WorldWideScience

Sample records for adipose tissue growth

  1. Brown Adipose Tissue Growth and Development

    Directory of Open Access Journals (Sweden)

    Michael E. Symonds

    2013-01-01

    Full Text Available Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  2. Brown adipose tissue growth and development.

    Science.gov (United States)

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  3. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    Science.gov (United States)

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  4. Adipose tissue fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The increasing prevalence of obesity causes a majorinterest in white adipose tissue biology. Adipose tissuecells are surrounded by extracellular matrix proteinswhose composition and remodeling is of crucial importancefor cell function. The expansion of adipose tissue inobesity is linked to an inappropriate supply with oxygenand hypoxia development. Subsequent activation ofhypoxia inducible factor 1 (HIF-1) inhibits preadipocytedifferentiation and initiates adipose tissue fibrosis. Therebyadipose tissue growth is limited and excess triglyceridesare stored in ectopic tissues. Stressed adipocytes andhypoxia contribute to immune cell immigration andactivation which further aggravates adipose tissuefibrosis. There is substantial evidence that adipose tissuefibrosis is linked to metabolic dysfunction,both in rodentmodels and in the clinical setting. Peroxisome proliferatoractivated receptor gamma agonists and adiponectin bothreduce adipose tissue fibrosis, inflammation and insulinresistance. Current knowledge suggests that antifibroticdrugs, increasing adipose tissue oxygen supply or HIF-1antagonists will improve adipose tissue function andthereby ameliorate metabolic diseases.

  5. Impact of Growth Hormone on Regulation of Adipose Tissue.

    Science.gov (United States)

    Troike, Katie M; Henry, Brooke E; Jensen, Elizabeth A; Young, Jonathan A; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2017-06-18

    Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  6. The metabolic effects of growth hormone in adipose tissue.

    Science.gov (United States)

    Chaves, Valéria Ernestânia; Júnior, Fernando Mesquita; Bertolini, Gisele Lopes

    2013-10-01

    There is a general consensus that a reduction in growth hormone (GH) secretion results in obesity. However, the pathophysiologic role of GH in the metabolism of lipids is yet to be fully understood. The major somatic targets of GH are bones and muscles, but GH stimulates lipolysis and seems to regulate lipid deposition in adipose tissue. Patients with isolated GH deficiency (GHD) have enlarged fat depots due to higher fat cell volume, but their fat cell numbers are lower than those of matched controls. The treatment of patients with GH results in a relative loss of body fat and shifts both fat cell number and fat cell volume toward normal, indicating an adipogenic effect of GH. Adults with GHD are characterized by perturbations in body composition, lipid metabolism, cardiovascular risk profile, and bone mineral density. It is well established that GHD is usually accompanied by an increase in fat accumulation; GH replacement in GHD results in the reduction of fat mass, particularly abdominal fat mass. In addition, abdominal obesity results in a secondary reduction in GH secretion that is reversible with weight loss. However, whereas GH replacement in patients with GHD leads to specific depletion of intra-abdominal fat, administering GH to obese individuals does not seem to result in a consistent reduction or redistribution of body fat. Although administering GH to obese non-GHD subjects has only led to equivocal results, more recent studies indicate that GH still remains a plausible metabolic candidate.

  7. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis.

    Science.gov (United States)

    Lu, Qiqi; Li, Mingming; Zou, Yu; Cao, Tong

    2014-01-28

    Scaffolds based on decellularized adipose tissue (DAT) are gaining popularity in adipose tissue engineering due to their high biocompatibility and adipogenic inductive property. However, previous studies involving DAT-derived scaffolds have not fully revealed their potentials for in vivo adipose tissue construction. With the aim of developing a more efficient adipose tissue engineering technique based on DAT, in this study, we investigated the in vivo adipogenic potential of a basic fibroblast growth factor (bFGF) delivery system based on heparinized DAT (Hep-DAT). To generate this system, heparins were cross-linked to mouse DATs by using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide and N-Hydroxysuccinimide. The bFGF-binding Hep-DATs were first tested for controlled release ability in vitro and then transplanted subcutaneously. Highly vascularized adipose tissues were formed 6weeks after transplantation. Histology and gene expression analysis revealed that majority of the Hep-DAT scaffolds were infiltrated with host-derived adipose tissues that possessed similar adipogenic and inflammatory gene expression as endogenous adipose tissues. Additionally, strong de novo adipogenesis could also be induced when bFGF-binding Hep-DATs were thoroughly minced and injected subcutaneously. In conclusion, our study demonstrated that bFGF-binding Hep-DAT could be an efficient, biocompatible and injectable adipogenic system for in vivo adipose tissue engineering.

  8. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler.

    Science.gov (United States)

    Chen, Paula; Suh, Yeunsu; Choi, Young Min; Shin, Sangsu; Lee, Kichoon

    2014-07-01

    The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests breed differences occur posthatch.

  9. Effect of growth hormone on fatty acid synthase gene expression in porcine adipose tissue cultures

    Directory of Open Access Journals (Sweden)

    Andrea A.F.B.V. José

    2006-01-01

    Full Text Available We describe an efficient in vitro assay to test growth hormone effects on mRNA levels and fatty acid synthase (FAS, EC. 2.3.1.85 activity. Swine adipose tissue explants were long-term cultured in medium containing growth hormone and FAS mRNA levels and enzyme activity were measured. We quantified FAS transcripts by competitive reverse transcriptase PCR (RT-PCR using total RNA from cultured adipose tissue explants and RT-PCR standard-curves were constructed using a cloned 307 bp segment of native FAS cDNA and a shorter fragment from which a 64 bp (competitor, 243 bp internal sequence had been deleted. A known amount of competitor was added to each PCR as an internal control and µ-actin transcripts were also measured to correct for differences in total RNA extraction and reverse transcription efficiency. In cultures with added growth hormone FAS mRNA levels decreased 70% (p < 0.01 and FAS enzyme activity decreased 22% (p < 0.05. These in vitro growth hormone effects were consistent with those observed in vivo, showing that in vitro adipose tissue culture combined with RT-PCR is a useful and accurate tool for studying growth hormone modulation of adipose tissue metabolism. This technique allowed the diagnosis of lower levels of FAS mRNA in the presence of growth hormone and these low levels were associated with decreased FAS activity in the adipose tissue explants.

  10. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis.

    Science.gov (United States)

    Lim, Sharon; Hosaka, Kayoko; Nakamura, Masaki; Cao, Yihai

    2016-06-21

    Many types of cancer develop in close association with highly vascularized adipose tissues. However, the role of adipose pre-existing vascular beds on tumor growth and angiogenesis is unknown. Here we report that pre-existing microvascular density in tissues where tumors originate is a crucial determinant for tumor growth and neovascularization. In three independent tumor types including breast cancer, melanoma, and fibrosarcoma, inoculation of tumor cells in the subcutaneous tissue, white adipose tissue (WAT), and brown adipose tissue (BAT) resulted in markedly differential tumor growth rates and angiogenesis, which were in concordance with the degree of pre-existing vascularization in these tissues. Relative to subcutaneous tumors, WAT and BAT tumors grew at accelerated rates along with improved neovascularization, blood perfusion, and decreased hypoxia. Tumor cells implanted in adipose tissues contained leaky microvessel with poor perivascular cell coverage. Thus, adipose vasculature predetermines the tumor microenvironment that eventually supports tumor growth.

  11. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Science.gov (United States)

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.

  12. A Role for Adipose Tissue De Novo Lipogenesis in Glucose Homeostasis During Catch-up Growth

    Science.gov (United States)

    Marcelino, Helena; Veyrat-Durebex, Christelle; Summermatter, Serge; Sarafian, Delphine; Miles-Chan, Jennifer; Arsenijevic, Denis; Zani, Fabio; Montani, Jean-Pierre; Seydoux, Josiane; Solinas, Giovanni; Rohner-Jeanrenaud, Françoise; Dulloo, Abdul G.

    2013-01-01

    Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth. PMID:22961086

  13. Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2017-01-01

    Full Text Available Aims. Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD. Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21 is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT lipolysis. Methods. Mice were given 2.5% dextran sulfate sodium (DSS ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21 treatment; lipolysis was assessed. Results. DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions. Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.

  14. Transcriptomic profiling in muscle and adipose tissue identifies genes related to growth and lipid deposition.

    Science.gov (United States)

    Tao, Xuan; Liang, Yan; Yang, Xuemei; Pang, Jianhui; Zhong, Zhijun; Chen, Xiaohui; Yang, Yuekui; Zeng, Kai; Kang, Runming; Lei, Yunfeng; Ying, Sancheng; Gong, Jianjun; Gu, Yiren; Lv, Xuebin

    2017-01-01

    Growth performance and meat quality are important traits for the pig industry and consumers. Adipose tissue is the main site at which fat storage and fatty acid synthesis occur. Therefore, we combined high-throughput transcriptomic sequencing in adipose and muscle tissues with the quantification of corresponding phenotypic features using seven Chinese indigenous pig breeds and one Western commercial breed (Yorkshire). We obtained data on 101 phenotypic traits, from which principal component analysis distinguished two groups: one associated with the Chinese breeds and one with Yorkshire. The numbers of differentially expressed genes between all Chinese breeds and Yorkshire were shown to be 673 and 1056 in adipose and muscle tissues, respectively. Functional enrichment analysis revealed that these genes are associated with biological functions and canonical pathways related to oxidoreductase activity, immune response, and metabolic process. Weighted gene coexpression network analysis found more coexpression modules significantly correlated with the measured phenotypic traits in adipose than in muscle, indicating that adipose regulates meat and carcass quality. Using the combination of differential expression, QTL information, gene significance, and module hub genes, we identified a large number of candidate genes potentially related to economically important traits in pig, which should help us improve meat production and quality.

  15. Hounsfield unit dynamics of adipose tissue and non-adipose soft tissue in growing pigs

    DEFF Research Database (Denmark)

    Mcevoy, Fintan; Madsen, Mads T.; Strathe, Anders Bjerring;

    2008-01-01

    Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs.......Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs....

  16. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically

  17. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically foc

  18. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically foc

  19. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  20. Differential Expression of Cell Cycle Regulators During Hyperplastic and Hypertrophic Growth of Broiler Subcutaneous Adipose Tissue.

    Science.gov (United States)

    Zhang, J; Suh, Y; Choi, Y M; Chen, P R; Davis, M E; Lee, K

    2015-10-01

    Hyperplastic growth and hypertrophic growth within adipose tissue is tightly associated with cell cycle activity. In this study, CCNG2 and CDKN2C were found to be correlated with cell cycle inhibition during fat cell differentiation, whereas CCND3, CCNA1, and ANAPC5 were positively associated with cell cycle activity during fat cell proliferation after selection based on GEO datasets available on the NCBI website. The findings were validated through comparison of expressions of these genes among different tissues/fractions in broiler chickens and time points during primary cell culture using quantitative real-time PCR. Development of broiler subcutaneous adipose tissue was investigated on embryonic days 15 and 17 and on post-hatch days 0, 5, 11, and 33 using H&E staining and PCNA immunostaining with DAPI counter stain. In addition, mRNA expressions of five cell cycle regulators as well as precursor cell and adipocyte markers were measured at those time points. The results suggest that cellular proliferation activity decreased as the fat pad grows, but a population of precursor cells seemed to be maintained until post-hatch day 5 despite increasing differentiation activity. Hypertrophic growth gradually intensified despite a slight cessation on post-hatch day 0 due to increased energy expenditure during hatching and delayed food access. From post-hatch day 5 to day 11, most of the precursor cells may become differentiated. After post-hatch day 11, hyperplastic growth seemed to slow, while hypertrophic growth may become dominant. This study provides further understanding about broiler fat tissue development which is imperative for effective control of fat deposition.

  1. [Adipose tissue hormones].

    Science.gov (United States)

    Haluzík, M; Trachta, P; Haluzíková, D

    2010-10-01

    Adipose tissue had been traditionally considered a passive energy storage site without direct influence on energy homeostasis regulation. This view has been principally changed during early nineties by the discovery of hormonal production of adipose tissue. At present, the list of hormonally active substances of adipose tissue includes more than one hundred factors with paracrine or endocrine activity that play an important role in metabolic, food intake a inflammatory regulations and many other processes. Only minority of adipose tissue-derived hormones is produced exclusively in fat. Most of these factors is primarily put out by other tissues and organs. Adipose tissue-derived hormones are produced not only by adipocytes but also by preadipocytes, immunocompetent and endothelial cells and other cell types residing in fat. This paper summarizes current knowledge about endocrine function of adipose tissue with special respect to its changes in obesity. It also describes its possible role in the ethiopathogenesis of insulin resistance, atherosclerosis and other obesity-related pathologies.

  2. The influence of sex steroids on adipose tissue growth and function.

    Science.gov (United States)

    Law, James; Bloor, Ian; Budge, Helen; Symonds, Michael E

    2014-07-01

    Obesity remains a major global health concern. Understanding the metabolic influences of the obesity epidemic in the human population on maintenance of a healthy weight and metabolic profile is still of great significance. The importance and role of white adipose tissue has been long established, particularly with excess adiposity. Brown adipose tissue (BAT), however, has only recently been shown to contribute significantly to the metabolic signature of mammals outside the previously recognised role in small mammals and neonates. BAT's detection in adults has led to a renewed interest and is now considered to be a potential therapeutic target to prevent excess white fat accumulation in obesity, a theory further promoted by the recent discovery of beige fat. Adipose tissue distribution varies significantly between genders. Pre-menopausal females often show enhanced lower and peripheral fat deposition in adiposity deposition compared to the male profile of central and visceral fat accumulation with obesity. This sex disparity is partly attributed to the different effects of sex hormone profiles and interactions on the adipose tissue system. In this review, we explore this intricate relationship and show how modifications in the effects of sex hormones impact on both brown and white adipose tissues. We also discuss the impact of sex hormones on activation of the hypothalamic-pituitary-adrenal (HPA) axis and how the three pathways between adiposity, HPA and sex steroids can have a major contribution to the prevention or maintenance of obesity and therefore on overall health.

  3. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations

    OpenAIRE

    Fowler, Jason D.; Krueth, Stacy B.; Bernlohr, David A.; Katz, Stephen A.

    2009-01-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two ...

  4. PUTATIVE ROLE OF ADIPOSE TISSUE IN GROWTH AND METABOLISM OF COLON CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Betty eSchwartz

    2014-06-01

    Full Text Available Newly emerging data highlight obesity as an important risk factor for developing certain types of cancer, including colorectal cancer. Although evidence supports a link between the two, the mechanisms responsible for this relationship have not yet been fully elucidated. Hypertrophied and dysfunctional adipose tissue of the obese state is characterized by low-grade inflammation. Adipokines and cytokines secreted from adipocytes, together with the abundant availability of lipids from adipocytes in the tumor microenvironment, promote adhesion, migration, and invasion of tumor cells and support tumor progression and uncontrolled growth. One of the predisposed targets of the deleterious effects exerted by secretions from adipose tissue in obesity are the activities associated with the cellular mitochondria. Mitochondrial oxidative metabolism plays a key role in meeting cells' energetic demands by oxidative phosphorylation (OxPhos. Here we discuss: (a the dynamic relationship between glycolysis, the tricarboxylic acid (TCA cycle, and OxPhos; (b the evidence for impaired OxPhos (i.e. mitochondrial dysfunction in colon cancer; (c the mechanisms by which mitochondrial dysfunction can predispose to cancer. We propose that impaired OxPhos increases susceptibility to colon cancer since OxPhos is sensitive to a large number of factors that are intrinsic to the host (e.g. inflammation.Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes should reveal new therapeutic possibilities.

  5. Adipose tissue proteomes of intrauterine growth-restricted piglets artificially reared on a high-protein neonatal formula.

    Science.gov (United States)

    Sarr, Ousseynou; Louveau, Isabelle; Le Huërou-Luron, Isabelle; Gondret, Florence

    2012-11-01

    The eventuality that adipose tissues adapt to neonatal nutrition in a way that may program later adiposity or obesity in adulthood is receiving increasing attention in neonatology. This study assessed the immediate effects of a high-protein neonatal formula on proteome profiles of adipose tissues in newborn piglets with intrauterine growth restriction. Piglets (10th percentile) were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to the day prior weaning (day 28, n=5 per group). Adipocytes with small diameters were present in greater proportions in subcutaneous and perirenal adipose tissues from HP piglets compared with AP ones at this age. Two-dimensional gel electrophoresis analysis of adipose tissue depots revealed a total of 32 protein spots being up- or down-regulated (P<.10) for HP piglets compared with AP piglets; 18 of them were unambiguously identified by mass spectrometry. These proteins were notably related to signal transduction (annexin 2), redox status (peroxiredoxin 6, glutathione S-transferase omega 1, cyclophilin-A), carbohydrate metabolism (ribose-5-phosphate dehydrogenase, lactate dehydrogenase), amino acid metabolism (glutamate dehydrogenase 1) and cell cytoskeleton dynamics (dynactin and cofilin-1). Proteomic changes occurred mainly in dorsal subcutaneous adipose tissue, with the notable exception of annexin 1 involved in lipid metabolic process having a lower abundance in HP piglets for perirenal adipose tissue only. Together, modulation in those proteins could represent a novel starting point for elucidating catch-up fat growth observed in later life in growing animals having been fed HP formula.

  6. Adipose Tissue Metabolism During Hypobaria

    Directory of Open Access Journals (Sweden)

    D. P. Chattopadhyay

    1974-10-01

    Full Text Available Possible factors affecting the metabolism of adipose tissue under hypobaric conditions have been reviewed. The hormonal changes brought into play under hypoxic stress generally stress generally increase the adipose tissue lipolysis.

  7. Targeting adipose tissue

    Directory of Open Access Journals (Sweden)

    Haas Bodo

    2012-10-01

    Full Text Available Abstract Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT is generally known and stores excess energy in the form of triacylglycerol (TG, insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP. The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET, however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs, activators of peroxisome proliferator-activated receptor γ (PPARγ a ‘master’ regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity.

  8. Effect of conjugated linoleic acids from beef or industrial hydrogenation on growth and adipose tissue characteristics of rats

    Directory of Open Access Journals (Sweden)

    He Mao L

    2009-04-01

    Full Text Available Abstract Background The conjugated linoleic acid (CLA content of beef can be increased by supplementing appropriate beef cattle diets with vegetable oil or oil seed. Yet the effect of consumption of such beef on adipose tissue characteristics is unclear, thus the study was conducted to compare adipose tissue responses of rats to diets containing beef from steers either not provided or provided the oil supplements to alter CLA composition of the fat in muscle. Methods Effects of feeding synthetic (industrial hydrogenation CLA or CLA from beef on growth and adipose tissue responses of weanling, male, Wistar rats (n = 56; 14 per treatment diet were investigated in a completely randomized design experiment. Diets were: control (CON diet containing casein and soybean oil, synthetic CLA (SCLA diet; where 1.69% synthetic CLA replaced soybean oil, two beef-diets; CONM and CLAM, containing freeze dried beef from steers either not fed or fed 14% sunflower seeds to increase CLA content of beef. Diets were isonitrogenous (20% protein and isocaloric. Rat weights and ad libitum intakes were recorded every 2 wk. After 9 wk, rats were fasted for 24 h, blood sampled by heart puncture, sacrificed, tissue and organs were harvested and weights recorded. The adipose tissue responses with regard to cellularity and fatty acid compositions of retroperitoneal and inguinal adipose tissue were determined. Results Body weights and gains were comparable, but organ weights as percent of body weight were greater for rats fed SCLA than CONM. Fasting blood glucose concentration was lower (p 7 cells/g and 8.03 × 108 cells than those fed CONM (28.88 × 107 cells/g and 32.05 × 108 cells, respectively. Conclusion Study suggests that dietary CLA either as synthetic or high CLA-beef may alter adipose tissue characteristics by decreasing the number of adipocytes and by decreasing the size of the tissue.

  9. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  10. Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: The role of zinc-α2-glycoprotein.

    Science.gov (United States)

    Balaž, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Vlcek, Miroslav; Surova, Martina; Krumpolec, Patrik; Vanuga, Peter; Gašperíková, Daniela; Klimeš, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-01-01

    Growth hormone (GH) supplementation therapy to adults with GH deficiency has beneficial effects on adipose tissue lipid metabolism, improving thus adipocyte functional morphology and insulin sensitivity. However, molecular nature of these effects remains unclear. We therefore tested the hypothesis that lipid-mobilizing adipokine zinc-α2-glycoprotein is causally linked to GH effects on adipose tissue lipid metabolism. Seventeen patients with severe GH deficiency examined before and after the 5-year GH replacement therapy were compared with age-, gender- and BMI-matched healthy controls. Euglycemic hyperinsulinemic clamp was used to assess whole-body and adipose tissue-specific insulin sensitivity. Glucose tolerance was determined by oGTT, visceral and subcutaneous abdominal adiposity by MRI, adipocyte size morphometrically after collagenase digestion, lipid accumulation and release was studied in differentiated human primary adipocytes in association with GH treatment and zinc-α2-glycoprotein gene silencing. Five-year GH replacement therapy improved glucose tolerance, adipose tissue insulin sensitivity and reduced adipocyte size without affecting adiposity and whole-body insulin sensitivity. Adipose tissue zinc-α2-glycoprotein expression was positively associated with whole-body and adipose tissue insulin sensitivity and negatively with adipocyte size. GH treatment to adipocytes in vitro increased zinc-α2-glycoprotein expression (>50%) and was paralleled by enhanced lipolysis and decreased triglyceride accumulation (>35%). Moreover, GH treatment improved antilipolytic action of insulin in cultured adipocytes. Most importantly, silencing zinc-α2-glycoprotein eliminated all of the GH effects on adipocyte lipid metabolism. Effects of 5-year GH supplementation therapy on adipose tissue lipid metabolism and insulin sensitivity are associated with zinc-α2-glycoprotein. Presence of this adipokine is required for the GH action on adipocyte lipid metabolism in vitro.

  11. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations.

    Science.gov (United States)

    Fowler, Jason D; Krueth, Stacy B; Bernlohr, David A; Katz, Stephen A

    2009-02-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two RAS components, renin and angiotensinogen (AGT), to determine the influence of their plasma concentrations on adipose and cardiac tissue levels in both perfused (plasma removed) and nonperfused samples. Variation of plasma RAS components was accomplished by four treatment groups: normal, DOCA salt, bilateral nephrectomy, and losartan. Adipose and cardiac tissue AGT concentrations correlated positively with plasma values. Perfusion of adipose tissue decreased AGT concentrations by 11.1%, indicating that adipose tissue AGT was in equilibrium with plasma. Cardiac tissue renin levels positively correlated with plasma renin concentration for all treatments. In contrast, adipose tissue renin levels did not correlate with plasma renin, with the exception of extremely high plasma renin concentrations achieved in the losartan-treated group. These results suggest that adipose tissue may control its own local renin concentration independently of plasma renin as a potential mechanism for maintaining a functional local adipose RAS.

  12. Steroid biosynthesis in adipose tissue.

    Science.gov (United States)

    Li, Jiehan; Papadopoulos, Vassilios; Vihma, Veera

    2015-11-01

    Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.

  13. Effects of cortisol and growth hormone on lipolysis in human adipose tissue.

    Science.gov (United States)

    Ottosson, M; Lönnroth, P; Björntorp, P; Edén, S

    2000-02-01

    The in vitro effects of cortisol and GH on basal and stimulated lipolysis in human adipose tissue were studied using a tissue incubation technique. After preincubation for 3 days in control medium containing insulin, adipose tissue pieces were exposed to cortisol for 3 days. GH was added to the cortisol-containing medium during the last 24 h (day 6). Adipocytes were then isolated, and lipolysis was studied in the absence and presence of isoprenaline, noradrenaline, forskolin, and N-6-monobutyryl-cAMP. Cortisol reduced the basal rate of lipolysis (P cortisol-containing medium increased the basal rate of lipolysis (P effects were obtained in the presence of noradrenaline. Maximum forskolin-induced lipolytic activity was reduced after exposure of the tissue to cortisol (P effect (P cortisol and GH have opposite effects on the basal lipolytic activity in human adipose tissue in vitro as well as on the sensitivity to catecholamines, GH being the lipolytic and cortisol the antilipolytic agent. The present findings are in agreement with in vivo observations.

  14. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance.

    Science.gov (United States)

    Bagchi, Mandrita; Kim, Leo A; Boucher, Jeremie; Walshe, Tony E; Kahn, C Ronald; D'Amore, Patricia A

    2013-08-01

    Vascular endothelial growth factor (VEGF) is critical for angiogenesis, but also has pleiotropic effects on several nonvascular cells. Our aim was to investigate the role of VEGF in brown adipose tissue (BAT). We show that VEGF expression increases 2.5-fold during differentiation of cultured murine brown adipocytes and that VEGF receptor-2 is phosphorylated, indicating VEGF signaling. VEGF increased proliferation in brown preadipocytes in vitro by 70%, and blockade of VEGF signaling using anti-VEGFR2 antibody DC101 increased brown adipocyte apoptosis, as determined by cell number and activation of caspase 3. Systemic VEGF neutralization in mice, accomplished by adenoviral expression of soluble Flt1, resulted in 7-fold increase in brown adipocyte apoptosis, mitochondrial degeneration, and increased mitophagy compared to control mice expressing a null adenovirus. Absence of the heparan sulfate-binding VEGF isoforms, VEGF164 and VEGF188, resulted in abnormal BAT development in mice at E15.5, with fewer brown adipocytes and lower mitochondrial protein compared to wild-type littermates. These results suggest a role for VEGF in brown adipocytes and preadipocytes to promote survival, proliferation, and normal mitochondria and development.

  15. Adipose Tissue Immunity and Cancer

    Directory of Open Access Journals (Sweden)

    Victoria eCatalan

    2013-10-01

    Full Text Available Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete proinflammatory adipokines and cytokines providing a microenvironment favourable for tumour growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching towards M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumour growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumour cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumour microenvironment with more sophisticated and selective anti-tumoural drugs.

  16. Prenatal low-protein and postnatal high-fat diets induce rapid adipose tissue growth by inducing Igf2 expression in Sprague Dawley rat offspring.

    Science.gov (United States)

    Claycombe, Kate J; Uthus, Eric O; Roemmich, James N; Johnson, Luann K; Johnson, W Thomas

    2013-10-01

    Maternal low-protein diets result in lower birth weight followed by accelerated catch-up growth that is accompanied by the development of obesity and glucose intolerance in later life. Whether postnatal high-fat (HF) diets further contribute to the development of obesity and insulin resistance in offspring by affecting adipose tissue metabolism and DNA methylation is currently unknown. Obese-prone Sprague-Dawley rats were fed 8% low protein (LP) or 20% normal protein diets for 3 wk prior to conception and throughout pregnancy and lactation to investigate whether prenatal LP and postnatal HF diets affect the rate of adipose tissue growth, insulin-like growth factor 2 (Igf2) expression, and DNA methylation in male offspring. At weaning, the offspring were fed 10% normal fat or 45% HF diets for 12 wk. The adipose tissue growth rate was increased (up to 26-fold) by the LP prenatal and HF postnatal diets. Adipose tissue Igf2 mRNAs and DNA methylation were increased by the LP prenatal and HF postnatal diets. The LP prenatal and HF postnatal diet increased the number of small adipocytes in adipose tissue and decreased insulin sensitivity. These findings suggest that prenatal LP and postnatal HF intake result in adipose tissue catch-up growth through alterations in the expression of the Igf2 gene and DNA methylation within adipocytes. These alterations in adiposity are accompanied by an increased risk of development of type 2 diabetes.

  17. Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition.

    Science.gov (United States)

    Reynolds, C M; Li, M; Gray, C; Vickers, M H

    2013-08-01

    It is well established that early-life nutritional alterations lead to increased risk of obesity and metabolic disorders in adult life. Although it is clear that obesity gives rise to chronic low-grade inflammation, there is little evidence regarding the role of inflammation in the adipose tissue of undernourished (UN) offspring. GH reduces fat mass and has antiinflammatory properties. The present study examined the effect of maternal UN on adipose inflammation in adult offspring and whether GH treatment during a critical period of developmental plasticity could ameliorate metabolic dysfunction associated with a poor start to life. Sprague Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (control saline [CS]/UN) or GH (2.5 μg/g/d; control growth hormone [CGH]/undernourished growth hormone [UNGH]) from days 3-21. Postweaning males were further randomized and fed either chow or high-fat diet until day 160. An ex vivo glucose uptake assay demonstrated adipose tissue from UN offspring displayed attenuated insulin-stimulated glucose uptake compared with CS, CGH, and UNGH. This was associated with increased insulin receptor, glucose transporter 4, and insulin receptor substrate 1 gene expression. Furthermore, UN demonstrated enhanced TNFα and IL-1β secretion from adipose explants and stromal vascular fraction cultures accompanied by increased adipose tissue gene expression of several key proinflammatory genes and markers of macrophage infiltration. Overall, UN offspring displayed a more potent immunophenotype, which correlated with decreased insulin sensitivity. Preweaning GH treatment negates these detrimental effects, indicating the potential for reversing metabolic dysfunction in UN adult offspring.

  18. Bioengineering Beige Adipose Tissue Therapeutics.

    Science.gov (United States)

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  19. Adipose tissue lipolysis.

    Science.gov (United States)

    Kolditz, Catherine-Ines; Langin, Dominique

    2010-07-01

    Adipose tissue lipolysis is a critical pathway for the maintenance of energy homeostasis through the degradation of triglycerides and the release of fatty acids into the circulation. The understanding of the cellular factors regulating triglyceride hydrolysis and the metabolic function of lipases has considerably expanded in the last few years, revealing an unexpected complexity. This review aims at describing recent discoveries related to the lipolytic pathway and its regulatory mechanisms. Considerable progress has been made in understanding the role and the mechanisms of activation of the lipolytic enzymes. Recent discoveries have dramatically altered the view of adipose tissue lipolysis and highlighted the importance of additional molecular actors in regulating this process. Catecholamines, natriuretic peptides, and insulin are considered to be the major regulators of lipolysis in humans. However, autocrine/paracrine factors such as metabolites and prostaglandins may also participate in its regulation. The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity. Unraveling the molecular events occurring during regulation of lipolysis may lead to novel therapeutic targets.

  20. Effect of white adipose tissue flap and insulin-like growth factor-1 on nerve regeneration in rats.

    Science.gov (United States)

    Kilic, Ayhan; Ojo, Bukola; Rajfer, Rebecca A; Konopka, Geoffrey; Hagg, Daniel; Jang, Eugene; Akelina, Yelena; Mao, Jeremy J; Rosenwasser, Melvin P; Tang, Peter

    2013-07-01

    Adipose tissue-derived stem cells and insulin-like growth factor-1 (IGF-1) have shown potential to enhance peripheral nerve regeneration. The purpose of this study was to investigate the effect of an in vivo biologic scaffold, consisting of white adipose tissue flap (WATF) and/or IGF-1 on nerve regeneration in a crush injury model. Forty rats all underwent a sciatic nerve crush injury and then received: a pedicled WATF, a controlled local release of IGF-1, both treatments, or no treatment at the injury site. Outcomes were the normalized maximum isometric tetanic force (ITF) of the tibialis anterior muscle and histomorphometric measurements. At 4 weeks, groups with WATF had a statistically significant improvement in maximum ITF recovery, as compared to those without (P nerve regeneration in this model. Utilizing the WATF may have a beneficial therapeutic role in peripheral nerve injuries. Copyright © 2013 Wiley Periodicals, Inc.

  1. The impact of diet in early life on adipose tissue growth and development in sheep

    OpenAIRE

    Birtwistle, Mark D.A.

    2016-01-01

    Adipose tissue is found in two main forms: white (WAT), which stores energy; and brown (BAT), which dissipates energy as heat by means of a unique mitochondrial protein, UCP1. In large mammals, BAT is rapidly replaced by WAT after birth, but it has recently been found that functional BAT is present in human adults, which raises the possibility that it could be manipulated to burn off excess fat. The main aim of this thesis was to investigate, using sheep as a model, the effect of early nutrit...

  2. Nutritional factors affecting growth of muscle and adipose tissue in ruminants.

    Science.gov (United States)

    Byers, F M

    1982-07-01

    Patterns of tissue growth determine composition of growth, and over intervals of time, these patterns of tissue growth will also be reflected in total tissue accumulated in the animal. Although patterns of tissue growth may be modified by the effects of specific carbon sources through direct impact on lipogenesis, the primary avenue through which nutritional factors regulate or direct protein and fat deposition is through effects of total absorbed energy provided on rates of growth in relation to an animal's daily needs for maintenance and protein growth. Even though mature size and genetic potential establish the maximum upper limits for daily protein growth, other factors determine the extent to which these theoretical limits will ever be achieved. The actual partitioning of absorbed nutrients between protein and fat deposition also depends on other factors, including stage of growth, sex class, hormonal regulation (endogenous and exogenous), and intake of required nutrients. The sex class of an animal establishes different biological limits for bulls, steers, and heifers that are otherwise similar in mature size, genetics, and nutritional adequacy. Also, the use of anabolic agents alters the physiological limit for daily protein growth at the cellular level and allows an animal to deposit protein at rates closer to theoretical genetic limits. Energy that is provided above maintenance and protein growth requirements enhances rates of lipid deposition and accumulation of fat. As a consequence, the rate of growth will direct these tissue responses, and effects of diet, energy level, level of nutrition, and plane of nutrition will impact composition of growth primarily through acceleration of rate of growth above daily limits for protein growth. Changes in tissue storage will impact total body composition to the extent of time and differential in composition of gain and of tissue present.

  3. Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21.

    Science.gov (United States)

    Muise, Eric S; Souza, Sandra; Chi, An; Tan, Yejun; Zhao, Xuemei; Liu, Franklin; Dallas-Yang, Qing; Wu, Margaret; Sarr, Tim; Zhu, Lan; Guo, Hongbo; Li, Zhihua; Li, Wenyu; Hu, Weiwen; Jiang, Guoqiang; Paweletz, Cloud P; Hendrickson, Ronald C; Thompson, John R; Mu, James; Berger, Joel P; Mehmet, Huseyin

    2013-01-01

    FGF21 is a novel secreted protein with robust anti-diabetic, anti-obesity, and anti-atherogenic activities in preclinical species. In the current study, we investigated the signal transduction pathways downstream of FGF21 following acute administration of the growth factor to mice. Focusing on adipose tissues, we identified FGF21-mediated downstream signaling events and target engagement biomarkers. Specifically, RNA profiling of adipose tissues and phosphoproteomic profiling of adipocytes, following FGF21 treatment revealed several specific changes in gene expression and post-translational modifications, specifically phosphorylation, in several relevant proteins. Affymetrix microarray analysis of white adipose tissues isolated from both C57BL/6 (fed either regular chow or HFD) and db/db mice identified over 150 robust potential RNA transcripts and over 50 potential secreted proteins that were changed greater than 1.5 fold by FGF21 acutely. Phosphoprofiling analysis identified over 130 phosphoproteins that were modulated greater than 1.5 fold by FGF21 in 3T3-L1 adipocytes. Bioinformatic analysis of the combined gene and phosphoprotein profiling data identified a number of known metabolic pathways such as glucose uptake, insulin receptor signaling, Erk/Mapk signaling cascades, and lipid metabolism. Moreover, a number of novel events with hitherto unknown links to FGF21 signaling were observed at both the transcription and protein phosphorylation levels following treatment. We conclude that such a combined "omics" approach can be used not only to identify robust biomarkers for novel therapeutics but can also enhance our understanding of downstream signaling pathways; in the example presented here, novel FGF21-mediated signaling events in adipose tissue have been revealed that warrant further investigation.

  4. Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4.

    Science.gov (United States)

    Gealekman, Olga; Gurav, Kunal; Chouinard, My; Straubhaar, Juerg; Thompson, Michael; Malkani, Samir; Hartigan, Celia; Corvera, Silvia

    2014-06-27

    Adipose tissue expansion requires growth and proliferation of adipocytes and the concomitant expansion of their stromovascular network. We have used an ex vivo angiogenesis assay to study the mechanisms involved in adipose tissue expansion. In this assay, adipose tissue fragments placed under pro-angiogenic conditions form sprouts composed of endothelial, perivascular, and other proliferative cells. We find that sprouting was directly stimulated by insulin and was enhanced by prior treatment of mice with the insulin sensitizer rosiglitazone. Moreover, basal and insulin-stimulated sprouting increased progressively over 30 weeks of high fat diet feeding, correlating with tissue expansion during this period. cDNA microarrays analyzed to identify genes correlating with insulin-stimulated sprouting surprisingly revealed only four positively correlating (Fads3, Tmsb10, Depdc6, and Rasl12) and four negatively correlating (Asph, IGFbp4, Ppm1b, and Adcyap1r1) genes. Among the proteins encoded by these genes, IGFbp4, which suppresses IGF-1 signaling, has been previously implicated in angiogenesis, suggesting a role for IGF-1 in adipose tissue expandability. Indeed, IGF-1 potently stimulated sprouting, and the presence of activated IGF-1 receptors in the vasculature was revealed by immunostaining. Recombinant IGFbp4 blocked the effects of insulin and IGF-1 on mouse adipose tissue sprouting and also suppressed sprouting from human subcutaneous adipose tissue. These results reveal an important role of IGF-1/IGFbp4 signaling in post-developmental adipose tissue expansion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Water-fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure.

    Science.gov (United States)

    MacCannell, Amanda; Sinclair, Kevin; Friesen-Waldner, Lannette; McKenzie, Charles A; Staples, James F

    2017-03-21

    Obligate hibernators, such as ground squirrels, display circannual patterns which persist even under constant laboratory conditions, suggesting that they are regulated by endogenous rhythms. Brown adipose tissue (BAT) is important for thermogenesis during periodic arousals from hibernation when core body temperature rises spontaneously from 5 to 37 °C. In most small eutherians BAT growth requires several weeks of cold exposure. We hypothesized that in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), a hibernator, BAT growth is regulated, in part, by an endogenous rhythm and we predicted that this growth would precede the hibernation season without cold exposure. We tested this prediction using repeated water-fat magnetic resonance imaging over a year, including the hibernation season. Thoracic BAT depots increased in volume from spring through autumn even though animals were housed at ~22 °C. Subsequent cold exposure (5 °C) enlarged the thoracic BAT further. The fat fraction of this tissue fell significantly during the period of peak growth, indicating relative increases in non-triglyceride components, perhaps mitochondria or vasculature. We also found that the proportion of the body consisting of white adipose tissue (WAT) increased steadily from spring through autumn, and fell throughout hibernation, mirroring changes in body mass. Unlike BAT, WAT fat fractions remained constant (near 90%) throughout the year. Future studies will evaluate the significance of photoperiod and cold exposure on the growth of these tissues. We also found tissue with a fat fraction characteristic of BAT in the head near the eyes, a potentially novel discovery that requires further confirmation.

  6. Expression of interleukins, neuropeptides, and growth hormone receptor and leptin receptor genes in adipose tissue from growing broiler chickens

    Science.gov (United States)

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for quantitative real-time PCR analysis. Studies of the gene expression of cytokines and associated genes in chicken adipose tissue were initia...

  7. Adipose tissue remodeling and obesity

    National Research Council Canada - National Science Library

    Sun, Kai; Kusminski, Christine M; Scherer, Philipp E

    2011-01-01

    To fulfill its role as the major energy-storing tissue, adipose has several unique properties that cannot be seen in any other organ, including an almost unlimited capacity to expand in a non-transformed state...

  8. Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice.

    Science.gov (United States)

    Sackmann-Sala, Lucila; Berryman, Darlene E; Lubbers, Ellen R; Zhang, Han; Vesel, Clare B; Troike, Katie M; Gosney, Elahu S; List, Edward O; Kopchick, John J

    2014-01-01

    Growth hormone receptor-null (GHR(-/-)) mice are dwarf, insulin sensitive, and long-lived in spite of increased adiposity. However, their adiposity is not uniform, with select white adipose tissue (WAT) depots enlarged. To study WAT depot-specific effects on insulin sensitivity and life span, we analyzed individual WAT depots of 12- and 24-month-old GHR(-) (/-) and wild-type (WT) mice, as well as their plasma levels of selected hormones. Adipocyte sizes and plasma insulin, leptin, and adiponectin levels decreased with age in both GHR(-) (/-) and WT mice. Two-dimensional gel electrophoresis proteomes of WAT depots were similar among groups, but several proteins involved in endocytosis and/or cytoskeletal organization (Ehd2, S100A10, actin), anticoagulation (S100A10, annexin A5), and age-related conditions (alpha2-macroglobulin, apolipoprotein A-I, transthyretin) showed significant differences between genotypes. Because Ehd2 may regulate endocytosis of Glut4, we measured Glut4 levels in the WAT depots of GHR(-) (/-) and WT mice. Inguinal WAT of 12-month-old GHR(-) (/-) mice displayed lower levels of Glut4 than WT. Overall, the protein changes detected in this study offer new insights into possible mechanisms contributing to enhanced insulin sensitivity and extended life span in GHR(-) (/-) mice.

  9. [Effects of PRF and released three growth factors on migration of rat adipose tissue-derived stem cells].

    Science.gov (United States)

    Gao, Jie; Wang, Ming-guo; Yang, Shuai; Li, Xiu-mei; Yang, Shi-mao; Li, Xue

    2015-12-01

    To analyze the effects of PRF and released three growth factors on migration of rat adipose tissue-derived stem cells and to investigate the mechanism of migration. The inguinal adipose tissue of rat was excised at aseptic condition to obtain primary ADSCs by enzyme digestion. Multi-directional differentiation was used to identify the ADSCs. PRF membrane was acquired through one time centrifuge. The cell migration was examined by Transwell assay and wound healing assay. The mRNA expression of MMP2 and MT1-MMP was tested by real-time PCR. Statistical analysis was performed using SPSS 13.0 software package. Cell migration test showed that the migration of rat ADSCs in PRF group were significantly higher than those in the negative group(PPRF group than control group (PPRF and three growth factors consistently enhanced the migration of rat ADSCs in a dose-response manner. The migration increase of rat ADSCs may be associated with the up-regulation of MMP2 and MT1-MMP gene expression.

  10. Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic.

    Science.gov (United States)

    Berryman, Darlene E; Henry, Brooke; Hjortebjerg, Rikke; List, Edward O; Kopchick, John J

    2016-01-01

    Adipose tissue (AT) is a well-established target of growth hormone (GH) and is altered in clinical conditions associated with excess, deficiency and absence of GH action. Due to the difficulty in collecting AT from clinical populations, genetically modified mice have been useful in better understanding how GH affects this tissue. Recent findings in mice would suggest that the impact of GH on AT is beyond alterations of lipolysis, lipogenesis or proliferation/ differentiation. AT depot-specific alterations in immune cells, extracellular matrix, adipokines, and senescence indicate an expanded role for GH in AT physiology. This mouse data will guide additional studies necessary to evaluate the therapeutic potential and safety of GH for conditions associated with altering AT, such as obesity. In this review, we introduce several relatively new intricacies of GH's effect on AT, focusing on recent studies in mice. Finally, we summarize the clinical implications of these findings.

  11. Adipose tissues and thyroid hormones

    Directory of Open Access Journals (Sweden)

    Maria-Jesus eObregon

    2014-12-01

    Full Text Available The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases. The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. Brite or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2 and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that activate UCP1 in WAT and

  12. Adipose tissues and thyroid hormones.

    Science.gov (United States)

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. "Brite" or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT and

  13. Secretory function of adipose tissue.

    Science.gov (United States)

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  14. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice.

    Science.gov (United States)

    Stout, Michael B; Tchkonia, Tamara; Pirtskhalava, Tamar; Palmer, Allyson K; List, Edward O; Berryman, Darlene E; Lubbers, Ellen R; Escande, Carlos; Spong, Adam; Masternak, Michal M; Oberg, Ann L; LeBrasseur, Nathan K; Miller, Richard A; Kopchick, John J; Bartke, Andrzej; Kirkland, James L

    2014-07-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible.

  15. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    Science.gov (United States)

    Pirtskhalava, Tamar; Palmer, Allyson K.; List, Edward O.; Berryman, Darlene E.; Lubbers, Ellen R.; Escande, Carlos; Spong, Adam; Masternak, Michal M.; Oberg, Ann L.; LeBrasseur, Nathan K.; Miller, Richard A.; Kopchick, John J.; Bartke, Andrzej; Kirkland, James L.

    2014-01-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible. PMID:25063774

  16. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells.

    Science.gov (United States)

    Hutton, Daphne L; Moore, Erika M; Gimble, Jeffrey M; Grayson, Warren L

    2013-09-01

    Vasculature is essential to the functional integration of a tissue-engineered bone graft to enable sufficient nutrient delivery and viability after implantation. Native bone and vasculature develop through intimately coupled, tightly regulated spatiotemporal cell-cell signaling. The complexity of these developmental processes has been a challenge for tissue engineers to recapitulate, resulting in poor codevelopment of both bone and vasculature within a unified graft. To address this, we cultured adipose-derived stromal/stem cells (ASCs), a clinically relevant, single cell source that has been previously investigated for its ability to give rise to vascularized bone grafts, and studied the effects of initial spatial organization of cells, the temporal addition of growth factors, and the presence of exogenous platelet-derived growth factor-BB (PDGF-BB) on the codevelopment of bone and vascular tissue structures. Human ASCs were aggregated into multicellular spheroids via the hanging drop method before encapsulation and subsequent outgrowth in fibrin gels. Cellular aggregation substantially increased vascular network density, interconnectivity, and pericyte coverage compared to monodispersed cultures. To form robust vessel networks, it was essential to culture ASCs in a purely vasculogenic medium for at least 8 days before the addition of osteogenic cues. Physiologically relevant concentrations of exogenous PDGF-BB (20 ng/mL) substantially enhanced both vascular network stability and osteogenic differentiation. Comparisons with the bone morphogenetic protein-2, another pro-osteogenic and proangiogenic growth factor, indicated that this potential to couple the formation of both lineages might be unique to PDGF-BB. Furthermore, the resulting tissue structure demonstrated the close association of mineral deposits with pre-existing vascular structures that have been described for developing tissues. This combination of a single cell source with a potent induction factor

  17. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells.

    Science.gov (United States)

    Bekhite, Mohamed M; Finkensieper, Andreas; Rebhan, Jennifer; Huse, Stephanie; Schultze-Mosgau, Stefan; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2014-02-15

    The plasticity of human adipose tissue-derived stem cells (hASCs) is promising, but differentiation in vitro toward endothelial cells is poorly understood. Flow cytometry demonstrated that hASCs isolated from excised fat tissue were positive for CD29, CD44, CD70, CD90, CD105, and CD166 and negative for the endothelial marker CD31, and the hematopoietic cell markers CD34 and CD133. hASCs differentiated into adipocytes after cultivation in adipogenic medium. Exposure of hASCs for 10 days under hypoxia (3% oxygen) in combination with leptin increased the percentage of CD31(+) endothelial cells as well as CD31, VE-Cadherin, Flk-1, Tie2, von Willebrand factor, and endothelial cell nitric oxide synthase mRNA expression. This was enhanced on co-incubation of vascular endothelial growth factor (VEGF) and leptin, whereas VEGF alone was not sufficient. Moreover, hASCs cultured on a matrigel surface under hypoxia/VEGF/leptin, showed a stable branching network. Hypoxic conditions significantly decreased apoptosis as evaluated by cleaved caspase-3, and increased prolyl hydroxylase domain 3 mRNA expression. Hypoxia increased expression of VEGF as well as leptin transcripts, which were significantly inhibited on co-incubation with either VEGF or leptin or a combination of both. Furthermore, leptin treatment of hypoxic cells increased the expression of the long/signaling form of the leptin receptor (ObRL), which was augmented on co-incubation with VEGF. The observed endothelial differentiation was dependent on the Akt pathway, as co-administration with Akt inhibitor abolished the observed effects. In conclusion, our data demonstrate that hASCs can be efficiently differentiated to endothelial cells by mimicking the hypoxic and pro-angiogenic microenvironment of adipose tissue.

  18. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    Science.gov (United States)

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  19. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage.

    Science.gov (United States)

    Marcelino, Helena; Veyrat-Durebex, Christelle; Summermatter, Serge; Sarafian, Delphine; Miles-Chan, Jennifer; Arsenijevic, Denis; Zani, Fabio; Montani, Jean-Pierre; Seydoux, Josiane; Solinas, Giovanni; Rohner-Jeanrenaud, Françoise; Dulloo, Abdul G

    2013-02-01

    Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth.

  20. Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth

    Science.gov (United States)

    Lore, Lapeire; An, Hendrix; Evelyne, Lecoutere; Mieke, Van Bockstal; Jo, Vandesompele; Dawn, Maynard; Geert, Braems; Rudy, Van Den Broecke; Cathérine, Müller; Marc, Bracke; Véronique, Cocquyt; Hannelore, Denys; Olivier, De Wever

    2017-01-01

    Adipose tissue secretes a plethora of adipokines as evidenced by characterization of subcutaneous and visceral adipose tissue secretomes. However, adipose tissue composition and secretion pattern is depot and disease dependent, influencing the adipose tissue secretome. We investigated the secretome of cancer-associated adipose tissue (CAAT) explants from breast cancer patients and explored its role in breast cancer proliferation. CAAT proteins were identified by LC-MS/MS and human protein antibody arrays and stimulated proliferation of three breast cancer cell lines. Kinomics and transcriptomics of MCF-7 breast cancer cells treated with the secretome of CAAT revealed activation of Akt-, ERK- and JNK-pathways and differential expression of activator protein 1 (AP-1) and cAMP responsive element-binding protein (CREB) target genes. The cyclin-dependent kinase (CDK)4/6-inhibitor palbociclib significantly abrogated CAAT-enhanced breast cancer cell proliferation. Our work characterizes the specific breast CAAT protein secretome and reveals its pro-proliferative potency in breast cancer. PMID:28525384

  1. Adipose tissue and its role in organ crosstalk.

    Science.gov (United States)

    Romacho, T; Elsen, M; Röhrborn, D; Eckel, J

    2014-04-01

    The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

  2. Spontaneous intra-uterine growth restriction modulates the endocrine status and the developmental expression of genes in porcine fetal and neonatal adipose tissue.

    Science.gov (United States)

    Gondret, Florence; Père, Marie-Christine; Tacher, Sandrine; Daré, Sophie; Trefeu, Christine; Le Huërou-Luron, Isabelle; Louveau, Isabelle

    2013-12-01

    Low birth weight is correlated with low adiposity at birth, a phenotype that influences neonatal survival and later adiposity. A better understanding of events affecting the fetal adipose tissue development and its functionality around birth is thus needed. This study was undertaken to examine the impact of spontaneous intra-uterine growth restriction (IUGR) on circulating concentrations of hormones and nutrients together with the developmental expression patterns of various genes in subcutaneous adipose tissue of pig fetus during the last third of pregnancy and just after birth. At 71 and 112 days post-conception and 2 days postnatal, pairs of same-sex piglets were chosen within litters to have either a medium (MBW) or a low (LBW) weight (n=6 pairs at each stage). The results indicate that IUGR counteracts the temporal fall of DLK1 gene expression in developing adipose tissue across gestation. It also attenuates the time-dependent increase in expression levels of many genes promoting adipocyte differentiation (PPARG, CEBPA) and lipogenesis (LPL, SREBF1, FASN, FABP4). Opposite responses to IUGR were observed for the IGF system, so that IGF1 mRNA levels were lower (Padipose tissue of LBW piglets compared with MBW piglets. The plasma insulin concentration and the mRNA levels of insulin receptor (INSR) and insulin-responsive glucose transporter (GLUT4) in adipose tissue were also greater in LBW piglets at day 2 postnatal. The data indicate that IUGR delays the normal ontogeny of adipose tissue across gestation and affects the insulin and IGF axes around birth.

  3. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  4. Glucose transport in adipose tissue

    NARCIS (Netherlands)

    Schoonen, AJM; Wientjes, KJC

    2005-01-01

    Based on the well-known extraction equation and the histology of subcutaneous adipose tissue, transport of glucose from capillary to microdialysis probe is described. Results are evaluated of previous studies by our group and others. Arguments are presented for a simple scheme in which the mean

  5. Hypothalamic control of adipose tissue.

    Science.gov (United States)

    Stefanidis, A; Wiedmann, N M; Adler, E S; Oldfield, B J

    2014-10-01

    A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.

  6. Increased lipolysis but diminished gene expression of lipases in subcutaneous adipose tissue of healthy young males with intrauterine growth retardation

    DEFF Research Database (Denmark)

    Højbjerre, Lise; Alibegovic, Amra C; Sonne, Mette P

    2011-01-01

    ) and femoral (SCFAT) adipose tissue. Additionally, mRNA expression of lipases was evaluated in biopsies from SCAAT. Lipolysis in SCAAT was substantially higher in IUGR than in CON subjects despite markedly lower mRNA expression of lipases. Blood flow was higher in IUGR compared with CON in both SCAAT and SCFAT...... are characterized by increased in vivo adipose tissue lipolysis and blood flow with a paradoxically decreased expression of lipases compared with CON, and 10 days of physical inactivity underlined the baseline findings. Subjects with IUGR exhibit primary defects in adipose tissue metabolism........ Whole body insulin sensitivity did not differ between groups and decreased after bed rest. After bed rest, SCAAT lipolysis remained higher in IUGR compared with CON, and SCFAT lipolysis decreased in CON but not in IUGR. Prior to the development of whole body insulin resistance, young men with IUGR...

  7. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels

    Directory of Open Access Journals (Sweden)

    Tinahones Francisco

    2012-04-01

    Full Text Available Abstract Background The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR. Results Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC and omentum (OM adipose tissues from morbidly obese patients (n = 26 with low (OB/L-IR (healthy obese and high (OB/H-IR degrees of IR, and lean controls (n = 17. Another objective was to examine angiogenic factor correlations with obesity and IR. Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. Conclusion We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.

  8. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes.

    Science.gov (United States)

    Corvera, Silvia; Gealekman, Olga

    2014-03-01

    The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  9. Adipose tissue, diet and aging.

    Science.gov (United States)

    Zamboni, Mauro; Rossi, Andrea P; Fantin, Francesco; Zamboni, Giulia; Chirumbolo, Salvatore; Zoico, Elena; Mazzali, Gloria

    2014-01-01

    Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.

  10. Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: a comparison of pigs with different postweaning growth rates.

    Science.gov (United States)

    Pilcher, C M; Jones, C K; Schroyen, M; Severin, A J; Patience, J F; Tuggle, C K; Koltes, J E

    2015-05-01

    Although most pigs recover rapidly from stresses associated with the transition of weaning, a portion of the population lags behind their contemporaries in growth performance. The underlying biological and molecular mechanisms involved in postweaning differences in growth performance are poorly understood. The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs was reared in commercial conditions and weighed at birth, weaning, and 3 wk postweaning. Transition ADG (tADG) was calculated as the ADG for the 3-wk period postweaning. Nine pigs from both the lowest 10th percentile (low tADG) and the 60th to 70th percentile (high tADG) were harvested at 3 wk postweaning. Differential expression analysis was conducted in longissimus dorsi muscle (LM) and subcutaneous adipose tissue using RNA-Seq methodology. In LM, 768 transcripts were differentially expressed (DE), 327 with higher expression in low tADG and 441 with higher expression in high tADG pigs (q muscle metabolism and physiology, functional annotation analysis of the DE transcripts was conducted using DAVID and Pathway Studio analytic tools. The group of DE genes with lower expression in LM of low tADG pigs was enriched in genes with functions related to muscle contraction, glucose metabolism, cytoskeleton organization, muscle development, and response to hormone stimulus (enrichment score > 1.3). The list of DE genes with higher expression in low tADG LM was enriched in genes with functions related to protein catabolism (enrichment score > 1.3). Analysis of known gene-gene interactions identified possible regulators of these differences in gene expression in LM of high and low tADG pigs; these include forkhead box O1 (FOXO1), growth hormone (GH1), and the glucocorticoid receptor (NR3C1). Differences in gene expression between poor transitioning pigs and

  11. Macrophage elastase suppresses white adipose tissue expansion with cigarette smoking.

    Science.gov (United States)

    Tsuji, Takao; Kelly, Neil J; Takahashi, Saeko; Leme, Adriana S; Houghton, A McGarry; Shapiro, Steven D

    2014-12-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots.

  12. Quantification of adipose tissue insulin sensitivity.

    Science.gov (United States)

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. Copyright © 2016 American Federation for Medical Research.

  13. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance.

    Science.gov (United States)

    del Rincon, Juan-Pablo; Iida, Keiji; Gaylinn, Bruce D; McCurdy, Carrie E; Leitner, J Wayne; Barbour, Linda A; Kopchick, John J; Friedman, Jacob E; Draznin, Boris; Thorner, Michael O

    2007-06-01

    Phosphoinositide (PI) 3-kinase is involved in insulin-mediated effects on glucose uptake, lipid deposition, and adiponectin secretion from adipocytes. Genetic disruption of the p85alpha regulatory subunit of PI 3-kinase increases insulin sensitivity, whereas elevated p85alpha levels are associated with insulin resistance through PI 3-kinase-dependent and -independent mechanisms. Adipose tissue plays a critical role in the antagonistic effects of growth hormone (GH) on insulin actions on carbohydrate and lipid metabolism through changes in gene transcription. The objective of this study was to assess the role of the p85alpha subunit of PI 3-kinase and PI 3-kinase signaling in GH-mediated insulin resistance in adipose tissue. To do this, p85alpha mRNA and protein expression and insulin receptor substrate (IRS)-1-associated PI 3-kinase activity were measured in white adipose tissue (WAT) of mice with GH excess, deficiency, and sufficiency. Additional studies using 3T3-F442A cells were conducted to confirm direct effects of GH on free p85alpha protein abundance. We found that p85alpha expression 1) is decreased in WAT from mice with isolated GH deficiency, 2) is increased in WAT from mice with chronic GH excess, 3) is acutely upregulated in WAT from GH-deficient and -sufficient mice after GH administration, and 4) is directly upregulated by GH in 3T3-F442A adipocytes. The insulin-induced increase in PI 3-kinase activity was robust in mice with GH deficiency, but not in mice with GH excess. In conclusion, GH regulates p85alpha expression and PI 3-kinase activity in WAT and provides a potential explanation for 1) the insulin hypersensitivity and associated obesity and hyperadiponectinemia of GH-deficient mice and 2) the insulin resistance and associated reduced fat mass and hypoadiponectinemia of mice with GH excess.

  14. Fibroblast growth factor 21 reverses suppression of adiponectin expression via inhibiting endoplasmic reticulum stress in adipose tissue of obese mice.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Liu, Jiali; Li, Huixia; Sun, Hongzhi; Wu, Shufang; Zhou, Bo

    2017-02-01

    Fibroblast growth factor 21 (FGF21) has recently emerged as a novel endocrine hormone involved in the regulation of glucose and lipid metabolism. However, the exact mechanisms whereby FGF21 mediates insulin sensitivity remain not fully understood. In the present study, FGF21was administrated in high-fat diet-induced obese mice and tunicamycin-induced 3T3-L1 adipocytes, and metabolic parameters, endoplasmic reticulum (ER) stress indicators, and insulin signaling molecular were assessed by Western blotting. The administration of FGF21 in obese mice reduced body weight, blood glucose and serum insulin, and increased insulin sensitivity, resulting in alleviation of insulin resistance. Meanwhile, FGF21 treatment reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress in adipose tissue of obese mice. Additionally, suppression of ER stress via the ER stress inhibitor tauroursodeoxycholic acid increased adiponectin expression and improved insulin resistance in obese mice and in tunicamycin-induced adipocytes. In conclusion, our results showed that the administration of FGF21 reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress under the condition of insulin resistance, demonstrating the causative role of ER stress in downregulating adiponectin levels.

  15. Adipose tissues as endocrine target organs.

    Science.gov (United States)

    Lanthier, Nicolas; Leclercq, Isabelle A

    2014-08-01

    In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.

  16. Oestrone sulphate, adipose tissue, and breast cancer.

    Science.gov (United States)

    Hawkins, R A; Thomson, M L; Killen, E

    1985-01-01

    Oestrone sulphate, the oestrogen in highest concentration in the plasma, may play a role in the induction and growth of breast cancers. By enzymolysis and radioimmunoassay, oestrone sulphate concentrations were measured in 3 biological fluids. High concentrations of the conjugate (up to 775 nmol/l) were detected in breast cyst fluids from some premenopausal women, the concentrations in blood plasma (0.91-4.45 nmol/l) being much lower. Concentrations in the plasmas from postmenopausal women with (0.23-4.63 nmol/l) or without (0.18-1.27 nmol/l) breast cancer were still lower. Oestrone sulphate concentration in cow's milk or cream (0.49-0.67 nmol/l) was also low: dietary intake in these fluids is probably of little consequence. The capacity of breast tissues for hydrolysis of oestrone sulphate was examined in two ways: In tissue slices incubated with 85 pM (3H) oestrone sulphate solution at 37 degrees C, cancers (131-412 fmol/g tissue/hr) and adipose tissues (23-132 fmol/g tissue/hr) hydrolysed significantly more sulphate than did benign tissues (1-36 fmol/g tissue/hr). In tissue homogenates incubated with 5-25 microM [3H] oestrone sulphate at 37 degrees much higher capacities for hydrolysis (nmol/g tissue/hr) were demonstrated with a Km of 2-16.5 microM: cancers (34-394) and benign tissues (9-485) had significantly higher sulphatase activities than adipose tissues (9-39). On a protein basis, however, the sulphatase activities in the 3 tissues were comparable. It is concluded that oestrone sulphate is present in breast cysts and blood plasma and that in vitro, the conjugated hormone can be hydrolysed by breast tissues. The biological significance of these findings in vivo remains to be established.

  17. The Adipose Tissue in Farm Animals

    DEFF Research Database (Denmark)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura

    2014-01-01

    and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance...... in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal...... and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics...

  18. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity.

    Science.gov (United States)

    Albrecht, E; Schering, L; Liu, Y; Komolka, K; Kühn, C; Wimmers, K; Gotoh, T; Maak, S

    2017-05-01

    Appearance, distribution, and amount of intramuscular fat (IMF), often referred to as marbling, are highly variable and depend on environmental and genetic factors. On the molecular level, the concerted action of several drivers, including hormones, receptors, transcription factors, etc., determines where clusters of adipocytes arise. Therefore, the aim of future studies remains to identify such factors as biological markers of IMF to increase the ability to identify animals that deposit IMF early in age to increase efficiency of high-quality meat production. In an attempt to unravel the cellular development of marbling, we investigated the abundance of markers for adipogenic differentiation during fattening of cattle and the transcriptome of muscle and dissected IMF. Markers of different stages of adipogenic differentiation are well known from cell culture experiments. They are usually transiently expressed, such as delta-like homolog 1 (DLK1) that is abundant in preadipocytes and absent during differentiation to mature adipocytes. It is even a greater challenge to detect those markers in live animals. Within skeletal muscles, hyperplasia and hypertrophy of adipocytes can be observed throughout life. Therefore, development of marbling requires, on the cellular level, recruitment, proliferation, and differentiation of adipogenic cells to store excess energy in the form of lipids in new cells. In a recent study, we investigated the localization and abundance of early markers of adipogenic differentiation, such as DLK1, in bovine muscle tissue. An inverse relationship between IMF content and number of DLK1-positive cells in bovine muscle was demonstrated. Considering the cellular environment of differentiating adipocytes in muscle and the secretory action of adipocytes and myocytes, it becomes obvious that cross talk between cells via adipokines and myokines may be important for IMF development. Secreted proteins can act on other cells, inhibiting or stimulating

  19. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    Science.gov (United States)

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  20. Different adipose tissue depots: Metabolic implications and effects of surgical removal.

    Science.gov (United States)

    Marcadenti, Aline; de Abreu-Silva, Erlon Oliveira

    2015-11-01

    Increased adiposity has been associated to worse metabolic profile, cardiovascular disease, and mortality. There are two main adipose tissue depots in the body, subcutaneous and visceral adipose tissue, which differ in anatomical location. A large body of evidence has shown the metabolic activity of adipose tissue; lipectomy and/or liposuction therefore appear to be alternatives for improving metabolic profile through rapid loss of adipose tissue. However, surgical removal of adipose tissue may be detrimental for metabolism, because subcutaneous adipose tissue has not been associated to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. In addition, animal studies have shown a compensatory growth of adipose tissue in response to lipectomy. This review summarizes the implications of obesity-induced metabolic dysfunction, its relationship with the different adipose tissue depots, and the effects of lipectomy on cardiometabolic risk factors. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  1. Adipose tissue: cell heterogeneity and functional diversity.

    Science.gov (United States)

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  2. Development and differentiation of adipose tissue

    Directory of Open Access Journals (Sweden)

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  3. The effect of NALP3 inflammasome pathway in visceral adipose tissue on the development of insulin resistance in catch-up growth after food restriction in rats

    Institute of Scientific and Technical Information of China (English)

    李燕

    2014-01-01

    Objective To investigate the effects of catch-up growth(CUG)on the natch domain,leucine-rich repeat and PVD-containing protein 3(NALP3)inflammasome pathway in visceral adipose tissue(VAT)and the mechanism of insulin resistance(IR)in CUG.Methods Sprague-Dawley rats were randomly divided into the normal chow(NC)and the catch-up growth group(CUG).General characteristics,glucose infusion rate60-120(GIR60-120)in hyperinsulinemic-euglycemic clamp and expression of NALP3 inflammasome,caspase1(p10)and

  4. Mitochondria and endocrine function of adipose tissue.

    Science.gov (United States)

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  5. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  6. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  7. Adipose tissue macrophages: the inflammatory link between obesity and cancer?

    Science.gov (United States)

    Wagner, Marek; Samdal Steinskog, Eli Sihn; Wiig, Helge

    2015-04-01

    Obesity has increased dramatically over the last three decades. Thus, epidemiological evidence linking obesity and cancer has ignited our interest in the relationship between adipose tissue mass and cancer development. Obesity is defined as an excess of adipose tissue that is typified by a chronic, low-grade inflammatory response instigated by macrophage infiltration. Therefore, in this review, we will discuss the putative causal relationship between obesity-induced chronic inflammation and cancer with particular focus on adipose tissue macrophages. Chronic, low-grade inflammation has long been associated with cancer initiation, promotion and progression. Therefore, signals derived from adipose tissue macrophages may play a significant role in carcinogenesis. In this review we will discuss the molecular mechanisms of cancer development in obesity and highlight possible therapeutic strategies aiming at adipose tissue macrophages. The strong correlation between tumor-associated macrophage infiltration and tumor growth and progression emphasizes the value of macrophages as an effective therapeutic target. It remains to be deciphered to what extent adipose tissue macrophages contribute to these processes, especially in tumors growing within or adjacent to adipose tissue. More effort should also be placed on elucidating macrophage differences between humans and mice that may lead to the development of more effective diagnostic and therapeutic strategies.

  8. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik

    2002-01-01

    Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous...... exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue...... adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest...

  9. Imaging white adipose tissue with confocal microscopy.

    Science.gov (United States)

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents.

  10. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  11. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3

    Science.gov (United States)

    Shan, Tizhong; Xiong, Yan; Zhang, Pengpeng; Li, Zhiguo; Jiang, Qingyang; Bi, Pengpeng; Yue, Feng; Yang, Gongshe; Wang, Yizhen; Liu, Xiaoqi; Kuang, Shihuan

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy through Ucp1-mediated uncoupled respiration and its activation may represent a therapeutic strategy to combat obesity. Here we show that Lkb1 controls BAT expansion and UCP1 expression in mice. We generate adipocyte-specific Lkb1 knockout mice and show that, compared with wild-type littermates, these mice exhibit elevated UCP1 expression in BAT and subcutaneous white adipose tissue, have increased BAT mass and higher energy expenditure. Consequently, KO mice have improved glucose tolerance and insulin sensitivity, and are more resistant to high-fat diet (HFD)-induced obesity. Deletion of Lkb1 results in a cytoplasm to nuclear translocation of CRTC3 in brown adipocytes, where it recruits C/EBPβ to enhance Ucp1 transcription. In parallel, the absence of Lkb1 also suppresses AMPK activity, leading to activation of the mTOR signalling pathway and subsequent BAT expansion. These data suggest that inhibition of Lkb1 or its downstream signalling in adipocytes could be a novel strategy to increase energy expenditure in the context of obesity, diabetes and other metabolic diseases. PMID:27461402

  12. Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue.

    Science.gov (United States)

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Zaniewicz-Kaniewska, Katarzyna; Prohorec-Sobieszek, Monika; Saied, Fadhil; Maśliński, Włodzimierz

    2013-06-01

    For many years, it was thought that synovial cells and chondrocytes are the only sources of proinflammatory cytokines and growth factors found in the synovial fluid in patients suffering from osteoarthritis and rheumatoid arthritis. Currently, it is more and more frequently indicated that adipose tissue plays a significant role in the pathogenesis of these diseases as well as that a range of pathological processes that take place in the adipose tissue, synovial membrane and cartilage are interconnected. The adipose tissue is considered a specialized form of the connective tissue containing various types of cells which produce numerous biologically active factors. The latest studies reveal that, similarly to the synovial membrane, articular adipose tissue may take part in the local inflammatory response and affect the metabolism of the cartilage and subchondral osseous tissue. In in vitro conditions, the explants of this tissue obtained from patients suffering from osteoarthritis and rheumatoid arthritis produce similar pro- and anti-inflammatory cytokines to the explants of the synovial membrane. At this stage already, knowledge translates into imaging diagnostics. In radiological images, the shadowing of the periarticular soft tissues may not only reflect synovial membrane pathologies or joint effusion, but may also suggest inflammatory edema of the adipose tissue. On ultrasound examinations, abnormal presentation of the adipose tissue, i.e. increased echogenicity and hyperemia, may indicate its inflammation. Such images have frequently been obtained during ultrasound scanning and have been interpreted as inflammation, edema, hypertrophy or fibrosis of the adipose tissue. At present, when the knowledge concerning pathogenic mechanisms is taken into account, abnormal echogenicity and hyperemia of the adipose tissue may be considered as a proof of its inflammation. In the authors' own practice, the inflammation of the adipose tissue usually accompanies synovitis

  13. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  14. Differential effects of bone morphogenetic protein-2 and transforming growth factor-β1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Bank, R.A.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2009-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-β1 (TGF-β1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with

  15. Differential effects of bone morphogenetic protein-2 and transforming growth factor-β1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Knippenberg, M.; Helder, M.N.; Doulabi, B.Z.; Bank, R.A.; Wuisman, P.I.J.M.; Klein-Nulend, J.

    2009-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-β1 (TGF-β1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with

  16. Ectopic Adipose Tissue Storage in the Left and the Right Renal Sinus is Asymmetric and Associated With Serum Kidney Injury Molecule-1 and Fibroblast Growth Factor-21 Levels Increase

    Directory of Open Access Journals (Sweden)

    Gita Krievina, MSc

    2016-11-01

    Conclusions: Regardless of gender adipose tissue in RS accumulates asymmetrically–the left RS accumulates a significantly higher amount of adipose tissue. Thus, primarily RS adipose tissue effects should be assessed on the left kidney. Accumulation of adipose tissue in the RS is related with the visceral adipose amount, KIM-1 and FGF-21 concentration increase in the blood serum.

  17. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  18. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  19. Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors

    Science.gov (United States)

    Total RNA was collected at slaughter from outer subcutaneous adipose tissue (OSQ) and middle subcutaneous adipose tissue (MSQ) samples from gilts at 90, 150, and 210 d ( n =5 / age). Dye labeled cDNA probes were hybridized to custom microarrays (70 mer oligonucleotides) representing over 600 pig gen...

  20. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. RESULTS...

  1. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity.

    Science.gov (United States)

    Hatem, Stéphane N; Redheuil, Alban; Gandjbakhch, Estelle

    2016-04-01

    The amount of adipose tissue that accumulates around the atria is associated with the risk, persistence, and severity of atrial fibrillation (AF). A strong body of clinical and experimental evidence indicates that this relationship is not an epiphenomenon but is the result of complex crosstalk between the adipose tissue and the neighbouring atrial myocardium. For instance, epicardial adipose tissue is a major source of adipokines, inflammatory cytokines, or reactive oxidative species, which can contribute to the fibrotic remodelling of the atrial myocardium. Fibro-fatty infiltrations of the subepicardium could also contribute to the functional disorganization of the atrial myocardium. The observation that obesity is associated with distinct structural and functional remodelling of the atria has opened new perspectives of treating AF substrate with aggressive risk factor management. Advances in cardiac imaging should lead to an improved ability to visualize myocardial fat depositions and to localize AF substrates.

  2. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.

    Science.gov (United States)

    Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth

    2015-11-01

    Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (Padipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors.

  3. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    Science.gov (United States)

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  4. Adipose tissue as an endocrine organ.

    Science.gov (United States)

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling.

  5. Brown adipose tissue and its therapeutic potential.

    Science.gov (United States)

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  6. Adipose tissue and adipocyte dysregulation.

    Science.gov (United States)

    Lafontan, M

    2014-02-01

    Obesity-associated insulin resistance is a complex disorder involving a number of candidate molecules, pathways and transduction systems possessing potential causal actions. Inflammation in adipose tissue (AT) is one mechanism proposed to explain the development of insulin resistance, while identification of factors that lead to or cause AT dysfunction when it reaches its limit of expansion represents an important challenge. Pathological expansion of AT is characterized by changes in its blood flow, and the presence of enlarged and dysfunctional adipocytes that begin an inflammatory campaign of altered adipokine and cytokine secretions. Adipocyte senescence, necrosis and death are associated with increased immune cell and macrophage infiltration of AT in obesity. This can boost inflammation and reinforce fat cell dysfunction and death. In addition, pathological fat mass expansion is also related to limited recruitment of fat cell progenitors able to proliferate and differentiate into healthy small fat cells to compensate for cell death and preserve adipocyte numbers. Limiting vascular development and enhancing fibrotic processes worsen inflammation towards chronic irreversibility. The AT expandability hypothesis states that failure of AT expansion is one of the key factors linking positive energy balance and cardiometabolic risks, not obesity per se. Besides the usual treatment of obesity based on behavioral approaches (specific dietary/nutritional approaches together with increased physical activity), a number of questions remain concerning the possible recovery of metabolic health after inflammation-preventing interventions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. White adipose tissue: getting nervous.

    Science.gov (United States)

    Fliers, E; Kreier, F; Voshol, P J; Havekes, L M; Sauerwein, H P; Kalsbeek, A; Buijs, R M; Romijn, J A

    2003-11-01

    Neuroendocrine research has altered the traditional perspective of white adipose tissue (WAT) as a passive store of triglycerides. In addition to fatty acids, WAT produces many hormones and can therefore be designated as a traditional endocrine gland actively participating in the integrative physiology of fuel and energy metabolism, eating behaviour and the regulation of hormone secretion and sensitivity. WAT is controlled by humoral factors, para- and intracrine factors and by neural regulation. Sympathetic nerve fibres innervate WAT and stimulate lipolysis, leading to the release of glycerol and free fatty acids. In addition, recent research in rats has clearly shown a functional parasympathetic innervation of WAT. There appears to be a distinct somatotopy within the parasympathetic nuclei: separate sets of autonomic neurones in the brain stem innervate either the visceral or the subcutaneous fat compartment. We therefore propose that the central nervous system (CNS) plays a major role in the hitherto unexplained regulation of body fat distribution. Parasympathectomy induces insulin resistance with respect to glucose and fatty acid uptake in the innervated fat depot and has selective effects on local hormone synthesis. Thus, the CNS is involved not only in the regulation of hormone production by WAT, but also in its hormone sensitivity. The developments in this research area are likely to increase our insights in the pathogenesis of metabolic disorders such as hypertriglyceridemia, diabetes mellitus type 2 and lipodystrophy syndromes.

  8. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues.

    Science.gov (United States)

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.

  9. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI.

    Science.gov (United States)

    Khan, Tayeba; Muise, Eric S; Iyengar, Puneeth; Wang, Zhao V; Chandalia, Manisha; Abate, Nicola; Zhang, Bei B; Bonaldo, Paolo; Chua, Streamson; Scherer, Philipp E

    2009-03-01

    Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating "adipose tissue fibrosis" as a hallmark of metabolically challenged adipocytes. Collagen VI is a highly enriched extracellular matrix component of adipose tissue. The absence of collagen VI results in the uninhibited expansion of individual adipocytes and is paradoxically associated with substantial improvements in whole-body energy homeostasis, both with high-fat diet exposure and in the ob/ob background. Collectively, our data suggest that weakening the extracellular scaffold of adipocytes enables their stress-free expansion during states of positive energy balance, which is consequently associated with an improved inflammatory profile. Therefore, the disproportionate accumulation of extracellular matrix components in adipose tissue may not be merely an epiphenomenon of metabolically challenging conditions but may also directly contribute to a failure to expand adipose tissue mass during states of excess caloric intake.

  10. Adipose Tissue Remodeling as Homeostatic Inflammation

    Directory of Open Access Journals (Sweden)

    Michiko Itoh

    2011-01-01

    Full Text Available Evidence has accumulated indicating that obesity is associated with a state of chronic, low-grade inflammation. Obese adipose tissue is characterized by dynamic changes in cellular composition and function, which may be referred to as “adipose tissue remodeling”. Among stromal cells in the adipose tissue, infiltrated macrophages play an important role in adipose tissue inflammation and systemic insulin resistance. We have demonstrated that a paracrine loop involving saturated fatty acids and tumor necrosis factor-α derived from adipocytes and macrophages, respectively, aggravates obesity-induced adipose tissue inflammation. Notably, saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 complex, thereby activating macrophages. Such a sustained interaction between endogenous ligands derived from parenchymal cells and pathogen sensors expressed in stromal immune cells should lead to chronic inflammatory responses ranging from the basal homeostatic state to diseased tissue remodeling, which may be referred to as “homeostatic inflammation”. We, therefore, postulate that adipose tissue remodeling may represent a prototypic example of homeostatic inflammation. Understanding the molecular mechanism underlying homeostatic inflammation may lead to the identification of novel therapeutic strategies to prevent or treat obesity-related complications.

  11. Immunological contributions to adipose tissue homeostasis.

    Science.gov (United States)

    DiSpirito, Joanna R; Mathis, Diane

    2015-09-01

    Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of "adipocyte" encompasses three primary types - white, brown, and beige - with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.

  12. Aetiological factors behind adipose tissue inflammation

    DEFF Research Database (Denmark)

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  13. How to Measure Adipose Tissue Insulin Sensitivity?

    DEFF Research Database (Denmark)

    Søndergaard, Esben; Espinosa De Ycaza, Ana Elena; Morgan-Bathke, Maria

    2017-01-01

    Background: Adipose tissue insulin resistance may be a proximate cause of hepatic and skeletal muscle insulin resistance by releasing excess FFA. However, no consensus exists on how to quantify adipose tissue insulin sensitivity. We compared three methods for measuring adipose tissue insulin...... sensitivity ranging from the complex multistep pancreatic clamp technique to the simple adipose tissue insulin resistance index (Adipo-IR). Methods: We completed studies of 25 adults with a wide range of insulin sensitivity. The insulin dose resulting in a 50% suppression of palmitate flux (IC50) was measured...... using both a multistep pancreatic clamp and a one-step hyperinsulinemic-euglycemic clamp. Palmitate kinetics were measured using a continuous infusion of [U-13C]palmitate. Adipo-IR was calculated from fasting insulin and fasting FFA concentrations. Results: Adipo-IR was reproducible [sample CV=10...

  14. [Kidney, adipose tissue, adipocytes--what's new?].

    Science.gov (United States)

    Lafontan, Max

    2011-04-01

    Increased evidence suggests that obesity-related glomerulopathy and chronic kidney diseases should be identified as isolated complications of obesity. It is questioned if the numerous adipose tissue productions could play a role in the initiation/maintenance of such kidney diseases. This review will provide a sum-up of recent advances on fat cell metabolism and adipose tissue physiology. The adipose tissue behaves as an endocrine organ with multiple activities. It is secreting hormones (leptin, adiponectin, apelin) and numerous factors with autocrine, paracrine and systemic effects. These secretions are coming from adipocytes themselves or from cells present in the stroma-vascular fraction of the adipose tissue. When expanding, the adipose tissue of the obese is infiltrated by immune cells such as macrophages and lymphocytes; the role of which is not fully clarified. An attempt will be done to delineate if alterations of lipid storage/fatty acid release or of the secretion potencies of adipose tissue could contribute to kidney lipotoxicity and other chronic kidney diseases described in the obese. Copyright © 2010 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  15. How to Measure Adipose Tissue Insulin Sensitivity.

    Science.gov (United States)

    Søndergaard, Esben; Espinosa De Ycaza, Ana Elena; Morgan-Bathke, Maria; Jensen, Michael D

    2017-04-01

    Adipose tissue insulin resistance may cause hepatic and skeletal muscle insulin resistance by releasing excess free fatty acids (FFAs). Because no consensus exists on how to quantify adipose tissue insulin sensitivity we compared three methods for measuring adipose tissue insulin sensitivity: the single step insulin clamp, the multistep pancreatic clamp, and the adipose tissue insulin resistance index (Adipo-IR). We studied insulin sensitivity in 25 adults by measuring the insulin concentration resulting in 50% suppression of palmitate flux (IC50) using both a multistep pancreatic clamp and a one-step hyperinsulinemic-euglycemic clamp. Palmitate kinetics were measured using a continuous infusion of [U-13C]palmitate. Adipo-IR was calculated from fasting insulin and fasting FFA concentrations. Adipo-IR was reproducible (sample coefficient of variability, 10.0%) and correlated with the IC50 measured by the multistep pancreatic clamp technique (r, 0.86; P adipose tissue insulin sensitivity. However, age and physical fitness systematically affect the predictive values. Although Adipo-IR is suitable for larger population studies, the multistep pancreatic clamp technique is probably needed for mechanistic studies of adipose tissue insulin action.

  16. Ghrelin receptor regulates adipose tissue inflammation in aging.

    Science.gov (United States)

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  17. Adipose tissue plasticity from WAT to BAT and in between.

    Science.gov (United States)

    Lee, Yun-Hee; Mottillo, Emilio P; Granneman, James G

    2014-03-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  18. The Growth of Brown Adipose Tissue in Cold-acclimatized Rats after Depletion of Mast Cell Histamine by Compound 48/80

    Directory of Open Access Journals (Sweden)

    Daló Nelson L

    1998-01-01

    Full Text Available Cold acclimatization (4-5°C is accompanied by 2-3 fold increase of brown adipose tissue (BAT. This rapid growth of interscapular BAT was studied after histamine depletion. In control rats maintained at room temperature (28 ± 2°C the BAT histamine content was 23.4 ± 5.9 (mean ± SD µg/g of tissue and cold acclimatization (5±1°C produced a significant increase of BAT weight, but reduced the histamine content to 8.4 ± 1.9 µg/g. The total weight of BAT after 20 days of acclimatization was unaffected by depletion of histamine due to compound 48/80. The low level of histamine in BAT of cold acclimatized rats could be due to a fast rate of amine utilization; alternatively an altered synthesis or storage process may occur during acclimatization.

  19. The effects of adipose tissue and adipocytokines in human pregnancy.

    Science.gov (United States)

    Valsamakis, G; Kumar, S; Creatsas, G; Mastorakos, G

    2010-09-01

    During pregnancy, important changes take place in maternal metabolism because of the growing fetus and placental formation. The increase in insulin resistance during pregnancy is paralleled by the progressive increase of maternal adipose tissue deposition. This review examines the topography of fat mass deposition during pregnancy in relation to factors such as parity and maternal age that might affect this deposition. We also examine adipose tissue markers, such as pregravid weight and weight gain during pregnancy, and their effect on fetal growth and pregnancy outcomes. In addition, this review studies the possible effects of cytokines that are produced by adipose tissue and the placenta on maternal metabolism and its complications. Finally, we also consider the possible role of maternal adipocytokines and fetal adipocytokines on fetal growth. © 2010 New York Academy of Sciences.

  20. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Park, Eun Jung; Kim, Min Jung; Kim, Geon A; Rhee, Sang Ho; Lim, Sang Hyun; Kang, Sung Keun; Lee, Byeong Chun

    2014-12-01

    In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.

  1. Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors

    Directory of Open Access Journals (Sweden)

    Belen Cuervo

    2014-07-01

    Full Text Available Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs versus plasma rich in growth factors (PRGF as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA. Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM, owner’s and veterinary investigator visual analogue scale (VAS, and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months.

  2. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-04-01

    Full Text Available Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants or stromal vascular fraction (SVF from paired fat samples of periprostatic (PP and pre-peritoneal visceral (VIS anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs 2 and 9 activity. The effects of those conditioned media (CM on growth and migration of hormone-refractory (PC-3 and hormone-sensitive (LNCaP prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration

  3. Vitamin D signalling in adipose tissue.

    Science.gov (United States)

    Ding, Cherlyn; Gao, Dan; Wilding, John; Trayhurn, Paul; Bing, Chen

    2012-12-14

    Vitamin D deficiency and the rapid increase in the prevalence of obesity are both considered important public health issues. The classical role of vitamin D is in Ca homoeostasis and bone metabolism. Growing evidence suggests that the vitamin D system has a range of physiological functions, with vitamin D deficiency contributing to the pathogenesis of several major diseases, including obesity and the metabolic syndrome. Clinical studies have shown that obese individuals tend to have a low vitamin D status, which may link to the dysregulation of white adipose tissue. Recent studies suggest that adipose tissue may be a direct target of vitamin D. The expression of both the vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) genes has been shown in murine and human adipocytes. There is evidence that vitamin D affects body fat mass by inhibiting adipogenic transcription factors and lipid accumulation during adipocyte differentiation. Some recent studies demonstrate that vitamin D metabolites also influence adipokine production and the inflammatory response in adipose tissue. Therefore, vitamin D deficiency may compromise the normal metabolic functioning of adipose tissue. Given the importance of the tissue in energy balance, lipid metabolism and inflammation in obesity, understanding the mechanisms of vitamin D action in adipocytes may have a significant impact on the maintenance of metabolic health. In the present review, we focus on the signalling role of vitamin D in adipocytes, particularly the potential mechanisms through which vitamin D may influence adipose tissue development and function.

  4. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function.

    Science.gov (United States)

    D'Esposito, Vittoria; Passaretti, Federica; Perruolo, Giuseppe; Ambrosio, Maria Rosaria; Valentino, Rossella; Oriente, Francesco; Raciti, Gregory A; Nigro, Cecilia; Miele, Claudia; Sammartino, Gilberto; Beguinot, Francesco; Formisano, Pietro

    2015-10-01

    Adipose tissue-derived mesenchymal stem cells (Ad-MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet-rich plasma (PRP) on Ad-MSC and adipocyte function. PRP increased Ad-MSC viability, proliferation rate and G1-S cell cycle progression, by at least 7-, 2-, and 2.2-fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad-MSC growth. PRP also accelerated cell migration by at least 1.5-fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR-γ and AP-2 mRNAs, while it increased leptin production by 3.5-fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)-6, IL-8, IL-10, Interferon-γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad-MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro-angiogenic factors, which may facilitate tissue regeneration processes.

  5. Under the Surface of Subcutaneous Adipose Tissue Biology.

    Science.gov (United States)

    Pandžić Jakšić, Vlatka; Grizelj, Danijela

    2016-12-01

    The global obesity epidemic enhanced contemporary interest in adipose tissue biology. Two structurally and functionally distinct depots, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), are spread throughout the body. Their distribution was recognized to be a major determinant of metabolic risk. Unlike VAT, SAT showed some protective endocrine and inflammatory features that might explain the occurrence of obese but metabolically healthy persons. The unique developmental gene expression signature, angiogenesis, and adipogenic potential of SAT determines its growth ability under the positive energy balance. The overflow hypothesis suggested that when SAT is unable to expand sufficiently, fat overflows towards metabolically adverse ectopic depots. Besides white adipose tissue, recent studies found important brown adipose tissue activity responsible for thermogenesis and energy dissipation in adults as well. SAT is prone to "browning" - the appearance of particular beige adipocytes that contribute to its favorable metabolic effects. Morbid obesity, aging, hormonal status, nutrition, low physical activity, and other environmental factors impair SAT relative resistance to dysfunctional changes and promote development of metabolic disorders. The popular approach considering SAT mainly as the subject of cosmetic procedures for improving the appearance of body contours should be avoided. Complex heterogeneity of obesity revealed that a tissue of an extreme plasticity and rich interactions with vital functions of the body lies under the surface. Therapeutic manipulations to preserve and enhance healthier fat in order to correct obesity-related metabolic disorders seem to be a relevant but still unexplored opportunity.

  6. Insulin effects in muscle and adipose tissue.

    Science.gov (United States)

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Maratou, Eirini; Raptis, Sotirios A

    2011-08-01

    The major effects of insulin on muscle and adipose tissue are: (1) Carbohydrate metabolism: (a) it increases the rate of glucose transport across the cell membrane, (b) it increases the rate of glycolysis by increasing hexokinase and 6-phosphofructokinase activity, (c) it stimulates the rate of glycogen synthesis and decreases the rate of glycogen breakdown. (2) Lipid metabolism: (a) it decreases the rate of lipolysis in adipose tissue and hence lowers the plasma fatty acid level, (b) it stimulates fatty acid and triacylglycerol synthesis in tissues, (c) it increases the uptake of triglycerides from the blood into adipose tissue and muscle, (d) it decreases the rate of fatty acid oxidation in muscle and liver. (3) Protein metabolism: (a) it increases the rate of transport of some amino acids into tissues, (b) it increases the rate of protein synthesis in muscle, adipose tissue, liver, and other tissues, (c) it decreases the rate of protein degradation in muscle (and perhaps other tissues). These insulin effects serve to encourage the synthesis of carbohydrate, fat and protein, therefore, insulin can be considered to be an anabolic hormone. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue.

    Science.gov (United States)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Fisker, Sanne; Christiansen, Jens Sandahl; Flyvbjerg, Allan; Richelsen, Bjørn

    2006-03-01

    Local tissue activity of glucocorticoids is in part determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and 11beta-HSD2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a central role in the features of GH deficiency and the metabolic syndrome. We investigated the effects of GH treatment on adipose tissue 11beta-HSD mRNA. A randomized placebo-controlled double-blind study design was used. Twenty-three GH-deficient patients (16 males and seven females) were randomized to 4 months of GH treatment (2 IU/m2) (n = 11) or placebo treatment (n = 12). Adipose tissue biopsies and blood samples were obtained before and after treatment. Biopsies were obtained from the abdominal sc depot at the level of the umbilicus and do not necessarily reflect the metabolically more important visceral adipose tissue. Gene expressions were determined by real-time RT-PCR. GH treatment decreased 11beta-HSD1 mRNA 66% [95% confidence interval (CI), 23-107%; P adipose tissue. Serum IGF-I and IGF-I mRNA increased in the GH-treated group by 187% (95% CI, 122-250%; P cortisol in adipose tissue.

  8. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  9. Lipophilic Micronutrients and Adipose Tissue Biology

    Directory of Open Access Journals (Sweden)

    Franck Tourniaire

    2012-11-01

    Full Text Available Lipophilic micronutrients (LM constitute a large family of molecules including several vitamins (A, D, E, K and carotenoids. Their ability to regulate gene expression is becoming increasingly clear and constitutes an important part of nutrigenomics. Interestingly, adipose tissue is not only a main storage site for these molecules within the body, but it is also subjected to the regulatory effects of LM. Indeed, several gene regulations have been described in adipose tissue that could strongly impact its biology with respect to the modulation of adipogenesis, inflammatory status, or energy homeostasis and metabolism, among others. The repercussions in terms of health effects of such regulations in the context of obesity and associated pathologies represent an exciting and emerging field of research. The present review will focus on the regulatory effects of vitamin A, D, E and K as well as carotenoids on adipose tissue biology and physiology, notably in the context of obesity and associated disorders.

  10. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver.

    Science.gov (United States)

    Hotta, Yuhei; Nakamura, Hirotoshi; Konishi, Morichika; Murata, Yusuke; Takagi, Hiroyuki; Matsumura, Shigenobu; Inoue, Kazuo; Fushiki, Tohru; Itoh, Nobuyuki

    2009-10-01

    Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse functions. Fgf21, a unique member of the Fgf family, is expected to function as a metabolic regulator in an endocrine manner. Hepatic Fgf21 expression was increased by fasting. The phenotypes of hepatic Fgf21 transgenic or knockdown mice and high-fat, low-carbohydrate ketogenic diet-fed mice suggests that Fgf21 stimulates lipolysis in the white adipose tissue during normal feeding and is required for ketogenesis and triglyceride clearance in the liver during fasting. However, the physiological roles of Fgf21 remain unclear. To elucidate the physiological roles of Fgf21, we generated Fgf21 knockout (KO) mice by targeted disruption. Fgf21 KO mice were viable, fertile, and seemingly normal. Food intake, oxygen consumption, and energy expenditure were also essentially unchanged in Fgf21 KO mice. However, hypertrophy of adipocytes, decreased lipolysis in adipocytes, and decreased blood nonesterified fatty acid levels were observed when Fgf21 KO mice were fed normally. In contrast, increased lipolysis in adipocytes and increased blood nonesterified fatty acid levels were observed in Fgf21 KO mice by fasting for 24 h, indicating that Fgf21 stimulates lipolysis in the white adipose tissue during feeding but inhibits it during fasting. In contrast, unexpectedly, hepatic triglyceride levels were essentially unchanged in Fgf21 KO mice. In addition, ketogenesis in Fgf21 KO mice was not impaired by fasting for 24 h. The present results indicate that Fgf21 regulates lipolysis in adipocytes in response to the metabolic state but is not required for ketogenesis and triglyceride clearance in the liver.

  11. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI▿ †

    OpenAIRE

    Khan, Tayeba; Muise, Eric S.; Iyengar, Puneeth; Wang, Zhao V.; Chandalia, Manisha; Abate, Nicola; Zhang, Bei B.; Bonaldo, Paolo; Chua, Streamson; Scherer, Philipp E.

    2008-01-01

    Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating “adipose tissue fibrosis” as a hallmark of metabolically chall...

  12. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used.

  13. CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor/binding protein gene disrupted mice and with high-fat feeding of normal mice.

    Science.gov (United States)

    Kelder, Bruce; Berryman, Darlene E; Clark, Ryan; Li, Aiyun; List, Edward O; Kopchick, John J

    2007-08-01

    Growth hormone's (GH) lipolytic activity in white adipose tissue (WAT) results in decreased body fat in giant GH transgenic mice and increased subcutaneous fat in dwarf growth hormone receptor/binding protein gene-disrupted mice (GHR -/-). We therefore hypothesized that GH action would affect expression of CIDE-A (cell-death-inducing DFF45-like effector-A), a protein found in white adipose tissue (WAT) and involved in lipid metabolism. CIDE-A RNA levels were determined in subcutaneous, retroperitoneal and epididymal adipose tissue isolated from wild-type and GHR -/- mice. The adipose tissue was also analyzed for adipocyte size. We determined that the lack of GH action has depot-specific effects on the levels of CIDE-A RNA and affected adipocyte cell size. CIDE-A expression is significantly reduced in GHR -/- subcutaneous fat compared to wild-type but is not altered in retroperitoneal or epididymal fat. Likewise, adipocytes are significantly enlarged in GHR -/- subcutaneous adipose tissue relative wild-type mice. A high-fat diet also influenced the level of CIDE-A RNA in mouse adipose tissue. The high-fat diet significantly reduced CIDE-A expression in wild-type subcutaneous fat but did not alter CIDE-A expression in subcutaneous fat of GHR -/- mice. The diet also reduced CIDE-A expression in wild-type retroperitoneal fat but the levels of CIDE-A in epididymal fat were unchanged. In contrast, the high-fat diet reduced CIDE-A expression in both retroperitoneal and epididymal fat of GHR -/- mice. These data demonstrate that CIDE-A levels are reduced in two different mouse models of obesity and this reduction may contribute to altered lipid metabolism.

  14. The endocrine function of adipose tissue

    Directory of Open Access Journals (Sweden)

    Wagner de Jesus Pinto

    2014-09-01

    Full Text Available Currently it is considered the adipose tissue as a dynamic structure involved in many physiological and metabolic processes, produces and releases a variety of active peptides known by the generic name of adipokines that act performing endocrine, paracrine and autocrine. Furthermore, numbers expressed receptors that respond allows the afferent signals from endocrine organs, and also central nervous system. In 1987, the adipose tissue has been identified as the major site of metabolism of steroid hormones, thereafter, in 1994, it was recognized as an endocrine organ and the leptin being an early secretory products identified. In addition other biologically active substances were being isolated, such as adiponectin, resistin, TNF-a, interleukin-6 and others. The adipokines derived from adipose tissue modulate many metabolic parameters such as control of food intake, energy balance and peripheral insulin sensitivity, for example. Thus, the altered secretion of adipokines by adipose tissue may have metabolic effects may present complex relations with the pathophysiological process of obesity, endothelial dysfunction, inflammation, atherosclerosis and Diabetes mellitus. The understanding of the molecular processes occurring in the adipocytes may provide new tools for the treatment of pathophysiological conditions such as, for example, metabolic syndrome, obesity and diabetes mellitus.

  15. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  16. Browning and thermogenic programing of adipose tissue.

    Science.gov (United States)

    Kiefer, Florian W

    2016-08-01

    The view of adipose tissue as solely a fat storing organ has changed significantly over the past two decades with the discoveries of numerous adipocyte-secreted factors, so called adipokines, and their endocrine functions throughout the body. The newest chapter added to this story is the finding that adipose tissue is also a thermogenic organ contributing to energy expenditure through actions of specialized, heat-producing brown or beige adipocytes. In contrast to bone fide brown adipocytes, beige cells develop within white fat depots in response to various stimuli such as prolonged cold exposure, underscoring the great thermogenic plasticity of adipose tissue. The energy dissipating properties of beige and/or brown adipocytes hold great promise as a novel therapeutic concept against obesity and related complications. Hence, identifying the specific thermogenic adipocyte populations in humans and their pathways of activation are key milestones of current metabolism research. Here we will discuss the recent advances in the understanding of the molecular and physiological mechanisms of adipose tissue browning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H; O'Rourke, R W; Lumeng, C N; Sandoval, D A; Seeley, R J

    2016-09-01

    Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.

  18. [White adipose tissue dysfunction observed in obesity].

    Science.gov (United States)

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  19. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...

  20. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  1. Sustainable three-dimensional tissue model of human adipose tissue.

    Science.gov (United States)

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  2. Maternal nutritional manipulations program adipose tissue dysfunction in offspring.

    Science.gov (United States)

    Lecoutre, Simon; Breton, Christophe

    2015-01-01

    Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.

  3. Maternal nutritional manipulations program adipose tissue dysfunction in offspring

    Directory of Open Access Journals (Sweden)

    Simon eLecoutre

    2015-05-01

    Full Text Available Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates. Maternal nutritional manipulations reprogram offspring’s adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.

  4. The Facial Adipose Tissue: A Revision.

    Science.gov (United States)

    Kruglikov, Ilja; Trujillo, Oscar; Kristen, Quick; Isac, Kerelos; Zorko, Julia; Fam, Maria; Okonkwo, Kasie; Mian, Asima; Thanh, Hyunh; Koban, Konstantin; Sclafani, Anthony P; Steinke, Hanno; Cotofana, Sebastian

    2016-12-01

    Recent advantages in the anatomical understanding of the face have turned the focus toward the subcutaneous and deep facial fat compartments. During facial aging, these fat-filled compartments undergo substantial changes along with other structures in the face. Soft tissue filler and fat grafting are valid methods to fight the signs of facial aging, but little is known about their precise effect on the facial fat. This narrative review summarizes the current knowledge about the facial fat compartments in terms of anatomical location, histologic appearance, immune-histochemical characteristics, cellular interactions, and therapeutic options. Three different types of facial adipose tissue can be identified, which are located either superficially (dermal white adipose tissue) or deep (subcutaneous white adipose tissue): fibrous (perioral locations), structural (major parts of the midface), and deposit (buccal fat pad and deep temporal fat pad). These various fat types differ in the size of the adipocytes and the collagenous composition of their extracellular matrix and thus in their mechanical properties. Minimal invasive (e.g., soft tissue fillers or fat grafting) and surgical interventions aiming to restore the youthful face have to account for the different fat properties in various facial areas. However, little is known about the macro- and microscopic characteristics of the facial fat tissue in different compartments and future studies are needed to reveal new insights to better understand the process of aging and how to fight its signs best.

  5. Estrogens increase expression of bone morphogenetic protein 8b in brown adipose tissue of mice

    NARCIS (Netherlands)

    A. Grefhorst (Aldo); J.C. van den Beukel (Anneke); A.F. van Houten (A.); J. Steenbergen (Jacobie); J.A. Visser (Jenny); A.P.N. Themmen (Axel)

    2015-01-01

    textabstractBackground: In mammals, white adipose tissue (WAT) stores fat and brown adipose tissue (BAT) dissipates fat to produce heat. Several studies showed that females have more active BAT. Members of the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) families are expressed

  6. Adipose tissue remodeling in pathophysiology of obesity.

    Science.gov (United States)

    Lee, Mi-Jeong; Wu, Yuanyuan; Fried, Susan K

    2010-07-01

    Recent studies demonstrate that adipose tissue undergoes a continuous process of remodeling that is pathologically accelerated in the obese state. Contrary to earlier dogma, adipocytes die and are replaced by newly differentiated ones. This review will summarize recent advances of our knowledge of the mechanisms that regulate adipose tissue remodeling and highlight the influences of obesity, depot, and sex, as well as the relevance of rodent models to humans. A substantial literature now points to the importance of dynamic changes in adipocyte and immune cell turnover, angiogenesis, and extracellular matrix remodeling in regulating the expandability and functional integrity of this tissue. In obesity, the macrophages are recruited, surrounding dead adipocytes and polarized toward an inflammatory phenotype. The number of dead adipocytes is closely associated with the pathophysiological consequences of obesity, including insulin resistance and hepatic steatosis. Further, there are substantial depot, sex and species differences in the extent of remodeling. Adipose tissue undergoes a continuous remodeling process that normally maintains tissue health, but may spin out of control and lead to adipocyte death in association with the recruitment and activation of macrophages, and systemic insulin resistance.

  7. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity.

    Science.gov (United States)

    Peinado, Juan R; Pardo, María; de la Rosa, Olga; Malagón, Maria M

    2012-02-01

    The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.

  8. Expression of interleukins, neuropeptides, and growth hormone receptor (GHR) and leptin receptor (LPR) genes in adipose tissue from growing broiler chickens

    Science.gov (United States)

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for real time RT-PCR analysis with custom-designed primers and probes. Studies of the gene expression of cytokines and associated genes in chick...

  9. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Directory of Open Access Journals (Sweden)

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  10. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Science.gov (United States)

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  11. Sex dimorphism and depot differences in adipose tissue function.

    Science.gov (United States)

    White, Ursula A; Tchoukalova, Yourka D

    2014-03-01

    Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as type 2 diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal-femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex-dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  12. Perivascular Adipose Tissue and Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-04-01

    Full Text Available BACKGROUND: Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. CONTENT: Perivascular adipose tissue (PVAT is a local deposit of adipose tissue surrounding the vasculature. PVAT is present throughout the body and has been shown to have a local effect on blood vessels. The influence of PVAT on the vasculature changes with increasing adiposity. PVAT similarly to other fat depots, is metabolically active, secreting a wide array of bioactive substances, termed ‘adipokines’. Adipokines include cytokines, chemokines and hormones that can act in a paracrine, autocrine or endocrine fashion. Many of the proinflammatory adipokines upregulated in obesity are known to influence vascular function, including endothelial function, oxidative stress, vascular stiffness and smooth muscle migration. Adipokines also stimulate immune cell migration into the vascular wall, potentially contributing to the inflammation found in atherosclerosis. Finally, adipokines modulate the effect of insulin on the vasculature, thereby decreasing insulin-mediated muscle glucose uptake. This leads to alterations in nitric oxide signaling, insulin resistance and potentially atherogenesis. SUMMARY: PVAT surrounds blood vessels. PVAT and the adventitial layer of blood vessels are in direct contact with each other. Healthy PVAT secretes adipokines and regulates vascular function. Obesity is associated with changes in adipokine secretion and the resultant inflammation of PVAT. The dysregulation of adipokines changes the effect of PVAT on the vasculature. Changes in perivascular adipokines secretion in obesity appear to contribute to the development of obesity-mediated vascular disease. KEYWORDS: obesity, perivascular adipose tissue, PVAT

  13. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis

    NARCIS (Netherlands)

    Wagner, Marek; Bjerkvig, Rolf; Wiig, Helge; Melero-Martin, Juan M.; Lin, Ruei-Zeng; Klagsbrun, Michael; Dudley, Andrew C.

    2012-01-01

    Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory

  14. Glycation and Hypoxia: Two Key Factors for Adipose Tissue Dysfunction.

    Science.gov (United States)

    Matafome, Paulo; Rodrigues, Tiago; Seica, Raquel

    2015-01-01

    Many aspects of adipose tissue pathophysiology in metabolic diseases have been described in the last years. One of such aspects is certainly hypoxia, which was shown to develop in adipose tissue of obese individuals and animal models. Recent data suggest two main factors for adipose tissue hypoxia: adipocyte hypertrophy and vascular dysfunction. In addition, glycation was also shown to induce morphological and functional alterations in adipose tissue. In particular, methylglyoxal directly formed from glucose was shown to potently induce AGE formation in vivo and to contribute to metabolic and vascular alterations in adipose tissue. Glycation and hypoxia are both thought to be on the basis of low grade inflammatory activation, further increasing metabolic dysregulation in adipose tissue. This review summarizes the current knowledge about the factors that contribute for tissue hypoxia and the role of glycation, not only at the vascular level, but also at the metabolic, oxidative and inflammatory levels.

  15. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    Science.gov (United States)

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  16. Effect of fetal undernutrition and postnatal overfeeding on rat adipose tissue and organ growth at early stages of postnatal development.

    Science.gov (United States)

    Munoz-Valverde, D; Rodríguez-Rodríguez, P; Gutierrez-Arzapalo, P Y; López de Pablo, A L; Carmen González, M; López-Giménez, R; Somoza, B; Arribas, S M

    2015-01-01

    Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sex-dependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming.

  17. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  18. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Science.gov (United States)

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  19. Exercise Regulation of Marrow Adipose Tissue

    Science.gov (United States)

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  20. Exercise Regulation of Marrow Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Gabriel M Pagnotti

    2016-07-01

    Full Text Available Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell pool (MSC that gives rise also to osteoblasts, chondrocytes, and myocytes among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally-supportive tissues, inhibits bone resorption and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot, or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a 5-fold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  1. The potential roles for adipose tissue in peripheral nerve regeneration.

    Science.gov (United States)

    Walocko, Frances M; Khouri, Roger K; Urbanchek, Melanie G; Levi, Benjamin; Cederna, Paul S

    2016-01-01

    This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation. © 2015 Wiley Periodicals, Inc.

  2. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  3. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    Science.gov (United States)

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  4. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  5. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    Science.gov (United States)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO2) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO2-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO2-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO2-treated ECM coating can be potentially used for various biomedical applications. The SC-CO2-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO2-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO2-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO2

  6. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    Science.gov (United States)

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  7. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    OpenAIRE

    Lumeng, Carey N.; Bodzin, Jennifer L.; Alan R Saltiel

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, i...

  8. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells.

    Science.gov (United States)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten; Brorsen, Sonja Kim; Kastrup, Jens; Ekblond, Annette

    2015-04-13

    Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns of ASCs. Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. Compared to ASCs in complete medium, 190 and 108 genes were significantly altered by serum deprivation and serum deprivation combined with VEGF, respectively. No significant differences in gene expression patterns between serum-deprived ASCs and serum-deprived ASCs combined with VEGF stimulation were found. Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). The decisive factor for the observed change in ASC gene expression proves to

  9. Brown adipose tissue in cetacean blubber.

    Directory of Open Access Journals (Sweden)

    Osamu Hashimoto

    Full Text Available Brown adipose tissue (BAT plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1, within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool

  10. Brown adipose tissue in cetacean blubber.

    Science.gov (United States)

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  11. Brain-adipose tissue neural crosstalk.

    Science.gov (United States)

    Bartness, Timothy J; Song, C Kay

    2007-07-24

    The preponderance of basic obesity research focuses on its development as affected by diet and other environmental factors, genetics and their interactions. By contrast, we have been studying the reversal of a naturally-occurring seasonal obesity in Siberian hamsters. In the course of this work, we determined that the sympathetic innervation of white adipose tissue (WAT) is the principal initiator of lipid mobilization not only in these animals, but in all mammals including humans. We present irrefutable evidence for the sympathetic nervous system (SNS) innervation of WAT with respect to neuroanatomy (including its central origins as revealed by transneuronal viral tract tracers), neurochemistry (norepinephrine turnover studies) and function (surgical and chemical denervation). A relatively unappreciated role of WAT SNS innervation also is reviewed--the control of fat cell proliferation as shown by selective chemical denervation that triggers adipocyte proliferation, although the precise mechanism by which this occurs presently is unknown. There is no, however, equally strong evidence for the parasympathetic innervation of this tissue; indeed, the data largely are negative severely questioning its existence and importance. Convincing evidence also is given for the sensory innervation of WAT (as shown by tract tracing and by markers for sensory nerves in WAT), with suggestive data supporting a possible role in conveying information on the degree of adiposity to the brain. Collectively, these data offer an additional or alternative view to the predominate one of the control of body fat stores via circulating factors that serve as efferent and afferent communicators.

  12. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation.

    Science.gov (United States)

    Huang, Zhi H; Reardon, Catherine A; Getz, Godfrey S; Maeda, Nobuyo; Mazzone, Theodore

    2015-02-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state.

  13. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  14. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation

    Science.gov (United States)

    Huang, Zhi H.; Reardon, Catherine A.; Getz, Godfrey S.; Maeda, Nobuyo; Mazzone, Theodore

    2015-01-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state. PMID:25421060

  15. The influence of growth hormone on bone and adipose programming.

    Science.gov (United States)

    Oberbauer, Anita M

    2014-01-01

    In utero growth hormone exposure is associated with distinct immediate growth responses and long term impacts on adult physiological parameters that include obesity, insulin resistance, and bone function. Growth hormone accelerates cellular proliferation in many tissues but is exemplified by increases in the number of cells within the cartilaginous growth plate of bone. In some cases growth hormone also potentiates differentiation as seen in the differentiation of adipocytes that rapidly fill upon withdrawal of growth hormone. Growth hormone provokes these changes either by direct action or through intermediaries such as insulin-like growth factor-I and other downstream effector molecules. The specific mechanism used by growth hormone in programming tissues is not yet fully characterized and likely represents a multipronged approach involving DNA modification, altered adult hormonal milieu, and the development of an augmented stem cell pool capable of future engagement as is seen in adipose accrual. This review summarizes findings of growth hormone's influence on in utero and neonatal cellular and metabolic profiles related to bone and adipose tissue.

  16. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Science.gov (United States)

    Wojciechowicz, Kamila; Gledhill, Karl; Ambler, Carrie A; Manning, Craig B; Jahoda, Colin A B

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  17. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Directory of Open Access Journals (Sweden)

    Kamila Wojciechowicz

    Full Text Available The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16 the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis, under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  18. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  19. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue.

    Science.gov (United States)

    Ribeiro, Ricardo; Monteiro, Cátia; Catalán, Victoria; Hu, Pingzhao; Cunha, Virgínia; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Fraga, Avelino; Príncipe, Paulo; Lobato, Carlos; Lobo, Francisco; Morais, António; Silva, Vitor; Sanches-Magalhães, José; Oliveira, Jorge; Pina, Francisco; Lopes, Carlos; Medeiros, Rui; Frühbeck, Gema

    2012-09-25

    Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression.

  20. Adipokines and the Endocrine Role of Adipose Tissues.

    Science.gov (United States)

    Giralt, Marta; Cereijo, Rubén; Villarroya, Francesc

    2016-01-01

    The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.

  1. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?

    Science.gov (United States)

    Trayhurn, Paul; Wang, Bohan; Wood, I Stuart

    2008-08-01

    White adipose tissue is a key endocrine and secretory organ, releasing multiple adipokines, many of which are linked to inflammation and immunity. During the expansion of adipose tissue mass in obesity there is a major inflammatory response in the tissue with increased expression and release of inflammation-related adipokines, including IL-6, leptin, monocyte chemoattractant protein-1 and TNF-alpha, together with decreased adiponectin production. We proposed in 2004 (Trayhurn & Wood, Br J Nutr 92, 347-355) that inflammation in adipose tissue in obesity is a response to hypoxia in enlarged adipocytes distant from the vasculature. Hypoxia has now been directly demonstrated in adipose tissue of several obese mouse models (ob/ob, KKAy, diet-induced) and molecular studies indicate that the level of the hypoxia-inducible transcription factor, hypoxia-inducible factor-1 alpha, is increased, as is expression of the hypoxia-sensitive marker gene, GLUT1. Cell- culture studies on murine and human adipocytes show that hypoxia (induced by low O2 or chemically) leads to stimulation of the expression and secretion of a number of inflammation-related adipokines, including angiopoietin-like protein 4, IL-6, leptin, macrophage migration inhibitory factor and vascular endothelial growth factor. Hypoxia also stimulates the inflammatory response of macrophages and inhibits adipocyte differentiation from preadipocytes. GLUT1 gene expression, protein level and glucose transport by human adipocytes are markedly increased by hypoxia, indicating that low O2 tension stimulates glucose utilisation. It is suggested that hypoxia has a pervasive effect on adipocyte metabolism and on overall adipose tissue function, underpinning the inflammatory response in the tissue in obesity and the subsequent development of obesity-associated diseases, particularly type 2 diabetes and the metabolic syndrome.

  2. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  3. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    DEFF Research Database (Denmark)

    Arngrim, N; Simonsen, L; Holst, Jens Juul

    2012-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after ...... online publication, 3 July 2012; doi:10.1038/ijo.2012.98....

  4. Adipose tissue macrophages: going off track during obesity

    NARCIS (Netherlands)

    Boutens, L.; Stienstra, R.

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically

  5. Local and systemic effects of visceral and perivascular adipose tissue

    NARCIS (Netherlands)

    Verhagen, S.N.

    2012-01-01

    Rather than being solely a storage depot for triglycerides, adipose tissue is able to secrete pro- and anti-inflammatory cytokines and adipokines. A state of low grade inflammation associated with excess adipose tissue is involved in the increase in the incidences of atherosclerotic diseases and

  6. Adipose tissue macrophages: going off track during obesity

    NARCIS (Netherlands)

    Boutens, L.; Stienstra, R.

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically focuse

  7. Relations between antioxidant vitamins in adipose tissue, plasma, and diet

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Veer, P. van 't; Brants, H.A.M.; Berg, H. van den; Schoonhoven, J. van; Hermus, R.J.J.

    1995-01-01

    For an evaluation of fat-soluble vitamin concentrations in adipose tissue as biomarkers of intake, estimates of usual intake of β-carotene, total vitamin A, and vitamin E (assessed by food frequency questionnaire) were compared with plasma and adipose tissue concentrations of β-carotene, retinol, an

  8. Characterization of the human visceral adipose tissue secretome

    NARCIS (Netherlands)

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  9. Involvement of mast cells in adipose tissue fibrosis.

    Science.gov (United States)

    Hirai, Shizuka; Ohyane, Chie; Kim, Young-Il; Lin, Shan; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kim, Chu-Sook; Kang, Jihey; Yu, Rina; Kawada, Teruo

    2014-02-01

    Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.

  10. Local and systemic effects of visceral and perivascular adipose tissue

    NARCIS (Netherlands)

    Verhagen, S.N.

    2012-01-01

    Rather than being solely a storage depot for triglycerides, adipose tissue is able to secrete pro- and anti-inflammatory cytokines and adipokines. A state of low grade inflammation associated with excess adipose tissue is involved in the increase in the incidences of atherosclerotic diseases and typ

  11. Characterization of the human visceral adipose tissue secretome

    NARCIS (Netherlands)

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  12. Mechanisms of inflammatory responses in obese adipose tissue

    NARCIS (Netherlands)

    Sun, S.Y.; Yewei, Ji; Kersten, A.H.; Qi, L.

    2012-01-01

    The fields of immunology and metabolism are rapidly converging on adipose tissue. During obesity, many immune cells infiltrate or populate in adipose tissue and promote a low-grade chronic inflammation. Studies to date have suggested that perturbation of inflammation is critically linked to nutrient

  13. Relations between antioxidant vitamins in adipose tissue, plasma, and diet

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Veer, P. van 't; Brants, H.A.M.; Berg, H. van den; Schoonhoven, J. van; Hermus, R.J.J.

    1995-01-01

    For an evaluation of fat-soluble vitamin concentrations in adipose tissue as biomarkers of intake, estimates of usual intake of β-carotene, total vitamin A, and vitamin E (assessed by food frequency questionnaire) were compared with plasma and adipose tissue concentrations of β-carotene, retinol, an

  14. A hot interaction between immune cells and adipose tissue

    NARCIS (Netherlands)

    van den Berg, S.M.

    2017-01-01

    Systemic as well as adipose tissue inflammation contributes to the development of obesity-associated diseases. This thesis describes three targets to battle this chronic inflammation in a model of diet-induced obesity in mice. First, we studied inflammation in obese white - and brown adipose tissue

  15. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  16. The role of adipose tissue in cancer-associated cachexia.

    Science.gov (United States)

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  17. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  18. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location.

    Science.gov (United States)

    Hausman, G J; Basu, U; Wei, S; Hausman, D B; Dodson, M V

    2014-02-01

    Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.

  19. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan

    2011-01-01

    This paper presents a method for automatically segmenting abdominal adipose tissue from 3-dimensional magnetic resonance images. We distinguish between three types of adipose tissue; visceral, deep subcutaneous and superficial subcutaneous. Images are pre-processed to remove the bias field effect...... of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...... are separated using deformable models, incorporating information from the clustering. The subcutaneous adipose tissue is subdivided into a deep and superficial part by means of dynamic programming applied to a spatial transformation of the image data. Regression analysis shows good correspondences between our...

  20. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Science.gov (United States)

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  1. Inflammatory peptides derived from adipose tissue

    Directory of Open Access Journals (Sweden)

    Barzilai Nir

    2005-01-01

    Full Text Available Abstract The low-grade inflammation seen with aging is noted particularly in subjects with the metabolic syndrome of aging. Insulin resistance, obesity/abdominal obesity, and risks for many age-related diseases characterize this common syndrome. It is becoming clear that this increased adipose tissue is not simply a reservoir for excess nutrients, but rather an active and dynamic organ capable of expressing several cytokines and other fat-derived peptides (FDP. Some, but not all, FDP may have a role in development of the metabolic syndrome but there is no evidence that these FDP are causing inflammation directly. We suggest that high levels of inflammatory peptides are markers for obesity/abdominal obesity seen with aging, but some may not necessarily have a causative role in the development of inflammation.

  2. The Ontogeny of Brown Adipose Tissue.

    Science.gov (United States)

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  3. Identification of cathepsin K as a novel marker of adiposity in white adipose tissue.

    Science.gov (United States)

    Chiellini, Chiara; Costa, Mario; Novelli, Silvia E; Amri, Ez-Zoubir; Benzi, Luca; Bertacca, Anna; Cohen, Paul; Del Prato, Stefano; Friedman, Jeffrey M; Maffei, Margherita

    2003-05-01

    In obesity, adipocytes undergo dramatic morphological and molecular changes associated with alterations in their gene expression profile. To identify genes differentially modulated in white adipose tissue (WAT) of obese db/db mice compared to wild type (wt) mice, we utilized RNA fingerprinting. Among the 52 candidates that we identified, we focused here on cathepsin K (ctsk), a cysteine protease, prevalently localized in lysosomes and involved in bone extracellular matrix degradation. In db/db mice, WAT ctsk mRNA was elevated 5.9-fold, as were Mitf and TFE3 (2- and 3.3-fold respectively), two transcription factors involved in ctsk induction in osteoclasts. Moreover, the level of WAT ctsk mRNA was increased in other obese models including A(y), fat, and tubby (2.8-, 3.2-, and 4.9-fold respectively) and decreased in mice undergoing weight loss. Despite the ubiquitous distribution of the ctsk transcript, we demonstrated that the obesity related increase is specific to the adipocytes. Further, in vitro experiments proved that the abundance of ctsk transcript increases upon adipose conversion of the established cell line of preadipocytes 3T3-F442A. In addition, ctsk gene expression was examined in adipose tissue of 21 lean and obese male subjects and significant correlations with BMI (r = 0.54, P = 0.012) and plasma leptin levels (r = 0.54, P = 0.015) were found. In conclusion, the WAT of obese db/db mice exhibits a different expression profile from that of the wt mice, and cathepsin K can be considered a novel marker of obesity and a target for the inhibition of adipose mass growth.

  4. FEEDING INFLUENCES ADIPOSE TISSUE RESPONSES TO EXERCISE IN OVERWEIGHT MEN.

    Science.gov (United States)

    Chen, Yung-Chih; Travers, Rebecca L; Walhin, Jean-Philippe; Gonzalez, Javier T; Koumanov, Francoise; Betts, James A; Thompson, Dylan

    2017-03-14

    Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and one hour post-exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or adiponectin in response to exercise. This is the first study to show that feeding prior to acute exercise affects post-exercise adipose tissue gene expression and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.

  5. Porous decellularized adipose tissue foams for soft tissue regeneration.

    Science.gov (United States)

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  6. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Miroslav Šram

    2015-01-01

    Full Text Available Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT and visceral adipose tissue (VAT, the latter being highly associated with coronary artery disease (CAD. Expansion of epicardial adipose tissue (EAT is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1 the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2 determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  7. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    Science.gov (United States)

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  8. Adipose tissue content and distribution in children and adolescents with bronchial asthma.

    Science.gov (United States)

    Umławska, Wioleta

    2015-02-01

    The excess of adipose tissue and the pattern of adipose tissue distribution in the body seem to play an important role in the complicated dependencies between obesity and risk of developing asthma. The aim of the present study was to determine nutritional status in children and adolescents with bronchial asthma with special emphasis on adipose tissue distribution evaluated on the basis of skin-fold thicknesses, and to determine the relationships between patterns of adipose tissue distribution and the course of the disease. Anthropometric data on height, weight, circumferences and skin-fold thicknesses were extracted from the medical histories of 261 children diagnosed with asthma bronchitis. Values for children with asthma were compared to Polish national growth reference charts. Distribution of subcutaneous adipose tissue was evaluated using principal components analysis (PCA). Multivariate linear regression analyses tested the effect of three factors on subcutaneous adipose tissue distribution: type of asthma, the severity of the disease and the duration of the disease. Mean body height in the children examined in this study was lower than in their healthy peers. Mean BMI and skin-fold thicknesses were significantly higher and lean body mass was lower in the study group. Excess body fat was noted, especially in girls. Adipose tissue was preferentially deposited in the trunk in girls with severe asthma, as well as in those who had been suffering from asthma for a longer time. The type of asthma, atopic or non-atopic, had no observable effect on subcutaneous adipose tissue distribution in children examined. The data suggest that long-treated subjects and those with severe bronchial asthma accumulate more adipose tissue on the trunk. It is important to regularly monitor nutritional status in children with asthma, especially in those receiving high doses of systemic or inhaled glucocorticosteroids, and long-term treatment as well. Copyright © 2014 Elsevier Ltd. All

  9. Adipose tissue stem cells in sinus lift procedures and the use of a combination of bone marrow stem cells, blood derived growth factors and allograft for the augmentation of the severely resorbed maxilla

    Directory of Open Access Journals (Sweden)

    MS Maningky

    2016-06-01

    Full Text Available For smaller bone grafts combining bone substitutes with blood derived growth factors such as PRP and PRF leads to good results.However for the treatment of the extremely resorbed edentulous maxilla prior to implant placement, autogenous bone remains the gold standard. Due to the challenging grafts in often older medically compromised patients the use of bone substitutes alone is not as predictable as autogenous bone.Although autogenous bone is the gold standard the use of block grafts from the iliac crest is associated with significant donorsite morbidity.The use of stem cells and growth factors combined with bone substitute is a promising development which might ultimately replace the need for autogenous bone.Our clinic has done a lot of research in using adipose tissue stem cells in sinus lift procedures, the results will be presented here.We will also present our clinical results of using a combination of bone substitutes with bone marrow stem cells and blood derived growth factors in treating the extremely resorbed edentulous maxilla. Focusing on the difference between adipose tissue stem cells bone marrow and the rationale, surgical considerations and the rationale for combining bone marrow stem cells with blood derived growth factors.

  10. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  11. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    Science.gov (United States)

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  12. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  13. Is adipose tissue metabolically different at different sites?

    Science.gov (United States)

    Gil, Angel; Olza, Josune; Gil-Campos, Mercedes; Gomez-Llorente, Carolina; Aguilera, Concepción M

    2011-09-01

    This review focuses on metabolic differences of adipose tissue at different sites of the body, with emphasis in pediatrics. Adipose tissue is composed of various cell types, which include adipocytes and other cells of the stromal vascular fraction such as preadipocytes, blood cells, endothelial cells and macrophages. Mammals have two main types of adipose tissue: white adipose tissue (WAT), and brown adipose tissue (BAT), each of which possesses unique cell autonomous properties. WAT and BAT differ at the functional, as well as the morphological and molecular levels. WAT accumulates surplus energy mainly in the form of triacylglycerols and BAT dissipates energy directly as heat. Recently, functional BAT in humans has been located in the neck, supraclavicular, mediastinal and interscapular areas. WAT is distributed throughout the body in the form of two major types: subcutaneous adipose tissue (SWAT) and the intra-abdominal visceral adipose tissue (VWAT). VWAT tissue is associated with insulin resistance, diabetes mellitus, dyslipidaemia, hypertension, atherosclerosis, hepatic steatosis, and overall mortality whereas SWAT and BAT have intrinsic beneficial metabolic properties. Subcutaneous and visceral adipocytes derive from different progenitor cells that exhibit a different gene expression pattern. SWAT responds better to the antilipolytic effects of insulin and other hormones, secrets more adiponectin and less inflammatory cytokines, and is differentially affected by molecules involved in signal transduction as well as drugs compared with VWAT. Current research is investigating various approaches of BAT and SWAT transplantation, including new sources of adipocyte progenitors. This may be important for the potential treatment of childhood obesity.

  14. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    Science.gov (United States)

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.

  15. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    Science.gov (United States)

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  16. The mechanism of functional vasodilatation in rabbit epigastric adipose tissue.

    Science.gov (United States)

    Lewis, G P; Mattews, J

    1970-03-01

    1. The effect of close-arterial infusions of fat-mobilizing substances has been examined on the release of free fatty acids and blood flow in the epigastric adipose tissue of rabbits.2. All the fat mobilizers in addition to causing the release of free fatty acids also caused an increased blood flow in the fat tissue.3. Both the fat mobilization and the vasodilatation continued for an hour or so after the end of infusion.4. Although no vasodilator substance could be detected in the venous effluent from the activated adipose tissue, a vasodilator could be detected in acid-ether extracts of adipose tissue excised during a period of fat mobilization.5. It is suggested that a vasodilator substance is released or formed in adipose tissue during fat mobilization and that this substance accounts for the vasodilatation accompanying activity in the tissue.

  17. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Directory of Open Access Journals (Sweden)

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  18. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  19. Injury-Induced Insulin Resistance in Adipose Tissue

    OpenAIRE

    Williams, Vanessa L.; Martin, Rachel E.; Franklin, John L.; Hardy, Robert. W.; Messina, Joseph L.

    2012-01-01

    Hyperglycemia and insulin resistance are common findings in critical illness. Patients in the surgical ICU are frequently treated for this ‘critical illness diabetes’ with intensive insulin therapy, resulting in a substantial reduction in morbidity and mortality. Adipose tissue is an important insulin target tissue, but it is not known whether adipose tissue is affected by critical illness diabetes. In the present study, a rodent model of critical illness diabetes was used to determine whethe...

  20. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    Full Text Available Macrophage migration inhibitory factor (MIF is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a

  1. Coordinated gene expression between skeletal muscle and intramuscular adipose tissue in growing beef cattle.

    Science.gov (United States)

    Roberts, S L; Lancaster, P A; DeSilva, U; Horn, G W; Krehbiel, C R

    2015-09-01

    Previous research indicates that metabolism and fiber type of skeletal muscle is related to intramuscular lipid content. It is hypothesized that changes in skeletal muscle gene expression influence adipose tissue development. The objective of this study was to determine differences in the metabolism and intercellular signaling of skeletal muscle fibers within the same muscle group that could be responsible for the initiation of intramuscular adipose tissue development and differentiation. Longissimus dorsi muscle samples were collected from steers ( = 12; 385 d of age; 378 kg BW) grazing wheat pasture. Longissimus muscle samples were dissected under magnification and sorted into 3 categories based on visual stage of adipose tissue development: immature intramuscular adipose tissue (MM), intermediate intramuscular adipose tissue (ME), and mature intramuscular adipose tissue (MA). Additionally, muscle fibers lying adjacent to each intramuscular adipose tissue (IM) category and those not associated with IM tissue were collected and stored separately. Quantitative real-time PCR was used to determine relative fold change in genes involved in metabolism, angiogenesis, formation of extracellular matrix, and intercellular signaling pathways in both LM and IM samples. Gene expression data were analyzed using a GLM that included the fixed effect of tissue. Pearson correlation coefficients were also computed between gene expression in LM and IM tissue samples that were at the same stage of development. and γ mRNA expression were 3.56- and 1.97-fold greater ( development categories. Genes associated with metabolism and angiogenesis in LM tissue showed no differences among stages of development. Myostatin expression did not change in LM tissue; however, expression of and mRNA decreased ( tissue had a strong positive correlation ( ≥ 0.69) with angiogenic growth factors in LM associated with MM IM; however, no correlation was observed in ME or MA IM. These data indicate a

  2. Hypoxia and adipose tissue function and dysfunction in obesity.

    Science.gov (United States)

    Trayhurn, Paul

    2013-01-01

    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.

  3. TAF7L modulates brown adipose tissue formation

    OpenAIRE

    ZHOU, HAIYING; Wan, Bo; Grubisic, Ivan; Kaplan, Tommy; Tjian, Robert

    2014-01-01

    eLife digest Mammals produce two distinct types of adipose tissue: white adipose tissue (white fat) is the more common type and is used to store energy; brown adipose tissue (brown fat) is mostly found in young animals and infants, and it plays an important role in dissipating energy as heat rather than storing it in fat for future use. In adults, higher levels of brown fat are associated with lower levels of fat overall, so there is considerable interest in learning more about this form of f...

  4. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    Science.gov (United States)

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  5. Adipose tissue and adipocytes support tumorigenesis and metastasis.

    Science.gov (United States)

    Nieman, Kristin M; Romero, Iris L; Van Houten, Bennett; Lengyel, Ernst

    2013-10-01

    Adipose tissue influences tumor development in two major ways. First, obese individuals have a higher risk of developing certain cancers (endometrial, esophageal, and renal cell cancer). However, the risk of developing other cancers (melanoma, rectal, and ovarian) is not altered by body mass. In obesity, hypertrophied adipose tissue depots are characterized by a state of low grade inflammation. In this activated state, adipocytes and inflammatory cells secrete adipokines and cytokines which are known to promote tumor development. In addition, the adipocyte mediated conversion of androgens to estrogen specifically contributes to the development of endometrial cancer, which shows the greatest relative risk (6.3-fold) increase between lean and obese individuals. Second, many tumor types (gastric, breast, colon, renal, and ovarian) grow in the anatomical vicinity of adipose tissue. During their interaction with cancer cells, adipocytes dedifferentiate into pre-adipocytes or are reprogrammed into cancer-associated adipocytes (CAA). CAA secrete adipokines which stimulate the adhesion, migration, and invasion of tumor cells. Cancer cells and CAA also engage in a dynamic exchange of metabolites. Specifically, CAA release fatty acids through lipolysis which are then transferred to cancer cells and used for energy production through β-oxidation. The abundant availability of lipids from adipocytes in the tumor microenvironment, supports tumor progression and uncontrolled growth. Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes, should reveal new therapeutic possibilities. This article is part of a Special Issue entitled Lipid Metabolism in Cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    Science.gov (United States)

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  7. Interleukin-6 production in human subcutaneous abdominal adipose tissue

    DEFF Research Database (Denmark)

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    The interleukin-6 (IL-6) output from subcutaneous, abdominal adipose tissue was studied in nine healthy subjects before, during and for 3 h after 1 h two-legged bicycle exercise at 60 % maximal oxygen consumption. Seven subjects were studied in control experiments without exercise. The adipose ti...

  8. Nutritional manipulations in the perinatal period program adipose tissue in offspring.

    Science.gov (United States)

    Lukaszewski, Marie-Amélie; Eberlé, Delphine; Vieau, Didier; Breton, Christophe

    2013-11-15

    Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.

  9. Adipose tissue lymphocytes: types and roles.

    Science.gov (United States)

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  10. Brain-adipose tissue cross talk.

    Science.gov (United States)

    Bartness, Timothy J; Kay Song, C; Shi, Haifei; Bowers, Robert R; Foster, Michelle T

    2005-02-01

    While investigating the reversible seasonal obesity of Siberian hamsters, direct sympathetic nervous system (SNS) postganglionic innervation of white adipose tissue (WAT) has been demonstrated using anterograde and retrograde tract tracers. The primary function of this innervation is lipid mobilization. The brain SNS outflow to WAT has been defined using the pseudorabies virus (PRV), a retrograde transneuronal tract tracer. These PRV-labelled SNS outflow neurons are extensively co-localized with melanocortin-4 receptor mRNA, which, combined with functional data, suggests their involvement in lipolysis. The SNS innervation of WAT also regulates fat cell number, as noradrenaline inhibits and WAT denervation stimulates fat cell proliferation in vitro and in vivo respectively. The sensory innervation of WAT has been demonstrated by retrograde tract tracing, electrophysiological recording and labelling of the sensory-associated neuropeptide calcitonin gene-related peptide in WAT. Local injections of the sensory nerve neurotoxin capsaicin into WAT selectively destroy this innervation. Just as surgical removal of WAT pads triggers compensatory increases in lipid accretion by non-excised WAT depots, capsaicin-induced sensory denervation triggers increases in lipid accretion of non-capsaicin-injected WAT depots, suggesting that these nerves convey information about body fat levels to the brain. Finally, parasympathetic nervous system innervation of WAT has been suggested, but the recent finding of no WAT immunoreactivity for the possible parasympathetic marker vesicular acetylcholine transporter (VAChT) argues against this claim. Collectively, these data suggest several roles for efferent and afferent neural innervation of WAT in body fat regulation.

  11. New concepts in white adipose tissue physiology

    Energy Technology Data Exchange (ETDEWEB)

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  12. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  13. The role of dietary fat in adipose tissue metabolism.

    Science.gov (United States)

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  14. Assessment of in situ adipose tissue inflammation by microdialysis

    DEFF Research Database (Denmark)

    Langkilde, Anne; Andersen, Ove; Henriksen, Jens H;

    2015-01-01

    Inflammation, and specifically adipose tissue (AT) inflammation, is part of the pathophysiology of obesity and HIV-associated lipodystrophy. Local AT protein assessment methods are limited, and AT inflammation studies have therefore primarily examined inflammatory gene expression. We therefore...

  15. Morphological and inflammatory changes in visceral adipose tissue during obesity.

    Science.gov (United States)

    Revelo, Xavier S; Luck, Helen; Winer, Shawn; Winer, Daniel A

    2014-03-01

    Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called "crown-like structure", a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.

  16. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  17. 不同生长因子对脂肪干细胞生物学行为的影响%Effects of different growth factors on biological behaviors of adipose tissue-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    高洁; 王明国; 杨帅; 李雪; 杨世茂; 李秀梅; 刘金盼

    2015-01-01

    背景:骨量不足限制了口腔种植修复的广泛应用,如何促进干细胞的迁移、黏附和增殖进而促进内源骨再生成为研究的关键点.目的:观察不同生长因子对体外培养兔脂肪干细胞迁移、黏附和增殖的影响,筛选出最佳的组合因子.方法:无菌切除兔腹股沟处的白色脂肪组织,采用酶消化法培养脂肪干细胞,取第3代细胞分为5组进行干预,分别为转化生长因子β1+血小板源性生长因子AB组(组1),血小板源性生长因子AB+血管内皮生长因子组(组2),转化生长因子β1+血管内皮生长因子组(组3),转化生长因子β1+血小板源性生长因子AB+血管内皮生长因子组(组4)和空白对照组.采用Transwel 小室法检测细胞的迁移能力,黏附实验检测细胞的黏附能力,CCK-8法检测细胞的增殖能力.结果与结论:Transwel实验显示,4组间迁移细胞数差异有显著性意义(P < 0.05),其中,转化生长因子β1 (2 μg/L)+血小板源性生长因子AB(10μg/L)+血管内皮生长因子(10μg/L)组(组4)迁移细胞数最多,显著促进了脂肪干细胞的迁移.黏附实验结果显示,4组间黏附细胞数差异有显著性意义(P < 0.05),其中转化生长因子β1+血管内皮生长因子组(组3)黏附细胞数最多,显著促进了脂肪干细胞的黏附.CCK-8结果显示,在不同的时间点(1,3,5,7 d),各因子组合组吸光度值较对照组均显著增高(P < 0.05),其中血小板源性生长因子AB+血管内皮生长因子组(组2)递增的吸光度值最大,显著促进了兔脂肪干细胞的增殖.%BACKGROUND:Bone deficiency restricts the extensive use of oral implant restoration. How to promote stem cel migration, adhesion and proliferation so as to promote endogenous bone regeneration becomes the key of research. OBJECTIVE:To observe the effects of different growth factors on the migration, adhesion and proliferation of rabbit adipose tissue-derived stem cels culturedin vitro and to screen the

  18. The adipose tissue in farm animals: a proteomic approach.

    Science.gov (United States)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura; Ceciliani, Fabrizio

    2014-03-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal structure for the mammary gland and on its role in participating in and regulating of energy metabolism and other functions. Moreover, as pig has recently become an important model organism to study human diseases, the knowledge of adipose tissue metabolism in pig is relevant for the study of obesity and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in

  19. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    Science.gov (United States)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.

  20. Adipose tissue and adipocytes supports tumorigenesis and metastasis#

    OpenAIRE

    Nieman, Kristin M; Romero, Iris L.; Van Houten, Bennett; Lengyel, Ernst

    2013-01-01

    Adipose tissue influences tumor development in two major ways. First, obese individuals have a higher risk of developing certain cancers (endometrial, esophageal, and renal cell cancer). However, the risk of developing other cancers (melanoma, rectal, and ovarian) is not altered by body mass. In obesity, hypertrophied adipose tissue depots are characterized by a state of low grade inflammation. In this activated state, adipocytes and inflammatory cells secrete adipokines and cytokines which a...

  1. (Brown) adipose tissue associated metabolic dysfunction and risk of cardiovascular disease in high risk patients

    NARCIS (Netherlands)

    Franssens, BT

    2016-01-01

    In this thesis it was shown that (brown) adipose tissue associated metabolic dysfunction increases the risk on development of cardiovascular disease in high risk patients. Quantity of adipose tissue is an important risk factor for adipose tissue dysfunction but functionality of adipose tissue not so

  2. Exercise and Adipose Tissue Macrophages: New Frontiers in Obesity Research?

    Science.gov (United States)

    Goh, Jorming; Goh, Kian Peng; Abbasi, Asghar

    2016-01-01

    Obesity is a major public health problem in the twenty-first century. Mutations in genes that regulate substrate metabolism, subsequent dysfunction in their protein products, and other factors, such as increased adipose tissue inflammation, are some underlying etiologies of this disease. Increased inflammation in the adipose tissue microenvironment is partly mediated by the presence of cells from the innate and adaptive immune system. A subset of the innate immune population in adipose tissue include macrophages, termed adipose tissue macrophages (ATMs), which are central players in adipose tissue inflammation. Being extremely plastic, their responses to diverse molecular signals in the microenvironment dictate their identity and functional properties, where they become either pro-inflammatory (M1) or anti-inflammatory (M2). Endurance exercise training exerts global anti-inflammatory responses in multiple organs, including skeletal muscle, liver, and adipose tissue. The purpose of this review is to discuss the different mechanisms that drive ATM-mediated inflammation in obesity and present current evidence of how exercise training, specifically endurance exercise training, modulates the polarization of ATMs from an M1 to an M2 anti-inflammatory phenotype.

  3. Endoplasmic reticulum stress in adipose tissue augments lipolysis.

    Science.gov (United States)

    Bogdanovic, Elena; Kraus, Nicole; Patsouris, David; Diao, Li; Wang, Vivian; Abdullahi, Abdikarim; Jeschke, Marc G

    2015-01-01

    The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.

  4. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    Science.gov (United States)

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.

  5. Potential role of growth hormone in impairment of insulin signaling in skeletal muscle, adipose tissue, and liver of rats chronically treated with arginine.

    Science.gov (United States)

    de Castro Barbosa, Thais; de Carvalho, José Edgar Nicoletti; Poyares, Leonice Lourenço; Bordin, Silvana; Machado, Ubiratan Fabres; Nunes, Maria Tereza

    2009-05-01

    We have shown that rats chronically treated with Arginine (Arg), although normoglycemic, exhibit hyperinsulinemia and decreased blood glucose disappearance rate after an insulin challenge. Attempting to investigate the processes underlying these alterations, male Wistar rats were treated with Arg (35 mg/d), in drinking water, for 4 wk. Rats were then acutely stimulated with insulin, and the soleus and extensorum digitalis longus muscles, white adipose tissue (WAT), and liver were excised for total and/or phosphorylated insulin receptor (IR), IR substrate 1/2, Akt, Janus kinase 2, signal transducer and activator of transcription (STAT) 1/3/5, and p85alpha/55alpha determination. Muscles and WAT were also used for plasma membrane (PM) and microsome evaluation of glucose transporter (GLUT) 4 content. Pituitary GH mRNA, GH, and liver IGF-I mRNA expression were estimated. It was shown that Arg treatment: 1) did not affect phosphotyrosine-IR, whereas it decreased phosphotyrosine-IR substrate 1/2 and phosphoserine-Akt content in all tissues studied, indicating that insulin signaling is impaired at post-receptor level; 2) decreased PM GLUT4 content in both muscles and WAT; 3) increased the pituitary GH mRNA, GH, and liver IGF-I mRNA expression, the levels of phosphotyrosine-STAT5 in both muscles, phosphotyrosine-Janus kinase 2 in extensorum digitalis longus, phosphotyrosine-STAT3 in liver, and WAT as well as total p85alpha in soleus, indicating that GH signaling is enhanced in these tissues; and 4) increased p55alpha total content in muscles, WAT, and liver. The present findings provide the molecular mechanisms by which insulin resistance and, by extension, reduced GLUT4 content in PM of muscles and WAT take place after chronic administration of Arg, and further suggest a putative role for GH in its genesis, considering its diabetogenic effect.

  6. Adipose tissue, the skeleton and cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  7. From neutrophils to macrophages: differences in regional adipose tissue depots.

    Science.gov (United States)

    Dam, V; Sikder, T; Santosa, S

    2016-01-01

    Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.

  8. Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver.

    Directory of Open Access Journals (Sweden)

    Andrew M Shore

    Full Text Available Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT, white adipose (WAT and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05 up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver. Gene ontology analysis revealed for the first time significant (P<0.05 down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production.

  9. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.

    Science.gov (United States)

    Chujo, Yoshikazu; Fujii, Namiki; Okita, Naoyuki; Konishi, Tomokazu; Narita, Takumi; Yamada, Atsushi; Haruyama, Yushi; Tashiro, Kosuke; Chiba, Takuya; Shimokawa, Isao; Higami, Yoshikazu

    2013-08-01

    The role of the growth hormone (GH)-insulin-like growth factor (IGF)-1 axis in the lifelong caloric restriction (CR)-associated remodeling of white adipose tissue (WAT), adipocyte size, and gene expression profiles was explored in this study. We analyzed the WAT morphology of 6-7-month-old wild-type Wistar rats fed ad libitum (WdAL) or subjected to CR (WdCR), and of heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (TgAL) or subjected to CR (TgCR). Although less effective in TgAL, the adipocyte size was significantly reduced in WdCR compared with WdAL. This CR effect was blunted in Tg rats. We also used high-density oligonucleotide microarrays to examine the gene expression profile of WAT of WdAL, WdCR, and TgAL rats. The gene expression profile of WdCR, but not TgAL, differed greatly from that of WdAL. The gene clusters with the largest changes induced by CR but not by Tg were genes involved in lipid biosynthesis and inflammation, particularly sterol regulatory element binding proteins (SREBPs)-regulated and macrophage-related genes, respectively. Real-time reverse-transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its downstream targets was upregulated, whereas the macrophage-related genes were downregulated in WdCR, but not in TgAL. In addition, CR affected the gene expression profile of Tg rats similarly to wild-type rats. Our findings suggest that CR-associated remodeling of WAT, which involves SREBP-1-mediated transcriptional activation and suppression of macrophage infiltration, is regulated in a GH-IGF-1-independent manner.

  10. Adipose tissues differentiated by adipose-derived stemcells harvested from transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LU Feng; GAO Jian-hua; Rei Ogawa; Hiroshi Mizuro; Hiki Hykusoku

    2006-01-01

    Objective: To induce adipocyte differentiation in vitro by adipose-derived stromal cells (ASCs) harvested from transgenic mice with green fluorescent protein (GFP)and assess the possibility of constructing adipose tissues via attachment of ASCs to type Ⅰ collagen scaffolds.Methods: Inguinal fat pads from GFP transgenic mice were digested by enzymes for isolation of ASCs (primary culture). After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks, and the adipocyte differentiation by ASCs in vitro was assessed by morphological observation and Oil Red O staining. Then they were attached to collagen scaffolds and co-cultured for 12 hours, followed by hypodermic implantation to the dorsal skin of nude mice for 2 months. The newly-formed tissues were detected by HE staining.Results: The cultured primary stem cells were fibroblast-like and showed active proliferation. After being incubated in an adipocyte differentiation medium, the lipid droplets in the cytoplasm accumulated gradually and finally developed into mature adipocytes, which showed positive in Oil Red O staining. A 0.5-cm3 new tissue clot was found under the dorsal skin of the nude mice and it was confirmed as mature adipose tissues by fluorescent observation and HE staining.Conclusions: ASCs can successfully differentiate adipose tissues into mature adipocytes, which exhibit an adipocyte-like morphology and express as intracytoplasmic lipid droplets. It is an efficient model of adipose tissues engineered with ASCs and type Ⅰ collagen scaffolds.

  11. White adipose tissue resilience to insulin deprivation and replacement.

    Science.gov (United States)

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.

  12. White Adipose Tissue Resilience to Insulin Deprivation and Replacement

    Science.gov (United States)

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Introduction Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. Results The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Conclusion Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues. PMID:25170835

  13. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice.

    Science.gov (United States)

    Shan, Tizhong; Zhang, Pengpeng; Jiang, Qinyang; Xiong, Yan; Wang, Yizhen; Kuang, Shihuan

    2016-09-01

    The in vivo role of mechanistic target of rapamycin (mTOR) in the development and function of adipose tissue, especially brown adipose tissue (BAT), is not well understood. Here, we aimed to assess the effect of mTOR (also known as Mtor) knockout on adipose tissues and systemic energy metabolism. We generated adipocyte-specific mTOR-knockout mice (Adipoq-mTOR) by crossing adiponectin-Cre (Adipoq-Cre) mice with mTOR (flox/flox) mice. The mice were then subjected to morphological, physiological (indirect calorimetry, glucose and insulin tolerance tests) and gene expression analyses to determine the role of mTOR in adipose tissues. We provide in vivo evidence that mTOR is essential for adipose tissue development and growth. Deletion of mTOR decreased the mass of both BAT and white adipose tissues (WAT) and induced browning of WAT. In addition, ablation of mTOR in adipose tissues caused insulin resistance and fatty liver in the Adipoq-mTOR mice. Furthermore, mTOR was required for adipocyte differentiation in vivo and activation of PPARγ ameliorated the differentiation deficiency of the mTOR-null adipocytes. Our findings demonstrate that mTOR is a critical regulator of adipogenesis and systemic energy metabolism. Our study provides key insights into the role of mTOR in adipose tissues; such knowledge may facilitate the development of novel strategies with which to treat obesity and related metabolic diseases.

  14. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion.

    Science.gov (United States)

    Michailidou, Zoi; Morton, Nicholas M; Moreno Navarrete, José Maria; West, Christopher C; Stewart, Kenneth J; Fernández-Real, José Manuel; Schofield, Christopher J; Seckl, Jonathan R; Ratcliffe, Peter J

    2015-03-01

    Prolyl hydroxylase enzymes (PHDs) sense cellular oxygen upstream of hypoxia-inducible factor (HIF) signaling, leading to HIF degradation in normoxic conditions. In this study, we demonstrate that adipose PHD2 inhibition plays a key role in the suppression of adipocyte lipolysis. Adipose Phd2 gene ablation in mice enhanced adiposity, with a parallel increase in adipose vascularization associated with reduced circulating nonesterified fatty acid levels and normal glucose homeostasis. Phd2 gene-depleted adipocytes exhibited lower basal lipolysis in normoxia and reduced β-adrenergic-stimulated lipolysis in both normoxia and hypoxia. A selective PHD inhibitor suppressed lipolysis in murine and human adipocytes in vitro and in vivo in mice. PHD2 genetic ablation and pharmacological inhibition attenuated protein levels of the key lipolytic effectors hormone-sensitive lipase and adipose triglyceride lipase (ATGL), suggesting a link between adipocyte oxygen sensing and fatty acid release. PHD2 mRNA levels correlated positively with mRNA levels of AB-hydrolase domain containing-5, an activator of ATGL, and negatively with mRNA levels of lipid droplet proteins, perilipin, and TIP47 in human subcutaneous adipose tissue. Therapeutic pseudohypoxia caused by PHD2 inhibition in adipocytes blunts lipolysis and promotes benign adipose tissue expansion and may have therapeutic applications in obesity or lipodystrophy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  16. Lipolysis and lipases in white adipose tissue – An update

    OpenAIRE

    Bolsoni-Lopes,Andressa; Alonso-Vale, Maria Isabel C.

    2015-01-01

    Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanism...

  17. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    Science.gov (United States)

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  18. Adipose tissue, obesity and adipokines: role in cancer promotion.

    Science.gov (United States)

    Booth, Andrea; Magnuson, Aaron; Fouts, Josephine; Foster, Michelle

    2015-01-01

    Adipose tissue is a complex organ with endocrine, metabolic and immune regulatory roles. Adipose depots have been characterized to release several adipocytokines that work locally in an autocrine and paracrine fashion or peripherally in an endocrine fashion. Adipocyte hypertrophy and excessive adipose tissue accumulation, as occurs during obesity, dysregulates the microenvironment within adipose depots and systemically alters peripheral tissue metabolism. The term "adiposopathy" is used to describe this promotion of pathogenic adipocytes and associated adipose - elated disorders. Numerous epidemiological studies confirm an association between obesity and various cancer forms. Proposed mechanisms that link obesity/adiposity to high cancer risk and mortality include, but are not limited to, obesity-related insulin resistance, hyperinsulinemia, sustained hyperglycemia, glucose intolerance, oxidative stress, inflammation and/or adipocktokine production. Several epidemiological studies have demonstrated a relationship between specific circulating adipocytokines and cancer risk. The aim of this review is to define the function, in normal weight and obesity states, of well-characterized and novel adipokines including leptin, adiponectin, apelin, visfatin, resistin, chemerin, omentin, nesfatin and vaspin and summarize the data that relates their dysfunction, whether associated or direct effects, to specific cancer outcomes. Overall research suggests most adipokines promote cancer cell progression via enhancement of cell proliferation and migration, inflammation and anti-apoptosis pathways, which subsequently can prompt cancer metastasis. Further research and longitudinal studies are needed to define the specific independent and additive roles of adipokines in cancer progression and reoccurrence.

  19. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue.

    Science.gov (United States)

    Mori, Shinobu; Kiuchi, Satomi; Ouchi, Atsushi; Hase, Tadashi; Murase, Takatoshi

    2014-01-01

    Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.

  20. A stringent validation of mouse adipose tissue identity markers.

    Science.gov (United States)

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  1. Natural killer T cells in adipose tissue prevent insulin resistance.

    Science.gov (United States)

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  2. Adipose tissue as an immunological organ : implications for childhood obesity

    NARCIS (Netherlands)

    Schipper, H.S.

    2013-01-01

    Obesity is increasingly considered as an inflammatory disorder. In adults, obesity induces inflammation of adipose tissue (AT). Through the release of inflammatory lipids and immune mediating proteins called adipokines, AT inflammation spreads to other tissues ranging from liver and muscle to the

  3. Regulation of brown adipose tissue by stress and sex

    NARCIS (Netherlands)

    J.C. van den Beukel (Anneke)

    2016-01-01

    textabstractDue to the increasing incidence of obesity, more means of treating obesity are necessary. Brown adipose tissue (BAT) is a potential target tissue via which obesity can be treated due to its unique ability to use energy to produce heat. Not much is known however about the mechanisms via w

  4. Regulation of brown adipose tissue by stress and sex

    NARCIS (Netherlands)

    J.C. van den Beukel (Anneke)

    2016-01-01

    textabstractDue to the increasing incidence of obesity, more means of treating obesity are necessary. Brown adipose tissue (BAT) is a potential target tissue via which obesity can be treated due to its unique ability to use energy to produce heat. Not much is known however about the mechanisms via w

  5. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    Science.gov (United States)

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  6. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  7. Liver-adipose tissue crosstalk: A key player in the pathogenesis of glucolipid metabolic disease.

    Science.gov (United States)

    Ye, De-Wei; Rong, Xiang-Lu; Xu, Ai-Min; Guo, Jiao

    2017-06-01

    Glucolipid metabolic disease (GLMD), a complex of interrelated disorders in glucose and lipid metabolism, has become one of the leading chronic diseases causing public and clinical problem worldwide. As the metabolism of lipid and glucose is a highly coordinated process under both physiological and diseased conditions, the impairment in the signals corresponding to the metabolism of either lipid or glucose represents the common mechanism underlying the pathogenesis of GLMD. The liver and adipose tissue are the major metabolic organs responsible for energy utilization and storage, respectively. This review article aims to summarize the current advances in the investigation of the functional roles and the underling mechanisms of the interplay between the liver and adipose tissue in the modulation of GLMD development. Fibroblast growth factor 21 (FGF21) and adiponectin represent the two major hormones secreted from the liver and adipose tissues, respectively. FGF21 exerts pleiotropic effects on regulating glucose and lipid homeostasis majorly through inducing the expression and secretion of adiponectin. Therefore, FGF21-adiponectin axis functions as the key mediator for the crosstalk between the liver and adipose tissue to exert the beneficial effects on the maintenance of the homeostasis of energy consumption. The liver- and adipose tissue-derived factors with pleiotropic effects on regulating of lipid and glucose metabolism function as the key mediator for the crosstalk between these two highly active metabolic organs, thereby coordinating the initiation and development of GLMD.

  8. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise.

    Science.gov (United States)

    Stich, V; de Glisezinski, I; Berlan, M; Bulow, J; Galitzky, J; Harant, I; Suljkovicova, H; Lafontan, M; Rivière, D; Crampes, F

    2000-04-01

    The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were significantly higher during the second exercise bout compared with the first (P < 0.05). The responses of plasma nonesterified fatty acids and plasma epinephrine were higher during the second exercise bout, whereas the response of norepinephrine was unchanged and that of growth hormone lower. Plasma insulin levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated with an increase in the exercise-induced rise of epinephrine and with lower plasma insulin values during the repeated exercise bout.

  9. Epicardial adipose tissue in endocrine and metabolic diseases.

    Science.gov (United States)

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  10. MicroRNAs in dysfunctional adipose tissue: cardiovascular implications.

    Science.gov (United States)

    Icli, Basak; Feinberg, Mark W

    2017-07-01

    In this review, we focus on the emerging role of microRNAs, non-coding RNAs that regulate gene expression and signaling pathways, in dysfunctional adipose tissue. We highlight current paradigms of microRNAs involved in adipose differentiation and function in depots such as white, brown, and beige adipose tissues and potential implications of microRNA dysregulation in human disease such as obesity, inflammation, microvasculature dysfunction, and related cardiovascular diseases. We highlight accumulating studies indicating that adipocyte-derived microRNAs may not only serve as biomarkers of cardiometabolic disease, but also may directly regulate gene expression of other tissues. Finally, we discuss the future prospects, challenges, and emerging strategies for microRNA delivery and targeting for therapeutic applications in cardiovascular disease states associated with adipocyte dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  11. The effect of hypokinesia on lipid metabolism in adipose tissue

    Science.gov (United States)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  12. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  13. In vivo Analysis of White Adipose Tissue in Zebrafish

    Science.gov (United States)

    Minchin, James E.N.; Rawls, John F.

    2016-01-01

    White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT. PMID:21951526

  14. Bovine dedifferentiated adipose tissue (DFAT) cells

    OpenAIRE

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S.; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J.; Elabd, Elham M Youssef; Bergen, Werner G.; Basu, Urmila; Dodson, Michael V.

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repea...

  15. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue.

    Science.gov (United States)

    Harazaki, Tomomi; Inoue, Seiya; Imai, Chihiro; Mochizuki, Kazuki; Goda, Toshinao

    2014-05-01

    CD11s/CD18 dimers induce monocyte/macrophage infiltration into many tissues, including adipose tissues. In particular, it was reported that β2-integrin CD11c-positive macrophages in adipose tissues are closely associated with the development of insulin resistance. The aim of this study was to determine whether intake of resistant starch (RS) reduces macrophage accumulation in adipose tissues and inhibits the development of insulin resistance at an early stage in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Twenty-two-wk-old male OLETF rats were fed a control diet (55% α-corn starch) or an RS diet (55% RS) for 5 wk. An oral glucose tolerance test was performed after 4 wk of feeding; tissues (mesenteric and epididymal adipose tissues, and liver) and tail vein blood were collected after 5 wk of feeding the test diets. Feeding the RS diet to OLETF rats for 5 wk improved insulin resistance, reduced the mesenteric adipose tissue weight, and enhanced the number of small adipocytes. CD68 expression, a macrophage infiltration marker, was not changed by the RS diet, whereas the gene expression levels of integrins such as CD11c, CD11d, and CD18, but not CD11a, and CD11b, were significantly reduced. CD11c protein expression was reduced by the RS diet. These findings suggest that part of the mechanism for the improved insulin resistance by the RS diet involves a reduction of CD11c expression in adipose tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Theoretical model of ruminant adipose tissue metabolism in relation to the whole animal.

    Science.gov (United States)

    Baldwin, R L; Yang, Y T; Crist, K; Grichting, G

    1976-09-01

    Based on theoretical considerations and experimental data, estimates of contributions of adipose tissue to energy expenditures in a lactating cow and a growing steer were developed. The estimates indicate that adipose energy expenditures range between 5 and 10% of total animal heat production dependent on productive function and diet. These energy expenditures can be partitioned among maintenance (3%), lipogenesis (1-5%) and lipolysis and triglyceride resynthesis (less thatn 1.0%). Specific sites at which acute and chronic effectors can act to produce changes in adipose function, and changes in adipose function produced by diet and during pregnancy, lactation and aging were discussed with emphasis being placed on the need for additional, definitive studies of specific interactions among pregnancy, diet, age, lactation and growth in producing ruminants.

  17. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  18. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Science.gov (United States)

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  19. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  20. Chagas disease, adipose tissue and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Fnu Nagajyothi

    2009-07-01

    Full Text Available Trypanosoma cruzi infection of the adipose tissue of mice triggers the local expression of inflammatory mediators and a reduction in the expression of the adipokine adiponectin. T. cruzi can be detected in adipose tissue by PCR 300 days post-infection. Infection of cultured adipocytes results in increased expression of cytokines and chemokines and a reduction in the expression of adiponectin and the peroxisome proliferator-activated receptor ³, both of which are negative regulators of inflammation. Infection also results in the upregulation of cyclin D1, the Notch pathway, and extracellular signal-regulated kinase and a reduction in the expression of caveolin-1. Thus, T. cruzi infection of cultured adipocytes leads to an upregulation of the inflammatory process. Since adiponectin null mice have a cardiomyopathic phenotype, it is possible that the reduction in adiponectin contributes to the pathogenesis of chagasic cardiomyopathy. Adipose tissue may serve as a reservoir for T. cruzi from which parasites can become reactivated during periods of immunosuppression. T. cruzi infection of mice often results in hypoglycemia. In contrast, hyperglycemia as observed in diabetes results in increased parasitemia and mortality. Adipose tissue is an important target tissue of T. cruzi and the infection of this tissue is associated with a profound impact on systemic metabolism, increasing the risk of metabolic syndrome.

  1. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes

    Directory of Open Access Journals (Sweden)

    Nanthini Jayabalan

    2017-09-01

    Full Text Available Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR. Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM. Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body’s major energy reservoir. The role of adipose tissue, however, is not restricted to a “bag of fat.” The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between

  2. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Science.gov (United States)

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  3. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate......Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...

  4. Natural killer T cells in adipose tissue are activated in lean mice.

    Science.gov (United States)

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  5. Benefits of healthy adipose tissue in the treatment of diabetes.

    Science.gov (United States)

    Gunawardana, Subhadra C

    2014-08-15

    The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin. Insulin deficiency is either absolute due to destruction or failure of pancreatic β cells, or relative due to decreased sensitivity of peripheral tissues to insulin. The primary lesion being related to insulin, treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin. These therapies have their own limitations and complications, some of which can be life-threatening. For example, exogenous insulin administration can lead to fatal hypoglycemic episodes; islet/pancreas transplantation requires life-long immunosuppressive therapy; and anti-diabetic drugs have dangerous side effects including edema, heart failure and lactic acidosis. Thus the need remains for better safer long term treatments for diabetes. The ultimate goal in treating diabetes is to re-establish glucose homeostasis, preferably through endogenously generated hormones. Recent studies increasingly show that extra-pancreatic hormones, particularly those arising from adipose tissue, can compensate for insulin, or entirely replace the function of insulin under appropriate circumstances. Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism. While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines, healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties, which can complement and/or compensate for the function of insulin. Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes, and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin. Although specific adipokines may correct diabetes, administration of individual adipokines still carries risks similar to those of insulin monotherapy. Thus a

  6. Vitamin D and adipose tissue - more than storage

    Directory of Open Access Journals (Sweden)

    Shivaprakash Jagalur Mutt

    2014-06-01

    Full Text Available The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OHD, no evidence was obtained for a BMI lowering effect by higher 25(OHD. Some of the physiological functions of 1,25(OH2D3 (1,25-dihydroxycholecalciferol or calcitriol via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g. in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH2D3, vitamin D binding proteins (VDBPs and nuclear vitamin D receptor (VDR after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR -/- and CYP27B1 knock out (CYP27B1 -/- mouse models: Both VDR -/- and CYP27B1 -/- models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH2D3. Experimental studies demonstrate that 1,25(OH2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  7. The cellularity of offspring's adipose tissue is programmed by maternal nutritional manipulations.

    Science.gov (United States)

    Lecoutre, Simon; Breton, Christophe

    2014-01-01

    Epidemiological studies initially demonstrated that maternal undernutrition leads to low birth weight with increased risk of adult-onset obesity. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catch-up growth also predispose offspring to fat accumulation. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set-point. Adipose tissue is a key fuel storage unit mainly involved in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a gender- and depot-specific manner. This review summarizes the impact of maternal nutritional manipulations on cellularity (i.e., cell number, size, and type) of adipose tissue in programmed offspring. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Maternal nutritional manipulations result in increased adipogenesis and modified fat distribution and composition. Inflammation changes such as infiltration of macrophages and increased inflammatory markers are also observed. Overall, it may predispose offspring to fat accumulation and obesity. Inappropriate hormone levels, modified tissue sensitivity, and epigenetic mechanisms are key factors involved in the programming of adipose tissue's cellularity during the perinatal period.

  8. Metabolic characteristics and therapeutic potential of brown and ‘beige’ adipose tissues

    Directory of Open Access Journals (Sweden)

    Ekaterina Olegovna Koksharova

    2014-10-01

    Full Text Available According to the International Diabetes Federation, 10.9 million people have diabetes mellitus (DM in Russia; however, only up to 4 million are registered. In addition, 11.9 million people have impaired glucose tolerance and impaired fasting glucose levels [1].One of the significant risk factors for type 2 DM (T2DM is obesity, which increases insulin resistance (IR. IR is the major pathogenetic link to T2DM.According to current concepts, there are three types of adipose tissue: white adipose tissue (WAT, brown adipose tissue (BAT and ‘beige’, of which the last two types have a thermogenic function. Some research results have revealed the main stages in the development of adipocytes; however, there is no general consensus regarding the development of ‘beige’ adipocytes. Furthermore, the biology of BAT and ‘beige’ adipose tissue is currently being intensively investigated, and some key transcription factors, signalling pathways and hormones that promote the development and activation of these tissues have been identified. The most discussed hormones are irisin and fibroblast growth factor 21, which have established positive effects on BAT and ‘beige’ adipose tissue with regard to carbohydrate, lipid and energy metabolism. The primary imaging techniques used to investigate BAT are PET-CT with 18F-fluorodeoxyglucose and magnetic resonance spectroscopy.With respect to the current obesity epidemic and associated diseases, including T2DM, there is a growing interest in investigating adipogenesis and the possibility of altering this process. BAT and ‘beige’ adipose tissue may be targets for developing drugs directed against obesity and T2DM.

  9. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues.

    Science.gov (United States)

    Lin, Ligen; Saha, Pradip K; Ma, Xiaojun; Henshaw, Iyabo O; Shao, Longjiang; Chang, Benny H J; Buras, Eric D; Tong, Qiang; Chan, Lawrence; McGuinness, Owen P; Sun, Yuxiang

    2011-12-01

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  10. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Liu, Pin; Ji, Hong; Li, Chao; Tian, Jingjing; Wang, Yifei; Yu, Ping

    2015-08-01

    To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.

  11. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  12. Browning of white adipose tissue: role of hypothalamic signaling.

    Science.gov (United States)

    Bi, Sheng; Li, Lin

    2013-10-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through nonshivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent observations indicate the importance of the dorsomedial hypothalamus (DMH) in thermoregulation. We have found that the orexigenic neuropeptide Y (NPY) in the DMH has distinct actions in modulating adiposity and BAT thermogenesis. Knockdown of NPY in the DMH elevates the thermogenic activity of classic BAT and promotes the development of brown adipocytes in WAT, leading to increased thermogenesis. These findings identify a novel potential target for combating obesity.

  13. Physiological and pathological impact of exosomes of adipose tissue.

    Science.gov (United States)

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  14. Lipolysis and lipases in white adipose tissue - An update.

    Science.gov (United States)

    Bolsoni-Lopes, Andressa; Alonso-Vale, Maria Isabel C

    2015-08-01

    Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanisms involved, which reformulated the concept of lipolysis. Novel findings from these studies include the identification of lipolytic products as signaling molecules regulating important metabolic processes in many non-adipose tissues, unveiling a previously underestimated aspect of lipolysis. Thus, we present here an updated review of concepts and regulation of white adipocyte lipolysis with a special emphasis in its role in metabolism homeostasis and as a source of important signaling molecules.

  15. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    Science.gov (United States)

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  16. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues.

    Science.gov (United States)

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-01

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner.

  17. Germline ablation of VGF increases lipolysis in white adipose tissue.

    Science.gov (United States)

    Fargali, Samira; Scherer, Thomas; Shin, Andrew C; Sadahiro, Masato; Buettner, Christoph; Salton, Stephen R

    2012-11-01

    Targeted deletion of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically induced obesity and diabetes. We hypothesized that increased sympathetic nervous system activity in Vgf-/Vgf- knockout mice is responsible for increased energy expenditure and decreased fat storage and that increased β-adrenergic receptor stimulation induces lipolysis in white adipose tissue (WAT) of Vgf-/Vgf- mice. We found that fat mass was markedly reduced in Vgf-/Vgf- mice. Within knockout WAT, phosphorylation of protein kinase A substrate increased in males and females, phosphorylation of hormone-sensitive lipase (HSL) (ser563) increased in females, and levels of adipose triglyceride lipase, comparative gene identification-58, and phospho-perilipin were higher in male Vgf-/Vgf- WAT compared with wild-type, consistent with increased lipolysis. The phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and levels of the AMPK kinase, transforming growth factor β-activated kinase 1, were decreased. This was associated with a decrease in HSL ser565 phosphorylation, the site phosphorylated by AMPK, in both male and female Vgf-/Vgf- WAT. No significant differences in phosphorylation of CREB or the p42/44 MAPK were noted. Despite this evidence supporting increased cAMP signaling and lipolysis, lipogenesis as assessed by fatty acid synthase protein expression and phosphorylated acetyl-CoA carboxylase was not decreased. Our data suggest that the VGF precursor or selected VGF-derived peptides dampen sympathetic outflow pathway activity to WAT to regulate fat storage and lipolysis.

  18. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  19. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  20. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  1. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    Science.gov (United States)

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  2. Impact of glucocorticoid hormones on adipokine secretion and human adipose tissue metabolism.

    Science.gov (United States)

    Fain, John N

    2013-08-01

    The glucocorticoid hormones alter the metabolism of the adipose tissue after an approximately 2-h lag period. The effects are mediated through the nuclear receptors that alter the expression of a wide variety of genes through the mechanisms that are similar to those seen in the other cells. There are many direct metabolic effects of the glucocorticoids on the adipose tissue metabolism, and every year, new effects are added to the list of proteins whose expression is influenced by the glucocorticoids. Furthermore, some enzymatic processes are affected by these hormones only in the presence of the other hormones such as growth hormone (GH) or insulin. Most of the effects of the glucocorticoids are on the gene transcription, and the effects on the mRNA are reflected in the altered levels of the target proteins. The glucocorticoids enhance the leptin release, while reducing that of the inflammatory adipokines and stimulating that of the lipoprotein lipase (LPL) in the presence of insulin. The activity of 11β-hydroxysteroid dehydrogenase type 1 (HSD1) is enhanced by the glucocorticoids along with that of α1 glycoprotein 1 and serum amyloid A release by the adipose tissue. In contrast, the tumor necrosis factor α (TNF)-stimulated lipolysis in the adipose tissue is blocked by the glucocorticoids. It is still unclear which, if any, of these effects account for the insulin resistance due to the glucocorticoids in the adipose tissue. However, recent work suggests that, at least in mice, the reduction in the osteocalcin release by the osteoblasts in the presence of the glucocorticoids accounts for much of the in vivo insulin resistance. In summary, there are multiple direct effects of the glucocorticoids, both anti-inflammatory and proinflammatory, on the adipose tissue.

  3. Adipose tissue is the first colonization site of Leptospira interrogans in subcutaneously infected hamsters

    Science.gov (United States)

    Ozuru, Ryo; Saito, Mitsumasa; Kanemaru, Takaaki; Miyahara, Satoshi; Villanueva, Sharon Y. A. M.; Murray, Gerald L.; Adler, Ben; Fujii, Jun; Yoshida, Shin-ichi

    2017-01-01

    Leptospirosis is one of the most widespread zoonoses in the world, and its most severe form in humans, “Weil’s disease,” may lead to jaundice, hemorrhage, renal failure, pulmonary hemorrhage syndrome, and sometimes,fatal multiple organ failure. Although the mechanisms underlying jaundice in leptospirosis have been gradually unraveled, the pathophysiology and distribution of leptospires during the early stage of infection are not well understood. Therefore, we investigated the hamster leptospirosis model, which is the accepted animal model of human Weil’s disease, by using an in vivo imaging system to observe the whole bodies of animals infected with Leptospira interrogans and to identify the colonization and growth sites of the leptospires during the early phase of infection. Hamsters, infected subcutaneously with 104 bioluminescent leptospires, were analyzed by in vivo imaging, organ culture, and microscopy. The results showed that the luminescence from the leptospires spread through each hamster’s body sequentially. The luminescence was first detected at the injection site only, and finally spread to the central abdomen, in the liver area. Additionally, the luminescence observed in the adipose tissue was the earliest detectable compared with the other organs, indicating that the leptospires colonized the adipose tissue at the early stage of leptospirosis. Adipose tissue cultures of the leptospires became positive earlier than the blood cultures. Microscopic analysis revealed that the leptospires colonized the inner walls of the blood vessels in the adipose tissue. In conclusion, this is the first study to report that adipose tissue is an important colonization site for leptospires, as demonstrated by microscopy and culture analyses of adipose tissue in the hamster model of Weil’s disease. PMID:28245231

  4. Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume?

    Science.gov (United States)

    Noumura, Yusuke; Kamishima, Tamotsu; Sutherland, Kenneth; Nishimura, Hideho

    2017-08-01

    Measurement of visceral adipose tissue (VAT) needs to be accurate and sensitive to change for risk monitoring. The purpose of this study is to determine the CT slice location where VAT area can best reflect changes in VAT volume and body weight. 60 plain abdominal CT images from 30 males [mean age (range) 51 (41-68) years, mean body weight (range) 71.1 (101.9-50.9) kg] who underwent workplace screenings twice within a 1-year interval were evaluated. Automatically calculated and manually corrected areas of the VAT of various scan levels using "freeform curve" region of interest on CT were recorded and compared with body weight changes. The strongest correlations of VAT area with VAT volume and body weight changes were shown in a slice 3 cm above the lower margin of L3 with r values of 0.853 and 0.902, respectively. VAT area measurement at a single level 3 cm above the lower margin of the L3 vertebra is feasible and can reflect changes in VAT volume and body weight. Advances in knowledge: As VAT area at a CT slice 3cm above the lower margin of L3 can best reflect interval changes in VAT volume and body weight, VAT area measurement should be selected at this location.

  5. Insulin receptor signaling in POMC, but Not AgRP, neurons controls adipose tissue insulin action

    National Research Council Canada - National Science Library

    Oberlin, Douglas; Chi, Tiffany; Buettner, Christoph; Shin, Andrew C; Degann, Seta; Filatova, Nika; Lindtner, Claudia

    2017-01-01

    Insulin is a key regulator of adipose tissue lipolysis, and impaired adipose tissue insulin action results in unrestrained lipolysis and lipotoxicity, which are hallmarks of the metabolic syndrome and diabetes...

  6. Subcutaneous abdominal adipose tissue lipolysis during exercise determined by arteriovenous measurements in older women

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    To characterize the lipolytic response in the subcutaneous abdominal adipose tissue in older women to endurance exercise.......To characterize the lipolytic response in the subcutaneous abdominal adipose tissue in older women to endurance exercise....

  7. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    Science.gov (United States)

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  8. Metabolic and Vascular Consequences of Adipose Tissue Dysfunction

    NARCIS (Netherlands)

    Westerink, J.|info:eu-repo/dai/nl/343038617

    2012-01-01

    Adipose Tissue Dysfunction (ATD) has been proposed as the pathophysiological route by which obesity confers its associated increased risk for cardiovascular disease and is characterized by an increased secretion of pro-inflammatory cytokines and adipokines and reduced secretion of anti-inflammatory

  9. Adipose Tissue Dysfunction : Clinical Relevance and Diagnostic Possibilities

    NARCIS (Netherlands)

    Schrover, I. M.; Spiering, W.; Leiner, T.; Visseren, F. L J

    2016-01-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity

  10. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    DEFF Research Database (Denmark)

    Sun, Kai; Park, Jiyoung; Gupta, Olga T

    2014-01-01

    We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonst...

  11. Adipose Tissue Dysfunction : Clinical Relevance and Diagnostic Possibilities

    NARCIS (Netherlands)

    Schrover, I. M.; Spiering, W.; Leiner, T.; Visseren, F. L J

    2016-01-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity

  12. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    Science.gov (United States)

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  13. Spice Up Your Life: Adipose Tissue and Inflammation

    Directory of Open Access Journals (Sweden)

    Anil K. Agarwal

    2014-01-01

    Full Text Available Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health.

  14. Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers

    Science.gov (United States)

    The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...

  15. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  16. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis

    NARCIS (Netherlands)

    Khedoe, P.P.S.J.; Hoeke, Geerte; Kooijman, Sander; Dijk, Wieneke; Buijs, Jeroen T.; Kersten, Sander; Havekes, Louis M.; Hiemstra, Pieter S.; Berbée, Jimmy F.P.; Boon, Mariëtte R.; Rensen, Patrick C.N.

    2015-01-01

    Brown adipose tissue (BAT) produces heat by burning TGs that are stored within intracellular lipid droplets and need to be replenished by the uptake of TG-derived FA from plasma. It is currently unclear whether BAT takes up FA via uptake of TG-rich lipoproteins (TRLs), after lipolysis-mediated li

  17. Adipose tissue-specific dysregulation of angiotensinogen by oxidative stress in obesity

    OpenAIRE

    2010-01-01

    Adipose tissue expresses all components of the renin-angiotensin system including angiotensinogen (AGT). Recent studies have highlighted a potential role of AGT in adipose tissue function and homeostasis. However, some controversies surround the regulatory mechanisms of AGT in obese adipose tissue. In this context, we here demonstrated that the AGT messenger RNA (mRNA) level in human subcutaneous adipose tissue was significantly reduced in obese subjects as compared with nonobese subjects. Ad...

  18. Thematic review series: Adipocyte Biology. Adipose tissue function and plasticity orchestrate nutritional adaptation

    OpenAIRE

    Sethi, Jaswinder K.; Vidal-Puig, Antonio J

    2007-01-01

    This review focuses on adipose tissue biology and introduces the concept of adipose tissue plasticity and expandability as key determinants of obesity-associated metabolic dysregulation. This concept is fundamental to our understanding of adipose tissue as a dynamic organ at the center of nutritional adaptation. Here, we summarize the current knowledge of the mechanisms by which adipose tissue can affect peripheral energy homeostasis, particularly in the context of overnutrition. Two mechanis...

  19. A Story in Brown and White Regulation of Metabolic Homeostasis by Brown Adipose tissue

    OpenAIRE

    Mössenböck, Karin

    2016-01-01

    Adipose tissue exists in three shades: White adipose tissue (WAT), the site of energy storage, brown adipose tissue (BAT), which burns nutrients to generate heat and maintain body temperature, and brown in white adipose tissue (brite AT), which represents WAT adapting BAT features in cold exposure. Thermogenically active BAT has been discovered in adult humans and inversely correlates with obesity and insulin resistance. The link between impaired insulin sensitivity and the browning of adipos...

  20. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  1. Regulation of visceral adipose tissue-derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue.

    Science.gov (United States)

    González, C R; Caminos, J E; Vázquez, M J; Garcés, M F; Cepeda, L A; Angel, A; González, A C; García-Rendueles, M E; Sangiao-Alvarellos, S; López, M; Bravo, S B; Nogueiras, R; Diéguez, C

    2009-07-15

    Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a recently discovered adipocytokine mainly secreted from visceral adipose tissue, which plays a main role in insulin sensitivity. In this study, we have investigated the regulation of vaspin gene expression in rat white adipose tissue (WAT) in different physiological (nutritional status, pregnancy, age and gender) and pathophysiological (gonadectomy, thyroid status and growth hormone deficiency) settings known to be associated with energy homeostasis and alterations in insulin sensitivity. We have determined vaspin gene expression by real-time PCR. Vaspin was decreased after fasting and its levels were partially recovered after leptin treatment. Chronic treatment with metformin increased vaspin gene expression. Vaspin mRNA expression reached the highest peak at 45 days in both sexes after birth and its expression was higher in females than males, but its levels did not change throughout pregnancy. Finally, decreased levels of growth hormone and thyroid hormones suppressed vaspin expression. These findings suggest that WAT vaspin mRNA expression is regulated by nutritional status, and leptin seems to be the nutrient signal responsible for those changes. Vaspin is influenced by age and gender, and its expression is increased after treatment with insulin sensitizers. Finally, alterations in pituitary functions modify vaspin levels. Understanding the molecular mechanisms regulating vaspin will provide new insights into the pathogenesis of the metabolic syndrome.

  2. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    Science.gov (United States)

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  3. Allergen exposure induces adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Jung, Chien-Cheng; Tsai, Yau-Sheng; Chang, Chih-Ching; Cheng, Tsun-Jen; Chang, Ching-Wen; Liu, Ping-Yen; Chiu, Yi-Jen; Su, Huey-Jen

    2014-11-01

    This study investigates whether exposure to allergen elicits insulin resistance as a result of adipose tissue inflammation. Male C57BL/6 mice were challenged with ovalbumin (OVA) allergen for 12 weeks, and blood and adipose tissue samples were collected at 24h after the last challenge. Levels of adhesion molecules, fasting insulin, fasting glucose, and adipokines in the blood were analyzed, and fasting homeostasis model assessment was applied to determine insulin resistance (HOMA-IR). The expression of pro- and anti-inflammatory genes in dissected adipose tissues was analyzed by real-time RT-PCR. Our results showed that OVA exposure increased insulin resistance as well as resistin and E-selectin, but reduced adiponectin in the serum. Resistin level was significantly correlated with HOMA-IR. Moreover, in adipose tissues of OVA-challenged mice, the pro-inflammatory M1 genes were more abundant while the anti-inflammatory M2 genes were less than those of PBS-treated mice. The expressional changes of both M1 and M2 genes were significantly associated with serum levels of adiponectin, resistin, and E-selectin. Hematoxylin and eosin (HE) and immunohistochemistry (IHC) stain also showed that there was more obvious inflammation in OVA-challenged mice. In conclusion, the current study suggests the relationship between allergen-elicited adipose tissue inflammation and circulating inflammatory molecules, which are possible mediators for the development of insulin resistance. Therefore, we propose that allergen exposure might be one risk factor for insulin resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    Science.gov (United States)

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  5. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    Science.gov (United States)

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  6. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White http://dbarchi...ve.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  7. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    NARCIS (Netherlands)

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG

  8. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue, White...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  17. Adipose tissue and metabolic syndrome: too much, too little or neither.

    Science.gov (United States)

    Grundy, Scott M

    2015-11-01

    Obesity is strongly associated with metabolic syndrome. Recent research suggests that excess adipose tissue plays an important role in development of the syndrome. On the other hand, persons with a deficiency of adipose tissue (e.g. lipodystrophy) also manifest the metabolic syndrome. In some animal models, expansion of adipose tissue pools mitigates adverse metabolic components (e.g. insulin resistance, hyperglycaemia and dyslipidemia). Hence, there are conflicting data as to whether adipose tissue worsens the metabolic syndrome or protects against it. This conflict may relate partly to locations of adipose tissue pools. For instance, lower body adipose tissue may be protective whereas upper body adipose tissue may promote the syndrome. One view holds that in either case, the accumulation of ectopic fat in muscle and liver is the driving factor underlying the syndrome. If so, there may be some link between adipose tissue fat and ectopic fat. But the mechanisms underlying this connection are not clear. A stronger association appears to exist between excessive caloric intake and ectopic fat accumulation. Adipose tissue may act as a buffer to reduce the impact of excess energy consumption by fat storage; but once a constant weight has been achieved, it is unclear whether adipose tissue influences levels of ectopic fat. Another mechanism whereby adipose tissue could worsen the metabolic syndrome is through release of adipokines. This is an intriguing mechanism, but the impact of adipokines on metabolic syndrome risk factors is uncertain. Thus, many potential connections between adipose tissue and metabolic syndrome remain to unravelled.

  18. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  20. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  4. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  5. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  6. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  9. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  10. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  11. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  12. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  20. Ghrelin receptor regulates adipose tissue inflammation in aging

    Science.gov (United States)

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  1. Circadian regulation of lipid mobilization in white adipose tissues.

    Science.gov (United States)

    Shostak, Anton; Meyer-Kovac, Judit; Oster, Henrik

    2013-07-01

    In mammals, a network of circadian clocks regulates 24-h rhythms of behavior and physiology. Circadian disruption promotes obesity and the development of obesity-associated disorders, but it remains unclear to which extent peripheral tissue clocks contribute to this effect. To reveal the impact of the circadian timing system on lipid metabolism, blood and adipose tissue samples from wild-type, ClockΔ19, and Bmal1(-/-) circadian mutant mice were subjected to biochemical assays and gene expression profiling. We show diurnal variations in lipolysis rates and release of free fatty acids (FFAs) and glycerol into the blood correlating with rhythmic regulation of two genes encoding the lipolysis pacemaker enzymes, adipose triglyceride (TG) lipase and hormone-sensitive lipase, by self-sustained adipocyte clocks. Circadian clock mutant mice show low and nonrhythmic FFA and glycerol blood content together with decreased lipolysis rates and increased sensitivity to fasting. Instead circadian clock disruption promotes the accumulation of TGs in white adipose tissue (WAT), leading to increased adiposity and adipocyte hypertrophy. In summary, circadian modulation of lipolysis rates regulates the availability of lipid-derived energy during the day, suggesting a role for WAT clocks in the regulation of energy homeostasis.

  2. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness.

    Science.gov (United States)

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-03-01

    Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to perform.

  3. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity

    Directory of Open Access Journals (Sweden)

    Moira S Lewitt

    2017-04-01

    Full Text Available There is substantial evidence that the growth hormone (GH/insulin-like growth factor (IGF system is involved in the pathophysiology of obesity. Both GH and IGF-I have direct effects on adipocyte proliferation and differentiation, and this system is involved in the cross-talk between adipose tissue, liver, and pituitary. Transgenic animal models have been of importance in identifying mechanisms underlying these interactions. It emerges that this system has key roles in visceral adiposity, and there is a rationale for targeting this system in the treatment of visceral obesity associated with GH deficiency, metabolic syndrome, and lipodystrophies. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.

  4. The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice.

    Science.gov (United States)

    Casteras, Sylvie; Abdul-Wahed, Aya; Soty, Maud; Vulin, Fanny; Guillou, Hervé; Campana, Mélanie; Le Stunff, Hervé; Pirola, Luciano; Rajas, Fabienne; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-12-01

    Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals. Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc (-/-) mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content. Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver. Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.

  5. Bone marrow–derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice

    Science.gov (United States)

    Koh, Young Jun; Kang, Shinae; Lee, Hyuek Jong; Choi, Tae-Saeng; Lee, Ho Sub; Cho, Chung-Hyun; Koh, Gou Young

    2007-01-01

    Little is known about whether bone marrow–derived circulating progenitor cells (BMDCPCs) can transdifferentiate into adipocytes in adipose tissues or play a role in expanding adipocyte number during adipose tissue growth. Using a mouse bone marrow transplantation model, we addressed whether BMDCPCs can transdifferentiate into adipocytes under standard conditions as well as in the settings of diet-induced obesity, rosiglitazone treatment, and exposure to G-CSF. We also addressed the possibility of transdifferentiation to adipocytes in a murine parabiosis model. In each of these settings, our findings indicated that BMDCPCs did not transdifferentiate into either unilocular or multilocular adipocytes in adipose tissues. Most BMDCPCs became resident and phagocytic macrophages in adipose tissues — which resembled transdifferentiated multilocular adipocytes by appearance, but displayed cell surface markers characteristic for macrophages — in the absence of adipocyte marker expression. When exposed to adipogenic medium in vitro, bone marrow cells differentiated into multilocular, but not unilocular, adipocytes, but transdifferentiation was not observed in vivo, even in the contexts of adipose tissue regrowth or dermal wound healing. Our results suggest that BMDCPCs do not transdifferentiate into adipocytes in vivo and play little, if any, role in expanding the number of adipocytes during the growth of adipose tissues. PMID:18060029

  6. Heterogeneous response of adipose tissue to cancer cachexia

    Directory of Open Access Journals (Sweden)

    P.S. Bertevello

    2001-09-01

    Full Text Available Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES, retroperitoneal (RPAT, and epididymal (EAT adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections and EAT (nuclear bodies.

  7. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  8. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury.

    Science.gov (United States)

    Tian, Zhe; Miyata, Keishi; Tazume, Hirokazu; Sakaguchi, Hisashi; Kadomatsu, Tsuyoshi; Horio, Eiji; Takahashi, Otowa; Komohara, Yoshihiro; Araki, Kimi; Hirata, Yoichiro; Tabata, Minoru; Takanashi, Shuichiro; Takeya, Motohiro; Hao, Hiroyuki; Shimabukuro, Michio; Sata, Masataka; Kawasuji, Michio; Oike, Yuichi

    2013-04-01

    Much attention is currently focused on the role of perivascular adipose tissue in development of cardiovascular disease (CVD). Some researchers view it as promoting CVD through secretion of cytokines and growth factors called adipokines, while recent reports reveal that perivascular adipose tissue can exert a protective effect on CVD development. Furthermore, adiponectin, an anti-inflammatory adipokine, reportedly suppresses neointimal hyperplasia after endovascular injury, whereas such vascular remodeling is enhanced by pro-inflammatory adipokines secreted by perivascular adipose, such as tumor necrosis factor-α (TNF-α). These findings suggest that extent of vascular remodeling, a pathological process associated with CVD development, depends on the balance between pro- and anti-inflammatory adipokines secreted from perivascular adipose tissue. We previously demonstrated that angiopoietin-like protein 2 (Angptl2), a pro-inflammatory factor secreted by adipose tissue, promotes adipose tissue inflammation and subsequent systemic insulin resistance in obesity. Here, we examined whether Angptl2 secreted by perivascular adipose tissue contributes to vascular remodeling after endovascular injury in studies of transgenic mice expressing Angptl2 in adipose tissue (aP2-Angptl2 transgenic mice) and Angptl2 knockout mice (Angptl2(-/-) mice). To assess the role of Angptl2 secreted by perivascular adipose tissue on vascular remodeling after endovascular injury, we performed adipose tissue transplantation experiments using these mice. Wild-type mice with perivascular adipose tissue derived from aP2-Angptl2 mice exhibited accelerated neointimal hyperplasia after endovascular injury compared to wild-type mice transplanted with wild-type tissue. Conversely, vascular inflammation and neointimal hyperplasia after endovascular injury were significantly attenuated in wild-type mice transplanted with Angptl2(-/-) mouse-derived perivascular adipose tissue compared to wild-type mice

  9. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  10. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    Science.gov (United States)

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  11. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423

    Directory of Open Access Journals (Sweden)

    Mengle Shao

    2017-01-01

    Conclusions: Our results reveal that Zfp423 is essential for the terminal differentiation of subcutaneous white adipocytes during fetal adipose tissue development. Moreover, our data highlight the striking adverse effects of pathological subcutaneous adipose tissue remodeling on visceral adipose function and systemic nutrient homeostasis in obesity. Importantly, these data reveal the distinct phenotypes that can occur when adiponectin driven transgenes are activated in fetal vs. adult adipose tissue.

  12. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    Science.gov (United States)

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  13. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development.

    Science.gov (United States)

    Wang, Qi; Qi, Renli; Wang, Jing; Huang, Wenming; Wu, Yongjiang; Huang, Xiaofeng; Yang, Feiyun; Huang, Jinxiu

    2017-06-30

    MicroRNAs (miRNAs) are a class of non-coding RNAs that play a crucial regulatory role in many biological processes. Previous studies have reported miRNAs that are associated with the growth, differentiation, and proliferation of myocytes and adipocytes in pigs. However, differences in the miRNA expression profiles between muscle and adipose tissues during porcine development are unknown. Muscle and adipose tissues are the two major organs that are crucial for dynamic energy balance in the development and metabolism. Identification of differential expression profile of miRNAs will be useful for understanding the regulatory role of miRNAs in growth, development and evolution of these two tissues, and the research results will provide theoretical basis to improve meat quality. Therefore, we applied Hiseq sequencing to profile miRNAs in muscle and adipose tissues during four development stage at 1, 30, 90 and 240-day-old to explore their regulatory patterns at critical growth stages of pigs. We slaughtered 6 pigs at each developmental stages (24 pigs in total), respectively, RNA of three individual pigs were pooled and duplicate samples at each time point were given to sequence. We obtained a total of 96 million clean reads, and identified 329 known miRNAs and 157 novel miRNAs from all the libraries. We detected 37 miRNAs that were differentially expressed between porcine muscle and adipose tissues; 17 miRNAs which differentially expressed at 30, 90 and 240-day-old were considered as core differentially expressed miRNAs, among them, three miRNAs (ssc-miR-128, -133a-5p, -489) were differentially expressed at all four stages. KEGG analysis revealed the target genes of 17 core differentially expressed miRNAs were involved in 27 significantly enriched pathways (Pmuscle and adipose tissues, respectively, of 30, 90, and 240-day-old pigs compared with the tissues of 1-day-old pigs. We selected five miRNAs from 17 core differentially expressed miRNAs to validate the mi

  14. [Role of chronic inflammation in adipose tissue in the pathophysiology of obesity].

    Science.gov (United States)

    Suganami, Takayoshi; Ogawa, Yoshihiro

    2013-02-01

    Obesity may be viewed as a chronic low-grade inflammatory disease as well as a metabolic disease. Evidence has accumulated suggesting that chronic inflammation in adipose tissue leads to dramatic changes in number and cell type of stromal cells during the course of obesity, which is referred to as"adipose tissue remodeling". Among stromal cells, macrophages in obese adipose tissue are considered to be crucial for adipose tissue inflammation, which results in dysregulated adipocytokine production and ectopic fat accumulation. Understanding the molecular mechanism underlying adipose tissue inflammation would contribute to the identification of novel therapeutic strategies to prevent or treat obesity-induced metabolic derangements.

  15. Adipose tissue deletion of Gpr116 impairs insulin sensitivity through modulation of adipose function.

    Science.gov (United States)

    Nie, Tao; Hui, Xiaoyan; Gao, Xuefei; Li, Kuai; Lin, Wanhua; Xiang, Xiaoliang; Ding, Mengxiao; Kuang, Ying; Xu, Aimin; Fei, Jian; Wang, Zhugang; Wu, Donghai

    2012-10-19

    G protein-coupled receptor 116 (GPR116) is a novel member of the G protein-coupled receptors and its function is largely unknown. To investigate the physiological function of GPR116 in vivo, we generated adipose tissue specific conditional Gpr116 knockout mice (CKO) and fed them on standard chow or high fat diets. Selective deletion of Gpr116 in adipose tissue caused a pronounced glucose intolerance and insulin resistance in mice, especially when challenged with a high fat diet. Biochemical analysis revealed a more severe hepatosteatosis in CKO mice. Additionally, we found that CKO mice showed a lowered concentration of circulating adiponectin and an increased level of serum resistin. Our study suggests that GPR116 may play a critical role in controlling adipocyte biology and systemic energy homeostasis. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Succination of Thiol Groups in Adipose Tissue Proteins in Diabetes

    Science.gov (United States)

    Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J.; Nagai, Ryoji; Carson, James A.; Thorpe, Suzanne R.; Baynes, John W.

    2009-01-01

    S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219–34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for ∼7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes. PMID:19592500

  17. [The adipose tissue as a regulatory center of the metabolism].

    Science.gov (United States)

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  18. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep.

    Science.gov (United States)

    Satterfield, M Carey; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2013-09-01

    Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

  19. Bovine dedifferentiated adipose tissue (DFAT) cells

    Science.gov (United States)

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  20. Cytokine-Rich Adipose Tissue Extract Production from Water-Assisted Lipoaspirate: Methodology for Clinical Use

    Science.gov (United States)

    Lopez, Jenny; Huttala, Outi; Sarkanen, Jertta-Riina; Kaartinen, Ilkka; Kuokkanen, Hannu; Ylikomi, Timo

    2016-01-01

    Abstract Proper functioning wound healing strategies are sparse. Adequate vascular formation to the injured area, as well as replacement of the volume loss, is fundamental in soft tissue repair. Tissue engineering strategies have been proposed for the treatment of these injury sites. Novel cell-free substance, human adipose tissue extract (ATE), has been previously shown to induce in vitro angiogenesis and adipogenesis and in vivo soft tissue formation. This study reports the translation of ATE preparation from laboratory to the operating room (OR). ATE samples for this study were derived from adipose tissue obtained with the water-jet assisted liposuction technique from 27 healthy patients. The variables studied included incubation time (15, 30, and 45 min), temperature (room temperature vs. 37°C), and filter type to determine the optimal method yielding the most consistent total protein content, as well as consistent and high expression of adipose-derived growth factors and cytokines, including: vascular endothelial growth factor, basic fibroblast growth factor, interleukin-6, adiponectin, leptin, and insulin-like growth factor. Following the optimization, samples were produced in the OR and tested for their sterility. No significant differences were observed when comparing extract incubation time points or incubation temperature. Nonetheless, when studying the different filter types used, a syringe filter with PES membrane with larger filter area showed significantly higher protein concentration (p ≤ 0.018). When studying the different growth factor concentrations, ELISA results showed less variation in cytokine concentrations in the OR samples with the optimized protocol. All of the OR samples were tested sterile. The devised protocol is an easy and reproducible OR-ready method for ATE generation. As an attractive source of growth factors, ATE is a promising alternative in the vast field of tissue engineering. Its clinical applications include volume

  1. Steroid hormones and the stroma-vascular cells of the adipose tissue.

    Science.gov (United States)

    Volat, Fanny; Bouloumié, Anne

    2013-09-01

    The stroma-vascular fraction (SVF) of adipose tissue (AT) is a heterogeneous cell fraction composed of progenitor cells, endothelial cells, and immune cells. SVF plays a key role in AT homeostasis and growth as well as in obesity-associated pathologies. The SVF cell composition and phenotype are distinct according to AT location and adiposity. Such discrepancies influence AT function and are involved in obesity-associated disorders such as chronic inflammation. Investigations performed in recent years in rodents and humans provided evidence that the stroma-vascular cells contribute to the conversion of steroid hormones in AT and are also steroid targets. This review describes the link between steroids and SVF depending on gender, adiposity, and AT location and highlights the potential role of sex and corticosteroid hormones in adipogenesis, angiogenesis, and their contributions in AT inflammation.

  2. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue.

    Science.gov (United States)

    Volden, Paul A; Wonder, Erin L; Skor, Maxwell N; Carmean, Christopher M; Patel, Feenalie N; Ye, Honggang; Kocherginsky, Masha; McClintock, Martha K; Brady, Matthew J; Conzen, Suzanne D

    2013-07-01

    Chronic social isolation is linked to increased mammary tumor growth in rodent models of breast cancer. In the C3(1)/SV40 T-antigen FVB/N (TAg) mouse model of "triple-negative" breast cancer, the heightened stress response elicited by social isolation has been associated with increased expression of metabolic genes in the mammary gland before invasive tumors develop (i.e., during the in situ carcinoma stage). To further understand the mechanisms underlying how accelerated mammary tumor growth is associated with social isolation, we separated the mammary gland adipose tissue from adjacent ductal epithelial cells and analyzed individual cell types for changes in metabolic gene expression. Specifically, increased expression of the key metabolic genes Acaca, Hk2, and Acly was found in the adipocyte, rather than the epithelial fraction. Surprisingly, metabolic gene expression was not significantly increased in visceral adipose depots of socially isolated female mice. As expected, increased metabolic gene expression in the mammary adipocytes of socially isolated mice coincided with increased glucose metabolism, lipid synthesis, and leptin secretion from this adipose depot. Furthermore, application of media that had been cultured with isolated mouse mammary adipose tissue (conditioned media) resulted in increased proliferation of mammary cancer cells relative to group-housed-conditioned media. These results suggest that exposure to a chronic stressor (social isolation) results in specific metabolic reprogramming in mammary gland adipocytes that in turn contributes to increased proliferation of adjacent preinvasive malignant epithelial cells. Metabolites and/or tumor growth-promoting proteins secreted from adipose tissue could identify biomarkers and/or targets for preventive intervention in breast cancer.

  3. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...... and serum replacers were evaluated regarding their ability to support cell growth and preserve differentiation potential. Most of serum replacers proved inferior to fetal calf serum. Among the media tested, modified Eagle's media alpha was superior in promoting cell growth while preserving the ability...

  4. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    Science.gov (United States)

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. © 2016 Society for Endocrinology.

  5. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    Science.gov (United States)

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  6. A role of active brown adipose tissue in cancer cachexia?

    Directory of Open Access Journals (Sweden)

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  7. Browning effects of (-)-epicatechin on adipocytes and white adipose tissue.

    Science.gov (United States)

    Varela, Claudia Elena; Rodriguez, Alonso; Romero-Valdovinos, Mirza; Mendoza-Lorenzo, Patricia; Mansour, Christina; Ceballos, Guillermo; Villarreal, Francisco; Ramirez-Sanchez, Israel

    2017-09-15

    In this study, we demonstrate that (-)-epicatechin (Epi), a cacao flavanol, induces the browning of fat by promoting mitochondrial biogenesis, enhancing indicators of mitochondrial structure and function, increasing fatty acid metabolism and upregulating the expression of brown adipose tissue-specific proteins in a high-fat diet mouse model of obesity and in cultured human adipocytes. Epi treatment significantly improved mitochondrial function, as measured by citrate synthase activity, and also reduced protein acetylation of total and specific regulators in both adipose tissue and human adipocytes. Browning of fat via Epi was evidenced by the increased expression of key thermogenic genes, phosphorylation of upstream regulators of fatty acid oxidation, and reduced triglyceride levels. Properly designed clinical trials are needed to explore the potential of Epi as an agent that promotes the browning of fat. Copyright © 2017. Published by Elsevier B.V.

  8. Endogenous adipose tissue as a hemostatic: use in microsurgery.

    Science.gov (United States)

    Akelina, Yelena; Danilo, Peter

    2008-01-01

    Bleeding is a frequent complication of microsurgical repair of small blood vessels and time is spent while hemostasis is accomplished. We studied the hemostatic effect of endogenous adipose tissue on bleeding from rat femoral arterial anastomoses. We measured bleeding time (time from removal of clamps to cessation of active bleeding) and mean arterial blood velocity (using a micro-Doppler system), the latter immediately after anastomosis, and again 7 days post-anastomosis. Bleeding time for vessels with fat applied to the artery was 50% less than when no fat was applied. Blood velocity by day 7 post-anastomosis returned to values equivalent to those for intact arteries. Histological evaluation of the anastomotic site demonstrated no significant differences in inflammatory response between fat-treated and untreated arteries. These data suggest that endogenous adipose tissue may be a useful hemostatic agent devoid of significant effects on small artery blood velocity or histology. (c) 2008 Wiley-Liss, Inc.

  9. Id transcriptional regulators in adipogenesis and adipose tissue metabolism.

    Science.gov (United States)

    Patil, Mallikarjun; Sharma, Bal Krishan; Satyanarayana, Ande

    2014-06-01

    Id proteins (Id1-Id4) are helix-loop-helix (HLH) transcriptional regulators that lack a basic DNA binding domain. They act as negative regulators of basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibit their DNA binding and transcriptional activity. Id proteins are implicated in the regulation of various cellular mechanisms such as cell proliferation, cellular differentiation, cell fate determination, angiogenesis and tumorigenesis. A handful of recent studies also disclosed that Id proteins have critical functions in adipocyte differentiation and adipose tissue metabolism. Here, we reviewed the progress made thus far in understanding the specific functions of Id proteins in adipose tissue differentiation and metabolism. In addition to reviewing the known mechanisms of action, we also discuss possible additional mechanisms in which Id proteins might participate in regulating adipogenic and metabolic pathways.

  10. Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Delphine Duteil

    2016-10-01

    Full Text Available Previous work indicated that lysine-specific demethylase 1 (Lsd1 can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.

  11. Mechanisms of perivascular adipose tissue dysfunction in obesity.

    Science.gov (United States)

    Fernández-Alfonso, Maria S; Gil-Ortega, Marta; García-Prieto, Concha F; Aranguez, Isabel; Ruiz-Gayo, Mariano; Somoza, Beatriz

    2013-01-01

    Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT) was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity.

  12. Mechanisms of Perivascular Adipose Tissue Dysfunction in Obesity

    Directory of Open Access Journals (Sweden)

    Maria S. Fernández-Alfonso

    2013-01-01

    Full Text Available Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity.

  13. Prolactin (PRL) in adipose tissue: regulation and functions.

    Science.gov (United States)

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  14. Heterogeneity of white adipose tissue: molecular basis and clinical implications.

    Science.gov (United States)

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-03-11

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.

  15. The expression and regulation of bone-acting cytokines in human peripheral adipose tissue in organ culture.

    Science.gov (United States)

    Harsløf, T; Husted, L B; Carstens, M; Stenkjaer, L; Sørensen, L; Pedersen, S B; Langdahl, B L

    2011-06-01

    The humoral cross-talk between bone and fat is an area of increasing interest. We investigated the expression and regulation of the bone-acting cytokines; bone morphogenetic protein 2 (BMP2), connective tissue growth factor (CTGF), osteoprotegerin (OPG), and transforming growth factor beta (TGFB1). Subcutaneous adipose tissue was aspirated from lean, healthy women. Tissue samples were incubated with interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), cortisol, troglitazone, IL1-β + troglitazone, or vehicle. Gene expression in the adipose tissue was analyzed using qPCR and protein levels in the incubation media were analyzed using ELISA. OPG expression and secretion was diminished by 40.8% and 43.1% respectively, by cortisol, and OPG expression was diminished by 67.5% by troglitazone (peffects on bone. We suggest that this could be mediated via altered cytokine production in adipose tissue. Moreover, obese individuals have a low-grade inflammation in their adipose tissue and have higher bone mineral density than lean individuals. We suggest that this inflammation may increase the expression and secretion of OPG and CTGF and thereby increase BMD. In conclusion, bone acting cytokines are produced in the adipose tissue and may affect bone through endocrine mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo

    OpenAIRE

    Scotney, Hannah; Symonds, Michael E; Law, James; Budge, Helen; Sharkey, Don; Manolopoulos, Konstantinos N.

    2017-01-01

    Introduction: Brown adipose tissue (BAT) is a thermogenic organ with substantial metabolic capacity and has important roles in the maintenance of body weight and metabolism. Regulation of BAT is primarily mediated through the ß-adrenoceptor (ß-AR) pathway. The in vivo endocrine regulation of this pathway in humans is unkown. The objective of our study was to assess the in vivo BAT temperature responses to acute glucocorticoid administration.\\ud Methods: We studied 8 healthy male volunteers, n...

  17. Brain–gut–adipose-tissue communication pathways at a glance

    Directory of Open Access Journals (Sweden)

    Chun-Xia Yi

    2012-09-01

    Full Text Available One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.

  18. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  19. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[(14)C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.

  20. Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects.

    Science.gov (United States)

    Martin, Sally

    2013-09-01

    Adipocytes are specialized cells that function to store energy in the form of lipids, predominantly triglycerides (TGs), and as a regulatory system contributing to metabolic homoeostasis through the production and secretion of hormones and cytokines. The regulation of lipid homeostasis by adipose tissue is an important aspect of whole-body metabolism. Owing to the central nature of adipose tissue in lipid metabolism, dysregulation has wide-ranging effects, contributing to disorders as diverse as diabetes, cardiovascular disease, cancer, and neurodegeneration. Excess lipids are stored in specialized organelles called lipid droplets (LDs). The surface of the lipid droplet can be considered a highly regulated membrane domain that both protects the contents of the LD from unregulated lipolysis and the cell from the cytotoxic effects of elevated free fatty acids. The surface of the LD is coated with a variety of regulatory proteins, either resident or transiently associated, including enzymes involved in the breakdown of TG, lipid transport proteins, and cofactors. Recent studies have begun to unravel the range of LD-associated proteins and to define their functional significance. Importantly, the involvement of LD proteins in pathophysiological disorders is beginning to be understood. This review will outline recent advances in defining the diversity of LD-associated proteins and their links to metabolic disorders including the integral membrane protein, caveolin-1 (CAV1). Analysis of the role of CAV1 in adipose tissue has highlighted the interconnectedness between the regulation of lipid storage and the function of the adipocyte plasma membrane.

  1. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  2. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  3. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  4. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2010-08-01

    Full Text Available BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT. Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT imaging, immunohistochemistry and gene and protein expression assays to prove conclusively that adult humans have functional BAT. BAT is important for thermogenesis and energy balance in small mammals and its induction in mice promotes energy expenditure, reduces adiposity and protects mice from diet-induced obesity. The thermogenic capacity of BAT is impressive. In humans, it has been estimated that as little as 50g of BAT could utilize up to 20% of basal caloric needs if maximally stimulated. SUMMARY: The obesity pandemic requires new and novel treatments. The past few years have witnessed multiple studies conclusively showing that adult humans have functional BAT, a tissue that has a tremendous capacity for obesity-reducing thermogenesis. Novel therapies targeting BAT thermogenesis may be available in the near future as therapeutic options for obesity and diabetes. Thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity. KEYWORDS: brown adipose tissue, thermogenesis, energy expenditure, antiobesity therapy.

  5. Adipose tissue-liver axis in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Alcoholic liver disease (ALD) remains an important healthproblem worldwide. The disease spectrum is featuredby early steatosis, steatohepatitis (steatosis with inflammatorycells infiltration and necrosis), with someindividuals ultimately progressing to fibrosis/cirrhosis.Although the disease progression is well characterized,no effective therapies are currently available for thetreatment in humans. The mechanisms underlying theinitiation and progression of ALD are multifactorial andcomplex. Emerging evidence supports that adiposetissue dysfunction contributes to the pathogenesis ofALD. In the first part of this review, we discuss themechanisms whereby chronic alcohol exposure contributedto adipose tissue dysfunction, including cell death,inflammation and insulin resistance. It has been longknown that aberrant hepatic methionine metabolismis a major metabolic abnormality induced by chronicalcohol exposure and plays an etiological role in thepathogenesis of ALD. The recent studies in our groupdocumented the similar metabolic effect of chronicalcohol drinking on methionine in adipose tissue. Inthe second part of this review, we also briefly discussthe recent research progress in the field with a focuson how abnormal methionine metabolism in adiposetissue contributes to adipose tissue dysfunction and liverdamage.

  6. Exercise and the Regulation of Adipose Tissue Metabolism.

    Science.gov (United States)

    Tsiloulis, Thomas; Watt, Matthew J

    2015-01-01

    Adipose tissue is a major regulator of metabolism in health and disease. The prominent roles of adipose tissue are to sequester fatty acids in times of energy excess and to release fatty acids via the process of lipolysis during times of high-energy demand, such as exercise. The fatty acids released during lipolysis are utilized by skeletal muscle to produce adenosine triphosphate to prevent fatigue during prolonged exercise. Lipolysis is controlled by a complex interplay between neuro-humoral regulators, intracellular signaling networks, phosphorylation events involving protein kinase A, translocation of proteins within the cell, and protein-protein interactions. Herein, we describe in detail the cellular and molecular regulation of lipolysis and how these processes are altered by acute exercise. We also explore the processes that underpin adipocyte adaptation to endurance exercise training, with particular focus on epigenetic modifications, control by microRNAs and mitochondrial adaptations. Finally, we examine recent literature describing how exercise might influence the conversion of traditional white adipose tissue to high energy-consuming "brown-like" adipocytes and the implications that this has on whole-body energy balance. © 2015 Elsevier Inc. All rights reserved.

  7. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting.

    Science.gov (United States)

    Ji, Bo; Ernest, Ben; Gooding, Jessica R; Das, Suchita; Saxton, Arnold M; Simon, Jean; Dupont, Joelle; Métayer-Coustard, Sonia; Campagna, Shawn R; Voy, Brynn H

    2012-08-31

    Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. We combined transcriptomics and metabolomics to characterize the response of chicken adipose tissue to two energy manipulations, fasting and insulin deprivation in the fed state. Sixteen to 17 day-old commercial broiler chickens (ISA915) were fed ad libitum, fasted for five hours, or fed but deprived of insulin by injections of anti-insulin serum. Pair-wise contrasts of expression data identified a total of 2016 genes that were differentially expressed after correction for multiple testing, with the vast majority of differences due to fasting (1780 genes). Gene Ontology and KEGG pathway analyses indicated that a short term fast impacted expression of genes in a broad selection of pathways related to metabolism, signaling and adipogenesis. The effects of insulin neutralization largely overlapped with the response to fasting, but with more modest effects on adipose tissue metabolism. Tissue metabolomics indicated unique effects of insulin on amino acid metabolism. Collectively, these data provide a foundation for further study into the molecular basis for adipose

  8. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting

    Directory of Open Access Journals (Sweden)

    Ji Bo

    2012-08-01

    Full Text Available Abstract Background Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. Results We combined transcriptomics and metabolomics to characterize the response of chicken adipose tissue to two energy manipulations, fasting and insulin deprivation in the fed state. Sixteen to 17 day-old commercial broiler chickens (ISA915 were fed ad libitum, fasted for five hours, or fed but deprived of insulin by injections of anti-insulin serum. Pair-wise contrasts of expression data identified a total of 2016 genes that were differentially expressed after correction for multiple testing, with the vast majority of differences due to fasting (1780 genes. Gene Ontology and KEGG pathway analyses indicated that a short term fast impacted expression of genes in a broad selection of pathways related to metabolism, signaling and adipogenesis. The effects of insulin neutralization largely overlapped with the response to fasting, but with more modest effects on adipose tissue metabolism. Tissue metabolomics indicated unique effects of insulin on amino acid metabolism. Conclusions Collectively, these data provide a foundation

  9. Expression and Regulation of Soluble Epoxide Hydrolase in Adipose Tissue

    Science.gov (United States)

    De Taeye, Bart M.; Morisseau, Christophe; Coyle, Julie; Covington, Joseph W.; Luria, Ayala; Yang, Jun; Murphy, Sheila B.; Friedman, David B.; Hammock, Bruce B.; Vaughan, Douglas E.

    2010-01-01

    Obesity is an increasingly important public health issue reaching epidemic proportions. Visceral obesity has been defined as an important element of the metabolic syndrome and expansion of the visceral fat mass has been shown to contribute to the development of insulin resistance and cardiovascular disease. To identify novel contributors to cardiovascular and metabolic abnormalities in obesity, we analyzed the adipose proteome and identified soluble epoxide hydrolase (sEH) in the epididymal fat pad from C57BL/6J mice that received either a regular diet or a “western diet.” sEH was synthesized in adipocytes and expression levels increased upon differentiation of 3T3-L1 preadipocytes. Although normalized sEH mRNA and protein levels did not differ in the fat pads from mice receiving a regular or a “western diet,” total adipose sEH activity was higher in the obese mice, even after normalization for body weight. Furthermore, peroxisome proliferator–activated recetor γ(PPARγ) agonists increased the expression of sEH in mature 3T3-L1 adipocytes in vitro and in adipose tissue in vivo. Considering the established role for sEH in inflammation, cardiovascular diseases, and lipid metabolism, and the suggested involvement of sEH in the development of type 2 diabetes, our study has identified adipose sEH as a potential novel therapeutic target that might affect the development of metabolic and cardiovascular abnormalities in obesity. PMID:19644452

  10. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... the basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain...

  11. Deep sequencing of the transcriptome reveals inflammatory features of porcine visceral adipose tissue.

    Science.gov (United States)

    Wang, Tao; Jiang, Anan; Guo, Yanqin; Tan, Ya; Tang, Guoqing; Mai, Miaomiao; Liu, Haifeng; Xiao, Jian; Li, Mingzhou; Li, Xuewei

    2013-01-01

    Functional differences in the different types of adipose tissue and the impact of their dysfunction on metabolism are associated with the regional distribution of adipose depots. Here we show a genome-wide comparison between the transcriptomes of one source of subcutaneous and two sources of visceral adipose tissue in the pig using an RNA-seq approach. We obtained ~32.3 million unique mapped reads which covered ~80.2% of the current annotated transcripts across these three sources of adipose tissue. We identified various genes differentially expressed between subcutaneous and visceral adipose tissue, which are potentially associated with the inflammatory features of visceral adipose tissue. These results are of benefit for understanding the phenotypic, metabolic and functional differences between different types of adipose tissue that are deposited in different body sites.

  12. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism.

    Science.gov (United States)

    Zhang, Wei; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.

  13. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Science.gov (United States)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  14. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue....... Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure...

  15. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    Science.gov (United States)

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.

  16. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression.

    Science.gov (United States)

    Benesch, Matthew G K; Tang, Xiaoyun; Dewald, Jay; Dong, Wei-Feng; Mackey, John R; Hemmings, Denise G; McMullen, Todd P W; Brindley, David N

    2015-09-01

    Compared to normal tissues, many cancer cells overexpress autotaxin (ATX). This secreted enzyme produces extracellular lysophosphatidate, which signals through 6 GPCRs to drive cancer progression. Our previous work showed that ATX inhibition decreases 4T1 breast tumor growth in BALB/c mice by 60% for about 11 d. However, 4T1 cells do not produce significant ATX. Instead, the ATX is produced by adjacent mammary adipose tissue. We investigated the molecular basis of this interaction in human and mouse breast tumors. Inflammatory mediators secreted by breast cancer cells increased ATX production in adipose tissue. The increased lysophosphatidate signaling further increased inflammatory mediator production in adipose tissue and tumors. Blocking ATX activity in mice bearing 4T1 tumors with 10 mg/kg/d ONO-8430506 (a competitive ATX inhibitor, IC90 = 100 nM; Ono Pharma Co., Ltd., Osaka, Japan) broke this vicious inflammatory cycle by decreasing 20 inflammatory mediators by 1.5-8-fold in cancer-inflamed adipose tissue. There was no significant decrease in inflammatory mediator levels in fat pads that did not bear tumors. ONO-8430506 also decreased plasma TNF-α and G-CSF cytokine levels by >70% and leukocyte infiltration in breast tumors and adjacent adipose tissue by >50%. Hence, blocking tumor-driven inflammation by ATX inhibition is effective in decreasing tumor growth in breast cancers where the cancer cells express negligible ATX.

  17. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    Science.gov (United States)

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  18. Berberine activates thermogenesis in white and brown adipose tissue.

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  19. Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity.

    Science.gov (United States)

    Samad, Fahumiya; Badeanlou, Leylla; Shah, Charmi; Yang, Guang

    2011-01-01

    Although obesity is a complex metabolic disorder often associated with insulin resistance, hyperinsulinemia and Type 2 diabetes, as well as with accelerated atherosclerosis, the molecular changes in obesity that promote these disorders are not completely understood. Several mechanisms have been proposed to explain how increased adipose tissue mass affects whole body insulin resistance and cardiovascular risk. One theory is that increased adipose derived inflammatory cytokines induces a chronic inflammatory state that not only increases cardiovascular risk, but also antagonizes insulin signaling and mitochondrial function and thereby impair glucose hemostasis. Another suggests that lipid accumulation in nonadipose tissues not suited for fat storage leads to the buildup of bioactive lipids that inhibit insulin signaling and metabolism. Recent evidence demonstrates that sphingolipid metabolism is dysregulated in obesity and specific sphingolipids may provide a common pathway that link excess nutrients and inflammation to increased metabolic and cardiovascular risk. This chapter will focus primarily on the expression and regulation of adipose and plasma ceramide biosynthesis in obesity and, its potential contribution to the pathogenesis of obesity and the metabolic syndrome.

  20. Adipose tissue and vascular inflammation in coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  1. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  2. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    the basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P muscle. The reproducibility of the measurements was good...

  3. The Linkage between Breast Cancer, Hypoxia, and Adipose Tissue.

    Science.gov (United States)

    Rausch, Linda K; Netzer, Nikolaus C; Hoegel, Josef; Pramsohler, Stephan

    2017-01-01

    The development of breast cancer cells is linked to hypoxia. The hypoxia-induced factor HIF-1α influences metastasis through neovascularization. Hypoxia seems to decrease the responsiveness to hormonal treatment due to loss of estrogen receptors (ERs). Obesity is discussed to increase hypoxia in adipocytes, which promotes a favorable environment for tumor cells in mammary fat tissue, whereas, tumor cells profit from good oxygen supply and are influenced by its deprivation as target regions within tumors show. This review gives an overview of the current state on research of hypoxia and breast cancer in human adipose tissue. A systematic literature search was conducted on PubMed (2000-2016) by applying hypoxia and/or adipocytes and breast cancer as keywords. Review articles were excluded as well as languages other than English or German. There was no restriction regarding the study design or type of breast cancer. A total of 35 papers were found. Eight studies were excluded due to missing at least two of the three keywords. One paper was removed due to Russian language, and one was dismissed due to lack of adherence. Seven papers were identified as reviews. After applying exclusion criteria, 18 articles were eligible for inclusion. Two articles describe the impairment of mammary epithelial cell polarization through hypoxic preconditioning. A high amount of adipocytes enhances cancer progression due to the increased expression of HIF-1α which causes the loss of ER α protein as stated in four articles. Four articles analyzed that increased activation of HIF's induces a series of transcriptions resulting in tumor angiogenesis. HIF inhibition, especially when combined with cytotoxic chemotherapy, holds strong potential for tumor suppression as stated in further four articles. In two articles there is evidence of a strong connection between hypoxia, oxidative stress and a poor prognosis for breast cancer via HIF regulated pathways. Acute hypoxia seems to normalize the

  4. Influence of outdoor rearing and indoor temperature on growth performance, carcass, adipose tissue and muscle traits in pigs, and on the technological and eating quality of dry-cured hams.

    Science.gov (United States)

    Lebret, B; Massabie, P; Granier, R; Juin, H; Mourot, J; Chevillon, P

    2002-12-01

    The effects of restricted outdoor rearing during winter (W) or summer (S), and the influence of indoor ambient temperature [17 °C (I17) vs. 24 °C (I24), the latter being considered as control] on pig growth performance, carcass, muscular and adipose tissue traits, and technological and eating quality of dry-cured hams were evaluated. I17 pigs exhibited higher, whereas W had similar and S lower growth rates than the controls (P<0.001). Carcass traits were not different between groups, except in lower back fat weights of S and W pigs (P<0.01). Decrease in environmental temperature affected the fatty acid composition of the back fat leading to higher MUFA and lower SFA and PUFA contents (P<0.001) in I17 and W pigs, whereas S pigs exhibited higher PUFA levels (P<0.001) and fat firmness (P<0.01) than the controls. Rearing system did not significantly influence the intramuscular fat content of Semimembranosus (P=0.08), and had no effect on ultimate pH. In the Longissimus lumborum, percentage and relative area of αR fibers increased in W pigs (P<0.05), but citrate synthase activity did not differ between groups. I17 and W hams exhibited higher processing yields of dry-cured hams than controls (P<0.05). Sensory analyses showed that pig rearing conditions influenced the product appearance, the I17 and W hams exhibiting lower homogeneity (P<0.01) and intensity (P<0.05) of colour, and higher marbling scores (P<0.01) than I24 hams, but had no influence on texture or flavour.

  5. Regional differences in perivascular adipose tissue impacting vascular homeostasis.

    Science.gov (United States)

    Gil-Ortega, Marta; Somoza, Beatriz; Huang, Yu; Gollasch, Maik; Fernández-Alfonso, Maria S

    2015-07-01

    Perivascular adipose tissue (PVAT) releases several important vasoactive factors with physiological and pathophysiological paracrine effects. A large body of evidence suggests regional phenotypic and functional differences among PVAT depots, depending on the specific vascular bed or different regions in the vascular bed where the PVAT is located. These non-uniform and separate PVATs exert various paracrine effects on vascular structure and function that largely impact disease states, such as endothelial dysfunction, atherosclerosis, or insulin resistance. This emerging view of PVAT function requires considering heterogeneous PVAT as a specialized organ that can differentially regulate vascular function depending on its anatomical location. In this context, the adipose-vascular axis may represent a novel target for pharmacological intervention in vasculopathy in cardiometabolic disorders.

  6. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  7. Deletion of CD1d in Adipocytes Aggravates Adipose Tissue Inflammation and Insulin Resistance in Obesity.

    Science.gov (United States)

    Huh, Jin Young; Park, Jeu; Kim, Jong In; Park, Yoon Jeong; Lee, Yun Kyung; Kim, Jae Bum

    2017-04-01

    Adipose tissue inflammation is an important factor in obesity that promotes insulin resistance. Among various cell types in adipose tissue, immune cells actively regulate inflammatory responses and affect whole-body energy metabolism. In particular, invariant natural killer T (iNKT) cells contribute to mitigating dysregulation of systemic energy homeostasis by counteracting obesity-induced inflammation in adipose tissue. However, the molecular mechanisms by which adipose iNKT cells become activated and mediate anti-inflammatory roles in obese adipose tissue have not been thoroughly understood yet. In the current study, we demonstrate that adipocyte CD1d plays a key role in the stimulation of adipose iNKT cells, leading to anti-inflammatory responses in high-fat diet (HFD)-fed mice. Accordingly, adipocyte-specific CD1d-knockout (CD1d(ADKO)) mice showed reduced numbers of iNKT cells in adipose tissues and decreased responses to α-galactosylceramide-induced iNKT cell activation. Additionally, HFD-fed CD1d(ADKO) mice revealed reduced interleukin-4 expression in adipose iNKT cells and aggravated adipose tissue inflammation and insulin resistance. Collectively, these data suggest that adipocytes could selectively stimulate adipose iNKT cells to mediate anti-inflammatory responses and attenuate excess proinflammatory responses in obese adipose tissue. © 2017 by the American Diabetes Association.

  8. BMI changes during childhood and adolescence as predictors of amount of adult subcutaneous and visceral adipose tissue in men: the GOOD Study

    DEFF Research Database (Denmark)

    Kindblom, Jenny M; Lorentzon, Mattias; Hellqvist, Asa

    2009-01-01

    OBJECTIVE: The amount of visceral adipose tissue is a risk factor for the metabolic syndrome. It is unclear how BMI changes during childhood and adolescence predict adult fat distribution. We hypothesized that there are critical periods during development for the prediction of adult subcutaneous...... and visceral fat mass by BMI changes during childhood and adolescence. RESEARCH DESIGN AND METHODS: Detailed growth charts were retrieved for the men participating in the population-based Gothenburg Osteoporosis and Obesity Determinants (GOOD) Study (n = 612). Body composition was analyzed using dual-energy X...... but an unaffected amount of visceral adipose tissue. BMI changes during adolescence predict both visceral and subcutaneous adipose tissue of the abdomen, whereas BMI changes during late childhood predict only the subcutaneous adipose tissue. CONCLUSIONS: The amount of visceral adipose tissue in young adult men...

  9. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells

    National Research Council Canada - National Science Library

    Hammarstedt, Ann; Graham, Timothy E; Kahn, Barbara B

    2012-01-01

    Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver...

  10. Roles of FGFs as Adipokines in Adipose Tissue Development, Remodeling, and Metabolism.

    Science.gov (United States)

    Ohta, Hiroya; Itoh, Nobuyuki

    2014-01-01

    White and brown adipose tissues (BATs), which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among 22 FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and BATs. FGF1 is a critical transducer in white adipose tissue (WAT) remodeling. The peroxisome proliferator-activated receptor γ-FGF1 axis is critical for energy homeostasis. FGF10 is essential for embryonic white adipocyte development. FGF21 activates BAT in response to cold exposure. FGF21 also stimulates the accumulation of brown-like cells in WAT during cold exposure and is an upstream effector of adiponectin, which controls systemic energy metabolism. These findings provide new insights into the roles of FGF signaling in white and BATs and potential therapeutic strategies for metabolic disorders.

  11. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    Science.gov (United States)

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  12. Two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  13. Adipose Tissue Dysregulation and Reduced Insulin Sensitivity in Non-Obese Individuals with Enlarged Abdominal Adipose Cells

    OpenAIRE

    Hammarstedt Ann; Graham Timothy E; Kahn Barbara B

    2012-01-01

    Abstract Background Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to ...

  14. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf; Astrup, A

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue...... was found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh...... correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates...

  15. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    Science.gov (United States)

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  16. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    Science.gov (United States)

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  17. Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants.

    Science.gov (United States)

    Bonnet, M; Tournayre, J; Cassar-Malek, I

    2016-08-16

    Adipose tissue and muscle are endocrine organs releasing signalling and mediator proteins termed adipokines and myokines, enabling functioning of the organism and its adaption to a wide range of different challenges such as starvation, overfeeding, stress and diseases. They also contribute to the "adipose-muscular" cross-talk for an integrated control of body mass composition. This article integrates transcriptomic and proteomic data available in ruminant species (mainly in bovine, and when available in ovine and caprine) to computationally predict the large-scale secretome of adipose tissues and muscles. For this purpose predictive bioinformatics algorithms were employed to identify proteins putatively secreted by tissues thanks to a signal peptide. We predicted 1749 secreted proteins that were found from adipose tissues and muscles, more than a half of them being already declared as secreted proteins in public repositories. We also identified 188 and 357 proteins in the predictive secretome of adipose tissues and muscles respectively, only a minor part (3-11%) of them being reported in the overlap of public repositories used for comparison. Functional analysis of these proteins highlights their involvement in biological pathways known to sustain tissue growth and functioning. This strategy allowed us to identify some known and putative novel adipomyokines, adipokines and myokines. However their role and their expression signature depending on rearing practices remain largely to be explored.

  18. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    Science.gov (United States)

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  19. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Directory of Open Access Journals (Sweden)

    Marcella K Vaicik

    Full Text Available Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/- and compared to wild-type (Lama4+/+ control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  20. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Science.gov (United States)

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  1. Macro fat and micro fat: insulin sensitivity and gender dependent response of adipose tissue to isocaloric diet change.

    Science.gov (United States)

    Li, Yanjun; Gaillard, Jonathan R; McLaughlin, Tracey; Sørensen, Thorkild Ia; Periwal, Vipul

    2015-01-01

    The adipose cell-size distribution is a quantitative characterization of adipose tissue morphology. At a population level, the adipose cell-size distribution is insulin-sensitivity dependent, and the observed correlation between obesity and insulin resistance is believed to play a key role in the metabolic syndrome. Changes in fat mass can be induced by altered energy intake or even diet composition. These macroscopic changes must manifest themselves as dynamic adipose cell-size distribution alterations at the microscopic level. The dynamic relationship between these 2 independent measurements of body fat is unknown. In this study, we investigate adipose tissue dynamics in response to various isocaloric diet compositions, comparing gender- and insulin sensitivity-dependent differences. A body composition model is used to predict fat mass changes in response to changes in diet composition for 28 individuals, separated into 4 subgroups according to gender and insulin sensitivity/resistance. Adipose cell-size distribution changes in each individual are simulated with a dynamic model and parameters corresponding to lipid turnover and cell growth rates are determined for each subgroup to match the relative change of fat mass for each diet composition, respectively. We find that adipose cell-size dynamics are associated with different modulations dependent on gender and insulin resistance. Larger turnover and growth/shrinkage rates in insulin resistant individuals suggest they may be more sensitive to changes in energy intake and diet composition than insulin sensitive subjects. The different cell-size distribution changes of adipose cells of various sizes in different subject groups further suggest distinct modulations of adipose cell dynamics.

  2. Is Crohn’s creeping fat an adipose tissue?

    OpenAIRE

    Olivier, Isabelle; Theodorou, Vassilia; Valet, Philippe; Castan-Laurell, Isabelle; Guillou, Hervé; Bertrand-Michel, Justine; Cartier, Christel; Bezirard, Valerie; Ducroc, Robert; Segain, Jean-Pierre; Portier, Guillaume; Kirzin, Sylvain; Moreau, Jacques; Duffas, Jean-Pierre; Ferrier, Laurent

    2011-01-01

    Background: In human pathology, the ‘‘creeping fat’’ (CF) ofthe mesentery is unique to Crohn’s disease (CD). CF is usuallyreferred to as an ectopic extension of mesenteric adipose tissue(MAT). However, since no animal model developing CF has everbeen established, very little is known about this type of fat-depotexpansion and its role in the development of the disease.Methods: We developed and standardized an experimental protocolin mice that reproducibly induces CF development when asevere co...

  3. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    Science.gov (United States)

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

  4. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.

    OpenAIRE

    Lopategi, Aritz; López-Vicario, Cristina; Alcaraz-Quiles, José; García-Alonso, Verónica; Rius, Bibiana; Titos Rodríguez, Esther; Clària i Enrich, Joan

    2015-01-01

    White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phosphol...

  5. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    OpenAIRE

    Alexey A. Tinkov; Elizaveta V. Popova; Evgenia R. Gatiatulina; Anastasia A. Skalnaya; Elena N. Yakovenko; Irina B. Alchinova; Mikhail Y. Karganov; Anatoly V. Skalny; Nikonorov, Alexandr A.

    2016-01-01

    Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and method...

  6. Observations on Preadipocytes and Their Distribution Patterns in Rat Adipose Tissue

    Science.gov (United States)

    1981-01-01

    enzyme lipoprotein lipase (Hietanen and viously (Stiles et al., 󈨏) in rat adipose tissue Greenwood, 󈨑). Exercise training initiated and suggest that...Huston, C.G. Plopper, and A.L. Hecker increased hormone sensitivity during in vitro adipocyte (1975) Adipose tissue cellularity and lipolysis : Response to... adipose tissue developing into adipocytes. J. Usuku, G., K. Iyama, and K. Ohzono (1978) Ultrastructural Lipid Res., 19: 316-324. studies on the white

  7. Growth hormone signaling in muscle and adipose tissue of obese human subjects: associations with measures of body composition and interaction with resveratrol treatment.

    Science.gov (United States)

    Clasen, Berthil F; Poulsen, Morten M; Escande, Carlos; Pedersen, Steen B; Møller, Niels; Chini, Eduardo N; Jessen, Niels; Jørgensen, Jens O L

    2014-12-01

    Growth hormone (GH) secretion is reduced in obesity, despite normal serum insulin-like growth factor I (IGF-1) levels, but the association between obesity and the GH signaling is unknown. Furthermore, SIRT1, an nicotinamide adenine dinucleotide-dependent protein deacetylase, reduces hepatic IGF-1 production in mice via blunting of GH-induced STAT5 signaling. To study GH signaling in muscle and fat in obese subjects and the interaction with concomitant administration of the putative SIRT1 activator resveratrol, and to assess the effects of inhibiting or knocking down SIRT1 on GH regulated genes in vitro. Twenty-four obese males were examined in a randomized, double blinded, parallel-group study with resveratrol or placebo treatment for 5 weeks followed by a GH bolus. Muscle and fat biopsies were collected before and after GH. Body composition was assessed by DEXA and MRI. (1) Effect of body composition and age on GH-stimulated STAT5b phosphorylation and IGF-1, SOCS2, and CISH mRNA in muscle and fat. (2) The impact of resveratrol treatment on GH activity. (3) Impact of inhibiting or knocking down SIRT1 on effects of GH in vitro. Significant GH-induced STAT5b phosphorylation in muscle and fat in obese subjects was recorded together with increased CISH and SOCS2 mRNA. GH-induced STAT5b phosphorylation in muscle correlated positively with age [r = 0.53, p < 0.01], but not with body composition. Resveratrol administration had no impact on body composition, serum IGF-1, or GH signaling in vivo, and SIRT1 knock down or inhibition did not affect GH signaling in vitro. (1) GH induced STAT5b phosphorylation is detectable in muscle and fat in adult males with simple obesity, but is not determined by body composition. (2) Resveratrol supplementation does not impact circulating IGF-1 levels or GH signaling in human muscle and fat. (3) Our data speak against a major impact of SIRT1on GH action in human subjects.

  8. Early growth and childhood adiposity. The Generation R Study

    NARCIS (Netherlands)

    B. Durmus (Busra)

    2013-01-01

    textabstractThe World Health Organization defines overweight and obesity as abnormal or excessive accumulation of adipose tissue, which is an established risk factor for harmful health. Common health consequences of overweight and obesity include cardiometabolic diseases – mainly diabetes, stroke an

  9. Early growth and childhood adiposity. The Generation R Study

    NARCIS (Netherlands)

    B. Durmus (Busra)

    2013-01-01

    textabstractThe World Health Organization defines overweight and obesity as abnormal or excessive accumulation of adipose tissue, which is an established risk factor for harmful health. Common health consequences of overweight and obesity include cardiometabolic diseases – mainly diabetes, stroke an

  10. Early growth and childhood adiposity. The Generation R Study

    NARCIS (Netherlands)

    B. Durmus (Busra)

    2013-01-01

    textabstractThe World Health Organization defines overweight and obesity as abnormal or excessive accumulation of adipose tissue, which is an established risk factor for harmful health. Common health consequences of overweight and obesity include cardiometabolic diseases – mainly diabetes, stroke

  11. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  12. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    Science.gov (United States)

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  13. The Secretory Function of Adipocytes in the Physiology of White Adipose Tissue

    NARCIS (Netherlands)

    Wang, P.; Mariman, E.; Renes, J.; Keijer, J.

    2008-01-01

    White adipose tissue, previously regarded as a passive lipid storage site, is now viewed as a dynamic tissue. It has the capacity to actively communicate by sending and receiving different types of signals. An overview of these signals, the external modulators that affect adipose tissue and the secr

  14. The Fractionation of Adipose Tissue (FAT) procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A; Stevens, Hieronymus P; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  15. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  16. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  17. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    Science.gov (United States)

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.

  18. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    Science.gov (United States)

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  19. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    DEFF Research Database (Denmark)

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente

    2009-01-01

    +/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue...... as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed...

  20. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, T.; Kvist, T.M.; Hyldegaard, O.

    2008-01-01

    changes of micro air bubbles injected into adipose tissue of anesthetized rats at 101.3 kPa (sea level) after which they were decompressed from 101.3 kPa to and held at 25 kPa (10,350 m), during breathing of oxygen or a heliox(34:66) mixture (34% helium and 66% oxygen). Furthermore, bubbles were studied...... and heliox breathing. Preoxygenation enhanced bubble disappearance compared with oxygen and heliox breathing but did not prevent bubble growth. The results indicate that oxygen breathing at 25 kPa promotes air bubble growth in adipose tissue regardless of the tissue nitrogen pressure Udgivelsesdato: 2008/11......At altitude, bubbles are known to form and grow in blood and tissues causing altitude decompression sickness. Previous reports indicate that treatment of decompression sickness by means of oxygen breathing at altitude may cause unwanted bubble growth. In this report we visually followed the in vivo...

  1. Regulatory roles for L-arginine in reducing white adipose tissue

    Science.gov (United States)

    Tan, Bi’e; Li, Xinguo; Yin, Yulong; Wu, Zhenlong; Liu, Chuang; Tekwe, Carmen D.; Wu, Guoyao

    2012-01-01

    As the nitrogenous precursor of nitric oxide, L-arginine regulates multiple metabolic pathways involved in the metabolism of fatty acids, glucose, amino acids, and proteins through cell signaling and gene expression. Specifically, arginine stimulates lipolysis and the expression of key genes responsible for activation of fatty acid oxidation to CO2 and water. The underlying mechanisms involve increases in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha), mitochondrial biogenesis, and the growth of brown adipose tissue growth. Furthermore, arginine regulates adipocyte-muscle crosstalk and energy partitioning via the secretion of cytokines and hormones. In addition, arginine enhances AMP-activated protein kinase (AMPK) expression and activity, thereby modulating lipid metabolism and energy balance toward the loss of triacylglycerols. Growing evidence shows that dietary supplementation with arginine effectively reduces white adipose tissue in Zucker diabetic fatty rats, diet-induced obese rats, growing-finishing pigs, and obese patients with type II diabetes. Thus, arginine can be used to prevent and treat adiposity and the associated metabolic syndrome. PMID:22652774

  2. Sugar-sweetened and diet beverages in relation to visceral adipose tissue.

    Science.gov (United States)

    Odegaard, Andrew O; Choh, Audrey C; Czerwinski, Stefan A; Towne, Bradford; Demerath, Ellen W

    2012-03-01

    Frequent sugar-sweetened beverage (SSB) intake has been consistently associated with increased adiposity and cardio-metabolic risk, whereas the association with diet beverages is more mixed. We examined how these beverages associate with regional abdominal adiposity measures, specifically visceral adipose tissue (VAT). In a cross-sectional analysis of 791 non-Hispanic white men and women aged 18-70 we examined how beverage consumption habits obtained from a food frequency questionnaire associate with overall and abdominal adiposity measures from MRI. With increasing frequency of SSB intake, we observed increases in waist circumference (WC) and the proportion of visceral to subcutaneous abdominal adipose tissue (VAT%), with no change in total body fat (TBF%) or BMI. Greater frequency of diet beverage intake was associated with greater WC, BMI, and TBF%, but was not associated with variation in visceral adiposity We conclude that increased frequency of SSB consumption is associated with a more adverse abdominal adipose tissue deposition pattern.

  3. Contribution of endothelial precursors of adipose tissue to breast cancer: progression-link with fat graft for reconstructive surgery.

    Science.gov (United States)

    Bertolini, Francesco

    2013-05-01

    Obesity, an excess accumulation of adipose tissue occurring in mammalians when caloric intake exceeds energy expenditure, is associated with an increased frequency and progression of several types of neoplastic diseases including postmenopausal breast cancer. Recent studies have suggested that obesity-related disruption of the energy homeostasis results in inflammation and alterations of adipokine signalling that may foster cancer initiation and progression. Moreover, two populations of human white adipose tissue (WAT) progenitors cooperate in breast cancer angiogenesis, growth and metastatic progression. This raises the issue of lipotransfer in patients undergoing plastic or reconstructive surgery.

  4. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity.

    Science.gov (United States)

    Trayhurn, Paul

    2014-01-01

    Hypoxia develops in white adipose tissue in obese mice, resulting in changes in adipocyte function that may underpin the dysregulation that leads to obesity-associated disorders. Whether hypoxia occurs in adipose tissue in human obesity is unclear, with recent studies contradicting earlier reports that this was the case. Adipocytes, both murine and human, exhibit extensive functional changes in culture in response to hypoxia, which alters the expression of up to 1,300 genes. These include genes encoding key adipokines such as leptin, interleukin (IL)-6, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2), which are upregulated, and adiponectin, which is downregulated. Hypoxia also inhibits the expression of genes linked to oxidative metabolism while stimulating the expression of genes associated with glycolysis. Glucose uptake and lactate release by adipocytes are both stimulated by hypoxia, and insulin sensitivity falls. Preadipocytes and macrophages in adipose tissue also respond to hypoxia. The hypoxia-signaling pathway may provide a new target for the treatment of obesity-associated disorders.

  5. Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Dizaji Asl, Khadijeh; Shafaei, Hajar; Soleimani Rad, Jafar; Nozad, Hojjat Ollah

    2017-01-01

    BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics of AM-MSC and ASCs and CD271 expression were compared. METHODS Adult adipose tissue samples were obtained from patients undergoing elective surgical procedure, and samples of amniotic membrane were collected immediately after caesarean operation. After isolation and expansion of MSCs, the proliferation rate and viability of cells were evaluated through calculating DT and MTT assay. Expression of routine mesenchymal specific surface antigens of MSCs and CD271 was evaluated by flow cytometry for both types of cells. RESULTS The growth rate and viability of the MSCs from the amniotic membrane was significantly higher compared with the ASCs. The low expression of CD14 and CD45 indicated that AM-MSC and ASCs are non hematopoietic cells, and both cell types expressed high percentages of CD44, CD105. The results revealed that AM-MSC and ASCs expressed no CD271 on their surfaces. CONCLUSION This study showed that amniotic membrane is a suitable cell source for cell therapy, and CD271 is a negative marker for MSCs identification from amniotic membrane and adipose tissue.

  6. Effects of catecholamines in vitro on lipogenesis in cultured adipose tissue from young goats.

    Science.gov (United States)

    Skarda, J

    1999-08-01

    Freshly prepared and cultured perirenal and omental adipose tissue explants were used to investigate the effect of age and hormones on lipogenesis in young goats. Perinatal (1-2 days of age) and older (24-32 days of age) male goats were used. Adipose explants were cultured (24 h) in the presence of insulin, cortisol and recombinant bovine growth hormone (bST) and subsequently incubated (2 h) in a glucose-free buffer containing (14C)-acetate in the presence or absence of noradrenaline (Ne) and isoprenaline (Iso) to measure tissue lipogenic responses to hormones added to the culture medium and to measure the responsiveness to catecholamines. Inclusion of hormones in the culture medium did not change lipogenesis during subsequent acute incubation in glucose-free buffer in both perirenal and omental adipose tissue from perinatal goats. On the other hand, in perirenal explants from older animals, insulin alone or insulin plus cortisol increased (P cortisol alone decreased (P cortisol plus bST, the rates of lipogeneses were lower (P cortisol. A similar pattern of the effects of hormones on the rates of fatty acid synthesis was also seen in omental explants; however, these effects were not significant. In vitro rates of lipogeneses were decreased (P effective (P < 0.05) in older but not in perinatal animals.

  7. Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue.

    Science.gov (United States)

    Murabayashi, N; Sugiyama, T; Zhang, L; Kamimoto, Y; Umekawa, T; Ma, N; Sagawa, N

    2013-07-01

    Epidemiological and animal studies have shown that maternal obesity predisposes the offspring to obesity and the metabolic syndrome, possibly via late-onset metabolic programming of the fetus. Little is known, however, about the metabolic effect of maternal obesity on the fetus. This study investigated the effect of a maternal high-fat diet (HFD) on fetal growth and glucose metabolism using a diet-induced obesity mouse model. Female mice (6 weeks old; C57BL/6N) were fed either a normal chow diet (NCD, 10 kcal% fat) or an HFD (60 kcal% fat) for 4 weeks before mating and throughout pregnancy. At 17 days of gestation, gene expression of inflammatory markers and adipokines in fetal subcutaneous adipose tissue was analyzed by quantitative real-time polymerase chain reaction. HFD mice were overweight, glucose intolerant and insulin resistant compared with NCD mice of the same gestational age. Although fetal body weight was not significantly different, fetal plasma glucose and insulin levels were higher in the HFD group than the NCD group. Furthermore, examination of fetal subcutaneous adipose tissue in the HFD group revealed hypertrophy with an increase in the levels of cluster of differentiation-68, chemokine receptor-2 and tumor necrosis factor-α mRNA, but a decrease in the level of glucose transporter-4 mRNA. Maternal HFD causes inflammatory changes in the adipose tissue of offspring. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    Science.gov (United States)

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  9. Endurance training changes in lipolytic responsiveness of obese adipose tissue.

    Science.gov (United States)

    De Glisezinski, I; Crampes, F; Harant, I; Berlan, M; Hejnova, J; Langin, D; Rivière, D; Stich, V

    1998-12-01

    The aim of this study was to investigate the effect of aerobic exercise training on the lipolytic response of adipose tissue in obese subjects. Thirteen men (body mass index = 36.9 +/- 1.3 kg/m2) were submitted to aerobic physical training on a cycloergometer (30-45 min, 4 days a wk) for 3 mo. Adipocyte sensitivity to the action of catecholamines and insulin was studied in vitro before and after training. Training induced a decrease in the percentage of fat mass (P < 0.05) without changing the body weight. Basal lipolysis and hormone-sensitive lipase activity were significantly decreased after training (P < 0.05). The lipolytic effects of epinephrine, isoprenaline (beta-adrenoceptor agonist), and dobutamine (beta1-adrenoceptor agonist) were significantly increased (P < 0.05) but not those of procaterol (beta2-adrenoceptor agonist). The antilipolytic effects of alpha2-adrenoceptor and insulin were significantly decreased (P < 0.05). Lipolysis stimulation by agents acting at the postreceptor level was unchanged after training. In conclusion, aerobic physical training in obese male subjects modifies adipose tissue lipolysis through an enhancement of beta-adrenergic response and a concomitant blunting of adipocyte antilipolytic activity.

  10. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  11. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  12. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  13. Deficiency of Growth Differentiation Factor 3 Protects against Diet-Induced Obesity by Selectively Acting on White Adipose

    Science.gov (United States)

    Shen, Joseph J.; Huang, Lihua; Li, Liunan; Jorgez, Carolina; Matzuk, Martin M.; Brown, Chester W.

    2009-01-01

    Growth differentiation factor 3 (GDF3) is a member of the TGFβ superfamily. White adipose is one of the tissues in which Gdf3 is expressed, and it is the only tissue in which expression increases in response to high-fat diet. We generated Gdf3−/− mice, which were indistinguishable from wild-type mice and had normal weight curves on regular diet. However, on high-fat diet Gdf3−/− mice were resistant to the obesity that normally develops in wild-type mice. Herein we investigate the physiological and molecular mechanisms that underlie this protection from diet-induced obesity and demonstrate that GDF3 deficiency selectively affects white adipose through its influence on basal metabolic rates. Our results are consistent with a role for GDF3 in adipose tissue, with consequential effects on energy expenditure that ultimately impact adiposity. PMID:19008465

  14. Remodeling of adipose tissue at experimental diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. A. Konovalova

    2013-08-01

    Full Text Available Introduction Diabetes mellitus (DM type 1 is chronіc disease whith progressive selective destruction of β- cells pancreatic islets (of Langerhans and whith development of absolute insulin failure. Active immune mechanisms take part in pathogenesis of this disease. Recently many publication appeared which report about the role of adipose tissue. In such way adipose tissue is not only the main metabolic regulator and endocrine organ synthesizing more than 30 regulatory proteins- adipokines, but it is one of the organs of immune system. Dysregulation of adipose tissue l