as were Mitf and TFE3 (2- and 3.3-fold respectively), two transcription factors involved in ctsk induction in osteoclasts. Moreover, the level of WAT ctsk mRNA was increased in other obese models including A(y), fat, and tubby (2.8-, 3.2-, and 4.9-fold respectively) and decreased in mice undergoing weight loss. Despite the ubiquitous distribution of the ctsk transcript, we demonstrated that the obesity related increase is specific to the adipocytes. Further, in vitro experiments proved that the abundance of ctsk transcript increases upon adipose conversion of the established cell line of preadipocytes 3T3-F442A. In addition, ctsk gene expression was examined in adipose tissue of 21 lean and obese male subjects and significant correlations with BMI (r = 0.54, P = 0.012) and plasma leptin levels (r = 0.54, P = 0.015) were found. In conclusion, the WAT of obese db/db mice exhibits a different expression profile from that of the wt mice, and cathepsin K can be considered a novel marker of obesity and a target for the inhibition of adipose mass growth.

  18. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue....... Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure...

  19. Bone marrow–derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice

    Science.gov (United States)

    Koh, Young Jun; Kang, Shinae; Lee, Hyuek Jong; Choi, Tae-Saeng; Lee, Ho Sub; Cho, Chung-Hyun; Koh, Gou Young

    2007-01-01

    Little is known about whether bone marrow–derived circulating progenitor cells (BMDCPCs) can transdifferentiate into adipocytes in adipose tissues or play a role in expanding adipocyte number during adipose tissue growth. Using a mouse bone marrow transplantation model, we addressed whether BMDCPCs can transdifferentiate into adipocytes under standard conditions as well as in the settings of diet-induced obesity, rosiglitazone treatment, and exposure to G-CSF. We also addressed the possibility of transdifferentiation to adipocytes in a murine parabiosis model. In each of these settings, our findings indicated that BMDCPCs did not transdifferentiate into either unilocular or multilocular adipocytes in adipose tissues. Most BMDCPCs became resident and phagocytic macrophages in adipose tissues — which resembled transdifferentiated multilocular adipocytes by appearance, but displayed cell surface markers characteristic for macrophages — in the absence of adipocyte marker expression. When exposed to adipogenic medium in vitro, bone marrow cells differentiated into multilocular, but not unilocular, adipocytes, but transdifferentiation was not observed in vivo, even in the contexts of adipose tissue regrowth or dermal wound healing. Our results suggest that BMDCPCs do not transdifferentiate into adipocytes in vivo and play little, if any, role in expanding the number of adipocytes during the growth of adipose tissues. PMID:18060029

  20. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    the basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P muscle. The reproducibility of the measurements was good...

  1. Adipose tissue and vascular inflammation in coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  2. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Science.gov (United States)

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  3. Regional differences in perivascular adipose tissue impacting vascular homeostasis.

    Science.gov (United States)

    Gil-Ortega, Marta; Somoza, Beatriz; Huang, Yu; Gollasch, Maik; Fernández-Alfonso, Maria S

    2015-07-01

    Perivascular adipose tissue (PVAT) releases several important vasoactive factors with physiological and pathophysiological paracrine effects. A large body of evidence suggests regional phenotypic and functional differences among PVAT depots, depending on the specific vascular bed or different regions in the vascular bed where the PVAT is located. These non-uniform and separate PVATs exert various paracrine effects on vascular structure and function that largely impact disease states, such as endothelial dysfunction, atherosclerosis, or insulin resistance. This emerging view of PVAT function requires considering heterogeneous PVAT as a specialized organ that can differentially regulate vascular function depending on its anatomical location. In this context, the adipose-vascular axis may represent a novel target for pharmacological intervention in vasculopathy in cardiometabolic disorders.

  4. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  5. Down-regulation of Zac1 gene expression in rat white adipose tissue by androgens.

    Science.gov (United States)

    Mirowska, Agnieszka; Sledzinski, Tomasz; Smolenski, Ryszard T; Swierczynski, Julian

    2014-03-01

    ZAC1 is a zinc-finger protein transcription factor, a transcriptional cofactor for nuclear receptors, and a co-activator of nuclear receptors, which interacts with multiple signaling pathways affecting apoptosis, cell cycle arrest, and metabolism. Some data suggest that ZAC1 regulates the expression of genes associated with function of adipose tissue. Since there is no information about the levels of Zac1 gene expression in white adipose tissue (WAT), and the expression of several genes associated with metabolic function of WAT is significantly lower in male than female animals, we have examined: (a) the relative ZAC1 mRNA levels in some organs/tissues, including three main depots of WAT, in 3-month-old male rats; (b) the relative ZAC1 mRNA levels in WAT of male and female rats; (c) the effect of orchidectomy and orchidectomy with concomitant testosterone treatment on ZAC1 mRNA and protein levels; (d) the effect of ovariectomy and ovariectomy with concomitant 17β-estradiol treatment on ZAC1 mRNA levels; (e) the effect of dihydrotestosterone on ZAC1 mRNA levels in isolated adipocytes. Our results indicate that: (a) ZAC1 mRNA levels are relatively high in WAT in comparison with other organs/tissues; (b) ZAC1 mRNA levels in subcutaneous WAT are approximately 2-fold lower than in epididymal and retroperitoneal adipose tissue; (c) ZAC1 mRNA levels in WAT of adult female rats are approximately 2-fold higher than in male rats; (d) testosterone is inversely related to ZAC1 mRNA and protein levels in WAT of male rats; and (e) dihydrotestosterone decreases the ZAC1 mRNA levels in adipocytes in dose dependent manner. In conclusion, Zac1 gene is highly expressed in white adipose tissue of adult rats. Androgens could play an important role in down-regulation of the ZAC1 mRNA and protein levels in rats.

  6. Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue.

    Science.gov (United States)

    Starr, Marlene E; Saito, Mizuki; Evers, B Mark; Saito, Hiroshi

    2015-12-01

    Expression of interleukin-6 (IL-6) upon acute inflammatory stress is significantly augmented by aging in adipose tissue, a major source of this cytokine. In the present study, we examined the mechanism of age-dependent IL-6 overproduction using visceral white adipose tissue from C57BL/6 mice. Upon treatment with lipopolysaccharide (LPS) in vitro, IL-6 was produced by adipose tissue explants, and secreted levels were significantly higher in cultures from aged (24 months) mice compared to young (4 months). Interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα), two inducers of IL-6, were mainly produced by the lungs and spleen rather than adipose tissue in mice after LPS injection. Treatment of adipose explants with physiological levels of IL-1β induced significant age-dependent secretion of IL-6, while treatment with TNFα had little effect, demonstrating an augmented response of adipose tissues to IL-1β in the aged. In vitro experiments utilizing a neutralizing antibody against IL-1β and in vivo experiments utilizing IL-1-receptor-1 deficient mice, confirmed that IL-6 overproduction in the aged is regulated by autocrine/paracrine action of IL-1β which specifically occurs in aged adipose tissues. These findings indicate an elevated inflammatory potential of adipose tissue in the aged and a unique IL-1β-mediated mechanism for IL-6 overproduction, which may impact age-associated vulnerability to acute inflammatory diseases such as sepsis.

  7. Two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  8. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice.

    Directory of Open Access Journals (Sweden)

    Andoni Lancha

    Full Text Available Osteopontin (OPN is a multifunctional extracellular matrix (ECM protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT and liver in wild type (WT mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.

  9. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice.

    Science.gov (United States)

    Lancha, Andoni; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Sáinz, Neira; Ramírez, Beatriz; Burrell, María A; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2014-01-01

    Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.

  10. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance

    Science.gov (United States)

    Sasaki, Yusuke; Ohta, Masayuki; Desai, Dhruv; Figueiredo, Jose-Luiz; Whelan, Mary C.; Sugano, Tomohiro; Yamabi, Masaki; Yano, Wataru; Faits, Tyler; Yabusaki, Katsumi; Zhang, Hengmin; Mlynarchik, Andrew K.; Inoue, Keisuke; Mizuno, Ken; Aikawa, Masanori

    2015-01-01

    Objectives Angiopoietin-like protein 2 (ANGPTL2), a recently identified pro-inflammatory cytokine, is mainly secreted from the adipose tissue. This study aimed to explore the role of ANGPTL2 in adipose tissue inflammation and macrophage activation in a mouse model of diabetes. Methodology/Principal Findings Adenovirus mediated lacZ (Ad-LacZ) or human ANGPTL2 (Ad-ANGPTL2) was delivered via tail vein in diabetic db/db mice. Ad-ANGPTL2 treatment for 2 weeks impaired both glucose tolerance and insulin sensitivity as compared to Ad-LacZ treatment. Ad-ANGPTL2 treatment significantly induced pro-inflammatory gene expression in white adipose tissue. We also isolated stromal vascular fraction from epididymal fat pad and analyzed adipose tissue macrophage and T lymphocyte populations by flow cytometry. Ad-ANGPTL2 treated mice had more adipose tissue macrophages (F4/80+CD11b+) and a larger M1 macrophage subpopulation (F4/80+CD11b+CD11c+). Moreover, Ad-ANGPTL2 treatment increased a CD8-positive T cell population in adipose tissue, which preceded increased macrophage accumulation. Consistent with our in vivo results, recombinant human ANGPTL2 protein treatment increased mRNA levels of pro-inflammatory gene products and production of TNF-α protein in the human macrophage-like cell line THP-1. Furthermore, Ad-ANGPTL2 treatment induced lipid accumulation and increased fatty acid synthesis, lipid metabolism related gene expression in mouse liver. Conclusion ANGPTL2 treatment promotes macrophage accumulation and activation. These results suggest potential mechanisms for insulin resistance. PMID:26132105

  11. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Directory of Open Access Journals (Sweden)

    Marcella K Vaicik

    Full Text Available Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/- and compared to wild-type (Lama4+/+ control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  12. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Science.gov (United States)

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  13. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    Science.gov (United States)

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  14. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.

    OpenAIRE

    Lopategi, Aritz; López-Vicario, Cristina; Alcaraz-Quiles, José; García-Alonso, Verónica; Rius, Bibiana; Titos Rodríguez, Esther; Clària i Enrich, Joan

    2015-01-01

    White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phosphol...

  15. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    OpenAIRE

    Alexey A. Tinkov; Elizaveta V. Popova; Evgenia R. Gatiatulina; Anastasia A. Skalnaya; Elena N. Yakovenko; Irina B. Alchinova; Mikhail Y. Karganov; Anatoly V. Skalny; Nikonorov, Alexandr A.

    2016-01-01

    Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and method...

  16. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    Science.gov (United States)

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

  17. Is Crohn’s creeping fat an adipose tissue?

    OpenAIRE

    Olivier, Isabelle; Theodorou, Vassilia; Valet, Philippe; Castan-Laurell, Isabelle; Guillou, Hervé; Bertrand-Michel, Justine; Cartier, Christel; Bezirard, Valerie; Ducroc, Robert; Segain, Jean-Pierre; Portier, Guillaume; Kirzin, Sylvain; Moreau, Jacques; Duffas, Jean-Pierre; Ferrier, Laurent

    2011-01-01

    Background: In human pathology, the ‘‘creeping fat’’ (CF) ofthe mesentery is unique to Crohn’s disease (CD). CF is usuallyreferred to as an ectopic extension of mesenteric adipose tissue(MAT). However, since no animal model developing CF has everbeen established, very little is known about this type of fat-depotexpansion and its role in the development of the disease.Methods: We developed and standardized an experimental protocolin mice that reproducibly induces CF development when asevere co...

  18. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions : A pilot study

    NARCIS (Netherlands)

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M

    2016-01-01

    BACKGROUND: Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of th

  19. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  20. The Fractionation of Adipose Tissue (FAT) procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A; Stevens, Hieronymus P; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  1. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    Science.gov (United States)

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  2. The Secretory Function of Adipocytes in the Physiology of White Adipose Tissue

    NARCIS (Netherlands)

    Wang, P.; Mariman, E.; Renes, J.; Keijer, J.

    2008-01-01

    White adipose tissue, previously regarded as a passive lipid storage site, is now viewed as a dynamic tissue. It has the capacity to actively communicate by sending and receiving different types of signals. An overview of these signals, the external modulators that affect adipose tissue and the secr

  3. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  4. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    Science.gov (United States)

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.

  5. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    Science.gov (United States)

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  6. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    DEFF Research Database (Denmark)

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente

    2009-01-01

    +/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue...... as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed...

  7. Sugar-sweetened and diet beverages in relation to visceral adipose tissue.

    Science.gov (United States)

    Odegaard, Andrew O; Choh, Audrey C; Czerwinski, Stefan A; Towne, Bradford; Demerath, Ellen W

    2012-03-01

    Frequent sugar-sweetened beverage (SSB) intake has been consistently associated with increased adiposity and cardio-metabolic risk, whereas the association with diet beverages is more mixed. We examined how these beverages associate with regional abdominal adiposity measures, specifically visceral adipose tissue (VAT). In a cross-sectional analysis of 791 non-Hispanic white men and women aged 18-70 we examined how beverage consumption habits obtained from a food frequency questionnaire associate with overall and abdominal adiposity measures from MRI. With increasing frequency of SSB intake, we observed increases in waist circumference (WC) and the proportion of visceral to subcutaneous abdominal adipose tissue (VAT%), with no change in total body fat (TBF%) or BMI. Greater frequency of diet beverage intake was associated with greater WC, BMI, and TBF%, but was not associated with variation in visceral adiposity We conclude that increased frequency of SSB consumption is associated with a more adverse abdominal adipose tissue deposition pattern.

  8. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    Science.gov (United States)

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages.

  9. Skeletal Muscle Derived IL-6 in Liver and Adipose Tissue Metabolism

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet

    Summary Physical activity can lead to metabolic disease and treatment of several metabolic diseases include exercise training. Skeletal muscle has, due to its central role in glucose and fat metabolism at rest and during exercise been studied in detail with regard to exercise training. The role...... and adipose tissue metabolism is unknown. It has been suggested that myokines, such as IL-6, released from skeletal muscle affects liver and adipose tissue and are involved in the regulation of exercise training adaptations. Thus, the aim of this thesis was to investigate the role of skeletal muscle derived...... indicate that during 1h of exercise the liver utilizes carbohydrates for oxidation rather than gluconeogenesis and that gluconeogenic activity during 1h of exercise is not regulated through increases in protein content. The aim of study III was to investigate the role of skeletal muscle derived IL-6...

  10. Differential regulation of oxytocin receptor in various adipose tissue depots and skeletal muscle types in obese Zucker rats.

    Science.gov (United States)

    Gajdosechova, L; Krskova, K; Olszanecki, R; Zorad, S

    2015-07-01

    Multifunctional peptide oxytocin currently undergoes intensive research due to its proposed anti-obesity properties. Until now, little is known about regulation of oxytocin receptor in metabolically active tissues in obesity. The aim of the present study was to measure expression of oxytocin receptor upon obese phenotype with respect to the variety among adipose tissue and skeletal muscles with distinct anatomical localisation. Total homogenates were prepared from epididymal, retroperitoneal and inguinal adipose tissues as well as quadriceps and soleus muscle from lean and obese Zucker rats. Oxytocin receptor protein was determined by immunoblot. Interestingly, elevated oxytocin receptor was observed in epididymal adipose tissue of obese rats in contrast to its downregulation in subcutaneous and no change in retroperitoneal fat. In lean animals, oxytocin receptor protein was expressed at similar levels in all adipose depots. This uniformity was not observed in the case of skeletal muscle in which fibre type composition seems to be determinant of oxytocin receptor expression. Quadriceps muscle with the predominance of glycolytic fibres exhibits higher oxytocin receptor expression than almost exclusively oxidative soleus muscle. Oxytocin receptor protein levels were decreased in both skeletal muscles analysed upon obese phenotype. The present work demonstrates that even under identical endocrine circumstances, oxytocin receptor is differentially regulated in adipose tissue of obese rats depending on fat depot localisation. These results also imply which tissues may be preferentially targeted by oxytocin treatment in metabolic disease.

  11. Fatty acids do not pay the toll: effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi Kumar

    2012-12-01

    Full Text Available Abstract Background On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. Methods Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid - LA and PA and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid - EPA, DHA and OA with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1. In order to determine if TLR2 and TLR4 are activated by fatty acid (FA, we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. Results None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. Conclusions This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity.

  12. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Dirk Vissers

    Full Text Available Excessive visceral adipose tissue appears to trigger a cascade of metabolic disturbances that seem to coexist with ectopic fat storage in muscle, liver, heart and the ß-cell. Therefore, the reduction of visceral adipose tissue potentially plays a pivotal role in the treatment of the metabolic syndrome. The purpose of this systematic review and meta-analysis is to describe the overall effect of exercise on visceral adipose tissue and to provide an overview of the effect of different exercise regimes, without caloric restriction, on visceral adipose tissue in obese persons. A systematic literature search was performed according to the PRISMA statement for reporting systematic reviews and meta-analyses. The initial search resulted in 87 articles after removing duplicates. After screening on title, abstract and full-text 15 articles (totalling 852 subjects fulfilled the a priori inclusion criteria. The quality of each eligible study was assessed in duplicate with "The Critical Review Form for Quantitative Studies". Using random-effects weights, the standardized mean difference (Hedge's g of the change in visceral adipose tissue was -0.497 with a 95% confidence interval of -0.655 to -0.340. The Z-value was -6.183 and the p-value (two tailed was <0.001. A subgroup analysis was performed based on gender, type of training and intensity. Aerobic training of moderate or high intensity has the highest potential to reduce visceral adipose tissue in overweight males and females. These results suggest that an aerobic exercise program, without hypocaloric diet, can show beneficial effects to reduce visceral adipose tissue with more than 30 cm(2 (on CT analysis in women and more than 40 cm(2 in men, even after 12 weeks.

  13. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  14. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  15. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  16. Endurance training changes in lipolytic responsiveness of obese adipose tissue.

    Science.gov (United States)

    De Glisezinski, I; Crampes, F; Harant, I; Berlan, M; Hejnova, J; Langin, D; Rivière, D; Stich, V

    1998-12-01

    The aim of this study was to investigate the effect of aerobic exercise training on the lipolytic response of adipose tissue in obese subjects. Thirteen men (body mass index = 36.9 +/- 1.3 kg/m2) were submitted to aerobic physical training on a cycloergometer (30-45 min, 4 days a wk) for 3 mo. Adipocyte sensitivity to the action of catecholamines and insulin was studied in vitro before and after training. Training induced a decrease in the percentage of fat mass (P < 0.05) without changing the body weight. Basal lipolysis and hormone-sensitive lipase activity were significantly decreased after training (P < 0.05). The lipolytic effects of epinephrine, isoprenaline (beta-adrenoceptor agonist), and dobutamine (beta1-adrenoceptor agonist) were significantly increased (P < 0.05) but not those of procaterol (beta2-adrenoceptor agonist). The antilipolytic effects of alpha2-adrenoceptor and insulin were significantly decreased (P < 0.05). Lipolysis stimulation by agents acting at the postreceptor level was unchanged after training. In conclusion, aerobic physical training in obese male subjects modifies adipose tissue lipolysis through an enhancement of beta-adrenergic response and a concomitant blunting of adipocyte antilipolytic activity.

  17. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  18. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    Background: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). Results: We analyzed the postnatal transformation of adipose in sheep....... Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...

  19. Adipose tissue-targeted 11β-hydroxysteroid dehydrogenase type 1 inhibitor protects against diet-induced obesity.

    Science.gov (United States)

    Liu, Juan; Wang, Long; Zhang, Aisen; Di, Wenjuan; Zhang, Xiao; Wu, Lin; Yu, Jing; Zha, Juanmin; Lv, Shan; Cheng, Peng; Hu, Miao; Li, Yujie; Qi, Hanmei; Ding, Guoxian; Zhong, Yi

    2011-01-01

    Current pharmacological treatments for obesity and metabolic syndrome have various limitations. Recently, adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been proposed as a novel therapeutic target for the treatment of obesity and metabolic syndrome. Nevertheless, there is no adipose tissue-targeted 11β-HSD1 inhibitor available now. We sought to develop a new 11β-HSD1 pharmacological inhibitor that homes specifically to the white adipose tissue and aimed to investigate whether adipose tissue-targeted 11β-HSD1 inhibitor might decrease body weight gain and improve glucose tolerance in diet-induced obesity mice. BVT.2733, an 11β-HSD1 selective inhibitor was connected with a peptide CKGGRAKDC that homes to white fat vasculature. CKGGRAKDC-BVT.2733 (T-BVT) or an equimolar mixture of CKGGRAKDC and BVT.2733 (NT-BVT) was given to diet-induced obesity mice for two weeks through subcutaneous injection. T-BVT decreased body weight gain, improved glucose tolerance and decreased adipocyte size compared with vehicle treated mice. In adipose tissue T-BVT administration significantly increased adiponectin, vaspin mRNA levels; In liver T-BVT administration decreased the mRNA level of phosphoenolpyruvate carboxykinase (PEPCK), increased the mRNA levels of mitochondrial carnitine palmi-toyltransferase-I (mCPT-I) and peroxisome proliferator-activated receptorα(PPARα). No significant differences in adipocyte size and hepatic gene expression were observed after treatment with NT-BVT compared with vehicle treated mice, though NT-BVT also decreased body weight gain, improved glucose tolerance, and increased uncoupling protein-2 (UCP-2) mRNA levels in muscle. These results suggest that an adipose tissue-targeted pharmacological inhibitor of 11β-HSD1 may prove to be a new approach for the treatment of obesity and metabolic syndrome.

  20. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  1. Intramuscular Adipose Tissue, Sarcopenia, and Mobility Function in Older Individuals

    Directory of Open Access Journals (Sweden)

    Robin L. Marcus

    2012-01-01

    Full Text Available Objective. Intramuscular adipose tissue (IMAT and sarcopenia may adversely impact mobility function and physical activity. This study determined the association of locomotor muscle structure and function with mobility function in older adults. Method. 109 older adults with a variety of comorbid disease conditions were examined for thigh muscle composition via MRI, knee extensor strength via isometric dynamometry, and mobility function. The contribution of strength, quadriceps lean tissue, and IMAT to explaining the variability in mobility function was examined using multivariate linear regression models. Results. The predictors as a group contributed 27–45% of the variance in all outcome measures; however, IMAT contributed between 8–15% of the variance in all four mobility variables, while lean explained only 5% variance in only one mobility measure. Conclusions. Thigh IMAT, a newly identified muscle impairment appears to be a potent muscle variable related to the ability of older adults to move about in their community.

  2. Treatment with FGFR2-IIIc monoclonal antibody suppresses weight gain and adiposity in KKAy mice

    Science.gov (United States)

    Nonogaki, K; Kaji, T; Yamazaki, T; Murakami, Mari

    2016-01-01

    Expression of β-Kotho, fibroblast growth factor receptor (FGFR)-1c and 2c, which bind FGF21, is decreased in the white adipose tissue of obese mice. The aim of the present study was to determine the role of FGFR2c in the development of obesity and diabetes in KKAy mice. Treatment with mouse monoclonal FGFR2-IIIc antibody (0.5 mg kg−1) significantly suppressed body weight gain and epididymal white adipose tissue weight in individually housed KKAy mice while having no effect on daily food intake. In addition, treatment with FGFR2-IIIc antibody significantly increased plasma-free fatty acid levels while having no effect on blood glucose or plasma FGF21 levels. Moreover, treatment with FGFR2-IIIc antibody had no significant effect on the expression of uncoupling protein-1, uncoupling protein-2 or peroxisome proliferator-activated receptor-γ coactivator 1α in the epididymal white adipose tissue. The treatment with FGFR2-IIIc antibody had no significant effects on daily food intake and body weight gain in individually housed KK mice. These findings suggest that FGFR2-IIIc upregulates the adiposity induced by social isolation in KKAy mice, and that decreased expression and/or function of FGFR2c might be a compensatory response to enhanced adiposity. Inhibition of FGFR2-IIIc function might be a novel therapeutic approach for obesity. PMID:27892934

  3. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    Science.gov (United States)

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.

  4. The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels.

    Science.gov (United States)

    Barnard, Sunelle A; Pieters, Marlien; De Lange, Zelda

    2016-11-01

    Increased plasma plasminogen activator inhibitor-1 (PAI-1) level is considered a mechanistic pathway through which obesity contributes to increased cardiovascular disease risk. Abdominal adipose tissue specifically, is a major PAI-1 source with visceral adipose tissue (VAT), an ectopic fat depot, generally considered to produce more PAI-1 than subcutaneous adipose tissue. However, this does not necessarily lead to increased plasma PAI-1 levels. This review provides an overview of studies investigating the association between body fat distribution and plasma PAI-1 levels. It discusses factors that influence this relationship and also considers the contribution of other tissue to plasma PAI-1 levels, placing the relative contribution of adipose tissue into perspective. In conclusion, the relationship between VAT and plasma PAI-1 levels is not fixed but can be modulated by a number of factors such as the size of the subcutaneous adipose tissue depot, ethnicity, possibly genetics and other obesity-related metabolic abnormalities.

  5. Study on heterogeneity between visceral adipose tissue and subcutaneous adipose tissue%内脏和皮下脂肪组织的异质性探讨

    Institute of Scientific and Technical Information of China (English)

    李顺昌

    2015-01-01

    [Summary] The increasing prevalence of obesity has led to extensive research on white adipose tissue. Currently ,functional differences among white adipose tissue depots have become clear ,especially between visceral adipose tissue (VAT ) and subcutaneous adipose tissue (SAT ). This article will review the heterogeneity of distribution ,structure ,function ,influence factors ,measurement methods and metabolic properties between VAT and SAT.%随着肥胖患病率的增加,对白色脂肪组织的研究受到关注。不同部位的白色脂肪组织有功能异质性,特别是内脏和皮下脂肪组织。本文从二者的分布、解剖、功能、影响因素及内分泌功能等方面作一综述。

  6. Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Dizaji Asl, Khadijeh; Shafaei, Hajar; Soleimani Rad, Jafar; Nozad, Hojjat Ollah

    2017-01-01

    BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics of AM-MSC and ASCs and CD271 expression were compared. METHODS Adult adipose tissue samples were obtained from patients undergoing elective surgical procedure, and samples of amniotic membrane were collected immediately after caesarean operation. After isolation and expansion of MSCs, the proliferation rate and viability of cells were evaluated through calculating DT and MTT assay. Expression of routine mesenchymal specific surface antigens of MSCs and CD271 was evaluated by flow cytometry for both types of cells. RESULTS The growth rate and viability of the MSCs from the amniotic membrane was significantly higher compared with the ASCs. The low expression of CD14 and CD45 indicated that AM-MSC and ASCs are non hematopoietic cells, and both cell types expressed high percentages of CD44, CD105. The results revealed that AM-MSC and ASCs expressed no CD271 on their surfaces. CONCLUSION This study showed that amniotic membrane is a suitable cell source for cell therapy, and CD271 is a negative marker for MSCs identification from amniotic membrane and adipose tissue.

  7. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity.

    Science.gov (United States)

    Blüher, Matthias; Engeli, Stefan; Klöting, Nora; Berndt, Janin; Fasshauer, Mathias; Bátkai, Sándor; Pacher, Pál; Schön, Michael R; Jordan, Jens; Stumvoll, Michael

    2006-11-01

    The endocannabinoid system has been suspected to contribute to the association of visceral fat accumulation with metabolic diseases. We determined whether circulating endocannabinoids are related to visceral adipose tissue mass in lean, subcutaneous obese, and visceral obese subjects (10 men and 10 women in each group). We further measured expression of the cannabinoid type 1 (CB(1)) receptor and fatty acid amide hydrolase (FAAH) genes in paired samples of subcutaneous and visceral adipose tissue in all 60 subjects. Circulating 2-arachidonoyl glycerol (2-AG) was significantly correlated with body fat (r = 0.45, P = 0.03), visceral fat mass (r = 0.44, P = 0.003), and fasting plasma insulin concentrations (r = 0.41, P = 0.001) but negatively correlated to glucose infusion rate during clamp (r = 0.39, P = 0.009). In visceral adipose tissue, CB(1) mRNA expression was negatively correlated with visceral fat mass (r = 0.32, P = 0.01), fasting insulin (r = 0.48, P endocannabinoid system in human obesity. Thus, the endocannabinoid system may represent a primary target for the treatment of abdominal obesity and associated metabolic changes.

  8. Evaluation of reference genes for gene expression studies in human brown adipose tissue.

    Science.gov (United States)

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values genes identified by microarray displayed an even lower variability (M-values genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT.

  9. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    Science.gov (United States)

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function.

  10. Hypoxic Living and Exercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats

    Science.gov (United States)

    Lu, Yingli; Feng, Lianshi; Xie, Minhao; Zhang, Li; Xu, Jianfang; He, Zihong; You, Tongjian

    2016-01-01

    Background: Hypobaric hypoxia results in weight loss in obese individuals, and exercise training is advocated for the treatment of obesity and its related metabolic dysfunctions. The purpose of this study was to investigate the effects of hypoxic living and exercise training on obesity and adipose tissue leptin/leptin receptor in dietary-induced obese rats. Methods: One hundred and thirty high-fat diet fed Sprague-Dawley rats were assigned into one of the following groups (n = 10 each): control, sedentary hypoxic living for 1–4 weeks (SH1, SH2, SH3, and SH4), living, and exercise training in normoxic conditions for 1–4 weeks (TN1, TN2, TN3, and TN4), and living and exercise training in hypoxic conditions for 1–4 weeks (TN1, TN2, TN3, and TN4). Epididymal adipose tissue expression levels of leptin and leptin receptor were determined Results: Compared to hypoxic living and living and exercise training in normoxic conditions, living and exercise training in hypoxic conditions for 3–4 weeks resulted in lower Lee index (P exercise training in hypoxic conditions resulted in greater alterations in obesity and adipose tissue leptin/leptin receptor than hypoxic living alone and living and exercise training in normoxic conditions. PMID:27932989

  11. Culture of human adipose tissue explants leads to profound alteration of adipocyte gene expression.

    Science.gov (United States)

    Gesta, S; Lolmède, K; Daviaud, D; Berlan, M; Bouloumié, A; Lafontan, M; Valet, P; Saulnier-Blache, J S

    2003-03-01

    Primary culture of adipose tissue has often been used to investigate pharmacological and nutritional regulation of adipocyte gene expression. Possible alteration of adipocyte gene expression by primary culture on its own has not been explored in detail. In order to address this issue, explants were prepared from human subcutaneous adipose tissue recovered from plastic surgery and maintained for 0 to 48 h in DMEM supplemented with 10 % serum. At different time points, adipocytes were isolated from the explants by collagenase digestion, and mRNA expression and lipolysis were studied. Culture was associated with an accumulation of tumor necrosis factor-alpha (TNFalpha) in the culture medium, an increase in anaerobic glycolysis, and an increase in the basal lipolysis. In parallel, a rapid and dramatic decrease in the level of mRNA encoding for several adipocyte-specific proteins such as adipocyte lipid-binding protein, hormone-sensitive lipase, lipoprotein lipase, and peroxisome proliferation activating receptor-gamma2 was observed in isolated adipocytes. These downregulations were reminiscent of a dedifferentiation process. In parallel, primary culture was associated with an increase in adipocyte beta-actin, TNFalpha, glucose transporter-1 and hypoxia-induced factor-1alpha mRNAs. Treatment of explants with agents that increase cAMP (isobutylmethylxanthine and forskolin) prevented TNFalpha production and expression and culture-induced alterations of adipocyte gene expression. These data show that primary culture of human adipose tissue explants dramatically alters adipocyte gene expression.

  12. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Batchuluun, Battsetseg, E-mail: battsetseg.batchuluun@gmail.com [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sugiyama, Naonobu, E-mail: nao1@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kobayashi, Kunihisa, E-mail: nihisak@fukuoka-u.ac.jp [Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502 (Japan); Sonoda, Noriyuki, E-mail: noriyuki@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takayanagi, Ryoichi, E-mail: takayana@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  13. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  14. Adipogenesis: new insights into brown adipose tissue differentiation.

    Science.gov (United States)

    Carobbio, Stefania; Rosen, Barry; Vidal-Puig, Antonio

    2013-12-01

    Confirmation of the presence of functional brown adipose tissue (BAT) in humans has renewed interest in investigating the potential therapeutic use of this tissue. The finding that its activity positively correlates with decreased BMI, decreased fat content, and augmented energy expenditure suggests that increasing BAT mass/activity or browning of white adipose tissue (WAT) could be a strategy to prevent or treat obesity and its associated morbidities. The challenge now is to find a safe and efficient way to develop this idea. Whereas BAT has being widely studied in murine models both in vivo and in vitro, there is an urgent need for human cellular models to investigate BAT physiology and functionality from a molecular point of view. In this review, we focus on the latest insights surrounding BAT development and activation in rodents and humans. Then, we discuss how the availability of murine models has been essential to identify BAT progenitors and trace their lineage. Finally, we address how this information can be exploited to develop human cellular models for BAT differentiation/activation. In this context, human embryonic stem and induced pluripotent stem cells-based cellular models represent a resource of great potential value, as they can provide a virtually inexhaustible supply of starting material for functional genetic studies, -omics based analysis and validation of therapeutic approaches. Moreover, these cells can be readily genetically engineered, opening the possibility of generating patient-specific cellular models, allowing the investigation of the influence of different genetic backgrounds on BAT differentiation in pathological or in physiological states.

  15. Vasoconstrictor effect of high FFA/albumin ratios in adipose tissue in vivo

    DEFF Research Database (Denmark)

    Bülow, J; Madsen, J; Astrup, A;

    1985-01-01

    Subcutaneous or perirenal adipose tissue blood flow was measured with the 133Xe-washout technique before and after intravenous injection or infusion of Intralipid in six anesthetized, otherwise intact mongrel dogs. In four anesthetized mongrel puppies adipose tissue blood flow was measured with t...

  16. A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk

    OpenAIRE

    Campbell, Kristin L.; Makar, Karen W.; Kratz, Mario; Foster-Schubert, Karen E.; McTiernan, Anne; Ulrich, Cornelia M.

    2009-01-01

    Examination of adipose tissue biology may provide important insight into mechanistic links for the observed association between higher body fat and risk of several types of cancer, in particular colorectal and breast cancer. We tested two different methods of obtaining adipose tissue from healthy individuals.

  17. Contact with existing adipose tissue is inductive for adipogenesis in matrigel.

    LENUS (Irish Health Repository)

    Kelly, John L

    2006-07-01

    The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.

  18. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis.

    Science.gov (United States)

    Lu, Qiqi; Li, Mingming; Zou, Yu; Cao, Tong

    2014-01-28

    Scaffolds based on decellularized adipose tissue (DAT) are gaining popularity in adipose tissue engineering due to their high biocompatibility and adipogenic inductive property. However, previous studies involving DAT-derived scaffolds have not fully revealed their potentials for in vivo adipose tissue construction. With the aim of developing a more efficient adipose tissue engineering technique based on DAT, in this study, we investigated the in vivo adipogenic potential of a basic fibroblast growth factor (bFGF) delivery system based on heparinized DAT (Hep-DAT). To generate this system, heparins were cross-linked to mouse DATs by using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide and N-Hydroxysuccinimide. The bFGF-binding Hep-DATs were first tested for controlled release ability in vitro and then transplanted subcutaneously. Highly vascularized adipose tissues were formed 6weeks after transplantation. Histology and gene expression analysis revealed that majority of the Hep-DAT scaffolds were infiltrated with host-derived adipose tissues that possessed similar adipogenic and inflammatory gene expression as endogenous adipose tissues. Additionally, strong de novo adipogenesis could also be induced when bFGF-binding Hep-DATs were thoroughly minced and injected subcutaneously. In conclusion, our study demonstrated that bFGF-binding Hep-DAT could be an efficient, biocompatible and injectable adipogenic system for in vivo adipose tissue engineering.

  19. In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Simonsen, L; Stallknecht, Bente

    2001-01-01

    We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdomin...

  20. N-3 polyunsaturated fatty acids in adipose tissue and depression in different age groups from Crete

    NARCIS (Netherlands)

    Mamalakis, G.

    2007-01-01

    In this thesis, the results of cross-sectional studies on the relationship of depression with adipose tissue n-3 polyunsaturated fatty acids have been described. The aim of this thesis is to investigate whether adipose tissue n-3 fatty acids, an objective index or biomarker of long-term or habitual

  1. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  2. Predictors of adipose tissue carotenoid and retinol levels in nine countries: The EURAMIC study

    NARCIS (Netherlands)

    Virtanen, S.M.; Veer, P. van 't; Kok, F.; Kardinaal, A.F.M.; Aro, A.

    1996-01-01

    The adipose tissue carotenoid (alpha-carotene, beta-carotene, and lycopene) and retinol levels and their predictors were determined in 686 male and 339 female middle-aged and elderly subjects from eight European countries and Israel during the years 1991 to 1992. Adipose tissue carotenoid levels in

  3. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    Science.gov (United States)

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  4. Effect of conjugated linoleic acids from beef or industrial hydrogenation on growth and adipose tissue characteristics of rats

    Directory of Open Access Journals (Sweden)

    He Mao L

    2009-04-01

    Full Text Available Abstract Background The conjugated linoleic acid (CLA content of beef can be increased by supplementing appropriate beef cattle diets with vegetable oil or oil seed. Yet the effect of consumption of such beef on adipose tissue characteristics is unclear, thus the study was conducted to compare adipose tissue responses of rats to diets containing beef from steers either not provided or provided the oil supplements to alter CLA composition of the fat in muscle. Methods Effects of feeding synthetic (industrial hydrogenation CLA or CLA from beef on growth and adipose tissue responses of weanling, male, Wistar rats (n = 56; 14 per treatment diet were investigated in a completely randomized design experiment. Diets were: control (CON diet containing casein and soybean oil, synthetic CLA (SCLA diet; where 1.69% synthetic CLA replaced soybean oil, two beef-diets; CONM and CLAM, containing freeze dried beef from steers either not fed or fed 14% sunflower seeds to increase CLA content of beef. Diets were isonitrogenous (20% protein and isocaloric. Rat weights and ad libitum intakes were recorded every 2 wk. After 9 wk, rats were fasted for 24 h, blood sampled by heart puncture, sacrificed, tissue and organs were harvested and weights recorded. The adipose tissue responses with regard to cellularity and fatty acid compositions of retroperitoneal and inguinal adipose tissue were determined. Results Body weights and gains were comparable, but organ weights as percent of body weight were greater for rats fed SCLA than CONM. Fasting blood glucose concentration was lower (p 7 cells/g and 8.03 × 108 cells than those fed CONM (28.88 × 107 cells/g and 32.05 × 108 cells, respectively. Conclusion Study suggests that dietary CLA either as synthetic or high CLA-beef may alter adipose tissue characteristics by decreasing the number of adipocytes and by decreasing the size of the tissue.

  5. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects

    DEFF Research Database (Denmark)

    Asmar, M; Simonsen, L; Arngrim, N

    2013-01-01

    OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) appears to have a role in lipid metabolism. Recently, we showed that GIP in combination with hyperinsulinemia and hyperglycemia increases triglyceride uptake in abdominal, subcutaneous adipose tissue in lean humans. It has been suggested...... that increased GIP secretion in obesity will promote lipid deposition in adipose tissue. In light of the current attempts to employ GIP antagonists in the treatment and prevention of human obesity, the present experiments were performed in order to elucidate whether the adipose tissue lipid metabolism would...... be enhanced or blunted during a GIP, hyperinsulinemic and hyperglycemic (HI-HG) clamp in obese subjects with either normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). DESIGN: Sixteen obese (BMI>30 kg m(-2)) subjects were divided into two groups, based on their plasma glucose response...

  6. Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum.

    Science.gov (United States)

    Sledzinski, Tomasz; Mika, Adriana; Stepnowski, Piotr; Proczko-Markuszewska, Monika; Kaska, Lukasz; Stefaniak, Tomasz; Swierczynski, Julian

    2013-08-01

    Fatty acids containing a cyclopropane ring in their structure (cyclopropane FA) have been found in a wide variety of bacteria, a number of protozoa, and Myriapoda. Little is known about cyclopropane FA in mammal, especially in human tissues. The present study deals with the identification of cyclopropane FA in adipose tissue and serum of humans and rats. Fatty acids extracted from the adipose tissue and serum obtained from obese women during bariatric surgery were methylated and analyzed on GC-MS. We have identified: cyclopropaneoctanoic acid 2-hexyl, cyclopropaneoctanoic acid 2-octyl, cyclopropanenonanoic acid, and 2-[[2-[(2-ethylcyclopropyl)methyl]cyclopropyl]methyl] acid in human adipose tissue. We confirmed the presence of cyclopropaneoctanoic acid 2-hexyl by derivatization of FA extracted from human adipose tissue to picolinyl esters. Cyclopropaneoctanoic acid 2-hexyl was the main cyclopropane FA (approximately 0.4 % of total fatty acids in human adipose tissue, and about 0.2 % of total fatty acids in the serum). In adipose tissue cyclopropaneoctanoic acid 2-hexyl was found mainly in triacylglycerols, whereas in serum in phospholipids and triacylglycerols. The cyclopropaneoctanoic acid 2-hexyl has also been found in serum, and adipose tissue of rats in amounts comparable to humans. The content of cyclopropaneoctanoic acid 2-hexyl decreased in adipose tissue of rats maintained on a restricted diet for 1 month. In conclusion, we demonstrated that cyclopropaneoctanoic acid 2-hexyl is present in human adipose tissue and serum. Adipose tissue cyclopropaneoctanoic acid 2-hexyl is stored mainly in triacylglycerols and the storage of this cyclopropane FA is affected by food restriction.

  7. Effect of propylene glycol on adipose tissue mobilization in postpartum over-conditioned Holstein cows.

    Science.gov (United States)

    Bjerre-Harpøth, V; Storm, A C; Eslamizad, M; Kuhla, B; Larsen, M

    2015-12-01

    Our objective was to investigate the quantitative and qualitative effects of propylene glycol (PG) allocation on postpartum adipose tissue mobilization in over-conditioned Holstein cows. Nine ruminally cannulated and arterially catheterized cows were, at parturition, randomly assigned to a ruminal pulse dose of either 500g of tap water (n=4) or 500g of PG (n=5) once a day. The PG was given with the morning feeding for 4 wk postpartum (treatment period), followed by a 4-wk follow-up period. All cows were fed the same prepartum and postpartum diets. At -16 (±3), 4 (±0), 15 (±1) and 29 (±2) days in milk (DIM), body composition was determined using the deuterium oxide dilution technique, liver and subcutaneous adipose tissue biopsies were collected, and mammary gland nutrient uptake was measured. Weekly blood samples were obtained during the experiment and daily blood samples were taken from -7 to 7 DIM. Postpartum feed intake and milk yield was not affected by PG allocation. The body content of lipid was not affected by treatment, but tended to decrease from 4 to 29 DIM with both treatments. Except for the first week postpartum, no difference in plasma nonesterified fatty acids concentration was noted between treatments in the treatment period. Yet, PG allocation resulted in decreased plasma concentrations of β-hydroxybutyrate (BHB) and increased plasma concentrations of glucose. In the follow-up period, plasma concentrations of nonesterified fatty acids, glucose, and BHB did not differ between treatments. Additionally, the change in abundance of proteins in adipose tissue biopsies from prepartum to 4 DIM was not affected by treatment. In conclusion, the different variables to assess body fat mobilization were concurrent and showed that a 4-wk postpartum PG allocation had limited effect on adipose tissue mobilization. The main effect was an enhanced glucogenic status with PG. No carry-over effect of PG allocation was recorded for production or plasma metabolites

  8. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Galbo, H

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging....... Adipose tissue fluxes of glycerol, non-esterified fatty acids (NEFA), triacylglycerol and glucose were measured by Fick's principle after catherisation of a radial artery and a vein draining the abdominal, subcutaneous adipose tissue.Results:ATBF increased similarly in both groups during the adrenaline...

  9. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise

    DEFF Research Database (Denmark)

    Stich, V; de Glisezinski, I; Berlan, M;

    2000-01-01

    The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate...... leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were...... levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated...

  10. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... levels of IL-6, TNF-a and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar...... in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited...

  11. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity.

    Science.gov (United States)

    Kraunsøe, Regitze; Boushel, Robert; Hansen, Christina Neigaard; Schjerling, Peter; Qvortrup, Klaus; Støckel, Mikael; Mikines, Kári J; Dela, Flemming

    2010-06-15

    Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.

  12. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    Science.gov (United States)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  13. Ovariectomy and overeating palatable, energy-dense food increase subcutaneous adipose tissue more than intra-abdominal adipose tissue in rats

    Directory of Open Access Journals (Sweden)

    Gloy Viktoria

    2011-05-01

    Full Text Available Abstract Background Menopause is associated with increased adiposity, especially increased deposition of intra-abdominal (IA adipose tissue (AT. This differs from common or 'dietary' obesity, i.e., obesity apparently due to environmentally stimulated overeating, in which IAAT and subcutaneous (S AT increase in similar proportions. The effect of menopause on adiposity is thought to be due to the decreased secretion of ovarian estrogens. Ovariectomy in rats and other animals is a commonly used model of menopause. It is well known that ovariectomy increases adiposity and that this can be reversed by estradiol treatment, but whether ovariectomy selectively increases IAAT has not been measured directly. Therefore, we used micro-computed tomography (microCT to investigate this question in both chow-fed and dietary-obese rats. Methods Ovariectomized, ovariectomized and estradiol treated, and sham-operated (intact rats were fed chow or chow plus Ensure (Abbott Nutrition; n = 7/group. Total (T AT, IAAT and SAT were measured periodically by microCT. Regional distribution of AT was expressed as IAAT as a percentage of TAT (%IAAT. Excesses in these measures were calculated with respect to chow-fed intact rats to control for normal maturational changes. Chemical analysis of fat was done in chow-fed intact and ovariectomized rats at study end. Data were analyzed by t-tests and planned comparisons. Results Body mass, TAT, total fat mass, fat-free body mass, and %IAAT all increased in chow-fed intact rats during the 41 d study. In chow-fed rats, ovariectomy increased excess body mass, TAT, fat mass, fat-free body mass, and SAT, but had little effect on IAAT, in chow-fed rats, leading to a decrease in %IAAT. Ensure feeding markedly increased SAT, IAAT and TAT and did not significantly affect %IAAT. Ovariectomy had similar effects in Ensure-fed rats as in chow-fed rats, although less statistically reliable. Estradiol treatment prevented all the effects of

  14. Adipose tissue resistin gene expression in DIO and DR rats

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Zhao; Yuhui Ni; Xirong Guo; Haixia Gong; Xia Chi; Ronghua Chen

    2006-01-01

    Objective: To investigate the expression of resistin gene in diet-induced obesity (DIO) and diet resistance (DR)rats. Methods: DIO and DR models were prepared with male SD rats after 6 weeks feeding by a diet of relatively high fat, sucrose, and caloric content (HE diet). Body-weight, fat mass, and the concentration of serum insulin were measured, and the expression of resistin and Peroxisome proliferator-activated receptory-γ(PPAR-γ) gene in whit adipose tissue (WAT) was also detected by RT-PCR. Results: ①Body weight, fat mass and the concentration of serum insulin were significantly increased in DIO rats and decreased in DR rats. ② The expression of resistin and PPARγ gene was upregulated in DIO group and supressed in DR group, but the expression of resistin was not detectable in all samples within three groups. Conclusion: Resistin may serve as a link between obesity and insulin resistance, but the individual difference is enormous.

  15. Protein turnover in adipose tissue from fasted or diabetic rats

    Science.gov (United States)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  16. Evidence for two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Dahlqvist Leinhard, Olof; Heglind, Mikael; Elander, Louise; Slawik, Marc; Mussack, Thomas; Nilsson, Daniel; Romu, Thobias; Nuutila, Pirjo; Virtanen, Kirsi A; Beuschlein, Felix; Persson, Anders; Borga, Magnus; Enerbäck, Sven

    2013-05-01

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  17. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper;

    OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from...

  18. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper;

    2016-01-01

    OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from...

  19. Cytokine-Rich Adipose Tissue Extract Production from Water-Assisted Lipoaspirate: Methodology for Clinical Use

    Science.gov (United States)

    Lopez, Jenny; Huttala, Outi; Sarkanen, Jertta-Riina; Kaartinen, Ilkka; Kuokkanen, Hannu; Ylikomi, Timo

    2016-01-01

    Abstract Proper functioning wound healing strategies are sparse. Adequate vascular formation to the injured area, as well as replacement of the volume loss, is fundamental in soft tissue repair. Tissue engineering strategies have been proposed for the treatment of these injury sites. Novel cell-free substance, human adipose tissue extract (ATE), has been previously shown to induce in vitro angiogenesis and adipogenesis and in vivo soft tissue formation. This study reports the translation of ATE preparation from laboratory to the operating room (OR). ATE samples for this study were derived from adipose tissue obtained with the water-jet assisted liposuction technique from 27 healthy patients. The variables studied included incubation time (15, 30, and 45 min), temperature (room temperature vs. 37°C), and filter type to determine the optimal method yielding the most consistent total protein content, as well as consistent and high expression of adipose-derived growth factors and cytokines, including: vascular endothelial growth factor, basic fibroblast growth factor, interleukin-6, adiponectin, leptin, and insulin-like growth factor. Following the optimization, samples were produced in the OR and tested for their sterility. No significant differences were observed when comparing extract incubation time points or incubation temperature. Nonetheless, when studying the different filter types used, a syringe filter with PES membrane with larger filter area showed significantly higher protein concentration (p ≤ 0.018). When studying the different growth factor concentrations, ELISA results showed less variation in cytokine concentrations in the OR samples with the optimized protocol. All of the OR samples were tested sterile. The devised protocol is an easy and reproducible OR-ready method for ATE generation. As an attractive source of growth factors, ATE is a promising alternative in the vast field of tissue engineering. Its clinical applications include volume

  20. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue

    Science.gov (United States)

    Yin, Jun; Gao, Zhanguo; He, Qing; Zhou, Dequan; Guo, ZengKui; Ye, Jianping

    2009-01-01

    Recent studies suggest that adipose tissue hypoxia (ATH) may contribute to endocrine dysfunction in adipose tissue of obese mice. In this study, we examined hypoxia's effects on metabolism in adipocytes. We determined the dynamic relationship of ATH and adiposity in ob/ob mice. The interstitial oxygen pressure (Po2) was monitored in the epididymal fat pads for ATH. During weight gain from 39.5 to 55.5 g, Po2 declined from 34.8 to 20.1 mmHg, which are 40–60% lower than those in the lean mice. Insulin receptor-β (IRβ) and insulin receptor substrate-1 (IRS-1) were decreased in the adipose tissue of obese mice, and the alteration was observed in 3T3-L1 adipocytes after hypoxia (1% oxygen) treatment. Insulin-induced glucose uptake and Akt Ser473 phosphorylation was blocked by hypoxia in the adipocytes. This effect of hypoxia exhibited cell type specificity, as it was not observed in L6 myotubes and βTC6 cells. In response to hypoxia, free fatty acid (FFA) uptake was reduced and lipolysis was increased in 3T3-L1 adipocytes. The molecular mechanism of decreased fatty acid uptake may be related to inhibition of fatty acid transporters (FATP1 and CD36) and transcription factors (PPARγ and C/EBPα) by hypoxia. The hypoxia-induced lipolysis was observed in vivo after femoral arterial clamp. Necrosis and apoptosis were induced by hypoxia in 3T3-L1 adipocytes. These data suggest that ATH may promote FFA release and inhibit glucose uptake in adipocytes by inhibition of the insulin-signaling pathway and induction of cell death. PMID:19066318

  1. Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients.

    Science.gov (United States)

    Qatanani, Mohammed; Tan, Yejun; Dobrin, Radu; Greenawalt, Danielle M; Hu, Guanghui; Zhao, Wenqing; Olefsky, Jerrold M; Sears, Dorothy D; Kaplan, Lee M; Kemp, Daniel M

    2013-03-01

    Obesity is associated with insulin resistance, a major risk factor for type 2 diabetes and cardiovascular disease. However, not all obese individuals are insulin resistant, which confounds our understanding of the mechanistic link between these conditions. We conducted transcriptome analyses on 835 obese subjects with mean BMI of 48.8, on which we have previously reported genetic associations of gene expression. Here, we selected ~320 nondiabetic (HbA(1c) immune response and inflammation-related genes were significantly downregulated in the omental adipose tissue of obese individuals with extreme insulin sensitivity and, to a much lesser extent, in subcutaneous adipose tissue. In contrast, genes related to β-oxidation and the citric acid cycle were relatively overexpressed in adipose of insulin-sensitive patients. These observations were verified by querying an independent cohort of our published dataset of 37 subjects whose subcutaneous adipose tissue was sampled before and after treatment with thiazolidinediones. Whereas the immune response and inflammation pathway genes were downregulated by thiazolidinedione treatment, β-oxidation and citric acid cycle genes were upregulated. This work highlights the critical role that omental adipose inflammatory pathways might play in the pathophysiology of insulin resistance, independent of body weight.

  2. Bofutsushosan ameliorates obesity in mice through modulating PGC-la expression in brown adipose tissues and inhibiting inflammation in white adipose tissues

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-Ying; YAN Yan; ZHAO Zheng; SHI Mei-Jing; ZHANG Yu-Bin

    2016-01-01

    The inducible co-activator PGC-1a plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT).Meanwhile,chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity.Bofutsushosan (BF),a traditional Chinese medicine composed of 17 crude drugs,has been widely used to treat obesity in China,Japan,and other Asia countries.However,the mechanism underlying anti-obesity remains to be elucidated.In the present study,we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05),including blood glucose (Glu),total cholesterol (TC),triglyceride (TG),low density lipoprotein (LDL-C) and insulin.Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT.Moreover,BF also reduced the expression of inflammatory cytokines in WAT,such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  3. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    Science.gov (United States)

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  4. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner.

    Science.gov (United States)

    Long, Eric K; Olson, Dalay M; Bernlohr, David A

    2013-10-01

    Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC-MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.

  5. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum.

    Science.gov (United States)

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-06-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.

  6. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  7. Role of developmental transcription factors in white, brown and beige adipose tissues.

    Science.gov (United States)

    Hilton, Catriona; Karpe, Fredrik; Pinnick, Katherine E

    2015-05-01

    In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.

  8. Interleukin-15 modulates adipose tissue by altering mitochondrial mass and activity.

    Directory of Open Access Journals (Sweden)

    Nicole G Barra

    Full Text Available Interleukin-15 (IL-15 is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg, overweight IL-15 deficient (IL-15-/-, and control C57Bl/6 (B6 mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15-/- mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function.

  9. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  10. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    Science.gov (United States)

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  11. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  12. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: NoD.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  16. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  17. File list: NoD.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  20. The effect of exercise on regional adipose tissue and splanchnic lipid metabolism in overweight type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Simonsen, L; Henriksen, O; Enevoldsen, L H

    2004-01-01

    To test the hypothesis that adipose tissue lipolysis is enhanced in patients with Type 2 diabetes mellitus, we examined the effect of exercise on regional adipose tissue lipolysis and fatty acid mobilisation and measured the acute effects of exercise on the co-ordination of adipose tissue...

  1. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    Science.gov (United States)

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue.

  2. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues

    OpenAIRE

    Shen, Jie-fei; Sugawara, Atsunori; Yamashita, Joe; Ogura, Hideo; Sato, Soh

    2011-01-01

    When adipose-derived stem cells (ASCs) are retrieved from the stromal vascular portion of adipose tissue, a large amount of mature adipocytes are often discarded. However, by modified ceiling culture technique based on their buoyancy, mature adipocytes can be easily isolated from the adipose cell suspension and dedifferentiated into lipid-free fibroblast-like cells, named dedifferentiated fat (DFAT) cells. DFAT cells re-establish active proliferation ability and undertake multipotent capaciti...

  3. Sugar-sweetened and diet beverages in relation to visceral adipose tissue

    OpenAIRE

    Odegaard, Andrew O.; Choh, Audrey C.; Czerwinski, Stefan A; TOWNE, BRADFORD; Demerath, Ellen W.

    2011-01-01

    Frequent sugar-sweetened beverage (SSB) intake has been consistently associated with increased adiposity and cardio-metabolic risk, whereas the association with diet beverages is more mixed. We examined how these beverages associate with regional abdominal adiposity measures, specifically visceral adipose tissue (VAT). In a cross-sectional analysis of 791 non-Hispanic white men and women aged 18-70 we examined how beverage consumption habits obtained from a food frequency questionnaire associ...

  4. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose......Background: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). Results: We analyzed the postnatal transformation of adipose in sheep...... with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial...

  5. Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women.

    Science.gov (United States)

    Michaud, Andréanne; Drolet, Renée; Noël, Suzanne; Paris, Gaëtan; Tchernof, André

    2012-05-01

    We tested the hypothesis that visceral obesity is the best correlate of abdominal adipose tissue macrophage infiltration in women. Omental and subcutaneous fat samples were surgically obtained from 40 women (age, 47.0 ± 4.0 years; body mass index, 28.4 ± 5.8 kg/m(2)). CD68+ cells were identified using fluorescence immunohistochemistry. Expression of macrophage markers was measured by real-time reverse transcriptase polymerase chain reaction. Body composition and fat distribution were measured by dual-energy x-ray absorptiometry and computed tomography, respectively. Mean CD68+ cell percentage tended to be higher in subcutaneous (18.3%) compared with omental adipose tissue (15.5%, P = .07). Positive correlations were observed between CD68+ cell percentage as well as CD68 messenger RNA expression in a given depot vs the other (P ≤ .01). Visceral adipose tissue area and omental adipocyte diameter were positively related to CD68+ cell percentage in omental fat (r = 0.52 and r = 0.35, P ≤ .05). Total and visceral adipose tissue areas as well as subcutaneous adipocyte diameter were significantly correlated with CD68+ cell percentage in subcutaneous adipose tissue (0.32 ≤ r ≤ 0.40, P ≤ .05). Adipose tissue areas and subcutaneous adipocyte diameter were also significantly associated with expression of commonly used macrophage markers including CD68 in the subcutaneous fat compartment (0.32 ≤ r ≤ 0.57, P ≤ .05). Visceral adipose tissue area was the best correlate of CD68+ cell percentage in both omental and subcutaneous fat tissues, explaining, respectively, 20% and 12% of the variance in models also including subcutaneous adipose tissue area, adipocyte sizes, and total body fat mass. Visceral adipose tissue accumulation is the best correlate of macrophage infiltration in both the subcutaneous and omental fat compartments of lean to obese women.

  6. Obtaining freshly isolated and cultured mesenchymal stem cells from human adipose tissue.

    Science.gov (United States)

    Boquest, Andrew C; Collas, Philippe

    2012-01-01

    The stromal compartment of adipose tissue harbors mesenchymal stem cells (MSCs) (also called stromal stem cells) that display extensive proliferative capacity and multilineage differentiation potential. Such cells offer a practical avenue of generating patient-matched tissue for use in regenerative medicine. It is relatively easy to isolate these cells from adipose tissue in large enough quantities (tens of millions) to allow for their clinical use in a native, uncultured form. Alternatively, MSCs from adipose tissue can be expanded and differentiated into the desired tissue type in vitro using straightforward cell culture techniques. In this chapter, we outline procedures for isolating large numbers of highly purified MSCs from human adipose tissue in their native, uncultured form and methods for their subsequent expansion and differentiation in vitro.

  7. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location.

    Science.gov (United States)

    Hausman, G J; Basu, U; Wei, S; Hausman, D B; Dodson, M V

    2014-02-01

    Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.

  8. When fat becomes an ally of the enemy: adipose tissue as collaborator in human breast cancer.

    Science.gov (United States)

    Lapeire, Lore; Denys, Hannelore; Cocquyt, Véronique; De Wever, Olivier

    2015-07-01

    Since the discovery of leptin in 1994, our vision of adipose tissue as a static organ regulating mainly lipid storage and release has been completely overthrown, and adipose tissue is now seen as an active and integral organ in human physiology. In the past years, extensive research has tremendously given us more insights in the mechanisms and pathways involved not only in normal but also in 'sick' adipose tissue, for example, in obesity and lipodystrophy. With growing evidence of a link between obesity and several types of cancer, research focusing on the interaction between adipose tissue and cancer has begun to unravel the interesting but complex multi-lateral communication between the different players. With breast cancer as one of the first cancer types where a positive correlation between obesity and breast cancer incidence and prognosis in post-menopausal women was found, we have focused this review on the paracrine and endocrine role of adipose tissue in breast cancer initiation and progression. As important inter-species differences in adipose tissue occur, we mainly selected human adipose tissue- and breast cancer-based studies with a short reflection on therapeutic possibilities. This review is part of the special issue on "Adiposopathy in Cancer and (Cardio)Metabolic Diseases".

  9. Alcohol, Adipose Tissue and Lipid Dysregulation

    Directory of Open Access Journals (Sweden)

    Jennifer L. Steiner

    2017-02-01

    Full Text Available Chronic alcohol consumption perturbs lipid metabolism as it increases adipose tissue lipolysis and leads to ectopic fat deposition within the liver and the development of alcoholic fatty liver disease. In addition to the recognition of the role of adipose tissue derived fatty acids in liver steatosis, alcohol also impacts other functions of adipose tissue and lipid metabolism. Lipid balance in response to long‐term alcohol intake favors adipose tissue loss and fatty acid efflux as lipolysis is upregulated and lipogenesis is either slightly decreased or unchanged. Study of the lipolytic and lipogenic pathways has identified several regulatory proteins modulated by alcohol that contribute to these effects. Glucose tolerance of adipose tissue is also impaired by chronic alcohol due to decreased glucose transporter‐4 availability at the membrane. As an endocrine organ, white adipose tissue (WAT releases several adipokines that are negatively modulated following chronic alcohol consumption including adiponectin, leptin, and resistin. When these effects are combined with the enhanced expression of inflammatory mediators that are induced by chronic alcohol, a proinflammatory state develops within WAT, contributing to the observed lipodystrophy. Lastly, while chronic alcohol intake may enhance thermogenesis of brown adipose tissue (BAT, definitive mechanistic evidence is currently lacking. Overall, both WAT and BAT depots are impacted by chronic alcohol intake and the resulting lipodystrophy contributes to fat accumulation in peripheral organs, thereby enhancing the pathological state accompanying chronic alcohol use disorder.

  10. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Science.gov (United States)

    Wojciechowicz, Kamila; Gledhill, Karl; Ambler, Carrie A; Manning, Craig B; Jahoda, Colin A B

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  11. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Directory of Open Access Journals (Sweden)

    Kamila Wojciechowicz

    Full Text Available The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16 the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis, under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  12. Subcutaneous adipose tissue blood flow in the forefoot during 24 hours. Labeling pattern and reproducibility

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J; Tønnesen, K H

    1987-01-01

    Wash-out of 133xenon from a local depot in the subcutaneous adipose tissue in the forefoot was measured continuously during 24 hours on subsequent recordings in 51 feet (normal circulation: 10, intermittent claudication: 22 and ischaemic nocturnal rest pain: 19) with a mean time interval of 26 da...... was calculated to 10%, and for the ratio of blood flow from day to night to 5%. The method is thus considered apt as a monitor in the treatment of peripheral vascular disease, for example, surgery and medical therapy. As predominant source of error is the formation of oedema....

  13. Molecular imaging of brown adipose tissue in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bauwens, Matthias [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Maastricht University, Research School NUTRIM, Maastricht (Netherlands); Wierts, Roel; Brans, Boudewijn [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Royen, Bart van; Backes, Walter [MUMC, Department of Medical Imaging, Division of Radiology, Maastricht (Netherlands); Bucerius, Jan [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany); Maastricht University, Research School CARIM, Maastricht (Netherlands); Mottaghy, Felix [MUMC, Department of Medical Imaging, Division of Nuclear Medicine, Maastricht (Netherlands); Uniklinikum Aachen, Division of Nuclear Medicine, Aachen (Germany)

    2014-04-15

    Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, {sup 18}F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to {sup 18}F-FDG, other radiopharmaceuticals such as {sup 99m}Tc-sestamibi, {sup 123}I-metaiodobenzylguanidine (MIBG), {sup 18}F-fluorodopa and {sup 18}F-14(R,S)-[{sup 18}F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity. (orig.)

  14. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    Science.gov (United States)

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  15. Influence of age and position on the CT number of adipose tissues in pigs.

    Science.gov (United States)

    McEvoy, Fintan J; Madsen, Mads T; Svalastoga, Eiliv L

    2008-10-01

    The location of adipose tissue depots is important in determining their significance. Research into the physical and chemical differences between these depots is therefore of interest. Using image analysis, this paper examines the influence of location on the linear attenuation coefficient of adipose tissue for X-rays, in computed tomography (as indicated by CT number) at three time points. Nine pigs were CT scanned on three separate occasions approximately 1 month apart. The mean CT number was -78, -100, and -104 for visceral adipose tissue (VAT) from the first to the final scan, respectively. The corresponding CT numbers for subcutaneous adipose tissue (SAT) were -80, -101, and -106. There was a significant difference between the CT numbers at each location at each scan (P values from 0.025 to <0.001) and between the CT numbers for each location at different times (P < 0.05). In a separate analysis of the final scan session, the mean CT number of adipose tissue at increasing distances from a mathematically defined center of the animal was determined. Regression analysis showed that the CT number of adipose tissue decreases with increasing distance from the animal's center (y = -102.7 - 0.04 x, P < 0.001, where y is the predicted CT number for adipose tissue, from the animal center (x = 0) to the skin (x = 100)). It can thus be expected that the overall mean CT number for adipose tissue can be used as an indicator of the relative quantities of adipose tissue at each location if the mean for each is known.

  16. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Etsu; Suzuki; Daishi; Fujita; Masao; Takahashi; Shigeyoshi; Oba; Hiroaki; Nishimatsu

    2015-01-01

    Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs), vascular smooth muscle cells(VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissueresident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction(AMI), ischemic cardiomyopathy(ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.

  17. Metabolic disorders and adipose tissue insulin responsiveness in neonatally STZ-induced diabetic rats are improved by long-term melatonin treatment.

    Science.gov (United States)

    de Oliveira, Ariclécio C; Andreotti, Sandra; Farias, Talita da S M; Torres-Leal, Francisco L; de Proença, André R G; Campaña, Amanda B; de Souza, Arnaldo H; Sertié, Rogério A L; Carpinelli, Angelo R; Cipolla-Neto, José; Lima, Fábio B

    2012-05-01

    Diabetes mellitus is a product of low insulin sensibility and pancreatic β-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid

  18. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study.

    NARCIS (Netherlands)

    Kunesova, M.; Hlavaty, P.; Tvrzicka, E.; Stankova, B.; Kalouskova, P.; Viguerie, N.; Larsen, T.M.; van Baak, M.A.; Jebb, S.A.; Martinez, J.A.; Pfeiffer, A.F.; Kafatos, A.; Handjieva Darlenska, T.; Hill, M.; Langin, D.; Zak, A.; Astrup, A.; Saris, W.H.

    2013-01-01

    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. To assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants of the DIOGENES

  19. Diet and adipose tissue distributions: The Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Dietary quality affects cardiometabolic risk, yet its pathways of influence on regional adipose tissue depots involved in metabolic and diabetes risk are not well established. We aimed to investigate the relationship between dietary quality and regional adiposity. We investigated 5079 individuals in...

  20. Peroxisome Proliferator-activated Receptor - Activation Promotes Infiltration of Alternatively Activated Macrophages into Adipose Tissue

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.N.C.; Keshtkar Ghiasabadi, S.; Laak, van der J.; Kersten, A.H.; Müller, M.R.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-

  1. Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue.

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.; Keshtkar, S.; Laak, J. ter; Kersten, S.; Muller, M.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-

  2. Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition

    DEFF Research Database (Denmark)

    McEvoy, Fintan; Madsen, Mads T.; Nielsen, Mai B.;

    2009-01-01

    that CT can be used to measure subcutaneous adipose tissue thickness and identify novel measurement sites that can be used as predictors of general adiposity. Methods Growing pigs (N = 12), were each CT scanned on three occasions. From these data the total volume of adipose tissue was determined...... the limits of the relevant tissues and automated measurements were successfully generated. Two sites on the animal were identified where there was optimal correlation with fat-index. The first of these was located 4 intercostal spaces cranial to the caudal extremity of the last rib, the other, a further 5...

  3. Adipose tissue extracts plasma ammonia after sprint exercise in women and men

    DEFF Research Database (Denmark)

    Esbjörnsson, Mona; Bülow, Jens; Norman, Barbara;

    2006-01-01

    This study evaluates a possible contribution of adipose tissue to the elimination of plasma ammonia (NH(3)) after high-intensity sprint exercise. In 14 healthy men and women, repeated blood samples for plasma NH(3) analyses were obtained from brachial artery and from a subcutaneous abdominal vein...... before and after three repeated 30-s cycle sprints separated by 20 min of recovery. Biopsies from subcutaneous abdominal adipose tissue were obtained and analyzed for glutamine and glutamate content. After exercise, both arterial and abdominal venous plasma NH(3) concentrations were lower in women than...... in men (P adipose tissue. However, the fractional extraction (a...

  4. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice.

    Science.gov (United States)

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia - before severe fat loss - in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34-42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition.

  5. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue.

    Science.gov (United States)

    Gotardo, Érica Martins Ferreira; dos Santos, Aline Noronha; Miyashiro, Renan Akira; Gambero, Sheley; Rocha, Thalita; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2013-01-01

    Since the discovery that hepcidin is expressed in the adipose tissue of obese subjects, attention has been increasingly focused on alterations in iron homeostasis that are associated with adiposity. We examined the production of hepcidin, the expression of hepcidin-related genes and the iron content of the adipose tissue in obesity using Swiss mice fed a high-fat diet (HFD). The mice were maintained on a control diet or HFD for 12 or 24 wk, and body weight, adiposity and glucose homeostasis were evaluated. The expression of several genes (hepcidin, TfR1, TfR2, DMT1, FT-heavy, ferroportin, IRP-1, IRP-2 and HIF-1) and the protein expression of hepcidin and IL-6 were quantified. The iron level was assessed using a Prussian blue reaction in paraffin-embedded tissue. After 24 wk on the HFD, we observed increases in the levels of hepcidin in the serum and the visceral adipose tissue. The IL-6 levels also increased in the visceral adipose tissue. Adipocytes isolated from the visceral adipose tissues of lean and obese mice expressed hepcidin at comparable levels; however, isolated macrophages from the stromal vascular fraction expressed higher hepcidin levels. Adipose tissues from obese mice displayed increased tfR2 expression and the presence of iron. Our results indicate that IL-6 and iron may affect the signaling pathways governing hepcidin expression. Thus, the mice fed HFD for 24 wk represent a suitable model for the study of obesity-linked hepcidin alterations. In addition, hepcidin may play local roles in controlling iron availability and interfering with inflammation in adipose tissue.

  6. Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra J

    2015-11-01

    Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.

  7. Assessing the effect of a high-fat diet on rodents' adipose tissue using Brillouin and Raman spectroscopy

    Science.gov (United States)

    Troyanova-Wood, Maria; Gobbell, Cassidy; Meng, Zhaokai; Yakovlev, Vladislav V.

    2016-03-01

    The purpose of this study is to evaluate the effect of a high-lipid diet on elasticity of adipose tissue. We employed dual Raman/Brillouin microspectroscopy to analyze brown and white adipose tissues obtained from adult rats. The rats were divided into two groups, one of which received a high-fat feed, while the other served as a control. We hypothesized that the changes in the elasticity of adipose tissues between the two groups can be successfully assessed using Brillouin spectroscopy. We found that the brown adipose tissue possessed a lesser Brillouin shift than the white adipose within each group and that the elastic modulus of both adipose tissues increases in the high-fat diet group. The Raman spectra provided supplementary chemical information and indicated an increase in the lipid-to-protein ratio in the brown adipose, but not in the white adipose.

  8. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    Science.gov (United States)

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  9. Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin.

    Science.gov (United States)

    Musumeci, Giuseppe; Lo Furno, Debora; Loreto, Carla; Giuffrida, Rosario; Caggia, Silvia; Leonardi, Rosalia; Cardile, Venera

    2011-11-01

    The present study focused on the isolation, cultivation and characterization of human mesenchymal stem cells (MSCs) from adipose tissue and on their differentiation into chondrocytes through the NH ChondroDiff medium. The main aim was to investigate some markers of biomechanical quality of cartilage, such as lubricin, and collagen type I and II. Little is known, in fact, about the ability of chondrocytes from human MSCs of adipose tissue to generate lubricin in three-dimensional (3D) culture. Lubricin, a 227.5-kDa mucinous glycoprotein, is known to play an important role in articular joint physiology, and the loss of accumulation of lubricin is thought to play a role in the pathology of osteoarthritis. Adipose tissue is an alternative source for the isolation of multipotent MSCs, which allows them to be obtained by a less invasive method and in larger quantities than from other sources. These cells can be isolated from cosmetic liposuctions in large numbers and easily grown under standard tissue culture conditions. 3D chondrocytes were assessed by histology (hematoxylin and eosin) and histochemistry (Alcian blue and Safranin-O/fast green staining). Collagen type I, II and lubricin expression was determined through immunohistochemistry and Western blot. The results showed that, compared with control cartilage and monolayer chondrocytes showing just collagen type I, chondrocytes from MSCs (CD44-, CD90- and CD105- positive; CD45-, CD14- and CD34-negative) of adipose tissue grown in nodules were able to express lubricin, and collagen type I and II, indicative of hyaline cartilage formation. Based on the function of lubricin in the joint cavity and disease and as a potential therapeutic agent, our results suggest that MSCs from adipose tissue are a promising cell source for tissue engineering of cartilage. Our results suggest that chondrocyte nodules producing lubricin could be a novel biotherapeutic approach for the treatment of cartilage abnormalities.

  10. Coordinated gene expression between skeletal muscle and intramuscular adipose tissue in growing beef cattle.

    Science.gov (United States)

    Roberts, S L; Lancaster, P A; DeSilva, U; Horn, G W; Krehbiel, C R

    2015-09-01

    Previous research indicates that metabolism and fiber type of skeletal muscle is related to intramuscular lipid content. It is hypothesized that changes in skeletal muscle gene expression influence adipose tissue development. The objective of this study was to determine differences in the metabolism and intercellular signaling of skeletal muscle fibers within the same muscle group that could be responsible for the initiation of intramuscular adipose tissue development and differentiation. Longissimus dorsi muscle samples were collected from steers ( = 12; 385 d of age; 378 kg BW) grazing wheat pasture. Longissimus muscle samples were dissected under magnification and sorted into 3 categories based on visual stage of adipose tissue development: immature intramuscular adipose tissue (MM), intermediate intramuscular adipose tissue (ME), and mature intramuscular adipose tissue (MA). Additionally, muscle fibers lying adjacent to each intramuscular adipose tissue (IM) category and those not associated with IM tissue were collected and stored separately. Quantitative real-time PCR was used to determine relative fold change in genes involved in metabolism, angiogenesis, formation of extracellular matrix, and intercellular signaling pathways in both LM and IM samples. Gene expression data were analyzed using a GLM that included the fixed effect of tissue. Pearson correlation coefficients were also computed between gene expression in LM and IM tissue samples that were at the same stage of development. and γ mRNA expression were 3.56- and 1.97-fold greater ( development categories. Genes associated with metabolism and angiogenesis in LM tissue showed no differences among stages of development. Myostatin expression did not change in LM tissue; however, expression of and mRNA decreased ( tissue had a strong positive correlation ( ≥ 0.69) with angiogenic growth factors in LM associated with MM IM; however, no correlation was observed in ME or MA IM. These data indicate a

  11. Effect of propylene glycol on adipose tissue mobilization in postpartum over-conditioned Holstein cows

    DEFF Research Database (Denmark)

    Bjerre-Harpøth, Vibeke; Storm, Adam Christian; Eslamizad, M;

    2015-01-01

    ) days in milk (DIM), body composition was determined using the deuterium oxide dilution technique, liver and subcutaneous adipose tissue biopsies were collected, and mammary gland nutrient uptake was measured. Weekly blood samples were obtained during the experiment and daily blood samples were taken...... from –7 to 7 DIM. Postpartum feed intake and milk yield was not affected by PG allocation. The body content of lipid was not affected by treatment, but tended to decrease from 4 to 29 DIM with both treatments. Except for the first week postpartum, no difference in plasma nonesterified fatty acids...... concentration was noted between treatments in the treatment period. Yet, PG allocation resulted in decreased plasma concentrations of β-hydroxybutyrate (BHB) and increased plasma concentrations of glucose. In the follow-up period, plasma concentrations of nonesterified fatty acids, glucose, and BHB did...

  12. Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue.

    Directory of Open Access Journals (Sweden)

    Audrey M Neyrinck

    Full Text Available BACKGROUND: Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®, at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were fed either a control diet (CT, a high fat (HF diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet associated with white pepper (0.01 % for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation. CONCLUSIONS/SIGNIFICANCE: These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition.

  13. Adipose tissue and sustainable development: a connection that needs protection

    Directory of Open Access Journals (Sweden)

    Angelo eTremblay

    2015-05-01

    Full Text Available Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants (POPs. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health and well-being or global ecological protection.

  14. LSD1 promotes oxidative metabolism of white adipose tissue

    Science.gov (United States)

    Duteil, Delphine; Metzger, Eric; Willmann, Dominica; Karagianni, Panagiota; Friedrichs, Nicolaus; Greschik, Holger; Günther, Thomas; Buettner, Reinhard; Talianidis, Iannis; Metzger, Daniel; Schüle, Roland

    2014-01-01

    Exposure to environmental cues such as cold or nutritional imbalance requires white adipose tissue (WAT) to adapt its metabolism to ensure survival. Metabolic plasticity is prominently exemplified by the enhancement of mitochondrial biogenesis in WAT in response to cold exposure or β3-adrenergic stimulation. Here we show that these stimuli increase the levels of lysine-specific demethylase 1 (LSD1) in WAT of mice and that elevated LSD1 levels induce mitochondrial activity. Genome-wide binding and transcriptome analyses demonstrate that LSD1 directly stimulates the expression of genes involved in oxidative phosphorylation (OXPHOS) in cooperation with nuclear respiratory factor 1 (Nrf1). In transgenic (Tg) mice, increased levels of LSD1 promote in a cell-autonomous manner the formation of islets of metabolically active brown-like adipocytes in WAT. Notably, Tg mice show limited weight gain when fed a high-fat diet. Taken together, our data establish LSD1 as a key regulator of OXPHOS and metabolic adaptation in WAT. PMID:24912735

  15. Adipose tissue-derived stem cells in neural regenerative medicine.

    Science.gov (United States)

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  16. Measurement of subcutaneous adipose tissue thickness by near-infrared.

    Science.gov (United States)

    Wang, Yu; Yang, Zeqiang; Hao, Dongmei; Zhang, Song; Yang, Yimin; Zeng, Yanjun

    2013-06-01

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5-11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  17. Postnatal changes in fatty acids composition of brown adipose tissue

    Science.gov (United States)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  18. Melatonin improves mitochondrial function in inguinal white adipose tissue of Zücker diabetic fatty rats.

    Science.gov (United States)

    Jimenéz-Aranda, Aroa; Fernández-Vázquez, Gumersindo; Mohammad A-Serrano, María; Reiter, Russel J; Agil, Ahmad

    2014-08-01

    Mitochondrial dysfunction in adipose tissue may contribute to obesity-related metabolic derangements such as type 2 diabetes mellitus (T2DM). Because mitochondria are a target for melatonin action, the goal of this study was to investigate the effects of melatonin on mitochondrial function in white (WAT) and beige inguinal adipose tissue of Zücker diabetic fatty (ZDF) rats, a model of obesity-related T2DM. In this experimental model, melatonin reduces obesity and improves the metabolic profile. At 6 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control (C-ZDF and C-ZL) and treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk (M-ZDF and M-ZL). After the treatment period, animals were sacrificed, tissues dissected, and mitochondrial function assessed in isolated organelles. Melatonin increased the respiratory control ratio (RCR) in mitochondria from white fat of both lean (by 26.5%, P types of fat, white and beige, in both lean and obese rats. These results demonstrate that chronic oral melatonin improves mitochondrial respiration and reduces the oxidative status and susceptibility to apoptosis in white and beige adipocytes. These melatonin effects help to prevent mitochondrial dysfunction and thereby to improve obesity-related metabolic disorders such as diabetes and dyslipidemia of ZDF rats.

  19. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering.

    Science.gov (United States)

    Yao, Rui; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-05-01

    Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface-coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co-cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self-assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co-cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4-week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long-term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies.

  20. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita;

    2015-01-01

    NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  1. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism.

  2. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  3. Effect of VPAC1 Blockade on Adipose Tissue Formation and Composition in Mouse Models of Nutritionally Induced Obesity

    Directory of Open Access Journals (Sweden)

    H. Roger Lijnen

    2010-01-01

    Full Text Available Background. The pituitary adenylate cyclase activating polypeptide (PACAP may affect adipogenesis and adipose tissue formation through interaction with its G-protein-coupled receptor VPAC1. Methods. We have used a monoclonal antibody (MAb 23A11 blocking VPAC1 in mouse models of nutritionally induced obesity. Results. Administration of MAb 23A11 (25 mg/kg body weight i.p. twice weekly to 5-week old male C57Bl/6 mice kept on a high-fat diet for 15 weeks had no significant effect on weight gain, nor on subcutaneous (SC or gonadal (GON adipose tissue mass, as compared to the control MAb 1C8. However, adipocyte hypertrophy was observed in SC adipose tissue of MAb 23A11 treated mice. In a second study, 24 weeks old obese mice were treated for 5 weeks with MAb 23A11, without effect on body weight or fat mass, as compared to treatment with MAb 1C8. In addition, MAb 23A11 had no significant effect on glucose tolerance or insulin resistance in lean or obese C57Bl/6 mice. Conclusion. Blocking VPAC1 does not significantly affect adipose tissue formation in mouse models of diet-induced obesity, although it may be associated with mild adipocyte hypertrophy.

  4. Macronutrient composition determines accumulation of persistent organic pollutants from dietary exposure in adipose tissue of mice

    DEFF Research Database (Denmark)

    Myrmel, Lene Secher; Fjære, Even; Midtbø, Lisa Kolden;

    2016-01-01

    Accumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined...... or as mixtures in combination with different diets: one low fat diet and two high fat diets with different protein:sucrose ratios. We measured accumulation of POPs in adipose tissue and liver and determined obesity development, glucose tolerance, insulin sensitivity and hepatic expression of genes involved...... in metabolism of xenobiotics. Compared with mice fed diets with a low protein:sucrose ratio, mice fed diets with a high protein:sucrose ratio had significantly lower total burden of POPs in adipose tissue, were protected from obesity development and exhibited enhanced hepatic expression of genes involved...

  5. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice

    DEFF Research Database (Denmark)

    Brandt, Claus; Jakobsen, Anne Hviid; Hassing, Helle Adser

    2012-01-01

    Aim: The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. Methods: Four months old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1h of treadmill exercise, where subcutaneous...... adipose tissue (AT) was removed either immediately after, 4h or 10h after exercise as well as from mice not running acutely. Moreover, AT was sampled at resting conditions after 5 weeks of exercise training. Results: AT leptin mRNA decreased immediately after a single running exercise bout in both...... in regulating exercise and training-induced leptin and PPAR¿ expression in adipose tissue. In addition, while IL-6 is required for TNF-a mRNA reduction in response to acute exercise, IL-6 does not appear to be mandatory for anti-inflammatory effects of exercise training in adipose tissue....

  6. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, Bente; Larsen, J J; Mikines, K J;

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration...

  7. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren;

    2006-01-01

    Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression...... in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  8. Long-term allergen exposure induces adipose tissue inflammation and circulatory system injury.

    Science.gov (United States)

    Jung, Chien-Cheng; Su, Huey-Jen

    2016-05-01

    The purpose of this study was to study whether allergen exposure can induce inflammation and lower the anti-inflammation levels in serum and in adipose tissues, and further develop cardiovascular injury. Our data showed that heart rate was significantly higher in the OVA-challenged mice compared to control mice. Moreover, there were higher expressions of pro-inflammation genes in the OVA-challenged mice in adipose tissues, and the expressions of anti-inflammation genes were lower. The levels of inflammation mediators were associated in serum and adipose tissues. The level of circulatory injury lactate dehydrogenase was significantly associated with the levels of E-selectin, resistin and adiponectin in the serum. The hematoxylin and eosin and immunohistochemistry stains indicated the OVA-challenged mice had higher levels of inflammation. In summary, the current study demonstrated allergen exposure can cause cardiovascular injury, and inflammatory mediators in adipose tissues play an important role in the pathogenesis of cardiovascular injury.

  9. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance

    DEFF Research Database (Denmark)

    Ahlqvist, Emma; Osmark, Peter; Kuulasmaa, Tiina

    2013-01-01

    Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis...... and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher...... for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue...

  10. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    DEFF Research Database (Denmark)

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    , a subcutaneous abdominal vein and a femoral vein. Adipose tissue metabolism and skeletal muscle (leg) metabolism were measured using Fick's principle. The results show that the lipolytic rate in adipose tissue during exercise was the same in each experiment. Post-exercise, there was a very fast decrease......One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...... in lipolysis, but it began to increase about 1 h post-exercise and remained elevated for the following 2 h. The increase in post-exercise non-esterified fatty acid (NEFA) mobilization was greater after 60% exercise than after 40 % exercise. It is concluded that the lipolytic rate in abdominal subcutaneous...

  11. The expression of testosterone converting enzymes in adipose tissue of polycystic ovary syndrome rat mode

    Institute of Scientific and Technical Information of China (English)

    王丽华

    2013-01-01

    Objective To establish a polycystic ovary syndrome(PCOS) rat model and compare the expression of testosterone converting enzymes in adipose tissue of PCOS rat with that of controls.Methods 21-day-old female SD

  12. Non-invasive Quantitative Analysis of Specific Fat Accumulation in Subcutaneous Adipose Tissues using Raman Spectroscopy.

    Science.gov (United States)

    Meksiarun, Phiranuphon; Andriana, Bibin B; Matsuyoshi, Hiroko; Sato, Hidetoshi

    2016-11-15

    Subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and fat beneath the dermis layer were investigated using a ball lens top hollow optical fiber Raman probe (BHRP). Hamsters were fed with trilinolein (TL) and tricaprin (TC) for six weeks and measurements were carried out every two weeks. The BHRP with an 800 μm diameter fused-silica ball lens was able to obtain information on the subcutaneous fat in a totally non-invasive manner. Changes in the concentration of TL and TC during the treatment were analyzed, and the relationship between fat accumulation and dietary fat was studied. It was found that SAT had, in general, a higher degree of unsaturation than VAT. The accumulation rate of TC found in SAT and VAT was 0.52 ± 0.38 and 0.58 ± 0.4%, respectively, while the TL accumulation rate was 4.45 ± 1.6 and 4.37 ± 2.4%, respectively. The results suggest different metabolic pathways for TC, a typical medium-chain fatty acid, and TL, a long-chain unsaturated fatty acid. Raman subsurface spectra were successfully obtained and used to analyze the subcutaneous fat layer. The accumulation rates of TL and TC found in skin fat were 5.01 ± 3.53% and 0.45 ± 0.36%, respectively. The results demonstrate the high feasibility of Raman spectroscopy for non-invasive analysis of adipose tissue.

  13. Resveratrol Suppresses PAI-1 Gene Expression in a Human In Vitro Model of Inflamed Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ivana Zagotta

    2013-01-01

    Full Text Available Increased plasminogen activator inhibitor-1 (PAI-1 levels are associated with a number of pathophysiological complications; among them is obesity. Resveratrol was proposed to improve obesity-related health problems, but the effect of resveratrol on PAI-1 gene expression in obesity is not completely understood. In this study, we used SGBS adipocytes and a model of human adipose tissue inflammation to examine the effects of resveratrol on the production of PAI-1. Treatment of SGBS adipocytes with resveratrol reduced PAI-1 mRNA and protein in a time- and concentration-dependent manner. Further experiments showed that obesity-associated inflammatory conditions lead to the upregulation of PAI-1 gene expression which was antagonized by resveratrol. Although signaling via PI3K, Sirt1, AMPK, ROS, and Nrf2 appeared to play a significant role in the modulation of PAI-1 gene expression under noninflammatory conditions, those signaling components were not involved in mediating the resveratrol effects on PAI-1 production under inflammatory conditions. Instead, we demonstrate that the resveratrol effects on PAI-1 induction under inflammatory conditions were mediated via inhibition of the NFκB pathway. Together, resveratrol can act as NFκB inhibitor in adipocytes and thus the subsequently reduced PAI-1 expression in inflamed adipose tissue might provide a new insight towards novel treatment options of obesity.

  14. Adipose tissue trans fatty acids and changes in body weight and waist circumference

    DEFF Research Database (Denmark)

    Hansen, C.P.; Berentzen, T.L.; Østergaard, J.N.

    Previous studies have suggested that intake of trans fatty acids (TFA) may play a role in the development of obesity. For fatty acids not synthesized endogenously in humans, such as TFA, the proportions in adipose tissue tend to correlate well with the habitual dietary intake. Biomarkers may prov...... provide a more accurate measure of habitual TFA intake than dietary questionnaires. Our objective was to investigate the associations between specific TFA in adipose tissue and subsequent changes in body weight and waist circumference (WC)....

  15. Effects of glucose and insulin on secretion of amyloid‐β by human adipose tissue cells

    OpenAIRE

    2016-01-01

    Objective Obesity and type 2 diabetes mellitus are risk factors for developing Alzheimer disease. Overlapping patterns of metabolic dysfunction may be common molecular links between these complex diseases. Amyloid‐β (Aβ) precursor protein and associated β‐ and γ‐secretases are expressed in adipose tissue. Aβ precursor protein is up‐regulated with obesity and correlated to insulin resistance. Aβ may be secreted by adipose tissue, its production may be regulated through metabolic pathways, and ...

  16. Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep

    OpenAIRE

    Bloor, Ian D.; Sébert, Sylvain P.; Saroha, Vivek; Gardner, David S.; Keisler, Duane H.; Budge, Helen; Symonds, Michael E.; Mahajan, Ravi P.

    2013-01-01

    Sex is a major factor determining adipose tissue distribution and the subsequent adverse effects of obesity-related disease including type 2 diabetes. The role of gender on juvenile obesity and the accompanying metabolic and inflammatory responses is not well established. Using an ovine model of juvenile onset obesity induced by reduced physical activity, we examined the effect of gender on metabolic, circulatory, and related inflammatory and energy-sensing profiles of the major adipose tissu...

  17. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease

    Directory of Open Access Journals (Sweden)

    Sun Zongquan

    2011-01-01

    Full Text Available Abstract Background Disorders of endocrine substances in epicardial adipose tissue are known causes of coronary artery disease (CAD. Adiponectin is associated with cardiovascular disease. However, expression of adiponectin in epicardial adipose tissue and its function in CAD pathogenesis is unclear. This study investigates adiponectin expression in epicardial adipose tissue in CAD patients. Methods Vessels or adipose tissue samples collected from CAD patients and non-CAD controls were examined after immunochemical staining. Adiponectin, cytokines of interleukin-6 (IL-6 and necrosis factor-α (TNF-α and toll-like receptor 4 (TLR4 expression level in adipose tissue were measured using real-time quantitative RT-PCR. Adiponectin concentrations in peripheral and coronary sinus vein plasma were measured with enzyme-linked immunosorbent assay. Peripheral vein plasma biochemistries were performed with routine laboratory techniques. Monocytes were collected from blood using lymphocyte separation medium. Expression level of cytokines and transcription factor NF-κB were measured to learn the effect of adiponectin on stearic acid-stimulated monocytes. Percentage of TLR4 positive monocytes was analyzed using flow cytometry. Results Histological examination revealed increased macrophage infiltration into epicardial adipose tissue of CAD patients. Decreased adiponectin displayed by real-time quantitative RT-PCR was associated with enhanced cytokines of IL-6 and TNF-α or TLR4 expression level in epicardial adipose tissue, suggesting decreased circulating adiponectin may be useful as a more sensitive predictor for coronary atherosclerosis than routine laboratory examinations. Adiponectin suppressed secretion of IL-6 and TNF-α in stimulated monocytes and TLR4 was expressed on cell surfaces. Conclusions Endocrine disorders in epicardial adipose tissue are strongly linked to CAD, and adiponectin has a protective effect by inhibiting macrophage

  18. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Madsen, Jan Lysgård

    1992-01-01

    of epinephrine, indicating glucose uptake in adipose tissue in this condition. If it is assumed that forearm skeletal muscle is representative for the average skeletal muscle, it can be calculated that on average 40% of the enhanced whole body oxygen uptake induced by infusion of epinephrine is taking place...... in skeletal muscle. It is proposed that adipose tissue may contribute to epinephrine-induced thermogenesis....

  19. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control.

    Science.gov (United States)

    Jones, B H; Standridge, M K; Taylor, J W; Moustaïd, N

    1997-07-01

    Synthesis of angiotensin II (ANG II) has recently been described in adipose cells and has been linked to regulation of adiposity. Angiotensinogen (AGT), the substrate from which ANG II is formed, was previously shown to be elevated in adipose tissue of obese (ob/ob and db/db) mice and regulated by nutritional manipulation. It is unknown, however, whether overexpression of adipose AGT can be extended to other models of obesity and whether hormonal and/or nutritional factors directly regulate AGT expression in adipocytes. We investigated these possibilities by analyzing AGT mRNA levels in adipose tissue of obese Zucker rats, viable yellow (Avy) mice, and humans and by treating 3T3-L1 adipocytes with insulin, glucose, and a beta-adrenergic agonist. We demonstrate that AGT mRNA is decreased by approximately 50 and 80%, respectively, in adipose tissue of obese vs. lean Zucker rats and Avy mice. We also report that AGT is expressed at variable levels in human adipose tissue. Finally, we show that AGT mRNA is upregulated by insulin and downregulated by beta-adrenergic stimulation in adipocytes.

  20. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue

    OpenAIRE

    Yin, Jun; Gao, Zhanguo; He, Qing; Zhou, Dequan; Guo, ZengKui; Ye, Jianping

    2008-01-01

    Recent studies suggest that adipose tissue hypoxia (ATH) may contribute to endocrine dysfunction in adipose tissue of obese mice. In this study, we examined hypoxia's effects on metabolism in adipocytes. We determined the dynamic relationship of ATH and adiposity in ob/ob mice. The interstitial oxygen pressure (Po2) was monitored in the epididymal fat pads for ATH. During weight gain from 39.5 to 55.5 g, Po2 declined from 34.8 to 20.1 mmHg, which are 40–60% lower than those in the lean mice. ...

  1. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    Science.gov (United States)

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  2. Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.

    Science.gov (United States)

    Kempf, K; Hector, J; Strate, T; Schwarzloh, B; Rose, B; Herder, C; Martin, S; Algenstaedt, P

    2007-08-01

    The aim of the study was to investigate if the endocannabinoid system (ECS) is activated in visceral adipose tissue and if adipose tissue inflammation affects the ECS activation state. Therefore, expression of fatty acid amide hydrolase (FAAH), cannabinoid receptor 1 (Cb1), adiponectin, and tumor necrosis factor (TNF)-alpha was compared in visceral adipose tissue from 10 normal-weight (BMI 24.4+/-1.1 kg/m2) and 11 obese subjects (BMI 37.6+/-13.6 kg/m2) using quantitative RT-PCR, and gene expression changes were analyzed after in vitro stimulation of visceral adipose tissue with TNF-alpha. The data demonstrate that the ECS is activated in obese visceral adipose tissue as shown by decreased FAAH, Cb1, and adiponectin expression. Obesity-related ECS activation is accompanied by elevated expression of the pro-inflammatory cytokine TNF-alpha, which in turn stimulates ECS activation in vitro. Our data show a strong association between adipose tissue inflammation and ECS activation in obesity, and indicate that a pro-inflammatory state may directly activate the ECS.

  3. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    Science.gov (United States)

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  4. Prolactin suppresses malonyl-CoA concentration in human adipose tissue.

    Science.gov (United States)

    Nilsson, L A; Roepstorff, C; Kiens, B; Billig, H; Ling, C

    2009-10-01

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however, whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed lipogenesis could contribute to an insulin resistant state with consequences for the health.

  5. HIV Infection and Antiretroviral Therapy Have Divergent Effects on Mitochondria in Adipose Tissue

    Science.gov (United States)

    Morse, Caryn G.; Voss, Joachim G.; Rakocevic, Goran; McLaughlin, Mary; Vinton, Carol L.; Huber, Charles; Hu, Xiaojun; Yang, Jun; Huang, Da Wei; Logun, Carolea; Danner, Robert L.; Rangel, Zoila G.; Munson, Peter J.; Orenstein, Jan M.; Rushing, Elisabeth J.; Lempicki, Richard A.; Dalakas, Marinos C.; Kovacs, Joseph A.

    2012-01-01

    Background. Although human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) affect mitochondrial DNA (mtDNA) content and function, comprehensive evaluations of their effects on mitochondria in muscle, adipose tissue, and blood cells are limited. Methods. Mitochondrial DNA quantification, mitochondrial genome sequencing, and gene expression analysis were performed on muscle, adipose tissue, and peripheral blood mononuclear cell (PBMC) samples from untreated HIV-positive patients, HIV-positive patients receiving nucleoside reverse transcriptase inhibitor (NRTI)–based ART, and HIV-negative controls. Results. The adipose tissue mtDNA/nuclear DNA (nDNA) ratio was increased in untreated HIV-infected patients (ratio, 353) and decreased in those receiving ART (ratio, 162) compared with controls (ratio, 255; P < .05 for both comparisons); the difference between the 2 HIV-infected groups was also significant (P = .002). In HIV-infected participants, mtDNA/nDNA in adipose tissue correlated with the level of activation (CD38+/HLA-DR+) for CD4+ and CD8+ lymphocytes. No significant differences in mtDNA content were noted in muscle or PMBCs among groups. Exploratory DNA microarray analysis identified differential gene expression between patient groups, including a subset of adipose tissue genes. Conclusions. HIV infection and ART have opposing effects on mtDNA content in adipose tissue; immune activation may mediate the effects of HIV, whereas NRTIs likely mediate the effects of ART. PMID:22476717

  6. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation.

  7. Updated survey of the steroid-converting enzymes in human adipose tissues.

    Science.gov (United States)

    Tchernof, André; Mansour, Mohamed Fouad; Pelletier, Mélissa; Boulet, Marie-Michèle; Nadeau, Mélanie; Luu-The, Van

    2015-03-01

    Over the past decade, adipose tissues have been increasingly known for their endocrine properties, that is, their ability to secrete a number of adipocytokines that may exert local and/or systemic effects. In addition, adipose tissues have long been recognized as significant sites for steroid hormone transformation and action. We hereby provide an updated survey of the many steroid-converting enzymes that may be detected in human adipose tissues, their activities and potential roles. In addition to the now well-established role of aromatase and 11β-hydroxysteroid dehydrogenase (HSD) type 1, many enzymes have been reported in adipocyte cell lines, isolated mature cells and/or preadipocytes. These include 11β-HSD type 2, 17β-HSDs, 3β-HSD, 5α-reductases, sulfatases and glucuronosyltransferases. Some of these enzymes are postulated to bear relevance for adipose tissue physiology and perhaps for the pathophysiology of obesity. This elaborate set of steroid-converting enzymes in the cell types of adipose tissue deserves further scientific attention. Our work on 20α-HSD (AKR1C1), 3α-HSD type 3 (AKR1C2) and 17β-HSD type 5 (AKR1C3) allowed us to clarify the relevance of these enzymes for some aspects of adipose tissue function. For example, down-regulation of AKR1C2 expression in preadipocytes seems to potentiate the inhibitory action of dihydrotestosterone on adipogenesis in this model. Many additional studies are warranted to assess the impact of intra-adipose steroid hormone conversions on adipose tissue functions and chronic conditions such as obesity, diabetes and cancer.

  8. Regulation of UCP1 in the Browning of Epididymal Adipose Tissue by β3-Adrenergic Agonist: A Role for MicroRNAs

    Directory of Open Access Journals (Sweden)

    Zongji Zheng

    2014-01-01

    Full Text Available Background. White adipose tissue browning may be a promising strategy to combat obesity. UCP1 is strongly induced in White adipose tissue with β3-adrenergic agonist treatment, but the causes of this increase have not been fully elucidated. This study aims to explore more miRNAs involved in the process of browning of visceral adipose tissue. Methods. Total of fourteen mice were randomly divided into control and study group. Study group mice were injected intraperitoneally with CL316243 once daily for seven days; meanwhile the control group were treated with 0.9% NaCl. After a 7-day period, the expression of genes involved in WAT browning and potential UCP1-targeting miRNAs in adipose tissues was analyzed by qPCR. Results. qPCR analysis revealed that UCP1, DIO2, CIDEA, and CPT1B in epididymal adipose tissue were overexpressed in CL316243 group. Furthermore, potential UCP1-targeting miR-9 and miR-338-3p in epididymal adipose tissue were significantly decreased in CL316243 group. Conclusion. This suggests that potential UCP1-targeting miR-9 and miR-338-3p may be involved in the browning of epididymal adipose tissue by regulating UCP1 gene expression. In this study, we demonstrated that this increase of UCP1 is due, at least in part, to the decreased expression of certain UCP1-targeting miRNAs in epididymal adipose tissue compared to control.

  9. Effects of various dietary lipid additives on lamb performance, carcass characteristics, adipose tissue fatty acid composition, and wool characteristics.

    Science.gov (United States)

    Meale, S J; Chaves, A V; He, M L; Guan, L L; McAllister, T A

    2015-06-01

    Tasco (Ascophyllum nodosum; TA) was compared to canola (CO), flax (FO), and safflower oils (SO) for effects on performance, carcass characteristics, and fatty acid profiles of adipose tissue in skirt muscle (SM), subcutaneous and perirenal adipose tissues, and wool production and quality characteristics of Canadian Arcott lambs. Fifty-six lambs were randomly assigned to dietary treatments (n = 14 per treatment). Diets consisted of a pelleted, barley-based finishing diet containing either TA, CO, FO, or SO (2% of dietary DM). Feed deliveries and orts were recorded daily. Lambs were weighed weekly and slaughtered once they reached ≥ 45 kg BW. Carcass characteristics, rumen pH, and liver weights were determined at slaughter. Wool yield was determined on mid-side patches of 100 cm2 shorn at d 0 and on the day before slaughter (d 105 or 140). Dye-bands were used to determine wool growth, micrometer and staple length. Adipose tissues and SM samples were taken at slaughter and analyzed for FA profiles. No effects were observed on intake, growth, or carcass characteristics. A greater (P = 0.02) staple strength of lambs fed CO was the only effect observed in wool. Flax oil increased total n-3 and decreased the n-6/n-3 ratio in tissue FA profiles (P < 0.001) in comparison to other diets. Tasco increased (P ≤ 0.001) SFA/PUFA in all tissues, whereas concentrations of CLA c-9, t-11 were greatest with SO in all tissues (P ≤ 0.02), compared to other diets. These results suggest Tasco supplementation did not improve the n-3/n-6 or SFA/PUFA ratios of lamb adipose tissues compared to other dietary lipid additives.

  10. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  11. Dietary fish oil did not prevent sleep deprived rats from a reduction in adipose tissue adiponectin gene expression

    Directory of Open Access Journals (Sweden)

    Andersen Monica

    2008-11-01

    Full Text Available Abstract Sleep deprivation in humans has been related to weight gain and consequently, increased risk for insulin resistance. In contrast, there is a significant loss of weight in sleep deprived rats suggesting a state of insulin resistance without obesity interference. Thus, we aimed to assess the effects of a rich fish oil dietetic intervention on glucose tolerance, serum insulin and adiponectin, and adipose tissue gene expression of adiponectin and TNF-α of paradoxically sleep deprived (PSD rats. The study was performed in thirty day-old male Wistar randomly assigned into two groups: rats fed with control diet (soybean oil as source of fat and rats fed with a fish oil rich diet. After 45 days of treatment, the animals were submitted to PSD or maintained as home cage control group for 96 h. Body weight and food intake were carefully monitored in all groups. At the end of PSD period, a glucose tolerance test was performed and the total blood and adipose tissues were collected. Serum insulin and adiponectin were analyzed. Adipose tissues were used for RT-PCR to estimate the gene expression of adiponectin and TNF-α. Results showed that although fish oil diet did not exert any effect upon these measurements, PSD induced a reduction in adiponectin gene expression of retroperitoneal adipose tissues, with no change in serum adiponectin concentration or in adiponectin and TNF-α gene expression of epididymal adipose tissue. Thus, the stress induced by sleep deprivation lead to a desbalance of adiponectin gene expression.

  12. Early Overfeed-Induced Obesity Leads to Brown Adipose Tissue Hypoactivity in Rats

    Directory of Open Access Journals (Sweden)

    Douglas L. de Almeida

    2013-12-01

    Full Text Available Background/Aims: Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Methods: Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups and small (3 pups litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Results: Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C and dark (NL 38°C vs. SL 37.6°C periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (pConclusion: Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults.

  13. A metabolomic study of adipose tissue in mice with a disruption of the circadian system.

    Science.gov (United States)

    Castro, C; Briggs, W; Paschos, G K; FitzGerald, G A; Griffin, J L

    2015-07-01

    Adipose tissue functions in terms of energy homeostasis as a rheostat for blood triglyceride, regulating its concentration, in response to external stimuli. In addition it acts as a barometer to inform the central nervous system of energy levels which can vary dramatically between meals and according to energy demand. Here a metabolomic approach, combining both Mass Spectrometry and Nuclear Magnetic Resonance spectroscopy, was used to analyse both white and brown adipose tissue in mice with adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component. The results are consistent with a peripheral circadian clock playing a central role in metabolic regulation of both brown and white adipose tissue in rodents and show that Arntl induced global changes in both tissues which were distinct for the two types. In particular, anterior subcutaneous white adipose tissue (ASWAT) tissue was effected by a reduction in the degree of unsaturation of fatty acids, while brown adipose tissue (BAT) changes were associated with a reduction in chain length. In addition the aqueous fraction of metabolites in BAT were profoundly affected by Arntl disruption, consistent with the dynamic role of this tissue in maintaining body temperature across the day-night cycle and an upregulation in fatty acid oxidation and citric acid cycle activity to generate heat during the day when rats are inactive (increases in 3-hydroxybutyrate and glutamate), and increased synthesis and storage of lipids during the night when rats feed more (increased concentrations of glycerol, choline and glycerophosphocholine).

  14. Differential Hematopoietic Activity in White Adipose Tissue Depending on its Localization.

    Science.gov (United States)

    Luche, Elodie; Sengenès, Coralie; Arnaud, Emmanuelle; Laharrague, Patrick; Casteilla, Louis; Cousin, Beatrice

    2015-12-01

    White adipose tissue (WAT) can be found in different locations in the body, and these different adipose deposits exhibit specific physiopathological importance according to the subcutaneous or abdominal locations. We have shown previously the presence of functional hematopoietic stem/progenitor cells (HSPC) in subcutaneous adipose tissue (SCAT). These cells exhibit a specific hematopoietic activity that contributes to the renewal of the immune cell compartment within this adipose deposit. In this study, we investigated whether HSPC can be found in visceral adipose tissue (VAT) and whether a putative difference in in situ hematopoiesis may be related to anatomical location and to site-specific immune cell content in VAT compared to SCAT. Therein, we identified for the first time the presence of HSPC in VAT. Using both in vitro assays and in vivo competitive repopulation experiments with sorted HSPC from VAT or SCAT, we showed that the hematopoietic activity of HSPC was lower in VAT, compared to SCAT. In addition, this altered hematopoietic activity of HSPC in VAT was due to their microenvironment, and may be related to a specific combination of secreted factors and extracellular matrix molecules expressed by adipose derived stromal cells. Our results indicate that WAT specific hematopoietic activity may be generalized to all adipose deposits, although with specificity according to the fat pad location. Considering the abundance of WAT in the body, this emphasizes the potential importance of this hematopoietic activity in physiopathological situations.

  15. Epicardial adipose tissue in patients with heart failure

    Directory of Open Access Journals (Sweden)

    Michaely Henrik

    2010-07-01

    Full Text Available Abstract Purpose The aim of this study was to evaluate the extent of epicardial adipose tissue (EAT and its relationship with left ventricular (LV parameters assessed by cardiovascular magnetic resonance (CMR in patients with congestive heart failure (CHF and healthy controls. Background EAT is the true visceral fat deposited around the heart which generates various bioactive molecules. Previous studies found that EAT is related to left ventricular mass (LVM in healthy subjects. Further studies showed a constant EAT to myocardial mass ratio in normal, ischemic and hypertrophied hearts. Methods CMR was performed in 66 patients with CHF due to ischemic cardiomyopathy (ICM, or dilated cardiomyopathy (DCM and 32 healthy controls. Ventricular volumes, dimensions and LV function were assessed. The amount of EAT was determined volumetrically and expressed as mass indexed to body surface area. Additionally, the EAT/LVM and the EAT/left ventricular remodelling index (LVRI ratios were calculated. Results Patients with CHF had less indexed EAT mass than controls (22 ± 5 g/m2 versus 34 ± 4 g/m2, p 2 versus 23 ± 6 g/m2, p = 0.14. Linear regression analysis showed that with increasing LV end-diastolic diameter (LV-EDD (r = 0.42, p = 0.0004 and LV end-diastolic mass (LV-EDM (r = 0.59, p Conclusion Patients with CHF revealed significantly reduced amounts of EAT. An increase in LVM is significantly related to an increase in EAT in both patients with CHF and controls. However, different from previous reports the EAT/LVEDM-ratio in patients with CHF was significantly reduced compared to healthy controls. Furthermore, the LV function correlated best with the indexed EAT/LVRI ratio in CHF patients. Metabolic abnormalities and/or anatomic alterations due to disturbed cardiac function and geometry seem to play a key role and are a possible explanation for these findings.

  16. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues.

    Science.gov (United States)

    Xu, Cheng; Cai, Yu; Fan, Pengcheng; Bai, Bo; Chen, Jie; Deng, Han-Bing; Che, Chi-Ming; Xu, Aimin; Vanhoutte, Paul M; Wang, Yu

    2015-05-01

    Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.

  17. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications.

    Science.gov (United States)

    Harasymiak-Krzyżanowska, Izabela; Niedojadło, Alicja; Karwat, Jolanta; Kotuła, Lidia; Gil-Kulik, Paulina; Sawiuk, Magdalena; Kocki, Janusz

    2013-12-01

    The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

  18. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...... tissue has been carried out. In the present study a partition coefficient of 1.12 +/- 0.06 (mean +/- S.D.) for 131I-AP in adipose tissue has been determined based on the partition coefficient for 131I-AP between lipid-saline (1.24 ml g-1), red blood cells-plasma (0.64 ml g-1), protein-saline (0.19 ml g-1...

  19. Resistin in dairy cows: plasma concentrations during early lactation, expression and potential role in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Maxime Reverchon

    Full Text Available Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP and at five months of gestation (5 MG. We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6 in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase and HSL (hormone-sensitive lipase in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro.

  20. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    Directory of Open Access Journals (Sweden)

    Alexey A. Tinkov

    2016-03-01

    Full Text Available Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and methods. A total of 48 adult female Wistar rats were used in the present study. Rats were fed either control (10% of fat or high fat diet (31.6% of fat. Adipose tissue zinc content was assessed using inductively coupled plasma mass spectrometry. Rats’ serum was examined for adiponectin, leptin, insulin, interleukin-6, and tumor necrosis factor-α using enzyme-linked immunosorbent assay kits. Serum glucose and apolipoprotein spectrum were also evaluated. Results. High fat feeding resulted in a significant 34% decrease in adipose tissue zinc content in comparison to the control values. Fat pad zinc levels were significantly inversely associated with morphometric param- eters, circulating leptin, insulin, tumor necrosis factor-α levels and HOMA-IR values. At the same time,      a significant correlation with apolipoprotein A1 concentration was observed. Conclusion. Generally, the obtained data indicate that (1 high fat feeding results in decreased adipose tis- sue zinc content; (2 adipose tissue zinc content is tightly associated with excessive adiposity, inflammation, insulin resistance and potentially atherogenic changes.

  1. Control of brown adipose tissue glucose and lipid metabolism by PPARγ

    Directory of Open Access Journals (Sweden)

    William T. Festuccia

    2011-12-01

    Full Text Available Brown adipose tissue (BAT non-shivering thermogenesis impacts energy homeostasis in rodents and humans. Mitochondrial UCP1 in brown fat cells produce heat by dissipating the energy generated by the oxidation of fatty acids and glucose. In addition to thermogenesis and despite its small relative size, sympathetically activated BAT constitutes an important glucose, fatty acid and triacylglycerol-clearing organ, and such function could potentially be used to alleviate dyslipidemias, hyperglycemia and insulin resistance. To date, chronic sympathetic innervation and PPARγ activation are the only recognized inducers of BAT recruitment. Here, we review the major differences between these two inducers of BAT recruitment in the regulation of lipolysis, fatty acid oxidation, lipid uptake and triacylglycerol synthesis, glucose uptake and de novo lipogenesis. Whereas BAT recruitment through sympathetic drive translates into functional thermogenic activity, PPARγ-mediated recruitment is associated with a reduction in sympathetic activity leading to increased lipid storage in brown adipocytes. The promising therapeutic role of brown adipose tissue in the treatment of hypertriglyceridemic and hyperglycaemic conditions are also discussed.

  2. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis.

    Science.gov (United States)

    Lim, Sharon; Hosaka, Kayoko; Nakamura, Masaki; Cao, Yihai

    2016-06-21

    Many types of cancer develop in close association with highly vascularized adipose tissues. However, the role of adipose pre-existing vascular beds on tumor growth and angiogenesis is unknown. Here we report that pre-existing microvascular density in tissues where tumors originate is a crucial determinant for tumor growth and neovascularization. In three independent tumor types including breast cancer, melanoma, and fibrosarcoma, inoculation of tumor cells in the subcutaneous tissue, white adipose tissue (WAT), and brown adipose tissue (BAT) resulted in markedly differential tumor growth rates and angiogenesis, which were in concordance with the degree of pre-existing vascularization in these tissues. Relative to subcutaneous tumors, WAT and BAT tumors grew at accelerated rates along with improved neovascularization, blood perfusion, and decreased hypoxia. Tumor cells implanted in adipose tissues contained leaky microvessel with poor perivascular cell coverage. Thus, adipose vasculature predetermines the tumor microenvironment that eventually supports tumor growth.

  3. Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response.

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y Eugene; Ye, Jianping; Chapkin, Robert S; Wu, Chaodong

    2010-02-05

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3(+/-) mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high-fat diet (HFD), PFKFB3(+/-) mice gained much less body weight than did wild-type littermates. This was attributed to a smaller increase in adiposity in PFKFB3(+/-) mice than in wild-type controls. However, HFD-induced systemic insulin resistance was more severe in PFKFB3(+/-) mice than in wild-type littermates. Compared with wild-type littermates, PFKFB3(+/-) mice exhibited increased severity of HFD-induced adipose tissue dysfunction, as evidenced by increased adipose tissue lipolysis, inappropriate adipokine expression, and decreased insulin signaling, as well as increased levels of proinflammatory cytokines in both isolated adipose tissue macrophages and adipocytes. In an in vitro system, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes caused a decrease in the rate of glucose incorporation into lipid but an increase in the production of reactive oxygen species. Furthermore, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes inappropriately altered the expression of adipokines, decreased insulin signaling, increased the phosphorylation states of JNK and NFkappaB p65, and enhanced the production of proinflammatory cytokines. Together, these data suggest that PFKFB3/iPFK2, although contributing to adiposity, protects against diet-induced insulin resistance and adipose tissue inflammatory response.

  4. Identification of the avian RBP7 gene as a new adipose-specific gene and RBP7 promoter-driven GFP expression in adipose tissue of transgenic quail.

    Science.gov (United States)

    Ahn, Jinsoo; Shin, Sangsu; Suh, Yeunsu; Park, Ju Yeon; Hwang, Seongsoo; Lee, Kichoon

    2015-01-01

    The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at the protein and mRNA levels. Examination of the transcription factor binding sites within the chicken RBP7 promoter by Matinspector software revealed potential binding sites for adipogenic transcription factors. This led to the hypothesis that the RBP7 promoter can be utilized to overexpress a transgene in adipose tissue in order to further investigate the function of a transgene in adipose tissue. Several lines of transgenic quail containing a green fluorescent protein (GFP) gene under the control of the RBP7 promoter were generated using lentivirus-mediated gene transfer. The GFP expression in transgenic quail was specific to adipose tissue and increased after adipocyte differentiation. This expression pattern was consistent with endogenous RBP7 expression, suggesting the RBP7 promoter is sufficient to overexpress a gene of interest in adipose tissue at later developmental stages. These findings will lead to the establishment of a novel RBP7 promoter cassette which can be utilized for overexpressing genes of interest in adipose tissue in vivo to study the function of genes in adipose tissue development and lipid metabolism.

  5. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  6. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation.

    Directory of Open Access Journals (Sweden)

    Marco van Eijk

    Full Text Available Adipose tissue is a critical mediator in obesity-induced insulin resistance. Previously we have demonstrated that pharmacological lowering of glycosphingolipids and subsequently GM3 by using the iminosugar AMP-DNM, strikingly improves glycemic control. Here we studied the effects of AMP-DNM on adipose tissue function and inflammation in detail to provide an explanation for the observed improved glucose homeostasis. Leptin-deficient obese (Lep(Ob mice were fed AMP-DNM and its effects on insulin signalling, adipogenesis and inflammation were monitored in fat tissue. We show that reduction of glycosphingolipid biosynthesis in adipose tissue of Lep(Ob mice restores insulin signalling in isolated ex vivo insulin-stimulated adipocytes. We observed improved adipogenesis as the number of larger adipocytes was reduced and expression of genes like peroxisome proliferator-activated receptor (PPAR gamma, insulin responsive glucose transporter (GLUT-4 and adipsin increased. In addition, we found that adiponectin gene expression and protein were increased by AMP-DNM. As a consequence of this improved function of fat tissue we observed less inflammation, which was characterized by reduced numbers of adipose tissue macrophages (crown-like structures and reduced levels of the macrophage chemo attractants monocyte-chemoattractant protein-1 (Mcp-1/Ccl2 and osteopontin (OPN. In conclusion, pharmacological lowering of glycosphingolipids by inhibition of glucosylceramide biosynthesis improves adipocyte function and as a consequence reduces inflammation in adipose tissue of obese animals.

  7. Catecholamine effects on lipolysis and blood flow in human abdominal and femoral adipose tissue.

    Science.gov (United States)

    Millet, L; Barbe, P; Lafontan, M; Berlan, M; Galitzky, J

    1998-07-01

    With the use of the microdialysis method, the present study, performed on young, healthy, nonobese subjects of both genders, compares the effects of locally infused catecholamines on glycerol concentration and blood flow in abdominal (Abd) and femoral (Fem) adipose tissue. Physiological activation of the sympathetic nervous system through active tilt was also investigated. In both genders, extracellular glycerol concentration was higher in Fem than in Abd adipose tissue. Local blood flow was lower in Fem than in Abd adipose tissue. Isoproterenol perfusion increased extracellular glycerol levels, but no differences were found by gender or fat-deposit site. Isoproterenol induced a greater increase in local blood flow in Fem adipose tissue in both genders. Epinephrine and norepinephrine perfusion increased extracellular glycerol and reduced blood flow. No major differences were found according to gender and fat-deposit site. Active tilt increased plasma glycerol, free fatty acid, norepinephrine levels, and extracellular glycerol concentration to the same extent whatever the gender and fat deposit. Thus, Fem adipose tissue is characterized by a higher extracellular glycerol concentration and a lower blood flow than is Abd tissue in men and women. In these tissues, in situ lipolysis and local blood flow were similar in response to adrenergic stimulation.

  8. Progress on Brown Adipose Tissue and Beige Adipose Tissue%棕色脂肪和米黄色脂肪研究进展

    Institute of Scientific and Technical Information of China (English)

    刘向东; 李戡; 刘文忠; 张建新; 任有蛇; 张春香; 赵俊星

    2015-01-01

    The adipose tissue is recognized not only as the energy storage site,but also as an important en-docrine organ that plays important role in whole body energy homeostasis.According to their appearance, adipose tissues can be divided into white adipose tissue (WAT),brown adipose tissue (BAT)and Beige ad-ipose tissue.The main function of WAT is for energy storage,while the BAT is mainly responsible for heat generation.Under certain environmental stress,WAT may convert into BAT-like adipocytes,named Beige cells.In present review,we summarized the functions and differentiation mechanisms of both BAT and WAT,and predict their application in husbandry industry.%脂肪组织不仅是机体能量储存的主要场所,也是重要的内分泌器官。根据脂肪颜色的不同,动物脂肪组织可分为白色脂肪(WAT)、棕色脂肪(BAT)和米黄色脂肪(Beige)。WAT 以甘油三酯的形式储存能量,而 BAT 是动物非颤抖性产热的主要场所。在一定外界环境刺激下,WAT 可以生成一种与 BAT 功能类似的细胞,称之为 Beige 细胞。论文对棕色脂肪和米黄色脂肪的功能、增殖与分化机制进行了综述,并对其在畜牧业中的应用进行了展望。

  9. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  10. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    Directory of Open Access Journals (Sweden)

    Yang Rongze

    2011-10-01

    Full Text Available Abstract Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1 and fatty acid amide hydrolase (FAAH are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9, caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13, or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8. Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729.

  11. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Du

    Full Text Available We have developed an in vitro hepatocyte-adipose tissue explant (ATE co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2 were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64 were higher in the stromal vascular fraction (SVF isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1 were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2 was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2 in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2. Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs, particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  12. Physical activity and exercise in the regulation of human adipose tissue physiology.

    Science.gov (United States)

    Thompson, Dylan; Karpe, Fredrik; Lafontan, Max; Frayn, Keith

    2012-01-01

    Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.

  13. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    Science.gov (United States)

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  14. Translocator protein 18 kDa (TSPO is regulated in white and brown adipose tissue by obesity.

    Directory of Open Access Journals (Sweden)

    Misty M Thompson

    Full Text Available Translocator protein 18 kDa (TSPO is an outer-mitochondrial membrane transporter which has many functions including participation in the mitochondrial permeability transition pore, regulation of reactive oxygen species (ROS, production of cellular energy, and is the rate-limiting step in the uptake of cholesterol. TSPO expression is dysregulated during disease pathologies involving changes in tissue energy demands such as cancer, and is up-regulated in activated macrophages during the inflammatory response. Obesity is associated with decreased energy expenditure, mitochondrial dysfunction, and chronic low-grade inflammation which collectively contribute to the development of the Metabolic Syndrome. Therefore, we hypothesized that dysregulation of TSPO in adipose tissue may be a feature of disease pathology in obesity. Radioligand binding studies revealed a significant reduction in TSPO ligand binding sites in mitochondrial extracts from both white (WAT and brown adipose tissue (BAT in mouse models of obesity (diet-induced and genetic compared to control animals. We also confirmed a reduction in TSPO gene expression in whole tissue extracts from WAT and BAT. Immunohistochemistry in WAT confirmed TSPO expression in adipocytes but also revealed high-levels of TSPO expression in WAT macrophages in obese animals. No changes in TSPO expression were observed in WAT or BAT after a 17 hour fast or 4 hour cold exposure. Treatment of mice with the TSPO ligand PK11195 resulted in regulation of metabolic genes in WAT. Together, these results suggest a potential role for TSPO in mediating adipose tissue homeostasis.

  15. The effect of exercise training on hormone-sensitive lipase in rat intra-abdominal adipose tissue and muscle

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Langfort, J

    2001-01-01

    1. Adrenaline-stimulated lipolysis in adipose tissue may increase with training. The rate-limiting step in adipose tissue lipolysis is catalysed by the enzyme hormone-sensitive lipase (HSL). We studied the effect of exercise training on the activity of the total and the activated form of HSL......, n = 12) or sedentary (S, n = 12). Then RE and ME adipose tissue and the EDL and soleus muscles were incubated for 20 min with 4.4 microM adrenaline. 3. HSL enzyme activities in adipose tissue were higher in T compared with S rats. Furthermore, in RE adipose tissue, training also doubled HSL protein...... not differ between T and S rats (P > 0.05). 4. In conclusion, training increased the amount of HSL and the sensitivity of HSL to stimulation by adrenaline in intra-abdominal adipose tissue, the extent of the change differing between anatomical locations. In contrast, in skeletal muscle the amount of HSL...

  16. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler.

    Science.gov (United States)

    Chen, Paula; Suh, Yeunsu; Choi, Young Min; Shin, Sangsu; Lee, Kichoon

    2014-07-01

    The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests breed differences occur posthatch.

  17. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance

    DEFF Research Database (Denmark)

    Kunešová, M; Hlavatý, P; Tvrzická, E

    2012-01-01

    of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP......Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants....../HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7...

  18. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  19. Hormonal control of lipolysis from the white adipose tissue of hibernating jerboa (Jaculus orientalis).

    Science.gov (United States)

    Moreau-Hamsany, C; Castex, C; Hoo-Paris, R; Kacemi, N; Sutter, B

    1988-01-01

    1. Plasma glucose, glycerol, free fatty acids and total lipid content of the white adipose tissue were measured in euthermic and hibernating jerboa. 2. During hibernation, plasma glucose and glycerol were low compared to the euthermic animals, whereas there was no obvious difference in plasma free fatty acids. The white adipose tissue lipid content was strongly reduced in the hibernating state. 3. The effect of lipolytic hormones (norepinephrine and glucagon) and antilipolytic hormone (insulin) on in vitro glycerol release by adipose tissue isolated from hibernating or euthermic jerboa has been studied. 4. The white adipose tissue from hibernating jerboa presented a higher sensitivity to norepinephrine and glucagon than that of euthermic jerboa; insulin did not modify either basal glycerol release or lipolysis induced by the two lipolytic hormones at low temperatures (7 degrees C) and during the rewarming (from 7 degrees C to 37 degrees C) of the tissue slices. 5. These results suggested that white adipose tissue constitutes an important source of substrates derived from lipolysis during hibernation.

  20. Characterization and assessment of hy