WorldWideScience

Sample records for adipose tissue depending

  1. Gastric bypass simultaneously improves adipose tissue function and insulin-dependent type 2 diabetes mellitus.

    Science.gov (United States)

    Billeter, Adrian T; Vittas, Spiros; Israel, Barbara; Scheurlen, Katharina M; Hidmark, Asa; Fleming, Thomas H; Kopf, Stefan; Büchler, Markus W; Müller-Stich, Beat P

    2017-07-09

    The underlying causes of type 2 diabetes (T2DM) remain poorly understood. Adipose tissue dysfunction with high leptin, inflammation, and increased oxidative stress may play a pivotal role in T2DM development in obese patients. Little is known about the changes in the adipose tissue after Roux-Y gastric bypass (RYGB) in non-severely obese patients (BMI adipose tissue function in a cohort of BMI insulin-dependent T2DM after RYGB surgery which resolves T2DM. Twenty patients with insulin-dependent T2DM and BMI Insulin-resistance, leptin, oxidative stress, and cytokines were determined over 24 months. Expression of cytokines and NF-kappaB pathway genes were measured in leukocytes (PBMC). Adipose tissue inflammation was examined histologically preoperatively and 24 months after RGYB in subcutaneous adipose tissue. Insulin-resistance, leptin, oxidative stress as well as adipose tissue inflammation decreased significantly after RYGB. Similarly, systemic inflammation was reduced and peripheral blood mononuclear cells (PBMCs) were reprogrammed towards an M2-type inflammation. Loss of BMI correlated with leptin levels (r = 0.891, p insulin resistance (r = 0.527, p = 0.003), and oxidative stress (r = 0.592, p = 0.016). Leptin correlated with improved insulin resistance (r = 0.449, p = 0.032) while reduced leptin showed a strong association with improved oxidative stress (r = 0.809, p = 0.001). Lastly, reduced oxidative stress correlated strongly with improved insulin-resistance (r = 0.776, p = 0.001). RYGB improves adipose tissue function and inflammation. Leptin as marker for adipose tissue dysfunction may be the mediating factor between insulin resistance and oxidative stress and thereby likely improving T2DM.

  2. Long-acting glucose-dependent insulinotropic polypeptide ameliorates obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Varol, Chen; Zvibel, Isabel; Spektor, Lior; Mantelmacher, Fernanda Dana; Vugman, Milena; Thurm, Tamar; Khatib, Marian; Elmaliah, Elinor; Halpern, Zamir; Fishman, Sigal

    2014-10-15

    Obesity induces low-grade chronic inflammation, manifested by proinflammatory polarization of adipose tissue innate and adaptive resident and recruited immune cells that contribute to insulin resistance (IR). The glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone that mediates postprandial insulin secretion and has anabolic effects on the adipose tissue. Importantly, recent evidence suggested that GIP is a potential suppressor of inflammation in several metabolic models. In this study, we aimed to investigate the immunoregulatory role of GIP in a murine model of diet-induced obesity (DIO) using the long-acting GIP analog [d-Ala(2)]GIP. Administration of [d-Ala(2)]GIP resulted in adipocytes of increased size, increased levels of adipose tissue lipid droplet proteins, indicating better lipid storage capacity, and reduced adipose tissue inflammation. Flow cytometry analysis revealed reduced numbers of inflammatory Ly6C(hi) monocytes and F4/80(hi)CD11c(+) macrophages, associated with IR. In addition, [d-Ala(2)]GIP reduced adipose tissue infiltration of IFN-γ-producing CD8(+) and CD4(+) T cells. Furthermore, [d-Ala(2)]GIP treatment induced a favorable adipose tissue adipokine profile, manifested by a prominent reduction in key inflammatory cytokines (TNF-α, IL-1β, IFN-γ) and chemokines (CCL2, CCL8, and CCL5) and an increase in adiponectin. Notably, [d-Ala(2)]GIP also reduced the numbers of circulating neutrophils and proinflammatory Ly6C(hi) monocytes in mice fed regular chow or a high-fat diet. Finally, the beneficial immune-associated effects were accompanied by amelioration of IR and improved insulin signaling in liver and adipose tissue. Collectively, our results describe key beneficial immunoregulatory properties for GIP in DIO and reveal that its augmentation ameliorates adipose tissue inflammation and improves IR. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Du

    Full Text Available We have developed an in vitro hepatocyte-adipose tissue explant (ATE co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2 were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64 were higher in the stromal vascular fraction (SVF isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1 were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2 was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2 in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2. Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs, particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  4. Adipose tissue fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The increasing prevalence of obesity causes a majorinterest in white adipose tissue biology. Adipose tissuecells are surrounded by extracellular matrix proteinswhose composition and remodeling is of crucial importancefor cell function. The expansion of adipose tissue inobesity is linked to an inappropriate supply with oxygenand hypoxia development. Subsequent activation ofhypoxia inducible factor 1 (HIF-1) inhibits preadipocytedifferentiation and initiates adipose tissue fibrosis. Therebyadipose tissue growth is limited and excess triglyceridesare stored in ectopic tissues. Stressed adipocytes andhypoxia contribute to immune cell immigration andactivation which further aggravates adipose tissuefibrosis. There is substantial evidence that adipose tissuefibrosis is linked to metabolic dysfunction,both in rodentmodels and in the clinical setting. Peroxisome proliferatoractivated receptor gamma agonists and adiponectin bothreduce adipose tissue fibrosis, inflammation and insulinresistance. Current knowledge suggests that antifibroticdrugs, increasing adipose tissue oxygen supply or HIF-1antagonists will improve adipose tissue function andthereby ameliorate metabolic diseases.

  5. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423

    Directory of Open Access Journals (Sweden)

    Mengle Shao

    2017-01-01

    Conclusions: Our results reveal that Zfp423 is essential for the terminal differentiation of subcutaneous white adipocytes during fetal adipose tissue development. Moreover, our data highlight the striking adverse effects of pathological subcutaneous adipose tissue remodeling on visceral adipose function and systemic nutrient homeostasis in obesity. Importantly, these data reveal the distinct phenotypes that can occur when adiponectin driven transgenes are activated in fetal vs. adult adipose tissue.

  6. Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Hagberg, Carolina E; Spalding, Kirsty L; Cannon, Barbara; Nedergaard, Jan

    2015-05-01

    Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.

  7. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... levels of IL-6, TNF-a and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar...... in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited...

  8. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically

  9. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically foc

  10. Adipose tissue macrophages

    NARCIS (Netherlands)

    Boutens, Lily; Stienstra, Rinke

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically foc

  11. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation.

    Science.gov (United States)

    Schroeter, Marco R; Eschholz, Norman; Herzberg, Sebastian; Jerchel, Isabel; Leifheit-Nestler, Maren; Czepluch, Frauke S; Chalikias, Georgios; Konstantinides, Stavros; Schäfer, Katrin

    2013-05-01

    Clinical and experimental evidence suggests that periadventitial adipose tissue may modulate vascular lesion formation. The aim of this study was to determine the role of perivascular leptin expression on neointima formation and to differentiate it from local inflammation and systemically elevated leptin levels. Increased neointima formation after carotid artery injury was observed in hyperleptinemic, diet-induced obese wild-type mice, but not in leptin-deficient ob/ob mice. High-fat diet was associated with increased leptin expression in visceral adipose tissue (VAT) as well as in perivascular adipose tissue. Perivascular leptin overexpression achieved by adenoviral vectors enhanced intimal cell proliferation and neointima formation in wild-type mice, but not in leptin receptor-deficient mice. Perivascular transplantation of VAT from high-fat diet-induced obese wild-type mice around the carotid artery of immunodeficient mice also promoted neointima formation, without affecting body weight or systemic leptin levels, and this effect was absent, if VAT from ob/ob mice was used. On the contrary, perivascular transplantation of VAT from ob/ob mice fed high-fat diet, characterized by marked immune cell accumulation, promoted neointimal hyperplasia also in the absence of leptin. In vitro, recombinant leptin and VAT-conditioned medium increased human arterial smooth muscle cell proliferation in a (partly) leptin-dependent manner. Our findings suggest that locally elevated leptin levels may promote neointima formation, independent of obesity and systemic hyperleptinemia, but also underline the importance of perivascular inflammation in mediating the increased cardiovascular risk in obesity.

  12. Differential screening identifies transcripts with depot-dependent expression in white adipose tissues

    Directory of Open Access Journals (Sweden)

    Zhou Shengli

    2008-08-01

    Full Text Available Abstract Background The co-morbidities of obesity are tied to location of excess fat in the intra-abdominal as compared to subcutaneous white adipose tissue (WAT depot. Genes distinctly expressed in WAT depots may impart depot-dependent physiological functions. To identify such genes, we prepared subtractive cDNA libraries from murine subcutaneous (SC or intra-abdominal epididymal (EP white adipocytes. Results Differential screening and qPCR validation identified 7 transcripts with 2.5-fold or greater enrichment in EP vs. SC adipocytes. Boc, a component of the hedgehog signaling pathway demonstrated highest enrichment (~12-fold in EP adipocytes. We also identified a dramatic enrichment in SC adipocytes vs. EP adipocytes and in SC WAT vs. EP WAT for transcript(s for the major urinary proteins (Mups, small secreted proteins with pheromone functions that are members of the lipocalin family. Expression of Boc and Mup transcript was further assessed in murine tissues, adipogenesis models, and obesity. qPCR analysis reveals that EP WAT is a major site of expression of Boc transcript. Furthermore, Boc transcript expression decreased in obese EP WAT with a concomitant upregulation of Boc transcript in the obese SC WAT depot. Assessment of the Boc binding partner Cdon in adipose tissue and cell fractions thereof, revealed transcript expression similar to Boc; suggestive of a role for the Boc-Cdon axis in WAT depot function. Mup transcripts were predominantly expressed in liver and in the SC and RP WAT depots and increased several thousand-fold during differentiation of primary murine preadipocytes to adipocytes. Mup transcripts were also markedly reduced in SC WAT and liver of ob/ob genetically obese mice compared to wild type. Conclusion Further assessment of WAT depot-enriched transcripts may uncover distinctions in WAT depot gene expression that illuminate the physiological impact of regional adiposity.

  13. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  14. [Adipose tissue hormones].

    Science.gov (United States)

    Haluzík, M; Trachta, P; Haluzíková, D

    2010-10-01

    Adipose tissue had been traditionally considered a passive energy storage site without direct influence on energy homeostasis regulation. This view has been principally changed during early nineties by the discovery of hormonal production of adipose tissue. At present, the list of hormonally active substances of adipose tissue includes more than one hundred factors with paracrine or endocrine activity that play an important role in metabolic, food intake a inflammatory regulations and many other processes. Only minority of adipose tissue-derived hormones is produced exclusively in fat. Most of these factors is primarily put out by other tissues and organs. Adipose tissue-derived hormones are produced not only by adipocytes but also by preadipocytes, immunocompetent and endothelial cells and other cell types residing in fat. This paper summarizes current knowledge about endocrine function of adipose tissue with special respect to its changes in obesity. It also describes its possible role in the ethiopathogenesis of insulin resistance, atherosclerosis and other obesity-related pathologies.

  15. Differential Hematopoietic Activity in White Adipose Tissue Depending on its Localization.

    Science.gov (United States)

    Luche, Elodie; Sengenès, Coralie; Arnaud, Emmanuelle; Laharrague, Patrick; Casteilla, Louis; Cousin, Beatrice

    2015-12-01

    White adipose tissue (WAT) can be found in different locations in the body, and these different adipose deposits exhibit specific physiopathological importance according to the subcutaneous or abdominal locations. We have shown previously the presence of functional hematopoietic stem/progenitor cells (HSPC) in subcutaneous adipose tissue (SCAT). These cells exhibit a specific hematopoietic activity that contributes to the renewal of the immune cell compartment within this adipose deposit. In this study, we investigated whether HSPC can be found in visceral adipose tissue (VAT) and whether a putative difference in in situ hematopoiesis may be related to anatomical location and to site-specific immune cell content in VAT compared to SCAT. Therein, we identified for the first time the presence of HSPC in VAT. Using both in vitro assays and in vivo competitive repopulation experiments with sorted HSPC from VAT or SCAT, we showed that the hematopoietic activity of HSPC was lower in VAT, compared to SCAT. In addition, this altered hematopoietic activity of HSPC in VAT was due to their microenvironment, and may be related to a specific combination of secreted factors and extracellular matrix molecules expressed by adipose derived stromal cells. Our results indicate that WAT specific hematopoietic activity may be generalized to all adipose deposits, although with specificity according to the fat pad location. Considering the abundance of WAT in the body, this emphasizes the potential importance of this hematopoietic activity in physiopathological situations.

  16. Macro fat and micro fat: insulin sensitivity and gender dependent response of adipose tissue to isocaloric diet change.

    Science.gov (United States)

    Li, Yanjun; Gaillard, Jonathan R; McLaughlin, Tracey; Sørensen, Thorkild Ia; Periwal, Vipul

    2015-01-01

    The adipose cell-size distribution is a quantitative characterization of adipose tissue morphology. At a population level, the adipose cell-size distribution is insulin-sensitivity dependent, and the observed correlation between obesity and insulin resistance is believed to play a key role in the metabolic syndrome. Changes in fat mass can be induced by altered energy intake or even diet composition. These macroscopic changes must manifest themselves as dynamic adipose cell-size distribution alterations at the microscopic level. The dynamic relationship between these 2 independent measurements of body fat is unknown. In this study, we investigate adipose tissue dynamics in response to various isocaloric diet compositions, comparing gender- and insulin sensitivity-dependent differences. A body composition model is used to predict fat mass changes in response to changes in diet composition for 28 individuals, separated into 4 subgroups according to gender and insulin sensitivity/resistance. Adipose cell-size distribution changes in each individual are simulated with a dynamic model and parameters corresponding to lipid turnover and cell growth rates are determined for each subgroup to match the relative change of fat mass for each diet composition, respectively. We find that adipose cell-size dynamics are associated with different modulations dependent on gender and insulin resistance. Larger turnover and growth/shrinkage rates in insulin resistant individuals suggest they may be more sensitive to changes in energy intake and diet composition than insulin sensitive subjects. The different cell-size distribution changes of adipose cells of various sizes in different subject groups further suggest distinct modulations of adipose cell dynamics.

  17. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan

    2011-01-01

    than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1) were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2) was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total...... a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs......), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance....

  18. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects

    DEFF Research Database (Denmark)

    Asmar, M; Simonsen, L; Arngrim, N

    2013-01-01

    OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) appears to have a role in lipid metabolism. Recently, we showed that GIP in combination with hyperinsulinemia and hyperglycemia increases triglyceride uptake in abdominal, subcutaneous adipose tissue in lean humans. It has been suggested...... that increased GIP secretion in obesity will promote lipid deposition in adipose tissue. In light of the current attempts to employ GIP antagonists in the treatment and prevention of human obesity, the present experiments were performed in order to elucidate whether the adipose tissue lipid metabolism would...... be enhanced or blunted during a GIP, hyperinsulinemic and hyperglycemic (HI-HG) clamp in obese subjects with either normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). DESIGN: Sixteen obese (BMI>30 kg m(-2)) subjects were divided into two groups, based on their plasma glucose response...

  19. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Simonsen, Lene; Madsbad, Sten;

    2010-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) has been implicated in lipid metabolism in animals. In humans, however, there is no clear evidence of GIP effecting lipid metabolism. The present experiments were performed in order to elucidate the effects of GIP on regional adipose tissue metab...

  20. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  1. Adipose Tissue Metabolism During Hypobaria

    Directory of Open Access Journals (Sweden)

    D. P. Chattopadhyay

    1974-10-01

    Full Text Available Possible factors affecting the metabolism of adipose tissue under hypobaric conditions have been reviewed. The hormonal changes brought into play under hypoxic stress generally stress generally increase the adipose tissue lipolysis.

  2. Targeting adipose tissue

    Directory of Open Access Journals (Sweden)

    Haas Bodo

    2012-10-01

    Full Text Available Abstract Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT is generally known and stores excess energy in the form of triacylglycerol (TG, insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP. The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET, however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs, activators of peroxisome proliferator-activated receptor γ (PPARγ a ‘master’ regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity.

  3. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues.

    Science.gov (United States)

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J; Zang, Jingwu; Cao, Yihai

    2014-10-14

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs.

  4. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  5. Adipocyte-specific IKKβ signaling suppresses adipose tissue inflammation through an IL-13-dependent paracrine feedback pathway.

    Science.gov (United States)

    Kwon, Hyokjoon; Laurent, Sarnia; Tang, Yan; Zong, Haihong; Vemulapalli, Pratibha; Pessin, Jeffrey E

    2014-12-11

    Adipose tissue inflammation is one pathway shown to mediate insulin resistance in obese humans and rodents. Obesity induces dynamic cellular changes in adipose tissue to increase proinflammatory cytokines and diminish anti-inflammatory cytokines. However, we have found that anti-inflammatory interleukin-13 (IL-13) is unexpectedly induced in adipose tissue of obese humans and high-fat diet (HFD)-fed mice, and the source of IL-13 is primarily the adipocyte. Moreover, HFD-induced proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and IL-1β mediate IL-13 production in adipocytes in an IKKβ-dependent manner. In contrast, adipocyte-specific IKKβ-deficient mice show diminished IL-13 expression and enhanced inflammation after HFD feeding, resulting in a worsening of the insulin-resistant state. Together these data demonstrate that although IKKβ activates the expression of proinflammatory mediators, in adipocytes, IKKβ signaling also induces the expression of the anti-inflammatory cytokine IL-13, which plays a unique protective role by limiting adipose tissue inflammation and insulin resistance.

  6. Steroid biosynthesis in adipose tissue.

    Science.gov (United States)

    Li, Jiehan; Papadopoulos, Vassilios; Vihma, Veera

    2015-11-01

    Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.

  7. Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates.

    Science.gov (United States)

    De Meis, Leopoldo; Ketzer, Luisa A; Camacho-Pereira, Juliana; Galina, Antonio

    2012-02-01

    The UCP1 [first UCP (uncoupling protein)] that is found in the mitochondria of brown adipocytes [BAT (brown adipose tissue)] regulates the heat production, a process linked to non-shivering thermogenesis. The activity of UCP1 is modulated by GDP and fatty acids. In this report, we demonstrate that respiration and heat released by BAT mitochondria vary depending on the respiratory substrate utilized and the coupling state of the mitochondria. It has already been established that, in the presence of pyruvate/malate, BAT mitochondria are coupled by faf-BSA (fatty-acid-free BSA) and GDP, leading to an increase in ATP synthesis and mitochondrial membrane potential along with simultaneous decreases in both the rates of respiration and heat production. Oleate restores the uncoupled state, inhibiting ATP synthesis and increasing the rates of both respiration and heat production. We now show that in the presence of succinate: (i) the rates of uncoupled mitochondria respiration and heat production are five times slower than in the presence of pyruvate/malate; (ii) faf-BSA and GDP accelerate heat and respiration as a result and, in coupled mitochondria, these two rates are accelerated compared with pyruvate/malate; (iii) in spite of the differences in respiration and heat production noted with the two substrates, the membrane potential and the ATP synthesized were the same; and (iv) oleate promoted a decrease in heat production and respiration in coupled mitochondria, an effect different from that observed using pyruvate/malate. These effects are not related to the production of ROS (reactive oxygen species). We suggest that succinate could stimulate a new route to heat production in BAT mitochondria.

  8. Panax red ginseng extract regulates energy expenditures by modulating PKA dependent lipid mobilization in adipose tissue.

    Science.gov (United States)

    Cho, Hae-Mi; Kang, Young-Ho; Yoo, Hanju; Yoon, Seung-Yong; Kang, Sang-Wook; Chang, Eun-Ju; Song, Youngsup

    2014-05-16

    Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue.

    Science.gov (United States)

    Starr, Marlene E; Saito, Mizuki; Evers, B Mark; Saito, Hiroshi

    2015-12-01

    Expression of interleukin-6 (IL-6) upon acute inflammatory stress is significantly augmented by aging in adipose tissue, a major source of this cytokine. In the present study, we examined the mechanism of age-dependent IL-6 overproduction using visceral white adipose tissue from C57BL/6 mice. Upon treatment with lipopolysaccharide (LPS) in vitro, IL-6 was produced by adipose tissue explants, and secreted levels were significantly higher in cultures from aged (24 months) mice compared to young (4 months). Interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα), two inducers of IL-6, were mainly produced by the lungs and spleen rather than adipose tissue in mice after LPS injection. Treatment of adipose explants with physiological levels of IL-1β induced significant age-dependent secretion of IL-6, while treatment with TNFα had little effect, demonstrating an augmented response of adipose tissues to IL-1β in the aged. In vitro experiments utilizing a neutralizing antibody against IL-1β and in vivo experiments utilizing IL-1-receptor-1 deficient mice, confirmed that IL-6 overproduction in the aged is regulated by autocrine/paracrine action of IL-1β which specifically occurs in aged adipose tissues. These findings indicate an elevated inflammatory potential of adipose tissue in the aged and a unique IL-1β-mediated mechanism for IL-6 overproduction, which may impact age-associated vulnerability to acute inflammatory diseases such as sepsis.

  10. The blunted effect of glucose-dependent insulinotropic polypeptide in subcutaneous abdominal adipose tissue in obese subjects is partly reversed by weight loss

    DEFF Research Database (Denmark)

    Asmar, M; Arngrim, N; Simonsen, L.

    2016-01-01

    BACKGROUND: Glucose-dependent insulinotropic polypeptide (GIP) appears to have impaired effect on subcutaneous abdominal adipose tissue metabolism in obese subjects. The aim of the present study was to examine whether weight loss may reverse the impaired effect of GIP on subcutaneous abdominal...... adipose tissue in obese subjects. METHODS: Five obese males participated in a 12-week weight loss program, which consisted of caloric restriction (800 Cal day(-)(1)) followed by 4 weeks of weight-maintenance diet. Before and after weight loss, subcutaneous adipose tissue lipid metabolism was studied...... by conducting regional measurements of arterio-venous plasma concentrations of metabolites and blood flow (adipose tissue blood flow, ATBF) across a segment of the abdominal adipose tissue in the fasting state and during GIP infusion (1.5 pmol kg(-)(1 )min(-)(1)) in combination with a hyperinsulinemic...

  11. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    Science.gov (United States)

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.

  12. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way.

    Science.gov (United States)

    Wang, Shan; Wang, Xiuchao; Ye, Zichen; Xu, Chengming; Zhang, Ming; Ruan, Banjun; Wei, Ming; Jiang, Yinghao; Zhang, Ying; Wang, Li; Lei, Xiaoying; Lu, Zifan

    2015-10-16

    Brown adipose tissue converts energy from food into heat via the mitochondrial uncoupling protein UCP1, defending against cold. In some conditions, inducible 'brown-like' adipocytes, also known as beige adipocytes, can develop within white adipose tissue (WAT). These beige adipocytes have characteristics similar to classical brown adipocytes and thus can burn lipids to produce heat. In the current study, we demonstrated that curcumin (50 or 100 mg/kg/day) decreased bodyweight and fat mass without affecting food intake in mice. We further demonstrated that curcumin improves cold tolerance in mice. This effect was possibly mediated by the emergence of beige adipocytes and the increase of thermogenic gene expression and mitochondrial biogenesis in inguinal WAT. In addition, curcumin promotes β3AR gene expression in inguinal WAT and elevates the levels of plasma norepinephrine, a hormone that can induce WAT browning. Taken together, our data suggest that curcumin can potentially prevent obesity by inducing browning of inguinal WAT via the norepinephrine-β3AR pathway.

  13. Bioengineering Beige Adipose Tissue Therapeutics.

    Science.gov (United States)

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  14. Adipose tissue lipolysis.

    Science.gov (United States)

    Kolditz, Catherine-Ines; Langin, Dominique

    2010-07-01

    Adipose tissue lipolysis is a critical pathway for the maintenance of energy homeostasis through the degradation of triglycerides and the release of fatty acids into the circulation. The understanding of the cellular factors regulating triglyceride hydrolysis and the metabolic function of lipases has considerably expanded in the last few years, revealing an unexpected complexity. This review aims at describing recent discoveries related to the lipolytic pathway and its regulatory mechanisms. Considerable progress has been made in understanding the role and the mechanisms of activation of the lipolytic enzymes. Recent discoveries have dramatically altered the view of adipose tissue lipolysis and highlighted the importance of additional molecular actors in regulating this process. Catecholamines, natriuretic peptides, and insulin are considered to be the major regulators of lipolysis in humans. However, autocrine/paracrine factors such as metabolites and prostaglandins may also participate in its regulation. The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity. Unraveling the molecular events occurring during regulation of lipolysis may lead to novel therapeutic targets.

  15. Adipose tissue remodeling and obesity

    National Research Council Canada - National Science Library

    Sun, Kai; Kusminski, Christine M; Scherer, Philipp E

    2011-01-01

    To fulfill its role as the major energy-storing tissue, adipose has several unique properties that cannot be seen in any other organ, including an almost unlimited capacity to expand in a non-transformed state...

  16. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    -adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE(2) receptor antagonists implicated EP(4) as a main PGE(2) receptor, and injection of the stable PGE(2) analog (EP(3/4) agonist) 16,16 dm PGE(2) induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity......BACKGROUND: The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that cyclooxygenase (COX) activity and prostaglandin E(2) (PGE(2)) are crucially involved in induction of UCP1...... attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...

  17. Adipose tissues and thyroid hormones

    Directory of Open Access Journals (Sweden)

    Maria-Jesus eObregon

    2014-12-01

    Full Text Available The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases. The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. Brite or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2 and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that activate UCP1 in WAT and

  18. Adipose tissues and thyroid hormones.

    Science.gov (United States)

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. "Brite" or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT and

  19. Secretory function of adipose tissue.

    Science.gov (United States)

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  20. The blunted effect of glucose-dependent insulinotropic polypeptide in subcutaneous abdominal adipose tissue in obese subjects is partly reversed by weight loss.

    Science.gov (United States)

    Asmar, M; Arngrim, N; Simonsen, L; Asmar, A; Nordby, P; Holst, J J; Bülow, J

    2016-05-02

    Glucose-dependent insulinotropic polypeptide (GIP) appears to have impaired effect on subcutaneous abdominal adipose tissue metabolism in obese subjects. The aim of the present study was to examine whether weight loss may reverse the impaired effect of GIP on subcutaneous abdominal adipose tissue in obese subjects. Five obese males participated in a 12-week weight loss program, which consisted of caloric restriction (800 Cal day(-)(1)) followed by 4 weeks of weight-maintenance diet. Before and after weight loss, subcutaneous adipose tissue lipid metabolism was studied by conducting regional measurements of arterio-venous plasma concentrations of metabolites and blood flow (adipose tissue blood flow, ATBF) across a segment of the abdominal adipose tissue in the fasting state and during GIP infusion (1.5 pmol kg(-)(1 )min(-)(1)) in combination with a hyperinsulinemic-hyperglycemic clamp. After weight loss (7.5±0.8 kg), glucose tolerance and insulin sensitivity increased significantly as expected. No significant differences were seen in basal ATBF before (1.3±0.4 ml min(-1) 100 g tissue(-1)) and after weight loss (2.1±0.4 ml min(-1) 100 g tissue)(-1); however, a tendency to increase was seen. After weight loss, GIP infusion increased ATBF significantly (3.2±0.1 ml min(-1) 100 g tissue(-1)) whereas there was no increase before weight loss. Triacylglycerol (TAG) uptake did not change after weight loss. Baseline free fatty acid (FFA) and glycerol output increased significantly after weight loss, Pafter weight loss. Weight loss increased glucose uptake and decreased FFA/glycerol ratio during the clamp period, Pweight loss, induced by calorie restriction, improves the blunted effect of GIP on subcutaneous abdominal adipose tissue metabolism.

  1. Sex dimorphism and depot differences in adipose tissue function.

    Science.gov (United States)

    White, Ursula A; Tchoukalova, Yourka D

    2014-03-01

    Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as type 2 diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal-femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex-dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  2. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  3. Glucose transport in adipose tissue

    NARCIS (Netherlands)

    Schoonen, AJM; Wientjes, KJC

    2005-01-01

    Based on the well-known extraction equation and the histology of subcutaneous adipose tissue, transport of glucose from capillary to microdialysis probe is described. Results are evaluated of previous studies by our group and others. Arguments are presented for a simple scheme in which the mean

  4. Hypothalamic control of adipose tissue.

    Science.gov (United States)

    Stefanidis, A; Wiedmann, N M; Adler, E S; Oldfield, B J

    2014-10-01

    A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.

  5. Adipose tissue, diet and aging.

    Science.gov (United States)

    Zamboni, Mauro; Rossi, Andrea P; Fantin, Francesco; Zamboni, Giulia; Chirumbolo, Salvatore; Zoico, Elena; Mazzali, Gloria

    2014-01-01

    Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.

  6. High-fat diet feeding induces sex-dependent changes in inflammatory and insulin sensitivity profiles of rat adipose tissue.

    Science.gov (United States)

    Estrany, Maria E; Proenza, Ana M; Gianotti, Magdalena; Lladó, Isabel

    2013-08-01

    The aim of the study was to determine, in rats of both sexes, the effect of HF diet feeding on the expression of adipokines involved in inflammatory status and insulin sensitivity and on the levels of proteins involved in lipid handling of retroperitoneal adipose tissue. Eight-week-old Wistar rats of both sexes were fed a control diet (2.9% w/w fat) or an HF diet (30% w/w fat) for 14 weeks. Adiponectin, peroxisome proliferator-activated receptor γ and inflammatory marker mRNA levels were analyzed by real-time polymerase chain reaction. Levels of insulin receptor, glucose transporter 4, carnitine palmitoyltransferase 1, fatty acid synthase, hormone-sensitive lipase and lipoprotein lipase were determined by Western blot. HF diet feeding did not induce hyperphagia or body weight gain but did promote an increase in adiposity although only in male rats. HF diet impaired glucose tolerance and the expression of inflammatory and insulin sensitivity markers in adipose tissue of male rats, but not in female rats. Male rats seem to be more prone to disorders associated with an unbalanced composition of the diet, even in the absence of hyperphagia. In contrast, female rats counteract excessive fat intake by improving their ability to use lipid fuels, which limits adiposity and maintains insulin sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Differential regulation of atrial natriuretic peptide- and adrenergic receptor-dependent lipolytic pathways in human adipose tissue.

    Science.gov (United States)

    Moro, Cédric; Polak, Jan; Richterova, Blanka; Sengenès, Coralie; Pelikanova, Terezie; Galitzky, Jean; Stich, Vladimir; Lafontan, Max; Berlan, Michel

    2005-01-01

    The aim of the study was to investigate the regulation affecting the recently described atrial natriuretic peptide (ANP)-dependent lipolytic pathway in comparison with the adrenergic lipolytic cascade. We studied in vivo the effect of a euglycemic-hyperinsulinemic clamp on the changes occurring in the extracellular glycerol concentration (EGC) of subcutaneous adipose tissue (SCAT) during ANP or epinephrine perfusion in a microdialysis probe. Homologous desensitization and the incidence of hyperinsulinemia on the ANP- and catecholaminergic-dependent control of lipolysis were also investigated in vitro on fat cells from SCAT. When perfused in SCAT, epinephrine and ANP promoted an increase in EGC; the EGC increase was significantly lower during the clamp. The reduction of epinephrine-induced lipolysis was limited (18%) when phentolamine (an alpha(2)-adrenergic receptor [AR] antagonist) was perfused together with epinephrine. Unlike the effect of epinephrine, the response to ANP observed during the second perfusion was reduced by 32%. The increase in extracellular guanosine 3',5' -cyclic monophosphate concentration, which reflects ANP activity, was also reduced during the second perfusion. Desensitization of the lipolytic effects of ANP was observed in vitro after a 2-hour period of recovery, while the effects of alpha(2)-AR agonist or of epinephrine were unchanged. Insulin was without any effect on ANP-induced lipolysis and alpha(2)-AR-mediated antilipolysis, while it reduced beta-AR-induced lipolysis. The ANP-dependent lipolytic pathway undergoes desensitization in vitro and in situ. Insulin had no inhibitory effect on either ANP- or alpha(2)-AR-dependent pathways, while it counteracted the beta-AR pathway.

  8. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes.

    Science.gov (United States)

    Corvera, Silvia; Gealekman, Olga

    2014-03-01

    The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  9. Quantification of adipose tissue insulin sensitivity.

    Science.gov (United States)

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. Copyright © 2016 American Federation for Medical Research.

  10. Adipose Tissue Immunity and Cancer

    Directory of Open Access Journals (Sweden)

    Victoria eCatalan

    2013-10-01

    Full Text Available Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete proinflammatory adipokines and cytokines providing a microenvironment favourable for tumour growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching towards M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumour growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumour cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumour microenvironment with more sophisticated and selective anti-tumoural drugs.

  11. Hounsfield unit dynamics of adipose tissue and non-adipose soft tissue in growing pigs

    DEFF Research Database (Denmark)

    Mcevoy, Fintan; Madsen, Mads T.; Strathe, Anders Bjerring;

    2008-01-01

    Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs.......Changes in the Hounsfield Unit value of adipose tissue and of no-adipose soft tissue during growth are poorly documented. This study examines the HU of these tissues in growing pigs....

  12. Adipose tissues as endocrine target organs.

    Science.gov (United States)

    Lanthier, Nicolas; Leclercq, Isabelle A

    2014-08-01

    In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.

  13. Macrophage elastase suppresses white adipose tissue expansion with cigarette smoking.

    Science.gov (United States)

    Tsuji, Takao; Kelly, Neil J; Takahashi, Saeko; Leme, Adriana S; Houghton, A McGarry; Shapiro, Steven D

    2014-12-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots.

  14. The Adipose Tissue in Farm Animals

    DEFF Research Database (Denmark)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura

    2014-01-01

    and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance...... in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal...... and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in farm animal adipose tissue proteomics, mainly in cattle and pigs, but also in poultry, i.e. chicken and in farmed fish. Proteomics...

  15. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations

    OpenAIRE

    Fowler, Jason D.; Krueth, Stacy B.; Bernlohr, David A.; Katz, Stephen A.

    2009-01-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two ...

  16. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    Science.gov (United States)

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  17. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn infant

  18. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn

  19. Adipose tissue: cell heterogeneity and functional diversity.

    Science.gov (United States)

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  20. Development and differentiation of adipose tissue

    Directory of Open Access Journals (Sweden)

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  1. Mitochondria and endocrine function of adipose tissue.

    Science.gov (United States)

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  2. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  3. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas;

    2010-01-01

    -adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE(2) receptor antagonists implicated EP(4) as a main PGE(2) receptor, and injection of the stable PGE(2) analog (EP(3/4) agonist) 16,16 dm PGE(2) induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity......BACKGROUND: The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that cyclooxygenase (COX) activity and prostaglandin E(2) (PGE(2)) are crucially involved in induction of UCP1...... expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed beta...

  4. Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue.

    Science.gov (United States)

    Pulido, Marina R; Rabanal-Ruiz, Yoana; Almabouada, Farid; Díaz-Ruiz, Alberto; Burrell, María A; Vázquez, María J; Castaño, Justo P; Kineman, Rhonda D; Luque, Raúl M; Diéguez, Carlos; Vázquez-Martínez, Rafael; Malagón, María M

    2013-02-01

    There is increasing evidence that proteins associated with lipid droplets (LDs) play a key role in the coordination of lipid storage and mobilization in adipocytes. The small GTPase, RAB18, has been recently identified as a novel component of the protein coat of LDs and proposed to play a role in both β-adrenergic stimulation of lipolysis and insulin-induced lipogenesis in 3T3-L1 adipocytes. In order to better understand the role of Rab18 in the regulation of lipid metabolism in adipocytes, we evaluated the effects of age, fat location, metabolic status, and hormonal milieu on Rab18 expression in rodent white adipose tissue (WAT). Rab18 mRNA was undetectable at postnatal day 15 (P15), but reached adult levels by P45, in both male and female rats. In adult rats, Rab18 immunolocalized around LDs, as well as within the cytoplasm of mature adipocytes. A weak Rab18 signal was also detected in the stromal-vascular fraction of WAT. In mice, fasting significantly increased, though with a distinct time-course pattern, Rab18 mRNA and protein levels in visceral and subcutaneous WAT. The expression of Rab18 was also increased in visceral and subcutaneous WAT of obese mice (diet-induced, ob/ob, and New Zealand obese mice) compared with lean controls. Rab18 expression in rats was unaltered by castration, adrenalectomy, or GH deficiency but was increased by hypophysectomy, as well as hypothyroidism. When viewed together, our results suggest the participation of Rab18 in the regulation of lipid processing in adipose tissue under both normal and pathological conditions.

  5. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  6. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik

    2002-01-01

    Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous...... exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue...... adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest...

  7. Imaging white adipose tissue with confocal microscopy.

    Science.gov (United States)

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents.

  8. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations.

    Science.gov (United States)

    Fowler, Jason D; Krueth, Stacy B; Bernlohr, David A; Katz, Stephen A

    2009-02-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two RAS components, renin and angiotensinogen (AGT), to determine the influence of their plasma concentrations on adipose and cardiac tissue levels in both perfused (plasma removed) and nonperfused samples. Variation of plasma RAS components was accomplished by four treatment groups: normal, DOCA salt, bilateral nephrectomy, and losartan. Adipose and cardiac tissue AGT concentrations correlated positively with plasma values. Perfusion of adipose tissue decreased AGT concentrations by 11.1%, indicating that adipose tissue AGT was in equilibrium with plasma. Cardiac tissue renin levels positively correlated with plasma renin concentration for all treatments. In contrast, adipose tissue renin levels did not correlate with plasma renin, with the exception of extremely high plasma renin concentrations achieved in the losartan-treated group. These results suggest that adipose tissue may control its own local renin concentration independently of plasma renin as a potential mechanism for maintaining a functional local adipose RAS.

  9. Temperature dependence of the fluorescence spectrum of ZnCdS nanoparticles introduced into adipose tissue in vitro

    Science.gov (United States)

    Yanina, I. Y.; Volkova, E. K.; Popov, A. P.; Bykov, A. V.; Kochubey, V. I.; Skaptsov, A. A.; Konyukhova, J. G.; Tuchin, V. V.

    2015-07-01

    Temperature dependence of the fluorescence spectrum of ZnCdS nanoparticles introduced into 200-500 μm thick fat tissue slices in vitro was studied. The heating of the samples from the room to physiological temperature results in stronger (in depth) and faster tissue morphology change. This can help to detect location of nanoparticles during fat cell photothermolysis.

  10. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  11. In vivo effect of glucose-dependent insulinotropic peptide (GIP) on the gene expression of calcitonin peptides in human subcutaneous adipose tissue.

    Science.gov (United States)

    Pivovarova, Olga; Gögebakan, Ozlem; Osterhoff, Martin A; Nauck, Michael; Pfeiffer, Andreas F H; Rudovich, Natalia

    2012-11-10

    Increased plasma levels of calcitonin gene-related peptide-I (CGRP-I) and procalcitonin (Pro-CT) (both also named calcitonin peptides (CT peptides)) are associated with obesity and systemic inflammation. Glucose-dependent insulinotropic polypeptide (GIP), a nutrient-dependent incretin hormone, was recently found to induce CGRP-I and CT expression in human adipocytes in vitro. However, a physiological relevance of a possible interaction between GIP and CT peptides has not yet been studied. In this study, we analyzed the effect of GIP on the expression of CGRP-I and CT mRNA in human subcutaneous adipose tissue within a randomized, controlled trial. Seventeen male obese subjects were infused with GIP [2.0 pmol kg(-1) min(-1) for 240 min] or placebo, either in the fasting state, during euglycemic-hyperinsulinemic (EC) or hyperglycemic-hyperinsulinemic clamps (HC). The CGRP-I gene expression was detected in all investigated adipose tissue samples, whereas very low CT expression was found in only 8 out of 116 analyzed samples. No significant influence of either GIP or glucose and insulin infusions on the CGRP-I and CT expression was observed in any of the individual experiments (GIP infusion, EC and HC) or in the combined analysis of all experiments with and without GIP. Furthermore, CGRP-I expression was not correlated with plasma GIP level before or after 240 min of infusions or clamps. In contrast to in vitro data, an acute application of GIP has no effect on mRNA expression of CT peptides in subcutaneous adipose tissue of obese humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. In vitro and in vivo impairment of alpha2-adrenergic receptor-dependent antilipolysis by fatty acids in human adipose tissue.

    Science.gov (United States)

    Gesta, S; Hejnova, J; Berlan, M; Daviaud, D; Crampes, F; Stich, V; Valet, P; Saulnier-Blache, J S

    2001-12-01

    The aim of the present study was to study the influence of fatty acids on the adrenergic control of lipolysis both in vitro and in vivo. Human subcutaneous adipose tissue explants were cultured for 48 h in the presence of 100 microM bromopalmitate (BrPal), and lipolysis was measured in isolated adipocytes. In control conditions, beta-AR-dependent activation of lipolysis by epinephrine was almost undetectable, and could be fully restored by pharmacological blockade of alpha2-AR-dependent antilipolysis. After BrPal treatment, epinephrine became fully lipolytic and was no longer influenced by alpha2-AR-blockade. Radioligand binding analysis revealed that BrPal treatment led to a significant reduction in the coupling of alpha2-AR to G proteins. In parallel, a chronic and significant increase in plasma fatty acids resulting from a 4-day high-fat diet (HFD) was accompanied by an impairment of the amplifying effect of the alpha2-AR antagonist phentolamine on exercise-induced lipolysis (measured in the subcutaneous adipose tissue with the use of a microdialysis probe) normally observed after a low-fat diet. In conclusion, in vitro and in vivo studies showed that fatty acids impair alpha2-AR-dependent antilipolysis.

  13. IL-21 is a major negative regulator of IRF4-dependent lipolysis affecting Tregs in adipose tissue and systemic insulin sensitivity.

    Science.gov (United States)

    Fabrizi, Marta; Marchetti, Valentina; Mavilio, Maria; Marino, Arianna; Casagrande, Viviana; Cavalera, Michele; Moreno-Navarrete, Josè Maria; Mezza, Teresa; Sorice, Gian Pio; Fiorentino, Loredana; Menghini, Rossella; Lauro, Renato; Monteleone, Giovanni; Giaccari, Andrea; Fernandez Real, José Manuel; Federici, Massimo

    2014-06-01

    Obesity elicits immune cell infiltration of adipose tissue provoking chronic low-grade inflammation. Regulatory T cells (Tregs) are specifically reduced in adipose tissue of obese animals. Since interleukin (IL)-21 plays an important role in inducing and maintaining immune-mediated chronic inflammatory processes and negatively regulates Treg differentiation/activity, we hypothesized that it could play a role in obesity-induced insulin resistance. We found IL-21 and IL-21R mRNA expression upregulated in adipose tissue of high-fat diet (HFD) wild-type (WT) mice and in stromal vascular fraction from human obese subjects in parallel to macrophage and inflammatory markers. Interestingly, a larger infiltration of Treg cells was seen in the adipose tissue of IL-21 knockout (KO) mice compared with WT animals fed both normal diet and HFD. In a context of diet-induced obesity, IL-21 KO mice, compared with WT animals, exhibited lower body weight, improved insulin sensitivity, and decreased adipose and hepatic inflammation. This metabolic phenotype is accompanied by a higher induction of interferon regulatory factor 4 (IRF4), a transcriptional regulator of fasting lipolysis in adipose tissue. Our data suggest that IL-21 exerts negative regulation on IRF4 and Treg activity, developing and maintaining adipose tissue inflammation in the obesity state. © 2014 by the American Diabetes Association.

  14. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity.

    Science.gov (United States)

    Hatem, Stéphane N; Redheuil, Alban; Gandjbakhch, Estelle

    2016-04-01

    The amount of adipose tissue that accumulates around the atria is associated with the risk, persistence, and severity of atrial fibrillation (AF). A strong body of clinical and experimental evidence indicates that this relationship is not an epiphenomenon but is the result of complex crosstalk between the adipose tissue and the neighbouring atrial myocardium. For instance, epicardial adipose tissue is a major source of adipokines, inflammatory cytokines, or reactive oxidative species, which can contribute to the fibrotic remodelling of the atrial myocardium. Fibro-fatty infiltrations of the subepicardium could also contribute to the functional disorganization of the atrial myocardium. The observation that obesity is associated with distinct structural and functional remodelling of the atria has opened new perspectives of treating AF substrate with aggressive risk factor management. Advances in cardiac imaging should lead to an improved ability to visualize myocardial fat depositions and to localize AF substrates.

  15. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    Science.gov (United States)

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  16. Adipose tissue as an endocrine organ.

    Science.gov (United States)

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling.

  17. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  18. Brown adipose tissue and its therapeutic potential.

    Science.gov (United States)

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  19. Adipose tissue and adipocyte dysregulation.

    Science.gov (United States)

    Lafontan, M

    2014-02-01

    Obesity-associated insulin resistance is a complex disorder involving a number of candidate molecules, pathways and transduction systems possessing potential causal actions. Inflammation in adipose tissue (AT) is one mechanism proposed to explain the development of insulin resistance, while identification of factors that lead to or cause AT dysfunction when it reaches its limit of expansion represents an important challenge. Pathological expansion of AT is characterized by changes in its blood flow, and the presence of enlarged and dysfunctional adipocytes that begin an inflammatory campaign of altered adipokine and cytokine secretions. Adipocyte senescence, necrosis and death are associated with increased immune cell and macrophage infiltration of AT in obesity. This can boost inflammation and reinforce fat cell dysfunction and death. In addition, pathological fat mass expansion is also related to limited recruitment of fat cell progenitors able to proliferate and differentiate into healthy small fat cells to compensate for cell death and preserve adipocyte numbers. Limiting vascular development and enhancing fibrotic processes worsen inflammation towards chronic irreversibility. The AT expandability hypothesis states that failure of AT expansion is one of the key factors linking positive energy balance and cardiometabolic risks, not obesity per se. Besides the usual treatment of obesity based on behavioral approaches (specific dietary/nutritional approaches together with increased physical activity), a number of questions remain concerning the possible recovery of metabolic health after inflammation-preventing interventions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. White adipose tissue: getting nervous.

    Science.gov (United States)

    Fliers, E; Kreier, F; Voshol, P J; Havekes, L M; Sauerwein, H P; Kalsbeek, A; Buijs, R M; Romijn, J A

    2003-11-01

    Neuroendocrine research has altered the traditional perspective of white adipose tissue (WAT) as a passive store of triglycerides. In addition to fatty acids, WAT produces many hormones and can therefore be designated as a traditional endocrine gland actively participating in the integrative physiology of fuel and energy metabolism, eating behaviour and the regulation of hormone secretion and sensitivity. WAT is controlled by humoral factors, para- and intracrine factors and by neural regulation. Sympathetic nerve fibres innervate WAT and stimulate lipolysis, leading to the release of glycerol and free fatty acids. In addition, recent research in rats has clearly shown a functional parasympathetic innervation of WAT. There appears to be a distinct somatotopy within the parasympathetic nuclei: separate sets of autonomic neurones in the brain stem innervate either the visceral or the subcutaneous fat compartment. We therefore propose that the central nervous system (CNS) plays a major role in the hitherto unexplained regulation of body fat distribution. Parasympathectomy induces insulin resistance with respect to glucose and fatty acid uptake in the innervated fat depot and has selective effects on local hormone synthesis. Thus, the CNS is involved not only in the regulation of hormone production by WAT, but also in its hormone sensitivity. The developments in this research area are likely to increase our insights in the pathogenesis of metabolic disorders such as hypertriglyceridemia, diabetes mellitus type 2 and lipodystrophy syndromes.

  1. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues.

    Science.gov (United States)

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.

  2. Adipose Tissue Remodeling as Homeostatic Inflammation

    Directory of Open Access Journals (Sweden)

    Michiko Itoh

    2011-01-01

    Full Text Available Evidence has accumulated indicating that obesity is associated with a state of chronic, low-grade inflammation. Obese adipose tissue is characterized by dynamic changes in cellular composition and function, which may be referred to as “adipose tissue remodeling”. Among stromal cells in the adipose tissue, infiltrated macrophages play an important role in adipose tissue inflammation and systemic insulin resistance. We have demonstrated that a paracrine loop involving saturated fatty acids and tumor necrosis factor-α derived from adipocytes and macrophages, respectively, aggravates obesity-induced adipose tissue inflammation. Notably, saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 complex, thereby activating macrophages. Such a sustained interaction between endogenous ligands derived from parenchymal cells and pathogen sensors expressed in stromal immune cells should lead to chronic inflammatory responses ranging from the basal homeostatic state to diseased tissue remodeling, which may be referred to as “homeostatic inflammation”. We, therefore, postulate that adipose tissue remodeling may represent a prototypic example of homeostatic inflammation. Understanding the molecular mechanism underlying homeostatic inflammation may lead to the identification of novel therapeutic strategies to prevent or treat obesity-related complications.

  3. Immunological contributions to adipose tissue homeostasis.

    Science.gov (United States)

    DiSpirito, Joanna R; Mathis, Diane

    2015-09-01

    Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of "adipocyte" encompasses three primary types - white, brown, and beige - with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.

  4. Aetiological factors behind adipose tissue inflammation

    DEFF Research Database (Denmark)

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  5. How to Measure Adipose Tissue Insulin Sensitivity?

    DEFF Research Database (Denmark)

    Søndergaard, Esben; Espinosa De Ycaza, Ana Elena; Morgan-Bathke, Maria

    2017-01-01

    Background: Adipose tissue insulin resistance may be a proximate cause of hepatic and skeletal muscle insulin resistance by releasing excess FFA. However, no consensus exists on how to quantify adipose tissue insulin sensitivity. We compared three methods for measuring adipose tissue insulin...... sensitivity ranging from the complex multistep pancreatic clamp technique to the simple adipose tissue insulin resistance index (Adipo-IR). Methods: We completed studies of 25 adults with a wide range of insulin sensitivity. The insulin dose resulting in a 50% suppression of palmitate flux (IC50) was measured...... using both a multistep pancreatic clamp and a one-step hyperinsulinemic-euglycemic clamp. Palmitate kinetics were measured using a continuous infusion of [U-13C]palmitate. Adipo-IR was calculated from fasting insulin and fasting FFA concentrations. Results: Adipo-IR was reproducible [sample CV=10...

  6. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    Science.gov (United States)

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  7. [Kidney, adipose tissue, adipocytes--what's new?].

    Science.gov (United States)

    Lafontan, Max

    2011-04-01

    Increased evidence suggests that obesity-related glomerulopathy and chronic kidney diseases should be identified as isolated complications of obesity. It is questioned if the numerous adipose tissue productions could play a role in the initiation/maintenance of such kidney diseases. This review will provide a sum-up of recent advances on fat cell metabolism and adipose tissue physiology. The adipose tissue behaves as an endocrine organ with multiple activities. It is secreting hormones (leptin, adiponectin, apelin) and numerous factors with autocrine, paracrine and systemic effects. These secretions are coming from adipocytes themselves or from cells present in the stroma-vascular fraction of the adipose tissue. When expanding, the adipose tissue of the obese is infiltrated by immune cells such as macrophages and lymphocytes; the role of which is not fully clarified. An attempt will be done to delineate if alterations of lipid storage/fatty acid release or of the secretion potencies of adipose tissue could contribute to kidney lipotoxicity and other chronic kidney diseases described in the obese. Copyright © 2010 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  8. How to Measure Adipose Tissue Insulin Sensitivity.

    Science.gov (United States)

    Søndergaard, Esben; Espinosa De Ycaza, Ana Elena; Morgan-Bathke, Maria; Jensen, Michael D

    2017-04-01

    Adipose tissue insulin resistance may cause hepatic and skeletal muscle insulin resistance by releasing excess free fatty acids (FFAs). Because no consensus exists on how to quantify adipose tissue insulin sensitivity we compared three methods for measuring adipose tissue insulin sensitivity: the single step insulin clamp, the multistep pancreatic clamp, and the adipose tissue insulin resistance index (Adipo-IR). We studied insulin sensitivity in 25 adults by measuring the insulin concentration resulting in 50% suppression of palmitate flux (IC50) using both a multistep pancreatic clamp and a one-step hyperinsulinemic-euglycemic clamp. Palmitate kinetics were measured using a continuous infusion of [U-13C]palmitate. Adipo-IR was calculated from fasting insulin and fasting FFA concentrations. Adipo-IR was reproducible (sample coefficient of variability, 10.0%) and correlated with the IC50 measured by the multistep pancreatic clamp technique (r, 0.86; P adipose tissue insulin sensitivity. However, age and physical fitness systematically affect the predictive values. Although Adipo-IR is suitable for larger population studies, the multistep pancreatic clamp technique is probably needed for mechanistic studies of adipose tissue insulin action.

  9. Adipose tissue plasticity from WAT to BAT and in between.

    Science.gov (United States)

    Lee, Yun-Hee; Mottillo, Emilio P; Granneman, James G

    2014-03-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  10. Vitamin D signalling in adipose tissue.

    Science.gov (United States)

    Ding, Cherlyn; Gao, Dan; Wilding, John; Trayhurn, Paul; Bing, Chen

    2012-12-14

    Vitamin D deficiency and the rapid increase in the prevalence of obesity are both considered important public health issues. The classical role of vitamin D is in Ca homoeostasis and bone metabolism. Growing evidence suggests that the vitamin D system has a range of physiological functions, with vitamin D deficiency contributing to the pathogenesis of several major diseases, including obesity and the metabolic syndrome. Clinical studies have shown that obese individuals tend to have a low vitamin D status, which may link to the dysregulation of white adipose tissue. Recent studies suggest that adipose tissue may be a direct target of vitamin D. The expression of both the vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) genes has been shown in murine and human adipocytes. There is evidence that vitamin D affects body fat mass by inhibiting adipogenic transcription factors and lipid accumulation during adipocyte differentiation. Some recent studies demonstrate that vitamin D metabolites also influence adipokine production and the inflammatory response in adipose tissue. Therefore, vitamin D deficiency may compromise the normal metabolic functioning of adipose tissue. Given the importance of the tissue in energy balance, lipid metabolism and inflammation in obesity, understanding the mechanisms of vitamin D action in adipocytes may have a significant impact on the maintenance of metabolic health. In the present review, we focus on the signalling role of vitamin D in adipocytes, particularly the potential mechanisms through which vitamin D may influence adipose tissue development and function.

  11. Brown Adipose Tissue Growth and Development

    Directory of Open Access Journals (Sweden)

    Michael E. Symonds

    2013-01-01

    Full Text Available Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  12. Brown adipose tissue growth and development.

    Science.gov (United States)

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  13. Docosahexaenoic acid attenuates adipose tissue angiogenesis and insulin resistance in high fat diet-fed middle-aged mice via a sirt1-dependent mechanism.

    Science.gov (United States)

    Luo, Xiaoqin; Jia, Ru; Yao, Qinyu; Xu, Yirui; Luo, Zhenyu; Luo, Xiao; Wang, Nanping

    2016-04-01

    Docosahexaenoic acid (DHA; C22: 6, n-3), one of PUFAs, exerts beneficial effects on inflammatory diseases, obesity and diabetes. Angiogenesis in adipose tissue has a major role in the development of obesity and its related metabolic complications. Inhibition of angiogenesis is an emerging strategy for the novel treatment for obesity. Thus, we examined the effect of DHA on angiogenesis in adipose tissues and investigated the underlying mechanisms. In high-fat diet (HFD) fed middle-aged mice, DHA inhibited the macrophage-derived inflammation and angiogenesis in adipose tissues, reduced adipocyte size and body fat composition and improved insulin sensitivity. Moreover, DHA reversed the HFD-induced reduction of Sirt1 in adipose tissues. Interestingly, the effects of DHA were attenuated by lentivirus-mediated Sirt1 knockdown with increasing expression of markers of macrophage-derived inflammation and angiogenesis, associated with impaired insulin sensitivity. Overall, our findings demonstrated that DHA reduced angiogenesis of adipose tissues and attenuated insulin resistance in HFD-induced obese mice via the activation of Sirt1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    Science.gov (United States)

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  15. Insulin effects in muscle and adipose tissue.

    Science.gov (United States)

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Maratou, Eirini; Raptis, Sotirios A

    2011-08-01

    The major effects of insulin on muscle and adipose tissue are: (1) Carbohydrate metabolism: (a) it increases the rate of glucose transport across the cell membrane, (b) it increases the rate of glycolysis by increasing hexokinase and 6-phosphofructokinase activity, (c) it stimulates the rate of glycogen synthesis and decreases the rate of glycogen breakdown. (2) Lipid metabolism: (a) it decreases the rate of lipolysis in adipose tissue and hence lowers the plasma fatty acid level, (b) it stimulates fatty acid and triacylglycerol synthesis in tissues, (c) it increases the uptake of triglycerides from the blood into adipose tissue and muscle, (d) it decreases the rate of fatty acid oxidation in muscle and liver. (3) Protein metabolism: (a) it increases the rate of transport of some amino acids into tissues, (b) it increases the rate of protein synthesis in muscle, adipose tissue, liver, and other tissues, (c) it decreases the rate of protein degradation in muscle (and perhaps other tissues). These insulin effects serve to encourage the synthesis of carbohydrate, fat and protein, therefore, insulin can be considered to be an anabolic hormone. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Adipose Tissue Dysfunction in Nascent Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Andrew A. Bremer

    2013-01-01

    Full Text Available The metabolic syndrome (MetS confers an increased risk for both type 2 diabetes mellitus (T2DM and cardiovascular disease (CVD. Moreover, studies on adipose tissue biology in nascent MetS uncomplicated by T2DM and/or CVD are scanty. Recently, we demonstrated that adipose tissue dysregulation and aberrant adipokine secretion contribute towards the syndrome’s low-grade chronic proinflammatory state and insulin resistance. Specifically, we have made the novel observation that subcutaneous adipose tissue (SAT in subjects with nascent MetS has increased macrophage recruitment with cardinal crown-like structures. We have also shown that subjects with nascent MetS have increased the levels of SAT-secreted adipokines (IL-1, IL-6, IL-8, leptin, RBP-4, CRP, SAA, PAI-1, MCP-1, and chemerin and plasma adipokines (IL-1, IL-6, leptin, RBP-4, CRP, SAA, and chemerin, as well as decreased levels of plasma adiponectin and both plasma and SAT omentin-1. The majority of these abnormalities persisted following correction for increased adiposity. Our data, as well as data from other investigators, thus, highlight the importance of subcutaneous adipose tissue dysfunction in subjects with MetS and its contribution to the proinflammatory state and insulin resistance. This adipokine profile may contribute to increased insulin resistance and low-grade inflammation, promoting the increased risk of T2DM and CVD.

  17. Lipophilic Micronutrients and Adipose Tissue Biology

    Directory of Open Access Journals (Sweden)

    Franck Tourniaire

    2012-11-01

    Full Text Available Lipophilic micronutrients (LM constitute a large family of molecules including several vitamins (A, D, E, K and carotenoids. Their ability to regulate gene expression is becoming increasingly clear and constitutes an important part of nutrigenomics. Interestingly, adipose tissue is not only a main storage site for these molecules within the body, but it is also subjected to the regulatory effects of LM. Indeed, several gene regulations have been described in adipose tissue that could strongly impact its biology with respect to the modulation of adipogenesis, inflammatory status, or energy homeostasis and metabolism, among others. The repercussions in terms of health effects of such regulations in the context of obesity and associated pathologies represent an exciting and emerging field of research. The present review will focus on the regulatory effects of vitamin A, D, E and K as well as carotenoids on adipose tissue biology and physiology, notably in the context of obesity and associated disorders.

  18. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  19. The Fractionation of Adipose Tissue (FAT) procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A; Stevens, Hieronymus P; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  20. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  1. The endocrine function of adipose tissue

    Directory of Open Access Journals (Sweden)

    Wagner de Jesus Pinto

    2014-09-01

    Full Text Available Currently it is considered the adipose tissue as a dynamic structure involved in many physiological and metabolic processes, produces and releases a variety of active peptides known by the generic name of adipokines that act performing endocrine, paracrine and autocrine. Furthermore, numbers expressed receptors that respond allows the afferent signals from endocrine organs, and also central nervous system. In 1987, the adipose tissue has been identified as the major site of metabolism of steroid hormones, thereafter, in 1994, it was recognized as an endocrine organ and the leptin being an early secretory products identified. In addition other biologically active substances were being isolated, such as adiponectin, resistin, TNF-a, interleukin-6 and others. The adipokines derived from adipose tissue modulate many metabolic parameters such as control of food intake, energy balance and peripheral insulin sensitivity, for example. Thus, the altered secretion of adipokines by adipose tissue may have metabolic effects may present complex relations with the pathophysiological process of obesity, endothelial dysfunction, inflammation, atherosclerosis and Diabetes mellitus. The understanding of the molecular processes occurring in the adipocytes may provide new tools for the treatment of pathophysiological conditions such as, for example, metabolic syndrome, obesity and diabetes mellitus.

  2. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  3. Browning and thermogenic programing of adipose tissue.

    Science.gov (United States)

    Kiefer, Florian W

    2016-08-01

    The view of adipose tissue as solely a fat storing organ has changed significantly over the past two decades with the discoveries of numerous adipocyte-secreted factors, so called adipokines, and their endocrine functions throughout the body. The newest chapter added to this story is the finding that adipose tissue is also a thermogenic organ contributing to energy expenditure through actions of specialized, heat-producing brown or beige adipocytes. In contrast to bone fide brown adipocytes, beige cells develop within white fat depots in response to various stimuli such as prolonged cold exposure, underscoring the great thermogenic plasticity of adipose tissue. The energy dissipating properties of beige and/or brown adipocytes hold great promise as a novel therapeutic concept against obesity and related complications. Hence, identifying the specific thermogenic adipocyte populations in humans and their pathways of activation are key milestones of current metabolism research. Here we will discuss the recent advances in the understanding of the molecular and physiological mechanisms of adipose tissue browning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Does bariatric surgery improve adipose tissue function?

    Science.gov (United States)

    Frikke-Schmidt, H; O'Rourke, R W; Lumeng, C N; Sandoval, D A; Seeley, R J

    2016-09-01

    Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.

  5. [White adipose tissue dysfunction observed in obesity].

    Science.gov (United States)

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  6. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...

  7. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... the basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain...

  8. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Marco Calogero Amato

    2014-01-01

    Full Text Available The Visceral Adiposity Index (VAI has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk.

  9. Sustainable three-dimensional tissue model of human adipose tissue.

    Science.gov (United States)

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  10. The Facial Adipose Tissue: A Revision.

    Science.gov (United States)

    Kruglikov, Ilja; Trujillo, Oscar; Kristen, Quick; Isac, Kerelos; Zorko, Julia; Fam, Maria; Okonkwo, Kasie; Mian, Asima; Thanh, Hyunh; Koban, Konstantin; Sclafani, Anthony P; Steinke, Hanno; Cotofana, Sebastian

    2016-12-01

    Recent advantages in the anatomical understanding of the face have turned the focus toward the subcutaneous and deep facial fat compartments. During facial aging, these fat-filled compartments undergo substantial changes along with other structures in the face. Soft tissue filler and fat grafting are valid methods to fight the signs of facial aging, but little is known about their precise effect on the facial fat. This narrative review summarizes the current knowledge about the facial fat compartments in terms of anatomical location, histologic appearance, immune-histochemical characteristics, cellular interactions, and therapeutic options. Three different types of facial adipose tissue can be identified, which are located either superficially (dermal white adipose tissue) or deep (subcutaneous white adipose tissue): fibrous (perioral locations), structural (major parts of the midface), and deposit (buccal fat pad and deep temporal fat pad). These various fat types differ in the size of the adipocytes and the collagenous composition of their extracellular matrix and thus in their mechanical properties. Minimal invasive (e.g., soft tissue fillers or fat grafting) and surgical interventions aiming to restore the youthful face have to account for the different fat properties in various facial areas. However, little is known about the macro- and microscopic characteristics of the facial fat tissue in different compartments and future studies are needed to reveal new insights to better understand the process of aging and how to fight its signs best.

  11. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    Science.gov (United States)

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.

  12. Adipose tissue remodeling in pathophysiology of obesity.

    Science.gov (United States)

    Lee, Mi-Jeong; Wu, Yuanyuan; Fried, Susan K

    2010-07-01

    Recent studies demonstrate that adipose tissue undergoes a continuous process of remodeling that is pathologically accelerated in the obese state. Contrary to earlier dogma, adipocytes die and are replaced by newly differentiated ones. This review will summarize recent advances of our knowledge of the mechanisms that regulate adipose tissue remodeling and highlight the influences of obesity, depot, and sex, as well as the relevance of rodent models to humans. A substantial literature now points to the importance of dynamic changes in adipocyte and immune cell turnover, angiogenesis, and extracellular matrix remodeling in regulating the expandability and functional integrity of this tissue. In obesity, the macrophages are recruited, surrounding dead adipocytes and polarized toward an inflammatory phenotype. The number of dead adipocytes is closely associated with the pathophysiological consequences of obesity, including insulin resistance and hepatic steatosis. Further, there are substantial depot, sex and species differences in the extent of remodeling. Adipose tissue undergoes a continuous remodeling process that normally maintains tissue health, but may spin out of control and lead to adipocyte death in association with the recruitment and activation of macrophages, and systemic insulin resistance.

  13. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity.

    Science.gov (United States)

    Peinado, Juan R; Pardo, María; de la Rosa, Olga; Malagón, Maria M

    2012-02-01

    The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.

  14. Adipose tissue lymphocytes: types and roles.

    Science.gov (United States)

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  15. Sex-dependent effects of antenatal glucocorticoids on insulin sensitivity in adult sheep: role of the adipose tissue renin angiotensin system.

    Science.gov (United States)

    Massmann, G Angela; Zhang, Jie; Seong, Won Joon; Kim, Minhyoung; Figueroa, Jorge P

    2017-06-01

    Exposure to glucocorticoids in utero is associated with changes in organ function and structure in the adult. The aims of this study were to characterize the effects of antenatal exposure to glucocorticoids on glucose handling and the role of adipose tissue. Pregnant sheep received betamethasone (Beta, 0.17 mg/kg) or vehicle 24 h apart at 80 days of gestation and allowed to deliver at term. At 9 mo, male and female offspring were fed at either 100% of nutritional allowance (lean) or ad libitum for 3 mo (obese). At 1 yr, they were chronically instrumented under general anesthesia. Glucose tolerance was evaluated using a bolus of glucose (0.25 g/kg). Adipose tissue was harvested after death to determine mRNA expression levels of angiotensinogen (AGT), angiotensin-converting enzyme (ACE) 1, ACE2, and peroxisome proliferator-activated receptor γ (PPAR-γ). Data are expressed as means ± SE and analyzed by ANOVA. Sex, obesity, and Beta exposure had significant effects on glucose tolerance and mRNA expression. Beta impaired glucose tolerance in lean females but not males. Superimposed obesity worsened the impairment in females and unmasked the defect in males. Beta increased ACE1 mRNA in females and males and AGT in females only (P adipose tissue may play an important role in the sexually dimorphic response to antenatal glucocorticoids. Copyright © 2017 the American Physiological Society.

  16. Oestrone sulphate, adipose tissue, and breast cancer.

    Science.gov (United States)

    Hawkins, R A; Thomson, M L; Killen, E

    1985-01-01

    Oestrone sulphate, the oestrogen in highest concentration in the plasma, may play a role in the induction and growth of breast cancers. By enzymolysis and radioimmunoassay, oestrone sulphate concentrations were measured in 3 biological fluids. High concentrations of the conjugate (up to 775 nmol/l) were detected in breast cyst fluids from some premenopausal women, the concentrations in blood plasma (0.91-4.45 nmol/l) being much lower. Concentrations in the plasmas from postmenopausal women with (0.23-4.63 nmol/l) or without (0.18-1.27 nmol/l) breast cancer were still lower. Oestrone sulphate concentration in cow's milk or cream (0.49-0.67 nmol/l) was also low: dietary intake in these fluids is probably of little consequence. The capacity of breast tissues for hydrolysis of oestrone sulphate was examined in two ways: In tissue slices incubated with 85 pM (3H) oestrone sulphate solution at 37 degrees C, cancers (131-412 fmol/g tissue/hr) and adipose tissues (23-132 fmol/g tissue/hr) hydrolysed significantly more sulphate than did benign tissues (1-36 fmol/g tissue/hr). In tissue homogenates incubated with 5-25 microM [3H] oestrone sulphate at 37 degrees much higher capacities for hydrolysis (nmol/g tissue/hr) were demonstrated with a Km of 2-16.5 microM: cancers (34-394) and benign tissues (9-485) had significantly higher sulphatase activities than adipose tissues (9-39). On a protein basis, however, the sulphatase activities in the 3 tissues were comparable. It is concluded that oestrone sulphate is present in breast cysts and blood plasma and that in vitro, the conjugated hormone can be hydrolysed by breast tissues. The biological significance of these findings in vivo remains to be established.

  17. Perivascular Adipose Tissue and Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-04-01

    Full Text Available BACKGROUND: Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. CONTENT: Perivascular adipose tissue (PVAT is a local deposit of adipose tissue surrounding the vasculature. PVAT is present throughout the body and has been shown to have a local effect on blood vessels. The influence of PVAT on the vasculature changes with increasing adiposity. PVAT similarly to other fat depots, is metabolically active, secreting a wide array of bioactive substances, termed ‘adipokines’. Adipokines include cytokines, chemokines and hormones that can act in a paracrine, autocrine or endocrine fashion. Many of the proinflammatory adipokines upregulated in obesity are known to influence vascular function, including endothelial function, oxidative stress, vascular stiffness and smooth muscle migration. Adipokines also stimulate immune cell migration into the vascular wall, potentially contributing to the inflammation found in atherosclerosis. Finally, adipokines modulate the effect of insulin on the vasculature, thereby decreasing insulin-mediated muscle glucose uptake. This leads to alterations in nitric oxide signaling, insulin resistance and potentially atherogenesis. SUMMARY: PVAT surrounds blood vessels. PVAT and the adventitial layer of blood vessels are in direct contact with each other. Healthy PVAT secretes adipokines and regulates vascular function. Obesity is associated with changes in adipokine secretion and the resultant inflammation of PVAT. The dysregulation of adipokines changes the effect of PVAT on the vasculature. Changes in perivascular adipokines secretion in obesity appear to contribute to the development of obesity-mediated vascular disease. KEYWORDS: obesity, perivascular adipose tissue, PVAT

  18. Glycation and Hypoxia: Two Key Factors for Adipose Tissue Dysfunction.

    Science.gov (United States)

    Matafome, Paulo; Rodrigues, Tiago; Seica, Raquel

    2015-01-01

    Many aspects of adipose tissue pathophysiology in metabolic diseases have been described in the last years. One of such aspects is certainly hypoxia, which was shown to develop in adipose tissue of obese individuals and animal models. Recent data suggest two main factors for adipose tissue hypoxia: adipocyte hypertrophy and vascular dysfunction. In addition, glycation was also shown to induce morphological and functional alterations in adipose tissue. In particular, methylglyoxal directly formed from glucose was shown to potently induce AGE formation in vivo and to contribute to metabolic and vascular alterations in adipose tissue. Glycation and hypoxia are both thought to be on the basis of low grade inflammatory activation, further increasing metabolic dysregulation in adipose tissue. This review summarizes the current knowledge about the factors that contribute for tissue hypoxia and the role of glycation, not only at the vascular level, but also at the metabolic, oxidative and inflammatory levels.

  19. Androgen effects on adipose tissue architecture and function in nonhuman primates.

    Science.gov (United States)

    Varlamov, Oleg; White, Ashley E; Carroll, Julie M; Bethea, Cynthia L; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W; Roberts, Charles T

    2012-07-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue.

  20. The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate.

    Science.gov (United States)

    Grudzenski, Saskia; Baier, Sebastian; Ebert, Anne; Pullens, Pim; Lemke, Andreas; Bieback, Karen; Dijkhuizen, Rick M; Schad, Lothar R; Alonso, Angelika; Hennerici, Michael G; Fatar, Marc

    2017-04-26

    In the field of experimental stem cell therapy, intra-arterial (IA) delivery yields the best results concerning, for example, migrated cell number at the targeted site. However, IA application also appears to be associated with increased mortality rates and infarction. Since many rodent studies systemically apply 1 × 10(6) cells, this could also be a consequence of engrafted cell number. The aim of this study was therefore to investigate the effect of different doses of adipose tissue-derived stem cells (ASCs) on engraftment rates and stroke outcome measured in vivo using 9.4-T high-field magnetic resonance imaging (MRI). Male Wistar rats (n = 43) underwent a middle cerebral artery occlusion (MCAo) for 45 or 90 min, followed by IA delivery of either saline or 1 × 10(6), 3 × 10(5), or 5 × 10(4) ASCs pre-labelled with very small superparamagnetic iron oxide particles (VSOPs). MRI (9.4-T) analysis was performed 48 h and 9 days post-MCAo. Lesion volumes were assessed by analysis of T2-weighted images and cell signal tracking showing cell engraftment and active cell migration by an improved T2*-analysis. The ASC-derived signal intensity increased in the affected hemisphere 48 h post MCAo with injected cell number (p stroke volumes revealed an increased infarction after injection of 1 × 10(6) ASCs compared to controls or application of 5 × 10(4) ASCs (p cell numbers between both MRI examinations but showed active ASC migration to the site of infarction. Our results confirm that IA injection is an efficient way of targeting damaged brain tissue but its usefulness strongly depends on the right dose of delivered stem cells since this factor has a strong influence on migration rate and infarct volume, with better results for doses below 1 × 10(6) cells. Future challenges will include the determination of therapeutic doses for best cellular engraftment and stroke outcome.

  1. The potential roles for adipose tissue in peripheral nerve regeneration.

    Science.gov (United States)

    Walocko, Frances M; Khouri, Roger K; Urbanchek, Melanie G; Levi, Benjamin; Cederna, Paul S

    2016-01-01

    This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation. © 2015 Wiley Periodicals, Inc.

  2. Adipose tissue and its role in organ crosstalk.

    Science.gov (United States)

    Romacho, T; Elsen, M; Röhrborn, D; Eckel, J

    2014-04-01

    The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

  3. Desensitization of human adipose tissue to adrenaline stimulation studied by microdialysis

    DEFF Research Database (Denmark)

    Stallknecht, Bente; Bülow, J; Frandsen, E

    1997-01-01

    1. Desensitization of fat cell lipolysis to catecholamine exposure has been studied extensively in vitro but only to a small extent in human adipose tissue in vivo. 2. We measured interstitial glycerol concentrations by microdialysis in subcutaneous, abdominal adipose tissue in healthy humans......M, respectively) or a low, a high and a low concentration (2.5, 4.6 and 2.6 nM, respectively) in order to examine both desensitization and the dose dependency of adipose tissue lipolysis to adrenaline. 3. Adipose tissue lipolysis was calculated and was found to vary directly with arterial adrenaline concentration...... in adipose tissue blood flow in response to adrenaline was also reduced by prior adrenaline exposure, but no consistent desensitization could be demonstrated for whole-body energy expenditure, blood pressure and heart rate. 5. In the basal state, arterial plasma and interstitial adrenaline concentrations did...

  4. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  5. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    Science.gov (United States)

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  6. Role of NKG2D in obesity-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Jun-Jae Chung

    Full Text Available The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis. Here, we tested whether NKG2D-NKG2D ligand interaction is also involved in obesity-induced adipose tissue inflammation and insulin resistance. We observed a significant induction of NKG2D ligand expression in the adipose tissue of obese mice, especially during the early stages of obesity. However, mice lacking NKG2D developed similar levels of insulin resistance and adipose tissue inflammation compared to control mice when placed on a high-fat diet. Moreover, overexpression of Rae-1ε in the adipose tissue did not increase immune cell infiltration to the adipose tissue either in the setting of a normal or high-fat diet. These results indicate that, unlike in the pancreas, NKG2D-NKG2D ligand interaction does not play a critical role in obesity-induced inflammation in the adipose tissue.

  7. Role of NKG2D in obesity-induced adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Chung, Jun-Jae; Markiewicz, Mary A; Polić, Bojan; Shaw, Andrey S

    2014-01-01

    The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D) and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis. Here, we tested whether NKG2D-NKG2D ligand interaction is also involved in obesity-induced adipose tissue inflammation and insulin resistance. We observed a significant induction of NKG2D ligand expression in the adipose tissue of obese mice, especially during the early stages of obesity. However, mice lacking NKG2D developed similar levels of insulin resistance and adipose tissue inflammation compared to control mice when placed on a high-fat diet. Moreover, overexpression of Rae-1ε in the adipose tissue did not increase immune cell infiltration to the adipose tissue either in the setting of a normal or high-fat diet. These results indicate that, unlike in the pancreas, NKG2D-NKG2D ligand interaction does not play a critical role in obesity-induced inflammation in the adipose tissue.

  8. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    OpenAIRE

    Lumeng, Carey N.; Bodzin, Jennifer L.; Alan R Saltiel

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, i...

  9. Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance.

    Science.gov (United States)

    Cho, Kae Won; Zamarron, Brian F; Muir, Lindsey A; Singer, Kanakadurga; Porsche, Cara E; DelProposto, Jennifer B; Geletka, Lynn; Meyer, Kevin A; O'Rourke, Robert W; Lumeng, Carey N

    2016-11-01

    Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80(+)CD11b(+) cells overlaps with other leukocytes and that CD45(+)CD64(+) is specific for ATM. The expression of core dendritic cell genes was enriched in CD11c(+)CD64(-) cells (ATDC), whereas core macrophage genes were enriched in CD45(+)CD64(+) cells (ATM). CD11c(+)CD64(-) ATDCs expressed MHC class II and costimulatory receptors, and had similar capacity to stimulate CD4(+) T cell proliferation as ATMs. ATDCs were predominantly CD11b(+) conventional dendritic cells and made up the bulk of CD11c(+) cells in adipose tissue with moderate high-fat diet exposure. Mixed chimeric experiments with Ccr2(-/-) mice demonstrated that high-fat diet-induced ATM accumulation from monocytes was dependent on CCR2, whereas ATDC accumulation was less CCR2 dependent. ATDC accumulation during obesity was attenuated in Ccr7(-/-) mice and was associated with decreased adipose tissue inflammation and insulin resistance. CD45(+)CD64(+) ATM and CD45(+)CD64(-)CD11c(+) ATDCs were identified in human obese adipose tissue and ATDCs were increased in s.c. adipose tissue compared with omental adipose tissue. These results support a revised strategy for unambiguous delineation of ATM and ATDC, and suggest that ATDCs are independent contributors to adipose tissue inflammation during obesity. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Comparison of different fabrication techniques for human adipose tissue engineering in severe combined immunodeficient mice.

    Science.gov (United States)

    Frerich, Bernhard; Winter, Karsten; Scheller, Konstanze; Braumann, Ulf-Dietrich

    2012-03-01

    Adipose tissue engineering has been advocated for soft-tissue augmentation and for the treatment of soft tissue defects. The efficacy in terms of persistence of the engineered fat is, however, not yet understood and could depend on the nature of fabrication and application. The high metabolic demand of adipose tissue also points to the problem of vascularization. Endothelial cell (EC) cotransplantation could be a solution. Human adipose tissue-derived stromal cells were seeded on collagen microcarriers and submitted to adipogenic differentiation ("microparticles"). In a first run of experiments, these microparticles were implanted under the skin of severe combined immunodeficient (SCID) mice (n = 45) with and without the addition of human umbilical vein ECs (HUVECs). A group of carriers without any cells served as control. In a second run, adipose tissue constructs were fabricated by embedding microparticles in fibrin matrix with and without the addition of HUVEC, and were also implanted in SCID mice (n = 30). The mice were sacrificed after 12 days, 4 weeks, and 4 months. Mature adipose tissue, fibrous tissue, and acellular regions were quantified on whole-specimen histological sections. The implantation of microparticles showed a better sustainment of tissue volume and a higher degree of mature adipose tissue compared with adipose tissue constructs. Immunohistology proved obviously perfused human tissue-engineered vessels. There was a limited but not significant advantage in EC cotransplantation after 4 weeks in terms of tissue volume. In groups with EC cotransplantation, there were significantly fewer acellular/necrotic areas after 4 weeks and 4 months. In conclusion, the size of the implanted tissue equivalents is a crucial parameter, affecting volume maintenance and the gain of mature adipose tissue. EC cotransplantation leads to functional stable vascular networks connecting in part to the host vasculature and contributing to tissue perfusion; however

  11. Brown adipose tissue in cetacean blubber.

    Directory of Open Access Journals (Sweden)

    Osamu Hashimoto

    Full Text Available Brown adipose tissue (BAT plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1, within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool

  12. Brown adipose tissue in cetacean blubber.

    Science.gov (United States)

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  13. Regional differences in perivascular adipose tissue impacting vascular homeostasis.

    Science.gov (United States)

    Gil-Ortega, Marta; Somoza, Beatriz; Huang, Yu; Gollasch, Maik; Fernández-Alfonso, Maria S

    2015-07-01

    Perivascular adipose tissue (PVAT) releases several important vasoactive factors with physiological and pathophysiological paracrine effects. A large body of evidence suggests regional phenotypic and functional differences among PVAT depots, depending on the specific vascular bed or different regions in the vascular bed where the PVAT is located. These non-uniform and separate PVATs exert various paracrine effects on vascular structure and function that largely impact disease states, such as endothelial dysfunction, atherosclerosis, or insulin resistance. This emerging view of PVAT function requires considering heterogeneous PVAT as a specialized organ that can differentially regulate vascular function depending on its anatomical location. In this context, the adipose-vascular axis may represent a novel target for pharmacological intervention in vasculopathy in cardiometabolic disorders.

  14. Brain-adipose tissue neural crosstalk.

    Science.gov (United States)

    Bartness, Timothy J; Song, C Kay

    2007-07-24

    The preponderance of basic obesity research focuses on its development as affected by diet and other environmental factors, genetics and their interactions. By contrast, we have been studying the reversal of a naturally-occurring seasonal obesity in Siberian hamsters. In the course of this work, we determined that the sympathetic innervation of white adipose tissue (WAT) is the principal initiator of lipid mobilization not only in these animals, but in all mammals including humans. We present irrefutable evidence for the sympathetic nervous system (SNS) innervation of WAT with respect to neuroanatomy (including its central origins as revealed by transneuronal viral tract tracers), neurochemistry (norepinephrine turnover studies) and function (surgical and chemical denervation). A relatively unappreciated role of WAT SNS innervation also is reviewed--the control of fat cell proliferation as shown by selective chemical denervation that triggers adipocyte proliferation, although the precise mechanism by which this occurs presently is unknown. There is no, however, equally strong evidence for the parasympathetic innervation of this tissue; indeed, the data largely are negative severely questioning its existence and importance. Convincing evidence also is given for the sensory innervation of WAT (as shown by tract tracing and by markers for sensory nerves in WAT), with suggestive data supporting a possible role in conveying information on the degree of adiposity to the brain. Collectively, these data offer an additional or alternative view to the predominate one of the control of body fat stores via circulating factors that serve as efferent and afferent communicators.

  15. Cotransplantation of Adipose Tissue-Derived Insulin-Secreting Mesenchymal Stem Cells and Hematopoietic Stem Cells: A Novel Therapy for Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    A. V. Vanikar

    2010-01-01

    Full Text Available Aims. Insulin dependent diabetes mellitus (IDDM is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT, 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC and cultured bone marrow (CBM as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4 patients with 1–24-year disease duration, in age group: 13–43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac: 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1×103/μL, CD45−/90+/73+:40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1×103/μL, CD45−/34+:0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques.

  16. Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Vanikar, A V; Dave, S D; Thakkar, U G; Trivedi, H L

    2010-12-20

    Aims. Insulin dependent diabetes mellitus (IDDM) is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT), 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC) and cultured bone marrow (CBM) as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4) patients with 1-24-year disease duration, in age group: 13-43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac): 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1 × 10(3)/μL, CD45(-)/90(+)/73(+):40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1 × 10(3)/μL, CD45(-)/34(+):0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques.

  17. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation.

    Science.gov (United States)

    Huang, Zhi H; Reardon, Catherine A; Getz, Godfrey S; Maeda, Nobuyo; Mazzone, Theodore

    2015-02-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state.

  18. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  19. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation

    Science.gov (United States)

    Huang, Zhi H.; Reardon, Catherine A.; Getz, Godfrey S.; Maeda, Nobuyo; Mazzone, Theodore

    2015-01-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state. PMID:25421060

  20. Brain–gut–adipose-tissue communication pathways at a glance

    Directory of Open Access Journals (Sweden)

    Chun-Xia Yi

    2012-09-01

    Full Text Available One of the ‘side effects’ of our modern lifestyle is a range of metabolic diseases: the incidence of obesity, type 2 diabetes and associated cardiovascular diseases has grown to pandemic proportions. This increase, which shows no sign of reversing course, has occurred despite education and new treatment options, and is largely due to a lack of knowledge about the precise pathology and etiology of metabolic disorders. Accumulating evidence suggests that the communication pathways linking the brain, gut and adipose tissue might be promising intervention points for metabolic disorders. To maintain energy homeostasis, the brain must tightly monitor the peripheral energy state. This monitoring is also extremely important for the brain’s survival, because the brain does not store energy but depends solely on a continuous supply of nutrients from the general circulation. Two major groups of metabolic inputs inform the brain about the peripheral energy state: short-term signals produced by the gut system and long-term signals produced by adipose tissue. After central integration of these inputs, the brain generates neuronal and hormonal outputs to balance energy intake with expenditure. Miscommunication between the gut, brain and adipose tissue, or the degradation of input signals once inside the brain, lead to the brain misunderstanding the peripheral energy state. Under certain circumstances, the brain responds to this miscommunication by increasing energy intake and production, eventually causing metabolic disorders. This poster article overviews current knowledge about communication pathways between the brain, gut and adipose tissue, and discusses potential research directions that might lead to a better understanding of the mechanisms underlying metabolic disorders.

  1. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance.

    Science.gov (United States)

    Sidibeh, Cherno O; Pereira, Maria J; Lau Börjesson, Joey; Kamble, Prasad G; Skrtic, Stanko; Katsogiannos, Petros; Sundbom, Magnus; Svensson, Maria K; Eriksson, Jan W

    2017-03-01

    We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.

  2. Adipokines and the Endocrine Role of Adipose Tissues.

    Science.gov (United States)

    Giralt, Marta; Cereijo, Rubén; Villarroya, Francesc

    2016-01-01

    The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.

  3. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner

    DEFF Research Database (Denmark)

    Hjort, Line; Jørgensen, Sine W; Gillberg, Linn

    2017-01-01

    epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls...... methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW...

  4. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  5. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    DEFF Research Database (Denmark)

    Arngrim, N; Simonsen, L; Holst, Jens Juul

    2012-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after ...... online publication, 3 July 2012; doi:10.1038/ijo.2012.98....

  6. Adipose tissue macrophages: going off track during obesity

    NARCIS (Netherlands)

    Boutens, L.; Stienstra, R.

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically

  7. Local and systemic effects of visceral and perivascular adipose tissue

    NARCIS (Netherlands)

    Verhagen, S.N.

    2012-01-01

    Rather than being solely a storage depot for triglycerides, adipose tissue is able to secrete pro- and anti-inflammatory cytokines and adipokines. A state of low grade inflammation associated with excess adipose tissue is involved in the increase in the incidences of atherosclerotic diseases and

  8. Adipose tissue macrophages: going off track during obesity

    NARCIS (Netherlands)

    Boutens, L.; Stienstra, R.

    2016-01-01

    Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically focuse

  9. Relations between antioxidant vitamins in adipose tissue, plasma, and diet

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Veer, P. van 't; Brants, H.A.M.; Berg, H. van den; Schoonhoven, J. van; Hermus, R.J.J.

    1995-01-01

    For an evaluation of fat-soluble vitamin concentrations in adipose tissue as biomarkers of intake, estimates of usual intake of β-carotene, total vitamin A, and vitamin E (assessed by food frequency questionnaire) were compared with plasma and adipose tissue concentrations of β-carotene, retinol, an

  10. Characterization of the human visceral adipose tissue secretome

    NARCIS (Netherlands)

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  11. Involvement of mast cells in adipose tissue fibrosis.

    Science.gov (United States)

    Hirai, Shizuka; Ohyane, Chie; Kim, Young-Il; Lin, Shan; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kim, Chu-Sook; Kang, Jihey; Yu, Rina; Kawada, Teruo

    2014-02-01

    Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.

  12. Local and systemic effects of visceral and perivascular adipose tissue

    NARCIS (Netherlands)

    Verhagen, S.N.

    2012-01-01

    Rather than being solely a storage depot for triglycerides, adipose tissue is able to secrete pro- and anti-inflammatory cytokines and adipokines. A state of low grade inflammation associated with excess adipose tissue is involved in the increase in the incidences of atherosclerotic diseases and typ

  13. Characterization of the human visceral adipose tissue secretome

    NARCIS (Netherlands)

    Alvarez Llamas, Gloria; Szalowska, Ewa; de Vries, Marcel P.; Weening, Desiree; Landman, Karloes; Hoek, Annemieke; Wolffenbuttel, Bruce H. R.; Roelofsen, Johan; Vonk, Roel J.

    2007-01-01

    Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and t

  14. Mechanisms of inflammatory responses in obese adipose tissue

    NARCIS (Netherlands)

    Sun, S.Y.; Yewei, Ji; Kersten, A.H.; Qi, L.

    2012-01-01

    The fields of immunology and metabolism are rapidly converging on adipose tissue. During obesity, many immune cells infiltrate or populate in adipose tissue and promote a low-grade chronic inflammation. Studies to date have suggested that perturbation of inflammation is critically linked to nutrient

  15. Relations between antioxidant vitamins in adipose tissue, plasma, and diet

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Veer, P. van 't; Brants, H.A.M.; Berg, H. van den; Schoonhoven, J. van; Hermus, R.J.J.

    1995-01-01

    For an evaluation of fat-soluble vitamin concentrations in adipose tissue as biomarkers of intake, estimates of usual intake of β-carotene, total vitamin A, and vitamin E (assessed by food frequency questionnaire) were compared with plasma and adipose tissue concentrations of β-carotene, retinol, an

  16. A hot interaction between immune cells and adipose tissue

    NARCIS (Netherlands)

    van den Berg, S.M.

    2017-01-01

    Systemic as well as adipose tissue inflammation contributes to the development of obesity-associated diseases. This thesis describes three targets to battle this chronic inflammation in a model of diet-induced obesity in mice. First, we studied inflammation in obese white - and brown adipose tissue

  17. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  18. The role of adipose tissue in cancer-associated cachexia.

    Science.gov (United States)

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  19. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Science.gov (United States)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  20. A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences

    NARCIS (Netherlands)

    Caesar, R.; Manieri, M.; Kelder, T.; Boekschoten, M.; Evelo, C.; Müller, M.; Kooistra, T.; Cinti, S.; Kleemann, R.; Drevon, C.A.

    2010-01-01

    Depot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat

  1. A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences

    NARCIS (Netherlands)

    Caesar, R.; Manieri, M.; Kelder, T.; Boekschoten, M.; Evelo, C.; Müller, M.; Kooistra, T.; Cinti, S.; Kleemann, R.; Drevon, C.A.

    2010-01-01

    Depot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat

  2. Automatic Segmentation of Abdominal Adipose Tissue in MRI

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Pilgaard, Kasper; Vaag, Allan

    2011-01-01

    This paper presents a method for automatically segmenting abdominal adipose tissue from 3-dimensional magnetic resonance images. We distinguish between three types of adipose tissue; visceral, deep subcutaneous and superficial subcutaneous. Images are pre-processed to remove the bias field effect...... of intensity in-homogeneities. This effect is estimated by a thin plate spline extended to fit two classes of automatically sampled intensity points in 3D. Adipose tissue pixels are labelled with fuzzy c-means clustering and locally determined thresholds. The visceral and subcutaneous adipose tissue...... are separated using deformable models, incorporating information from the clustering. The subcutaneous adipose tissue is subdivided into a deep and superficial part by means of dynamic programming applied to a spatial transformation of the image data. Regression analysis shows good correspondences between our...

  3. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Science.gov (United States)

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  4. Inflammatory peptides derived from adipose tissue

    Directory of Open Access Journals (Sweden)

    Barzilai Nir

    2005-01-01

    Full Text Available Abstract The low-grade inflammation seen with aging is noted particularly in subjects with the metabolic syndrome of aging. Insulin resistance, obesity/abdominal obesity, and risks for many age-related diseases characterize this common syndrome. It is becoming clear that this increased adipose tissue is not simply a reservoir for excess nutrients, but rather an active and dynamic organ capable of expressing several cytokines and other fat-derived peptides (FDP. Some, but not all, FDP may have a role in development of the metabolic syndrome but there is no evidence that these FDP are causing inflammation directly. We suggest that high levels of inflammatory peptides are markers for obesity/abdominal obesity seen with aging, but some may not necessarily have a causative role in the development of inflammation.

  5. The Ontogeny of Brown Adipose Tissue.

    Science.gov (United States)

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  6. FEEDING INFLUENCES ADIPOSE TISSUE RESPONSES TO EXERCISE IN OVERWEIGHT MEN.

    Science.gov (United States)

    Chen, Yung-Chih; Travers, Rebecca L; Walhin, Jean-Philippe; Gonzalez, Javier T; Koumanov, Francoise; Betts, James A; Thompson, Dylan

    2017-03-14

    Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and one hour post-exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or adiponectin in response to exercise. This is the first study to show that feeding prior to acute exercise affects post-exercise adipose tissue gene expression and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.

  7. Porous decellularized adipose tissue foams for soft tissue regeneration.

    Science.gov (United States)

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  8. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Miroslav Šram

    2015-01-01

    Full Text Available Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT and visceral adipose tissue (VAT, the latter being highly associated with coronary artery disease (CAD. Expansion of epicardial adipose tissue (EAT is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1 the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2 determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  9. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    Science.gov (United States)

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  10. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance

    DEFF Research Database (Denmark)

    Ahlqvist, Emma; Osmark, Peter; Kuulasmaa, Tiina

    2013-01-01

    Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis...... and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher...... for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue...

  11. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location.

    Science.gov (United States)

    Hausman, G J; Basu, U; Wei, S; Hausman, D B; Dodson, M V

    2014-02-01

    Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.

  12. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  13. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    Science.gov (United States)

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  14. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  15. Is adipose tissue metabolically different at different sites?

    Science.gov (United States)

    Gil, Angel; Olza, Josune; Gil-Campos, Mercedes; Gomez-Llorente, Carolina; Aguilera, Concepción M

    2011-09-01

    This review focuses on metabolic differences of adipose tissue at different sites of the body, with emphasis in pediatrics. Adipose tissue is composed of various cell types, which include adipocytes and other cells of the stromal vascular fraction such as preadipocytes, blood cells, endothelial cells and macrophages. Mammals have two main types of adipose tissue: white adipose tissue (WAT), and brown adipose tissue (BAT), each of which possesses unique cell autonomous properties. WAT and BAT differ at the functional, as well as the morphological and molecular levels. WAT accumulates surplus energy mainly in the form of triacylglycerols and BAT dissipates energy directly as heat. Recently, functional BAT in humans has been located in the neck, supraclavicular, mediastinal and interscapular areas. WAT is distributed throughout the body in the form of two major types: subcutaneous adipose tissue (SWAT) and the intra-abdominal visceral adipose tissue (VWAT). VWAT tissue is associated with insulin resistance, diabetes mellitus, dyslipidaemia, hypertension, atherosclerosis, hepatic steatosis, and overall mortality whereas SWAT and BAT have intrinsic beneficial metabolic properties. Subcutaneous and visceral adipocytes derive from different progenitor cells that exhibit a different gene expression pattern. SWAT responds better to the antilipolytic effects of insulin and other hormones, secrets more adiponectin and less inflammatory cytokines, and is differentially affected by molecules involved in signal transduction as well as drugs compared with VWAT. Current research is investigating various approaches of BAT and SWAT transplantation, including new sources of adipocyte progenitors. This may be important for the potential treatment of childhood obesity.

  16. Adipose tissue content and distribution in children and adolescents with bronchial asthma.

    Science.gov (United States)

    Umławska, Wioleta

    2015-02-01

    The excess of adipose tissue and the pattern of adipose tissue distribution in the body seem to play an important role in the complicated dependencies between obesity and risk of developing asthma. The aim of the present study was to determine nutritional status in children and adolescents with bronchial asthma with special emphasis on adipose tissue distribution evaluated on the basis of skin-fold thicknesses, and to determine the relationships between patterns of adipose tissue distribution and the course of the disease. Anthropometric data on height, weight, circumferences and skin-fold thicknesses were extracted from the medical histories of 261 children diagnosed with asthma bronchitis. Values for children with asthma were compared to Polish national growth reference charts. Distribution of subcutaneous adipose tissue was evaluated using principal components analysis (PCA). Multivariate linear regression analyses tested the effect of three factors on subcutaneous adipose tissue distribution: type of asthma, the severity of the disease and the duration of the disease. Mean body height in the children examined in this study was lower than in their healthy peers. Mean BMI and skin-fold thicknesses were significantly higher and lean body mass was lower in the study group. Excess body fat was noted, especially in girls. Adipose tissue was preferentially deposited in the trunk in girls with severe asthma, as well as in those who had been suffering from asthma for a longer time. The type of asthma, atopic or non-atopic, had no observable effect on subcutaneous adipose tissue distribution in children examined. The data suggest that long-treated subjects and those with severe bronchial asthma accumulate more adipose tissue on the trunk. It is important to regularly monitor nutritional status in children with asthma, especially in those receiving high doses of systemic or inhaled glucocorticosteroids, and long-term treatment as well. Copyright © 2014 Elsevier Ltd. All

  17. The mechanism of functional vasodilatation in rabbit epigastric adipose tissue.

    Science.gov (United States)

    Lewis, G P; Mattews, J

    1970-03-01

    1. The effect of close-arterial infusions of fat-mobilizing substances has been examined on the release of free fatty acids and blood flow in the epigastric adipose tissue of rabbits.2. All the fat mobilizers in addition to causing the release of free fatty acids also caused an increased blood flow in the fat tissue.3. Both the fat mobilization and the vasodilatation continued for an hour or so after the end of infusion.4. Although no vasodilator substance could be detected in the venous effluent from the activated adipose tissue, a vasodilator could be detected in acid-ether extracts of adipose tissue excised during a period of fat mobilization.5. It is suggested that a vasodilator substance is released or formed in adipose tissue during fat mobilization and that this substance accounts for the vasodilatation accompanying activity in the tissue.

  18. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2017-08-01

    Full Text Available Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders.

  19. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Directory of Open Access Journals (Sweden)

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  20. Adipose tissue macrophages: the inflammatory link between obesity and cancer?

    Science.gov (United States)

    Wagner, Marek; Samdal Steinskog, Eli Sihn; Wiig, Helge

    2015-04-01

    Obesity has increased dramatically over the last three decades. Thus, epidemiological evidence linking obesity and cancer has ignited our interest in the relationship between adipose tissue mass and cancer development. Obesity is defined as an excess of adipose tissue that is typified by a chronic, low-grade inflammatory response instigated by macrophage infiltration. Therefore, in this review, we will discuss the putative causal relationship between obesity-induced chronic inflammation and cancer with particular focus on adipose tissue macrophages. Chronic, low-grade inflammation has long been associated with cancer initiation, promotion and progression. Therefore, signals derived from adipose tissue macrophages may play a significant role in carcinogenesis. In this review we will discuss the molecular mechanisms of cancer development in obesity and highlight possible therapeutic strategies aiming at adipose tissue macrophages. The strong correlation between tumor-associated macrophage infiltration and tumor growth and progression emphasizes the value of macrophages as an effective therapeutic target. It remains to be deciphered to what extent adipose tissue macrophages contribute to these processes, especially in tumors growing within or adjacent to adipose tissue. More effort should also be placed on elucidating macrophage differences between humans and mice that may lead to the development of more effective diagnostic and therapeutic strategies.

  1. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  2. Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue.

    Science.gov (United States)

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Zaniewicz-Kaniewska, Katarzyna; Prohorec-Sobieszek, Monika; Saied, Fadhil; Maśliński, Włodzimierz

    2013-06-01

    For many years, it was thought that synovial cells and chondrocytes are the only sources of proinflammatory cytokines and growth factors found in the synovial fluid in patients suffering from osteoarthritis and rheumatoid arthritis. Currently, it is more and more frequently indicated that adipose tissue plays a significant role in the pathogenesis of these diseases as well as that a range of pathological processes that take place in the adipose tissue, synovial membrane and cartilage are interconnected. The adipose tissue is considered a specialized form of the connective tissue containing various types of cells which produce numerous biologically active factors. The latest studies reveal that, similarly to the synovial membrane, articular adipose tissue may take part in the local inflammatory response and affect the metabolism of the cartilage and subchondral osseous tissue. In in vitro conditions, the explants of this tissue obtained from patients suffering from osteoarthritis and rheumatoid arthritis produce similar pro- and anti-inflammatory cytokines to the explants of the synovial membrane. At this stage already, knowledge translates into imaging diagnostics. In radiological images, the shadowing of the periarticular soft tissues may not only reflect synovial membrane pathologies or joint effusion, but may also suggest inflammatory edema of the adipose tissue. On ultrasound examinations, abnormal presentation of the adipose tissue, i.e. increased echogenicity and hyperemia, may indicate its inflammation. Such images have frequently been obtained during ultrasound scanning and have been interpreted as inflammation, edema, hypertrophy or fibrosis of the adipose tissue. At present, when the knowledge concerning pathogenic mechanisms is taken into account, abnormal echogenicity and hyperemia of the adipose tissue may be considered as a proof of its inflammation. In the authors' own practice, the inflammation of the adipose tissue usually accompanies synovitis

  3. Injury-Induced Insulin Resistance in Adipose Tissue

    OpenAIRE

    Williams, Vanessa L.; Martin, Rachel E.; Franklin, John L.; Hardy, Robert. W.; Messina, Joseph L.

    2012-01-01

    Hyperglycemia and insulin resistance are common findings in critical illness. Patients in the surgical ICU are frequently treated for this ‘critical illness diabetes’ with intensive insulin therapy, resulting in a substantial reduction in morbidity and mortality. Adipose tissue is an important insulin target tissue, but it is not known whether adipose tissue is affected by critical illness diabetes. In the present study, a rodent model of critical illness diabetes was used to determine whethe...

  4. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    Full Text Available Macrophage migration inhibitory factor (MIF is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a

  5. Time-dependent effect of in vivo inflammation on eicosanoid and endocannabinoid levels in plasma, liver, ileum and adipose tissue in C57BL/6 mice fed a fish-oil diet.

    Science.gov (United States)

    Balvers, Michiel G J; Verhoeckx, Kitty C M; Meijerink, Jocelijn; Bijlsma, Sabina; Rubingh, Carina M; Wortelboer, Heleen M; Witkamp, Renger F

    2012-06-01

    Eicosanoids and endocannabinoids/N-acylethanolamines (NAEs) are fatty acid derived compounds with a regulatory role in inflammation. Considering their complex metabolism, it is likely that inflammation affects multiple compounds at the same time, but how lipid profiles change in plasma and other tissues after an inflammatory stimulus has not been described in detail. In addition, dietary fish oil increases levels of several n-3 fatty acid derived eicosanoids and endocannabinoids, and this may lead to a broader change in the profiles of bioactive lipids. In the present study mice were fed a diet containing 3% w/w fish oil for 6 weeks before receiving i.p. saline or 3 mg/kg lipopolysaccharide (LPS) to induce an inflammatory response. Eicosanoid and endocannabinoid/NAE levels (in total 61 metabolites) in plasma, liver, ileum, and adipose tissue were quantified using targeted lipidomics after 2, 4, 8, and 24 h, respectively. Tissue- and time-dependent effects of LPS on bioactive lipid profiles were observed. For example, levels of CYP derived eicosanoids in the ileum were markedly affected by LPS, whereas this was less pronounced in the plasma and adipose tissue. For some compounds, such as 9,10-DiHOME, opposing effects of LPS were seen in the plasma compared to the other tissues, suggesting differential regulation of bioactive lipid levels after an inflammatory stimulus. Taken together, our results show that plasma levels do not always correlate with the effects found in the tissues, which underlines the need to measure profiles and pathways of mediators involved in inflammation, including endocannabinoid-like structures, in both plasma and tissues.

  6. Hypoxia and adipose tissue function and dysfunction in obesity.

    Science.gov (United States)

    Trayhurn, Paul

    2013-01-01

    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.

  7. TAF7L modulates brown adipose tissue formation

    OpenAIRE

    ZHOU, HAIYING; Wan, Bo; Grubisic, Ivan; Kaplan, Tommy; Tjian, Robert

    2014-01-01

    eLife digest Mammals produce two distinct types of adipose tissue: white adipose tissue (white fat) is the more common type and is used to store energy; brown adipose tissue (brown fat) is mostly found in young animals and infants, and it plays an important role in dissipating energy as heat rather than storing it in fat for future use. In adults, higher levels of brown fat are associated with lower levels of fat overall, so there is considerable interest in learning more about this form of f...

  8. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    Science.gov (United States)

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  9. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    Science.gov (United States)

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  10. Interleukin-6 production in human subcutaneous abdominal adipose tissue

    DEFF Research Database (Denmark)

    Lyngsø, Dorthe; Simonsen, Lene; Bülow, Jens

    2002-01-01

    The interleukin-6 (IL-6) output from subcutaneous, abdominal adipose tissue was studied in nine healthy subjects before, during and for 3 h after 1 h two-legged bicycle exercise at 60 % maximal oxygen consumption. Seven subjects were studied in control experiments without exercise. The adipose ti...

  11. Brain-adipose tissue cross talk.

    Science.gov (United States)

    Bartness, Timothy J; Kay Song, C; Shi, Haifei; Bowers, Robert R; Foster, Michelle T

    2005-02-01

    While investigating the reversible seasonal obesity of Siberian hamsters, direct sympathetic nervous system (SNS) postganglionic innervation of white adipose tissue (WAT) has been demonstrated using anterograde and retrograde tract tracers. The primary function of this innervation is lipid mobilization. The brain SNS outflow to WAT has been defined using the pseudorabies virus (PRV), a retrograde transneuronal tract tracer. These PRV-labelled SNS outflow neurons are extensively co-localized with melanocortin-4 receptor mRNA, which, combined with functional data, suggests their involvement in lipolysis. The SNS innervation of WAT also regulates fat cell number, as noradrenaline inhibits and WAT denervation stimulates fat cell proliferation in vitro and in vivo respectively. The sensory innervation of WAT has been demonstrated by retrograde tract tracing, electrophysiological recording and labelling of the sensory-associated neuropeptide calcitonin gene-related peptide in WAT. Local injections of the sensory nerve neurotoxin capsaicin into WAT selectively destroy this innervation. Just as surgical removal of WAT pads triggers compensatory increases in lipid accretion by non-excised WAT depots, capsaicin-induced sensory denervation triggers increases in lipid accretion of non-capsaicin-injected WAT depots, suggesting that these nerves convey information about body fat levels to the brain. Finally, parasympathetic nervous system innervation of WAT has been suggested, but the recent finding of no WAT immunoreactivity for the possible parasympathetic marker vesicular acetylcholine transporter (VAChT) argues against this claim. Collectively, these data suggest several roles for efferent and afferent neural innervation of WAT in body fat regulation.

  12. New concepts in white adipose tissue physiology

    Energy Technology Data Exchange (ETDEWEB)

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  13. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    Science.gov (United States)

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  14. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    Science.gov (United States)

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  15. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    Science.gov (United States)

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  16. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  17. The role of dietary fat in adipose tissue metabolism.

    Science.gov (United States)

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  18. Assessment of in situ adipose tissue inflammation by microdialysis

    DEFF Research Database (Denmark)

    Langkilde, Anne; Andersen, Ove; Henriksen, Jens H;

    2015-01-01

    Inflammation, and specifically adipose tissue (AT) inflammation, is part of the pathophysiology of obesity and HIV-associated lipodystrophy. Local AT protein assessment methods are limited, and AT inflammation studies have therefore primarily examined inflammatory gene expression. We therefore...

  19. Morphological and inflammatory changes in visceral adipose tissue during obesity.

    Science.gov (United States)

    Revelo, Xavier S; Luck, Helen; Winer, Shawn; Winer, Daniel A

    2014-03-01

    Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called "crown-like structure", a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.

  20. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  1. The adipose tissue in farm animals: a proteomic approach.

    Science.gov (United States)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura; Ceciliani, Fabrizio

    2014-03-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal structure for the mammary gland and on its role in participating in and regulating of energy metabolism and other functions. Moreover, as pig has recently become an important model organism to study human diseases, the knowledge of adipose tissue metabolism in pig is relevant for the study of obesity and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in

  2. Adipose tissue and adipocytes supports tumorigenesis and metastasis#

    OpenAIRE

    Nieman, Kristin M; Romero, Iris L.; Van Houten, Bennett; Lengyel, Ernst

    2013-01-01

    Adipose tissue influences tumor development in two major ways. First, obese individuals have a higher risk of developing certain cancers (endometrial, esophageal, and renal cell cancer). However, the risk of developing other cancers (melanoma, rectal, and ovarian) is not altered by body mass. In obesity, hypertrophied adipose tissue depots are characterized by a state of low grade inflammation. In this activated state, adipocytes and inflammatory cells secrete adipokines and cytokines which a...

  3. (Brown) adipose tissue associated metabolic dysfunction and risk of cardiovascular disease in high risk patients

    NARCIS (Netherlands)

    Franssens, BT

    2016-01-01

    In this thesis it was shown that (brown) adipose tissue associated metabolic dysfunction increases the risk on development of cardiovascular disease in high risk patients. Quantity of adipose tissue is an important risk factor for adipose tissue dysfunction but functionality of adipose tissue not so

  4. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI.

    Science.gov (United States)

    Khan, Tayeba; Muise, Eric S; Iyengar, Puneeth; Wang, Zhao V; Chandalia, Manisha; Abate, Nicola; Zhang, Bei B; Bonaldo, Paolo; Chua, Streamson; Scherer, Philipp E

    2009-03-01

    Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating "adipose tissue fibrosis" as a hallmark of metabolically challenged adipocytes. Collagen VI is a highly enriched extracellular matrix component of adipose tissue. The absence of collagen VI results in the uninhibited expansion of individual adipocytes and is paradoxically associated with substantial improvements in whole-body energy homeostasis, both with high-fat diet exposure and in the ob/ob background. Collectively, our data suggest that weakening the extracellular scaffold of adipocytes enables their stress-free expansion during states of positive energy balance, which is consequently associated with an improved inflammatory profile. Therefore, the disproportionate accumulation of extracellular matrix components in adipose tissue may not be merely an epiphenomenon of metabolically challenging conditions but may also directly contribute to a failure to expand adipose tissue mass during states of excess caloric intake.

  5. Exercise and Adipose Tissue Macrophages: New Frontiers in Obesity Research?

    Science.gov (United States)

    Goh, Jorming; Goh, Kian Peng; Abbasi, Asghar

    2016-01-01

    Obesity is a major public health problem in the twenty-first century. Mutations in genes that regulate substrate metabolism, subsequent dysfunction in their protein products, and other factors, such as increased adipose tissue inflammation, are some underlying etiologies of this disease. Increased inflammation in the adipose tissue microenvironment is partly mediated by the presence of cells from the innate and adaptive immune system. A subset of the innate immune population in adipose tissue include macrophages, termed adipose tissue macrophages (ATMs), which are central players in adipose tissue inflammation. Being extremely plastic, their responses to diverse molecular signals in the microenvironment dictate their identity and functional properties, where they become either pro-inflammatory (M1) or anti-inflammatory (M2). Endurance exercise training exerts global anti-inflammatory responses in multiple organs, including skeletal muscle, liver, and adipose tissue. The purpose of this review is to discuss the different mechanisms that drive ATM-mediated inflammation in obesity and present current evidence of how exercise training, specifically endurance exercise training, modulates the polarization of ATMs from an M1 to an M2 anti-inflammatory phenotype.

  6. Endoplasmic reticulum stress in adipose tissue augments lipolysis.

    Science.gov (United States)

    Bogdanovic, Elena; Kraus, Nicole; Patsouris, David; Diao, Li; Wang, Vivian; Abdullahi, Abdikarim; Jeschke, Marc G

    2015-01-01

    The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.

  7. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  8. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  9. Pericoronary adipose tissue: a novel therapeutic target in obesity-related coronary atherosclerosis.

    Science.gov (United States)

    Mazurek, Tomasz; Opolski, Grzegorz

    2015-01-01

    Inflammation plays a crucial role in the development and destabilization of atherosclerotic plaques in coronary vessels. Adipose tissue is considered to act in paracrine manner, which modulates a number of physiological and pathophysiological processes. Perivascular adipose tissue has developed specific properties that distinguish it from the fat in other locations. Interestingly, its activity depends on several metabolic conditions associated with insulin resistance and weight gain. Particularly in obesity perivascular fat seems to change its character from a protective to a detrimental one. The present review analyzes literature in terms of the pathophysiology of atherosclerosis, with particular emphasis on inflammatory processes. Additionally, the authors summarize data about confirmed paracrine activity of visceral adipose tissue and especially about pericoronary fat influence on the vascular wall. The contribution of adiponectin, leptin and resistin is addressed. Experimental and clinical data supporting the thesis of outside-to-inside signaling in the pericoronary milieu are further outlined. Clinical implications of epicardial and pericoronary adipose tissue activity are also evaluated. The role of pericoronary adipose tissue in obesity-related atherosclerosis is highlighted. In conclusion, the authors discuss potential therapeutical implications of these novel phenomena, including adipokine imbalance in pericoronary adipose tissue in the setting of obesity, the influence of lifestyle and diet modification, pharmaceutical interventions and the growing role of microRNAs in adipogenesis, insulin resistance and obesity. Key teaching points: • adipose tissue as a source of inflammatory mediators • changes in the vascular wall as a result of outside-to-inside signaling • anatomy, physiology, and clinical implications of epicardial and pericoronary adipose tissue activity • adipokines and their role in obesity-related atherosclerosis • therapeutic

  10. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    Science.gov (United States)

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.

  11. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H; Manuel, Justin; Möller, Andreas; Bowtell, David D; Mynatt, Randall L; Ghosh, Sujoy; Floyd, Z Elizabeth

    2015-11-01

    Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. © 2015 The Obesity Society.

  12. Adipose tissue, the skeleton and cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, Peder

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western World, although the incidence of myocardial infarction (MI) has declined over the last decades. However, obesity, which is one of the most important risk factors for CVD, is increasingly common. Osteoporosis is also on the rise because of an aging population. Based on considerable overlap in the prevalence of CVD and osteoporosis, a shared etiology has been proposed. Furthermore, the possibility of interplay between the skeleton and adipose tissue has received increasing attention the last few years with the discovery that leptin can influence bone metabolism and that osteocalcin can influence adipose tissue. A main aim of this thesis was to investigate the effects of fat mass distribution and bone mineral density on the risk of MI. Using dual-energy x-ray absorptiometry (DEXA) we measured 592 men and women for regional fat mass in study I. In study II this was expanded to include 3258 men and women. In study III 6872 men and women had their bone mineral density measured in the total hip and femoral neck using DEXA. We found that a fat mass distribution with a higher proportion of abdominal fat mass was associated with both an adverse risk factor profile and an increased risk of MI. In contrast, a higher gynoid fat mass distribution was associated with a more favorable risk factor profile and a decreased risk of MI, highlighting the different properties of abdominal and gynoid fat depots (study I-II). In study III, we investigated the association of bone mineral density and risk factors shared between CVD and osteoporosis, and risk of MI. We found that lower bone mineral density was associated with hypertension, and also tended to be associated to other CVD risk factors. Low bone mineral density was associated with an increased risk of MI in both men and women, apparently independently of the risk factors studied (study III). In study IV, we investigated 50 healthy, young men to determine if

  13. Ghrelin receptor regulates adipose tissue inflammation in aging.

    Science.gov (United States)

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  14. From neutrophils to macrophages: differences in regional adipose tissue depots.

    Science.gov (United States)

    Dam, V; Sikder, T; Santosa, S

    2016-01-01

    Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.

  15. Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver.

    Directory of Open Access Journals (Sweden)

    Andrew M Shore

    Full Text Available Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT, white adipose (WAT and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05 up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver. Gene ontology analysis revealed for the first time significant (P<0.05 down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production.

  16. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-04-01

    Full Text Available Abstract Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants or stromal vascular fraction (SVF from paired fat samples of periprostatic (PP and pre-peritoneal visceral (VIS anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs 2 and 9 activity. The effects of those conditioned media (CM on growth and migration of hormone-refractory (PC-3 and hormone-sensitive (LNCaP prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration

  17. Exercise Regulation of Marrow Adipose Tissue

    Science.gov (United States)

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  18. Exercise Regulation of Marrow Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Gabriel M Pagnotti

    2016-07-01

    Full Text Available Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell pool (MSC that gives rise also to osteoblasts, chondrocytes, and myocytes among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally-supportive tissues, inhibits bone resorption and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot, or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a 5-fold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  19. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue

    Science.gov (United States)

    Kosteli, Aliki; Sugaru, Eiji; Haemmerle, Guenter; Martin, Jayne F.; Lei, Jason; Zechner, Rudolf; Ferrante, Anthony W.

    2010-01-01

    Obesity elicits an immune response characterized by myeloid cell recruitment to key metabolic organs, including adipose tissue. However, the response of immune cells to nonpathologic metabolic stimuli has been less well studied, and the factors that regulate the metabolic-dependent accumulation of immune cells are incompletely understood. Here we characterized the response of adipose tissue macrophages (ATMs) to weight loss and fasting in mice and identified a role for lipolysis in ATM recruitment and accumulation. We found that the immune response to weight loss was dynamic; caloric restriction of high-fat diet–fed mice led to an initial increase in ATM recruitment, whereas ATM content decreased following an extended period of weight loss. The peak in ATM number coincided with the peak in the circulating concentrations of FFA and adipose tissue lipolysis, suggesting that lipolysis drives ATM accumulation. Indeed, fasting or pharmacologically induced lipolysis rapidly increased ATM accumulation, adipose tissue chemoattractant activity, and lipid uptake by ATMs. Conversely, dietary and genetic manipulations that reduced lipolysis decreased ATM accumulation. Depletion of macrophages in adipose tissue cultures increased expression of adipose triglyceride lipase and genes regulated by FFA, and increased lipolysis. These data suggest that local lipid fluxes are central regulators of ATM recruitment and that once recruited, ATMs form lipid-laden macrophages that can buffer local increases in lipid concentration. PMID:20877011

  20. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues.

    Science.gov (United States)

    Xu, Cheng; Cai, Yu; Fan, Pengcheng; Bai, Bo; Chen, Jie; Deng, Han-Bing; Che, Chi-Ming; Xu, Aimin; Vanhoutte, Paul M; Wang, Yu

    2015-05-01

    Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.

  1. Adipose tissues differentiated by adipose-derived stemcells harvested from transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LU Feng; GAO Jian-hua; Rei Ogawa; Hiroshi Mizuro; Hiki Hykusoku

    2006-01-01

    Objective: To induce adipocyte differentiation in vitro by adipose-derived stromal cells (ASCs) harvested from transgenic mice with green fluorescent protein (GFP)and assess the possibility of constructing adipose tissues via attachment of ASCs to type Ⅰ collagen scaffolds.Methods: Inguinal fat pads from GFP transgenic mice were digested by enzymes for isolation of ASCs (primary culture). After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks, and the adipocyte differentiation by ASCs in vitro was assessed by morphological observation and Oil Red O staining. Then they were attached to collagen scaffolds and co-cultured for 12 hours, followed by hypodermic implantation to the dorsal skin of nude mice for 2 months. The newly-formed tissues were detected by HE staining.Results: The cultured primary stem cells were fibroblast-like and showed active proliferation. After being incubated in an adipocyte differentiation medium, the lipid droplets in the cytoplasm accumulated gradually and finally developed into mature adipocytes, which showed positive in Oil Red O staining. A 0.5-cm3 new tissue clot was found under the dorsal skin of the nude mice and it was confirmed as mature adipose tissues by fluorescent observation and HE staining.Conclusions: ASCs can successfully differentiate adipose tissues into mature adipocytes, which exhibit an adipocyte-like morphology and express as intracytoplasmic lipid droplets. It is an efficient model of adipose tissues engineered with ASCs and type Ⅰ collagen scaffolds.

  2. White adipose tissue resilience to insulin deprivation and replacement.

    Science.gov (United States)

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.

  3. White Adipose Tissue Resilience to Insulin Deprivation and Replacement

    Science.gov (United States)

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Introduction Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. Results The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Conclusion Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues. PMID:25170835

  4. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion.

    Science.gov (United States)

    Michailidou, Zoi; Morton, Nicholas M; Moreno Navarrete, José Maria; West, Christopher C; Stewart, Kenneth J; Fernández-Real, José Manuel; Schofield, Christopher J; Seckl, Jonathan R; Ratcliffe, Peter J

    2015-03-01

    Prolyl hydroxylase enzymes (PHDs) sense cellular oxygen upstream of hypoxia-inducible factor (HIF) signaling, leading to HIF degradation in normoxic conditions. In this study, we demonstrate that adipose PHD2 inhibition plays a key role in the suppression of adipocyte lipolysis. Adipose Phd2 gene ablation in mice enhanced adiposity, with a parallel increase in adipose vascularization associated with reduced circulating nonesterified fatty acid levels and normal glucose homeostasis. Phd2 gene-depleted adipocytes exhibited lower basal lipolysis in normoxia and reduced β-adrenergic-stimulated lipolysis in both normoxia and hypoxia. A selective PHD inhibitor suppressed lipolysis in murine and human adipocytes in vitro and in vivo in mice. PHD2 genetic ablation and pharmacological inhibition attenuated protein levels of the key lipolytic effectors hormone-sensitive lipase and adipose triglyceride lipase (ATGL), suggesting a link between adipocyte oxygen sensing and fatty acid release. PHD2 mRNA levels correlated positively with mRNA levels of AB-hydrolase domain containing-5, an activator of ATGL, and negatively with mRNA levels of lipid droplet proteins, perilipin, and TIP47 in human subcutaneous adipose tissue. Therapeutic pseudohypoxia caused by PHD2 inhibition in adipocytes blunts lipolysis and promotes benign adipose tissue expansion and may have therapeutic applications in obesity or lipodystrophy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Under the Surface of Subcutaneous Adipose Tissue Biology.

    Science.gov (United States)

    Pandžić Jakšić, Vlatka; Grizelj, Danijela

    2016-12-01

    The global obesity epidemic enhanced contemporary interest in adipose tissue biology. Two structurally and functionally distinct depots, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), are spread throughout the body. Their distribution was recognized to be a major determinant of metabolic risk. Unlike VAT, SAT showed some protective endocrine and inflammatory features that might explain the occurrence of obese but metabolically healthy persons. The unique developmental gene expression signature, angiogenesis, and adipogenic potential of SAT determines its growth ability under the positive energy balance. The overflow hypothesis suggested that when SAT is unable to expand sufficiently, fat overflows towards metabolically adverse ectopic depots. Besides white adipose tissue, recent studies found important brown adipose tissue activity responsible for thermogenesis and energy dissipation in adults as well. SAT is prone to "browning" - the appearance of particular beige adipocytes that contribute to its favorable metabolic effects. Morbid obesity, aging, hormonal status, nutrition, low physical activity, and other environmental factors impair SAT relative resistance to dysfunctional changes and promote development of metabolic disorders. The popular approach considering SAT mainly as the subject of cosmetic procedures for improving the appearance of body contours should be avoided. Complex heterogeneity of obesity revealed that a tissue of an extreme plasticity and rich interactions with vital functions of the body lies under the surface. Therapeutic manipulations to preserve and enhance healthier fat in order to correct obesity-related metabolic disorders seem to be a relevant but still unexplored opportunity.

  6. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression.

    Science.gov (United States)

    Al-Qahtani, Saad Misfer; Bryzgalova, Galyna; Valladolid-Acebes, Ismael; Korach-André, Marion; Dahlman-Wright, Karin; Efendić, Suad; Berggren, Per-Olof; Portwood, Neil

    2017-01-01

    Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and weight loss by E2 treatment in high-fat-diet (HFD)-fed mice involve several anti-adipogenic processes in the visceral adipose tissue. Magnetic resonance imaging (MRI) revealed specific reductions in visceral adipose tissue volume in HFD+E2 mice, compared with HFD mice. This loss of adiposity was associated with diminished visceral adipocyte size and reductions in expression of lipogenic genes, adipokines and of the nuclear receptor nr2c2/tr4. Meanwhile, expression levels of adipose triglyceride lipase/pnpla2 and leptin receptor were increased. As mRNA levels of stat3, a transcription factor involved in brown adipose tissue differentiation, were also increased in visceral adipose, the expression of other brown adipose-specific markers was assessed. Both expression and immunohistochemical staining of ucp-1 were increased, and mRNA levels of dio-2, and of adrβ3, a regulator of ucp-1 expression during the thermogenic response, were increased. Furthermore, expression of cpt-1b, a brown adipose-specific gene involved in fatty acid utilization, was also increased. Methylation studies demonstrated that the methylation status of both dio-2 and adrβ3 was significantly reduced. These results show that improved glycemic control and weight loss due to E2 involve anti-adipogenic mechanisms which include suppressed lipogenesis and augmented fatty acid utilization, and in addition, the activation of brown adipose tissue-specific gene expression in association with E2-dependent epigenetic modifications in these genes.

  7. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  8. Lipolysis and lipases in white adipose tissue – An update

    OpenAIRE

    Bolsoni-Lopes,Andressa; Alonso-Vale, Maria Isabel C.

    2015-01-01

    Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanism...

  9. Adipose tissue, obesity and adipokines: role in cancer promotion.

    Science.gov (United States)

    Booth, Andrea; Magnuson, Aaron; Fouts, Josephine; Foster, Michelle

    2015-01-01

    Adipose tissue is a complex organ with endocrine, metabolic and immune regulatory roles. Adipose depots have been characterized to release several adipocytokines that work locally in an autocrine and paracrine fashion or peripherally in an endocrine fashion. Adipocyte hypertrophy and excessive adipose tissue accumulation, as occurs during obesity, dysregulates the microenvironment within adipose depots and systemically alters peripheral tissue metabolism. The term "adiposopathy" is used to describe this promotion of pathogenic adipocytes and associated adipose - elated disorders. Numerous epidemiological studies confirm an association between obesity and various cancer forms. Proposed mechanisms that link obesity/adiposity to high cancer risk and mortality include, but are not limited to, obesity-related insulin resistance, hyperinsulinemia, sustained hyperglycemia, glucose intolerance, oxidative stress, inflammation and/or adipocktokine production. Several epidemiological studies have demonstrated a relationship between specific circulating adipocytokines and cancer risk. The aim of this review is to define the function, in normal weight and obesity states, of well-characterized and novel adipokines including leptin, adiponectin, apelin, visfatin, resistin, chemerin, omentin, nesfatin and vaspin and summarize the data that relates their dysfunction, whether associated or direct effects, to specific cancer outcomes. Overall research suggests most adipokines promote cancer cell progression via enhancement of cell proliferation and migration, inflammation and anti-apoptosis pathways, which subsequently can prompt cancer metastasis. Further research and longitudinal studies are needed to define the specific independent and additive roles of adipokines in cancer progression and reoccurrence.

  10. 1,25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue.

    Science.gov (United States)

    Kong, Juan; Chen, Yunzi; Zhu, Guojun; Zhao, Qun; Li, Yan Chun

    2013-02-01

    Leptin is an adipose tissue-derived hormone that plays a critical role in energy homeostasis. Vitamin D has been shown to regulate energy metabolism, but the relationship between vitamin D and leptin is unclear. Leptin expression and secretion was reduced in vitamin D receptor (VDR)-null mice and increased in transgenic (Tg) mice overexpressing the VDR in adipocytes; however, as leptin is mainly determined by fat mass, it is unclear whether the vitamin D hormone directly regulates leptin expression. To address this question, we determined the effect of vitamin D on leptin expression in vivo and ex vivo. One-week treatment of WT mice with the vitamin D analog RO-27-5646 led to a significant increase in adipose leptin mRNA transcript and serum leptin levels. Moreover, in adipose tissue cultures, 1,25-dihydroxyvitamin D markedly stimulated mRNA expression and secretion of leptin, but not resistin, in adipose tissues obtained from WT mice, but not from VDR-null mice, and leptin upregulation induced by 1,25-dihydroxyvitamin D was more robust in adipose tissues obtained from VDR Tg mice compared with WT mice. These data demonstrate that 1,25-dihydroxyvitamin D stimulates adipose leptin production in a VDR-dependent manner, suggesting that vitamin D may affect energy homeostasis through direct regulation of leptin expression.

  11. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue.

    Science.gov (United States)

    Mori, Shinobu; Kiuchi, Satomi; Ouchi, Atsushi; Hase, Tadashi; Murase, Takatoshi

    2014-01-01

    Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.

  12. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue.

    Science.gov (United States)

    Zhou, Shui-Rong; Guo, Liang; Wang, Xu; Liu, Yang; Peng, Wan-Qiu; Liu, Yuan; Wei, Xiang-Bo; Dou, Xin; Ding, Meng; Lei, Qun-Ying; Qian, Shu-Wen; Li, Xi; Tang, Qi-Qun

    2017-08-15

    White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT. Copyright © 2017 American Society for Microbiology.

  13. UCP1 in Brite/Beige Adipose Tissue Mitochondria Is Functionally Thermogenic

    Directory of Open Access Journals (Sweden)

    Irina G. Shabalina

    2013-12-01

    Full Text Available The phenomenon of white fat “browning,” in which certain white adipose tissue depots significantly increase gene expression for the uncoupling protein UCP1 and thus supposedly acquire thermogenic, fat-burning properties, has attracted considerable attention. Because the mRNA increases are from very low initial levels, the metabolic relevance of the change is unclear: is the UCP1 protein thermogenically competent in these brite/beige-fat mitochondria? We found that, in mitochondria isolated from the inguinal “white” adipose depot of cold-acclimated mice, UCP1 protein levels almost reached those in brown-fat mitochondria. The UCP1 was thermogenically functional, in that these mitochondria exhibited UCP1-dependent thermogenesis with lipid or carbohydrate substrates with canonical guanosine diphosphate (GDP sensitivity and loss of thermogenesis in UCP1 knockout (KO mice. Obesogenic mouse strains had a lower thermogenic potential than obesity-resistant strains. The thermogenic density (UCP1-dependent oxygen consumption per g tissue of inguinal white adipose tissue was maximally one-fifth of interscapular brown adipose tissue, and the total quantitative contribution of all inguinal mitochondria was maximally one-third of all interscapular brown-fat mitochondria, indicating that the classical brown adipose tissue depots would still predominate in thermogenesis.

  14. A stringent validation of mouse adipose tissue identity markers.

    Science.gov (United States)

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  15. Natural killer T cells in adipose tissue prevent insulin resistance.

    Science.gov (United States)

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  16. Adipose tissue as an immunological organ : implications for childhood obesity

    NARCIS (Netherlands)

    Schipper, H.S.

    2013-01-01

    Obesity is increasingly considered as an inflammatory disorder. In adults, obesity induces inflammation of adipose tissue (AT). Through the release of inflammatory lipids and immune mediating proteins called adipokines, AT inflammation spreads to other tissues ranging from liver and muscle to the

  17. Regulation of brown adipose tissue by stress and sex

    NARCIS (Netherlands)

    J.C. van den Beukel (Anneke)

    2016-01-01

    textabstractDue to the increasing incidence of obesity, more means of treating obesity are necessary. Brown adipose tissue (BAT) is a potential target tissue via which obesity can be treated due to its unique ability to use energy to produce heat. Not much is known however about the mechanisms via w

  18. Regulation of brown adipose tissue by stress and sex

    NARCIS (Netherlands)

    J.C. van den Beukel (Anneke)

    2016-01-01

    textabstractDue to the increasing incidence of obesity, more means of treating obesity are necessary. Brown adipose tissue (BAT) is a potential target tissue via which obesity can be treated due to its unique ability to use energy to produce heat. Not much is known however about the mechanisms via w

  19. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    Science.gov (United States)

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  20. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  1. Epicardial adipose tissue in endocrine and metabolic diseases.

    Science.gov (United States)

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  2. MicroRNAs in dysfunctional adipose tissue: cardiovascular implications.

    Science.gov (United States)

    Icli, Basak; Feinberg, Mark W

    2017-07-01

    In this review, we focus on the emerging role of microRNAs, non-coding RNAs that regulate gene expression and signaling pathways, in dysfunctional adipose tissue. We highlight current paradigms of microRNAs involved in adipose differentiation and function in depots such as white, brown, and beige adipose tissues and potential implications of microRNA dysregulation in human disease such as obesity, inflammation, microvasculature dysfunction, and related cardiovascular diseases. We highlight accumulating studies indicating that adipocyte-derived microRNAs may not only serve as biomarkers of cardiometabolic disease, but also may directly regulate gene expression of other tissues. Finally, we discuss the future prospects, challenges, and emerging strategies for microRNA delivery and targeting for therapeutic applications in cardiovascular disease states associated with adipocyte dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  3. The effect of hypokinesia on lipid metabolism in adipose tissue

    Science.gov (United States)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  4. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...... in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate...... the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WCBMI), adjusting for confounders. Results 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men...

  5. The effects of adipose tissue and adipocytokines in human pregnancy.

    Science.gov (United States)

    Valsamakis, G; Kumar, S; Creatsas, G; Mastorakos, G

    2010-09-01

    During pregnancy, important changes take place in maternal metabolism because of the growing fetus and placental formation. The increase in insulin resistance during pregnancy is paralleled by the progressive increase of maternal adipose tissue deposition. This review examines the topography of fat mass deposition during pregnancy in relation to factors such as parity and maternal age that might affect this deposition. We also examine adipose tissue markers, such as pregravid weight and weight gain during pregnancy, and their effect on fetal growth and pregnancy outcomes. In addition, this review studies the possible effects of cytokines that are produced by adipose tissue and the placenta on maternal metabolism and its complications. Finally, we also consider the possible role of maternal adipocytokines and fetal adipocytokines on fetal growth. © 2010 New York Academy of Sciences.

  6. In vivo Analysis of White Adipose Tissue in Zebrafish

    Science.gov (United States)

    Minchin, James E.N.; Rawls, John F.

    2016-01-01

    White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT. PMID:21951526

  7. Bovine dedifferentiated adipose tissue (DFAT) cells

    OpenAIRE

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S.; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J.; Elabd, Elham M Youssef; Bergen, Werner G.; Basu, Urmila; Dodson, Michael V.

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repea...

  8. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue.

    Science.gov (United States)

    Harazaki, Tomomi; Inoue, Seiya; Imai, Chihiro; Mochizuki, Kazuki; Goda, Toshinao

    2014-05-01

    CD11s/CD18 dimers induce monocyte/macrophage infiltration into many tissues, including adipose tissues. In particular, it was reported that β2-integrin CD11c-positive macrophages in adipose tissues are closely associated with the development of insulin resistance. The aim of this study was to determine whether intake of resistant starch (RS) reduces macrophage accumulation in adipose tissues and inhibits the development of insulin resistance at an early stage in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Twenty-two-wk-old male OLETF rats were fed a control diet (55% α-corn starch) or an RS diet (55% RS) for 5 wk. An oral glucose tolerance test was performed after 4 wk of feeding; tissues (mesenteric and epididymal adipose tissues, and liver) and tail vein blood were collected after 5 wk of feeding the test diets. Feeding the RS diet to OLETF rats for 5 wk improved insulin resistance, reduced the mesenteric adipose tissue weight, and enhanced the number of small adipocytes. CD68 expression, a macrophage infiltration marker, was not changed by the RS diet, whereas the gene expression levels of integrins such as CD11c, CD11d, and CD18, but not CD11a, and CD11b, were significantly reduced. CD11c protein expression was reduced by the RS diet. These findings suggest that part of the mechanism for the improved insulin resistance by the RS diet involves a reduction of CD11c expression in adipose tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Different adipose tissue depots: Metabolic implications and effects of surgical removal.

    Science.gov (United States)

    Marcadenti, Aline; de Abreu-Silva, Erlon Oliveira

    2015-11-01

    Increased adiposity has been associated to worse metabolic profile, cardiovascular disease, and mortality. There are two main adipose tissue depots in the body, subcutaneous and visceral adipose tissue, which differ in anatomical location. A large body of evidence has shown the metabolic activity of adipose tissue; lipectomy and/or liposuction therefore appear to be alternatives for improving metabolic profile through rapid loss of adipose tissue. However, surgical removal of adipose tissue may be detrimental for metabolism, because subcutaneous adipose tissue has not been associated to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. In addition, animal studies have shown a compensatory growth of adipose tissue in response to lipectomy. This review summarizes the implications of obesity-induced metabolic dysfunction, its relationship with the different adipose tissue depots, and the effects of lipectomy on cardiometabolic risk factors. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  10. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  11. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Science.gov (United States)

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  12. Chagas disease, adipose tissue and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Fnu Nagajyothi

    2009-07-01

    Full Text Available Trypanosoma cruzi infection of the adipose tissue of mice triggers the local expression of inflammatory mediators and a reduction in the expression of the adipokine adiponectin. T. cruzi can be detected in adipose tissue by PCR 300 days post-infection. Infection of cultured adipocytes results in increased expression of cytokines and chemokines and a reduction in the expression of adiponectin and the peroxisome proliferator-activated receptor ³, both of which are negative regulators of inflammation. Infection also results in the upregulation of cyclin D1, the Notch pathway, and extracellular signal-regulated kinase and a reduction in the expression of caveolin-1. Thus, T. cruzi infection of cultured adipocytes leads to an upregulation of the inflammatory process. Since adiponectin null mice have a cardiomyopathic phenotype, it is possible that the reduction in adiponectin contributes to the pathogenesis of chagasic cardiomyopathy. Adipose tissue may serve as a reservoir for T. cruzi from which parasites can become reactivated during periods of immunosuppression. T. cruzi infection of mice often results in hypoglycemia. In contrast, hyperglycemia as observed in diabetes results in increased parasitemia and mortality. Adipose tissue is an important target tissue of T. cruzi and the infection of this tissue is associated with a profound impact on systemic metabolism, increasing the risk of metabolic syndrome.

  13. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Science.gov (United States)

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  14. Adipose tissue Fatty Acid patterns and changes in antrhropometry

    DEFF Research Database (Denmark)

    Dahm, Christina Catherine; Gorst-Rasmussen, Anders; Jakobsen, Marianne Uhre

    2011-01-01

    in adipose tissue fatty acids and changes in anthropometry. Methods 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate......Introduction Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns...

  15. Natural killer T cells in adipose tissue are activated in lean mice.

    Science.gov (United States)

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  16. Impact of Growth Hormone on Regulation of Adipose Tissue.

    Science.gov (United States)

    Troike, Katie M; Henry, Brooke E; Jensen, Elizabeth A; Young, Jonathan A; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2017-06-18

    Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  17. Benefits of healthy adipose tissue in the treatment of diabetes.

    Science.gov (United States)

    Gunawardana, Subhadra C

    2014-08-15

    The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin. Insulin deficiency is either absolute due to destruction or failure of pancreatic β cells, or relative due to decreased sensitivity of peripheral tissues to insulin. The primary lesion being related to insulin, treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin. These therapies have their own limitations and complications, some of which can be life-threatening. For example, exogenous insulin administration can lead to fatal hypoglycemic episodes; islet/pancreas transplantation requires life-long immunosuppressive therapy; and anti-diabetic drugs have dangerous side effects including edema, heart failure and lactic acidosis. Thus the need remains for better safer long term treatments for diabetes. The ultimate goal in treating diabetes is to re-establish glucose homeostasis, preferably through endogenously generated hormones. Recent studies increasingly show that extra-pancreatic hormones, particularly those arising from adipose tissue, can compensate for insulin, or entirely replace the function of insulin under appropriate circumstances. Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism. While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines, healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties, which can complement and/or compensate for the function of insulin. Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes, and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin. Although specific adipokines may correct diabetes, administration of individual adipokines still carries risks similar to those of insulin monotherapy. Thus a

  18. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation

    DEFF Research Database (Denmark)

    Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik Holm;

    2016-01-01

    = 0.001) compared with Placebo. These effects were associated with increased phosphorylation of hormone sensitive lipase (pHSL) at ser650 in adipose tissue (p = 0.03), a trend towards elevated pHSL at ser552 (p = 0.09) and cAMP-dependent protein kinase A (PKA) phosphorylation of perilipin 1 (PLIN1) (p...... lipolysis in adipose tissue and is associated with increased pHSL and signs of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signaling. The combination of these mechanisms appear to be the driving forces behind the increased lipolysis observed in the early stages of acute...

  19. Vitamin D and adipose tissue - more than storage

    Directory of Open Access Journals (Sweden)

    Shivaprakash Jagalur Mutt

    2014-06-01

    Full Text Available The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OHD, no evidence was obtained for a BMI lowering effect by higher 25(OHD. Some of the physiological functions of 1,25(OH2D3 (1,25-dihydroxycholecalciferol or calcitriol via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g. in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH2D3, vitamin D binding proteins (VDBPs and nuclear vitamin D receptor (VDR after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR -/- and CYP27B1 knock out (CYP27B1 -/- mouse models: Both VDR -/- and CYP27B1 -/- models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH2D3. Experimental studies demonstrate that 1,25(OH2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  20. Intra-abdominal fat. Part I. The images of the adipose tissue localized beyond organs.

    Science.gov (United States)

    Smereczyński, Andrzej; Kołaczyk, Katarzyna; Bernatowicz, Elżbieta

    2015-09-01

    Unaltered fat is a permanent component of the abdominal cavity, even in slim individuals. Visceral adiposity is one of the important factors contributing to diabetes, cardiovascular diseases and certain neoplasms. Moreover, the adipose tissue is an important endocrine and immune organ of complex function both when normal and pathological. Its role in plastic surgery, reconstruction and transplantology is a separate issue. The adipose tissue has recently drawn the attention of research institutes owing to being a rich source of stem cells. This review, however, does not include these issues. The identification of fat is relatively easy using computed tomography and magnetic resonance imaging. It can be more difficult in an ultrasound examination for several reasons. The aim of this paper is to present various problems associated with US imaging of unaltered intra-abdominal fat located beyond organs. Based on the literature and experience, it has been demonstrated that the adipose tissue in the abdominal cavity has variable echogenicity, which primarily depends on the amount of extracellular fluid and the number of connective tissue septa, i.e. elements that potentiate the number of areas that reflect and scatter ultrasonic waves. The normal adipose tissue presents itself on a broad gray scale: from a hyperechoic area, through numerous structures of lower reflection intensity, to nearly anechoic regions mimicking the presence of pathological fluid collections. The features that facilitate proper identification of this tissue are: sharp margins, homogeneous structure, high compressibility under transducer pressure, no signs of infiltration of the surrounding structures and no signs of vascularization when examined with the color and power Doppler. The accumulation of fat tissue in the abdominal cavity can be generalized, regional or focal. The identification of the adipose tissue in the abdominal cavity using ultrasonography is not always easy. When in doubt, the

  1. Maternal nutritional manipulations program adipose tissue dysfunction in offspring.

    Science.gov (United States)

    Lecoutre, Simon; Breton, Christophe

    2015-01-01

    Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.

  2. Maternal nutritional manipulations program adipose tissue dysfunction in offspring

    Directory of Open Access Journals (Sweden)

    Simon eLecoutre

    2015-05-01

    Full Text Available Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates. Maternal nutritional manipulations reprogram offspring’s adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.

  3. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Liu, Pin; Ji, Hong; Li, Chao; Tian, Jingjing; Wang, Yifei; Yu, Ping

    2015-08-01

    To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.

  4. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue.

    Science.gov (United States)

    Gálvez-Prieto, B; Bolbrinker, J; Stucchi, P; de Las Heras, A I; Merino, B; Arribas, S; Ruiz-Gayo, M; Huber, M; Wehland, M; Kreutz, R; Fernandez-Alfonso, M S

    2008-04-01

    Recent studies have demonstrated that the rat adipose tissue expresses some of the components necessary for the production of angiotensin II (Ang II) and the receptors mediating its actions. The aim of this work is to characterize the expression of the renin-angiotensin system (RAS) components in perivascular adipose tissue and to assess differences in the expression pattern depending on the vascular bed and type of adipose tissue. We analyzed Ang I and Ang II levels as well as mRNA levels of RAS components by a quantitative RT-PCR method in periaortic (PAT) and mesenteric adipose tissue (MAT) of 3-month-old male Wistar-Kyoto rats. PAT was identified as brown adipose tissue expressing uncoupling protein-1 (UCP-1). It had smaller adipocytes than those from MAT, which was identified as white adipose tissue. All RAS components, except renin, were detected in both PAT and MAT. Levels of expression of angiotensinogen, Ang-converting enzyme (ACE), and ACE2 were similar between PAT and MAT. Renin receptor expression was five times higher, whereas expression of chymase, AT(1a), and AT(2) receptors were significantly lower in PAT compared with MAT respectively. In addition, three isoforms of the AT(1a) receptor were found in perivascular adipose tissue. The AT(1b) receptor was found at very a low expression level. Ang II levels were higher in MAT with no differences between tissues in Ang I. The results show that the RAS is differentially expressed in white and brown perivascular adipose tissues implicating a different role for the system depending on the vascular bed and the type of adipose tissue.

  5. Theoretical model of ruminant adipose tissue metabolism in relation to the whole animal.

    Science.gov (United States)

    Baldwin, R L; Yang, Y T; Crist, K; Grichting, G

    1976-09-01

    Based on theoretical considerations and experimental data, estimates of contributions of adipose tissue to energy expenditures in a lactating cow and a growing steer were developed. The estimates indicate that adipose energy expenditures range between 5 and 10% of total animal heat production dependent on productive function and diet. These energy expenditures can be partitioned among maintenance (3%), lipogenesis (1-5%) and lipolysis and triglyceride resynthesis (less thatn 1.0%). Specific sites at which acute and chronic effectors can act to produce changes in adipose function, and changes in adipose function produced by diet and during pregnancy, lactation and aging were discussed with emphasis being placed on the need for additional, definitive studies of specific interactions among pregnancy, diet, age, lactation and growth in producing ruminants.

  6. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  7. Effect of exercise training on in vivo lipolysis in intra-abdominal adipose tissue in rats

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Fluckey, J D

    2000-01-01

    Intra-abdominal obesity is associated with cardiovascular disease and non-insulin-dependent diabetes mellitus, and physical training has been suggested to alleviate these conditions. We compared epinephrine-stimulated lipolysis in vivo in three intra-abdominal adipose tissues (ATs: retroperitoneal...

  8. Browning of white adipose tissue: role of hypothalamic signaling.

    Science.gov (United States)

    Bi, Sheng; Li, Lin

    2013-10-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through nonshivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent observations indicate the importance of the dorsomedial hypothalamus (DMH) in thermoregulation. We have found that the orexigenic neuropeptide Y (NPY) in the DMH has distinct actions in modulating adiposity and BAT thermogenesis. Knockdown of NPY in the DMH elevates the thermogenic activity of classic BAT and promotes the development of brown adipocytes in WAT, leading to increased thermogenesis. These findings identify a novel potential target for combating obesity.

  9. Physiological and pathological impact of exosomes of adipose tissue.

    Science.gov (United States)

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  10. Lipolysis and lipases in white adipose tissue - An update.

    Science.gov (United States)

    Bolsoni-Lopes, Andressa; Alonso-Vale, Maria Isabel C

    2015-08-01

    Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanisms involved, which reformulated the concept of lipolysis. Novel findings from these studies include the identification of lipolytic products as signaling molecules regulating important metabolic processes in many non-adipose tissues, unveiling a previously underestimated aspect of lipolysis. Thus, we present here an updated review of concepts and regulation of white adipocyte lipolysis with a special emphasis in its role in metabolism homeostasis and as a source of important signaling molecules.

  11. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    Science.gov (United States)

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  12. Thromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis.

    Science.gov (United States)

    Lei, Xia; Li, Qing; Rodriguez, Susana; Tan, Stefanie Y; Seldin, Marcus M; McLenithan, John C; Jia, Weiping; Wong, G William

    2015-05-01

    Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expression of Tbxas and thromboxane A2 receptor (Tbxa2r) was significantly upregulated in genetic and dietary mouse models of obesity and diabetes. Expression of Tbxas and Tbxa2r was detected in adipose stromal cells, including macrophages. Furthermore, stimulation of macrophages with interferon-γ or resistin factors known to be upregulated in obesity induced Tbxas and Tbxa2r expression. Mice lacking Tbxas had similar weight gain, food intake, and energy expenditure. However, loss of Tbxas markedly enhanced insulin sensitivity in mice fed a low-fat diet. Improvement in glucose homeostasis was correlated with the upregulated expression of multiple secreted metabolic regulators (Ctrp3, Ctrp9, and Ctrp12) in the visceral fat depot. Following a challenge with a high-fat diet, Tbxas deficiency led to attenuated adipose tissue fibrosis and reduced circulating IL-6 levels without adipose tissue macrophages being affected; however, these changes were not sufficient to improve whole body insulin action. Together, our results highlight a novel, diet-dependent role for thromboxane A2 in modulating peripheral tissue insulin sensitivity and adipose tissue fibrosis. Copyright © 2015 the American Physiological Society.

  13. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue.

    Science.gov (United States)

    Hui, Xiaoyan; Zhang, Mingliang; Gu, Ping; Li, Kuai; Gao, Yuan; Wu, Donghai; Wang, Yu; Xu, Aimin

    2017-04-01

    Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD(+)-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages. © 2017 The Authors.

  14. Thromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis

    Science.gov (United States)

    Lei, Xia; Li, Qing; Rodriguez, Susana; Tan, Stefanie Y.; Seldin, Marcus M.; McLenithan, John C.; Jia, Weiping

    2015-01-01

    Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expression of Tbxas and thromboxane A2 receptor (Tbxa2r) was significantly upregulated in genetic and dietary mouse models of obesity and diabetes. Expression of Tbxas and Tbxa2r was detected in adipose stromal cells, including macrophages. Furthermore, stimulation of macrophages with interferon-γ or resistin factors known to be upregulated in obesity induced Tbxas and Tbxa2r expression. Mice lacking Tbxas had similar weight gain, food intake, and energy expenditure. However, loss of Tbxas markedly enhanced insulin sensitivity in mice fed a low-fat diet. Improvement in glucose homeostasis was correlated with the upregulated expression of multiple secreted metabolic regulators (Ctrp3, Ctrp9, and Ctrp12) in the visceral fat depot. Following a challenge with a high-fat diet, Tbxas deficiency led to attenuated adipose tissue fibrosis and reduced circulating IL-6 levels without adipose tissue macrophages being affected; however, these changes were not sufficient to improve whole body insulin action. Together, our results highlight a novel, diet-dependent role for thromboxane A2 in modulating peripheral tissue insulin sensitivity and adipose tissue fibrosis. PMID:25738781

  15. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Maternal obesity and gestational diabetes mellitus (GDM are two increasingly common and important obstetric complications that are associated with severe long-term health risks to mothers and babies. IL-1β, which is increased in obese and GDM pregnancies, plays an important role in the pathophysiology of these two pregnancy complications. In non-pregnant tissues, endoplasmic (ER stress is increased in diabetes and can induce IL-1β via inflammasome activation. The aim of this study was to determine whether ER stress is increased in omental adipose tissue of women with GDM, and if ER stress can also upregulate inflammasome-dependent secretion of IL-1β. ER stress markers IRE1α, GRP78 and XBP-1s were significantly increased in adipose tissue of obese compared to lean pregnant women. ER stress was also increased in adipose tissue of women with GDM compared to BMI-matched normal glucose tolerant (NGT women. Thapsigargin, an ER stress activator, induced upregulated secretion of mature IL-1α and IL-1β in human omental adipose tissue explants primed with bacterial endotoxin LPS, the viral dsRNA analogue poly(I:C or the pro-inflammatory cytokine TNF-α. Inhibition of capase-1 with Ac-YVAD-CHO resulted in decreased IL-1α and IL-1β secretion, whereas inhibition of pannexin-1 with carbenoxolone suppressed IL-1β secretion only. Treatment with anti-diabetic drugs metformin and glibenclamide also reduced IL-1α and IL-1β secretion in infection and cytokine-primed adipose tissue. In conclusion, this study has demonstrated ER stress to activate the inflammasome in pregnant adipose tissue. Therefore, increased ER stress may contribute towards the pathophysiology of obesity in pregnancy and GDM.

  16. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  17. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  18. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  19. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    Science.gov (United States)

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  20. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids.

    Science.gov (United States)

    Smith, U; Kahn, B B

    2016-11-01

    Obesity, the major cause of the current global epidemic of type 2 diabetes (T2D), induces insulin resistance in peripheral insulin target tissues. Several mechanisms have been identified related to cross-talk between adipose tissue, skeletal muscle and liver. These mechanisms involve both increased free fatty acid release and altered secretion of adipokines from adipose tissue. A major determinant of metabolic health is the ability of subcutaneous adipose tissue (SAT) to store excess fat rather than allowing it to accumulate in ectopic depots including liver (i.e. in nonalcoholic fatty liver disease), muscle and heart, or in epicardial/pericardial and visceral fat depots which promote the metabolic complications of obesity. The ability to recruit and differentiate precursor cells into adipose cells (adipogenesis) in SAT is under genetic regulation and is reduced in high-risk individuals who have first-degree relatives with T2D. Early recruitment of new adipose cells is dependent on the cross-talk between canonical WNT and BMP4 signalling; WNT enhances their undifferentiated and proliferative state whereas BMP4 induces their commitment to the adipogenic lineage. Dysregulation of these signalling pathways is associated with impaired adipogenesis and impaired ability to respond to the need to store excess lipids in SAT. This leads to hypertrophic, dysfunctional and insulin-resistant adipose cells with a reduced content of GLUT4, the major insulin-regulated glucose transporter, which in turn reduces adipose tissue glucose uptake and de novo lipogenesis. We recently identified that reduced GLUT4 and lipogenesis in adipocytes impairs the synthesis of a novel family of lipids secreted by adipose tissue (and potentially other tissues), branched fatty acid esters of hydroxy fatty acids (FAHFAs). FAHFAs have beneficial metabolic effects, including enhancing insulin-stimulated glucose transport and glucose-stimulated GLP1 and insulin secretion, as well as powerful anti

  1. Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume?

    Science.gov (United States)

    Noumura, Yusuke; Kamishima, Tamotsu; Sutherland, Kenneth; Nishimura, Hideho

    2017-08-01

    Measurement of visceral adipose tissue (VAT) needs to be accurate and sensitive to change for risk monitoring. The purpose of this study is to determine the CT slice location where VAT area can best reflect changes in VAT volume and body weight. 60 plain abdominal CT images from 30 males [mean age (range) 51 (41-68) years, mean body weight (range) 71.1 (101.9-50.9) kg] who underwent workplace screenings twice within a 1-year interval were evaluated. Automatically calculated and manually corrected areas of the VAT of various scan levels using "freeform curve" region of interest on CT were recorded and compared with body weight changes. The strongest correlations of VAT area with VAT volume and body weight changes were shown in a slice 3 cm above the lower margin of L3 with r values of 0.853 and 0.902, respectively. VAT area measurement at a single level 3 cm above the lower margin of the L3 vertebra is feasible and can reflect changes in VAT volume and body weight. Advances in knowledge: As VAT area at a CT slice 3cm above the lower margin of L3 can best reflect interval changes in VAT volume and body weight, VAT area measurement should be selected at this location.

  2. Insulin receptor signaling in POMC, but Not AgRP, neurons controls adipose tissue insulin action

    National Research Council Canada - National Science Library

    Oberlin, Douglas; Chi, Tiffany; Buettner, Christoph; Shin, Andrew C; Degann, Seta; Filatova, Nika; Lindtner, Claudia

    2017-01-01

    Insulin is a key regulator of adipose tissue lipolysis, and impaired adipose tissue insulin action results in unrestrained lipolysis and lipotoxicity, which are hallmarks of the metabolic syndrome and diabetes...

  3. Subcutaneous abdominal adipose tissue lipolysis during exercise determined by arteriovenous measurements in older women

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik;

    2002-01-01

    To characterize the lipolytic response in the subcutaneous abdominal adipose tissue in older women to endurance exercise.......To characterize the lipolytic response in the subcutaneous abdominal adipose tissue in older women to endurance exercise....

  4. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    Science.gov (United States)

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  5. Metabolic and Vascular Consequences of Adipose Tissue Dysfunction

    NARCIS (Netherlands)

    Westerink, J.|info:eu-repo/dai/nl/343038617

    2012-01-01

    Adipose Tissue Dysfunction (ATD) has been proposed as the pathophysiological route by which obesity confers its associated increased risk for cardiovascular disease and is characterized by an increased secretion of pro-inflammatory cytokines and adipokines and reduced secretion of anti-inflammatory

  6. Adipose Tissue Dysfunction : Clinical Relevance and Diagnostic Possibilities

    NARCIS (Netherlands)

    Schrover, I. M.; Spiering, W.; Leiner, T.; Visseren, F. L J

    2016-01-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity

  7. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction

    DEFF Research Database (Denmark)

    Sun, Kai; Park, Jiyoung; Gupta, Olga T

    2014-01-01

    We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonst...

  8. Adipose Tissue Dysfunction : Clinical Relevance and Diagnostic Possibilities

    NARCIS (Netherlands)

    Schrover, I. M.; Spiering, W.; Leiner, T.; Visseren, F. L J

    2016-01-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity

  9. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    Science.gov (United States)

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  10. Spice Up Your Life: Adipose Tissue and Inflammation

    Directory of Open Access Journals (Sweden)

    Anil K. Agarwal

    2014-01-01

    Full Text Available Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health.

  11. Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers

    Science.gov (United States)

    The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...

  12. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  13. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis

    NARCIS (Netherlands)

    Khedoe, P.P.S.J.; Hoeke, Geerte; Kooijman, Sander; Dijk, Wieneke; Buijs, Jeroen T.; Kersten, Sander; Havekes, Louis M.; Hiemstra, Pieter S.; Berbée, Jimmy F.P.; Boon, Mariëtte R.; Rensen, Patrick C.N.

    2015-01-01

    Brown adipose tissue (BAT) produces heat by burning TGs that are stored within intracellular lipid droplets and need to be replenished by the uptake of TG-derived FA from plasma. It is currently unclear whether BAT takes up FA via uptake of TG-rich lipoproteins (TRLs), after lipolysis-mediated li

  14. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    Science.gov (United States)

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  15. Insulin Plays a Permissive Role for the Vasoactive Effect of GIP Regulating Adipose Tissue Metabolism in Humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Simonsen, Lene; Asmar, Ali

    2016-01-01

    of insulin for the vasoactive effect of GIP in adipose tissue metabolism and whether the vasodilatory effect of GIP is dependent on C-peptide. METHODS: Six lean healthy subjects were studied. The sc abdominal adipose tissue metabolism was assessed by Fick's principle during GIP infusion (1.5 pmol...... the hyperglycemic clamps, endogenous insulin and C-peptide secretion were inhibited by infusion of the somatostatin analogue octreotide. RESULTS: During GIP infusion, Eugluc-Hiinsu, and hyperglycemic-hyperinsulinemic clamps, sc abdominal adipose tissue blood flow (ATBF) was similar and increased from 2.1 ± 0......CONTEXT AND OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increases blood flow and triglyceride (TAG) clearance in subcutaneous (sc) abdominal adipose tissue in lean humans. The present experiments were performed to further investigate the role...

  16. Adipose tissue-specific dysregulation of angiotensinogen by oxidative stress in obesity

    OpenAIRE

    2010-01-01

    Adipose tissue expresses all components of the renin-angiotensin system including angiotensinogen (AGT). Recent studies have highlighted a potential role of AGT in adipose tissue function and homeostasis. However, some controversies surround the regulatory mechanisms of AGT in obese adipose tissue. In this context, we here demonstrated that the AGT messenger RNA (mRNA) level in human subcutaneous adipose tissue was significantly reduced in obese subjects as compared with nonobese subjects. Ad...

  17. Thematic review series: Adipocyte Biology. Adipose tissue function and plasticity orchestrate nutritional adaptation

    OpenAIRE

    Sethi, Jaswinder K.; Vidal-Puig, Antonio J

    2007-01-01

    This review focuses on adipose tissue biology and introduces the concept of adipose tissue plasticity and expandability as key determinants of obesity-associated metabolic dysregulation. This concept is fundamental to our understanding of adipose tissue as a dynamic organ at the center of nutritional adaptation. Here, we summarize the current knowledge of the mechanisms by which adipose tissue can affect peripheral energy homeostasis, particularly in the context of overnutrition. Two mechanis...

  18. A Story in Brown and White Regulation of Metabolic Homeostasis by Brown Adipose tissue

    OpenAIRE

    Mössenböck, Karin

    2016-01-01

    Adipose tissue exists in three shades: White adipose tissue (WAT), the site of energy storage, brown adipose tissue (BAT), which burns nutrients to generate heat and maintain body temperature, and brown in white adipose tissue (brite AT), which represents WAT adapting BAT features in cold exposure. Thermogenically active BAT has been discovered in adult humans and inversely correlates with obesity and insulin resistance. The link between impaired insulin sensitivity and the browning of adipos...

  19. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  20. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    Science.gov (United States)

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  1. Allergen exposure induces adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Jung, Chien-Cheng; Tsai, Yau-Sheng; Chang, Chih-Ching; Cheng, Tsun-Jen; Chang, Ching-Wen; Liu, Ping-Yen; Chiu, Yi-Jen; Su, Huey-Jen

    2014-11-01

    This study investigates whether exposure to allergen elicits insulin resistance as a result of adipose tissue inflammation. Male C57BL/6 mice were challenged with ovalbumin (OVA) allergen for 12 weeks, and blood and adipose tissue samples were collected at 24h after the last challenge. Levels of adhesion molecules, fasting insulin, fasting glucose, and adipokines in the blood were analyzed, and fasting homeostasis model assessment was applied to determine insulin resistance (HOMA-IR). The expression of pro- and anti-inflammatory genes in dissected adipose tissues was analyzed by real-time RT-PCR. Our results showed that OVA exposure increased insulin resistance as well as resistin and E-selectin, but reduced adiponectin in the serum. Resistin level was significantly correlated with HOMA-IR. Moreover, in adipose tissues of OVA-challenged mice, the pro-inflammatory M1 genes were more abundant while the anti-inflammatory M2 genes were less than those of PBS-treated mice. The expressional changes of both M1 and M2 genes were significantly associated with serum levels of adiponectin, resistin, and E-selectin. Hematoxylin and eosin (HE) and immunohistochemistry (IHC) stain also showed that there was more obvious inflammation in OVA-challenged mice. In conclusion, the current study suggests the relationship between allergen-elicited adipose tissue inflammation and circulating inflammatory molecules, which are possible mediators for the development of insulin resistance. Therefore, we propose that allergen exposure might be one risk factor for insulin resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    Science.gov (United States)

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  3. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    Science.gov (United States)

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  4. Isomer-specific effects of CLA on gene expression in human adipose tissue depending on PPARγ2 P12A polymorphism: a double blind, randomized, controlled cross-over study

    Directory of Open Access Journals (Sweden)

    Winkler P

    2009-08-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor (PPARγ is a key regulator in adipose tissue. The rare variant Pro12Ala of PPARγ2 is associated with a decreased risk of insulin resistance. Being dietary PPARγ ligands, conjugated linoleic acids (CLAs received considerable attention because of their effects on body composition, cancer, atherosclerosis, diabetes, obesity and inflammation, although some effects were only demonstrated in animal trials and the results in human studies were not always consistent. In the present study effects of CLA supplementation on genome wide gene expression in adipose tissue biopsies from 11 Ala12Ala and 23 Pro12Pro men were investigated. Subjects underwent four intervention periods (4 wk in a randomized double blind cross-over design receiving 4.25 g/d of either cis-9, trans-11 CLA, trans-10,cis-12 CLA, 1:1 mixture of both isomers or a reference linoleic acid oil preparation. After each intervention biopsies were taken, whole genome expression microarrays were applied, and genes of interest were verified by realtime PCR. Results The following genes of lipid metabolism were regulated by CLA: LDLR, FASN, SCD, FADS1 and UCP2 were induced, while ABCA1, CD36 and CA3 were repressed. Transcription factors PPARγ, NFAT5, CREB5 and EBF1, the adipokine NAMPT, members of the insulin signaling cascade SORBS1 and IGF1 and IL6ST were repressed, while the adipokine THBS1 and GLUT4 involved in insulin signaling were induced. Compared to trans-10,cis-12 CLA and the CLA mixture the cis-9, trans-11 CLA isomer exerted weaker effects. Only CD36 (-1.2 fold and THBS1 (1.5 fold were regulated. The CLA effect on expression of PPARγ and leptin genes depends on the PPARγ2 genotype. Conclusion The data suggest that the isomer specific influence of CLA on glucose and lipid metabolism is genotype dependent and at least in part mediated by PPARγ. Trial registration http://www.controlled-trials.com: ISRCTN91188075

  5. Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction.

    Science.gov (United States)

    Gu, Ping; Xu, Aimin

    2013-03-01

    There is a close anatomical and functional relationship between adipose tissue and blood vessels. The crosstalk between these two organs is vital to both metabolic and vascular homeostasis. On the one hand, adipose tissue is highly vascularized, and maintenance of ample supply of blood flow is essential for both expansion and metabolic functions of adipose tissue. Vascular endothelium also secretes many factors to regulate adipogenesis and adipose tissue remodeling. On the other hand, almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which regulates vascular function by producing a large number of "vasocrine" molecules. Under the normal conditions, PVAT exerts its anti-contractile effects by release of vasorelaxants (such as adipocyte-derived relaxation factors and adiponectin) that promote both endothelium-dependent and -independent relaxations of blood vessels. However, PVAT in obesity becomes highly inflamed and induces vascular dysfunction by augmented secretion of vasoconstriction factors (such as the major components of renin-angiotensinogen-aldosterone system and superoxide) and pro-inflammatory adipokines (such as TNF-α and adipocyte fatty acid binding protein), the latter of which are important contributors to endothelial activation, vascular inflammation and neointimal formation. Furthermore, several adipocyte-derived adipokines impair vascular function indirectly, by acting in the brain to activate sympathetic nerve system (such as leptin) or by exerting their actions in major metabolic organs to induce vascular insulin resistance, which in turn aggravates endothelial dysfunction. Aberrant secretion of adipokines and other vasoactive factors in adipose tissue is a major contributor to the onset and progression of obesity-related metabolic and vascular complications.

  6. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White http://dbarchi...ve.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  7. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    NARCIS (Netherlands)

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG

  8. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue, White...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  17. Adipose tissue and metabolic syndrome: too much, too little or neither.

    Science.gov (United States)

    Grundy, Scott M

    2015-11-01

    Obesity is strongly associated with metabolic syndrome. Recent research suggests that excess adipose tissue plays an important role in development of the syndrome. On the other hand, persons with a deficiency of adipose tissue (e.g. lipodystrophy) also manifest the metabolic syndrome. In some animal models, expansion of adipose tissue pools mitigates adverse metabolic components (e.g. insulin resistance, hyperglycaemia and dyslipidemia). Hence, there are conflicting data as to whether adipose tissue worsens the metabolic syndrome or protects against it. This conflict may relate partly to locations of adipose tissue pools. For instance, lower body adipose tissue may be protective whereas upper body adipose tissue may promote the syndrome. One view holds that in either case, the accumulation of ectopic fat in muscle and liver is the driving factor underlying the syndrome. If so, there may be some link between adipose tissue fat and ectopic fat. But the mechanisms underlying this connection are not clear. A stronger association appears to exist between excessive caloric intake and ectopic fat accumulation. Adipose tissue may act as a buffer to reduce the impact of excess energy consumption by fat storage; but once a constant weight has been achieved, it is unclear whether adipose tissue influences levels of ectopic fat. Another mechanism whereby adipose tissue could worsen the metabolic syndrome is through release of adipokines. This is an intriguing mechanism, but the impact of adipokines on metabolic syndrome risk factors is uncertain. Thus, many potential connections between adipose tissue and metabolic syndrome remain to unravelled.

  18. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  20. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  4. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  5. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  6. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  9. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  10. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  11. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  12. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  20. Circadian regulation of lipid mobilization in white adipose tissues.

    Science.gov (United States)

    Shostak, Anton; Meyer-Kovac, Judit; Oster, Henrik

    2013-07-01

    In mammals, a network of circadian clocks regulates 24-h rhythms of behavior and physiology. Circadian disruption promotes obesity and the development of obesity-associated disorders, but it remains unclear to which extent peripheral tissue clocks contribute to this effect. To reveal the impact of the circadian timing system on lipid metabolism, blood and adipose tissue samples from wild-type, ClockΔ19, and Bmal1(-/-) circadian mutant mice were subjected to biochemical assays and gene expression profiling. We show diurnal variations in lipolysis rates and release of free fatty acids (FFAs) and glycerol into the blood correlating with rhythmic regulation of two genes encoding the lipolysis pacemaker enzymes, adipose triglyceride (TG) lipase and hormone-sensitive lipase, by self-sustained adipocyte clocks. Circadian clock mutant mice show low and nonrhythmic FFA and glycerol blood content together with decreased lipolysis rates and increased sensitivity to fasting. Instead circadian clock disruption promotes the accumulation of TGs in white adipose tissue (WAT), leading to increased adiposity and adipocyte hypertrophy. In summary, circadian modulation of lipolysis rates regulates the availability of lipid-derived energy during the day, suggesting a role for WAT clocks in the regulation of energy homeostasis.

  1. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness.

    Science.gov (United States)

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-03-01

    Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to perform.

  2. Leptin signaling in adipose tissue: role in lipid accumulation and weight gain.

    Science.gov (United States)

    Singh, Prachi; Peterson, Timothy E; Sert-Kuniyoshi, Fatima H; Glenn, Jason A; Davison, Diane E; Romero-Corral, Abel; Pusalavidyasagar, Snigdha; Jensen, Michael D; Somers, Virend K

    2012-08-17

    The link between obesity, hyperleptinemia, and development of cardiovascular disease is not completely understood. Increases in leptin have been shown to impair leptin signaling via caveolin-1-dependent mechanisms. However, the role of hyperleptinemia versus impaired leptin signaling in adipose tissue is not known. To determine the presence and significance of leptin-dependent increases in adipose tissue caveolin-1 expression in humans. We designed a longitudinal study to investigate the effects of increases in leptin on adipose tissue caveolin-1 expression during weight gain in humans. Ten volunteers underwent 8 weeks of overfeeding, during which they gained an average weight of 4.1±1.4 kg, with leptin increases from 7±3.8 to 12±5.7 ng/mL. Weight gain also resulted in changes in adipose tissue caveolin-1 expression, which correlated with increases in leptin (rho=0.79, P=0.01). In cultured human white preadipocytes, leptin increased caveolin-1 expression, which in turn impaired leptin cellular signaling. Functionally, leptin decreased lipid accumulation in differentiating human white preadipocytes, which was prevented by caveolin-1 overexpression. Further, leptin decreased perilipin and fatty acid synthase expression, which play an important role in lipid storage and biogenesis. In healthy humans, increases in leptin, as seen with modest weight gain, may increase caveolin-1 expression in adipose tissue. Increased caveolin-1 expression in turn impairs leptin signaling and attenuates leptin-dependent lowering of intracellular lipid accumulation. Our study suggests a leptin-dependent feedback mechanism that may be essential to facilitate adipocyte lipid storage during weight gain.

  3. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice.

    Science.gov (United States)

    Grove, K L; Fried, S K; Greenberg, A S; Xiao, X Q; Clegg, D J

    2010-06-01

    -, sex- and steroid-dependent regulation of adipose tissue distribution and function.

  4. A Role for Adipose Tissue De Novo Lipogenesis in Glucose Homeostasis During Catch-up Growth

    Science.gov (United States)

    Marcelino, Helena; Veyrat-Durebex, Christelle; Summermatter, Serge; Sarafian, Delphine; Miles-Chan, Jennifer; Arsenijevic, Denis; Zani, Fabio; Montani, Jean-Pierre; Seydoux, Josiane; Solinas, Giovanni; Rohner-Jeanrenaud, Françoise; Dulloo, Abdul G.

    2013-01-01

    Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth. PMID:22961086

  5. Heterogeneous response of adipose tissue to cancer cachexia

    Directory of Open Access Journals (Sweden)

    P.S. Bertevello

    2001-09-01

    Full Text Available Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES, retroperitoneal (RPAT, and epididymal (EAT adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections and EAT (nuclear bodies.

  6. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  7. Melanocortin agonists stimulate lipolysis in human adipose tissue explants but not in adipocytes.

    Science.gov (United States)

    Møller, Cathrine Laustrup; Pedersen, Steen B; Richelsen, Bjørn; Conde-Frieboes, Kilian W; Raun, Kirsten; Grove, Kevin L; Wulff, Birgitte Schjellerup

    2015-10-12

    The central melanocortin system is broadly involved in the regulation of mammalian nutrient utilization. However, the function of melanocortin receptors (MCRs) expressed directly in peripheral metabolic tissues is still unclear. The objective of this study was to investigate the lipolytic capacity of MC1-5R in differentiated adipocytes versus intact white adipose tissue. Non-selective MCR agonist α-MSH, MC5R-selective agonist PG-901 and MC4R-selective agonist LY2112688 significantly stimulated lipolysis in intact white adipose tissue, whereas stimulation of MCRs in differentiated adipocytes failed to do so. The lipolytic response of MC5R was decreased in intact human white adipose tissue when co-treating with β-adrenergic antagonist propranolol, suggesting that the effect may be dependent on neuronal innervation via noradrenalin release. When developing an anti-obesity therapeutic drug with selective MC4R/MC5R properties, effects on lipolysis in white adipose tissue may be physiologically relevant.

  8. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  9. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    Science.gov (United States)

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  10. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity.

    Science.gov (United States)

    Lee, Mi-Jeong; Pramyothin, Pornpoj; Karastergiou, Kalypso; Fried, Susan K

    2014-03-01

    Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease

  11. [Role of chronic inflammation in adipose tissue in the pathophysiology of obesity].

    Science.gov (United States)

    Suganami, Takayoshi; Ogawa, Yoshihiro

    2013-02-01

    Obesity may be viewed as a chronic low-grade inflammatory disease as well as a metabolic disease. Evidence has accumulated suggesting that chronic inflammation in adipose tissue leads to dramatic changes in number and cell type of stromal cells during the course of obesity, which is referred to as"adipose tissue remodeling". Among stromal cells, macrophages in obese adipose tissue are considered to be crucial for adipose tissue inflammation, which results in dysregulated adipocytokine production and ectopic fat accumulation. Understanding the molecular mechanism underlying adipose tissue inflammation would contribute to the identification of novel therapeutic strategies to prevent or treat obesity-induced metabolic derangements.

  12. Adipose tissue deletion of Gpr116 impairs insulin sensitivity through modulation of adipose function.

    Science.gov (United States)

    Nie, Tao; Hui, Xiaoyan; Gao, Xuefei; Li, Kuai; Lin, Wanhua; Xiang, Xiaoliang; Ding, Mengxiao; Kuang, Ying; Xu, Aimin; Fei, Jian; Wang, Zhugang; Wu, Donghai

    2012-10-19

    G protein-coupled receptor 116 (GPR116) is a novel member of the G protein-coupled receptors and its function is largely unknown. To investigate the physiological function of GPR116 in vivo, we generated adipose tissue specific conditional Gpr116 knockout mice (CKO) and fed them on standard chow or high fat diets. Selective deletion of Gpr116 in adipose tissue caused a pronounced glucose intolerance and insulin resistance in mice, especially when challenged with a high fat diet. Biochemical analysis revealed a more severe hepatosteatosis in CKO mice. Additionally, we found that CKO mice showed a lowered concentration of circulating adiponectin and an increased level of serum resistin. Our study suggests that GPR116 may play a critical role in controlling adipocyte biology and systemic energy homeostasis. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury.

    Science.gov (United States)

    Tian, Zhe; Miyata, Keishi; Tazume, Hirokazu; Sakaguchi, Hisashi; Kadomatsu, Tsuyoshi; Horio, Eiji; Takahashi, Otowa; Komohara, Yoshihiro; Araki, Kimi; Hirata, Yoichiro; Tabata, Minoru; Takanashi, Shuichiro; Takeya, Motohiro; Hao, Hiroyuki; Shimabukuro, Michio; Sata, Masataka; Kawasuji, Michio; Oike, Yuichi

    2013-04-01

    Much attention is currently focused on the role of perivascular adipose tissue in development of cardiovascular disease (CVD). Some researchers view it as promoting CVD through secretion of cytokines and growth factors called adipokines, while recent reports reveal that perivascular adipose tissue can exert a protective effect on CVD development. Furthermore, adiponectin, an anti-inflammatory adipokine, reportedly suppresses neointimal hyperplasia after endovascular injury, whereas such vascular remodeling is enhanced by pro-inflammatory adipokines secreted by perivascular adipose, such as tumor necrosis factor-α (TNF-α). These findings suggest that extent of vascular remodeling, a pathological process associated with CVD development, depends on the balance between pro- and anti-inflammatory adipokines secreted from perivascular adipose tissue. We previously demonstrated that angiopoietin-like protein 2 (Angptl2), a pro-inflammatory factor secreted by adipose tissue, promotes adipose tissue inflammation and subsequent systemic insulin resistance in obesity. Here, we examined whether Angptl2 secreted by perivascular adipose tissue contributes to vascular remodeling after endovascular injury in studies of transgenic mice expressing Angptl2 in adipose tissue (aP2-Angptl2 transgenic mice) and Angptl2 knockout mice (Angptl2(-/-) mice). To assess the role of Angptl2 secreted by perivascular adipose tissue on vascular remodeling after endovascular injury, we performed adipose tissue transplantation experiments using these mice. Wild-type mice with perivascular adipose tissue derived from aP2-Angptl2 mice exhibited accelerated neointimal hyperplasia after endovascular injury compared to wild-type mice transplanted with wild-type tissue. Conversely, vascular inflammation and neointimal hyperplasia after endovascular injury were significantly attenuated in wild-type mice transplanted with Angptl2(-/-) mouse-derived perivascular adipose tissue compared to wild-type mice

  14. Succination of Thiol Groups in Adipose Tissue Proteins in Diabetes

    Science.gov (United States)

    Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J.; Nagai, Ryoji; Carson, James A.; Thorpe, Suzanne R.; Baynes, John W.

    2009-01-01

    S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219–34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for ∼7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes. PMID:19592500

  15. [The adipose tissue as a regulatory center of the metabolism].

    Science.gov (United States)

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  16. Bovine dedifferentiated adipose tissue (DFAT) cells

    Science.gov (United States)

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  17. Characteristics of lipolysis in white adipose tissues of SHR/NDmc-cp rats, a model of metabolic syndrome.

    Science.gov (United States)

    Harikai, Naoki; Hashimoto, Ayu; Semma, Masanori; Ichikawa, Atsushi

    2007-06-01

    This study shows the characteristics of hormone-dependent lipolysis in white adipose tissues from corpulent spontaneously hypertensive rats (SHR/NDmc-cp(cp/cp)). The glycerol-releasing activity on addition of norepinephrine (NE) and corticotropin (ACTH) was diminished in slices of epididymal, retroperitoneal, and mesenteric adipose tissues from cp/cp rats compared with those from Wistar Kyoto rats and lean spontaneous hypertensive rats (SHR/NDmc-cp(+/+)). 8-Bromo-cyclic adenosine monophosphate had a slight effect on lipolysis in epididymal, retroperitoneal, and mesenteric adipose tissues from cp/cp rats, and addition of NE and ACTH resulted in a slight accumulation of cyclic adenosine monophosphate in epididymal adipose tissue from cp/cp rats. Therefore, the alteration of hormone-dependent lipolysis-related genes was analyzed using quantitative real-time polymerase chain reaction. It was found that the expression of beta(3)-adrenergic receptor, melanocortin 2 receptor, hormone-sensitive lipase, and perilipin messenger RNAs was limited in epididymal, retroperitoneal, mesenteric, and subcutaneous adipose tissues from cp/cp rats compared with +/+ rats. These results indicate that in white adipose tissue from cp/cp rats, the diminished lipolytic response to NE and ACTH may be caused by impaired expression of beta(3)-adrenergic receptor, melanocortin 2 receptor, hormone-sensitive lipase, and perilipin.

  18. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue.

    Science.gov (United States)

    Ponnusamy, Suriyan; Tran, Quynh T; Harvey, Innocence; Smallwood, Heather S; Thiyagarajan, Thirumagal; Banerjee, Souvik; Johnson, Daniel L; Dalton, James T; Sullivan, Ryan D; Miller, Duane D; Bridges, Dave; Narayanan, Ramesh

    2017-01-01

    Most satiety-inducing obesity therapeutics, despite modest efficacy, have safety concerns that underscore the need for effective peripherally acting drugs. An attractive therapeutic approach for obesity is to optimize/maximize energy expenditure by increasing energy-utilizing thermogenic brown adipose tissue. We used in vivo and in vitro models to determine the role of estrogen receptor β (ER-β) and its ligands on adipose biology. RNA sequencing and metabolomics were used to determine the mechanism of action of ER-β and its ligands. Estrogen receptor β (ER-β) and its selective ligand reprogrammed preadipocytes and precursor stem cells into brown adipose tissue and increased mitochondrial respiration. An ER-β-selective ligand increased markers of tricarboxylic acid-dependent and -independent energy biogenesis and oxygen consumption in mice without a concomitant increase in physical activity or food consumption, all culminating in significantly reduced weight gain and adiposity. The antiobesity effects of ER-β ligand were not observed in ER-β-knockout mice. Serum metabolite profiles of adult lean and juvenile mice were comparable, while that of adult obese mice was distinct, indicating a possible impact of obesity on age-dependent metabolism. This phenotype was partially reversed by ER-β-selective ligand. These data highlight a new role for ER-β in adipose biology and its potential to be a safer alternative peripheral therapeutic target for obesity.-Ponnusamy, S., Tran, Q. T., Harvey, I., Smallwood, H. S., Thiyagarajan, T., Banerjee, S., Johnson, D. L., Dalton, J. T., Sullivan, R. D., Miller, D. D., Bridges, D., Narayanan, R. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. © FASEB.

  19. A role of active brown adipose tissue in cancer cachexia?

    Directory of Open Access Journals (Sweden)

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  20. Browning effects of (-)-epicatechin on adipocytes and white adipose tissue.

    Science.gov (United States)

    Varela, Claudia Elena; Rodriguez, Alonso; Romero-Valdovinos, Mirza; Mendoza-Lorenzo, Patricia; Mansour, Christina; Ceballos, Guillermo; Villarreal, Francisco; Ramirez-Sanchez, Israel

    2017-09-15

    In this study, we demonstrate that (-)-epicatechin (Epi), a cacao flavanol, induces the browning of fat by promoting mitochondrial biogenesis, enhancing indicators of mitochondrial structure and function, increasing fatty acid metabolism and upregulating the expression of brown adipose tissue-specific proteins in a high-fat diet mouse model of obesity and in cultured human adipocytes. Epi treatment significantly improved mitochondrial function, as measured by citrate synthase activity, and also reduced protein acetylation of total and specific regulators in both adipose tissue and human adipocytes. Browning of fat via Epi was evidenced by the increased expression of key thermogenic genes, phosphorylation of upstream regulators of fatty acid oxidation, and reduced triglyceride levels. Properly designed clinical trials are needed to explore the potential of Epi as an agent that promotes the browning of fat. Copyright © 2017. Published by Elsevier B.V.

  1. Endogenous adipose tissue as a hemostatic: use in microsurgery.

    Science.gov (United States)

    Akelina, Yelena; Danilo, Peter

    2008-01-01

    Bleeding is a frequent complication of microsurgical repair of small blood vessels and time is spent while hemostasis is accomplished. We studied the hemostatic effect of endogenous adipose tissue on bleeding from rat femoral arterial anastomoses. We measured bleeding time (time from removal of clamps to cessation of active bleeding) and mean arterial blood velocity (using a micro-Doppler system), the latter immediately after anastomosis, and again 7 days post-anastomosis. Bleeding time for vessels with fat applied to the artery was 50% less than when no fat was applied. Blood velocity by day 7 post-anastomosis returned to values equivalent to those for intact arteries. Histological evaluation of the anastomotic site demonstrated no significant differences in inflammatory response between fat-treated and untreated arteries. These data suggest that endogenous adipose tissue may be a useful hemostatic agent devoid of significant effects on small artery blood velocity or histology. (c) 2008 Wiley-Liss, Inc.

  2. Id transcriptional regulators in adipogenesis and adipose tissue metabolism.

    Science.gov (United States)

    Patil, Mallikarjun; Sharma, Bal Krishan; Satyanarayana, Ande

    2014-06-01

    Id proteins (Id1-Id4) are helix-loop-helix (HLH) transcriptional regulators that lack a basic DNA binding domain. They act as negative regulators of basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibit their DNA binding and transcriptional activity. Id proteins are implicated in the regulation of various cellular mechanisms such as cell proliferation, cellular differentiation, cell fate determination, angiogenesis and tumorigenesis. A handful of recent studies also disclosed that Id proteins have critical functions in adipocyte differentiation and adipose tissue metabolism. Here, we reviewed the progress made thus far in understanding the specific functions of Id proteins in adipose tissue differentiation and metabolism. In addition to reviewing the known mechanisms of action, we also discuss possible additional mechanisms in which Id proteins might participate in regulating adipogenic and metabolic pathways.

  3. Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Delphine Duteil

    2016-10-01

    Full Text Available Previous work indicated that lysine-specific demethylase 1 (Lsd1 can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.

  4. Mechanisms of perivascular adipose tissue dysfunction in obesity.

    Science.gov (United States)

    Fernández-Alfonso, Maria S; Gil-Ortega, Marta; García-Prieto, Concha F; Aranguez, Isabel; Ruiz-Gayo, Mariano; Somoza, Beatriz

    2013-01-01

    Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT) was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity.

  5. Mechanisms of Perivascular Adipose Tissue Dysfunction in Obesity

    Directory of Open Access Journals (Sweden)

    Maria S. Fernández-Alfonso

    2013-01-01

    Full Text Available Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity.

  6. Prolactin (PRL) in adipose tissue: regulation and functions.

    Science.gov (United States)

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  7. Heterogeneity of white adipose tissue: molecular basis and clinical implications.

    Science.gov (United States)

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-03-11

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.

  8. Caloric restriction increases adiponectin expression by adipose tissue and prevents the inhibitory effect of insulin on circulating adiponectin in rats.

    Science.gov (United States)

    Ding, Qi; Ash, Catherine; Mracek, Tomas; Merry, Brian; Bing, Chen

    2012-08-01

    Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Insulin action in morbid obesity: a focus on muscle and adipose tissue.

    Science.gov (United States)

    Mitrou, Panayota; Raptis, Sotirios A; Dimitriadis, George

    2013-01-01

    The aim of this review is to summarize the mechanisms underlying insulin resistance in morbid obesity. Glucose regulation by insulin depends on the suppression of endogenous glucose production and stimulation of glucose disposal. In morbid obesity, glucose production by the liver is increased. Moreover, the sensitivity of glucose metabolism to insulin is impaired both in muscle (due to defects in insulin-stimulated glucose utilization and decreased blood flow) and in adipose tissue (due to decreased blood flow). However, recent studies suggest that expanded total fat mass becomes a major consumer of glucose providing a sink for glucose and compensating for insulin resistance. Metabolism and immunity are closely linked. Bearing in mind the crosstalk between inflammatory pathways and the insulin signaling cascade, adipose tissue derived cytokines may represent a link between inflammation and metabolic signals and mediate, at least in part, insulin resistance. Adipose tissue plays a crucial role by buffering daily influx of dietary fat, suppressing the release of non-esterified fatty acids into the circulation and increasing triacylglycerol clearance. However, in morbid obesity there is an impairment of the normal ability of adipose tissue to buffer fatty acids, despite hyperinsulinemia. Lipotoxicity gradually impairs insulin action in the liver and muscle, aggravating insulin resistance.

  10. Diffuse Optical Spectroscopy and Imaging to Detect and Quantify Adipose Tissue Browning

    Science.gov (United States)

    Dinish, U. S; Wong, Chi Lok; Sriram, Sandhya; Ong, Wee Kiat; Balasundaram, Ghayathri; Sugii, Shigeki; Olivo, Malini

    2017-01-01

    Adipose (fat) tissue is a complex metabolic organ that is highly active and essential. In contrast to white adipose tissue (WAT), brown adipose tissue (BAT) is deemed metabolically beneficial because of its ability to burn calories through heat production. The conversion of WAT-resident adipocytes to “beige” or “brown-like” adipocytes has recently attracted attention. However, it typically takes a few days to analyze and confirm this browning of WAT through conventional molecular, biochemical, or histological methods. Moreover, accurate quantification of the overall browning process is not possible by any of these methods. In this context, we report the novel application of diffuse reflectance spectroscopy (DRS) and multispectral imaging (MSI) to detect and quantify the browning process in mice. We successfully demonstrated the time-dependent increase in browning of WAT, following its induction through β-adrenergic agonist injections. The results from these optical techniques were confirmed with those of standard molecular and biochemical assays, which measure gene and protein expression levels of UCP1 and PGC-1α, as well as with histological examinations. We envision that the reported optical methods can be developed into a fast, real time, cost effective and easy to implement imaging approach for quantification of the browning process in adipose tissue. PMID:28145475

  11. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo

    OpenAIRE

    Scotney, Hannah; Symonds, Michael E; Law, James; Budge, Helen; Sharkey, Don; Manolopoulos, Konstantinos N.

    2017-01-01

    Introduction: Brown adipose tissue (BAT) is a thermogenic organ with substantial metabolic capacity and has important roles in the maintenance of body weight and metabolism. Regulation of BAT is primarily mediated through the ß-adrenoceptor (ß-AR) pathway. The in vivo endocrine regulation of this pathway in humans is unkown. The objective of our study was to assess the in vivo BAT temperature responses to acute glucocorticoid administration.\\ud Methods: We studied 8 healthy male volunteers, n...

  12. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  13. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[(14)C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.

  14. Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects.

    Science.gov (United States)

    Martin, Sally

    2013-09-01

    Adipocytes are specialized cells that function to store energy in the form of lipids, predominantly triglycerides (TGs), and as a regulatory system contributing to metabolic homoeostasis through the production and secretion of hormones and cytokines. The regulation of lipid homeostasis by adipose tissue is an important aspect of whole-body metabolism. Owing to the central nature of adipose tissue in lipid metabolism, dysregulation has wide-ranging effects, contributing to disorders as diverse as diabetes, cardiovascular disease, cancer, and neurodegeneration. Excess lipids are stored in specialized organelles called lipid droplets (LDs). The surface of the lipid droplet can be considered a highly regulated membrane domain that both protects the contents of the LD from unregulated lipolysis and the cell from the cytotoxic effects of elevated free fatty acids. The surface of the LD is coated with a variety of regulatory proteins, either resident or transiently associated, including enzymes involved in the breakdown of TG, lipid transport proteins, and cofactors. Recent studies have begun to unravel the range of LD-associated proteins and to define their functional significance. Importantly, the involvement of LD proteins in pathophysiological disorders is beginning to be understood. This review will outline recent advances in defining the diversity of LD-associated proteins and their links to metabolic disorders including the integral membrane protein, caveolin-1 (CAV1). Analysis of the role of CAV1 in adipose tissue has highlighted the interconnectedness between the regulation of lipid storage and the function of the adipocyte plasma membrane.

  15. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Galván-Portillo Marcia

    2002-01-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  16. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  17. Food consumption and adipose tissue DDT levels in Mexican women

    Directory of Open Access Journals (Sweden)

    Marcia Galván-Portillo

    2002-04-01

    Full Text Available This article analyzes food consumption in relation to levels of DDE (the principal metabolite of DDT in the adipose tissue of 207 Mexican women residing in States with high and low exposure to DDT. Data on the women's dietary habits and childbearing history were obtained from a personal interview. Adipose tissue DDE levels were measured by gas-liquid chromatography and compared by analysis of variance (ANOVA and multiple linear regression. Adipose tissue DDE levels increased significantly with age (p = 0.005 and residence in coastal areas (p = 0.002 and non-significantly with the consumption of onion, cauliflower, prickly pear, squash blossoms, sweet corn, broad beans, chili pepper sauce, ham, and fish. Even so, during breastfeeding there was a non-significant reduction in these levels. The findings suggest that certain foods serve as vehicles for DDE residues and confirm that breastfeeding is a mechanism for the elimination of this insecticide, which accumulates over the years in the human body.

  18. Brown Adipose Tissue: A New Target for Antiobesity Therapy

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2010-08-01

    Full Text Available BACKGROUND: Human fat consist of white and brown adipose tissue (WAT and BAT. Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. CONTENT: Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT imaging, immunohistochemistry and gene and protein expression assays to prove conclusively that adult humans have functional BAT. BAT is important for thermogenesis and energy balance in small mammals and its induction in mice promotes energy expenditure, reduces adiposity and protects mice from diet-induced obesity. The thermogenic capacity of BAT is impressive. In humans, it has been estimated that as little as 50g of BAT could utilize up to 20% of basal caloric needs if maximally stimulated. SUMMARY: The obesity pandemic requires new and novel treatments. The past few years have witnessed multiple studies conclusively showing that adult humans have functional BAT, a tissue that has a tremendous capacity for obesity-reducing thermogenesis. Novel therapies targeting BAT thermogenesis may be available in the near future as therapeutic options for obesity and diabetes. Thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity. KEYWORDS: brown adipose tissue, thermogenesis, energy expenditure, antiobesity therapy.

  19. Adipose tissue-liver axis in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Alcoholic liver disease (ALD) remains an important healthproblem worldwide. The disease spectrum is featuredby early steatosis, steatohepatitis (steatosis with inflammatorycells infiltration and necrosis), with someindividuals ultimately progressing to fibrosis/cirrhosis.Although the disease progression is well characterized,no effective therapies are currently available for thetreatment in humans. The mechanisms underlying theinitiation and progression of ALD are multifactorial andcomplex. Emerging evidence supports that adiposetissue dysfunction contributes to the pathogenesis ofALD. In the first part of this review, we discuss themechanisms whereby chronic alcohol exposure contributedto adipose tissue dysfunction, including cell death,inflammation and insulin resistance. It has been longknown that aberrant hepatic methionine metabolismis a major metabolic abnormality induced by chronicalcohol exposure and plays an etiological role in thepathogenesis of ALD. The recent studies in our groupdocumented the similar metabolic effect of chronicalcohol drinking on methionine in adipose tissue. Inthe second part of this review, we also briefly discussthe recent research progress in the field with a focuson how abnormal methionine metabolism in adiposetissue contributes to adipose tissue dysfunction and liverdamage.

  20. Exercise and the Regulation of Adipose Tissue Metabolism.

    Science.gov (United States)

    Tsiloulis, Thomas; Watt, Matthew J

    2015-01-01

    Adipose tissue is a major regulator of metabolism in health and disease. The prominent roles of adipose tissue are to sequester fatty acids in times of energy excess and to release fatty acids via the process of lipolysis during times of high-energy demand, such as exercise. The fatty acids released during lipolysis are utilized by skeletal muscle to produce adenosine triphosphate to prevent fatigue during prolonged exercise. Lipolysis is controlled by a complex interplay between neuro-humoral regulators, intracellular signaling networks, phosphorylation events involving protein kinase A, translocation of proteins within the cell, and protein-protein interactions. Herein, we describe in detail the cellular and molecular regulation of lipolysis and how these processes are altered by acute exercise. We also explore the processes that underpin adipocyte adaptation to endurance exercise training, with particular focus on epigenetic modifications, control by microRNAs and mitochondrial adaptations. Finally, we examine recent literature describing how exercise might influence the conversion of traditional white adipose tissue to high energy-consuming "brown-like" adipocytes and the implications that this has on whole-body energy balance. © 2015 Elsevier Inc. All rights reserved.

  1. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.

    Science.gov (United States)

    Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth

    2015-11-01

    Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (Padipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors.

  2. Expression and Regulation of Soluble Epoxide Hydrolase in Adipose Tissue

    Science.gov (United States)

    De Taeye, Bart M.; Morisseau, Christophe; Coyle, Julie; Covington, Joseph W.; Luria, Ayala; Yang, Jun; Murphy, Sheila B.; Friedman, David B.; Hammock, Bruce B.; Vaughan, Douglas E.

    2010-01-01

    Obesity is an increasingly important public health issue reaching epidemic proportions. Visceral obesity has been defined as an important element of the metabolic syndrome and expansion of the visceral fat mass has been shown to contribute to the development of insulin resistance and cardiovascular disease. To identify novel contributors to cardiovascular and metabolic abnormalities in obesity, we analyzed the adipose proteome and identified soluble epoxide hydrolase (sEH) in the epididymal fat pad from C57BL/6J mice that received either a regular diet or a “western diet.” sEH was synthesized in adipocytes and expression levels increased upon differentiation of 3T3-L1 preadipocytes. Although normalized sEH mRNA and protein levels did not differ in the fat pads from mice receiving a regular or a “western diet,” total adipose sEH activity was higher in the obese mice, even after normalization for body weight. Furthermore, peroxisome proliferator–activated recetor γ(PPARγ) agonists increased the expression of sEH in mature 3T3-L1 adipocytes in vitro and in adipose tissue in vivo. Considering the established role for sEH in inflammation, cardiovascular diseases, and lipid metabolism, and the suggested involvement of sEH in the development of type 2 diabetes, our study has identified adipose sEH as a potential novel therapeutic target that might affect the development of metabolic and cardiovascular abnormalities in obesity. PMID:19644452

  3. Deep sequencing of the transcriptome reveals inflammatory features of porcine visceral adipose tissue.

    Science.gov (United States)

    Wang, Tao; Jiang, Anan; Guo, Yanqin; Tan, Ya; Tang, Guoqing; Mai, Miaomiao; Liu, Haifeng; Xiao, Jian; Li, Mingzhou; Li, Xuewei

    2013-01-01

    Functional differences in the different types of adipose tissue and the impact of their dysfunction on metabolism are associated with the regional distribution of adipose depots. Here we show a genome-wide comparison between the transcriptomes of one source of subcutaneous and two sources of visceral adipose tissue in the pig using an RNA-seq approach. We obtained ~32.3 million unique mapped reads which covered ~80.2% of the current annotated transcripts across these three sources of adipose tissue. We identified various genes differentially expressed between subcutaneous and visceral adipose tissue, which are potentially associated with the inflammatory features of visceral adipose tissue. These results are of benefit for understanding the phenotypic, metabolic and functional differences between different types of adipose tissue that are deposited in different body sites.

  4. Steroid hormones and the stroma-vascular cells of the adipose tissue.

    Science.gov (United States)

    Volat, Fanny; Bouloumié, Anne

    2013-09-01

    The stroma-vascular fraction (SVF) of adipose tissue (AT) is a heterogeneous cell fraction composed of progenitor cells, endothelial cells, and immune cells. SVF plays a key role in AT homeostasis and growth as well as in obesity-associated pathologies. The SVF cell composition and phenotype are distinct according to AT location and adiposity. Such discrepancies influence AT function and are involved in obesity-associated disorders such as chronic inflammation. Investigations performed in recent years in rodents and humans provided evidence that the stroma-vascular cells contribute to the conversion of steroid hormones in AT and are also steroid targets. This review describes the link between steroids and SVF depending on gender, adiposity, and AT location and highlights the potential role of sex and corticosteroid hormones in adipogenesis, angiogenesis, and their contributions in AT inflammation.

  5. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism.

    Science.gov (United States)

    Zhang, Wei; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.

  6. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue....... Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure...

  7. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    Science.gov (United States)

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.

  8. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men.

    Directory of Open Access Journals (Sweden)

    Malika R Diawara

    Full Text Available MicroRNAs are emerging as new mediators in the regulation of adipose tissue biology and the development of obesity. An important role of microRNA-125a has been suggested in the pathogenesis of insulin resistance (IR. Here, we characterized the function of microRNA-125a in adipose tissue in a context of experimentally-induced IR and obesity in mice and in obese patients. We showed time dependent overexpression of the microRNA in adipose tissue of BALB/c and C57BL/6J mice in response to high fat diet (HFD feeding. MicroRNA-125a expression was downregulated in vitro in insulin resistant 3T3-L1 adipocytes and ex vivo in adipose tissue of obese patients. In vitro modulation of microRNA-125a expression in 3T3-L1 adipocytes did not affect glucose uptake. Gene set enrichment analysis (GSEA identified significantly altered expression patterns of predicted microRNA-125a gene targets in transcriptomic datasets of adipose tissue from HFD-fed mice and obese patients. Among genes that contributed to global enrichment of altered expression of microRNA-125a targets, Thyrotroph embryonic factor (Tef, Mannan-binding lectin serine peptidase 1, Reticulon 2 and Ubiquitin-conjugating enzyme E2L3 were significantly differentially expressed in adipose tissue in these groups. We showed that Tef expression is reduced in adipose tissue of obese patients following gastric bypass surgery. Our findings indicate that microRNA-125a expression in adipose tissue adapts to IR and may play a role in the development of obesity in mice and obese subjects through uncoupled regulation of the expression of microRNA-125a and its targets.

  9. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    Science.gov (United States)

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  10. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Science.gov (United States)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  11. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available AIMS: To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity. MATERIALS AND METHODS: Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice. RESULTS: Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice. CONCLUSIONS: Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  12. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue.

    Science.gov (United States)

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-03-22

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids.

  13. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    Science.gov (United States)

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1.

  14. Identification of cathepsin K as a novel marker of adiposity in white adipose tissue.

    Science.gov (United States)

    Chiellini, Chiara; Costa, Mario; Novelli, Silvia E; Amri, Ez-Zoubir; Benzi, Luca; Bertacca, Anna; Cohen, Paul; Del Prato, Stefano; Friedman, Jeffrey M; Maffei, Margherita

    2003-05-01

    In obesity, adipocytes undergo dramatic morphological and molecular changes associated with alterations in their gene expression profile. To identify genes differentially modulated in white adipose tissue (WAT) of obese db/db mice compared to wild type (wt) mice, we utilized RNA fingerprinting. Among the 52 candidates that we identified, we focused here on cathepsin K (ctsk), a cysteine protease, prevalently localized in lysosomes and involved in bone extracellular matrix degradation. In db/db mice, WAT ctsk mRNA was elevated 5.9-fold, as were Mitf and TFE3 (2- and 3.3-fold respectively), two transcription factors involved in ctsk induction in osteoclasts. Moreover, the level of WAT ctsk mRNA was increased in other obese models including A(y), fat, and tubby (2.8-, 3.2-, and 4.9-fold respectively) and decreased in mice undergoing weight loss. Despite the ubiquitous distribution of the ctsk transcript, we demonstrated that the obesity related increase is specific to the adipocytes. Further, in vitro experiments proved that the abundance of ctsk transcript increases upon adipose conversion of the established cell line of preadipocytes 3T3-F442A. In addition, ctsk gene expression was examined in adipose tissue of 21 lean and obese male subjects and significant correlations with BMI (r = 0.54, P = 0.012) and plasma leptin levels (r = 0.54, P = 0.015) were found. In conclusion, the WAT of obese db/db mice exhibits a different expression profile from that of the wt mice, and cathepsin K can be considered a novel marker of obesity and a target for the inhibition of adipose mass growth.

  15. Berberine activates thermogenesis in white and brown adipose tissue.

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  16. Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity.

    Science.gov (United States)

    Samad, Fahumiya; Badeanlou, Leylla; Shah, Charmi; Yang, Guang

    2011-01-01

    Although obesity is a complex metabolic disorder often associated with insulin resistance, hyperinsulinemia and Type 2 diabetes, as well as with accelerated atherosclerosis, the molecular changes in obesity that promote these disorders are not completely understood. Several mechanisms have been proposed to explain how increased adipose tissue mass affects whole body insulin resistance and cardiovascular risk. One theory is that increased adipose derived inflammatory cytokines induces a chronic inflammatory state that not only increases cardiovascular risk, but also antagonizes insulin signaling and mitochondrial function and thereby impair glucose hemostasis. Another suggests that lipid accumulation in nonadipose tissues not suited for fat storage leads to the buildup of bioactive lipids that inhibit insulin signaling and metabolism. Recent evidence demonstrates that sphingolipid metabolism is dysregulated in obesity and specific sphingolipids may provide a common pathway that link excess nutrients and inflammation to increased metabolic and cardiovascular risk. This chapter will focus primarily on the expression and regulation of adipose and plasma ceramide biosynthesis in obesity and, its potential contribution to the pathogenesis of obesity and the metabolic syndrome.

  17. Adipose tissue and vascular inflammation in coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  18. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Science.gov (United States)

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  19. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    Science.gov (United States)

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO2) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO2-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO2-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO2-treated ECM coating can be potentially used for various biomedical applications. The SC-CO2-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO2-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO2-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO2

  20. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    the basic and postprandial microvascular volume in adipose tissue using real-time contrast-enhanced ultrasound (CEU) imaging in healthy normal weight subjects. In nine subjects, CEU was performed in abdominal subcutaneous adipose tissue and in the underlying skeletal muscle after a bolus injection...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P muscle. The reproducibility of the measurements was good...

  1. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  2. Regulation of fructose 2,6-bisphosphate concentration in white adipose tissue.

    OpenAIRE

    Rider, Mark; Hue, Louis

    1985-01-01

    Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent ri...

  3. Deletion of CD1d in Adipocytes Aggravates Adipose Tissue Inflammation and Insulin Resistance in Obesity.

    Science.gov (United States)

    Huh, Jin Young; Park, Jeu; Kim, Jong In; Park, Yoon Jeong; Lee, Yun Kyung; Kim, Jae Bum

    2017-04-01

    Adipose tissue inflammation is an important factor in obesity that promotes insulin resistance. Among various cell types in adipose tissue, immune cells actively regulate inflammatory responses and affect whole-body energy metabolism. In particular, invariant natural killer T (iNKT) cells contribute to mitigating dysregulation of systemic energy homeostasis by counteracting obesity-induced inflammation in adipose tissue. However, the molecular mechanisms by which adipose iNKT cells become activated and mediate anti-inflammatory roles in obese adipose tissue have not been thoroughly understood yet. In the current study, we demonstrate that adipocyte CD1d plays a key role in the stimulation of adipose iNKT cells, leading to anti-inflammatory responses in high-fat diet (HFD)-fed mice. Accordingly, adipocyte-specific CD1d-knockout (CD1d(ADKO)) mice showed reduced numbers of iNKT cells in adipose tissues and decreased responses to α-galactosylceramide-induced iNKT cell activation. Additionally, HFD-fed CD1d(ADKO) mice revealed reduced interleukin-4 expression in adipose iNKT cells and aggravated adipose tissue inflammation and insulin resistance. Collectively, these data suggest that adipocytes could selectively stimulate adipose iNKT cells to mediate anti-inflammatory responses and attenuate excess proinflammatory responses in obese adipose tissue. © 2017 by the American Diabetes Association.

  4. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, Annika; Siegmund, Birte J. [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Warnemünde, D-18115 Rostock (Germany); Kühn, Jens-Peter [Department of Radiology and Neuroradiology, Greifswald University Medical Center, D-17475 Greifswald (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany)

    2015-04-15

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation.

  5. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells

    National Research Council Canada - National Science Library

    Hammarstedt, Ann; Graham, Timothy E; Kahn, Barbara B

    2012-01-01

    Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver...

  6. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    Science.gov (United States)

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  7. Two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  8. Adipose Tissue Dysregulation and Reduced Insulin Sensitivity in Non-Obese Individuals with Enlarged Abdominal Adipose Cells

    OpenAIRE

    Hammarstedt Ann; Graham Timothy E; Kahn Barbara B

    2012-01-01

    Abstract Background Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4, altered expression of adipokines, and adipocyte hypertrophy. Animal studies have shown that expansion of adipose tissue alone is not sufficient to ...

  9. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf; Astrup, A

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue...... was found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh...... correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates...

  10. Role of Insulin-Stimulated Adipose Tissue Perfusion in the Development of Whole-Body Insulin Resistance.

    Science.gov (United States)

    Emanuel, Anna L; Meijer, Rick I; Muskiet, Marcel H A; van Raalte, Daniël H; Eringa, Etto C; Serné, Erik H

    2017-03-01

    After food ingestion, macronutrients are transported to and stored in the skeletal muscle and adipose tissue. They can be subsequently used as an energy source in times of energy deprivation. Uptake of these nutrients in myocytes and adipocytes depends largely on adequate tissue perfusion. Interestingly, insulin is able to dilate skeletal muscle arterioles, which facilitates the delivery of macronutrients and insulin itself to muscle tissue. Insulin-stimulated skeletal muscle perfusion is impaired in several insulin-resistant states and is believed to contribute to impaired skeletal muscle glucose uptake and consequently impaired whole-body glucose disposal. Insulin-resistant individuals also exhibit blunted postprandial adipose tissue perfusion. However, the relevance of this impairment to metabolic dysregulation is less clear. In this review, we provide an overview of adipose tissue perfusion in healthy and insulin-resistant individuals, its regulation among others by insulin, and the possible influences of impaired adipose tissue perfusion on whole-body insulin sensitivity. Finally, we propose a novel hypothesis that acute overfeeding impacts distribution of macronutrients by reducing skeletal muscle perfusion, while adipose tissue perfusion remains intact. An online visual overview is available for this article. © 2017 American Heart Association, Inc.

  11. Adipose tissue and adipocytes support tumorigenesis and metastasis.

    Science.gov (United States)

    Nieman, Kristin M; Romero, Iris L; Van Houten, Bennett; Lengyel, Ernst

    2013-10-01

    Adipose tissue influences tumor development in two major ways. First, obese individuals have a higher risk of developing certain cancers (endometrial, esophageal, and renal cell cancer). However, the risk of developing other cancers (melanoma, rectal, and ovarian) is not altered by body mass. In obesity, hypertrophied adipose tissue depots are characterized by a state of low grade inflammation. In this activated state, adipocytes and inflammatory cells secrete adipokines and cytokines which are known to promote tumor development. In addition, the adipocyte mediated conversion of androgens to estrogen specifically contributes to the development of endometrial cancer, which shows the greatest relative risk (6.3-fold) increase between lean and obese individuals. Second, many tumor types (gastric, breast, colon, renal, and ovarian) grow in the anatomical vicinity of adipose tissue. During their interaction with cancer cells, adipocytes dedifferentiate into pre-adipocytes or are reprogrammed into cancer-associated adipocytes (CAA). CAA secrete adipokines which stimulate the adhesion, migration, and invasion of tumor cells. Cancer cells and CAA also engage in a dynamic exchange of metabolites. Specifically, CAA release fatty acids through lipolysis which are then transferred to cancer cells and used for energy production through β-oxidation. The abundant availability of lipids from adipocytes in the tumor microenvironment, supports tumor progression and uncontrolled growth. Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes, should reveal new therapeutic possibilities. This article is part of a Special Issue entitled Lipid Metabolism in Cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Down-regulation of Zac1 gene expression in rat white adipose tissue by androgens.

    Science.gov (United States)

    Mirowska, Agnieszka; Sledzinski, Tomasz; Smolenski, Ryszard T; Swierczynski, Julian

    2014-03-01

    ZAC1 is a zinc-finger protein transcription factor, a transcriptional cofactor for nuclear receptors, and a co-activator of nuclear receptors, which interacts with multiple signaling pathways affecting apoptosis, cell cycle arrest, and metabolism. Some data suggest that ZAC1 regulates the expression of genes associated with function of adipose tissue. Since there is no information about the levels of Zac1 gene expression in white adipose tissue (WAT), and the expression of several genes associated with metabolic function of WAT is significantly lower in male than female animals, we have examined: (a) the relative ZAC1 mRNA levels in some organs/tissues, including three main depots of WAT, in 3-month-old male rats; (b) the relative ZAC1 mRNA levels in WAT of male and female rats; (c) the effect of orchidectomy and orchidectomy with concomitant testosterone treatment on ZAC1 mRNA and protein levels; (d) the effect of ovariectomy and ovariectomy with concomitant 17β-estradiol treatment on ZAC1 mRNA levels; (e) the effect of dihydrotestosterone on ZAC1 mRNA levels in isolated adipocytes. Our results indicate that: (a) ZAC1 mRNA levels are relatively high in WAT in comparison with other organs/tissues; (b) ZAC1 mRNA levels in subcutaneous WAT are approximately 2-fold lower than in epididymal and retroperitoneal adipose tissue; (c) ZAC1 mRNA levels in WAT of adult female rats are approximately 2-fold higher than in male rats; (d) testosterone is inversely related to ZAC1 mRNA and protein levels in WAT of male rats; and (e) dihydrotestosterone decreases the ZAC1 mRNA levels in adipocytes in dose dependent manner. In conclusion, Zac1 gene is highly expressed in white adipose tissue of adult rats. Androgens could play an important role in down-regulation of the ZAC1 mRNA and protein levels in rats.

  13. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Directory of Open Access Journals (Sweden)

    Marcella K Vaicik

    Full Text Available Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/- and compared to wild-type (Lama4+/+ control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  14. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    Science.gov (United States)

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  15. Is Crohn’s creeping fat an adipose tissue?

    OpenAIRE

    Olivier, Isabelle; Theodorou, Vassilia; Valet, Philippe; Castan-Laurell, Isabelle; Guillou, Hervé; Bertrand-Michel, Justine; Cartier, Christel; Bezirard, Valerie; Ducroc, Robert; Segain, Jean-Pierre; Portier, Guillaume; Kirzin, Sylvain; Moreau, Jacques; Duffas, Jean-Pierre; Ferrier, Laurent

    2011-01-01

    Background: In human pathology, the ‘‘creeping fat’’ (CF) ofthe mesentery is unique to Crohn’s disease (CD). CF is usuallyreferred to as an ectopic extension of mesenteric adipose tissue(MAT). However, since no animal model developing CF has everbeen established, very little is known about this type of fat-depotexpansion and its role in the development of the disease.Methods: We developed and standardized an experimental protocolin mice that reproducibly induces CF development when asevere co...

  16. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    Science.gov (United States)

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

  17. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI▿ †

    OpenAIRE

    Khan, Tayeba; Muise, Eric S.; Iyengar, Puneeth; Wang, Zhao V.; Chandalia, Manisha; Abate, Nicola; Zhang, Bei B.; Bonaldo, Paolo; Chua, Streamson; Scherer, Philipp E.

    2008-01-01

    Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating “adipose tissue fibrosis” as a hallmark of metabolically chall...

  18. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.

    OpenAIRE

    Lopategi, Aritz; López-Vicario, Cristina; Alcaraz-Quiles, José; García-Alonso, Verónica; Rius, Bibiana; Titos Rodríguez, Esther; Clària i Enrich, Joan

    2015-01-01

    White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phosphol...

  19. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats

    OpenAIRE

    Alexey A. Tinkov; Elizaveta V. Popova; Evgenia R. Gatiatulina; Anastasia A. Skalnaya; Elena N. Yakovenko; Irina B. Alchinova; Mikhail Y. Karganov; Anatoly V. Skalny; Nikonorov, Alexandr A.

    2016-01-01

    Background. Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. Material and method...

  20. Observations on Preadipocytes and Their Distribution Patterns in Rat Adipose Tissue

    Science.gov (United States)

    1981-01-01

    enzyme lipoprotein lipase (Hietanen and viously (Stiles et al., 󈨏) in rat adipose tissue Greenwood, 󈨑). Exercise training initiated and suggest that...Huston, C.G. Plopper, and A.L. Hecker increased hormone sensitivity during in vitro adipocyte (1975) Adipose tissue cellularity and lipolysis : Response to... adipose tissue developing into adipocytes. J. Usuku, G., K. Iyama, and K. Ohzono (1978) Ultrastructural Lipid Res., 19: 316-324. studies on the white

  1. Regulation of insulin-stimulated glucose uptake in rat white adipose tissue upon chronic central leptin infusion: effects on adiposity.

    Science.gov (United States)

    Bonzón-Kulichenko, Elena; Fernández-Agulló, Teresa; Moltó, Eduardo; Serrano, Rosario; Fernández, Alejandro; Ros, Manuel; Carrascosa, José M; Arribas, Carmen; Martínez, Carmen; Andrés, Antonio; Gallardo, Nilda

    2011-04-01

    Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [(3)H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.

  2. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?

    Science.gov (United States)

    Trayhurn, Paul; Wang, Bohan; Wood, I Stuart

    2008-08-01

    White adipose tissue is a key endocrine and secretory organ, releasing multiple adipokines, many of which are linked to inflammation and immunity. During the expansion of adipose tissue mass in obesity there is a major inflammatory response in the tissue with increased expression and release of inflammation-related adipokines, including IL-6, leptin, monocyte chemoattractant protein-1 and TNF-alpha, together with decreased adiponectin production. We proposed in 2004 (Trayhurn & Wood, Br J Nutr 92, 347-355) that inflammation in adipose tissue in obesity is a response to hypoxia in enlarged adipocytes distant from the vasculature. Hypoxia has now been directly demonstrated in adipose tissue of several obese mouse models (ob/ob, KKAy, diet-induced) and molecular studies indicate that the level of the hypoxia-inducible transcription factor, hypoxia-inducible factor-1 alpha, is increased, as is expression of the hypoxia-sensitive marker gene, GLUT1. Cell- culture studies on murine and human adipocytes show that hypoxia (induced by low O2 or chemically) leads to stimulation of the expression and secretion of a number of inflammation-related adipokines, including angiopoietin-like protein 4, IL-6, leptin, macrophage migration inhibitory factor and vascular endothelial growth factor. Hypoxia also stimulates the inflammatory response of macrophages and inhibits adipocyte differentiation from preadipocytes. GLUT1 gene expression, protein level and glucose transport by human adipocytes are markedly increased by hypoxia, indicating that low O2 tension stimulates glucose utilisation. It is suggested that hypoxia has a pervasive effect on adipocyte metabolism and on overall adipose tissue function, underpinning the inflammatory response in the tissue in obesity and the subsequent development of obesity-associated diseases, particularly type 2 diabetes and the metabolic syndrome.

  3. Insulin Plays a Permissive Role for the Vasoactive Effect of GIP Regulating Adipose Tissue Metabolism in Humans.

    Science.gov (United States)

    Asmar, Meena; Simonsen, Lene; Asmar, Ali; Holst, Jens Juul; Dela, Flemming; Bülow, Jens

    2016-08-01

    Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increases blood flow and triglyceride (TAG) clearance in subcutaneous (sc) abdominal adipose tissue in lean humans. The present experiments were performed to further investigate the role of insulin for the vasoactive effect of GIP in adipose tissue metabolism and whether the vasodilatory effect of GIP is dependent on C-peptide. Six lean healthy subjects were studied. The sc abdominal adipose tissue metabolism was assessed by Fick's principle during GIP infusion (1.5 pmol/kg/min) in combination with 1) euglycemic-high insulinemic clamp (Eugluc-Hiinsu), raising plasma insulin concentrations to postprandial levels, 2) hyperglycemic-euinsulinemic clamp (Hygluc-Euinsu), and 3) hyperglycemic-hyperinsulinemic clamp, raising plasma insulin concentrations to supraphysiological levels. During the hyperglycemic clamps, endogenous insulin and C-peptide secretion were inhibited by infusion of the somatostatin analogue octreotide. During GIP infusion, Eugluc-Hiinsu, and hyperglycemic-hyperinsulinemic clamps, sc abdominal adipose tissue blood flow (ATBF) was similar and increased from 2.1 ± 0.2 and 2.2 ± 0.4 ml min(-1) (100 g tissue)(-1) to 7.1 ± 0.6 and 7.6 ± 0.1 ml min(-1) (100 g tissue)(-1), respectively (P tissue](-1)) during Hygluc-Euinsu and GIP infusion. In addition, adipose tissue TAG clearance increased significantly (P = .03), whereas free fatty acid output (P = .01), glycerol output (P = .02) and free fatty acid/glycerol release ratio (P = .04) decreased during the Eugluc-Hiinsu clamp compared to Hygluc-Euinsu clamp with GIP. In healthy lean humans, insulin is permissive for GIP to induce an increase in blood flow and TAG clearance in sc abdominal adipose tissue. This effect is independent of C-peptide.

  4. Severe Burn Injury Induces Thermogenically Functional Mitochondria in Murine White Adipose Tissue.

    Science.gov (United States)

    Porter, Craig; Herndon, David N; Bhattarai, Nisha; Ogunbileje, John O; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S

    2015-09-01

    Chronic cold exposure induces functionally thermogenic mitochondria in the inguinal white adipose tissue (iWAT) of mice. Whether this response occurs in pathophysiological states remains unclear. The purpose of this study was to determine the impact of severe burn trauma on iWAT mitochondrial function in mice. Male BALB/c mice (10-12 weeks) received full-thickness scald burns to ∼30% of the body surface area. Inguinal white adipose tissue was harvested from mice at 1, 4, 10, 20, and 40 days postinjury. Total and uncoupling protein 1 (UCP1)-dependent mitochondrial thermogenesis were determined in iWAT. Citrate synthase activity was determined as a proxy of mitochondrial abundance. Immunohistochemistry was performed to assess iWAT morphology and UCP1 expression. Uncoupling protein 1-dependent respiration was significantly greater at 4 and 10 days after burn compared with sham, peaking at 20 days after burn (P white adipose tissue in vivo and may offer a mechanistic explanation for the chronic hypermetabolism observed in burn victims.

  5. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  6. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    Science.gov (United States)

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  7. The Secretory Function of Adipocytes in the Physiology of White Adipose Tissue

    NARCIS (Netherlands)

    Wang, P.; Mariman, E.; Renes, J.; Keijer, J.

    2008-01-01

    White adipose tissue, previously regarded as a passive lipid storage site, is now viewed as a dynamic tissue. It has the capacity to actively communicate by sending and receiving different types of signals. An overview of these signals, the external modulators that affect adipose tissue and the secr

  8. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  9. Long-term effects of evodiamine on expressions of lipogenesis and lipolysis genes in mouse adipose and liver tissues.

    Science.gov (United States)

    Jiang, D F; Li, W T; Yang, H L; Zhang, Z Z; Chen, D; Sun, C

    2014-02-20

    Evodiamine, the major alkaloid component isolated from the fruit of dried, unripened Evodia rutaecarpa Bentham, affects the plasma levels of cholecystokinin and various biological events such as gastric emptying and gastrointestinal transit; these effects of evodiamine were previously investigated in male rats. In this study, we aimed to investigate the effects of evodiamine on average daily weight gain, rectal temperature, and expressions of genes involved in lipid metabolism in liver and adipose tissues. Evodiamine was added as a supplement, comprising 0.02, 0.04, and 0.06% of the diet fed to mice for 1, 2, 3, and 4 weeks. Results showed that average daily weight gain and rectal temperature decreased significantly over time in a dose-dependent manner. Evodiamine changed expressions of the peroxisome proliferator-activated receptor-g (PPARg) in mouse adipose and liver tissues in time- and dose-dependent manners. We found that evodiamine decreased mRNA expression of the sterol-regulatory element binding protein (SREBP-1c) and fatty acid synthase in adipose tissue. In addition, evodiamine increased expressions of hormone-sensitive lipase in both liver and adipose tissues. Interestingly, evodiamine increased the expression of triglyceride hydrolase only in adipose tissue. In conclusion, evodiamine could influence lipid metabolism through regulation of the expressions of its key genes, as well as reduce body heat and body weight.

  10. Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth

    Science.gov (United States)

    Lore, Lapeire; An, Hendrix; Evelyne, Lecoutere; Mieke, Van Bockstal; Jo, Vandesompele; Dawn, Maynard; Geert, Braems; Rudy, Van Den Broecke; Cathérine, Müller; Marc, Bracke; Véronique, Cocquyt; Hannelore, Denys; Olivier, De Wever

    2017-01-01

    Adipose tissue secretes a plethora of adipokines as evidenced by characterization of subcutaneous and visceral adipose tissue secretomes. However, adipose tissue composition and secretion pattern is depot and disease dependent, influencing the adipose tissue secretome. We investigated the secretome of cancer-associated adipose tissue (CAAT) explants from breast cancer patients and explored its role in breast cancer proliferation. CAAT proteins were identified by LC-MS/MS and human protein antibody arrays and stimulated proliferation of three breast cancer cell lines. Kinomics and transcriptomics of MCF-7 breast cancer cells treated with the secretome of CAAT revealed activation of Akt-, ERK- and JNK-pathways and differential expression of activator protein 1 (AP-1) and cAMP responsive element-binding protein (CREB) target genes. The cyclin-dependent kinase (CDK)4/6-inhibitor palbociclib significantly abrogated CAAT-enhanced breast cancer cell proliferation. Our work characterizes the specific breast CAAT protein secretome and reveals its pro-proliferative potency in breast cancer. PMID:28525384

  11. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    Science.gov (United States)

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  12. Prolactin suppresses malonyl-CoA concentration in human adipose tissue

    DEFF Research Database (Denmark)

    Nilsson, L. A.; Roepstorff, Carsten; Kiens, Bente

    2009-01-01

    +/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue...... as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed...

  13. Adipose tissue fatty acid patterns and changes in anthropometry: a cohort study.

    Directory of Open Access Journals (Sweden)

    Christina Catherine Dahm

    Full Text Available INTRODUCTION: Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA, but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA, may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue fatty acids and changes in anthropometry. METHODS: 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC, and WC controlled for changes in body mass index (WC(BMI, adjusting for confounders. RESULTS: 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men and women, respectively. Fatty acid patterns with high levels of TFA tended to be positively associated with changes in weight and WC for both sexes. Patterns with high levels of n-6 LC-PUFA tended to be negatively associated with changes in weight and WC in men, and positively associated in women. Associations with patterns with high levels of n-3 LC-PUFA were dependent on the context of the rest of the fatty acid pattern. CONCLUSIONS: Adipose tissue fatty acid patterns with high levels of TFA may be linked to weight gain, but patterns with high n-3 LC-PUFA did not appear to be linked to weight loss. Associations depended on characteristics of the rest of the pattern.

  14. Sugar-sweetened and diet beverages in relation to visceral adipose tissue.

    Science.gov (United States)

    Odegaard, Andrew O; Choh, Audrey C; Czerwinski, Stefan A; Towne, Bradford; Demerath, Ellen W

    2012-03-01

    Frequent sugar-sweetened beverage (SSB) intake has been consistently associated with increased adiposity and cardio-metabolic risk, whereas the association with diet beverages is more mixed. We examined how these beverages associate with regional abdominal adiposity measures, specifically visceral adipose tissue (VAT). In a cross-sectional analysis of 791 non-Hispanic white men and women aged 18-70 we examined how beverage consumption habits obtained from a food frequency questionnaire associate with overall and abdominal adiposity measures from MRI. With increasing frequency of SSB intake, we observed increases in waist circumference (WC) and the proportion of visceral to subcutaneous abdominal adipose tissue (VAT%), with no change in total body fat (TBF%) or BMI. Greater frequency of diet beverage intake was associated with greater WC, BMI, and TBF%, but was not associated with variation in visceral adiposity We conclude that increased frequency of SSB consumption is associated with a more adverse abdominal adipose tissue deposition pattern.

  15. Differential regulation of oxytocin receptor in various adipose tissue depots and skeletal muscle types in obese Zucker rats.

    Science.gov (United States)

    Gajdosechova, L; Krskova, K; Olszanecki, R; Zorad, S

    2015-07-01

    Multifunctional peptide oxytocin currently undergoes intensive research due to its proposed anti-obesity properties. Until now, little is known about regulation of oxytocin receptor in metabolically active tissues in obesity. The aim of the present study was to measure expression of oxytocin receptor upon obese phenotype with respect to the variety among adipose tissue and skeletal muscles with distinct anatomical localisation. Total homogenates were prepared from epididymal, retroperitoneal and inguinal adipose tissues as well as quadriceps and soleus muscle from lean and obese Zucker rats. Oxytocin receptor protein was determined by immunoblot. Interestingly, elevated oxytocin receptor was observed in epididymal adipose tissue of obese rats in contrast to its downregulation in subcutaneous and no change in retroperitoneal fat. In lean animals, oxytocin receptor protein was expressed at similar levels in all adipose depots. This uniformity was not observed in the case of skeletal muscle in which fibre type composition seems to be determinant of oxytocin receptor expression. Quadriceps muscle with the predominance of glycolytic fibres exhibits higher oxytocin receptor expression than almost exclusively oxidative soleus muscle. Oxytocin receptor protein levels were decreased in both skeletal muscles analysed upon obese phenotype. The present work demonstrates that even under identical endocrine circumstances, oxytocin receptor is differentially regulated in adipose tissue of obese rats depending on fat depot localisation. These results also imply which tissues may be preferentially targeted by oxytocin treatment in metabolic disease.

  16. Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants.

    Science.gov (United States)

    Bonnet, M; Tournayre, J; Cassar-Malek, I

    2016-08-16

    Adipose tissue and muscle are endocrine organs releasing signalling and mediator proteins termed adipokines and myokines, enabling functioning of the organism and its adaption to a wide range of different challenges such as starvation, overfeeding, stress and diseases. They also contribute to the "adipose-muscular" cross-talk for an integrated control of body mass composition. This article integrates transcriptomic and proteomic data available in ruminant species (mainly in bovine, and when available in ovine and caprine) to computationally predict the large-scale secretome of adipose tissues and muscles. For this purpose predictive bioinformatics algorithms were employed to identify proteins putatively secreted by tissues thanks to a signal peptide. We predicted 1749 secreted proteins that were found from adipose tissues and muscles, more than a half of them being already declared as secreted proteins in public repositories. We also identified 188 and 357 proteins in the predictive secretome of adipose tissues and muscles respectively, only a minor part (3-11%) of them being reported in the overlap of public repositories used for comparison. Functional analysis of these proteins highlights their involvement in biological pathways known to sustain tissue growth and functioning. This strategy allowed us to identify some known and putative novel adipomyokines, adipokines and myokines. However their role and their expression signature depending on rearing practices remain largely to be explored.

  17. Endurance training changes in lipolytic responsiveness of obese adipose tissue.

    Science.gov (United States)

    De Glisezinski, I; Crampes, F; Harant, I; Berlan, M; Hejnova, J; Langin, D; Rivière, D; Stich, V

    1998-12-01

    The aim of this study was to investigate the effect of aerobic exercise training on the lipolytic response of adipose tissue in obese subjects. Thirteen men (body mass index = 36.9 +/- 1.3 kg/m2) were submitted to aerobic physical training on a cycloergometer (30-45 min, 4 days a wk) for 3 mo. Adipocyte sensitivity to the action of catecholamines and insulin was studied in vitro before and after training. Training induced a decrease in the percentage of fat mass (P < 0.05) without changing the body weight. Basal lipolysis and hormone-sensitive lipase activity were significantly decreased after training (P < 0.05). The lipolytic effects of epinephrine, isoprenaline (beta-adrenoceptor agonist), and dobutamine (beta1-adrenoceptor agonist) were significantly increased (P < 0.05) but not those of procaterol (beta2-adrenoceptor agonist). The antilipolytic effects of alpha2-adrenoceptor and insulin were significantly decreased (P < 0.05). Lipolysis stimulation by agents acting at the postreceptor level was unchanged after training. In conclusion, aerobic physical training in obese male subjects modifies adipose tissue lipolysis through an enhancement of beta-adrenergic response and a concomitant blunting of adipocyte antilipolytic activity.

  18. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  19. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  20. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  1. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  2. Remodeling of adipose tissue at experimental diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. A. Konovalova

    2013-08-01

    Full Text Available Introduction Diabetes mellitus (DM type 1 is chronіc disease whith progressive selective destruction of β- cells pancreatic islets (of Langerhans and whith development of absolute insulin failure. Active immune mechanisms take part in pathogenesis of this disease. Recently many publication appeared which report about the role of adipose tissue. In such way adipose tissue is not only the main metabolic regulator and endocrine organ synthesizing more than 30 regulatory proteins- adipokines, but it is one of the organs of immune system. Dysregulation of adipose tissue leads to morphological restructuring- remodeling of adipocytes, and the development of inflammation of adipose tissue in its turn is integral component of progression of many diseases. The aim of research The aim of this study was to investigate the morphological and functional state of parapancreatic fibre adipocytes in male Wistar rats in experimental diabetes mellitus. Materials and methods The study has been carried out on 20 male Wistar rats with weight 115-135 g. The animals were divided into 2 groups. The control group, which were injected 0,5 ml 0,1 М citrate buffer intraperitoneally (1group. Rats with 7 day experimental streptozotocin-induced diabetes mellitus were in the 2nd group. Adipose tissue was examined on the seventh day. For histological examination sections were colored with haematoxylin and eosin. Images were taken by using a fluorescence microscope PrimoStar(ZEISS,Germany with a computer-assisted video system AxioCam 5c (ZEISS,Germany including the NIH-Image software (NIH Image version 1·46. All statistical analyses were performed using EXCEL MS Office 2010 (Microsoft Corp., USA, STATISTICA 6.0 (Stat-Soft, 2001 software. Results were expressed as mean values ± SEM. Differences were considered statistically significant if the p value was <0.05. Results Injection of streptozotocin to experimental animals led to the development of experimental diabetes mellitus

  3. Dietary conjugated linoleic acids decrease leptin in porcine adipose tissue.

    Science.gov (United States)

    Di Giancamillo, Alessia; Rossi, Raffaella; Vitari, Francesca; Pastorelli, Grazia; Corino, Carlo; Domeneghini, Cinzia

    2009-10-01

    We investigated the effects of dietary conjugated linoleic acids (CLA) on white adipose tissue (WAT) in heavy pigs. Twelve pigs were assigned to 1 of 2 groups supplemented with either 0 or 0.75% of a CLA preparation (isomeric mixture) and were slaughtered at 159 +/- 2.3 kg live weight. Their subcutaneous WAT was analyzed by both chemical and microanatomical methods. The WAT of CLA-fed pigs tended to have a higher protein content (P = 0.064) and smaller adipocytes (P = 0.053) than that of control (CTR) pigs. The number of proliferating preadipocytes tended to be greater (P = 0.076) in pigs fed CLA, whereas the number of apoptotic adipocytes was greater (P leptin (Ob) expression was lower (P = 0.048) in adipocytes from treated pigs and Western blot quantification of Ob revealed lower levels (P tissue.

  4. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  5. Intramuscular Adipose Tissue, Sarcopenia, and Mobility Function in Older Individuals

    Directory of Open Access Journals (Sweden)

    Robin L. Marcus

    2012-01-01

    Full Text Available Objective. Intramuscular adipose tissue (IMAT and sarcopenia may adversely impact mobility function and physical activity. This study determined the association of locomotor muscle structure and function with mobility function in older adults. Method. 109 older adults with a variety of comorbid disease conditions were examined for thigh muscle composition via MRI, knee extensor strength via isometric dynamometry, and mobility function. The contribution of strength, quadriceps lean tissue, and IMAT to explaining the variability in mobility function was examined using multivariate linear regression models. Results. The predictors as a group contributed 27–45% of the variance in all outcome measures; however, IMAT contributed between 8–15% of the variance in all four mobility variables, while lean explained only 5% variance in only one mobility measure. Conclusions. Thigh IMAT, a newly identified muscle impairment appears to be a potent muscle variable related to the ability of older adults to move about in their community.

  6. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    Background: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). Results: We analyzed the postnatal transformation of adipose in sheep....... Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...

  7. Visceral adipose tissue: emerging role of gluco- and mineralocorticoid hormones in the setting of cardiometabolic alterations

    Science.gov (United States)

    Boscaro, Marco; Giacchetti, Gilberta; Ronconi, Vanessa

    2012-01-01

    Several clinical and experimental lines of evidence have highlighted the detrimental effects of visceral adipose tissue excess on cardiometabolic parameters. Besides, recent findings have shown the effects of gluco-and mineralocorticoid hormones on adipose tissue and have also underscored the interplay existing between such adrenal steroids and their respective receptors in the modulation of adipose tissue biology. While the fundamental role played by glucocorticoids on adipocyte differentiation and storage was already well known, the relevance of the mineralocorticoids in the physiology of the adipose organ is of recent acquisition. The local and systemic renin–angiotensin–aldosterone system (RAAS) acting on adipose tissue seems to contribute to the development of the cardiometabolic phenotype so that its modulation can have deep impact on human health. A better understanding of the pathophysiology of the adipose organ is of crucial importance in order to identify possible therapeutic approaches that can avoid the development of such cardiovascular and metabolic sequelae. PMID:22804097

  8. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    Science.gov (United States)

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  9. Effects of Ang II receptor blocker irbesartan on adipose tissue function in mice with metabolic disorders.

    Science.gov (United States)

    Maeda, Akinobu; Tamura, Kouichi; Wakui, Hiromichi; Ohsawa, Masato; Azushima, Kengo; Uneda, Kazushi; Kobayashi, Ryu; Tsurumi-Ikeya, Yuko; Kanaoka, Tomohiko; Dejima, Toru; Ohki, Koji; Haku, Sona; Yamashita, Akio; Umemura, Satoshi

    2014-01-01

    Recent studies indicate that the functional renin-angiotensin system (RAS) exists in the adipose tissue. The adipose tissue RAS is proposed in the pathophysiology of metabolic disorders. In the present study, we examined therapeutic effects of irbesartan, an angiotensin II (Ang II) type 1 receptor (AT1R)-specific blocker, in genetically obese diabetic KKAy mice, a model of human metabolic disorders without any dietary loading, with our focus on the analysis on possible effect of irbesartan on the adipose tissue. The treatment with irbesartan significantly lowered systolic blood pressure with a concomitant decrease in body weight in KKAy mice. In addition, irbesartan significantly decreased the adipose leptin mRNA expression and tended to decrease IL-6 mRNA expression in the adipose tissue of KKAy mice. Furthermore irbesartan preserved the adipose gene expression of AT1R-associated protein (ATRAP), an endogenous inhibitory molecule of tissue AT1R signaling, with a concomitant tendency of up-regulation of adipose tissue ATRAP/AT1R ratio. Collectively, these results suggest that the irbesartan-induced beneficial suppressive effect on the leptin-IL-6 axis in the adipose tissue in KKAy mice is partly mediated by a trend of up-regulation of the adipose ATRAP/AT1R ratio as one of pleiotropic effects of irbesartan.

  10. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    Science.gov (United States)

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.

  11. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    Science.gov (United States)

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.

  12. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity.

    Science.gov (United States)

    Peng, Hongxia; Zhang, Hu; Zhu, Honglei

    2016-10-28

    Adipose tissue macrophages (ATMs) have been considered to have a pivotal role in the chronic inflammation development during obesity. Although chemokine-chemokine receptor interaction has been studied in ATMs infiltration, most chemokine receptors remain incompletely understood and little is known about their mechanism of actions that lead to ATMs chemotaxis and pathogenesis of insulin resistance during obesity. In this study, we reported that CXCR7 expression is upregulated in adipose tissue, and specifically in ATMs during obesity. In addition, CXCL11 or CXCL12-induced ATMs chemotaxis is mediated by CXCR7 in obesity but not leanness, whereas CXCR3 and CXCR4 are not involved. Additional mechanism study shows that NF-κB activation is essential in ATMs chemotaxis, and manipulates chemotaxis of ATMs via CXCR7 expression regulation in obesity. Most importantly, CXCR7 neutralizing therapy dose dependently leads to less infiltration of macrophages into adipose tissue and thus reduces inflammation and improves insulin sensitivity in obesity. In conclusion, these findings demonstrated that blocking CXCR7-mediated ATMs chemotaxis ameliorates insulin resistance and inflammation in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Progesterone inhibits glucocorticoid-dependent aromatase induction in human adipose fibroblasts.

    Science.gov (United States)

    Schmidt, M; Renner, C; Löffler, G

    1998-09-01

    In fibroblasts derived from human adipose tissue, aromatase induction is observed after exposure to 1 microM cortisol in the presence of serum or platelet-derived growth factor (PDGF). Progesterone suppresses this induction in a dose-dependent manner, 10 microM resulting in complete inhibition. A reduced cortisol concentration (0.1 microM) concomitantly reduces the progesterone concentration required for effective inhibition (10-100 nM). This effect of progesterone is specific, as neither the release of cellular enzymes nor aromatase induction by dibutyryl-cAMP, which acts independently from cortisol, are affected. However, the inhibitory effect of progesterone requires its presence throughout the induction period. Kinetic studies in intact cells reveal a reduced number of aromatase active sites upon progesterone treatment, whereas progesterone at near-physiological concentration (100 nM) does not inhibit aromatase activity in isolated microsomes. Semi-quantitative reverse transcriptase PCR analysis shows reduced amounts of aromatase mRNA in progesterone-treated cells, indicating specific inhibition of the glucocorticoid-dependent pathway of aromatase induction. The inhibitory effect of progesterone is not blocked by the anti-progestin ZK114043, excluding action via progesterone receptors and indicating competition for the glucocorticoid receptor. Progesterone must be considered a potential physiological inhibitor of glucocorticoid-dependent aromatase induction in adipose tissue. It is proposed that it is a suppressor of aromatase induction in adipose tissue in premenopausal women.

  14. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity.

    Science.gov (United States)

    Magkos, Faidon; Fraterrigo, Gemma; Yoshino, Jun; Luecking, Courtney; Kirbach, Kyleigh; Kelly, Shannon C; de Las Fuentes, Lisa; He, Songbing; Okunade, Adewole L; Patterson, Bruce W; Klein, Samuel

    2016-04-12

    Although 5%-10% weight loss is routinely recommended for people with obesity, the precise effects of 5% and further weight loss on metabolic health are unclear. We conducted a randomized controlled trial that evaluated the effects of 5.1% ± 0.9% (n = 19), 10.8% ± 1.3% (n = 9), and 16.4% ± 2.1% (n = 9) weight loss and weight maintenance (n = 14) on metabolic outcomes. 5% weight loss improved adipose tissue, liver and muscle insulin sensitivity, and β cell function, without a concomitant change in systemic or subcutaneous adipose tissue markers of inflammation. Additional weight loss further improved β cell function and insulin sensitivity in muscle and caused stepwise changes in adipose tissue mass, intrahepatic triglyceride content, and adipose tissue expression of genes involved in cholesterol flux, lipid synthesis, extracellular matrix remodeling, and oxidative stress. These results demonstrate that moderate 5% weight loss improves metabolic function in multiple organs simultaneously, and progressive weight loss causes dose-dependent alterations in key adipose tissue biological pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Weight loss-induced stress in subcutaneous adipose tissue is related to weight regain.

    Science.gov (United States)

    Roumans, Nadia J T; Camps, Stefan G; Renes, Johan; Bouwman, Freek G; Westerterp, Klaas R; Mariman, Edwin C M

    2016-03-14

    Initial successful weight loss is often followed by weight regain after the dietary intervention. Compared with lean people, cellular stress in adipose tissue is increased in obese subjects. However, the relation between cellular stress and the risk for weight regain after weight loss is unclear. Therefore, we determined the expression levels of stress proteins during weight loss and weight maintenance in relation to weight regain. In vivo findings were compared with results from in vitro cultured human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. In total, eighteen healthy subjects underwent an 8-week diet programme with a 10-month follow-up. Participants were categorised as weight maintainers or weight regainers (WR) depending on their weight changes during the intervention. Abdominal subcutaneous adipose tissue biopsies were obtained before and after the diet and after the follow-up. In vitro differentiated SGBS adipocytes were starved for 96 h with low (0·55 mm) glucose. Levels of stress proteins were determined by Western blotting. WR showed increased expressions of β-actin, calnexin, heat shock protein (HSP) 27, HSP60 and HSP70. Changes of β-actin, HSP27 and HSP70 are linked to HSP60, a proposed key factor in weight regain after weight loss. SGBS adipocytes showed increased levels of β-actin and HSP60 after 96 h of glucose restriction. The increased level of cellular stress proteins in the adipose tissue of WR probably resides in the adipocytes as shown by in vitro experiments. Cellular stress accumulated in adipose tissue during weight loss may be a risk factor for weight regain.

  16. Influence of cortisol on adipose tissue development in the fetal sheep during late gestation.

    Science.gov (United States)

    Mostyn, A; Pearce, S; Budge, H; Elmes, M; Forhead, A J; Fowden, A L; Stephenson, T; Symonds, M E

    2003-01-01

    The present study examined the extent to which the late gestation rise in fetal plasma cortisol influenced adipose tIssue development in the fetus. The effect of cortisol on the abundance of adipose tIssue mitochondrial proteins on both the inner (i.e. uncoupling protein (UCP)1) and outer (i.e. voltage-dependent anion channel (VDAC)) mitochondrial membrane, together with the long and short forms of the prolactin receptor (PRLR) protein and leptin mRNA was determined. Perirenal adipose tIssue was sampled from ovine fetuses to which (i) cortisol (2-3 mg/day for 5 days) or saline was infused up to 127-130 days of gestation, and (ii) adrenalectomised and intact controls at between 142 and 145 days of gestation (term=148 days). UCP1 protein abundance was significantly lower in adrenalectomised fetuses compared with age-matched controls, and UCP1 was increased by cortisol infusion and with gestational age. Adrenalectomy reduced the concentration of the long form of PRLR, although this effect was only significant for the highest molecular weight isoform. In contrast, neither the short form of PRLR, VDAC protein abundance or leptin mRNA expression was significantly affected by gestational age or cortisol status. Fetal plasma triiodothyronine concentrations were increased by cortisol and with gestational age, an affect abolished by adrenalectomy. When all treatment groups were combined, both plasma cortisol and triiodothyronine concentrations were positively correlated with UCP1 protein abundance. In conclusion, an intact adrenal is necessary for the late gestation rise in UCP1 protein abundance but cortisol does not appear to have a major stimulatory role in promoting leptin expression in fetal adipose tIssue. It remains to be established whether effects on UCP1 protein are directly regulated by cortisol alone or mediated by other anabolic fetal hormones such as triiodothyronine.

  17. Hepatic CEACAM1 Overexpression Protects Against Diet-induced Fibrosis and Inflammation in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Sumona Ghosh Lester

    2015-08-01

    Full Text Available CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1–/–, C57/BL6J mice fed a high-fat diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by high-fat diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue, we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While high-fat diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type mice. Histological examination revealed less expansion of adipocytes in L-CC1 than wild-type by high-fat intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to high-fat intake in L-CC1 than wild-type mice. Unlike wild-type, high-fat diet did not activate TGF-β in white adipose tissue of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, high-fat diet caused relatively less collagen deposition in L-CC1 than wild-type mice, as shown by Trichome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against high-fat diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis.

  18. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue.

    Science.gov (United States)

    Kobayashi, Hiroko; Horiguchi-Babamoto, Emi; Suzuki, Mio; Makihara, Hiroko; Tomozawa, Hiroshi; Tsubata, Masahito; Shimada, Tsutomu; Sugiyama, Kiyoshi; Aburada, Masaki

    2016-01-01

    We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice--an animal model of spontaneous obese type II diabetes--and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1% for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1% treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells.

  19. Downregulation of STEAP4, a highly-expressed TNF-α-inducible gene in adipose tissue, is associated with obesity in humans

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Xia CHI; Bin WANG; Min ZHANG; Yu-hui NI; Rong-hua CHEN; Xiao-nan LI; Xi-rong GUO

    2008-01-01

    Aim: To determine the relationship between six-transmembrane epithelial antigen of the prostate 4 (STEAP4) expression and obesity. Methods: RT-PCR and immunoblot analyses were performed to determine the differential expressions of STEAP4 mRNA and protein, respectively, in human omental adipose tissue from obese patients and normal weight controls. The expression pattern of STEAP4 mRNA in various human tissues was determined by RT-PCR. The subcellular localization of the STEAP4 protein in human adipose tissue was confirmed by immunohistochemistry. Finally, we confirmed that cultured human omental adi- pose tissue undergoes TNF-α-mediated regulation of the STEAP4 expression.Results: STEAP4 mRNA and protein levels were downregulated in omental adi-pose tissue from obese patients relative to normal controls. The STEAP4 expres-sion was most abundant in human adipose tissue. An immunohistochemical analy-sis confirmed that STEAP4 was associated with the plasma membrane of adipocytes. The STEAP4 expression was induced by TNF-α in a dose-dependent manner in human adipose tissue. Conclusion: STEAP4 was abundantly expressed in human adipose tissue, and the STEAP4 expression was significantly downregulated in obese patients. STEAP4 localized to the plasma membrane of adipocytes, and the STEAP4 expression was induced by TNF-α in adipose tissue.These data suggest that STEAP4 may play a significant role in the development of human obesity.

  20. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

    Science.gov (United States)

    Gathercole, Laura L; Morgan, Stuart A; Bujalska, Iwona J; Hauton, David; Stewart, Paul M; Tomlinson, Jeremy W

    2011-01-01

    Patients with glucocorticoid (GC) excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc) and omental (om) adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM) of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.

  1. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Laura L Gathercole

    Full Text Available Patients with glucocorticoid (GC excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc and omental (om adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.

  2. Microarray Evidences the Role of Pathologic Adipose Tissue in Insulin Resistance and Their Clinical Implications

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Mathur

    2011-01-01

    Full Text Available Clustering of insulin resistance and dysmetabolism with obesity is attributed to pathologic adipose tissue. The morphologic hallmarks of this pathology are adipocye hypertrophy and heightened inflammation. However, it's underlying molecular mechanisms remains unknown. Study of gene function in metabolically active tissues like adipose tissue, skeletal muscle and liver is a promising strategy. Microarray is a powerful technique of assessment of gene function by measuring transcription of large number of genes in an array. This technique has several potential applications in understanding pathologic adipose tissue. They are: (1 transcriptomic differences between various depots of adipose tissue, adipose tissue from obese versus lean individuals, high insulin resistant versus low insulin resistance, brown versus white adipose tissue, (2 transcriptomic profiles of various stages of adipogenesis, (3 effect of diet, cytokines, adipokines, hormones, environmental toxins and drugs on transcriptomic profiles, (4 influence of adipokines on transcriptomic profiles in skeletal muscle, hepatocyte, adipose tissue etc., and (5 genetics of gene expression. The microarray evidences of molecular basis of obesity and insulin resistance are presented here. Despite the limitations, microarray has potential clinical applications in finding new molecular targets for treatment of insulin resistance and classification of adipose tissue based on future risk of insulin resistance syndrome.

  3. Study on heterogeneity between visceral adipose tissue and subcutaneous adipose tissue%内脏和皮下脂肪组织的异质性探讨

    Institute of Scientific and Technical Information of China (English)

    李顺昌

    2015-01-01

    [Summary] The increasing prevalence of obesity has led to extensive research on white adipose tissue. Currently ,functional differences among white adipose tissue depots have become clear ,especially between visceral adipose tissue (VAT ) and subcutaneous adipose tissue (SAT ). This article will review the heterogeneity of distribution ,structure ,function ,influence factors ,measurement methods and metabolic properties between VAT and SAT.%随着肥胖患病率的增加,对白色脂肪组织的研究受到关注。不同部位的白色脂肪组织有功能异质性,特别是内脏和皮下脂肪组织。本文从二者的分布、解剖、功能、影响因素及内分泌功能等方面作一综述。

  4. Paracrine and intracrine contributions of androgens and estrogens to adipose tissue biology: physiopathological aspects.

    Science.gov (United States)

    Waraich, Rizwana S; Mauvais-Jarvis, Franck

    2013-08-01

    In mammals, the male and female hormones androgen and estrogen act as endocrine regulators of energy metabolism. However, adipose tissue is also a site of androgen and estrogen synthesis; androgens convert to estrogens in these tissues, and adipose tissue is also a reservoir of steroids that act locally in a paracrine and intracrine manner. Thus, in adipose tissue, the local output of sex hormones is more complex than would be suggested by routine measurement of serum hormone concentrations. This review integrates studies on the effects of androgens and estrogens in the developmental programming of adipose tissue function in early life and addresses the contributions of local androgen and estrogen metabolism on adipose tissue function in adults.

  5. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism.

    Science.gov (United States)

    Cao, Haiming; Gerhold, Kristin; Mayers, Jared R; Wiest, Michelle M; Watkins, Steven M; Hotamisligil, Gökhan S

    2008-09-19

    Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.

  6. The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels.

    Science.gov (United States)

    Barnard, Sunelle A; Pieters, Marlien; De Lange, Zelda

    2016-11-01

    Increased plasma plasminogen activator inhibitor-1 (PAI-1) level is considered a mechanistic pathway through which obesity contributes to increased cardiovascular disease risk. Abdominal adipose tissue specifically, is a major PAI-1 source with visceral adipose tissue (VAT), an ectopic fat depot, generally considered to produce more PAI-1 than subcutaneous adipose tissue. However, this does not necessarily lead to increased plasma PAI-1 levels. This review provides an overview of studies investigating the association between body fat distribution and plasma PAI-1 levels. It discusses factors that influence this relationship and also considers the contribution of other tissue to plasma PAI-1 levels, placing the relative contribution of adipose tissue into perspective. In conclusion, the relationship between VAT and plasma PAI-1 levels is not fixed but can be modulated by a number of factors such as the size of the subcutaneous adipose tissue depot, ethnicity, possibly genetics and other obesity-related metabolic abnormalities.

  7. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  8. Adipogenesis: new insights into brown adipose tissue differentiation.

    Science.gov (United States)

    Carobbio, Stefania; Rosen, Barry; Vidal-Puig, Antonio

    2013-12-01

    Confirmation of the presence of functional brown adipose tissue (BAT) in humans has renewed interest in investigating the potential therapeutic use of this tissue. The finding that its activity positively correlates with decreased BMI, decreased fat content, and augmented energy expenditure suggests that increasing BAT mass/activity or browning of white adipose tissue (WAT) could be a strategy to prevent or treat obesity and its associated morbidities. The challenge now is to find a safe and efficient way to develop this idea. Whereas BAT has being widely studied in murine models both in vivo and in vitro, there is an urgent need for human cellular models to investigate BAT physiology and functionality from a molecular point of view. In this review, we focus on the latest insights surrounding BAT development and activation in rodents and humans. Then, we discuss how the availability of murine models has been essential to identify BAT progenitors and trace their lineage. Finally, we address how this information can be exploited to develop human cellular models for BAT differentiation/activation. In this context, human embryonic stem and induced pluripotent stem cells-based cellular models represent a resource of great potential value, as they can provide a virtually inexhaustible supply of starting material for functional genetic studies, -omics based analysis and validation of therapeutic approaches. Moreover, these cells can be readily genetically engineered, opening the possibility of generating patient-specific cellular models, allowing the investigation of the influence of different genetic backgrounds on BAT differentiation in pathological or in physiological states.

  9. Insulin action in adipose tissue in type 1 diabetes

    Directory of Open Access Journals (Sweden)

    F Arrieta-Blanco

    2011-02-01

    Full Text Available F Arrieta-Blanco1, JI Botella-Carretero1, P Iglesias1, JA Balsa1, I Zamarrón1, C De la Puerta1, JJ Arrieta2, F Ramos3, C Vázquez1, A Rovira21Unit of Clinical Nutrition and Dietetics, Department of Endocrinology and Nutrition, Hospital Ramóny, Cajal, Madrid, Spain, Irycis, Ciberobn; 2Fundación Jimenez Díaz. Madrid, Spain; 3Hospital Sureste de ArgandaBackground: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI, and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes.Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject.Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = -0.70, P < 0.05 and basal and maximum insulin-stimulated glucose transport (r = -0.87, P < 0.01, and r = -0.88, P < 0.01, respectively. Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01. Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01. No correlation was found between BMI and insulin action.Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a

  10. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  11. Vasoconstrictor effect of high FFA/albumin ratios in adipose tissue in vivo

    DEFF Research Database (Denmark)

    Bülow, J; Madsen, J; Astrup, A;

    1985-01-01

    Subcutaneous or perirenal adipose tissue blood flow was measured with the 133Xe-washout technique before and after intravenous injection or infusion of Intralipid in six anesthetized, otherwise intact mongrel dogs. In four anesthetized mongrel puppies adipose tissue blood flow was measured with t...

  12. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Directory of Open Access Journals (Sweden)

    Byung Young Park

    Full Text Available It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2 and MMPs (MMP-2 and MMP-9, whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2 in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  13. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity.

    Science.gov (United States)

    Huh, Jin Young; Park, Yoon Jeong; Ham, Mira; Kim, Jae Bum

    2014-05-01

    Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

  14. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    Science.gov (United States)

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  15. N-3 polyunsaturated fatty acids in adipose tissue and depression in different age groups from Crete

    NARCIS (Netherlands)

    Mamalakis, G.

    2007-01-01

    In this thesis, the results of cross-sectional studies on the relationship of depression with adipose tissue n-3 polyunsaturated fatty acids have been described. The aim of this thesis is to