WorldWideScience

Sample records for adipose stem cells

  1. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  2. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  3. [Differentiation of mesenchymal stem cells of adipose tissue].

    Science.gov (United States)

    Salyutin, R V; Zapohlska, K M; Palyanytsya, S S; Sirman, V M; Sokolov, M F

    2015-03-01

    Experimental investigation were conducted with the objective to determine a stem cells, capacity to differentiate in adipogenic direction, if they were obtained from adipose tissue. The investigation results have witnessed, that the cells, obtained from adipose tissue, are capable for a tissue-speciphic differentiation in osteogenic, chondrogenic, and, principally--in adipogenic direction, what confirms a multypotent nature of mesenchymal stem cells of adipose tissue. Adipose tissue constitutes an alternative to the bone marrow, as a source of multipotent mesenchymal stem cells, which may be applied in further investigations, concerning determination of their defense possibility for the transplanted autologous adipose tissue from the tissue resorption, made in a lipophiling way.

  4. Isolation of Mesenchymal Stem Cells from Adipose Tissue

    OpenAIRE

    Islam, Andi Asadul

    2015-01-01

    BACKGROUND: In searching for the best source of stem cells, researcher found adipose stem cells as one of the ideal source due to its easiness in harvesting and its potential for differentiating into other cell lineage. METHODS: We isolated stem cells from adipose tissue, cultured and confirmed its immunophenotype using polymerase chain reaction. RESULTS: Cluster of differentiation (CD)44, CD73, CD90, CD105 were expressed, which represent immunophenotype of mesenchymal stem cells.  CONCLUSION...

  5. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  6. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    2017-01-01

    Full Text Available Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds.

  7. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds.

    Science.gov (United States)

    Kim, Bong-Sung; Tilstam, Pathricia V; Springenberg-Jung, Katrin; Boecker, Arne Hendrick; Schmitz, Corinna; Heinrichs, Daniel; Hwang, Soo Seok; Stromps, Jan Philipp; Ganse, Bergita; Kopp, Ruedger; Knobe, Matthias; Bernhagen, Juergen; Pallua, Norbert; Bucala, Richard

    2017-01-01

    Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF- β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds.

  8. Human Adipose Stem Cells: From Bench to Bedside.

    Science.gov (United States)

    De Francesco, Francesco; Ricci, Giulia; D'Andrea, Francesco; Nicoletti, Giovanni Francesco; Ferraro, Giuseppe Andrea

    2015-12-01

    Stem cell-based therapies for repair and regeneration of different tissues are becoming more important in the treatment of several diseases. Adult stem cells currently symbolize the most available source of cell progenitors for tissue engineering and repair and can be harvested using minimally invasive procedures. Moreover, mesenchymal stem cells (MSCs), the most widely used stem cells in stem cell-based therapies, are multipotent progenitors, with capability to differentiate into cartilage, bone, connective, muscle, and adipose tissue. So far, bone marrow has been regarded as the main source of MSCs. To date, human adult adipose tissue may be the best suitable alternative source of MSCs. Adipose stem cells (ASCs) can be largely extracted from subcutaneous human adult adipose tissue. A large number of studies show that adipose tissue contains a biologically and clinically interesting heterogeneous cell population called stromal vascular fraction (SVF). The SVF may be employed directly or cultured for selection and expansion of an adherent population, so called adipose-derived stem cells (ASCs). In recent years, literature based on data related to SVF cells and ASCs has augmented considerably: These studies have demonstrated the efficacy and safety of SVF cells and ASCs in vivo in animal models. On the basis of these observations, in several countries, various clinical trials involving SVF cells and ASCs have been permitted. This review aims at summarizing data regarding either ASCs cellular biology or ASCs-based clinical trials and at discussing the possible future clinical translation of ASCs and their potentiality in cell-based tissue engineering.

  9. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  10. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Klar, Agnes S; Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  11. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  12. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  13. Update on cryopreservation of adipose tissue and adipose-derived stem cells.

    Science.gov (United States)

    Shu, Zhiquan; Gao, Dayong; Pu, Lee L Q

    2015-04-01

    This article first discusses some fundamentals of cryobiology and challenges for cell and tissue cryopreservation. Then, the results of cryopreservation of adipose cells and tissues, including adipose-derived stem cells, in the last decade are reviewed. In addition, from the viewpoint of cryobiology, some desired future work in fat cryopreservation is proposed that would benefit the optimization, standardization, and better application of such techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  15. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  16. Isolation of Stromal Stem Cells from Adipose Tissue.

    Science.gov (United States)

    Prat, Maria; Oltolina, Francesca; Antonini, Silvia; Zamperone, Andrea

    2017-01-01

    Adipose tissue has been shown to be particularly advantageous as source of mesenchymal stem cells (MSCs), because of its easy accessibility, and the possibility of obtaining stem cells in high yields. MSCs are obtained from the so-called Stromal Vascular Fraction, (SVF), exploiting their property of adhering to plastic surfaces and can be further purified by positive or negative immunomagnetic selection with appropriately chosen antibodies. These cells (Stromal Stem Cells, SSCs) can then be directly analyzed, frozen in liquid nitrogen, or expanded for further applications, e.g., for tissue engineering and regenerative medicine. The methodology described here in detail for SSCs isolated from mouse subcutaneous adipose tissue can be applied to human tissues, such as epicardium.

  17. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  18. Adipose derived stem cells for regenerative therapy in osteoarticular diseases.

    Science.gov (United States)

    Pers, Yves-Marie; Jorgensen, Christian

    2016-12-01

    In the recent years, adipose derived stem cells (ASCs) led to significant findings in the field of regenerative therapy. ASCs have various biological properties and capacity as differentiation in three lineages (chondrocytes, osteocytes and adipocytes) or immunomodulation by releasing paracrine factors. Osteoarthritis (OA) is the most frequent osteoarticular disease characterized by none curative treatment. We reviewed all current data on the proof of concept of ASCs in OA pathophysiology as well as an inventory of ASC promising cell therapy in OA.

  19. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  20. COMPARISON OF HUMAN ADIPOSE-DERIVED STEM CELLS AND BONE MARROW-DERIVED STEM CELLS IN A MYOCARDIAL INFARCTION MODEL

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus

    2012-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... randomised to receive intramyocardial injections of adipose-derived stem cells, bone marrow derived mesenchymal stem cells or phosphate-buffered saline one week following induction of myocardial infarction. Results: After four weeks, left ventricular ejection fraction was improved in the adipose-derived stem...

  1. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    Science.gov (United States)

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  2. Metabolically active human brown adipose tissue derived stem cells.

    Science.gov (United States)

    Silva, Francisco J; Holt, Dolly J; Vargas, Vanessa; Yockman, James; Boudina, Sihem; Atkinson, Donald; Grainger, David W; Revelo, Monica P; Sherman, Warren; Bull, David A; Patel, Amit N

    2014-02-01

    Brown adipose tissue (BAT) plays a key role in the evolutionarily conserved mechanisms underlying energy homeostasis in mammals. It is characterized by fat vacuoles 5-10 µm in diameter and expression of uncoupling protein one, central to the regulation of thermogenesis. In the human newborn, BAT depots are typically grouped around the vasculature and solid organs. These depots maintain body temperature during cold exposure by warming the blood before its distribution to the periphery. They also ensure an optimal temperature for biochemical reactions within solid organs. BAT had been thought to involute throughout childhood and adolescence. Recent studies, however, have confirmed the presence of active BAT in adult humans with depots residing in cervical, supraclavicular, mediastinal, paravertebral, and suprarenal regions. While human pluripotent stem cells have been differentiated into functional brown adipocytes in vitro and brown adipocyte progenitor cells have been identified in murine skeletal muscle and white adipose tissue, multipotent metabolically active BAT-derived stem cells from a single depot have not been identified in adult humans to date. Here, we demonstrate a clonogenic population of metabolically active BAT stem cells residing in adult humans that can: (a) be expanded in vitro; (b) exhibit multilineage differentiation potential; and (c) functionally differentiate into metabolically active brown adipocytes. Our study defines a new target stem cell population that can be activated to restore energy homeostasis in vivo for the treatment of obesity and related metabolic disorders. © 2013 AlphaMed Press.

  3. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering.

    Science.gov (United States)

    Wang, Lina; Johnson, Joshua A; Zhang, Qixu; Beahm, Elisabeth K

    2013-11-01

    Repair of soft tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were proved by immunohistochemical analysis and DNA quantification. Scanning electron microscopic examination showed a three-dimensional nanofibrous architecture in hDAM. The hDAM included collagen, sulfated glycosaminoglycan, and vascular endothelial growth factor, but lacked major histocompatibility complex antigen I. hASC viability and proliferation on hDAM were proven in vitro. hDAM implanted subcutaneously in Fischer rats did not cause an immunogenic response, and it underwent remodeling, as indicated by host cell infiltration, neovascularization, and adipose tissue formation. Fresh fat grafts (Coleman technique) and engineered fat grafts (hDAM combined with hASCs) were implanted subcutaneously in nude rats. The implanted engineered fat grafts maintained their volume for 8 weeks, and the hASCs contributed to adipose tissue formation. In summary, the combination of hDAM and hASCs provides not only a clinically translatable platform for adipose tissue engineering, but also a vehicle for elucidating fat grafting mechanisms. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Epigenetic programming of adipose-derived stem cells in low birthweight individuals

    DEFF Research Database (Denmark)

    Broholm, Christa; Olsson, Anders H; Perfilyev, Alexander

    2016-01-01

    Aims/hypothesis: Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction....... Reduced expression of CCNT2 may play a key role in the developmental programming of adipose tissue....

  5. Adipose Stem Cells as Alternatives for Bone Marrow Mesenchymal Stem Cells in Oral Ulcer Healing

    Science.gov (United States)

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-01-01

    Background and Objectives Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Methods and Results Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Results: MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. Conclusions MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing. PMID:24298363

  6. Nanomechanics of human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Jungmann, Pia M; Mehlhorn, Alexander T; Schmal, Hagen

    2012-01-01

    OBJECTIVES: Human adipose-derived stem cells (ASCs) show gene expression of chondrogenic markers after three-dimensional cultivation. However, hypertrophy and osteogenic transdifferentiation are still limiting clinical applications. The aim of this study was to investigate the impact of small...... stem cells by single-cell elasticity measurements using atomic force microscopy. Results were matched with single-cell size measurements (diameter and volume) and quantitative real time-polymerase chain reaction for osteogenic and hypertrophic (alkaline phosphatase [ALP], collagen type X) as well...... a significantly lower deformability than chondrocytes (Young's modulus: 294.4 vs. 225.1 Pa; ANOVA: pstem cell elasticity to chondrocyte values (221.7 Pa). All other chondrogenic differentiated ASCs presented intermediate elasticity (BMP-2 stimulation: 269.1 Pa...

  7. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    Science.gov (United States)

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  9. Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells.

    Science.gov (United States)

    Yang, Jessica P; Anderson, Amy E; McCartney, Annemarie; Ory, Xavier; Ma, Garret; Pappalardo, Elisa; Bader, Joel; Elisseeff, Jennifer H

    2017-04-01

    Brown adipose tissue (BAT) has a unique capacity to expend calories by decoupling energy expenditure from ATP production, therefore BAT could realize therapeutic potential to treat metabolic diseases such as obesity and type 2 diabetes. Recent studies have investigated markers and function of native BAT, however, successful therapies will rely on methods that supplement the small existing pool of brown adipocytes in adult humans. In this study, we engineered BAT from both human and rat adipose precursors and determined whether these ex vivo constructs could mimic in vivo tissue form and metabolic function. Adipose-derived stem cells (ASCs) were isolated from several sources, human white adipose tissue (WAT), rat WAT, and rat BAT, then differentiated toward both white and brown adipogenic lineages in two-dimensional and three-dimensional (3D) culture conditions. ASCs derived from WAT were successfully differentiated in 3D poly(ethylene glycol) hydrogels into mature adipocytes with BAT phenotype and function, including high uncoupling protein 1 (UCP1) mRNA and protein expression and increased metabolic activity (basal oxygen consumption, proton leak, and maximum respiration). By utilizing this "browning" process, the abundant and accessible WAT stem cell population can be engineered into 3D tissue constructs with the metabolic capacity of native BAT, ultimately for therapeutic intervention in vivo and as a tool for studying BAT and its metabolic properties.

  10. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    Science.gov (United States)

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Characteristics of mouse adipose tissue-derived stem cells and therapeutic comparisons between syngeneic and allogeneic adipose tissue-derived stem cell transplantation in experimental autoimmune thyroiditis.

    Science.gov (United States)

    Choi, Eun Wha; Shin, Il Seob; Park, So Young; Yoon, Eun Ji; Kang, Sung Keun; Ra, Jeong Chan; Hong, Sung Hwa

    2014-01-01

    Previously, we found that the intravenous administration of human adipose tissue-derived mesenchymal stem cells was a promising therapeutic option for autoimmune thyroiditis even when the cells were transplanted into a xenogeneic model without an immunosuppressant. Therefore, we explored the comparison between the therapeutic effects of syngeneic and allogeneic adipose tissue-derived stem cells on an experimental autoimmune thyroiditis mouse model. Experimental autoimmune thyroiditis was induced in C57BL/6 mice by immunization with porcine thyroglobulin. Adipose tissue-derived stem cells derived from C57BL/6 mice (syngeneic) or BALB/c mice (allogeneic) or saline as a vehicle control were administered intravenously four times weekly. Blood and tissue samples were collected 1 week after the last transplantation. Adipose tissue-derived stem cells from mice were able to differentiate into multiple lineages in vitro; however, mouse adipose tissue-derived stem cells did not have immunophenotypes identical to those from humans. Syngeneic and allogeneic administrations of adipose tissue-derived stem cells reduced thyroglobulin autoantibodies and the inflammatory immune response, protected against lymphocyte infiltration into the thyroid, and restored the Th1/Th2 balance without any adverse effects. However, different humoral immune responses were observed for infused cells from different stem cell sources. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic and syngeneic administration, in that order. The stem cells were mostly found in the spleen, not the thyroid. This migration might be because the stem cells primarily function in systemic immune modulation, due to being given prior to disease induction. In this study, we confirmed that there were equal effects of adipose tissue-derived stem cells in treating autoimmune thyroiditis between syngeneic and allogeneic transplantations.

  12. Wound healing potential of adipose tissue stem cell extract.

    Science.gov (United States)

    Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2017-03-25

    Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    OpenAIRE

    Yunfan He; Feng Lu

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and recon...

  14. Adipose tissue-derived stem cells in oral mucosa tissue engineering ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... urethral reconstruction. Specifically, tissue-engineered oral mucosa holds great prospect for urethroplasty. Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, that is, adipose tissue-derived stem cells (ADSCs), have been used in skin repair with satisfactory results.

  15. Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype.

    Science.gov (United States)

    Wang, Fang; Zachar, Vladimir; Pennisi, Cristian Pablo; Fink, Trine; Maeda, Yasuko; Emmersen, Jeppe

    2018-02-08

    Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction ( p Cells differentiated in 5% oxygen conditions showed greater contraction effect ( p cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.

  16. File list: Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  17. File list: Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  18. File list: DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  19. File list: Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  20. File list: Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  1. File list: Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  2. File list: Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  3. File list: Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  4. File list: NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  5. File list: InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  6. File list: InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  7. File list: NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  8. File list: DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660075,SRX660076 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  9. File list: NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  10. File list: InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  11. File list: InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660091,SRX660092 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  12. File list: Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  13. File list: DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  14. File list: NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  15. File list: DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  16. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells.

    Science.gov (United States)

    Trumbull, Andrew; Subramanian, Gayathri; Yildirim-Ayan, Eda

    2016-04-22

    Musculoskeletal tissues are constantly under mechanical strains within their microenvironment. Yet, little is understood about the effect of in vivo mechanical milieu strains on cell development and function. Thus, this review article outlines the in vivo mechanical environment of bone, muscle, cartilage, tendon, and ligaments, and tabulates the mechanical strain and stress in these tissues during physiological condition, vigorous, and moderate activities. This review article further discusses the principles of mechanical loading platforms to create physiologically relevant mechanical milieu in vitro for musculoskeletal tissue regeneration. A special emphasis is placed on adipose-derived stem cells (ADSCs) as an emerging valuable tool for regenerative musculoskeletal tissue engineering, as they are easily isolated, expanded, and able to differentiate into any musculoskeletal tissue. Finally, it highlights the current state-of-the art in ADSCs-guided musculoskeletal tissue regeneration under mechanical loading.

  17. Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Kuhbier, Jörn W.; Weyand, Birgit; Radtke, Christine; Vogt, Peter M.; Kasper, Cornelia; Reimers, Kerstin

    While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.

  18. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  19. Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat.

    Science.gov (United States)

    Li, Yuan-Sheng; Chen, Pao-Jen; Wu, Li-Wei; Chou, Pei-Wen; Sun, Li-Yi; Chiou, Tzyy-Wen

    2018-02-01

    The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.

  20. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.

    Science.gov (United States)

    Frazier, Trivia P; Bowles, Annie; Lee, Stephen; Abbott, Rosalyn; Tucker, Hugh A; Kaplan, David; Wang, Mei; Strong, Amy; Brown, Quincy; He, Jibao; Bunnell, Bruce A; Gimble, Jeffrey M

    2016-04-01

    Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can

  1. Strategies for bioengineered scaffolds that support adipose stem cells in regenerative therapies.

    Science.gov (United States)

    Clevenger, Tracy N; Luna, Gabriel; Fisher, Steven K; Clegg, Dennis O

    2016-09-01

    Regenerative medicine possesses the potential to ameliorate damage to tissue that results from a vast range of conditions, including traumatic injury, tumor resection and inherited tissue defects. Adult stem cells, while more limited in their potential than pluripotent stem cells, are still capable of differentiating into numerous lineages and provide feasible allogeneic and autologous treatment options for many conditions. Adipose stem cells are one of the most abundant types of stem cell in the adult human. Here, we review recent advances in the development of synthetic scaffolding systems used in concert with adipose stem cells and assess their potential use for clinical applications.

  2. Adipose-derived stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  3. Allogeneic adipose stem cell therapy in acute myocardial infarction.

    Science.gov (United States)

    Rigol, Montserrat; Solanes, Núria; Roura, Santiago; Roqué, Mercè; Novensà, Laura; Dantas, Ana Paula; Martorell, Jaume; Sitges, Marta; Ramírez, José; Bayés-Genís, Antoni; Heras, Magda

    2014-01-01

    Stem cell therapy offers a promising approach to reduce the long-term mortality rate associated with heart failure after acute myocardial infarction (AMI). To date, in vivo translational studies have not yet fully studied the immune response to allogeneic adipose tissue-derived mesenchymal stem cells (ATMSCs). We analysed the immune response and the histological and functional effects of allogeneic ATMSCs in a porcine model of reperfused AMI and determine the effect of administration timing. Pigs that survived AMI (24/26) received intracoronary administration of culture medium after reperfusion (n = 6), ATMSCs after reperfusion (n = 6), culture medium 7 days after AMI (n = 6) or ATMSCs 7 days after AMI (n = 6). At 3-week follow-up, cardiac function, alloantibodies and histological analysis were evaluated. Administration of ATMSCs after reperfusion and 7 days after AMI resulted in similar rates of cell engraftment; some of those cells expressed endothelial, smooth muscle and cardiomyogenic cell lineage markers. Delivery of ATMSCs after reperfusion compared with that performed at 7 days was more effective in increasing: vascular density (249 ± 64 vs. 161 ± 37 vessels/mm2; P < 0.01), T lymphocytes (1 ± 0.4 vs. 0.4 ± 0.3% of area CD3(+) ; P < 0.05) and expression of vascular endothelial growth factor (VEGF; 32 ± 7% vs. 20 ± 4% of area VEGF(+) ; P < 0.01). Allogeneic ATMSC-based therapy did not change ejection fraction but generated alloantibodies. The present study is the first to demonstrate that allogeneic ATMSCs elicit an immune response and, when administered immediately after reperfusion, are more effective in increasing VEGF expression and neovascularization. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  4. Comparison of chondrocytes produced from adipose tissue-derived stem cells and cartilage tissue.

    Science.gov (United States)

    Meric, Aysenur; Yenigun, Alper; Yenigun, Vildan Betul; Dogan, Remzi; Ozturan, Orhan

    2013-05-01

    Spontaneous cartilage regeneration is poor after a cartilage defect occurs by trauma, surgical, and other reasons. Importance of producing chondrocytes from stem cells and using tissues to repair a defect is getting popular. The aim of this study was to compare the effects of injectable cartilage produced by chondrocytes differentiated from adipose tissue-derived mesenchymal stem cells and chondrocyte cells isolated directly from cartilage tissue. Mesenchymal stem cells were isolated from rat adipose tissue and characterized by cell-surface markers. Then, they were differentiated to chondrocyte cells. The function of differentiated chondrocyte cells was compared with chondrocyte cells directly isolated from cartilage tissue in terms of collagen and glycosaminoglycan secretion. Then, both chondrocyte cell types were injected to rats' left ears in liquid and gel form, and histologic evaluation was done 3 weeks after the injection. Adipose-derived stem cells were strongly positive for the CD44 and CD73 mesenchymal markers. Differentiated chondrocyte cells and chondrocyte cells directly isolated from cartilage tissue had relative collagen and glycosaminoglycan secretion results. However, histologic evaluations did not show any cartilage formation after both chondrocyte cell types were injected to rats. Strong CD44- and CD73-positive expression indicated that adipose-derived cells had the stem cell characters. Collagen and glycosaminoglycan secretion results demonstrated that adipose-derived stem cells were successfully differentiated to chondrocyte cells.

  5. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    Science.gov (United States)

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  6. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    International Nuclear Information System (INIS)

    Guneta, Vipra; Tan, Nguan Soon; Chan, Soon Kiat Jeremy; Tanavde, Vivek; Lim, Thiam Chye; Wong, Thien Chong Marcus; Choong, Cleo

    2016-01-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  7. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guneta, Vipra [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Nguan Soon [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Institute of Molecular and Cell Biology, Agency for Science Technology & Research - A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Chan, Soon Kiat Jeremy [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Tanavde, Vivek [Bioinformatics Institute, Agency for Science Technology & Research - A*STAR, 30 Biopolis Street, Matrix, Singapore 138671 (Singapore); Lim, Thiam Chye [Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital (NUH) and National University of Singapore (NUS), Kent Ridge Wing, Singapore 119074 (Singapore); Wong, Thien Chong Marcus [Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital (TTSH), 11, Jalan Tan Tock Seng, Singapore 308433 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore)

    2016-11-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  8. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications.

    Science.gov (United States)

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C; Marra, Kacey G

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber-based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing.

  9. File list: ALL.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...77 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  10. File list: His.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  11. File list: Oth.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 TFs and others Adipocyte Adipose-Derived...kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  12. File list: ALL.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...71 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  13. File list: His.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  14. File list: His.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  15. File list: ALL.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...79 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  16. File list: ALL.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 All antigens Adipocyte Adipose-Derived...71 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  17. File list: His.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Histone Adipocyte Adipose-Derived...ive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  18. File list: Oth.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 TFs and others Adipocyte Adipose-Derived...kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  19. Novel therapy for pancreatic fistula using adipose-derived stem cell sheets treated with mannose.

    Science.gov (United States)

    Kaneko, Hirokazu; Kokuryo, Toshio; Yokoyama, Yukihiro; Yamaguchi, Junpei; Yamamoto, Tokunori; Shibata, Rei; Gotoh, Momokazu; Murohara, Toyoaki; Ito, Akira; Nagino, Masato

    2017-06-01

    Given that no studies have reported the use of adipose-derived stem cell sheets for the prevention of pancreatic fistulas, it is unclear whether adipose-derived stem cell sheets are effective at preventing this complication. The aim of this study was to evaluate the efficacy of novel therapy for the prevention of pancreatic fistulas using adipose-derived stem cell sheets treated with mannose. The rat pancreatic duct (splenic duct) and surrounding pancreatic parenchyma were transected to induce a pancreatic fistula. Adipose-derived stem cell sheets with or without mannose treatment were attached to the pancreatic transection stump. Amylase and lipase levels were measured in both the ascites and serum. The expression of 40 cytokines in human adipose-derived stem cells with and without mannose treatment was investigated using a multiplex assay. The adipose-derived stem cell sheets remained at the initial attachment site at 48 hours after operation. Macroscopically, more severe degeneration and adhesion in the peritoneal cavity were observed in the untreated rats than in the rats treated with adipose-derived stem cell sheets. The levels of ascitic amylase in the untreated, adipose-derived stem cell-sheet-treated, and adipose-derived stem cell-sheet-with-mannose-treated rats were 10.7 ± 2.9 × 10 4 U/L, 2.6 ± 0.9 × 10 4 U/L, and 1.5 ± 0.3 × 10 4 U/L, respectively. The levels of ascitic lipase in the untreated, adipose-derived stem cell-sheet-treated and adipose-derived stem cell-sheet-with-mannose-treated rats were 9.5 ± 2.9 × 10 3 U/L, 4.0 ± 3.3 × 10 3 U/L, and 0.4 ± 0.2 × 10 3 U/L, respectively. Significant differences were found in both the ascitic and serum levels of amylase and lipase between the untreated rats and the rats treated with adipose-derived stem cell sheets with mannose (P derived stem cells treated with mannose than in human adipose-derived stem cells treated without mannose. Adipose-derived stem cell sheets treated

  20. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Varma, Maikel J. Oedayrajsingh; Breuls, Roel G. M.; Schouten, Tabitha E.; Jurgens, Wouter J. F. M.; Bontkes, Hetty J.; Schuurhuis, Gerrit J.; van Ham, S. Marieke; van Milligen, Florine J.

    2007-01-01

    Adipose tissue contains a stromal vascular fraction (SVF) that is a rich source of adipose tissue-derived stem cells (ASCs). ASCs are multipotent and in vitro-expanded ASCs have the capacity to differentiate, into amongst others, adipocytes, chondrocytes, osteoblasts, and myocytes. For tissue

  1. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Science.gov (United States)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  2. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    Science.gov (United States)

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Adipose derived stem cells in radiotherapy injury: a new frontier

    Directory of Open Access Journals (Sweden)

    Lipi eShukla

    2015-01-01

    Full Text Available Radiotherapy is increasingly used to treat numerous human malignancies. In addition to the beneficial anti-cancer effects, there are a series of undesirable effects on normal host tissues surrounding the target tumour. Whilst the early effects of radiotherapy (desquamation, erythema and hair loss typically resolve, the chronic effects persist as unpredictable and often troublesome sequelae of cancer treatment, long after oncological treatment has been completed. Plastic surgeons are often called upon to treat the problems subsequently arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contracture and/or lymphoedema. Recently, it was anecdotally noted - then validated in more robust animal and human studies - that fat grafting can ameliorate some of these chronic tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action remains poorly understood. This review provides an overview of the current understanding of (i mechanisms of chronic radiation injury and its clinical manifestations; (ii biological properties of fat grafts and their key constituent, Adipose-Derived Stem Cells (ADSCs; (iii the role of ADSCs in radiotherapy-induced soft-tissue injury.

  4. Nonlinear optical microscopy of adipose-derived stem cells induced towards osteoblasts and adipocytes

    Science.gov (United States)

    Mouras, R.; Bagnaninchi, P.; Downes, A.; Muratore, M.; Elfick, A.

    2011-07-01

    Adipose-derived stem cells (ADSCs) are adult stem cells isolated from lipoaspirates. They are a good candidate for autologuous cell therapy and tissue engineering. For these applications, label-free imaging could be critical to assess noninvasively the efficiency of stem cell (SC) differentiation. We report on the development and application of a multimodal microscope to monitor and quantify ADSC differentiation into osteoblasts and adipocytes.

  5. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    Science.gov (United States)

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  6. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  7. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  8. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    Science.gov (United States)

    Allahverdiyev, Adil M.; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  9. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  10. Banking of Adipose- and Cord Tissue-Derived Stem Cells: Technical and Regulatory Issues.

    Science.gov (United States)

    Harris, David T

    2016-01-01

    Stem cells are found in all multicellular organisms and are defined as cells that can differentiate into specialized mature cells as well as divide to produce more stem cells. Mesenchymal stem cells (MSC) were among the first stem cell types to be utilized for regenerative medicine. Although initially isolated from bone marrow, based on ease and costs of procurement, MSC derived from adipose tissue (AT-MSC) and umbilical cord tissue (CT-MSC) are now preferred stem cell sources for these applications. Both adipose tissues and cord tissue present unique problems for biobanking however, in that these are whole tissues, not cellular suspensions. Although the tissues could be processed to facilitate the biobanking process, by doing so additional regulatory issues arise that must be addressed. This review will discuss the technical issues associated with biobanking of these tissues, as well as regulatory concerns when banking of utilizing MSC derived from these sources in the clinic.

  11. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues.

    Science.gov (United States)

    Potdar, Pd; Sutar, Jp

    2010-01-01

    Mesenchymal stem cells (MSCs), are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively) samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD 13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  12. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  13. Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa.

    Science.gov (United States)

    Lin, Chih-Hsun; Yang, I-Chen; Tsai, Chi-Han; Fang, Hsu-Wei; Ma, Hsu

    2017-08-01

    Ear reconstruction remains a challenge for plastic surgeons. A tissue-engineering approach could provide another route for obtaining shape maintenance in neoauricular tissue. The authors designed a novel tissue-engineering auricular construct by culturing human adipose stem cells, which differentiated into osteocytes but not chondrocytes, in small intestine submucosa scaffolds. The authors evaluated cell growth potential and mechanical properties. An ear-shaped construct was created in vitro and then implanted in the backs of nude mice. The histology, cellularity, neovascularization, mechanical properties, and ear shape maintenance were investigated. In vitro, human adipose stem cells could be successfully seeded in the small intestine submucosa and differentiated toward osteogenesis. The ear-shaped human adipose stem cell/small intestine submucosa construct could maintain its shape in vivo up to 1 year. Alizarin Red S staining confirmed osteogenic differentiation. CD31 stain showed prominent angiogenesis in the human adipose stem cell/small intestine submucosa construct at 6 months and persistence up to 1 year. h-MHC stain revealed the maintenance of cellularity at 6 months and persistence up to 1 year. The mechanical properties were similar to those of native ear cartilage. The authors' study found that the combination of human adipose stem cells and small intestine submucosa could provide a more durable ear-shaped construct in vivo. The mechanical properties, shape, and cellularity were maintained in the constructs for up to 12 months. Therapeutic, V.

  14. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation.

    Science.gov (United States)

    Hamid, Adila A; Idrus, Ruszymah Bt Hj; Saim, Aminuddin Bin; Sathappan, Somasumdaram; Chua, Kien-Hui

    2012-01-01

    Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

  15. Adipose tissue engineering using adipose-derived stem cells enclosed within an injectable carboxymethylcellulose-based hydrogel.

    Science.gov (United States)

    Ogushi, Yuko; Sakai, Shinji; Kawakami, Koei

    2013-11-01

    In situ gelation of an aqueous solution of carboxymethylcellulose derivative bearing phenolic hydroxyl groups (CMC-Ph) that contained suspended adipose-derived stem cells (ASCs) was studied in vitro and in vivo for evaluating feasibility in adipose tissue-engineering strategies. The rat ASCs that were enclosed in the CMC-Ph gels through a horseradish peroxidase-catalysed reaction showed 92.8% viability, good proliferation and adipogenic differentiation in vitro. Ten weeks after the subcutaneous injection of ASCs-suspending CMC-Ph for in situ gelation, clearly visible new vascularized adipose tissue formed at the injection site. The number of blood vessels and the area occupied by adipose tissues were five and eight times larger, respectively, than those found in the implanted acellular gel. The adipogenesis and neovascularization were further enhanced by incorporation of fibroblast growth factor into the CMC-Ph gel containing ASCs. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue.

    Science.gov (United States)

    Naaijkens, B A; Krijnen, P A J; Meinster, E; ter Horst, E N; Vo, K; Musters, R J P; Kamp, O; Niessen, H W M; Juffermans, L J M; van Dijk, A

    2015-12-01

    In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.

  17. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review.

    Science.gov (United States)

    Bacakova, Lucie; Zarubova, Jana; Travnickova, Martina; Musilkova, Jana; Pajorova, Julia; Slepicka, Petr; Kasalkova, Nikola Slepickova; Svorcik, Vaclav; Kolska, Zdenka; Motarjemi, Hooman; Molitor, Martin

    2018-03-18

    Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to

  18. Adipose-derived stem cell conditioned medium attenuates cisplatin-triggered apoptosis in tongue squamous cell carcinoma.

    Science.gov (United States)

    Chiu, Yu-Jen; Yang, Jai-Sing; Hsu, Han-Shui; Tsai, Chi-Han; Ma, Hsu

    2018-02-01

    Autologous fat grafting procedures have noted a markedly increased frequency, not only for cosmetic purposes, but also for deformities after head and neck cancer and breast cancer surgery. Carcinogenesis is always a major concern in cell therapy-related issues. However, there is no literature discussing this issue in head and neck squamous cell carcinoma patients. To evaluate the interaction of tongue cancer cells and adipose-derived stem cells, we performed a series of in vitro experiments. Our results demonstrated that cisplatin significantly reduced the viabilities of SCC‑25 and CAL‑27 cells in a concentration-dependent manner, but it had low cytotoxicity in cisplatin-resistant CAL‑27 (CAR) cells. There was no significant difference in terms of viability among the SCC‑25, CAL‑27, and CAR cells in the adipose-derived stem cell conditioned medium and control groups. There was also no significant difference in terms of cell migration as determined by wound healing assay of SCC‑25, CAL‑27, and CAR cells between the adipose-derived stem cell conditioned medium treatment and control treatment. Importantly, the adipose-derived stem cell conditioned medium attenuated cisplatin-triggered cell death in the SCC‑25 and CAL‑27 cells. Moreover, adipose-derived stem cell conditioned medium markedly inhibited cisplatin-induced apoptotic cell death (sub‑G1 phase) in the CAL‑27 cells. Western blot analyses indicated that cisplatin-induced reductions in pro‑caspase‑3, pro‑caspase‑9, phospho-BAD, phospho-IGF-1R, phospho-AKT, and phospho-ERK in CAL‑27 cells were reversed by adipose-derived stem cell conditioned medium supplement. Taken together, we provide evidence that adipose-derived stem cell conditioned medium protects CAL‑27 cells from cisplatin-induced cell death, possibly through upregulation of the IGF-1R/AKT/ERK signaling pathway.

  19. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  20. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.

    Science.gov (United States)

    Russo, Valerio; Yu, Claire; Belliveau, Paul; Hamilton, Andrew; Flynn, Lauren E

    2014-02-01

    Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source.

  1. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases.

    Science.gov (United States)

    Zhao, Lina; Johnson, Takerra; Liu, Dong

    2017-06-05

    Ischemic diseases, the leading cause of disability and death, are caused by the stenosis or obstruction of arterioles/capillaries that is not compensated for by vessel dilatation or collateral circulation. Angiogenesis is a complex process leading to new blood vessel formation and is triggered by ischemic conditions. Adequate angiogenesis, as a compensatory mechanism in response to ischemia, may increase oxygen and nutrient supplies to tissues and protect their function. Therapeutic angiogenesis has been the most promising therapy for treating ischemic diseases. In recent years, stem cell transplantation has been recognized as a new technique with therapeutic angiogenic effects on ischemic diseases. Adipose-derived stem cells, characterized by their ease of acquisition, high yields, proliferative growth, and low immunogenicity, are an ideal cell source. In this review, the characterization of adipose-derived stem cells and the role of angiogenesis in ischemic attack are summarized. The angiogenic effects of adipose-derived stem cells are discussed from the perspectives of in-vitro, in-vivo, and clinical trial studies for the treatment of ischemic diseases, including ischemic cardiac, cerebral, and peripheral vascular diseases and wound healing. The microvesicles/exosomes released from adipose-derived stem cells are also presented as a novel therapeutic prospect for treating ischemic diseases.

  2. Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Zolikha Golipoor

    2010-06-01

    Full Text Available Objective(sBone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs, but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs for their Schwann-like cells differentiation potential. Materials and MethodsBMSCs and ADSCs were characterized for expression of MSCs-specific markers, osteogenic and adipogenic differentiation. They were induced to differentiate into Schwann-like cells and analyzed for expression of the Schwann specific markers. The immunocytochemical differentiation markers were S-100 and real time quantitative Real-time polymerase chain reaction (RT-PCR markers were S100, P75 and glial fibrillary acidic protein (GFAP. 3-(4, 5-Dimethylthiazol- 2-yl-2, 5-diphenyltetrazolium bromide (MTT assay and Annexin V-Fluorescein isothiocyanate (FITC/ Propidium iodide (PI double labeling method were employed to detect early stage cell apoptosis.ResultsBMSCs and ADSCs showed similarities in expression of the MSC-specific markers, osteogenic and adipogenic differentiation. Both quantitative RT-PCR and immunocytochemical analysis demonstrated that BMSCs and ADSCs had equal expression of the Schwann-specific markers following Schwann-like cells differentiation. However, gene expression of P75 was higher in BMSCs compared with ADSCs. MTT assay and flow cytometry found that of the total BMSCs and ADSCs in the culture medium, 20% to 30% of the cells died, but the remaining cell population remained strongly attached to the substrate and differentiated.ConclusionComparative analysis showed that Schwann-like cell differentiation potential of ADSCs was slightly decreased in comparison with BMSCs. Therefore, BMSCs are more favorable choice than ADSCs for tissue engineering.

  3. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging

    Directory of Open Access Journals (Sweden)

    Meenakshi Gaur

    2017-01-01

    Full Text Available Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.

  4. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Björninen, M.; Gilmore, K.; Pelto, J.; Seppänen-Kaijansinkko, R.; Kellomäki, M.; Miettinen, S.; Wallace, G.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  5. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering.

    Science.gov (United States)

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-03-01

    The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×10(5) cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering.

  6. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Bjorninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppanen-Kaijansinkko, Riitta; Kellomaki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  7. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  8. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells.

    Science.gov (United States)

    Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves

    2014-10-01

    Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.

  9. Mechanical Activation of Adipose Tissue and Derived Mesenchymal Stem Cells: Novel Anti-Inflammatory Properties.

    Science.gov (United States)

    Carelli, Stephana; Colli, Mattia; Vinci, Valeriano; Caviggioli, Fabio; Klinger, Marco; Gorio, Alfredo

    2018-01-16

    The adipose tissue is a source of inflammatory proteins, such as TNF, IL-6, and CXCL8. Most of their production occurs in macrophages that act as scavengers of dying adipocytes. The application of an orbital mechanical force for 6-10 min at 97 g to the adipose tissue, lipoaspirated and treated according to Coleman procedures, abolishes the expression of TNF-α and stimulates the expression of the anti-inflammatory protein TNF-stimulated gene-6 (TSG-6). This protein had protective and anti-inflammatory effects when applied to animal models of rheumatic diseases. We examined biopsy, lipoaspirate, and mechanically activated fat and observed that in addition to the increased TSG-6, Sox2, Nanog, and Oct4 were also strongly augmented by mechanical activation, suggesting an effect on stromal cell stemness. Human adipose tissue-derived mesenchymal stem cells (hADSCs), produced from activated fat, grow and differentiate normally with proper cell surface markers and chromosomal integrity, but their anti-inflammatory action is far superior compared to those mesenchymal stem cells (MSCs) obtained from lipoaspirate. The expression and release of inflammatory cytokines from THP-1 cells was totally abolished in mechanically activated adipose tissue-derived hADSCs. In conclusion, we report that the orbital shaking of adipose tissue enhances its anti-inflammatory properties, and derived MSCs maintain such enhanced activity.

  10. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots.

    Science.gov (United States)

    Silva, Karina Ribeiro; Côrtes, Isis; Liechocki, Sally; Carneiro, João Regis Ivar; Souza, Antônio Augusto Peixoto; Borojevic, Radovan; Maya-Monteiro, Clarissa Menezes; Baptista, Leandra Santos

    2017-01-01

    The pathological condition of obesity is accompanied by a dysfunctional adipose tissue. We postulate that subcutaneous, preperitoneal and visceral obese abdominal white adipose tissue depots could have stromal vascular fractions (SVF) with distinct composition and adipose stem cells (ASC) that would differentially account for the pathogenesis of obesity. In order to evaluate the distribution of SVF subpopulations, samples of subcutaneous, preperitoneal and visceral adipose tissues from morbidly obese women (n = 12, BMI: 46.2±5.1 kg/m2) were collected during bariatric surgery, enzymatically digested and analyzed by flow cytometry (n = 12). ASC from all depots were evaluated for morphology, surface expression, ability to accumulate lipid after induction and cytokine secretion (n = 3). A high content of preadipocytes was found in the SVF of subcutaneous depot (p = 0.0178). ASC from the three depots had similar fibroblastoid morphology with a homogeneous expression of CD34, CD146, CD105, CD73 and CD90. ASC from the visceral depot secreted the highest levels of IL-6, MCP-1 and G-CSF (p = 0.0278). Interestingly, preperitoneal ASC under lipid accumulation stimulus showed the lowest levels of all the secreted cytokines, except for adiponectin that was enhanced (p = 0.0278). ASC from preperitoneal adipose tissue revealed the less pro-inflammatory properties, although it is an internal adipose depot. Conversely, ASC from visceral adipose tissue are the most pro-inflammatory. Therefore, ASC from subcutaneous, visceral and preperitoneal adipose depots could differentially contribute to the chronic inflammatory scenario of obesity.

  11. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    Science.gov (United States)

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  12. Off-label use of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Francesco Simonacci

    2017-12-01

    Conclusion: In Europe, clinical trials involving cultured ASCs and/or the use of collagenase, which causes changes in the structural and functional properties of stem cells, and/or ASCs application in non-homologous tissue, should be considered off-label. ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue.

  13. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  14. Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jong Hoon Lee

    2012-11-01

    Full Text Available BackgroundThis study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs to differentiate into hepatocytes.MethodsThe adipose-derived stem cells (ADSCs were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA.ResultsThe majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers.ConclusionsMSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.

  15. New adipose tissue formation by human adipose-derived stem cells with hyaluronic acid gel in immunodeficient mice.

    Science.gov (United States)

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was surveyed by inverted light microscopy. For in vivo studies, HA gel containing hASCs, hASCs without HA gel, HA gel alone were allocated and subcutaneously injected into the subcutaneous pocket in the back of nude mice (n=6) in each group. At eight weeks post-injection, the implants were harvested for histological examination by hematoxylin and eosin (H&E) stain, Oil-Red O stain and immunohistochemical staining. The human-specific Alu gene was examined. hASCs were well attachment and proliferation on the HA gel. In vivo grafts showed well-organized new adipose tissue on the HA gel by histologic examination and Oil-Red O stain. Analysis of neo-adipose tissues by PCR revealed the presence of the Alu gene. This study demonstrated not only the successful culture of hASCs on HA gel, but also their full proliferation and differentiation into adipose tissue. The efficacy of injected filler could be permanent since the reduction of the volume of the HA gel after bioabsorption could be replaced by new adipose tissue generated by hASCs. This is a promising approach for developing long lasting soft tissue filler.

  16. Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes

    Directory of Open Access Journals (Sweden)

    Jie Shi

    2017-01-01

    Full Text Available Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1 adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2 the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes.

  17. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis

    NARCIS (Netherlands)

    Ter Huurne, M.; Schelbergen, R.F.P.; Blattes, R.; Blom, A.; de Munter, W.; Grevers, L.C.; Jeanson, J.; Noel, D.; Casteilla, L.; Jorgensen, C.; Berg, W.B. van den; van Lent, P.L.

    2012-01-01

    OBJECTIVE: In experimental collagenase-induced osteoarthritis (OA) in the mouse, synovial lining macrophages are crucial in mediating joint destruction. It was recently shown that adipose-derived stem cells (ASCs) express immunosuppressive characteristics. This study was undertaken to explore the

  18. Assessment of Energy Metabolic Changes in Adipose Tissue-Derived Stem Cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Harmsen, Martin C; Di Nardo, Paolo; Dhingra, Sanjiv; Singla, Dinender K.

    2017-01-01

    Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which

  19. Ethical, legal and practical issues of establishing an adipose stem cell bank for research.

    Science.gov (United States)

    West, C C; Murray, I R; González, Z N; Hindle, P; Hay, D C; Stewart, K J; Péault, B

    2014-06-01

    Access to human tissue is critical to medical research, however the laws and regulations surrounding gaining ethical and legal access to tissue are often poorly understood. Recently, there has been a huge increase in the interest surrounding the therapeutic application of adipose tissue, and adipose-derived stem cells. To facilitate our own research interests and possibly assist our local colleagues and collaborators, we established a Research Tissue Bank (RTB) to collect, store and distribute human adipose tissue derived cells with all the appropriate ethical approval for subsequent downstream research. Here we examine the legal, ethical and practical issues relating to the banking of adipose tissue for research in the UK, and discuss relevant international guidelines and policies. We also share our experiences of establishing an RTB including the necessary infrastructure and the submission of an application to a Research Ethics Committee (REC). Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Isolation of autologous adipose tissue-derived mesenchymal stem cells for bone repair.

    Science.gov (United States)

    Raposio, E; Bonomini, S; Calderazzi, F

    2016-11-01

    Adipose tissue represents an abundant and accessible source of adult stem cells that can differentiate into cells and tissues of mesodermal origin, including osteogenic cells. This paper describes the procedure to obtain a 5-cm 3 saline sample, containing the adipose-derived stem cells (ASCs) pellet, starting from lipoaspirate obtained from a conventional abdominal liposuction. A mean of 2.5×10 6  cells is isolated for each procedure; 35% (875000) of these are CD34+/CD45- cells, which express a subset of both positive (CD10, CD13, CD44, CD59, CD73, CD90, HLAABC) and negative (CD33, CD39, CD102, CD106, CD146, HLADR) cell-associated surface antigens, characterizing them as ASCs. This procedure is easy, effective, economic and safe. It allows the harvesting of a significant number of ASCs that are ready for one-step bony regenerative surgical procedures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells.

    Science.gov (United States)

    Bahamondes, Francisca; Flores, Estefania; Cattaneo, Gino; Bruna, Flavia; Conget, Paulette

    2017-06-08

    Mesenchymal Stem Cells (MSCs) are a promising therapeutic tool in veterinary medicine. Currently the subcutaneous adipose tissue is the leading source of MSCs in dogs. MSCs derived from distinct fat depots have shown dissimilarities in their accessibility and therapeutic potential. The aims of our work were to determine the suitability of omental adipose tissue as a source of MSCs, according to sampling success, cell yield and paracrine properties of isolated cells, and compared to subcutaneous adipose tissue. While sampling success of omental adipose tissue was 100% (14 collections from14 donors) for subcutaneous adipose tissue it was 71% (10 collections from 14 donors). MSCs could be isolated from both sources. Cell yield was significantly higher for omental than for subcutaneous adipose tissue (38 ± 1 vs. 30 ± 1 CFU-F/g tissue, p cell proliferation potential (73 ± 1 vs. 74 ± 1 CDPL) and cell senescence (at passage 10, both cultures presented enlarged cells with cytoplasmic vacuoles and cellular debris). Omental- and subcutaneous-derived MSCs expressed at the same level bFGF, PDGF, HGF, VEGF, ANG1 and IL-10. Irrespective of the source, isolated MSCs induced proliferation, migration and vascularization of target cells, and inhibited the activation of T lymphocytes. Compared to subcutaneous adipose tissue, omental adipose tissue is a more suitable source of MSCs in dogs. Since it can be procured from donors with any body condition, its collection procedure is always feasible, its cell yield is high and the MSCs isolated from it have desirable differentiation and paracrine potentials.

  2. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ilaria Roato

    2016-01-01

    Full Text Available Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs, representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at −80°C and −196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at −80°C and −196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF, guaranteeing the differentiation ability of ATD-MSCs.

  3. Significance of adipose tissue-derived stem cells regulate CD4+ T cell immune in the treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Yong-lin XIE

    2014-10-01

    Full Text Available Adipose tissue-derived stem cells (ADSCs are genetically engineered seed cells with immunomodulatory effects, widely used in the treatment of autoimmune diseases. This article focuses on the immunomodulatory effects of adipose tissue-derived stem cells on CD4+ T cell subsets, including T helper cell (Th 1, 2, 17 and regulatory T cell (Treg, and its clinical significance in the treatment of multiple sclerosis. doi: 10.3969/j.issn.1672-6731.2014.10.005

  4. Therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis

    International Nuclear Information System (INIS)

    Chang Pengyu; Cui Shuang; Luo Jinghua; Qu Chao; Jiang Xin; Qu Yaqin; Dong Lihua

    2014-01-01

    Objective: To evaluate the therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis. Methods: A total of 52 male Sprague-Dawley rats were used in the present study. Herein, 46 rats were randomly selected and irradiated with a dose of 15 Gy at their abdomens. Two hours post-irradiation, 23 rats were randomly selected and infused intraperitoneally with adipose-derived mesenchymal stem cells in passage 6 from young-female donor. The other 23 rats were intraperitoneally infused with PBS. The rest 6 rats were set as normal control. During the first 10 days post-irradiation, peripheral blood-samples from irradiated rats were harvested for testing the levels of IL-10 in serum using ELISA assay. Additionally, after isolating the thymic cells and peripheral blood mononuclear cells, the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in thymus and peripheral blood were tested by flow-cytometry. Finally, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were analyzed by H&E staining and Masson Trichrome staining, respectively. Based on the MPO-immunohistochemistry staining, the type of infiltrated cells was identified. The Kaplan-Meier method was used for analyzing the survival rate of irradiated rats. Results: During a period of 30 days post-irradiation, the irradiated rats receiving adipose-derived mesenchymal stem cells survived longer than those receiving PBS (t = 4.53, P < 0.05). Compared to the irradiated rats with PBS-treatment, adipose-derived mesenchymal stem cells could elevate the level of IL-10 in serum (7 d: t = 13.93, P < 0.05) and increase the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in both peripheral blood (3.5 d: t = 7.72, 7 d: t = 11.11, 10 d: t = 6.99, P < 0.05) and thymus (7 d: t = 16.17, 10 d: t = 12.12, P < 0.05). Moreover, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were mitigated by adipose

  5. Implant for autologous soft tissue reconstruction using an adipose-derived stem cell-colonized alginate scaffold.

    Science.gov (United States)

    Hirsch, Tobias; Laemmle, Christine; Behr, Bjoern; Lehnhardt, Marcus; Jacobsen, Frank; Hoefer, Dirk; Kueckelhaus, Maximilian

    2018-01-01

    Adipose-derived stem cells represent an interesting option for soft tissue replacement as they are easy to procure and can generate their own blood supply through the production of angiogenic factors. We seeded adipose-derived stem cells on a bioresorbable, biocompatible polymer alginate scaffold to generate autologous soft tissue constructs for repair. We built and optimized an alginate scaffold and tested its biocompatibility using the MTT assay and its hydration capacity. We then isolated, characterized, and differentiated murine, porcine, and human adipose-derived stem cells. We characterized their angiogenic potential in vitro by VEGF ELISA and HUVEC tube formation assay in traditional cell culture substrate and in the actual three-dimensional scaffold. We assessed the angiogenic potential of adipose-derived stem cell-colonized scaffolds in ovo by chorion allantois membrane angiogenesis assay. Adipose-derived stem cells differentiated into adipocytes within the alginate scaffolds and demonstrated angiogenic activity. VEGF secretion by adipose-derived stem cells decreased significantly over the 21-day course of adipocyte differentiation in traditional cell culture substrate, but not in scaffolds. Adipose-derived stem cells differentiated for 21 days in scaffolds led to the longest HUVEC tube formation. Scaffolds colonized with adipose-derived stem cells resulted in significantly improved vascularization in ovo. We demonstrate the feasibility of implant production based on adipose-derived stem cell-colonized alginate scaffolds. The implants demonstrate biocompatibility and promote angiogenesis in vitro and in ovo. Therefore, they provide a combination of essential properties for an implant intended for soft tissue replacement. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. CXCL5 secreted from adipose tissue-derived stem cells promotes cancer cell proliferation.

    Science.gov (United States)

    Zhao, Yuying; Zhang, Xiaosan; Zhao, Hong; Wang, Jingxuan; Zhang, Qingyuan

    2018-02-01

    Accumulating data suggest that adipose tissue facilitates breast tumor initiation and progression through paracrine and endocrine pathways, and that adipose tissue-derived stem cell (ASC) is likely the major cell type responsible for tumorigenesis and tumor development. However, it remains unknown how ASCs exert their effects. In the present study, in cultured breast cancer cell lines, including estrogen receptor (ER)-positive MCF-7 cells and ER-negative MDA-MB-231 cells, the effects on tumor proliferation of isolated ASCs from human breasts were examined. The expression of 174 cytokines was additionally identified in this medium. With an anti-human C-X-C motif ligand 5 (CXCL5) monoclonal antibody, the effects of neutralization of CXCL5 on the actions of ASCs in a co-culture medium of ASCs and tumor cells were studied The results demonstrated that ASCs significantly increased the number of breast cancer cells compared with controls. Similarly, the co-culture medium of ASCs with breast cancer cells exhibited potent effects on tumor cell proliferation. In the co-culture medium of ASCs with breast cancer cells, CXCL5 levels were significantly increased. In addition, depletion of CXCL5 with its specific antibody in ASC-conditioned medium blocked the stimulatory effect of ASCs on the proliferation of breast cancer cells. To the best of our knowledge, these results indicate for the first time that ASC-secreted CXCL5 is a key factor promoting breast tumor cell proliferation.

  7. Adipose derived mesenchymal stem cells – Their osteogenicity and osteoblast in vitro mineralization on titanium granule carriers

    DEFF Research Database (Denmark)

    Dahl, Morten; Syberg, Susanne; Jørgensen, Niklas Rye

    2013-01-01

    Adipose derived mesenchymal stem cells (ADMSCs) may be osteogenic, may generate neoangiogenisis and may be progenitors for differentiated osteoblast mineralization. Titanium granules may be suitable as carriers for these cells. The aim was to demonstrate the osteogenic potential of ADMSCs...

  8. Fat on sale: role of adipose-derived stem cells as anti-fibrosis agent in regenerative medicine

    OpenAIRE

    Gupta, Manoj K.; Ajay, Amrendra Kumar

    2015-01-01

    The potential use of stem cells for cell-based tissue repair and regeneration offers alternative therapeutic strategies for various diseases. Adipose-derived stem cells (ADSCs) have emerged as a promising source of stem cells suitable for transplantation in regenerative medicine and wound repair. A recent publication in Stem Cell Research & Therapy by Zhang and colleagues reports a new finding about the anti-fibrosis role of ADSCs and conditioned media derived from them on hypertrophic scar f...

  9. The effect of centrifugation condition on mature adipocytes and adipose stem cell viability.

    Science.gov (United States)

    Son, Daegu; Choi, Taehyun; Yeo, Hyeonjung; Kim, Junhyung; Han, Kihwan

    2014-05-01

    Different researchers have recommended different lipoaspirate centrifugation speeds and times, probably due to the limits in fat cell viability assays. We assessed fat cell viability using a fluorescein diacetate and propidium iodide (FDA-PI) stain and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay after harvesting syringe liposuction and spun with different centrifugation speeds to determine the optimal conditions. Lipoaspirates, harvested from 13 donors, were transferred into a centrifuge tube and spun at 1000, 3000, and 4000 rpm for 3 minutes. Mature adipocytes and adipose stem cells were isolated and tested with a direct counting of FDA-PI-stained cells under fluorescence microscope and XTT assay. We incubated adipocytes and adipose stem cells for 1 day and 3 days, and we compared both of them with fresh samples to evaluate the influence of culturing condition on fat cell viability. Centrifugation speeds from 1000 rpm to 4000 rpm for 3 minutes showed no change in the percentage of adipocytes and adipose stem cell viability not only in the fresh samples but also in the cultured samples (1 day and 3 days). Centrifugation speeds under 4000 rpm do not change the percentage of fat cell viability. To differentiate viable cells from dying or dead mature adipocytes and oil accurately, combinations of viability tests are essential.

  10. Potential of Adipose-derived stem cells in muscular regenerative therapies

    Directory of Open Access Journals (Sweden)

    Sonia eForcales

    2015-07-01

    Full Text Available Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs. These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous adipose-derived stem cells are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will discuss the use of ASCs in muscle regenerative approaches.

  11. Impact of Age on Human Adipose Stem Cells for Bone Tissue Engineering.

    Science.gov (United States)

    Dufrane, Denis

    2017-09-01

    Bone nonunion is a pathological condition in which all bone healing processes have stopped, resulting in abnormal mobility between 2 bone segments. The incidence of bone-related injuries will increase in an aging population, leading to such injuries reaching epidemic proportions. Tissue engineering and cell therapy using mesenchymal stem cells (MSCs) have raised the possibility of implanting living tissue for bone reconstruction. Bone marrow was first proposed as the source of stem cells for bone regeneration. However, as the quantity of MSCs in the bone marrow decreases, the capacity of osteogenic differentiation of bone marrow stem cells is also impaired by the donor's age in terms of reduced MSC replicative capacity; an increased number of apoptotic cells; formation of colonies positive for alkaline phosphatase; and decreases in the availability, growth potential, and temporal mobilization of MSCs for bone formation in case of fracture. Adipose-derived stem cells (ASCs) demonstrate several advantages over those from bone marrow, including a less invasive harvesting procedure, a higher number of stem cell progenitors from an equivalent amount of tissue harvested, increased proliferation and differentiation capacities, and better angiogenic and osteogenic properties in vivo. Subcutaneous native adipose tissue was not affected by the donor's age in terms of cellular senescence and yield of ASC isolation. In addition, a constant mRNA level of osteocalcin and alkaline phosphatase with a similar level of matrix mineralization of ASCs remained unaffected by donor age after osteogenic differentiation. The secretome of ASCs was also unaffected by age when aiming to promote angiogenesis by vascular endothelial growth factor (VEGF) release in hypoxic conditions. Therefore, the use of adipose cells for bone tissue engineering is not limited by the donor's age from the isolation of stem cells up to the manufacturing of a complex osteogenic graft.

  12. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells

    Science.gov (United States)

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    2016-01-01

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue. PMID:27789947

  13. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

    Science.gov (United States)

    Ferraro, Giuseppe A; De Francesco, Francesco; Nicoletti, Gianfranco; Paino, Francesca; Desiderio, Vincenzo; Tirino, Virginia; D'Andrea, Francesco

    2013-05-01

    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine. Copyright © 2012 Wiley Periodicals, Inc.

  14. Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres

    Science.gov (United States)

    2010-02-17

    Martinez, A., Fernandez-Delgado, J., Nistal, M., Alio, J.L., and De Miguel , M.P. Adipose-derived stem cells are a source for cell therapy of the...2, 400, 2008. 32. Möllers, S., Heschel, I., Damink, L.H., Schügner, F., Deu- mens, R., Müller, B., Bozkurt, A., Nava , J.G., Noth, J., and Brook

  15. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure

    NARCIS (Netherlands)

    Oedayrajsingh-Varma, M. J.; van Ham, S. M.; Knippenberg, M.; Helder, M. N.; Klein-Nulend, J.; Schouten, T. E.; Ritt, M. J. P. F.; van Milligen, F. J.

    2006-01-01

    Adipose tissue contains a stromal vascular fraction that can be easily isolated and provides a rich source of adipose tissue-derived mesenchymal stem cells (ASC). These ASC are a potential source of cells for tissue engineering. We studied whether the yield and growth characteristics of ASC were

  16. Ex-Vivo Tissues Engineering Modeling for Reconstructive Surgery Using Human Adult Adipose Stem Cells and Polymeric Nanostructured Matrix.

    Science.gov (United States)

    Morena, Francesco; Argentati, Chiara; Calzoni, Eleonora; Cordellini, Marino; Emiliani, Carla; D'Angelo, Francesco; Martino, Sabata

    2016-03-31

    The major challenge for stem cell translation regenerative medicine is the regeneration of damaged tissues by creating biological substitutes capable of recapitulating the missing function in the recipient host. Therefore, the current paradigm of tissue engineering strategies is the combination of a selected stem cell type, based on their capability to differentiate toward committed cell lineages, and a biomaterial, that, due to own characteristics (e.g., chemical, electric, mechanical property, nano-topography, and nanostructured molecular components), could serve as active scaffold to generate a bio-hybrid tissue/organ. Thus, effort has been made on the generation of in vitro tissue engineering modeling. Here, we present an in vitro model where human adipose stem cells isolated from lipoaspirate adipose tissue and breast adipose tissue, cultured on polymeric INTEGRA ® Meshed Bilayer Wound Matrix (selected based on conventional clinical applications) are evaluated for their potential application for reconstructive surgery toward bone and adipose tissue. We demonstrated that human adipose stem cells isolated from lipoaspirate and breast tissue have similar stemness properties and are suitable for tissue engineering applications. Finally, the overall results highlighted lipoaspirate adipose tissue as a good source for the generation of adult adipose stem cells.

  17. Neurogenic Effects of Cell-Free Extracts of Adipose Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jae-Jun Ban

    Full Text Available Stem-cell-based therapies are regarded as promising treatments for neurological disorders, and adipose-derived stem cells (ASCs are a feasible source of clinical application of stem cell. Recent studies have shown that stem cells have a therapeutic potential for use in the treatment of various illnesses through paracrine action. To examine the effects of cell components of ASCs on neural stem cells (NSCs, we treated cell-free extracts of ASCs (CFE-ASCs containing various components with brain-derived NSCs. To elucidate the effects of CFE-ASCs in NSC proliferation, we treated mouse subventricular zone-derived cultured NSCs with various doses of CFE-ASCs. As a result, CFE-ASCs were found to induce the proliferation of NSCs under conditions of growth factor deprivation in a dose-dependent manner (p<0.01. CFE-ASCs increase the expression of neuron and astrocyte differentiation markers including Tuj-1 (p<0.05 and glial fibrillary acidic protein (p<0.01 without altering the cell's fate in differentiating NSCs. In addition, treatment with CFE-ASCs induces an increase in neurite numbers (p<0.01 and lengths of NSCs (p<0.05. Furthermore, CFE-ASCs rescue the hydrogen peroxide-induced reduction of NSCs' viability (p<0.05 and neurite branching (p<0.01. Findings from our study indicate that CFE-ASCs support the survival, proliferation and differentiation of NSCs accompanied with neurite outgrowth, suggesting that CFE-ASCs can modulate neurogenesis in the central nervous system.

  18. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  19. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  20. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  1. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    Science.gov (United States)

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  2. Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: an in vitro study

    NARCIS (Netherlands)

    Farre-Guasch, E.; Martí-Pagè, C.; Hernádez-Alfaro, F.; Klein Nulend, J.; Casals, N.

    2010-01-01

    Stem cells offer an interesting tool for tissue engineering, but the clinical applications are limited by donor-site morbidity and low cell number upon harvest. Recent studies have identified an abundant source of stem cells in subcutaneous adipose tissue. Adipose stem cells (ASCs) present in

  3. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Noor Azmi, Mat Adenan; Omar, Siti Zawiah [Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Chua, Kien Hui [Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Wan Safwani, Wan Kamarul Zaman, E-mail: wansafwani@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  4. Adipose tissue as mesenchymal stem cells source in equine tendinitis treatment

    Directory of Open Access Journals (Sweden)

    Armando de Mattos Carvalho

    2016-12-01

    Full Text Available Tendinitis is an important high-relapse-rate disease, which compromises equine performance and may result in early athletic life end to affected animals. Many therapies have been set to treat equine tendinitis; however, just few result in improved relapse rates, quality of extracellular matrix (ECM and increased biomechanical resistance of the treated tissue. Due to advances in the regenerative medicine, promising results were initially obtained through the implantation of mesenchymal stem cells (MSC derived from the bone marrow in the equine tendon injury. Since then, many studies have been using MSCs from different sources for therapeutic means in equine. The adipose tissue has appeared as feasible MSC source. There are promising results involving equine tendinitis therapy using mesenchymal stem cells from adipose tissue (AdMSCs.

  5. Skeletal Muscle Regeneration in a Rat (Rattus norvegicus) Model with CorMatrix and Adipose Derived Stem Cells

    Science.gov (United States)

    2015-07-16

    Model with CorMatrix and Adipose Derived Stem Cells ." PRINCIPAL INVESTIGATOR (Pl) I TRAINING COORDINATOR (TC): Major Lucas Neff DEPARTMENT...ability of the matrix to work in concert with adipose derived stem cells for further augmentation of healing. 3 FDGXXX Attachments: Attachment 1...Introduction: The increasing use of explosive devices has led to a dramatic increase in traumatic injury accompanied by severe tissue trauma and

  6. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells : an in Vitro Study

    NARCIS (Netherlands)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000

  7. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study

    NARCIS (Netherlands)

    Sukho, P. (Panithi); J. Kirpensteijn (Jolle); Hesselink, J.W. (Jan Willem); G.J.V.M. van Osch (Gerjo); F. Verseijden (Femke); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2017-01-01

    textabstractAdipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were

  8. Single-Cell Phosphospecific Flow Cytometric Analysis of Canine and Murine Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Harumichi Itoh

    2017-01-01

    Full Text Available This study aimed to demonstrate single-cell phosphospecific flow cytometric analysis of canine and murine adipose-derived stem/stromal cells (ADSCs. ADSCs were obtained from clinically healthy laboratory beagles and C57BL/6 mice. Cell differentiation into adipocytes, osteocytes, and chondrocytes was observed for the cultured canine ADSCs (cADSCs and murine ADSCs (mADSCs to determine their multipotency. We also performed single-cell phosphospecific flow cytometric analysis related to cell differentiation and stemness. Cultured cADSCs and mADSCs exhibited the potential to differentiate into adipocytes, osteocytes, and chondrocytes. In addition, single-cell phosphospecific flow cytometric analysis revealed similar β-catenin and Akt phosphorylation between mADSCs and cADSCs. On the other hand, it showed the phosphorylation of different Stat proteins. It was determined that cADSCs and mADSCs show the potential to differentiate into adipocytes, osteocytes, and chondrocytes. Furthermore, a difference in protein phosphorylation between undifferentiated cADSCs and mADSCs was identified.

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  10. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  11. Melatonin and Vitamin D Interfere with the Adipogenic Fate of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Basoli, Valentina; Santaniello, Sara; Cruciani, Sara; Ginesu, Giorgio Carlo; Cossu, Maria Laura; Delitala, Alessandro Palmerio; Serra, Pier Andrea; Ventura, Carlo; Maioli, Margherita

    2017-05-05

    Adipose-derived stem cells (ADSCs) represent one of the cellular populations resident in adipose tissue. They can be recruited under certain stimuli and committed to become preadipocytes, and then mature adipocytes. Controlling stem cell differentiation towards the adipogenic phenotype could have a great impact on future drug development aimed at counteracting fat depots. Stem cell commitment can be influenced by different molecules, such as melatonin, which we have previously shown to be an osteogenic inducer. Here, we aimed at evaluating the effects elicited by melatonin, even in the presence of vitamin D, on ADSC adipogenesis assessed in a specific medium. The transcription of specific adipogenesis orchestrating genes, such as aP2 , peroxisome proliferator-activated receptor γ ( PPAR-γ ), and that of adipocyte-specific genes, including lipoprotein lipase ( LPL ) and acyl-CoA thioesterase 2 ( ACOT2 ), was significantly inhibited in cells that had been treated in the presence of melatonin and vitamin D, alone or in combination. Protein content and lipid accumulation confirmed a reduction in adipogenesis in ADSCs that had been grown in adipogenic conditions, but in the presence of melatonin and/or vitamin D. Our findings indicate the role of melatonin and vitamin D in deciding stem cell fate, and disclose novel therapeutic approaches against fat depots.

  12. Intracutaneously injected human adipose tissue-derived stem cells in a mouse model stay at the site of injection.

    Science.gov (United States)

    Koellensperger, E; Lampe, K; Beierfuss, A; Gramley, F; Germann, G; Leimer, U

    2014-06-01

    The aim of this study was to evaluate the local behavior of intracutaneously injected human mesenchymal stem cells from adipose tissue and to determine the safety of a cell-based cutaneous therapy in an animal model.Human mesenchymal stem cells from adipose tissue were labeled with red fluorochrome and were injected intradermally in the paravertebral area in immunodeficient BalbC/nude mice (n = 21). As a control, cell culturemedium was injected in the same fashion on the contralateral paravertebral side. Four weeks, 6 months, and 12 months after the injection, seven mice were examined. In addition to the injected areas, the lungs, kidneys,spleens, and brains were excised and processed for histological evaluation. Serial sections of all the tissues excised were evaluated for adipose tissue-derived stem cells by means of emerging red fluorescent signals.The injected stem cells could be detected throughout the follow-up period of 1-year at the injection site within the dermal and subcutaneous layers. Bar these areas, adipose tissue-derived stem cells were not found in any otherexamined tissue at any point in time. The adipose tissue-derived stem cells showed a slow transition to deeper subcutaneous adipose tissue layers and, in part, a differentiation into adipocytes. No ulceration, inflammation, ortumor induction could be detected.The present study shows that intracutaneously injected human mesenchymal stem cells from adipose tissue stay at the site of injection, survive in vivo for up to 1-year, and partly differentiate into adipocytes. This is a new andvery important finding needed to safely apply therapies based on such stem cells in fat transplants in regenerative medicine. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue.

    Science.gov (United States)

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W; Simó, Rafael; Tinahones, Francisco J; Fernández-Veledo, Sonia; Vendrell, Joan

    2016-04-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n=8; body mass index [BMI]: 23±1 kg/m2) and obese (n=8; BMI: 35±5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor's BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal stem cells (hASCs) with

  14. Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells

    Directory of Open Access Journals (Sweden)

    Li Xiaojie

    2009-01-01

    Full Text Available To investigate whether adipose-derived stem cells (ADSCs could be subject to neural differentiation induced only by Schwann cell (SC factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentia­tions begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day.

  15. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  16. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    International Nuclear Information System (INIS)

    MacIsaac, Zoe Marie; Shang, Hulan; Agrawal, Hitesh; Yang, Ning; Parker, Anna; Katz, Adam J.

    2012-01-01

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: ► Adipose stem cells promise novel clinical therapies. ► Before clinical translation, safety profiles must be further elucidated. ► Subcutaneously injected non-autologous adipose stem cells do not form tumors. ► Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.

  17. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  18. Generation of Dopamine-Secreting Cells from Human Adipose Tissue-Derived Stem Cells In Vitro.

    Science.gov (United States)

    Soheilifar, Mohammad Hasan; Javeri, Arash; Amini, Hossein; Taha, Masoumeh Fakhr

    2018-03-12

    Several studies have demonstrated the differentiation of human adipose tissue-derived stem cells (hADSCs) to neuronal and glial phenotypes, but directing the fate of these cells toward dopaminergic neurons has not been frequently reported. The aim of this study was to investigate dopaminergic specification of hADSCs in vitro. ADSCs were isolated from subcutaneous abdominal adipose tissue and were characterized. For dopaminergic differentiation, a cocktail of sonic hedgehog, fibroblast growth factor 8, basic fibroblast growth factor, and brain-derived neurotrophic factor were used under a low serum condition. As the control group, the ADSCs were cultured under the same low serum condition without the dopaminergic cocktail. At the end of differentiation period, the cells expressed neuron-specific markers, NES, NSE, and NEFL, and dopaminergic markers, EN1, NURR1, PITX3, VMAT2, TH, and GIRK2 genes. TH, NURR1, and EN1 mRNAs were upregulated in the dopaminergic group compared with the control group. NEFL and TH proteins were also expressed in the differentiated cells. A total of 27.9% of the cells differentiated in dopaminergic induction medium showed positive staining for TH protein. Based on reversed-phase high-performance liquid chromatography analysis, the differentiated cells released a significant amount of dopamine in response to KCl-induced depolarization. In conclusion, results of this study indicate that hADSCs can be induced by a growth factor cocktail to produce dopamine secreting cells with possible applications for future cell replacement therapy of Parkinson's disease.

  19. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Ru Dai

    2016-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs, ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine.

  20. Adipose stem cells: biology and clinical applications for tissue repair and regeneration.

    Science.gov (United States)

    Kokai, Lauren E; Marra, Kacey; Rubin, J Peter

    2014-04-01

    There is a clear clinical need for cell therapies to repair or regenerate tissue lost to disease or trauma. Adipose tissue is a renewable source of stem cells, called adipose-derived stem cells (ASCs), that release important growth factors for wound healing, modulate the immune system, decrease inflammation, and home in on injured tissues. Therefore, ASCs may offer great clinical utility in regenerative therapies for afflictions such as Parkinson's disease and Alzheimer's disease, spinal cord injury, heart disease, and rheumatoid arthritis, or for replacing lost tissue from trauma or tumor removal. This article discusses the regenerative properties of ASCs that can be harnessed for clinical applications, and explores current and future challenges for ASC clinical use. Such challenges include knowledge-based deficiencies, hurdles for translating research to the clinic, and barriers to establishing a new paradigm of medical care. Clinical experience with ASCs, ASCs as a portion of the heterogeneous stromal cell population extracted enzymatically from adipose tissue, and stromal vascular fraction are also described. Copyright © 2014 Mosby, Inc. All rights reserved.

  1. Transport phenomena during freezing of adipose tissue derived adult stem cells.

    Science.gov (United States)

    Thirumala, Sreedhar; Gimble, Jeffrey M; Devireddy, Ram V

    2005-11-05

    In the present study a well-established differential scanning calorimeter (DSC) technique is used to measure the water transport phenomena during freezing of stromal vascular fraction (SVF) and adipose tissue derived adult stem (ADAS) cells at different passages (Passages 0 and 2). Volumetric shrinkage during freezing of adipose derived cells was obtained at a cooling rate of 20 degrees C/min in the presence of extracellular ice and two different, commonly used, cryoprotective agents, CPAs (10% DMSO and 10% Glycerol). The adipose derived cells were modeled as spheres of 50 microm diameter with an osmotically inactive volume (Vb) of 0.6Vo, where Vo is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the "best-fit" membrane permeability parameters (reference membrane permeability to water, Lpg or Lpg[cpa] and the activation energy, ELp or ELp[cpa]) were determined. The "best-fit" membrane permeability parameters for adipose derived cells in the absence and presence of CPAs ranged from: Lpg=23.1-111.5x10(-15) m3/Ns (0.135-0.652 microm/min-atm) and ELp=43.1-168.8 kJ/mol (9.7-40.4 kcal/mol). Numerical simulations of water transport were then performed under a variety of cooling rates (5-100 degrees C/min) using the experimentally determined membrane permeability parameters. And finally, the simulation results were analyzed to predict the optimal rates of freezing adipose derived cells in the presence and absence of CPAs. Copyright (c) 2005 Wiley Periodicals, Inc.

  2. Adipose Tissue and Mesenchymal Stem Cells: State of the Art and Lipogems® Technology Development.

    Science.gov (United States)

    Tremolada, Carlo; Colombo, Valeria; Ventura, Carlo

    In the past few years, interest in adipose tissue as an ideal source of mesenchymal stem cells (MSCs) has increased. These cells are multipotent and may differentiate in vitro into several cellular lineages, such as adipocytes, chondrocytes, osteoblasts, and myoblasts. In addition, they secrete many bioactive molecules and thus are considered "mini-drugstores." MSCs are being used increasingly for many clinical applications, such as orthopedic, plastic, and reconstructive surgery. Adipose-derived MSCs are routinely obtained enzymatically from fat lipoaspirate as SVF and/or may undergo prolonged ex vivo expansion, with significant senescence and a decrease in multipotency, leading to unsatisfactory clinical results. Moreover, these techniques are hampered by complex regulatory issues. Therefore, an innovative technique (Lipogems®; Lipogems International SpA, Milan, Italy) was developed to obtain microfragmented adipose tissue with an intact stromal vascular niche and MSCs with a high regenerative capacity. The Lipogems® technology, patented in 2010 and clinically available since 2013, is an easy-to-use system designed to harvest, process, and inject refined fat tissue and is characterized by optimal handling ability and a great regenerative potential based on adipose-derived MSCs. In this novel technology, the adipose tissue is washed, emulsified, and rinsed and adipose cluster dimensions gradually are reduced to about 0.3 to 0.8 mm. In the resulting Lipogems® product, pericytes are retained within an intact stromal vascular niche and are ready to interact with the recipient tissue after transplantation, thereby becoming MSCs and starting the regenerative process. Lipogems® has been used in more than 7000 patients worldwide in aesthetic medicine and surgery, as well as in orthopedic and general surgery, with remarkable and promising results and seemingly no drawbacks. Now, several clinical trials are under way to support the initial encouraging outcomes

  3. Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes

    Science.gov (United States)

    Abd Elmageed, Zakaria Y.; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M.; Moparty, Krishnarao; Sikka, Suresh C.; Sartor, Oliver; Abdel-Mageed, Asim B.

    2014-01-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition (MET) and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to down-regulation of the large tumor suppressor homolog2 (Lats2) and the programmed cell death protein 4 (PDCD4), a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. PMID:24715691

  4. Adipose mesenchymal stem cells isolated after manual or water jet-assisted liposuction display similar properties

    Directory of Open Access Journals (Sweden)

    Claire eBony

    2016-01-01

    Full Text Available Mesenchymal stem or stromal cells (MSC are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the last years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedures in terms of stromal vascular fraction (SVF or adipose stromal cells (ASC. The objective of the present study was to compare and qualify for clinical use the adipose stromal cells (ASC obtained from fat isolated with the manual or the Bodyjet® waterjet-assisted procedure. Although the initial number of cells after collagenase digestion was higher with the manual procedure, both the percentage of dead cells, the number of CFU-F and the phenotype of cells were identical in the SVF at isolation and in the ASC populations at day 14. We also showed that the osteogenic and adipogenic differentiation potentials of ASCs were identical between preparations while a slight but significant higher in vitro immunosuppressive effect was observed with ASCs isolated from fat removed with a cannula. The difference in the immunomodulatory effect between ASC populations was however not observed in vivo using the delayed-type hypersensitivity model. Our data therefore indicate that the procedure for fat liposuction does not impact the characteristics or the therapeutic function of ASCs.

  5. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects.

    Science.gov (United States)

    Sándor, George K; Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-04-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.

  6. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  7. Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Jianfeng Liu

    2015-01-01

    Full Text Available The poor survival rate of transplanted stem cells in ischemic myocardium has limited their therapeutic efficacy. Curcumin has potent antioxidant property. This study investigates whether prior curcumin treatment protects stem cells from oxidative stress injury and improves myocardial recovery following cells transplantation. Autologous Sprague-Dawley rat adipose derived mesenchymal stem cells (ADSCs were pretreated with or without curcumin. The hydrogen peroxide/serum deprivation (H2O2/SD medium was used to mimic the ischemic condition in vitro. Cytoprotective effects of curcumin on ADSCs were evaluated. Curcumin pretreatment significantly increased cell viability and VEGF secretion, and decreased cell injury and apoptosis via regulation of PTEN/Akt/p53 and HO-1 signal proteins expression. The therapeutic potential of ADSCs implantation was investigated in myocardial ischemia-reperfusion injury (IRI model. Transplantation of curcumin pretreated ADSCs not only resulted in better heart function, higher cells retention, and smaller infarct size, but also decreased myocardial apoptosis, promoted neovascularization, and increased VEGF level in ischemic myocardium. Together, priming of ADSCs with curcumin improved tolerance to oxidative stress injury and resulted in enhancement of their therapeutic potential of ADSCs for myocardial repair. Curcumin pretreatment is a promising adjuvant strategy for stem cells transplantation in myocardial restoration.

  8. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A.; Graaf, Adrianus Cornelis van der; Henning, Robert H.; Krenning, Guido

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  9. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  10. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2011-04-15

    A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  12. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation.

    Science.gov (United States)

    Qureshi, Ammar T; Chen, Cong; Shah, Forum; Thomas-Porch, Caasy; Gimble, Jeffrey M; Hayes, Daniel J

    2014-01-01

    Annually, more than 200,000 elective liposuction procedures are performed in the United States and over a million worldwide. The ease of harvest and abundance make human adipose-derived stromal/stem cells (hASCs) isolated from lipoaspirates an attractive, readily available source of adult stem cells that have become increasingly popular for use in many studies. Here, we describe common methods for hASC culture, preservation, and osteogenic differentiation. We introduce methods of ceramic, polymer, and composite scaffold synthesis with a description of morphological, chemical, and mechanical characterization techniques. Techniques for scaffold loading are compared, and methods for determining cell loading efficiency and proliferation are described. Finally, we provide both qualitative and quantitative techniques for in vitro assessment of hASC osteogenic differentiation. © 2014 Elsevier Inc. All rights reserved.

  13. Role of adipose-derived stem cells in fat grafting and reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Shaun S Tan

    2016-01-01

    Full Text Available Autologous fat grafting is commonly utilised to reconstruct soft tissue defects caused by ageing, trauma, chronic wounds and cancer resection. The benefits of fat grafting are minimal donor site morbidity and ease of availability through liposuction or lipectomy. Nonetheless, survival and longevity of fat grafts remain poor post-engraftment. Various methods to enhance fat graft survival are currently under investigation and its stem cell constituents are of particular interest. Cell-assisted lipotransfer refers to the addition of adipose-derived stem cell (ASC rich component of stromal vascular fraction to lipoaspirate, the results of which have proven promising. This article aims to review the role of ASCs in fat grafting and reconstructive surgery.

  14. Treatment with adipose stem cells in a patient with moderate Alzheimer's disease: case report

    Directory of Open Access Journals (Sweden)

    Tsolaki M

    2015-10-01

    Full Text Available Magda Tsolaki,1,2 Stelios Zygouris,1,3 Vassilis Tsoutsikas,2 Doxakis Anestakis,2,4,5 George Koliakos6,7 1Third Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece; 3CND+, 4Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 5Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 6Biohellenika Stem Cells Bank, Thessaloniki, Greece; 7Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece Objective: This article presents the case of a female patient with Alzheimer's disease (AD. The patient was treated with cholinesterase inhibitors and also with intravenous administration of autologous adipose stem cells.Methods: The patient was assessed with a neuropsychological battery including measures of general cognition, functional problems, neuropsychiatric issues, memory (verbal, visual and episodic, verbal learning and visuospatial abilities. Magnetic resonance imaging (MRI scans were conducted before and after the treatment with stem cells.Results: A transient and mild improvement of scores in measures of general cognition and neuropsychiatric issues was evident. A rapid deterioration followed the initial improvement. The first MRI scan showed ischemic areas in periventricular white matter of both hemispheres, as well as in both temporal and parietal lobes. The second MRI scan revealed the same picture with no significant changes.Conclusion: This case report indicates that the administration of stem cells is feasible in a clinical setting however its effectiveness in the treatment of AD is uncertain. The improvement of the patient's condition highlights the potential therapeutic action of stem cells, however the rapid deterioration poses

  15. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling

    Directory of Open Access Journals (Sweden)

    Ji-qing Cao

    2016-01-01

    Full Text Available Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 10 6 were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR, eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the regeneration and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.

  16. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-01-01

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  17. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  18. The inhibitory influence of adipose tissue-derived mesenchymal stem cell environment and Wnt antagonism on breast tumour cell lines.

    Science.gov (United States)

    Visweswaran, Malini; Arfuso, Frank; Dilley, Rodney J; Newsholme, Philip; Dharmarajan, Arun

    2018-02-01

    Tumours exhibit a heterogeneous mix of cell types that reciprocally regulate their growth in the tumour stroma, considerably affecting the progression of the disease. Both adipose-derived mesenchymal stem cells and Wnt signalling pathway are vital in driving breast tumour growth. Hence, we examined the effect of secreted factors released by adipose-derived mesenchymal stem cells, and further explored the anti-tumour property of the Wnt antagonist secreted frizzled-related protein 4 (sFRP4) on MCF-7 and MDA-MB-231 breast tumour cells. We observed that conditioned medium and extracellular matrix derived from adipose-derived mesenchymal stem cells inhibited tumour viability. The inhibitory effect of the conditioned medium was retained within its low molecular weight and non-protein component. The conditioned medium also induced apoptosis accompanied by a decrease in the mitochondrial membrane potential in tumour cells, Furthermore, it downregulated the protein expression of active β-catenin and Cyclin D1, which are major target proteins of the Wnt signalling pathway, and reduced the expression of anti-apoptotic protein Bcl-xL. The combination of conditioned medium and sFRP4 further potentiated the effects, depending on the tumour cell line and experimental assay. We conclude that factors derived from conditioned medium of adipose-derived mesenchymal stem cells and sFRP4 significantly decreased the tumour cell viability and migration rates (MCF-7), accompanied with an enhanced apoptotic activity through inhibition of canonical Wnt signalling. Besides giving an insight to possible paracrine interactions and influence of signalling pathways, reflective of a breast tumour microenvironment, this study emphasises the utilization of cell free-secreted factors and Wnt antagonists to improve conventional anti-cancer strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Adipose derived mesenchymal stem cells - their osteogenicity and osteoblast in vitro mineralization on titanium granule carriers.

    Science.gov (United States)

    Dahl, Morten; Syberg, Susanne; Jørgensen, Niklas Rye; Pinholt, Else Marie

    2013-12-01

    Adipose derived mesenchymal stem cells (ADMSCs) may be osteogenic, may generate neoangiogenisis and may be progenitors for differentiated osteoblast mineralization. Titanium granules may be suitable as carriers for these cells. The aim was to demonstrate the osteogenic potential of ADMSCs and the effect of porous non-oxidized (Ti) and oxidized titanium (TiO2) granules as carriers for ADMSCs mineralization in vitro. ADMSCs were isolated, cultivated in osteoblast medium and evaluated for alkaline phosphatase (ALP) assay, RNA isolation, and ALP staining. Osteoblast in vitro mineralization cells without granules or seeded on Ti or TiO2 granules were evaluated for Alizarin Red assay and RNA isolation for later gene expressing. ADMSCs express osteoblastic lineage genes, CBFA-1 and stain strongly for ALP. Mineralization was significantly higher for cells seeded on TiO2 than on Ti granules or pure cells. Expression of ALPL and RUNX2 was significantly higher for cells seeded on TiO2 granules and expression of COL1α1 for pure cells was significantly higher than for cells seeded on granules. ADMSCs have osteogenic potential. Mineralization was significantly high when cells were seeded on TiO2 granules. TiO2 granules may be used as carriers for adipose derived mesenchymal osteoblastic cells from laboratory bench to the patient. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    NARCIS (Netherlands)

    Jurgens, W.J.F.M.; Oedayrajsingh-Varma, M.J.; Helder, M.N.; Zandieh Doulabi, B.; Schouten, T.E.; Kuik, D.J.; Ritt, M.J.P.F.; van Milligen-Kummer, F.J.

    2008-01-01

    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to

  1. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  2. Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia.

    Science.gov (United States)

    Mariani, Stefania; Di Rocco, Giuliana; Toietta, Gabriele; Russo, Matteo A; Petrangeli, Elisa; Salvatori, Luisa

    2017-09-01

    The sirtuin family comprises seven NAD + -dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral

  3. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    International Nuclear Information System (INIS)

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-01-01

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs

  4. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  5. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis.

    Science.gov (United States)

    Kriston-Pál, Éva; Czibula, Ágnes; Gyuris, Zoltán; Balka, Gyula; Seregi, Antal; Sükösd, Farkas; Süth, Miklós; Kiss-Tóth, Endre; Haracska, Lajos; Uher, Ferenc; Monostori, Éva

    2017-01-01

    Visceral adipose tissue (AT) obtained from surgical waste during routine ovariectomies was used as a source for isolating canine mesenchymal stem cells (MSCs). As determined by cytofluorimetry, passage 2 cells expressed MSC markers CD44 and CD90 and were negative for lineage-specific markers CD34 and CD45. The cells differentiated toward osteogenic, adipogenic, and chondrogenic directions. With therapeutic aims, 30 dogs (39 joints) suffering from elbow dysplasia (ED) and osteoarthritis (OA) were intra-articularly transplanted with allogeneic MSCs suspended in 0.5% hyaluronic acid (HA). A highly significant improvement was achieved without any medication as demonstrated by the degree of lameness during the follow-up period of 1 y. Control arthroscopy of 1 transplanted dog indicated that the cartilage had regenerated. Histological analysis of the cartilage biopsy confirmed that the regenerated cartilage was of hyaline type. These results demonstrate that transplantation of allogeneic adipose tissue-derived mesenchymal stem cells (AT-MSCs) is a novel, noninvasive, and highly effective therapeutic tool in treating canine elbow dysplasia.

  6. Maternal obesity and increased neonatal adiposity correspond with altered infant mesenchymal stem cell metabolism.

    Science.gov (United States)

    Baker, Peter R; Patinkin, Zachary; Shapiro, Allison Lb; De La Houssaye, Becky A; Woontner, Michael; Boyle, Kristen E; Vanderlinden, Lauren; Dabelea, Dana; Friedman, Jacob E

    2017-11-02

    Maternal obesity is a global health problem that increases offspring obesity risk. The metabolic pathways underlying early developmental programming in human infants at risk for obesity remain poorly understood, largely due to barriers in fetal/infant tissue sampling. Utilizing umbilical cord-derived mesenchymal stem cells (uMSC) from offspring of normal weight and obese mothers, we tested whether energy metabolism and gene expression differ in differentiating uMSC myocytes and adipocytes, in relation to maternal obesity exposures and/or neonatal adiposity. Biomarkers of incomplete β-oxidation were uniquely positively correlated with infant adiposity and maternal lipid levels in uMSC myocytes from offspring of obese mothers only. Metabolic and biosynthetic processes were enriched in differential gene expression analysis related to maternal obesity. In uMSC adipocytes, maternal obesity and lipids were associated with downregulation in multiple insulin-dependent energy-sensing pathways including PI3K and AMPK. Maternal lipids correlated with uMSC adipocyte upregulation of the mitochondrial respiratory chain but downregulation of mitochondrial biogenesis. Overall, our data revealed cell-specific alterations in metabolism and gene expression that correlated with maternal obesity and adiposity of their offspring, suggesting tissue-specific metabolic and regulatory changes in these newborn cells. We provide important insight into potential developmental programming mechanisms of increased obesity risk in offspring of obese mothers.

  7. [Isolation, culture and identification of adipose-derived stem cells from SD rat adipose tissues subjected to long-term cryopreservation].

    Science.gov (United States)

    Liu, Qin; Wang, Liping; Chen, Fang; Zhang, Yi

    2017-02-01

    Objective To study the feasibility of isolation and culture of adipose-derived stem cells (ADSCs) from SD rat adipose tissues subjected to long-term cryopreservation. Methods We took inguinal fat pads from healthy SD rats. Adipose tissues were stored with 100 mL/L dimethyl sulfoxide (DMSO) combined with 900 mL/L fetal bovine serum (FBS) in liquid nitrogen. Three months later, the adipose tissues were resuscitated for the isolation and culture of ADSCs. The growth status and morphology were observed. The growth curve and cell surface markers CD29, CD45, CD90 of the 3rd passage cells were analyzed respectively by CCK-8 assay and immunocytochemistry. The 3rd passage cells were induced towards adipogenic lineages and osteogenic lineages by different inducers, and the resulting cells were examined separately by oil red O staining and alizarin red staining. Results The ADSCs obtained from SD rat adipose tissues subjected to long-term cryopreservation showed a spindle-shape appearance and had a good proliferation ability. The cell growth curve was typical "S" curve. Immunocytochemistry showed that the 3rd passage cells were positive for CD29 and CD90, while negative for CD45. The cells were positive for oil red O staining after adipogenic induction, and also positive for alizarin red staining after osteogenic induction. Conclusion The ADSCs can be isolated from SD rat adipose tissues subjected to long-term cryopreservation.

  8. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis

    Directory of Open Access Journals (Sweden)

    Maria Elena Falomo

    2015-01-01

    Full Text Available Endometriosis is a degenerative process due to a chronic inflammatory damage leading to extracellular matrix components deposition and glandular fibrosis. It is known that mesenchymal stem cells secrete a wide range of bioactive molecules, some of them modulating the immune inflammatory response, and others providing regeneration and remodeling of injured tissue. We have performed in vitro experiments in order to analyze the capability of allogenic equine adipose-derived stem cells (ADSCs to infiltrate mares’ endometrial tissues and to stimulate the expression of cytokines and metallopeptidases. Differences in the biologic response to the exposure to ADSCs between pathological and healthy endometrial tissue have been identified. These results could challenge researchers to progress forward with future studies for the development of a biological therapy with a possible application in translational medicine.

  9. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  10. Cryopreservation of Human Adipose-Derived Stem Cells in Combination with Trehalose and Reversible Electroporation.

    Science.gov (United States)

    Dovgan, Barbara; Barlič, Ariana; Knežević, Miomir; Miklavčič, Damijan

    2017-02-01

    New cryopreservation approaches for medically applicable cells are of great importance in clinical medicine. Current protocols employ the use of dimethyl sulfoxide (DMSO), which is toxic to cells and causes undesirable side effects in patients, such as cardiac arrhythmias, neurological events, and others. Trehalose, a nontoxic disaccharide, has been already studied as a cryoprotectant. However, an efficient approach for loading this impermeable sugar into mammalian cells is missing. In our study, we assessed the efficiency of combining reversible electroporation and trehalose for cryopreservation of human adipose-derived stem cells. First, we determined reversible electroporation threshold by loading of propidium iodide into cells. The highest permeabilization while maintaining high cell viability was reached at 1.5 kV/cm, at 8 pulses, 100 µs, and 1 Hz. Second, cells were incubated in 250 or 400 mM trehalose and electroporated before cryopreservation. After thawing, 83.8 ± 1.8 % (mean ± SE) cell recovery was obtained at 250 mM trehalose. By using a standard freezing protocol (10 % DMSO in 90 % fetal bovine serum), cell survival after thawing was about 91.5 ± 1.6 %. We also evaluated possible effects of electroporation on cells' functionality before and after thawing. Successful cell growth and efficient adipogenic and osteogenic differentiation were achieved. In conclusion, electroporation seems to be an efficient method for loading nonpermeable trehalose into human adipose-derived stem cells, allowing long-term cryopreservation in DMSO-free and xeno-free conditions.

  11. Stearidonic and eicosapentaenoic acids inhibit interleukin-6 expression in ob/ob mouse adipose stem cells via toll-like receptor-2-mediated pathways

    Science.gov (United States)

    Increases in adipose tissue weight positively correlates with increased circulating inflammatory cytokines such as interleukin-6 (IL-6). We previously have shown that adipose stem cell produce significantly higher levels of IL-6 when compared to other cell types in the adipose tissue in genetically ...

  12. Adipose stem cells promote smooth muscle cells to secrete elastin in rat abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Xiaohong Tian

    Full Text Available Abdominal aortic aneurysm (AAA is a life-threatening disease and its prevalence rate increases with social aging. The degradation of elastic is an important factor in the formation of AAA.Adipose derived stem cells (ADSCs and bone marrow mesenchymal stem cells (BMSCs were isolated from rats, and identified by Oil red O and alizarin red staining after adipogenesis and osteogenesis induction. In addition, ADSCs were also identified by flow cytometry with CD markers. AAA model in rats was established, and smooth muscle cells (SMCs were isolated from AAA aortic wall and identified by immunohistochemistry. ADSCs or BMSCs were co-cultured with AAA aortic wall for in vitro experiment, and ADSCs were injected into AAA model for in vivo test. Then orcein staining was used for observing the morphology of elastic fiber, Western blot and real-time PCR were used respectively to detect the protein and gene expression of elastin, gelatinases spectrum analysis was used to detect the activity of matrix metalloproteinase-2 (MMP-2 and MMP-9.Lots of red lipid droplets were visible by Oil red O staining after adipogenesis induction, and black calcium nodules appeared by alizarin red staining after osteogenesis induction. The results of flow cytometry showed that ADSCs expressed CD44 and CD105, but exhibited negligible expression of CD31 and CD45. SMCs exhibited spindle-like morphology and α-actin protein was positive in cytoplasm. After co-cultured with ADSCs or BMSCs, the elastic fiber recovered normal winding shape, both the gene and protein expression of elastin increased, and the activity of MMP-2 decreased. The in vivo result was similar to that of in vitro.ADSCs promote the expression of elastin in SMCs and contribute to the reconstruction of elastic fiber, which may provide new ideas for treating AAA.

  13. Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice.

    Science.gov (United States)

    Cherubino, Mario; Valdatta, Luigi; Balzaretti, Riccardo; Pellegatta, Igor; Rossi, Federica; Protasoni, Marina; Tedeschi, Alessandra; Accolla, Roberto S; Bernardini, Giovanni; Gornati, Rosalba

    2016-04-01

    After in vivo implantation of cell-loaded devices, only the cells close to the capillaries can obtain nutrients to maintain their functions. It is known that factors secreted by stem cells, rather than stem cells themselves, are fundamental to guarantee new vascularization in the area of implant. To investigate this possibility, we have grafted mice with Bilayer and Flowable Integra(®) scaffolds, loaded or not with human adipose-derived stem cells. Our results support the therapeutic potential of human adipose-derived stem cells to induce new vascular networks of engineered organs and tissues. This finding suggests that our approach can help to form new vascular networks that allow sufficient vascularization of engineered organs and tissues in cases of difficult wound healing due to ischemic conditions.

  14. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  15. Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison

    Directory of Open Access Journals (Sweden)

    Karoline Pill

    2015-01-01

    Full Text Available Tissue-engineered constructs are promising to overcome shortage of organ donors and to reconstruct at least parts of injured or diseased tissues or organs. However, oxygen and nutrient supply are limiting factors in many tissues, especially after implantation into the host. Therefore, the development of a vascular system prior to implantation appears crucial. To develop a functional vascular system, different cell types that interact with each other need to be co-cultured to simulate a physiological environment in vitro. This review provides an overview and a comparison of the current knowledge of co-cultures of human endothelial cells (ECs with human adipose tissue-derived stem/stromal cells (ASCs or bone marrow-mesenchymal stem cells (BMSCs in three dimensional (3D hydrogel matrices. Mesenchymal stem cells (MSCs, BMSCs or ASCs, have been shown to enhance vascular tube formation of ECs and to provide a stabilizing function in addition to growth factor delivery and permeability control for ECs. Although phenotypically similar, MSCs from different tissues promote tubulogenesis through distinct mechanisms. In this report, we describe differences and similarities regarding molecular interactions in order to investigate which of these two cell types displays more favorable characteristics to be used in clinical applications. Our comparative study shows that ASCs as well as BMSCs are both promising cell types to induce vascularization with ECs in vitro and consequently are promising candidates to support in vivo vascularization.

  16. Heat-Shock Protein 70 Overexpression in Adipose-Derived Stem Cells Enhances Fat Graft Survival.

    Science.gov (United States)

    Feng, Hao; Qiu, Lihong; Zhang, Teng; Yu, Houyou; Ma, Xianjie; Su, Yingjun; Zheng, Hui; Wang, Yong; Yi, Chenggang

    2017-04-01

    Autologous fat grafting is a prevalent technique used for soft-tissue augmentation; however, the poor survival rate of the grafted tissue remains a drawback of this method. Although adipose-derived stem cells (ASCs) are an attractive candidate for enhancing graft retention, the poor posttransplantation viability of these cells limits their application. Here we investigated whether overexpression of the antiapoptotic protein heat-shock protein 70 (Hsp70) could enhance ASCs' therapeutic potential for fat transplant survival. Recombinant adenoviral vectors were used to overexpress Hsp70 in ASCs isolated from a healthy woman. The Hsp70 expression was assessed by quantitative real-time polymerase chain reaction and Western blot analyses. The adipose tissue granules aspirated from another woman were mixed with ASCs expressing green fluorescent protein (GFP)-tagged Hsp70 (group A) or GFP alone (group B), untreated ASCs (group C), and phosphate-buffered saline (group D). Fat mixtures were then injected subcutaneously into the backs of nude mice, and graft survival was compared after 3 months. Adipose-derived stem cells transduced with recombinant adenoviral vectors exhibited significantly increased Hsp70 expression in vitro. Meanwhile, weight retention analyses demonstrated that fat grafts using the group A cell population exhibited significantly higher survival rates than the other treatment groups in vivo. Moreover, histological analyses revealed that fat grafts containing GFP-Hsp70-expressing ASCs yielded significantly lower levels of tissue fibrosis and fat cysts/vacuoles, higher capillary densities, and increased numbers of viable adipocytes than the control groups. Our data indicate that Hsp70 overexpression enhances the efficacy of ASC therapy by improving the survival and quality of the transplanted fat tissues.

  17. Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Loibl, Markus; Lang, Siegmund; Hanke, Alexander; Herrmann, Marietta; Huber, Michaela; Brockhoff, Gero; Klein, Silvan; Nerlich, Michael; Angele, Peter; Prantl, Lukas; Gehmert, Sebastian

    2016-08-01

    Application of platelet-rich plasma and stem cells has become important in regenerative medicine. Recent literature supports the use of platelet-rich plasma as a cell culture media supplement to stimulate proliferation of adipose tissue-derived mesenchymal stem cells. The underlying mechanism of proliferation stimulation by platelet-rich plasma has not been investigated so far. Adipose tissue-derived mesenchymal stem cells were cultured in α-minimal essential medium supplemented with platelet-rich plasma or fetal calf serum. Cell proliferation was assessed with cell cycle kinetics using flow cytometric analyses after 48 hours. Differences in proteome expression of the adipose tissue-derived mesenchymal stem cells were analyzed using a reverse-phase protein array to quantify 214 proteins. Complementary Ingenuity Pathways Analysis and gene set enrichment analysis were performed using protein data, and confirmed by Western blot analysis. A higher percentage of adipose tissue-derived mesenchymal stem cells in the S phase in the presence of platelet-rich plasma advocates the proliferation stimulation. Ingenuity Pathways Analysis and gene set enrichment analysis confirm the involvement of the selected proteins in the process of cell growth and proliferation. Ingenuity Pathways Analysis revealed a participation in the top-ranked canonical pathways PI3K/AKT, PTEN, ILK, and IGF-1. Gene set enrichment analysis identified the authors' protein set as being part of significantly regulated protein sets with the focus on cell cycle, metabolism, and the Kyoto Encyclopedia of Genes and Genomes transforming growth factor-β signaling pathway. The present study provides evidence that platelet-rich plasma stimulates proliferation and induces a unique change in the proteomic profile of adipose tissue-derived mesenchymal stem cells. The interpretation of altered expression of regulatory proteins represents a step forward toward achieving good manufacturing practice-compliant criteria

  18. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Oula El Atat

    Full Text Available The use of adipose-derived stem cells (ADSC in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH activity of the initial stromal vascular fraction (SVF and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells.

  20. Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection

    Directory of Open Access Journals (Sweden)

    Ha Min Sung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medical professionals or inexperienced physicians resulting in complications are also increasing. We herein report 2 patients who experienced acute complications after receiving filler injections and were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 was a 23-year-old female patient who received a filler (Restylane injection in her forehead, glabella, and nose by a non-medical professional. The day after her injection, inflammation was observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who received a filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a private clinic. She developed erythema and swelling in the filler-injected area A solution containing ADSCs harvested from each patient's abdominal subcutaneous tissue was injected into the lesion at the subcutaneous and dermis levels. The wounds healed without additional treatment. With continuous follow-up, both patients experienced only fine linear scars 6 months postoperatively. By using adipose-derived stem cells, we successfully treated the acute complications of skin necrosis after the filler injection, resulting in much less scarring, and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  1. Human adipose tissue-derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells.

    Science.gov (United States)

    Gonçalves, A I; Gershovich, P M; Rodrigues, M T; Reis, R L; Gomes, M E

    2018-03-01

    Cell-based therapies are of particular interest for tendon and ligament regeneration given the low regenerative potential of these tissues. Adipose tissue is an abundant source of stem cells, which may be employed for the healing of tendon lesions. However, human adult multipotent adipose-derived stem cells (hASCs) isolated from the stromal vascular fraction of adipose tissue originate highly heterogeneous cell populations that hinder their use in specific tissue-oriented applications. In this study, distinct subpopulations of hASCs were immunomagnetic separated and their tenogenic differentiation capacity evaluated in the presence of several growth factors (GFs), namely endothelial GF, basic-fibroblast GF, transforming GF-β1 and platelet-derived GF-BB, which are well-known regulators of tendon development, growth and healing. Among the screened hASCs subpopulations, tenomodulin-positive cells were shown to be more promising for tenogenic applications and therefore this subpopulation was further studied, assessing tendon-related markers (scleraxis, tenomodulin, tenascin C and decorin) both at gene and protein level. Additionally, the ability for depositing collagen type I and III forming extracellular matrix structures were weekly assessed up to 28 days. The results obtained indicated that tenomodulin-positive cells exhibit phenotypical features of tendon progenitor cells and can be biochemically induced towards tenogenic lineage, demonstrating that this subset of hASCs can provide a reliable source of progenitor cells for therapies targeting tendon regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Standardized Sophora pachycarpa Root Extract Enhances Osteogenic Differentiation in Adipose-derived Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Mollazadeh, Samaneh; Neshati, Vajiheh; Fazly Bazzaz, Bibi Sedigheh; Iranshahi, Mehrdad; Mojarrad, Majid; Naderi-Meshkin, Hojjat; Kerachian, Mohammad Amin

    2017-05-01

    Bone defect is an important topic in public health. Novel therapies are based on osteogenic induction by natural antiosteoporotic compounds including plant-derived estrogens. In the current study, the osteogenic potential of Sophora pachycarpa root extract (SPRE) was explored on human adipose-derived mesenchymal stem cells. Herein, adipose-derived mesenchymal stem cells were osteoinducted in the presence of increased concentrations of the extract for 21 days. Then, cell viability was evaluated by MTT assay, and the differentiated cells were stained by Alizarin Red S for calcium deposition and subjected to alkaline phosphatase (ALP) assay for enzymatic activity. To assess the expression of bone-related genes, treated cells were evaluated by real-time polymerase chain reaction. The MTT test demonstrated that SPRE had no toxic effects on the cell viability. Treating the cells with SPRE noticeably promoted ALP activity, mineralization, and mRNA expression of runt-related transcription factor 2 (RUNX2), bone gamma-carboxyglutamate protein (BGLAP), secreted phosphoprotein 1 (SPP1), and collagen type I alpha 1 (COL1A1). Additionally, cells subjected to 0.1 μg/mL SPRE showed the highest osteogenic effects. According to high-performance liquid chromatography fingerprinting of SPRE, the osteoprotective effects of SPRE is probably due to presence of phytochemicals with estrogen-like activity in the extract. Thus, SPRE might be a suitable therapeutic agent for bone defects therapy in the future research. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Effects of adipose stem cell sheets on colon anastomotic leakage in an experimental model: Proof of principle

    NARCIS (Netherlands)

    Sukho, Panithi; Boersema, Geesien S A; Cohen, Abigael; Kops, Nicole; Lange, Johan F; Kirpensteijn, Jolle; Hesselink, Jan Willem; Bastiaansen-Jenniskens, Yvonne M; Verseijden, Femke

    2017-01-01

    The most dreaded complication of colorectal surgery is anastomotic leakage. Adipose tissue-derived stem cell sheets (ASC sheets) prepared from temperature-responsive culture surfaces can be easily transplanted onto tissues. These sheets are proposed to improve cell transplant efficiency and enhance

  4. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...

  5. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  6. Isolation of adipose-derived stem cells by using a subfractionation culturing method.

    Science.gov (United States)

    Yi, TacGhee; Kim, Wang-Kyun; Choi, Joon-Seok; Song, Seung Yong; Han, Juhee; Kim, Ji Hye; Kim, Won-Serk; Park, Sang Gyu; Lee, Hyun-Joo; Cho, Yun Kyoung; Hwang, Sung-Joo; Song, Sun U; Sung, Jong-Hyuk

    2014-11-01

    Adipose-derived stem cells (ASCs) isolated from subcutaneous adipose tissue have been tested in clinical trials. However, ASCs isolated by enzyme digestion and centrifugation are heterogeneous and exhibit wide variation in regenerative potential and clinical outcomes. Therefore, we developed a new method for isolating clonal ASCs (cASCs) that does not use enzyme digestion or centrifugation steps. In addition to cell surface markers and differentiation potential, we compared the mitogenic, paracrine and hair growth-promoting effects of ASCs isolated by the gradient centrifugation method (GCM) or by the new subfractionation culturing method (SCM). We selected three cASCs isolated by SCM that showed high rates of proliferation. The cell surface markers expressed by ASCs isolated by GCM or SCM were very similar, and SCM-isolated ASCs could potentially differentiate into different cell lineages. However, cASC lines exhibited better mitogenic and paracrine effects than ASCs isolated by GCM. The expression of Diras3, Myb, Cdca7, Mki67, Rrm2, Cdk1 and Ccna2, which may play a key role in cASC proliferation, was upregulated in cASCs. In addition, cASCs exhibited enhanced hair growth-promoting effects in dermal papilla cells and animal experiments. SCM generates a highly homogeneous population of ASCs via a simple and effective procedure that can be used in therapeutic settings.

  7. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  8. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and

  9. Hyaluronic acid effect on adipose-derived stem cells. Biological in vitro evaluation.

    Science.gov (United States)

    Moreno, A; Martínez, A; Olmedillas, S; Bello, S; de Miguel, F

    2015-01-01

    To evaluate the in vitro effects of hyaluronic acid (HA) on adipose-derived stem cells (ASC) in order to consider the possibility of their combined used in the treatment of knee arthrosis. The ASC cells were grown both in the presence and absence of AH, and several studies were carried out: proliferation (WST8) and cell viability studies (Alamar Blue® and Trypan Blue), possible chondrogenic differentiation (collagen type 2 expression) by RT-PCR, AH receptor expression (CD44) by flow cytometry and RT-QPCR, and expression of inflammatory and anti-inflammatory factors (IL-6, TGFß, IL-10) by RT-QPCR. The number of ASC significantly increased after 7 days with HA (158±39%, p <0.05). Additionally, the cell viability of the ASC treated with HA after 1, 3, 5 and 7 days was similar to that of the control cells, being considered non-toxic. There were no changes observed in the expression of CD44 and chondrogenic differentiation. TGFß expression was not modified after AH treatment, but there was a 4-fold decrease in IL-6 expression and IL-10 expression increased up to 2-fold compared to control cells. Hyaluronic acid favours ASC proliferation without causing cellular toxicity, and inducing an anti-inflammatory profile in these cells. Hyaluronic acid appears to be a suitable vehicle for the intra-articular administration of mesenchymal stem cells. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  10. Adipose Derived Stem Cells for Corneal Wound Healing after Laser Induced Corneal Lesions in Mice

    Directory of Open Access Journals (Sweden)

    Marco Zeppieri

    2017-12-01

    Full Text Available The aim of our study was to assess the clinical effectiveness of topical adipose derived stem cell (ADSC treatment in laser induced corneal wounds in mice by comparing epithelial repair, inflammation, and histological analysis between treatment arms. Corneal lesions were performed on both eyes of 40 mice by laser induced photorefractive keratectomy. All eyes were treated with topical azythromycin bid for three days. Mice were divided in three treatment groups (n = 20, which included: control, stem cells and basic serum; which received topical treatment three times daily for five consecutive days. Biomicroscope assessments and digital imaging were performed by two masked graders at 30, 54, 78, 100, and 172 h to analyze extent of fluorescein positive epithelial defect, corneal inflammation, etc. Immunohistochemical techniques were used in fixed eyes to assess corneal repair markers Ki67, α Smooth Muscle Actin (α-SMA and E-Cadherin. The fluorescein positive corneal lesion areas were significantly smaller in the stem cells group on days 1 (p < 0.05, 2 (p < 0.02 and 3. The stem cell treated group had slightly better and faster re-epithelization than the serum treated group in the initial phases. Comparative histological data showed signs of earlier and better corneal repair in epithelium and stromal layers in stem cell treated eyes, which showed more epithelial layers and enhanced wound healing performance of Ki67, E-Cadherin, and α-SMA. Our study shows the potential clinical and histological advantages in the topical ADSC treatment for corneal lesions in mice.

  11. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Directory of Open Access Journals (Sweden)

    Ken Ye

    Full Text Available Infrapatellar fat pad adipose stem cells (IPFP-ASCs have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  12. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  13. From bench to bedside: use of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Feisst V

    2015-11-01

    Full Text Available Vaughan Feisst,1 Sarah Meidinger,1 Michelle B Locke2 1Dunbar Laboratory, School of Biological Sciences, 2Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand Abstract: Since the discovery of adipose-derived stem cells (ASC in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation. Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties. Keywords: standardization, bystander effect, stromal cells, mesenchymal stem cells, stromal vascular fraction

  14. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  15. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure

    Science.gov (United States)

    Fouad, Hanan; Sabry, Dina; Elsetohy, Khaled; Fathy, Naglaa

    2015-01-01

    The present study was conducted to compare between the therapeutic efficacies of human amniotic membrane-derived stem cells (hAM-MSCs) vs. adipose tissue derived stem cells (AD-MSCs) in cyclophosphamide (CTX)-induced ovarian failure in rats. Forty-eight adult female rats were included in the study; 10 rats were used as control group. Thirty-eight rats were injected with CTX to induce ovarian failure and divided into four groups: ovarian failure (IOF) (IOF group), IOF + phosphate buffer saline (PBS group), IOF + hAM-MSCs group and IOF + AD-MSCs group. Serum levels of FSH and estradiol (E2) were assessed. Histopathological examination of the ovarian tissues was performed and quantitative gene expressions of Oct-4, Stra8 and integrin beta-1 genes were conducted by quantitative real time PCR. Results showed that IOF and IOF + PBS rat groups exhibited decreased ovarian follicles, increased interstitial fibrosis with significant decrease of serum E2, significant increase serum FSH level and significant down-regulation of Stra8 and integrin beta-1. In hAM-MSCs and AD-MSCs rat groups, there were increased follicles and corpora with evident the presence of oocytes, significant increase in serum E2, significant decrease in serum FSH levels (in hAM-MSCs treated group only) and significant up-regulation of the three studied genes with higher levels in hAM-MSCs treated rats group when compared to AD-MSCs treated rats group. In Conclusion, administration of either hAM-derived MSCs or AD-MSCs exerts a significant therapeutic efficacy in chemotherapy induced ovarian insult in rats. hAM-MSCs exert higher therapeutic efficacy as compared to AD-MSCs. PMID:26966564

  16. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    Science.gov (United States)

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  17. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    Science.gov (United States)

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  18. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells.

    Science.gov (United States)

    Tokunaga, Masakuni; Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Buchner, David A; Chun, Tae-Hwa

    2014-06-01

    Stem cell antigen-1 (Sca1 or Ly6A/E) is a cell surface marker that is widely expressed in mesenchymal stem cells, including adipose-derived stem cells (ASCs). We hypothesized that the fat depot-specific gene signature of Sca1(high) ASCs may play the major role in defining adipose tissue function and extracellular matrix (ECM) remodeling in a depot-specific manner. Herein we aimed to characterize the unique gene signature and ECM remodeling of Sca1(high) ASCs isolated from subcutaneous (inguinal) and visceral (epididymal) adipose tissues. Sca1(high) ASCs are found in the adventitia and perivascular areas of adipose tissues. Sca1(high) ASCs purified with magnetic-activated cell sorting (MACS) demonstrate dendrite or round shape with the higher expression of cytokines and chemokines (e.g., Il6, Cxcl1) and the lower expression of a glucose transporter (Glut1). Subcutaneous and visceral fat-derived Sca1(high) ASCs particularly differ in the gene expressions of adhesion and ECM molecules. While the expression of the major membrane-type collagenase (MMP14) is comparable between the groups, the expressions of secreted collagenases (MMP8 and MMP13) are higher in visceral Sca1(high) ASCs than in subcutaneous ASCs. Consistently, slow but focal MMP-dependent collagenolysis was observed with subcutaneous adipose tissue-derived vascular stromal cells, whereas rapid and bulk collagenolysis was observed with visceral adipose tissue-derived cells in MMP-dependent and -independent manners. These results suggest that the fat depot-specific gene signatures of ASCs may contribute to the distinct patterns of ECM remodeling and adipose function in different fat depots. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  19. Conditioned Media From Adipose Tissue Derived Mesenchymal Stem Cells Reverse Insulin Resistance in Cellular Models.

    Science.gov (United States)

    Shree, Nitya; Bhonde, Ramesh R

    2017-08-01

    The link between insulin resistance (IR) and type 2 diabetes has been recognized for a long time. Type 2 diabetes is often associated with basal hyperinsulinemia, reduced sensitivity to insulin, and disturbances in insulin release. There are evidences showing the reversal of IR by mesenchymal stem cells. However, the effect of conditioned media from adipose derived mesenchymal stem cells (ADSCs-CM) in reversal of IR has not been established. We established an insulin resistant model of 3T3L1 and C2C12 cells and treated with ADSCs-CM. 2-NBDG (2-[N-[7-Nitrobenz-2-oxa-1,3-diazol-4-yl]Amino]-2-Deoxyglucose) uptake was performed to assess improvement in glucose uptake. Genes involved in glucose transport and in inflammation were also analysed. Western blot for glucose transporter-4 and Akt was performed to evaluate translocation of Glut4 and insulin signaling respectively. We found that the ADSCs-CM treated cells restored insulin, stimulated glucose uptake as compared to the untreated control indicating the insulin sensitizing effect of the CM. The treated cells also showed inhibition adipogenesis in 3T3L1 cells and significant reduction of intramuscular triglyceride accumulation in C2C12 cells. Gene expressions studies revealed the drastic upregulation of GLUT4 gene and significant reduction in IL6 and PAI1 gene in both 3T3L1 and C2C12 cells, indicating possible mechanism of glucose uptake with concomitant decrease in inflammation. Enhancement of GLUT4 and phospho Akt protein expression seems to be responsible for the increment in glucose uptake and enhanced insulin signaling, respectively. Our study revealed for the first time that ADSCs-CM acts as an alternative insulin sensitizer providing stem cell solution to IR. J. Cell. Biochem. 118: 2037-2043,2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Immunomodulatory Effects of Adipose-Derived Stem Cells: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Angelo A. Leto Barone

    2013-01-01

    Full Text Available Adipose-derived stromal cells (ASCs are often referred to as adipose-derived stem cells due to their potential to undergo multilineage differentiation. Their promising role in tissue engineering and ability to modulate the immune system are the focus of extensive research. A number of clinical trials using ASCs are currently underway to better understand the role of such cell niche in enhancing or suppressing the immune response. If governable, such immunoregulatory role would find application in several conditions in which an immune response is present (i.e., autoimmune conditions or feared (i.e., solid organ or reconstructive transplantation. Although allogeneic ASCs have been shown to prevent acute GvHD in both preclinical and clinical studies, their potential warrants further investigation. Well-designed and standardized clinical trials are necessary to prove the role of ASCs in the treatment of immune disorders or prevention of tissue rejection. In this paper we analyze the current literature on the role of ASCs in immunomodulation in vitro and in vivo and discuss their potential in regulating the immune system in the context of transplantation.

  1. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yukawa

    Full Text Available Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03, which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM, which is a major component of commercially available contrast agents such as ferucarbotran (Resovist, and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF, vascular endothelial growth factor (VEGF and prostaglandin E2 (PGE2, were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.

  2. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    Science.gov (United States)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  3. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells

    Science.gov (United States)

    López, Melany; Bollag, Roni J.; Yu, Jack C.; Isales, Carlos M.; Eroglu, Ali

    2016-01-01

    The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating

  4. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis.

    Science.gov (United States)

    Maumus, Marie; Manferdini, Cristina; Toupet, Karine; Peyrafitte, Julie-Anne; Ferreira, Rosanna; Facchini, Andrea; Gabusi, Elena; Bourin, Philippe; Jorgensen, Christian; Lisignoli, Gina; Noël, Danièle

    2013-09-01

    Our work aimed at evaluating the role of adipose stem cells (ASC) on chondrocytes from osteoarthritic (OA) patients and identifying the mediators involved. We used primary chondrocytes, ASCs from different sources and bone marrow mesenchymal stromal cells (MSC) from OA donors. ASCs or MSCs were co-cultured with chondrocytes in a minimal medium and using cell culture inserts. Under these conditions, ASCs did not affect the proliferation of chondrocytes but significantly decreased camptothecin-induced apoptosis. Both MSCs and ASCs from different sources allowed chondrocytes in the cocultures maintaining a stable expression of markers specific for a mature phenotype, while expression of hypertrophic and fibrotic markers was decreased. A number of factors known to regulate the chondrocyte phenotype (IL-1β, IL-1RA, TNF-α) and matrix remodeling (TIMP-1 and -2, MMP-1 and -9, TSP-1) were not affected. However, a significant decrease of TGF-β1 secretion by chondrocytes and induction of HGF secretion by ASCs was observed. Addition of a neutralizing anti-HGF antibody reversed the anti-fibrotic effect of ASCs whereas hypertrophic markers were not modulated. In summary, ASCs are an interesting source of stem cells for efficiently reducing hypertrophy and dedifferentiation of chondrocytes, at least partly via the secretion of HGF. This supports the interest of using these cells in therapies for osteo-articular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Directory of Open Access Journals (Sweden)

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  6. Adipose-Derived-Stem-Cell-Seeded Fibrin Matrices for Periodontal Ligament Engineering: The Need for Dynamic Strain

    NARCIS (Netherlands)

    de Jong, Thijs; Oostendorp, Corien; Bakker, Astrid D.; van Kuppevelt, Toin H.; Smit, Theo H.

    2017-01-01

    Introduction: The periodontal ligament (PDL) connects the tooth to the alveolar bone. For PDL regeneration after tissue damage, we propose human adipose-derived stem cells (hASCs) embedded in fibrin. We showed previously that hASCs in fibrin extensively produce collagen, but in a non-functional,

  7. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis

    NARCIS (Netherlands)

    Toupet, K.; Maumus, M.; Luz-Crawford, P.; Lombardo, E.; Lopez-Belmonte, J.; Lent, P. van; Garin, M.I.; Berg, W.B. van den; Dalemans, W.; Jorgensen, C.; Noel, D.

    2015-01-01

    BACKGROUND: Application of mesenchymal stem/stromal cells (MSCs) in treating different disorders, in particular osteo-articular diseases, is currently under investigation. We have already documented the safety of administrating human adipose tissue-derived stromal MSCs (hASCs) in immunodeficient

  8. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaschte, K

    2007-01-01

    OBJECTIVES: This article addresses the interaction of transforming growth factor beta1 (TGF-beta1) and bone morphogenic protein 2 (BMP-2) during osteo-chondrogenic differentiation of adipose-derived adult stem cells (ASC). TGF-beta1 was expected to modulate the BMP-2-induced effects through...

  9. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  10. Integration of Rabbit Adipose Derived Mesenchymal Stem Cells to Hydroxyapatite Burr Hole Button Device for Bone Interface Regeneration

    Directory of Open Access Journals (Sweden)

    Viswanathan Gayathri

    2016-01-01

    Full Text Available Adipose Derived Mesenchymal Stem Cells, multipotent stem cells isolated from adipose tissue, present close resemblance to the natural in vivo milieu and microenvironment of bone tissue and hence widely used for in bone tissue engineering applications. The present study evaluates the compatibility of tissue engineered hydroxyapatite burr hole button device (HAP-BHB seeded with Rabbit Adipose Derived Mesenchymal Stem Cells (ADMSCs. Cytotoxicity, oxidative stress response, apoptotic behavior, attachment, and adherence of adipose MSC seeded on the device were evaluated by scanning electron and confocal microscopy. The results of the MTT (3-(4,5-dimethylthiazol-2,5-diphenyl tetrazolium bromide assay indicated that powdered device material was noncytotoxic up to 0.5 g/mL on cultured cells. It was also observed that oxidative stress related reactive oxygen species production and apoptosis on cell seeded device were similar to those of control (cells alone except in 3-day period which showed increased reactive oxygen species generation. Further scanning electron and confocal microscopy indicated a uniform attachment of cells and viability up to 200 μm deep inside the device, respectively. Based on the results, it can be concluded that the in-house developed HAP-BHB device seeded with ADMSCs is nontoxic/safe compatible device for biomedical application and an attractive tissue engineered device for calvarial defect regeneration.

  11. Cytotoxic and Genotoxic Effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs

    Directory of Open Access Journals (Sweden)

    Shakoori A

    2013-10-01

    Full Text Available Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs. Cells were exposed to 1-10 µg/ml and 10-100 µg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 µg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  12. Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials.

    Science.gov (United States)

    Mizuno, Hiroshi

    2010-08-01

    The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for several diseases. The clinical use of either embryonic stem cells or induced pluripotent stem cells remains limited because of cell regulations, ethical considerations and the requirement for genetic manipulation, although these cells are theoretically highly beneficial. Adipose-derived stem cells (ASCs) appear to be an ideal population of stem cells for practical regenerative medicine, given that they are plentiful, of autologous tissue origin and thus non-immunogenic, and are more easily available because of minimal ethical considerations. Although ASCs originate from mesodermal lineages, recent preclinical studies have demonstrated that the use of ASCs in regenerative medicine is not limited to mesodermal tissue, but can also extend to both exodermal and endodermal tissues and organs. This review summarizes and discusses current preclinical and clinical data on the use of ASCs in regenerative medicine and discusses the future applications of such cell-based therapies.

  13. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Science.gov (United States)

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  14. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  15. Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Elena G. Popa

    2016-01-01

    Full Text Available Magnetic nanoparticles (MNPs are attractive tools to overcome limitations of current regenerative medicine strategies, demonstrating potential to integrate therapeutic and diagnostic functionalities in highly controlled systems. In traditional tissue engineering (TE approaches, the MNPs association with stem cells in a three-dimensional (3D template offers the possibility to achieve a mechano-magnetic responsive system, enabling remote control actuation. Herein, we propose to study the role of MNPs integrated in κ-carrageenan (κC hydrogels in the cellular response of human adipose-derived stem cells (hASCs aiming at cartilage TE applications. The results indicated that the concentration of MNPs in the κC hydrogels influences cellular behavior, tuning a positive effect on cell viability, cell content and metabolic activity of hASCs, with the most promising outcomes found in 5% MNP-κC matrices. Although hASCs laden in MNPs-free- and MNPs-κC hydrogels showed similar metabolic and proliferation levels, MNPs κC hydrogels under magnetic actuation evidenced an instructive effect on hASCs, at a gene expression level, towards chondrogenic phenotype even in basic medium cultures. Therefore, the MNPs-based systems developed in this study may contribute to advanced strategies towards cartilage-like engineered substitutes.

  16. Basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cell infusion to ameliorate liver cirrhosis via paracrine hepatocyte growth factor.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2015-06-01

    Recent studies show that adipose tissue-derived mesenchymal stem cells have potential clinical applications. However, the mechanism has not been fully elucidated yet. Here, we investigated the effect of basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cells infusion on a liver fibrosis rat model and elucidated the underlying mechanism. Adipose tissue-derived mesenchymal stem cells were infused into carbon tetrachloride-induced hepatic fibrosis rats through caudal vein. Liver functions and pathological changes were assessed. A co-culture model was used to clarify the potential mechanism. Basic fibroblast growth factor treatment markedly improved the proliferation, differentiation, and hepatocyte growth factor expression ability of adipose tissue-derived mesenchymal stem cells. Although adipose tissue-derived mesenchymal stem cells infusion alone slightly ameliorated liver functions and suppressed fibrosis progression, basic fibroblast growth factor-treatment significantly enhanced the therapeutic effect in association with elevated hepatocyte growth factor expression. Moreover, double immunofluorescence staining confirmed that the infused cells located in fibrosis area. Furthermore, co-culture with adipose tissue-derived mesenchymal stem cell led to induction of hepatic stellate cell apoptosis and enhanced hepatocyte proliferation. However, these effects were significantly weakened by knockdown of hepatocyte growth factor. Mechanism investigation revealed that co-culture with adipose tissue-derived mesenchymal stem cells activated c-jun N-terminal kinase-p53 signaling in hepatic stellate cell and promoted apoptosis. Basic fibroblast growth factor treatment enhanced the therapeutic effect of adipose tissue-derived mesenchymal stem cells, and secretion of hepatocyte growth factor from adipose tissue-derived mesenchymal stem cells plays a critical role in amelioration of liver injury and regression of fibrosis. © 2015 Journal of

  17. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis.

    Science.gov (United States)

    Frisbie, David D; Kisiday, John D; Kawcak, Chris E; Werpy, Natasha M; McIlwraith, C Wayne

    2009-12-01

    The purpose of this study was the assessment of clinical, biochemical, and histologic effects of intraarticular administered adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. Osteoarthritis was induced arthroscopically in the middle carpal joint of all horses, the contralateral joint being sham-operated. All horses received treatment on Day 14. Eight horses received placebo treatment and eight horses received adipose-derived stromal vascular fraction in their osteoarthritis-affected joint. The final eight horses were treated the in osteoarthritis-affected joint with bone marrow-derived mesenchymal stem cells. Evaluations included clinical, radiographic, synovial fluid analysis, gross, histologic, histochemical, and biochemical evaluations. No adverse treatment-related events were observed. The model induced a significant change in all but two parameters, no significant treatment effects were demonstrated, with the exception of improvement in synovial fluid effusion PGE2 levels with bone marrow-derived mesenchymal stem cells when compared to placebo. A greater improvement was seen with bone marrow-derived mesenchymal stem cells when compared to adipose-derived stromal vascular fraction and placebo treatment. Overall, the findings of this study were not significant enough to recommend the use of stem cells for the treatment of osteoarthritis represented in this model.

  18. Influence of smartphone Wi-Fi signals on adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo

    2014-09-01

    The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.

  19. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Marei, Hany El Sayed; El-Gamal, Aya; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Cenciarelli, Carlo; Thomas, Caceci; Anwarul, Hasan

    2018-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  20. Neuroprotective and behavioral efficacy of intravenous transplanted adipose stem cells in experimental Parkinsonian rat models

    Directory of Open Access Journals (Sweden)

    Malihe Nakhaeifard

    2016-02-01

    Full Text Available Background: Parkinson's disease is a deficiency of dopamine in the striatum, characterized by bradykinesis, rigidity and resting tremor. Adipose tissue-Derived Stem Cells (ADSCs have many advantages for cell therapy because of the easy availability and pluripotency without ethical problems. In this research, the effects of ADSCs transplantation on motor impairment of rat Parkinsonian models were evaluated. Materials and Methods: Parkinson model was constructed by the unilateral lesion of striatum of male Wistar rats using 20µg of 6-hydroxydopamine (6-OHDA as lesion group. Cell and α-MEM (α-minimal essential medium groups were lesioned animals that received intravenous injection of 3×106 cells suspended in medium and medium repectively. All rats were evaluated behaviorally with rotarod and apomorphine-induced rotation tests, at 4 and 8 weeks after cell transplantation. Results: Lesion and α-MEM groups showed increased contralateral turns while cell group significantly ameliorated both in rotarod and apomorphine-induced rotation tests. There was a significant difference of contralateral turns between cell and lesioned groups at 8 weeks after transplantation. Lesioned rats showed significant decrease of staying on the rod as compared to control, but in cell group there was a significant increase in comparision with the lesioned animals. Conclusion: ADSCs injected intravenously promote functional recovery in Parkinsonian rats.

  1. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  2. Effects of Low Intensity Ultrasound on the Chondrogenic Differentiation of Adult Stem Cells From Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Hajar Shafaei

    2016-05-01

    Full Text Available Background Adult stem cells from adipose tissue can be used in tissue engineering because of their capacity to differentiate into chondrocytes. Low intensity ultrasound (LIUS as a physical chondrogenic inducer differentiates adipose stem cells (ASC into chondrocyte the same as transforming growth factor-β (TGFβ. However the stage of differentiation and hypertrophy of chondrocytes by LIUS have not yet been studied. Objectives The aim of this study was to determine the effect of LIUS on hypertrophic states of differentiated chondrocytes. Materials and Methods In this experimental study, ASCs were cultured in chondrogenic differentiation medium (10 ng/mL of TGFβ with or without LIUS stimulation for two weeks. The ultrasound signal was applied at an intensity of 200 mW/cm2 for 10 min/day. For evaluation, the mRNA expression of collagen type X, alkaline phosphatase, Runx2 and Runx2II, were studied using quantitative gene expression method. Histologic and immunohistochemistry evaluations were performed. The data were analyzed by one way ANOVA (Tukey’s. Results The mRNA expression of collagen type X, and alkaline phosphatase, Runx2 and Runx2II were decreased markedly by the LIUS stimulation, whereas the expression of these genes drastically increased when TGFβ applied alone or with LIUS. LIUS containing cultures showed lower hypertrophic protein expression (alkaline phosphatase and Indian hedgehog as compared with the controls. Conclusions Our results showed that LIUS suppresses hypertrophic chondrocyte formation and that LIUS induced chondrocytes are more suitable than TGFβ induced ones due to low expression of hyperthrophic markers in cartilage tissue engineering for clinical applications.

  3. Infrapatellar Fat Pad: An Alternative Source of Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    P. Tangchitphisut

    2016-01-01

    Full Text Available Introduction. The Infrapatellar fat pad (IPFP represents an emerging alternative source of adipose-derived mesenchymal stem cells (ASCs. We compared the characteristics and differentiation capacity of ASCs isolated from IPFP and SC. Materials and Methods. ASCs were harvested from either IPFP or SC. IPFPs were collected from patients undergoing total knee arthroplasty (TKA, whereas subcutaneous tissues were collected from patients undergoing lipoaspiration. Immunophenotypes of surface antigens were evaluated. Their ability to form colony-forming units (CFUs and their differentiation potential were determined. The ASCs karyotype was evaluated. Results. There was no difference in the number of CFUs and size of CFUs between IPFP and SC sources. ASCs isolated from both sources had a normal karyotype. The mesenchymal stem cells (MSCs markers on flow cytometry was equivalent. IPFP-ASCs demonstrated significantly higher expression of SOX-9 and RUNX-2 over ASCs isolated from SC (6.19 ± 5.56-, 0.47 ± 0.62-fold; p value = 0.047, and 17.33 ± 10.80-, 1.56 ± 1.31-fold; p value = 0.030, resp.. Discussion and Conclusion. CFU assay of IPFP-ASCs and SC-ASCs harvested by lipoaspiration technique was equivalent. The expression of key chondrogenic and osteogenic genes was increased in cells isolated from IPFP. IPFP should be considered a high quality alternative source of ASCs.

  4. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

    Science.gov (United States)

    Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya; Dezawa, Mari

    2014-04-01

    In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair.

  5. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aaron X Sun

    2015-08-01

    Full Text Available Poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light based PSL (VL-PSL system to encapsulate human adipose-derived stem cells (hASCs into a biodegradable polymer (poly-D,L-lactic acid/polyethylene glycol/ poly-D,L-lactic acid (PDLLA-PEG/hyaluronic acid (HA matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84% and were uniformly distributed throughout the constructs, which possessed high mechanical property with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in Control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium treated group (TGF-β3 group hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 x 10(5 fold increases, respectively, compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan (GAG-rich extracellular matrix, detected by immunohistochemistry, and Alcian blue and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group, cell viability decreased with time (65% at 28 days and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL- and PLLA-PEG/HA based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage

  6. Effects of human adipose-derived stem cells and stromal vascular fraction on cryopreserved fat transfer.

    Science.gov (United States)

    Bae, Yong Chan; Song, Ji Sun; Bae, Seong Hwan; Kim, Joo Hyoung

    2015-05-01

    The use of cryopreserved adipose tissue for soft tissue augmentation is common, but unpredictability of fat graft viability remains a limitation. Adipose-derived stem cell (ADSC) and stromal vascular fraction (SVF) have been introduced to enhance viability and improve the survival of transplanted fat tissue. To investigate whether supplementation with ADSC or SVF improved the survival of cryopreserved fat grafts. The cryopreserved fat grafts were treated with ADSC, SVF, or normal saline in 30 six-week-old male nude mice to test whether ADSC and SVF could improve the survival of the transplanted fat tissue. The authors examined the weight, volume, and histological features of each group (n = 10) at 8 weeks after transplantation to evaluate the survival of the fat tissue. There was no difference between the control and SVF groups with respect to weight, volume, and histological findings. However, the ADSC group showed a significant increase in weight and volume compared with the control and SVF groups. Histological examination showed that the ADSC supplementation improved the quality of the transplanted fat grafts. Taken together, these results suggest a potential clinical utility of ADSC but no advantage of SVF in facilitating cryopreserved fat transfer.

  7. Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad.

    Science.gov (United States)

    Dragoo, Jason L; Chang, Wenteh

    2017-11-01

    The successful isolation of adipose-derived mesenchymal stem cells (ADSCs) from the arthroscopically harvested infrapatellar fat pad (IFP) would provide orthopaedic surgeons with an autologous solution for regenerative procedures. To demonstrate the quantity and viability of the mesenchymal stem cell population arthroscopically harvested from the IFP as well as the surrounding synovium. Descriptive laboratory study. The posterior border of the IFP, including the surrounding synovial tissue, was harvested arthroscopically from patients undergoing anterior cruciate ligament reconstruction. Tissue was then collected in an AquaVage adipose canister, followed by fat fractionization using syringe emulsification and concentration with an AdiPrep device. In the laboratory, the layers of tissue were separated and then digested with 0.3% type I collagenase. The pelleted stromal vascular fraction (SVF) cells were then immediately analyzed for viability, mesenchymal cell surface markers by fluorescence-activated cell sorting, and clonogenic capacity. After culture expansion, the metabolic activity of the ADSCs was assessed by an AlamarBlue assay, and the multilineage differentiation capability was tested. The transition of surface antigens from the SVF toward expanded ADSCs at passage 2 was further evaluated. SVF cells were successfully harvested with a mean yield of 4.86 ± 2.64 × 10 5 cells/g of tissue and a mean viability of 69.03% ± 10.75%, with ages ranging from 17 to 52 years (mean, 35.14 ± 13.70 years; n = 7). The cultured ADSCs composed a mean 5.85% ± 5.89% of SVF cells with a mean yield of 0.33 ± 0.42 × 10 5 cells/g of tissue. The nonhematopoietic cells (CD45 - ) displayed the following surface antigens as a percentage of the viable population: CD44 + (52.21% ± 4.50%), CD73 + CD90 + CD105 + (19.20% ± 17.04%), and CD44 + CD73 + CD90 + CD105 + (15.32% ± 15.23%). There was also a significant increase in the expression of ADSC markers CD73 (96.97% ± 1.72%; P

  8. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    Science.gov (United States)

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  9. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  10. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety

    Directory of Open Access Journals (Sweden)

    Niamh O’Halloran

    2017-08-01

    Full Text Available Adipose-derived stem cells (ADSCs are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.

  11. Moderate hypoxia influences potassium outward currents in adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Mayuri Prasad

    Full Text Available Moderate hypoxic preconditioning of adipose-derived stem cells (ASCs enhances properties such as proliferation and secretion of growth factors, representing a valuable strategy to increase the efficiency of cell-based therapies. In a wide variety of cells potassium (K+ channels are key elements involved in the cellular responses to hypoxia, suggesting that ASCs cultured under low oxygen conditions may display altered electrophysiological properties. Here, the effects of moderate hypoxic culture on proliferation, whole-cell currents, and ion channel expression were investigated using human ASCs cultured at 5% and 20% oxygen. Although cell proliferation was greatly enhanced, the dose-dependent growth inhibition by the K+ channel blocker tetraethylammonium (TEA was not significantly affected by hypoxia. Under both normoxic and hypoxic conditions, ASCs displayed outward K+ currents composed by Ca2+-activated, delayed rectifier, and transient components. Hypoxic culture reduced the slope of the current-voltage curves and caused a negative shift in the voltage activation threshold of the whole-cell currents. However, the TEA-mediated shift of voltage activation threshold was not affected by hypoxia. Semiquantitative real-time RT-PCR revealed that expression of genes encoding for various ion channels subunits related to oxygen sensing and proliferation remained unchanged after hypoxic culture. In conclusion, outward currents are influenced by moderate hypoxia in ASCs through a mechanism that is not likely the result of modulation of TEA-sensitive K+ channels.

  12. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-01-01

    Full Text Available Osteoarthritis (OA is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs in the form of stromal vascular fraction (SVF may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP, have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.

  13. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation.

  14. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    Full Text Available Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate (PBLG polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group and non-induced hASC/PBLG complex (ASC/PBLG group served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  15. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Science.gov (United States)

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  16. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2016-01-01

    Full Text Available Acute liver failure (ALF is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine.

  17. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  18. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  19. Human Adipose-Derived Stem Cells on Rapid Prototyped Three-Dimensional Hydroxyapatite/Beta-Tricalcium Phosphate Scaffold.

    Science.gov (United States)

    Canciani, Elena; Dellavia, Claudia; Ferreira, Lorena Maria; Giannasi, Chiara; Carmagnola, Daniela; Carrassi, Antonio; Brini, Anna Teresa

    2016-05-01

    In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (β-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/β-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/β-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/β-TCP. The current combination of hASCs and HA/β-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.

  20. The effect of adipose-derived stem cells on the increased survival of crushed cartilage graft in rabbits

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ebadi

    2016-10-01

    Full Text Available Background: In recent years the use of diced cartilage grafts in reconstructive surgery particulary rhinoplasty have been considered by most plastic surgeons. However, long-term resorption usually occurs. Stem cells are a powerful tool for reconstructive surgery to rebuild and maintain tissue with reduced complications. Since the adipose tissue-derived stem cells (ADSCs can rebuild a wide variety of tissues such as skin, fat, bone and cartilage are used, this is a very good chance for cosmetic surgery. The aim of this study was to examine the effects of adipose-derived stem cells on the viability of diced cartilage grafts. Methods: This interventional study was performed on May 2014 in animal laboratory of Hazrat Fatima Hospital on 10 New Zealand white male rabbits, weighing 2000-2500 grams, approximately 12 to 16 weeks of age. Stem cells was harvested from inguinal adipose tissue of each rabbits. After completely removing the skin and perichondrium, cartilage became divided into two equal pieces using a scalpel. Then place the ear amputation was restored by nylon 4 zero. After weighing cartilages, on either side of the center line on the back of each rabbits, left and right, subcutaneous pocket created equal weight and each piece of cartilage was placed in an envelope. Stem cells were injected in one side and the other side was control. The cartilage weights were recorded both before implantation and after explantation. Evaluation of living chondrocytes was conducted 12 weeks after implantation. Results: The mean difference of cartilage weights was varied between two groups (intervention and control sides, So that the average was significantly higher in stem cell side than that in the control side (P= 0.021. The average number of live chondrocytes was significantly higher in the intervention side than the control side (P< 0.001. Conclusion: Despite the unclear mechanism, these results suggest that adipose-derived stem cells can maintain the

  1. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  2. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model.

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    Full Text Available Multiple sclerosis (MS, characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE, a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.

  3. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  4. [Transplantation of adipose derived mesenchymal stem cells alleviated osteoarthritis induced with anterior cruciate ligament transection].

    Science.gov (United States)

    Zhou, J; Wang, Y; Cui, W; Xie, J W; Li, J P; Yang, J Y; Xu, H S; Liang, L Q; Yang, X Y; Lian, F

    2016-04-05

    To explore the therapeutic potential of transplantation of adipose derived mesenchymal stem cells (ADMSCs) in rats osteoarthritis caused by anterior cruciate ligament transection. Rats peritoneal adipose tissues were used to extract ADMSCs.Cell morphological appearance was documented and flow cytometric cell cycle was used to identify ADMSCs. Anterior cruciate ligament transection was used to induce knee osteoarthritis in rats. ADMSCs were injected into the knee cavities. Knee joint pathology was performed to observe the treatment effects. QRT-PCR and Western blot were used to identify the targets of ADMSCs. ADMSCs were successfully extracted, separated, cultured and identified. Two and eight weeks after ADMSCs transplantation, pathology showed significantly attenuation of arthritis including osteophyte and synovitis, reflecting in significantly improvement of both osteophyte and synovitis grading compared to the controls. QRT-PCR and Western blot revealed that collagen Ⅱ expression was significantly up-regulated after ADMSCs transplantation compared to the controls.MMP-13, but not other MMP-1, MMP-3 or MMP-9 was reduced when ADMSCs were co-cultured with primary chondrocytes. DDR-2 expression in chondrocyte was heavily up-regulated when stimulated by TNF-α in vitro. However, ADMSCs could reverse the effect when co-cultured with chondrocyte, implying that ADMSCs may suppress the expression of DDR-2. IL-1β suppressed the cartilage differentiation of ADMSCs, and Actinomycin D (DDR-2 inhibitor) could reverse the effect. ADMSCs can attenuate osteoarthritis induced by anterior cruciate ligament transection in rats by suppressing the expression of MMP-13, and the upstream target spot may be DDR-2.

  5. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression.

    Science.gov (United States)

    Kuroda, Kazunari; Kabata, Tamon; Hayashi, Katsuhiro; Maeda, Toru; Kajino, Yoshitomo; Iwai, Shintaro; Fujita, Kenji; Hasegawa, Kazuhiro; Inoue, Daisuke; Sugimoto, Naotoshi; Tsuchiya, Hiroyuki

    2015-09-03

    This study aimed to determine whether intra-articularly injected adipose-derived stem cells (ADSCs) inhibited articular cartilage degeneration during osteoarthritis (OA) development in a rabbit anterior cruciate ligament transection (ACLT) model. The paracrine effects of ADSCs on chondrocytes were investigated using a co-culture system. ACLT was performed on both knee joints of 12 rabbits. ADSCs were isolated from the subcutaneous adipose tissue. ADSCs with hyaluronic acid were intra-articularly injected into the left knee, and hyaluronic acid was injected into the right knee. The knees were compared macroscopically, histologically, and immunohistochemically at 8 and 12 weeks. In addition, cell viability was determined using co-culture system of ADSCs and chondrocytes. Macroscopically, osteoarthritis progression was milder in the ADSC-treated knees than in the control knees 8 weeks after ACLT. Histologically, control knees showed obvious erosions in both the medial and lateral condyles at 8 weeks, while cartilage was predominantly retained in the ADSC-treated knees. At 12 weeks, the ADSC-treated knees showed a slight suppression of cartilage degeneration, unlike the control knees. Immunohistochemically, MMP-13 expression was less in the ADSC-treated cartilage than in the control knees. The cell viability of chondrocytes co-cultured with ADSCs was higher than that of chondrocytes cultured alone. TNF-alpha-induced apoptotic stimulation was similar between the two groups. Intra-articularly injected ADSCs inhibited cartilage degeneration progression by homing to the synovium and secreting a liquid factor having chondro-protective effects such as chondrocyte proliferation and cartilage matrix protection.

  6. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gruene, M; Deiwick, A; Koch, L; Schlie, S; Unger, C; Chichkov, B N [Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: m.gruene@lzh.de [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2011-03-15

    Laser-assisted bioprinting (LaBP) allows the realization of computer-generated 3D tissue grafts consisting of cells embedded in a hydrogel environment. In this study, human adipose-derived stem cells (hASCs) were printed in a free-scalable 3D grid pattern by means of LaBP. We demonstrate that neither the proliferation ability nor the differentiation behaviour of the stem cells was affected by the LaBP procedure. Furthermore, the 3D grafts were differentiated down the adipogenic lineage pathway for 10 days. We verify by quantitative assessments of adipogenic markers that the 3D grafts resemble cell lineages present in natural adipose tissue. Additionally, we provide the proof that even pre-differentiated hASCs could be utilized for the generation of 3D tissue grafts. These results indicate that the biofabrication of living grafts resembling their complex native origin is within reach.

  7. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis.

    Science.gov (United States)

    Latief, Noreen; Raza, Fahad Ali; Bhatti, Fazal-Ur-Rehman; Tarar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2016-05-01

    Transplantation of mesenchymal stem cells (MSCs) or autologous chondrocytes has been shown to repair damages to articular cartilage due to osteoarthritis (OA). However, survival of transplanted cells is considerably reduced in the osteoarthritic environment and it affects successful outcome of the transplantation of the cells. Differentiated chrondroytes derived from adipose stem cells have been proposed as an alternative source and our study investigated this possibility in rats. We investigated the regenerative potential of ADSCs and DCs in osteoarthritic environment in the repair of cartilage in rats. We found that ADSCs maintained fibroblast morphology in vitro and also expressed CD90 and CD29. Furthermore, ADSCs differentiated into chondrocytes, accompanied by increased level of proteoglycans and expression of chondrocytes specific genes, such as, Acan, and Col2a1. Histological examination of transplanted knee joints showed regeneration of cartilage tissue compared to control OA knee joints. Increase in gene expression for Acan, Col2a1 with concomitant decrease in the expression of Col1a1 suggested formation of hyaline like cartilage. A significant increase in differentiation index was observed in DCs and ADSCs transplanted knee joints (P = 0.0110 vs. P = 0.0429) when compared to that in OA control knee joints. Furthermore, transplanted DCs showed increased proliferation along with reduction in apoptosis as compared to untreated control. In conclusion, DCs showed better survival and regeneration potential as compared with ADSCs in rat model of OA and thus may serve a better option for regeneration of osteoarthritic cartilage. © 2016 International Federation for Cell Biology.

  8. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We

  9. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  10. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  11. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  12. Allogeneic adipose-derived stem cells promote survival of fat grafts in immunocompetent diabetic rats.

    Science.gov (United States)

    Zhang, Jun; Bai, Xiaozhi; Zhao, Bin; Wang, Yunchuan; Su, Linlin; Chang, Peng; Wang, Xujie; Han, Shichao; Gao, Jianxin; Hu, Xiaolong; Hu, Dahai; Liu, Xiaoyan

    2016-05-01

    Autologous adipose-derived stem cells (ADSCs) can protect fat grafts in cell-assisted lipotransfer (CAL). However, diabetes alters the intrinsic properties of ADSCs and impairs their function so that they lack these protective effects. We investigate whether allogeneic ADSCs from healthy donors could protect fat grafts in immunocompetent diabetic rats. Syngeniec adipose tissues and ADSCs were derived from diabetic Lewis (LEW) rats, whereas allogeneic ADSCs were from healthy brown-Norway rats. A grafted mixture containing 0.7 ml granule fat and 0.3 ml 6 × 10(6) allogeneic/syngeneic ADSCs was injected subcutaneously on the skulls of diabetic LEW rats. Fat samples were harvested to evaluate the levels of injury and vascularization as shown by perilipin A, CD34 and VEGF at 14 days. The immune response was evaluated with a lymphocytotoxicity test and the CD4/CD8 ratio in peripheral blood at 14 days. The volume retention of fat grafts was measured at 3 months. Healthy allogeneic ADSCs increased the expression levels of perilipin A, CD34 and VEGF at 14 days. The volume retention of fat grafts was improved by allogeneic ADSCs at 3 months. ADSCs were demonstrated to have low immunogenicity by the lymphocyte proliferation test and immunophenotype including MHC and co-stimulatory markers. The lymphocytotoxicity test and CD4/CD8 ratio indicated no obvious immune response elicited by allogeneic ADSCs. Thus, healthy allogeneic ADSCs can promote the survival of fat grafts in this immunocompetent diabetic rat model, with little or no obvious immune rejection.

  13. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    Science.gov (United States)

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  14. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells.

    Science.gov (United States)

    Cousin, B; Casteilla, L; Laharrague, P; Luche, E; Lorsignol, A; Cuminetti, V; Paupert, J

    2016-05-01

    The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    Science.gov (United States)

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  16. Euglena extract suppresses adipocyte-differentiation in human adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Ryota Sugimoto

    Full Text Available Euglena gracilis Z (Euglena is a unicellular, photosynthesizing, microscopic green alga. It contains several nutrients such as vitamins, minerals, and unsaturated fatty acids. In this study, to verify the potential role of Euglena consumption on human health and obesity, we evaluated the effect of Euglena on human adipose-derived stem cells. We prepared a Euglena extract and evaluated its effect on cell growth and lipid accumulation, and found that cell growth was promoted by the addition of the Euglena extract. Interestingly, intracellular lipid accumulation was inhibited in a concentration-dependent manner. Quantitative real-time PCR analysis and western blotting analysis indicated that the Euglena extract suppressed adipocyte differentiation by inhibiting the gene expression of the master regulators peroxisome proliferator-activated receptor-γ (PPARγ and one of three CCAAT-enhancer-binding proteins (C/EBPα. Further Oil Red O staining experiments indicated that the Euglena extract inhibited the early stage of adipocyte-differentiation. Consistent with these results, we observed that down-regulation of gene expression was involved in the early stage of adipogenesis represented by the sterol regulatory element binding protein 1 c (SREBP1c, two of three CCAAT-enhancer-binding proteins (C/EBPβ, C/EBPδ, and the cAMP regulatory element-binding protein (CREB. Taken together, these data suggest that Euglena extract is a promising candidate for the development of a new therapeutic treatment for obesity.

  17. Euglena extract suppresses adipocyte-differentiation in human adipose-derived stem cells.

    Science.gov (United States)

    Sugimoto, Ryota; Ishibashi-Ohgo, Naoko; Atsuji, Kohei; Miwa, Yuko; Iwata, Osamu; Nakashima, Ayaka; Suzuki, Kengo

    2018-01-01

    Euglena gracilis Z (Euglena) is a unicellular, photosynthesizing, microscopic green alga. It contains several nutrients such as vitamins, minerals, and unsaturated fatty acids. In this study, to verify the potential role of Euglena consumption on human health and obesity, we evaluated the effect of Euglena on human adipose-derived stem cells. We prepared a Euglena extract and evaluated its effect on cell growth and lipid accumulation, and found that cell growth was promoted by the addition of the Euglena extract. Interestingly, intracellular lipid accumulation was inhibited in a concentration-dependent manner. Quantitative real-time PCR analysis and western blotting analysis indicated that the Euglena extract suppressed adipocyte differentiation by inhibiting the gene expression of the master regulators peroxisome proliferator-activated receptor-γ (PPARγ) and one of three CCAAT-enhancer-binding proteins (C/EBPα). Further Oil Red O staining experiments indicated that the Euglena extract inhibited the early stage of adipocyte-differentiation. Consistent with these results, we observed that down-regulation of gene expression was involved in the early stage of adipogenesis represented by the sterol regulatory element binding protein 1 c (SREBP1c), two of three CCAAT-enhancer-binding proteins (C/EBPβ, C/EBPδ), and the cAMP regulatory element-binding protein (CREB). Taken together, these data suggest that Euglena extract is a promising candidate for the development of a new therapeutic treatment for obesity.

  18. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes.

    Science.gov (United States)

    Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon

    2014-05-01

    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Platelet-Derived Growth Factor Receptor-Positive Pericytic Cells of White Adipose Tissue from Critical Limb Ischemia Patients Display Mesenchymal Stem Cell-Like Properties.

    Science.gov (United States)

    Kim, Eo Jin; Seo, Sang Gyo; Shin, Hyuk Soo; Lee, Doo Jae; Kim, Ji Hye; Lee, Dong Yeon

    2017-06-01

    The pericytes in the blood vessel wall have recently been identified to be important in regulating vascular formation, stabilization, remodeling, and function. We isolated and identified pericyte-like platelet-derived growth factor receptor beta-positive (PDGFRβ+) cells from the stromal vascular fraction (SVF) of adipose tissue from critical limb ischemia (CLI) patients and investigated their potential as a reliable source of stem cells for cell-based therapy. De-identified subcutaneous fat tissues were harvested after amputation in CLI patients. Freshly isolated SVF cells and culture-expanded adipose-derived stem cells (ADSCs) were quantified using flow cytometry. A matrigel tube formation assay and multi-lineage differentiation were performed to assess pericytic and mesenchymal stem cell (MSC)-like characteristics of PDGFRβ+ ADSCs. PDGFRβ+ cells were located in the pericytic area of various sizes of blood vessels and coexpressed mesenchymal stem cell markers. PDGFRβ+ cells in freshly isolated SVF cells expressed a higher level of stem cell markers (CD34 and CXCR4) and mesenchymal markers (CD13, CD44, CD54, and CD90) than PDGFRβ- cells. In vitro expansion of PDGFRβ+ cells resulted in enrichment of the perivascular mesenchymal stem-like (PDGFRβ+/CD90+/CD45-/CD31-) cell fractions. The Matrigel tube formation assay revealed that PDGFRβ+ cells were located in the peritubular area. PDGFRβ+ ADSCs cells demonstrated a good multilineage differentiation potential. Pericyte-like PDGFRβ+ cells from the SVF of adipose tissue from CLI patients had MSC-like characteristics and could be amplified by in vitro culture with preservation of their cell characteristics. We believe PDGFRβ+ cells in the SVF of adipose tissue can be used as a reliable source of stem cells even in CLI patients.

  20. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.

    Science.gov (United States)

    Kim, Jangho; Choi, Kyoung Soon; Kim, Yeonju; Lim, Ki-Tack; Seonwoo, Hoon; Park, Yensil; Kim, Deok-Ho; Choung, Pill-Hoon; Cho, Chong-Su; Kim, Soo Young; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-12-01

    Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  1. Comparison of TGF-β1 and NO production by mesenchymal stem cells isolated from murine lung and adipose tissues.

    Science.gov (United States)

    Hosseinpur, Zahra; Hashemi, Seyed Mahmoud; Salehi, Eisa; Ghazanfari, Tooba

    2016-06-01

    Mesenchymal stem cells (MSCs) are cell sources for tissues regeneration. By secretion of soluble factors including transforming growth factor-β (TGF-β1) and nitric oxide (NO), MSCs are also able to regulate the immune system. MSCs have been disclosed in lung and adipose tissues with insufficient comparison between the tissues. In this study, specific differentiation and the expression of surface antigens as well as TGF-β1 and NO productive levels were compared in murine lung-derived MSCs (LMSCs) and adipose tissue-derived MSCs (ADMSCs). MSCs were isolated from murine lung and adipose tissues and cultured. Both cell populations were characterized using multilineage potential and the expression of surface antigenic proteins, CD73, CD105, CD34, CD45, and CD11b. Finally, levels of TGF-β1 and NO were evaluated and compared in ADMSCs and LMSCs. Expression of CD73 and CD105; lack of the expression of CD34, CD45, and CD11b markers; as well as adipocyte and osteocyte differentiations were detected in both adult stem cells. No significant difference was found in TGF-β1 and NO production between two stem cell populations. Our data showed that LMSCs and ADMSCs have comparable phenotype and TGF-β1 and NO production.

  2. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Science.gov (United States)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  3. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    , but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin...... (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13(+), CD29......Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...

  4. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    Science.gov (United States)

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression

  5. Implantation of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells in Foot Fat Pad in Rats.

    Science.gov (United States)

    Molligan, Jeremy; Mitchell, Reed; Bhasin, Priya; Lakhani, Aliya; Schon, Lew; Zhang, Zijun

    2015-11-01

    The foot fat pad (FFP) bears body weight and may become a source of foot pain during aging. This study investigated the regenerative effects of autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) in the FFP of rats. Fat tissue was harvested from a total of 30 male Sprague-Dawley rats for isolation of AT-MSCs. The cells were cultured, adipogenic differentiation was induced for 1 week, and the AT-MSCs were labeled with fluorescent dye before injection. AT-MSCs (5 × 10(4) in 50 µL of saline) were injected into the second infradigital pad in the right hindfoot of the rat of origin. Saline only (50 µL) was injected into the corresponding fat pad in the left hind paw of each rat. Rats (n = 10) were euthanized at 1, 2, and 3 weeks, and the second infradigital fat pads were dissected for histologic examination. The fluorescence-labeled AT-MSCs were present in the foot pads throughout the 3-week experimental period. On histologic testing, the area of fat pad units (FPUs) in the fat pads that received AT-MSC injections was greater than that in the control fat pads. Although the thickness of septae was not changed by AT-MSC injections, the density of elastic fibers in the septae was increased in the fat pads with implanted AT-MSCs. In this short-term study, the implanted AT-MSCs largely survived and might have stimulated the expansion of individual FPUs and increased the density of elastic fibers in the FFP in this rat model. These data support the development of stem cell therapies for age-associated degeneration in FFP in humans. © The Author(s) 2015.

  6. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells.

    Science.gov (United States)

    Yoshimura, Kotaro; Sato, Katsujiro; Aoi, Noriyuki; Kurita, Masakazu; Inoue, Keita; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Hirohi, Toshitsugu; Harii, Kiyonori

    2008-09-01

    Lipoinjection is a promising treatment, but its efficacy in recontouring facial lipoatrophy remains to be established. The objective was to evaluate the efficacy and adverse effects of lipoinjection and supplementation of adipose-derived stem/stromal cells (ASCs) to adipose grafts. To overcome drawbacks of autologous lipoinjection, we have developed a novel strategy called cell-assisted lipotransfer (CAL). In CAL, stromal vascular fraction containing ASCs was freshly isolated from half of an aspirated fat sample and attached to the other half of aspirated fat sample with the fat acting as a scaffold. This process converts relatively ASC-poor aspirated fat into ASC-rich fat. We performed conventional lipoinjection (non-CAL; n=3) or CAL (n=3) on six patients with facial lipoatrophy due to lupus profundus or Parry-Romberg syndrome. All patients obtained improvement in facial contour, but the CAL group had a better clinical improvement score than did the non-CAL patients, although the difference did not reach statistical significance (p=.11). Adipose necrosis was found in one non-CAL case who took perioperative oral corticosteroids. Our results suggest that CAL is both effective and safe and potentially superior to conventional lipoinjection for facial recontouring. The authors have indicated no significant interest with commercial supporters.

  7. Effect of non-autologous adipose-derived stem cells transplantation and nerve growth factor on the repair of crushed sciatic nerve in rats

    Directory of Open Access Journals (Sweden)

    Azadeh Tajik

    2014-02-01

    Conclusion: Transplantation of non-autologous of adipose-derived stem cells (ASDc is an appropriate therapeutic approach in repairing of neurological injuries and NGF has a positive effect in crushed sciatic nerve regeneration.

  8. Adipose-Derived Stem Cells Improve Collagenase-Induced Tendinopathy in a Rat Model.

    Science.gov (United States)

    Oshita, Takashi; Tobita, Morikuni; Tajima, Satoshi; Mizuno, Hiroshi

    2016-08-01

    Tendinopathy is a common and highly prevalent musculoskeletal disorder characterized by repetitive activity-related pain and focal tendon tenderness. Histopathologically, tendinopathic tissue mainly shows degenerative changes. Therefore, tendinopathy is not affected by anti-inflammatory therapies. A novel approach, including a stem cell-based therapy, may be beneficial for its treatment. The purpose of this study was to evaluate the effects of adipose-derived stem cells (ASCs) on tendon healing in a rat tendinopathy model. The hypothesis was that ASC transplantation would improve degeneration in collagenase-induced tendinopathy. Controlled laboratory study. Sixteen F344/NSlc rats underwent collagenase injection into the Achilles tendon to induce tendinopathy. At 1 week after collagenase injection, 8 rats received ASCs (ASC group) and 8 received phosphate-buffered saline alone (PBS group). Animals were sacrificed at 4 or 12 weeks after ASC administration, and the degree of degeneration in each tendon was histologically evaluated according to the Bonar scale. The microstructure of healing tendons was observed by scanning electron microscopy. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to measure the ratio of type III collagen messenger RNA (mRNA) to type I collagen mRNA in tendons. The median Bonar scale score in the ASC and PBS groups was 2.5 and 5.33 at 4 weeks after treatment and 1.0 and 4.0 at 12 weeks after treatment, respectively. Histologically, the ASC group showed a significantly lower degree of tendon degeneration than the PBS group at both time points. In the RT-PCR analysis, the ratio of type III collagen to type I collagen was significantly lower in the ASC group than in the PBS group at 12 weeks after treatment. Moreover, this ratio decreased over time in the ASC group, whereas it increased over time in the PBS group. The study findings demonstrate that the application of ASCs results in significant improvement in the

  9. [Use of adipose-derived stem cells in an experimental rotator cuff fracture animal model].

    Science.gov (United States)

    Barco, R; Encinas, C; Valencia, M; Carrascal, M T; García-Arranz, M; Antuña, S

    2015-01-01

    Rotator cuff repairs have shown a high level of re-ruptures. We hypothesized that the use of adipose-derived stem cells (ASC) could improve the biomechanical and histological properties of the repair. Controlled experimental study conducted on 44 BDIX rats with section and repair of the supraspinatus tendon and randomization to one of three groups: group A, no intervention (control); group B, local applications of a fibrin sealant; and group C, application of the fibrin sealant with 2 x 10(6) ASC. At 4 and 8 weeks a biomechanical and histological analysis was performed. There were no differences in load-to-failure at 4 and 8 weeks between groups. The load-to-failure did increase between week 4 and week 8. Histologically the tendon-to bone union showed a disorganized fibrovascular tissue. Group C showed a different inflammatory pattern, with less presence of neutrophils and more presence of plasma cells. The use of ASC does not improve the biomechanical or histological properties of the repair site. More studies are needed to improve techniques that enhance the healing site of the repair. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  10. Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts

    Directory of Open Access Journals (Sweden)

    Miguel Tofiño-Vian

    2017-01-01

    Full Text Available Osteoarthritis (OA affects all articular tissues leading to pain and disability. The dysregulation of bone metabolism may contribute to the progression of this condition. Adipose-derived mesenchymal stem cells (ASC are attractive candidates in the search of novel strategies for OA treatment and exert anti-inflammatory and cytoprotective effects on cartilage. Chronic inflammation in OA is a relevant factor in the development of cellular senescence and joint degradation. In this study, we extend our previous observations of ASC paracrine effects to study the influence of conditioned medium and extracellular vesicles from ASC on senescence induced by inflammatory stress in OA osteoblasts. Our results in cells stimulated with interleukin- (IL- 1β indicate that conditioned medium, microvesicles, and exosomes from ASC downregulate senescence-associated β-galactosidase activity and the accumulation of γH2AX foci. In addition, they reduced the production of inflammatory mediators, with the highest effect on IL-6 and prostaglandin E2. The control of mitochondrial membrane alterations and oxidative stress may provide a mechanism for the protective effects of ASC in OA osteoblasts. We have also shown that microvesicles and exosomes mediate the paracrine effects of ASC. Our study suggests that correction of abnormal osteoblast metabolism by ASC products may contribute to their protective effects.

  11. CELL TRACKING, SURVIVAL AND DIFFERENTIATION CAPACITY OF ADIPOSE-DERIVED STEM CELLS AFTER ENGRAFTMENT IN RAT TISSUE.

    Science.gov (United States)

    Muñoz, Mario F; Argüelles, Sandro; Guzman-Chozas, Matias; Guillén-Sanz, Remedios; Franco, Jaime M; Pintor-Toro, José A; Cano, Mercedes; Ayala, Antonio

    2018-01-10

    Adipose tissue is an important source of adipose derived stem cells (ADSCs). These cells have the potential of being used for certain therapies, in which the main objective is to recover the function of a tissue/organ affected by a disease. In order to contribute to repair of the tissue, these cells should be able to survive and carry out their functions in unfavorable conditions after being transplanted. This process requires a better understanding of the biology involved: such as the time cells remain in the implant site, how long they stay there, and whether or not they differentiate into host tissue cells. This report focuses on these questions. ADSC were injected into three different tissues (substantia nigra, ventricle, liver) and they were tracked in vivo with a dual GFP-Luc reporter system. The results show that ADSCs were able to survive up to 4 months after the engraftment and some of them started showing resident cell tissue phenotype. These results demonstrate their long-term capacity of survival and differentiation when injected in vivo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation.

    Science.gov (United States)

    Chazenbalk, Gregorio; Singh, Prapti; Irge, Dana; Shah, Amy; Abbott, David H; Dumesic, Daniel A

    2013-09-01

    Androgens play a pivotal role in the regulation of body fat distribution. Adipogenesis is a process whereby multipotent adipose stem cells (ASCs) initially become preadipocytes (ASC commitment to preadipocytes) before differentiating into adipocytes. Androgens inhibit human (h) subcutaneous (SC) abdominal preadipocyte differentiation in both sexes, but their effects on hASC commitment to preadipocyte formation is unknown. We therefore examined whether androgen exposure to human (h) ASCs, isolated from SC abdominal adipose of nonobese women, impairs their commitment to preadipocyte formation and/or subsequent differentiation into adipocytes. For this, isolated hASCs from SC abdominal lipoaspirate were cultured in adipogenesis-inducing medium for 0.5-14days in the presence of testosterone (T, 0-100nM) or dihydrotestosterone (DHT, 0-50nM). Adipogenesis was determined by immunofluorescence microscopy and by quantification of adipogenically relevant transcriptional factors, PPARγ, C/EBPα and C/EBPβ. We found that a 3-day exposure of hASCs to T (50nM) or DHT (5nM) in adipogenesis-inducing medium impaired lipid acquisition and decreased PPARγ, C/EBPα and C/EBPβ gene expression. The inhibitory effects of T and DHT at this early-stage of adipocyte differentiation, were partially and completely reversed by flutamide (F, 100nM), respectively. The effect of androgens on hASC commitment to a preadipocyte phenotype was examined via activation of Bone Morphogenic Protein 4 (BMP4) signaling. T (50nM) and DHT (5nM) significantly inhibited the stimulatory effect of BMP4-induced ASC commitment to the preadipocyte phenotype, as regards PPARγ and C/EBPα gene expression. Our findings indicate that androgens, in part through androgen receptor action, impair BMP4-induced commitment of SC hASCs to preadipocytes and also reduce early-stage adipocyte differentiation, perhaps limiting adipocyte numbers and fat storage in SC abdominal adipose. Copyright © 2013 Elsevier Inc. All rights

  13. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Olivia S. [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Fonseca, Vera C. [Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Darling, Eric M., E-mail: Eric_Darling@brown.edu [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Department of Orthopaedics, Brown University, Providence, RI (United States); School of Engineering, Brown University, Providence, RI (United States)

    2014-10-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  14. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Ranera Beatriz

    2012-08-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs derived from bone marrow (BM-MSCs and adipose tissue (AT-MSCs are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2. This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. Conclusions Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.

  15. Regeneration of Skin Surface by Multipotent Mesenchymal Stem Cells of Adipose Tissue in Laboratory Animals with Infected Wounds

    OpenAIRE

    Sahab, A. Haydar; Tretyak, S.; Nedzved, M.K.; Baranov, E.V.; Nadyrov, E.; Lobanok, H.H.; Vasilevich, I.B.; Welcome, M.O.

    2013-01-01

    This paper presents results of experimental studies in laboratory animals with a simulated infected wound, for which mesenchymal stem cells (MSCs) derived from adipose tissue were used in its treatment. The following peculiarities of MSCs for regeneration of skin defects are established: faster arrest of inflammation, accelerated wound healing processes, as well as observed stimulation of growth of skin appendages. The results of this study may serve the basis for further research from develo...

  16. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  17. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis.

    Science.gov (United States)

    Koh, Yong-Gon; Choi, Yun-Jin; Kwon, Sae-Kwang; Kim, Yong-Sang; Yeo, Jee-Eun

    2015-05-01

    In the present study, the clinical outcomes and second-look arthroscopic findings of intra-articular injection of stem cells with arthroscopic lavage for treatment of elderly patients with knee osteoarthritis (OA) were evaluated. Stem cell injections combined with arthroscopic lavage were administered to 30 elderly patients (≥65 years) with knee OA. Subcutaneous adipose tissue was harvested from both buttocks by liposuction. After stromal vascular fractions were isolated, a mean of 4.04 × 10(6) stem cells (9.7 % of 4.16 × 10(7) stromal vascular fraction cells) were prepared and injected in the selected knees of patients after arthroscopic lavage. Outcome measures included the Knee Injury and Osteoarthritis Outcome Scores, visual analog scale, and Lysholm score at preoperative and 3-, 12-, and 2-year follow-up visits. Sixteen patients underwent second-look arthroscopy. Almost all patients showed significant improvement in all clinical outcomes at the final follow-up examination. All clinical results significantly improved at 2-year follow-up compared to 12-month follow-up (P 65 years, only five patients demonstrated worsening of Kellgren-Lawrence grade. On second-look arthroscopy, 87.5 % of elderly patients (14/16) improved or maintained cartilage status at least 2 years postoperatively. Moreover, none of the patients underwent total knee arthroplasty during this 2-year period. Adipose-derived stem cell therapy for elderly patients with knee OA was effective in cartilage healing, reducing pain, and improving function. Therefore, adipose-derived stem cell treatment appears to be a good option for OA treatment in elderly patients. Therapeutic case series study, Level IV.

  18. The emu oil emulsified in egg lecithin and butylated hydroxytoluene enhanced the proliferation, stemness gene expression, and in vitro wound healing of adipose-derived stem cells.

    Science.gov (United States)

    Arezoumand, Khatereh Saei; Alizadeh, Effat; Esmaeillou, Mohammad; Ghasemi, Maryam; Alipour, Shahriar; Pilehvar-Soltanahmadi, Younes; Zarghami, Nosratollah

    2018-03-01

    In recent decades, mesenchymal stem cells originated from adipose tissue (adipose-derived stem cells, ASCs) have gained increased attention for production of cell-based therapeutics. Emu oil as a natural compound showed antioxidant effects in previous studies. The goal of this study was to investigate the effect of crude emu oil on the proliferation, cell cycle progression, stemness genes expression, and in vitro wound healing potential of ASCs. An emulsion of emu oil was prepared using egg lecithin and butylated hydroxytoluene to improve bioavailability and solubility of emu oil in the expansion medium. The ASCs were treated using a series of emu oil concentrations in emulsion form, diluted in expansion medium (0.03-3 mg/ml). The emu oil-free emulsion was used as control treatment. The results revealed that emu oil (1.25 mg/ml) in emulsion form significantly (p oil caused upregulation of stemness marker genes (Sox2, Oct4, Nanog, and Nestin) (p oil treatments showed an increase in the population of ASCs in S-phase of the cell cycle. Besides, an accelerated in vitro scratch wound healing was observed in emu oil-treated ASCs. Emu oil enhanced proliferation, colony formation, stemness genes expression, and in vitro wound healing of ASCs. These findings suggest that emu oil treatment could maintain the stemness of ex vivo cultivated ASCs and enhance their regenerative potential.

  19. Surface Hydrophilicity of Poly(l-Lactide Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture

    Directory of Open Access Journals (Sweden)

    Chiara Argentati

    2018-02-01

    Full Text Available Current knowledge indicates that the molecular cross-talk between stem cells and biomaterials guides the stem cells’ fate within a tissue engineering system. In this work, we have explored the effects of the interaction between the poly(l-lactide acid (PLLA polymer film and human adult adipose stem cells (hASCs, focusing on the events correlating the materials’ surface characteristics and the cells’ plasma membrane. hASCs were seeded on films of pristine PLLA polymer and on a PLLA surface modified by the radiofrequency plasma method under oxygen flow (PLLA+O2. Comparative experiments were performed using human bone-marrow mesenchymal stem cells (hBM-MSCs and human umbilical matrix stem cells (hUCMSCs. After treatment with oxygen-plasma, the surface of PLLA films became hydrophilic, whereas the bulk properties were not affected. hASCs cultured on pristine PLLA polymer films acquired a spheroid conformation. On the contrary, hASCs seeded on PLLA+O2 film surface maintained the fibroblast-like morphology typically observed on tissue culture polystyrene. This suggests that the surface hydrophilicity is involved in the acquisition of the spheroid conformation. Noteworthy, the oxygen treatment had no effects on hBM-MSC and hUCMSC cultures and both stem cells maintained the same shape observed on PLLA films. This different behavior suggests that the biomaterial-interaction is stem cell specific.

  20. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    Directory of Open Access Journals (Sweden)

    Angelou Valerie

    2016-01-01

    Full Text Available Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group. We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.

  1. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  2. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome.

    Science.gov (United States)

    Clark, Kaitlin C; Fierro, Fernando A; Ko, Emily Mills; Walker, Naomi J; Arzi, Boaz; Tepper, Clifford G; Dahlenburg, Heather; Cicchetto, Andrew; Kol, Amir; Marsh, Lyndsey; Murphy, William J; Fazel, Nasim; Borjesson, Dori L

    2017-03-20

    Adipose-derived mesenchymal stem cells (ASCs) are a promising cell therapy to treat inflammatory and immune-mediated diseases. Development of appropriate pre-clinical animal models is critical to determine safety and attain early efficacy data for the most promising therapeutic candidates. Naturally occurring diseases in cats already serve as valuable models to inform human clinical trials in oncologic, cardiovascular, and genetic diseases. The objective of this study was to complete a comprehensive side-by-side comparison of human and feline ASCs, with an emphasis on their immunomodulatory capacity and transcriptome. Human and feline ASCs were evaluated for phenotype, immunomodulatory profile, and transcriptome. Additionally, transwells were used to determine the role of cell-cell contact in ASC-mediated inhibition of lymphocyte proliferation in both humans and cats. Similar to human ASCs, feline ASCs were highly proliferative at low passages and fit the minimal criteria of multipotent stem cells including a compatible surface protein phenotype, osteogenic capacity, and normal karyotype. Like ASCs from all species, feline ASCs inhibited mitogen-activated lymphocyte proliferation in vitro, with or without direct ASC-lymphocyte contact. Feline ASCs mimic human ASCs in their mediator secretion pattern, including prostaglandin E2, indoleamine 2,3 dioxygenase, transforming growth factor beta, and interleukin-6, all augmented by interferon gamma secretion by lymphocytes. The transcriptome of three unactivated feline ASC lines were highly similar. Functional analysis of the most highly expressed genes highlighted processes including: 1) the regulation of apoptosis; 2) cell adhesion; 3) response to oxidative stress; and 4) regulation of cell differentiation. Finally, feline ASCs had a similar gene expression profile to noninduced human ASCs. Findings suggest that feline ASCs modulate lymphocyte proliferation using soluble mediators that mirror the human ASC secretion

  3. Age-related changes in the features of porcine adult stem cells isolated from adipose tissue and skeletal muscle.

    Science.gov (United States)

    Perruchot, Marie-Hélène; Lefaucheur, Louis; Barreau, Corinne; Casteilla, Louis; Louveau, Isabelle

    2013-10-01

    A better understanding of the control of body fat distribution and muscle development is of the upmost importance for both human and animal physiology. This requires a better knowledge of the features and physiology of adult stem cells in adipose tissue and skeletal muscle. Thus the objective of the current study was to determine the type and proportion of these cells in growing and adult pigs. The different cell subsets of stromal vascular cells isolated from these tissues were characterized by flow cytometry using cell surface markers (CD11b, CD14, CD31, CD34, CD45, CD56, and CD90). Adipose and muscle cells were predominantly positive for the CD34, CD56, and CD90 markers. The proportion of positive cells changed with age especially in intermuscular adipose tissue and skeletal muscle where the percentage of CD90(+) cells markedly increased in adult animals. Further analysis using coimmunostaining indicates that eight populations with proportions ranging from 12 to 30% were identified in at least one tissue at 7 days of age, i.e., CD90(+)/CD34(+), CD90(+)/CD34(-), CD90(+)/CD56(+), CD90(+)/CD56(-), CD90(-)/CD56(+), CD56(+)/CD34(+), CD56(+)/CD34(-), and CD56(-)/CD34(+). Adipose tissues appeared to be a less heterogeneous tissue than skeletal muscle with two main populations (CD90(+)/CD34(-) and CD90(+)/CD56(-)) compared with five or more in muscle during the studied period. In culture, cells from adipose tissue and muscle differentiated into mature adipocytes in adipogenic medium. In myogenic conditions, only cells from muscle could form mature myofibers. Further studies are now needed to better understand the plasticity of those cell populations throughout life.

  4. The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold.

    Science.gov (United States)

    Ghaderi Gandomani, Maryam; Sahebghadam Lotfi, Abbas; Kordi Tamandani, Dormohammad; Arjmand, Sareh; Alizadeh, Shaban

    2017-09-30

    Liver tissue engineering creates a promising methodology for developing functional tissue to restore or improve the function of lost or damaged liver by using appropriate cells and biologically compatible scaffolds. The present paper aims to study the hepatogenic potential of human adipose derived mesenchymal stem cells (hADSCs) on a 3D gelatin scaffold in vitro. For this purpose, mesenchymal stem cells were isolated from human adipose tissue and characterized by flowcytometry analysis and mesodermal lineage differentiation capacity. Then, porous cryogel scaffolds were fabricated by cryogelating the gelatin using glutaraldehyde as the crosslinking agent. The structure of the scaffolds as well as the adhesion and proliferation of the cells were then determined by Scanning Electron Microscopy (SEM) analysis and MTT assay, respectively. The efficiency of hepatic differentiation of hADSCs on 2D and 3D culture systems has been assessed by means of morphological, cytological, molecular and biochemical approaches. Based on the results of flowcytometry, the isolated cells were positive for hMSC specific markers and negative for hematopoietic markers. Further, the multipotency of these cells was confirmed by adipogenic and osteogenic differentiation and the highly porous structure of scaffolds was characterized by SEM images. Biocompatibility was observed in the fabricated gelatin scaffolds and the adhesion and proliferation of hADSCs were promoted without any cytotoxicity effects. In addition, compared to 2D TCPS, the fabricated scaffolds provided more appropriate microenvironment resulting in promoting the differentiation of hADSCs toward hepatocyte-like cells with higher expression of hepatocyte-specific markers and appropriate functional characteristics such as increased levels of urea biosynthesis and glycogen storage. Finally, the created 3D gelatin scaffold could provide an appropriate matrix for hepatogenic differentiation of hADSCs, which could be considered for

  5. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology.

    Science.gov (United States)

    De Rosa, Alfredo; De Francesco, Francesco; Tirino, Virginia; Ferraro, Giuseppe A; Desiderio, Vincenzo; Paino, Francesca; Pirozzi, Giuseppe; D'Andrea, Francesco; Papaccio, Gianpaolo

    2009-12-01

    Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.

  6. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2016-08-01

    Clinical studies suggest that splenectomy improves liver function in cirrhotic patients, but the influence of splenectomy on stem cell transplantation is poorly understood. This study investigated the effect of splenectomy on stem cell infusion and elucidated its mechanism. Rat adipose tissue-derived mesenchymal stem cells were infused into cirrhosis rats with or without splenectomy, followed by the assessment of the in vivo distribution of stem cells and pathological changes. Stromal cell-derived factor-1 and hepatocyte growth factor expression were also investigated in splenectomized cirrhosis patients and rats. Splenectomy, prior to cell infusion, improved liver function and suppressed fibrosis progression more efficiently than cell infusion alone in the experimental cirrhosis model. Stromal cell-derived factor-1 and hepatocyte growth factor levels after splenectomy were increased in patients and rats. These upregulated cytokines significantly facilitated stem cell motility, migration and proliferation in vitro. C-X-C chemokine receptor type 4 neutralization weakened the promotion of cell migration by these cytokines. The infused cells integrated into liver fibrosis septa and participated in regeneration more efficiently in splenectomized rats. Direct coculture with stem cells led to inhibition of hepatic stellate cell proliferation. In addition, hepatocyte growth factor induced hepatic stellate cell apoptosis via the c-jun N-terminal kinase-p53 pathway. Splenectomy prior to cell infusion enhanced the therapeutic effect of stem cells on cirrhosis, which involved upregulation of stromal cell-derived factor-1 and hepatocyte growth factor after splenectomy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Clinical Application of Autologous Adipose Stem Cells in Patients with Multiple Sclerosis: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Adam Stepien

    2016-01-01

    Full Text Available The clinical outcome of autologous adipose stem cell (ASC treatment of patients with multiple sclerosis (MS was investigated following one year of observation. Methods. The clinical and MRI outcomes of 16 ASC-treated patients with RRMS and SPMS are reported after a one-year follow-up period. Results. At 18 months of follow-up, some patients showed “enticing” improvements on some exploratory efficacy measures, although a significant benefit was not observed for any measure across the entire group. Neither the progression of disability nor relapses were observed in any cases. In four patients, we found new gadolinium+ (Gd+ lesions on MRI. Our results indicate that ASC therapy is safe and does not produce any substantial side effects. Disease progression-free survival (PFS of 18 months was seen in all patients with RRMS and SPMS. In these patients, EDSS scores did not progress above baseline scores. Gd-enhancing lesions were observed in two cases with RRMS, but these patients did not exhibit changes in EDSS score. Conclusion. Intrathecal treatment with ASCs is an attractive form of therapy for patients with MS but should be reserved for cases with aggressive disease progression, for cases that are still in the inflammatory phase, and for the malignant form.

  8. The potentials of human adipose tissue derived mesenchymal stem cells in targeted therapy of experimental glioma

    Directory of Open Access Journals (Sweden)

    FAN Cun-gang

    2012-12-01

    Full Text Available Glioblastoma is the most common primary malignant brain tumor in adults. With current standard therapy which includes extensive microsurgical resection along with concurrent chemoradiotherapy and adjuvant temozolomide (TMZ, the median survival of glioblastoma patients is only 14.60 months nowadays. Recent studies demonstrated that human adipose tissue derived mesenchymal stem cells (hAT-MSCs possessed the glioma-trophic migratory capacity. The engineered hAT-MSCs expressing herpes simplex virus-thymidine kinase (HSV-tk, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy:: UPRT, and rabbit carboxylesterase (rCE could exert inhibitory effects on glioma when combined with prodrugs, such as ganciclovir (GCV, 5-fluorocytosine (5-FC and irinotecan (CPT-11, respectively. hAT-MSCs carrying the oncolytic virus or expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL also could inhibit the growth of glioma. This paper summarizes the recent progress in this field to pave the way for hAT-MSCs based targeted therapy of glioma in future.

  9. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  10. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  11. Effect of exogenous adipose-derived stem cells in the early stages following free fat transplantation.

    Science.gov (United States)

    Yuan, Y I; Gao, Jianhua; Lu, Feng

    2015-09-01

    Cotransplantation of adipose-derived stem cells (ASCs) is an effective therapeutic approach for enhancing the survival of transplanted fat tissue; however, the role of ASCs in free fat transplantation remains unclear. In the present study, fat harvested from C57BL/6 mice expressing green fluorescent protein was injected subcutaneously into the back of C57BL/6 mice, who also received ASCs (group A) or received the fat tissue only (group B). The grafts were harvested at days 1, 4, 7, 14, 30 and 90 following the transplantation. Graft volume and histology were evaluated, and the secretion levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were quantified using enzyme-linked immunosorbent assays. No statistically significant difference was identified between groups A and B in the graft survival rate up to day 14 following the aspirated fat transplantation; however, the graft survival rate decreased during the following 14-90 days. Initially, group =A exhibited a higher graft survival rate and a greater degree of angiogenesis compared with group B. The ratio of dead cells was not significantly different between the two groups on day 1; however, group A had a greater number of living interstitial cells compared with group B at the later time points. The secretion of VEGF by the ASCs had an earlier peak time in group A (day 4) compared with group B (day 7). In addition, the secretion of HGF in group A was greater compared with group B. Therefore, the role of exogenous ASCs in free fat transplantation may not directly participate in angiogenesis and adipogenesis, but may promote the survival ratio of the graft-resident interstitial cells, which are involved in angiogenesis and adipogenesis, via a paracrine effect.

  12. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh

    Directory of Open Access Journals (Sweden)

    Meng Deng

    2015-01-01

    Full Text Available Adipose-derived stem cell (ADSC is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34− when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  13. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography

    NARCIS (Netherlands)

    Blanquer, Sebastien B. G.; Gebraad, Arjen W. H.; Miettinen, Susanna; Poot, Andre A.; Grijpma, Dirk W.; Haimi, Suvi P.

    2017-01-01

    Cell-based therapies could potentially restore the biomechanical function and enhance the self-repair capacity of annulus fibrosus (AF) tissue. However, choosing a suitable cell source and scaffold design are still key challenges. In this study, we assessed the in vitro ability of human adipose stem

  14. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique.

    Science.gov (United States)

    Goh, Bee See; Che Omar, Siti Nurhadis; Ubaidah, Muhammad Azhan; Saim, Lokman; Sulaiman, Shamsul; Chua, Kien Hui

    2017-04-01

    In conclusion, these result showed HADSCs could differentiate into chondrocytes-like cells, dependent on signaling induced by TGF-β3 and chondrocytes. This is a promising result and showed that HADSCs is a potential source for future microtia repair. The technique of co-culture is a positive way forward to assist the microtia tissue. Reconstructive surgery for the repair of microtia still remains the greatest challenge among the surgeons. Its repair is associated with donor-site morbidity and the degree of infection is inevitable when using alloplastic prosthesis with uncertain long-term durability. Thus, human adipose derived stem cells (HADSCs) can be an alternative cell source for cartilage regeneration. This study aims to evaluate the chondrogenic potential of HADSCs cultured with transforming growth factor-beta (TGF-β) and interaction of auricular chondrocytes with HADSCs for new cartilage generation. Multi-lineages differentiation features of HADSCs were monitored by Alcian Blue, Alizarin Red, and Oil Red O staining for chondrogenic, adipogenic, and osteogenic differentiation capacity, respectively. Further, HADSCs alone were culture in medium added with TGF-β3; and human auricular chondrocytes were interacted indirectly in the culture with and without TGF-βs for up to 21 days, respectively. Cell morphology and chondrogenesis were monitored by inverted microscope. For cell viability, Alamar Blue assay was used to measure the cell viability and the changes in gene expression of auricular chondrocyte markers were determined by real-time polymerase chain reaction analysis. For the induction of chondrogenic differentiation, HADSCs showed a feature of aggregation and formed a dense matrix of proteoglycans. Staining results from Alizirin Red and Oil Red O indicated the HADSCs also successfully differentiated into adipogenic and osteogenic lineages after 21 days. According to a previous study, HADSCs were strongly positive for the mesenchymal markers CD90, CD73

  15. Facial nerve repair with Gore-Tex tube and adipose-derived stem cells: an animal study in dogs.

    Science.gov (United States)

    Ghoreishian, Mehdi; Rezaei, Majid; Beni, Batoul Hashemi; Javanmard, Shaghayegh Haghjooy; Attar, Bijan Movahedian; Zalzali, Haidar

    2013-03-01

    Synthetic conduits have been considered a viable option in nerve reconstructive procedures. They address the goal of entubulization and eliminate the disadvantages of autografts. However, despite all successful reports, none has contained regeneration characteristics, such as growth factors or essential cells, for nerve repair. The authors evaluated the capability of adipose-derived stem cells in Gore-Tex tubes to enhance facial nerve repair. Undifferentiated mesenchymal stem cells were extracted from the autogenous adipose tissues of 7 mongrel dogs. The frontal branch of the facial nerve was transected. A gap size of 7 mm was repaired with an expanded polytetrafluoroethylene tube filled with undifferentiated adipose-derived stem cells encapsulated in alginate hydrogel. The control sides were repaired with the tube and alginate alone. The healing phase was 12 weeks. Except in 2 control sides, an organized neural tissue was formed within the tubes. Compared with the normal nerve diameter, there was a decreased ratio of 29% and 39% in the experimental and control groups, respectively. Neurofilament-positive axon counts were 67% of normal values in the 2 groups. There was no significant difference between groups in histomorphometric parameters. Nerve conduction velocity in the experimental group (28.5 ± 3.5 m/s) was significantly greater than in the control group (16.2 ± 7 m/s). The experimental group also exhibited a greater maximal amplitude of action potential (1.86 ± 0.24 mV) than the control group (1.45 ± 0.49 mV). Addition of stem cells in the Gore-Tex tube enhanced the neural repair from a functional standpoint. However, for better functional and histologic results, differentiated Schwann cells and other mediators may be warranted. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Articular and subcutaneous adipose tissues of rheumatoid arthritis patients represent equal sources of immunoregulatory mesenchymal stem cells.

    Science.gov (United States)

    Skalska, Urszula; Kuca-Warnawin, Ewa; Kornatka, Anna; Janicka, Iwona; Musiałowicz, Urszula; Burakowski, Tomasz; Kontny, Ewa

    2017-12-01

    Adipose-derived mesenchymal stem cells (ASCs) have immunoregulatory properties, but their activity is dependent on signals provided by the local microenvironment. It is likely that highly inflammatory milieu of rheumatoid joint affects ASCs activity. To test this hypothesis, the function of rheumatoid ASCs derived from articular adipose tissue (AT-ASCs) and ASCs derived from subcutaneous adipose tissue (Sc-ASCs) has been analysed. Articular adipose tissue (infrapatellar fat pad) and subcutaneous adipose tissue (from the site of skin closure with sutures) were obtained from rheumatoid arthritis (RA) patients undergoing total knee joint replacement surgery. ASCs were isolated accordingly to the routinely applied procedure, expanded and treated or not with IFNγ and TNF (10 ng/ml). To evaluate immunomodulatory properties of AT- and Sc-ASCs, co-cultures with peripheral blood mononuclear cells (PBMCs) from healthy donors have been set. Proliferation of activated PBMCs ( 3 H-thymidine incorporation method), secretion of IL-10 and IL-17A in co-culture supernatants (specific ELISA tests) and T regulatory FoxP3 + cells (Tregs) percentage have been evaluated (flow cytometry). Performed experiments demonstrated that ASCs from both sources have comparable properties. They suppress proliferation of activated PBMCs to the similar extent, induce IL-10 secretion by resting PBMCs and moderately induce generation of FoxP3 + Treg cells. Interestingly, both AT-ASCs and Sc-ASCs cause increase of IL-17A secretion by activated PBMCs as well as induce up-regulation of IL-6 concentration in co-culture supernatants. We demonstrated that AT-ASCs and Sc-ASCs obtained from RA patients possess similar immunomodulatory properties despite different localization and distinct cytokine milieu of tissue of origin. Our results indicate that ASCs derived from rheumatoid adipose tissues are not strongly immunosuppressive in vitro and that they may contribute to the pathogenesis of RA due to IL-17A

  17. Expressions of pathologic markers in PRP based chondrogenic differentiation of human adipose derived stem cells.

    Science.gov (United States)

    Pakfar, Arezou; Irani, Shiva; Hanaee-Ahvaz, Hana

    2017-02-01

    Optimization of the differentiation medium through using autologous factors such as PRP is of great consideration, but due to the complex, variable and undefined composition of PRP on one hand and lack of control over the absolute regulatory mechanisms in in vitro conditions or disrupted and different mechanisms in diseased tissue microenvironments in in vivo conditions on the other hand, it is complicated and rather unpredictable to get the desired effects of PRP making it inevitable to monitor the possible pathologic or undesired differentiation pathways and therapeutic effects of PRP. Therefore, in this study the probable potential of PRP on inducing calcification, inflammation and angiogenesis in chondrogenically-differentiated cells was investigated. The expressions of chondrogenic, inflammatory, osteogenic and angiogenic markers from TGFβ or PRP-treated cells during chondrogenic differentiation of human adipose-derived stem cells (ADSCs) was evaluated. Expressions of Collagen II (Col II), Aggrecan, Sox9 and Runx2 were quantified using q-RT PCR. Expression of Col II and X was investigated by immunocytochemistry as well. Glycosaminoglycans (GAGs) production was also determined by GAG assay. Possible angiogenic/inflammatory potential was determined by quantitatively measuring the secreted VEGF, TNFα and phosphorylated VEGFR2 via ELISA. In addition, the calcification of the construct was monitored by measuring ALP activity and calcium deposition. Our data showed that PRP positively induced chondrogenesis; meanwhile the secretion of angiogenic and inflammatory markers was decreased. VEGFR2 phosphorylation and ALP activity had a decreasing trend, but tissue mineralization was enhanced upon treating with PRP. Although reduction in inflammatory/angiogenic potential of the chondrogenically differentiated constructs highlights the superior effectiveness of PRP in comparison to TGFβ for chondrogenic differentiation, yet further improvement of the PRP

  18. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  19. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis.

    Science.gov (United States)

    Garimella, Manasa G; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T; Mishra, Gyan C; Chattopadhyay, Naibedya; Wani, Mohan R

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Can Chen

    2018-01-01

    Full Text Available Stem cell transplantation is one of most valuable methods in the treatment of myocardial infarction, and adipose-derived stem cells (ASCs are becoming a hot topic in medical research. Previous studies have shown that ASCs can be differentiated into cardiomyocyte-like cells, but the efficiency and survival rates are low. We investigated the role and mechanism of microRNA-1 (miR-1 in the differentiation of ASCs into cardiomyocyte-like cells. ASCs and cardiomyocytes were isolated from neonatal rats. We constructed lentivirus for overexpressing miR-1 and used DAPT, an antagonist of the Notch1 pathway, for in vitro analyses. We performed cocultures with ASCs and cardiomyocytes. The differentiation efficiency of ASCs was detected by cell-specific surface antigens. Our results showed that miR-1 can promote the expression of Notch1 and reduce the expression of Hes1, a Notch pathway factor, and overexpression of miR-1 can promote the differentiation of ASCs into cardiomyocyte-like cells, which may occur by regulating Notch1 and Hes1.

  1. Amniotic membrane seeded with mesenchymal adipose-derived stem cell for coverage of wound in third degree burn: An experimental study

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Fatemi

    2014-09-01

    Conclusion: Acellular amnion seeded with adipose-derived stem cell can result in faster wound healing and better histopathology characteristic. The amnion as a scaffold and the fat derived stem cells as healing accelerator are recommended for coverage of the 3rd degree burn wounds after excision and it may reduce the need for skin graft.

  2. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  3. Wound Healing and Angiogenesis through Combined Use of a Vascularized Tissue Flap and Adipose-Derived Stem Cells in a Rat Hindlimb Irradiated Ischemia Model.

    Science.gov (United States)

    Yoshida, Shuhei; Yoshimoto, Hiroshi; Hirano, Akiyoshi; Akita, Sadanori

    2016-05-01

    Treatment of critical limb ischemia is sometimes difficult because of the patient's condition, and some novel approaches are needed. The hindlimbs of Sprague-Dawley rats, after 20-Gy x-ray irradiation and surgical occlusion, were divided into four groups: with a superficial fascial flap, 5.0 × 10 adipose-derived stromal/stem cells, and both combined. The rats were tested for laser tissue blood flow, immunohistologic blood vessel density, and foot paw punch hole wound healing. Green fluorescent protein-tagged Sprague-Dawley rats were used for further investigation by cell tracking for 2 weeks. Laser tissue blood flow demonstrated a significant increase in the combined treatment of flap and adipose-derived stem cells at both 1 and 2 weeks. There were no significant differences between the treatment groups treated with flaps alone and those treated with adipose-derived stem cells alone. Wound healing was significantly increased following combined treatment at 1 week, and there was no wound by 2 weeks except for the no-flap and no-adipose-derived stem cell group. The number of vessels depicted by von Willebrand factor showed a significant increase in the combined treatment group, at both 1 week and 2 weeks. In the cell tracking group, at 2 weeks, the green fluorescent protein-tagged adipose-derived stem cells were significantly more positive in the no-flap group than in the flap group. Adipose-derived stem cells may be a potent cell source in irradiated and occluded limbs by enhancing tissue blood flow and blood vessel density. Adipose-derived stem cells may play an important role in some difficult ischemic conditions in terms of wound healing.

  4. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  5. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  6. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study.

    Science.gov (United States)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    2017-04-01

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000 cells/cm 2 , 20,000 cells/cm 2 , 50,000 cells/cm 2 , and 400,000 cells/cm 2 with and without 10 or 20 ng/ml tumor necrosis factor alpha (TNFα) and 25 or 50 ng/ml interferon gamma (IFNγ). ASC-sheets formed at 400,000 cells/cm 2 after 48 h of culture. With increasing concentrations of TNFα and IFNγ, ASC-sheets with 400,000 cells/cm 2 had increased production of angiogenic factors Vascular Endothelial Growth Factor and Fibroblast Growth Factor and decreased expression of pro-inflammatory genes TNFA and Prostaglandin Synthase 2 (PTGS2) compared to lower density ASCs. Moreover, the conditioned medium of ASC-sheets with 400,000 cells/cm 2 stimulated with the low concentration of TNFα and IFNγ enhanced endothelial cell proliferation and fibroblast migration. These results suggest that a high cell density enhances ASC paracrine function might beneficial for wound repair, especially in pro-inflammatory conditions.

  7. Osteogenic Potential of Mouse Adipose-Derived Stem Cells Sorted for CD90 and CD105 In Vitro

    Directory of Open Access Journals (Sweden)

    Maiko Yamamoto

    2014-01-01

    Full Text Available Adipose tissue-derived stromal cells, termed ASCs, play an important role in regenerative applications. They resemble mesenchymal stem cells owing to their inexhaustibility, general differentiation potential, and plasticity and display a series of cell-specific and cluster-of-differentiation (CD marker profiles similar to those of other somatic stem cells. Variations in phenotypes or differentiation are intimately associated with CD markers. The purpose of our study was to exhibit distinct populations of ASCs with differing characteristics for osteogenic differentiation. The primary cell batch of murine-derived ASCs was extracted from subcutaneous adipose tissue and the cells were sorted for the expression of the surface protein molecules CD90 and CD105 using flow cytometry. Each cell population sorted for CD90 and CD105 was analyzed for osteogenic potency after cell culture. The results suggested that ASCs exhibit distinct populations with differing characteristics for osteogenic differentiation: unsorted ASCs stimulated comparable mineralized nodule formation as bone marrow stromal cells (BMSCs in osteogenic medium and viral transfection for BMP2 accelerated the formation of mineralized nodules in CD90 and/or CD105 positive ASCs with observation of decrease in CD105 expression after 14 days. Future studies assessing different immunophenotypes of ASCs should be undertaken to develop cell-based tissue engineering.

  8. The Use of Adipose-Derived Stem Cells in Selected Skin Diseases (Vitiligo, Alopecia, and Nonhealing Wounds

    Directory of Open Access Journals (Sweden)

    Agnieszka Owczarczyk-Saczonek

    2017-01-01

    Full Text Available The promising results derived from the use of adipose-derived stem cells (ADSCs in many diseases are a subject of observation in preclinical studies. ADSCs seem to be the ideal cell population for the use in regenerative medicine due to their easy isolation, nonimmunogenic properties, multipotential nature, possibilities for differentiation into various cell lines, and potential for angiogenesis. This article reviews the current data on the use of ADSCs in the treatment of vitiligo, various types of hair loss, and the healing of chronic wounds.

  9. Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads.

    Science.gov (United States)

    Pak, Jaewoo

    2012-01-01

    Osteonecrosis, also known as avascular necrosis, of the femoral head is a debilitating disorder that commonly affects 30- to 50-year-old individuals. Currently, definitive treatment is limited to total hip replacement. However, recent studies have demonstrated bone regeneration in the femoral head after the infusion of bone marrow-derived mesenchymal stem cells. In addition, local injection of adipose tissue-derived stem cells has been shown to regenerate medullary bone-like tissue 3 months after treatment. However, there have been no long-term follow-up studies on humans treated with adipose tissue-derived stem cells for osteonecrosis. To determine if treatment with adipose tissue-derived stem cells and platelet-rich plasma leads to the regeneration of medullary bone-like tissue and long-term reduction of hip pain in patients with femoral head osteonecrosis. This report of two clinical cases was in compliance with the Declaration of Helsinki. Also, the Korean Food and Drug Administration has allowed the use of adipose tissue-derived stem cells (ADSCs) in medical treatments since 2009. To obtain ADSCs, lipoaspirates were obtained from lower abdominal subcutaneous adipose tissue. The stromal vascular fraction was separated from the lipoaspirates by centrifugation after treatment with collagenase. The stem-cell-containing stromal vascular fraction was mixed with calcium chloride-activated platelet rich plasma and hyaluronic acid, and this mixture was then injected into the diseased hip. The affected hip was reinjected with calcium chloride-activated platelet rich plasma weekly for 4 weeks. Patients were subjected to pre- and post-treatment magnetic resonance imaging (MRI) scans. Two patients (34- and 39-year-old men) with femoral head osteonecrosis and severe hip pain were treated with adipose-derived stem cells. The MRI scans of the affected hip in both patients showed segmental areas of low signal intensity (T1 axial views) in the subchondral bones with a "double

  10. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  11. The osteoblastogenesis potential of adipose mesenchymal stem cells in myeloma patients who had received intensive therapy.

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin

    Full Text Available Multiple myeloma (MM is characterized by advanced osteolytic lesions resulting from the activation of osteoclasts (OCs and inhibition of osteoblasts (OBs. OBs are derived from mesenchymal stem cells (MSCs from the bone marrow (BM, however the pool and function of BMMSCs in MM patients (MM-BMMSCs are reduced by myeloma cells (MCs and cytokines secreted from MCs and related anti-MM treatment. Such reduction in MM-BMMSCs currently cannot be restored by any means. Recently, genetic aberrations of MM-BMMSCs have been noted, which further impaired their differentiation toward OBs. We hypothesize that the MSCs derived from adipose tissue (ADMSCs can be used as alternative MSC sources to enhance the pool and function of OBs. Therefore, the purpose of this study was to compare the osteogenesis ability of paired ADMSCs and BMMSCs in MM patients who had completed intensive therapy. Fifteen MM patients who had received bortezomib-based induction and autologous transplantation were enrolled. At the third month after the transplant, the paired ADMSCs and BMMSCs were obtained and cultured. Compared with the BMMSCs, the ADMSCs exhibited a significantly higher expansion capacity (100% vs 13%, respectively; P = .001 and shorter doubling time (28 hours vs 115 hours, respectively; P = .019. After inducing osteogenic differentiation, although the ALP activity did not differ between the ADMSCs and BMMSCs (0.78 U/µg vs 0.74±0.14 U/µg, respectively; P = .834, the ADMSCs still exhibited higher calcium mineralization, which was determined using Alizarin red S (1029 nmole vs 341 nmole, respectively; P = .001 and von Kossa staining (2.6 E+05 µm2 vs 5 E+04 µm2, respectively; P = .042, than the BMMSCs did. Our results suggested that ADMSCs are a feasible MSC source for enhancing the pool and function of OBs in MM patients who have received intensive therapy.

  12. Boiling Method-Based Zinc Oxide Nanorods for Enhancement of Adipose-Derived Stem Cell Proliferation.

    Science.gov (United States)

    Jin, Su-Eon; Ahn, Hyo-Sun; Kim, Ji Hye; Arai, Yoshie; Lee, Soo-Hong; Yoon, Tae-Jong; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2016-09-01

    Adipose-derived stem cells (ASCs) are typically expanded to acquire large numbers of cells for therapeutic applications. Diverse stimuli such as sphingosylphosphocholine and vitamin C have been used to increase the production yield and regenerative potential of ASCs. In the present study, we hypothesized that ZnO nanorods have promising potential for the enhancement of ASC proliferation. ZnO nanorods were prepared using three different methods: grinding and boiling at low temperature with and without surfactant. The physicochemical properties of the nanorods such as their crystallinity, morphology, size, and solvent compatibility were evaluated, and then, the ability of the synthesized ZnO nanorods to enhance ASC proliferation was investigated. Scanning electron microscopy images of all of the ZnO powders showed rod-shaped nanoflakes with lengths of 200-500 nm. Notably, although ZnO-G produced by the grinding method was well dispersed in ethanol, atomic force microscopy images of dispersions of both ZnO-B from boiling methods and ZnO-G indicated the presence of clusters of ZnO nanorods. In contrast, ZnO-B was freely dispersible in 5% dextrose of water and dimethyl sulfoxide, whereas ZnO-G and ZnO-M, produced by boiling with ethanolamine, were not. All three types of ZnO nanorods increased the proliferation of ASCs in a dose-dependent manner. These results collectively suggest that ZnO nanorods have promising potential for use as an agent for the enhancement of ASC proliferation.

  13. Effects of Hypoxia on the Immunomodulatory properties of Adipose tissue-derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    M eRoemeling-Van Rhijn

    2013-07-01

    Full Text Available Adipose tissue-derived mesenchymal stem cells (ASC are of great interest as a cellular therapeutic agent for regenerative and immunomodulatory purposes. The function of ASC adapts to environmental conditions, such as oxygen tension. Oxygen levels within tissues are typically much lower than under standard culture conditions and ASC used for therapy therefore encounter a change from normoxic to hypoxic conditions. The effect of hypoxia on the regenerative potential of ASC has been investigated in a number of studies. The effect of hypoxia on the immunomodulatory function of ASC, however, remains to be determined. In the present study the effect of hypoxic (1% oxygen culture conditions on human ASC was examined. ASC showed no signs of toxicity under low oxygen levels and no major immunophenotypical changes were observed, apart from a down regulation of the marker CD105. Oxygen tension had no effect on the proliferation of ASC and colony forming unit (CFU efficiency remained the same under 1% and 20% oxygen. Under both oxygen levels ASC were capable of strong upregulation of the immunomodulatory molecules indolamine 2,3-dioxygenase (IDO and programmed death ligand-1 (PD-L1 upon stimulation with IFN- and TNF-, and, in addition, IDO activity as measured by the accumulation of L-kynurenine was not affected under hypoxia. The ability of ASC to inhibit anti-CD3/CD28 stimulated CD4+ and CD8+ T cell proliferation was enhanced under hypoxic conditions.The results of the present study demonstrate that the immunosuppressive capacity of ASC is maintained under hypoxic conditions. These findings are important for the therapeutic use of ASC and may be applied for the in vitro generation of ASC with improved functionality for therapeutic use.

  14. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection.ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated

  15. Fascia Origin of Adipose Cells.

    Science.gov (United States)

    Su, Xueying; Lyu, Ying; Wang, Weiyi; Zhang, Yanfei; Li, Danhua; Wei, Suning; Du, Congkuo; Geng, Bin; Sztalryd, Carole; Xu, Guoheng

    2016-05-01

    Adipocytes might arise from vascular stromal cells, pericytes and endothelia within adipose tissue or from bone marrow cells resident in nonadipose tissue. Here, we identified adipose precursor cells resident in fascia, an uninterrupted sheet of connective tissue that extends throughout the body. The cells and fragments of superficial fascia from the rat hindlimb were highly capable of spontaneous and induced adipogenic differentiation but not myogenic and osteogenic differentiation. Fascial preadipocytes expressed multiple markers of adipogenic progenitors, similar to subcutaneous adipose-derived stromal cells (ASCs) but discriminative from visceral ASCs. Such preadipocytes resided in fascial vasculature and were physiologically active in vivo. In growing rats, adipocytes dynamically arose from the adventitia to form a thin adipose layer in the fascia. Later, some adipocytes appeared to overlay on top of other adipocytes, an early sign for the formation of three-dimensional adipose tissue in fascia. The primitive adipose lobules extended invariably along blood vessels toward the distal fascia areas. At the lobule front, nascent capillaries wrapped and passed ahead of mature adipocytes to form the distal neovasculature niche, which might replenish the pool of preadipocytes and supply nutrients and hormones necessary for continuous adipogenesis. Our findings suggest a novel model for the origin of adipocytes from the fascia, which explains both neogenesis and expansion of adipose tissue. Fascial preadipocytes generate adipose cells to form primitive adipose lobules in superficial fascia, a subcutaneous nonadipose tissue. With continuous adipogenesis, these primitive adipose lobules newly formed in superficial fascia may be the rudiment of subcutaneous adipose tissue. Stem Cells 2016;34:1407-1419. © 2016 AlphaMed Press.

  16. Reconstruction of epidural fat with engineered adipose tissue from adipose derived stem cells and PLGA in the rabbit dorsal laminectomy model.

    Science.gov (United States)

    Xu, Jianli; Chen, Yingchun; Yue, Yunlong; Sun, Jian; Cui, Lei

    2012-10-01

    Epidural fibrosis resulted from epidural fat destruction following laminectomy operation is regarded as a main cause of failed back surgery syndrome, which represents one of the most common complications in spine surgery. Up to now, the effectiveness of currently available treatments to prevent such a syndrome is quite limited. In the present study, we aimed to restore epidural fat using adipose tissue engineered from adipose derived stem cells (ASCs) in a rabbit dorsal laminectomy model. ASCs isolated from subcutaneous fat were first expanded to passage 3, seeded on porous poly(lactic-co-glycolic acid, PLGA) scaffold and then adipogenically induced for 7 days in vitro to form cell-scaffold complex. Laminectomy sites were created at T13-L1 level in each animal. The laminectomy defect was implanted either with cell-scaffold complex or PLGA scaffold alone. Non-treated defect was also included as a control. The animals were subjected to MRI evaluation at 1, 12 and 24 weeks post-surgery, and sacrificed at 24 weeks for gross and histological observation. It was demonstrated by MRI evaluation that scar tissue of coarse and high density was formed within laminectomy site in PLGA alone and non-treated groups as early as 12 weeks. However, the defect implanted with engineered adipose had formed a continuous linear adipose tissue regenerated along the spinal cord at 24 weeks. Histologically, a distinct area of adipose tissue just overlaying the dura mater could be identified in cell-scaffold complex treated group at 24 weeks post-operation. Regeneration of epidural fat was further confirmed by positive Oil Red O staining. As to the defect treated with PLGA alone or left untreated, either fine or dense scar tissue adhering to the dura mater was observed. Moreover, we could track the implanted ASCs labeled by magnetic nanoparticles within epidural area for as long as four weeks by MRI detection. Thus, adipose tissue engineered from ASCs exhibited great potential in restoration

  17. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue.

    Science.gov (United States)

    da Silva Meirelles, Lindolfo; de Deus Wagatsuma, Virgínia Mara; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima, Simone; Covas, Dimas Tadeu

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fibrous Synovium Releases Higher Numbers of Mesenchymal Stem Cells Than Adipose Synovium in a Suspended Synovium Culture Model.

    Science.gov (United States)

    Katagiri, Kenta; Matsukura, Yu; Muneta, Takeshi; Ozeki, Nobutake; Mizuno, Mitsuru; Katano, Hisako; Sekiya, Ichiro

    2017-04-01

    To develop an in vitro model, the "suspended synovium culture model," to demonstrate the mobilization of mesenchymal stem cells (MSCs) from the synovium into a noncontacted culture dish through culture medium. In addition, to examine which synovium, fibrous synovium or adipose synovium, released more MSCs in the knee with osteoarthritis. Human synovial tissue was harvested during total knee arthroplasty from knee joints of 34 patients with osteoarthritis (28 patients: only fibrous synovium, 6 patients: fibrous and adipose synovium). One gram of synovium was suspended with a thread in a bottle containing 40 mL of culture medium and a 3.5-cm-diameter culture dish at the bottom. After 7 days, the culture dish in the bottle was examined. For the cells harvested, multipotentiality and surface epitopes were analyzed. The numbers of colonies derived from fibrous synovium and adipose synovium were also compared. Colonies of spindle-shaped cells were observed in the culture dish in all 28 donors. Colonies numbered 26 on average, and the cells derived from colony-forming cells had multipotentiality for chondrogenesis, adipogenesis, calcification, and surface epitopes similar to MSCs. The number was colonies was significantly higher in fibrous synovium than in adipose synovium (P < .05, n = 6). We developed a suspended synovium culture model. Suspended synovium was able to release MSCs into a noncontacted culture dish through medium in a bottle. Fibrous synovium was found to release greater numbers of MSCs than adipose synovium in our culture model. CLINICAL RELEVANCE: This model could be a valuable tool to screen drugs capable of releasing MSCs from the synovium into synovial fluid. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Marędziak, Monika, E-mail: monika.maredziak@gmail.com [Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław (Poland); Wroclaw Research Centre EIT+, Wrocław (Poland); Śmieszek, Agnieszka, E-mail: smieszek.agnieszka@gmail.com [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland); Tomaszewski, Krzysztof A., E-mail: krtomaszewski@gmail.com [Department of Anatomy, Jagiellonian University Medical College, Krakow (Poland); Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.wroc.pl [Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology, Wroclaw (Poland); Marycz, Krzysztof, E-mail: krzysztofmarycz@interia.pl [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland)

    2016-01-15

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties. - Graphical abstract: Influence of static magnetic field on viability and differentiation properties of human adipose derived mesenchymal stem cells. Abbreviations: SMF – static magnetic field; hASCs – human adipose derived mesenchymal stem cells; PF – proliferation factor; PDT – population doubling time; CFU-E –> colony forming unit efficiency; OPN – osteopontin; OCL – osteocalcin; Col – collagen type I; BMP-2 – bone morphogenetic protein 2; Ca – calcium; P – phosphorus. - Highlights: • Effects of static

  20. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.

    Science.gov (United States)

    Xu, Liangliang; Liu, Yamei; Sun, Yuxin; Wang, Bin; Xiong, Yunpu; Lin, Weiping; Wei, Qiushi; Wang, Haibin; He, Wei; Wang, Bin; Li, Gang

    2017-12-06

    Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the assertion has also been lacking. Human bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ATSCs) were isolated from bone marrow and adipose tissue obtained after total hip arthroplasty. ATSCs and BMSCs were incubated in standard growth medium. Trilineage differentiation including osteogenesis, adipogenesis, and chondrogenesis was performed by addition of relevant induction mediums. The expression levels of trilineage differentiation marker genes were evaluated by quantitative RT-PCR. The methylation status of CpG sites of Runx2, PPARγ, and Sox9 promoters were checked by bisulfite sequencing. In addition, ectopic bone formation and calvarial bone critical defect models were used to evaluate the bone regeneration ability of ATSCs and BMSCs in vivo. The results showed that BMSCs possessed stronger osteogenic and lower adipogenic differentiation potentials compared to ATSCs. There was no significant difference in the chondrogenic differentiation potential. The CpG sites of Runx2 promoter in BMSCs were hypomethylated, while in ATSCs they were hypermethylated. The CpG sites of PPARγ promoter in ATSCs were hypomethylated, while in BMSCs they were hypermethylated. The methylation status of Sox9 promoter in BMSCs was only slightly lower than that in ATSCs. The epigenetic memory obtained from either bone marrow or adipose tissue favored MSC differentiation along an osteoblastic or adipocytic lineage. The methylation status of the main transcription factors controlling MSC fate contributes to the differential differentiation capacities of different source-derived MSCs.

  1. Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts

    Directory of Open Access Journals (Sweden)

    Chae Min Kim

    2017-09-01

    Full Text Available Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2, ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05. ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05 in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.

  2. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine.

    Science.gov (United States)

    Schneider, Sandra; Unger, Marina; van Griensven, Martijn; Balmayor, Elizabeth R

    2017-05-19

    The use of mesenchymal stem cells (MSCs) in research and in regenerative medicine has progressed. Bone marrow as a source has drawbacks because of subsequent morbidities. An easily accessible and valuable source is adipose tissue. This type of tissue contains a high number of MSCs, and obtaining higher quantities of tissue is more feasible. Fat tissue can be harvested using different methods such as liposuction and resection. First, a detailed isolation protocol with complete characterization is described. This also includes highlighting problems and pitfalls. Furthermore, some comparisons of these different harvesting methods exist. However, the later characterization of the cells is conducted poorly in most cases. We performed an in-depth characterization over five passages including an investigation of the effect of freezing and thawing. Characterization was performed using flow cytometry with CD markers, metabolic activity with Alamar Blue, growth potential in between passages, and cytoskeleton staining. Our results show that the cells isolated with distinct isolation methods (solid versus liposuction "liquid") have the same MSC potential. However, the percentage of cells positive for the markers CD73, CD90, and CD105 is initially quite low. The cells isolated from the liquid fat tissue grow faster at higher passages, and significantly more cells display MSC markers. In summary, we show a simple and efficient method to isolate adipose-derived mesenchymal stem cells from different preparations. Liposuctions and resection can be used, whereas liposuction has more growth potential at higher passages.

  3. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  4. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Raquel Cuevas-Diaz Duran

    2013-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271, yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects.

  5. CD90- (Thy-1- High Selection Enhances Reprogramming Capacity of Murine Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2013-01-01

    Full Text Available Background. Mesenchymal stem cells (MSCs, including adipose tissue-derived mesenchymal stem cells (ADSC, are multipotent and can differentiate into various cell types possessing unique immunomodulatory features. Several clinical trials have demonstrated the safety and possible efficacy of MSCs in organ transplantation. Thus, stem cell therapy is promising for tolerance induction. In this study, we assessed the reprogramming capacity of murine ADSCs and found that CD90 (Thy-1, originally discovered as a thymocyte antigen, could be a useful marker for cell therapy. Method. Murine ADSCs were isolated from B6 mice, sorted using a FACSAria cell sorter by selection of CD90Hi or CD90Lo, and then transduced with four standard factors (4F; Oct4, Sox2, Klf4, and c-Myc. Results. Unsorted, CD90Hi-sorted, and CD90Lo-sorted murine ADSCs were reprogrammed using standard 4F transduction. CD90Hi ADSCs showed increased numbers of alkaline phosphatase-positive colonies compared with CD90Lo ADSCs. The relative reprogramming efficiencies of unsorted, CD90Hi-sorted, and CD90Lo-sorted ADSCs were 100%, 116.5%, and 74.7%, respectively. CD90Hi cells were more responsive to reprogramming. Conclusion. CD90Hi ADSCs had greater reprogramming capacity than CD90Lo ADSCs, suggesting that ADSCs have heterogeneous subpopulations. Thus, CD90Hi selection presents an effective strategy to isolate a highly suppressive subpopulation for stem cell-based tolerance induction therapy.

  6. [Pretreatment with cyclosporin A nanoparticles emulsion protects apoptosis of swine adipose tissue-derived stem cells].

    Science.gov (United States)

    Yin, Qiao-xiang; Pei, Zhi-yong; Wang, Heng; Zhao, Yu-sheng

    2013-06-01

    To investigate the effect of cyclosporine A-nanoparticles emulsion (CsA-NP) on protecting apoptosis of swine adipose tissue-derived stem cells (ASC ) and related mechanisms. ASC were randomized to six groups: control group,single H2O2 group,CsA or CsA-NP 0.1 mg/ml+H2O2 group,CsA or CsA-NP 1.0 mg/ml+H2O2 group, CsA or CsA-NP 5.0 mg/ml+H2O2 group,CsA or CsA-NP 10.0 mg/ml+H2O2 group. ASC apoptosis was induced by hydrogen peroxide (H2O2100 µmol/L) in vitro. The morphology of apoptotic cells was observed and the number of apoptotic cells was measured. Apoptosis of ASC was detected by flow cytometry using an apoptosis kit. Cell activity was determined by CCK-8 assay. Caspase-3 activity was detected by applying a caspase-3 assay kit. Expression of cytochrome C was investigated by Western blot. H2O2 induced ASC apoptosis was evidenced by morphological and biochemical changes,which could be significantly reduced by pre-treatment with CsA or CsA-NP at concentration of 0.1-10.0 mg/ml, and the best effect was observed at concentration of 5 mg/ml (apoptosis rate: CsA: 10.6% ± 2.8% vs. 25.2% ± 3.8%; CsA-NP: 6.2% ± 2.6% vs. 25.2% ± 3.6% in control group, all P NP pre-treated ASC at concentration of 0.1-10.0 mg/ml than in H2O2 group (P NP (0.1-10.0 mg/ml) significantly down -regulated caspase-3 activity. Furthermore, CsA or CsA-NP (5 mg/ml) completely inhibited the H2O2-induced release of cytochrome C. These results suggest that CsA-NP and CsA could protect the oxidative stress-induced ASC apoptosis through decreasing the activation of caspase-3 and inhibiting the release of cytochrome C.

  7. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats.

    Science.gov (United States)

    Kim, Hyun-Wook; Song, Woo-Jin; Li, Qiang; Han, Sei-Myoung; Jeon, Kee-Ok; Park, Sang-Chul; Ryu, Min-Ok; Chae, Hyung-Kyu; Kyeong, Kweon; Youn, Hwa-Young

    2016-12-30

    Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchlorate (1 × 10⁷ cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs.

  8. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Kornacker, Martin; Mehlhorn, Alexander

    2007-01-01

    T cells in vitro. Therefore, BMSCs are said to be available for allogenic cell therapy. Although the immunological characteristics of BMSCs have been the subject of various investigations, those of stem cells isolated from adipose tissue (ASCs) have not been adequately described. In addition......Mesenchymal stem cells (MSCs) can be isolated from various tissues and represent an attractive cell population for tissue-engineering purposes. MSCs from bone marrow (bone marrow stromal cells [BMSCs]) are negative for immunologically relevant surface markers and inhibit proliferation of allogenic...... were sought. The pattern of surface antigen expression of BMSCs is the same as that of ASCs. Analogous to BMSCs, undifferentiated cells isolated from adipose tissue lack expression of MHC-II; this is not lost in the course of the osteogenic differentiation process. In co-culture with allogenic PBMCs...

  9. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine.

    Science.gov (United States)

    Park, Eulsoon; Cho, Hong-Baek; Takimoto, Koichi

    2015-05-01

    Adipose-derived stem cells have the ability to turn into several clinically important cell types. However, it is difficult to transfect these cells with the use of conventional cationic lipid-based reagents. Polyethylenimine (PEI) is considered to be an inexpensive and effective tool for delivery of nucleic acids into mammalian cells. We used a linear PEI conjugated with the nuclear localization signal (NLS) peptide of Simian vacuolating virus 40 large T antigen (PEI-NLS) for transfection of plasmid DNA into adipose-derived cells. We also tested if transfection of cells in suspension might improve the degree and duration of exogenous gene expression. Transfection of cells in suspension with the use of a PEI conjugated with an NLS peptide resulted in high levels of reporter gene expression for an extended period of time in clonal 3T3-L1 preadipocytes and native human adipose-derived stem cells. The reporter gene expression increased for 3 days after the addition of the PEI-NLS peptide-DNA mixture in cell suspension and remained significant for at least 7 days. Cell density did not influence the level of reporter gene expression. Thus, the suspension method with the use of an NLS peptide-conjugated PEI leads to a robust and sustained expression of exogenous genes in adipose-derived cells. The devised transfection method may be useful for reprogramming of adipose-derived stem cells and cell-based therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Extracts of adipose derived stem cells slows progression in the R6/2 model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wooseok Im

    Full Text Available Stem cell therapy is a promising treatment for incurable disorders including Huntington's disease (HD. Adipose-derived stem cell (ASC is an easily available source of stem cells. Since ASCs can be differentiated into nervous stem cells, it has clinically feasible potential for neurodegenerative disease. In addition, ASCs secrete various anti-apoptotic growth factors, which improve the symptoms of disease from transplanted ASCs. Thus, cell-free extracts of ASCs (ASCs-E could be a potential candidate for treatment of HD. Here, we investigated effects of ASCs-E on R6/2 HD mouse model and neuronal cells. In R6/2 HD model, injection of ASCs-E improved the performance in Rotarod test. ASCs-E also ameliorated striatal atrophy and mutant huntingtin aggregation in the striatum. In Western blot increased expressions of p-Akt, p-CREB and PGC1α were noted by injection of ASCs-E, when comparing to the R6/2 HD model. Neuro2A neuroblastoma cells treated with ASCs-E showed increased expression of p-CREB and PGC1α. In conclusion, ASCs-E delayed disease progression in animal model of HD by restoring of CREB-PGC1α pathway and could be a potential resource for treatment of HD.

  11. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  12. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  13. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  14. Delivery of Adipose-Derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice Through Remodeling Macrophage Phenotypes.

    Science.gov (United States)

    Shang, Qianwen; Bai, Yang; Wang, Guannan; Song, Qiang; Guo, Chun; Zhang, Lining; Wang, Qun

    2015-09-01

    Adipose-derived stem cells (ADSCs) have been used to control several autoimmune or inflammatory diseases due to immunosuppressive properties, but their role in obesity-associated inflammation remains unestablished. This study aims to evaluate the effects of ADSCs on obesity-induced white adipose tissue (WAT) inflammation and insulin resistance. We found that diet-induced obesity caused a remarkable reduction of ADSC fraction in mouse WAT. Delivery of lean mouse-derived ADSCs, which could successfully locate into WAT of obese mice, substantially improved insulin action and metabolic homeostasis of obese mice. ADSC treatment not only reduced adipocyte hypertrophy but also attenuated WAT inflammation by reducing crown-like structures of macrophages and tumor necrosis factor (TNF)-α secretion. Importantly, ADSC treatment remodeled the phenotypes of adipose-resident macrophages from proinflammatory M1 toward anti-inflammatory M2-like subtypes, as characterized by decreased MHC class II-expressing but increased interleukin (IL)-10-producing macrophages together with low expression of TNF-α and IL-12. Coculture of ADSCs through the transwell or conditional medium with induced M1 macrophages also reproduced the phenotypic switch toward M2-like macrophages, which was substantiated by elevated arginase 1, declined inducible nitric oxide synthase, inhibition of NF-κB activity, and activation of STAT3/STAT6. Taken together, our data support that ADSC supplement in obese mice could sustain IL-10-producing M2-like macrophages in WAT through paracrine action, thereby suggesting the crucial role of ADSCs in resolving WAT inflammation, maintaining adipose homeostasis, and proposing a potential ADSC-based approach for the treatment of obesity-related diseases.

  15. Do Mesenchymal Stem Cells Derived From Atypical Lipomatous Tumors Have Greater Differentiation Potency Than Cells From Normal Adipose Tissues?

    Science.gov (United States)

    Inatani, Hiroyuki; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Takeuchi, Akihiko; Miwa, Shinji; Higuchi, Takashi; Abe, Kensaku; Taniguchi, Yuta; Yamada, Satoshi; Asai, Kiyofumi; Otsuka, Takanobu; Tsuchiya, Hiroyuki

    2017-06-01

    The p53 protein in mesenchymal stem cells (MSCs) regulates differentiation to osteogenic or adipogenic lineage. Because p53 function is depressed in most malignancies, if MSCs in malignancy also have p53 hypofunction, differentiation therapy to osteogenic or adipogenic lineage may be an effective treatment. We therefore wished to begin to explore this idea by evaluating atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) cells, because murine double minute 2 (MDM2) gene amplification, which leads to p53 hypofunction, is found in almost all ALT/WDLs. We compared osteogenic and adipogenic differentiation potency between MSCs isolated and cultured from normal adipose tissues and ALT/WDLs from the same patients. During tumor resections in six patients with ALT/WDL, we analyzed 3 mL of tumor, and for comparison, we harvested a similar amount of normal-appearing subcutaneous adipose tissue from an area remote from the tumor for comparison. Adipogenic differentiation potency was quantitatively assessed using spectrometry after oil red O staining. Osteogenic differentiation potency was semiquantitatively assessed by measuring a specific colored area after alkaline phosphatase (ALP) and alizarin red S staining. ALP is related to preosseous cellular metabolism, and alizarin red is related to calcium deposits in cell culture. There were three observers for each assessment, and each assessment (including induced-differentiation and histologic analysis) was performed in duplicate. We then analyzed the mechanism of the difference of osteogenic differentiation potency using the MDM2-specific inhibitor Nutlin-3 at various concentrations. In terms of adipogenic differentiation potency, contrary to our expectations, more fatty acid droplets were observed in MSCs derived from normal fat than in MSCs derived from ALT/WDL, although we found no significant difference between MSCs derived from ALT/WDL and MSCs derived from normal fat; the mean differentiation potency

  16. In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

    Directory of Open Access Journals (Sweden)

    Chiara Garrovo

    2013-01-01

    Full Text Available Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.

  17. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size.

    Science.gov (United States)

    Im, Gun-Ii; Ko, Ji-Yun; Lee, Jin Ho

    2012-01-01

    This study examined how the difference in pore size of porous scaffolds affected the in vitro chondrogenic differentiation of seeded adipose stem cells (ASCs) and the in vivo cartilage repair of ASC/scaffold construct. ASCs were isolated from 18 rabbits and seeded in a porous poly (ε-caprolactone) (PCL) scaffold with different pore sizes (100, 200, 400 μm). The ASCs underwent in vitro chondrogenic induction under TGF-β2 and BMP-7 for 21 days before analysis. The ASC/scaffold construct was also implanted on the osteochondral defect created on the distal femur of the same rabbits, and the quality of cartilage regeneration was analyzed after 8 weeks. At day 21, the ASCs proliferated and spread on the surface of the scaffolds with a pore size 100 and 200 μm, whereas there were many lumps of conglomerated ASCs on those with a pore size of 400 μm. The DNA content was significantly lower in the scaffold with a pore size of 400 μm than in that with a pore size of 100 or 200 μm. Proteoglycan production was significantly greater in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm. The chondrogenic marker gene expression including SOX9 and COL2A1 was greatest in the scaffold with a pore size of 400 μm followed by 200 μm. Immunofluorescent imaging showed that, while SOX9 was localized to nucleus, type II collagen was observed on the cytoplasm and secreted matrix around the cells most abundantly in the scaffold with a pore size of 400 μm followed by 200 μm. The gross and histological findings from the osteochondral defects showed that the cartilage repair was better in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm.

  18. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  19. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent ...... stimulating the formation and/or the uncoupling capacity of human brown adipocytes that could help to dissipate excess caloric intake of individuals....

  20. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs

    Directory of Open Access Journals (Sweden)

    Camila Marx

    2014-01-01

    Full Text Available Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n=4 or allogeneic cultured adipose-derived stem cells (ASCs, n=5 injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.

  1. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in

  2. Local Application of Isogenic Adipose-Derived Stem Cells Restores Bone Healing Capacity in a Type 2 Diabetes Model.

    Science.gov (United States)

    Wallner, Christoph; Abraham, Stephanie; Wagner, Johannes Maximilian; Harati, Kamran; Ismer, Britta; Kessler, Lukas; Zöllner, Hannah; Lehnhardt, Marcus; Behr, Björn

    2016-06-01

    Bone regeneration is typically a reliable process without scar formation. The endocrine disease type 2 diabetes prolongs and impairs this healing process. In a previous work, we showed that angiogenesis and osteogenesis-essential steps of bone regeneration-are deteriorated, accompanied by reduced proliferation in type 2 diabetic bone regeneration. The aim of the study was to improve these mechanisms by local application of adipose-derived stem cells (ASCs) and facilitate bone regeneration in impaired diabetic bone regeneration. The availability of ASCs in great numbers and the relative ease of harvest offers unique advantages over other mesenchymal stem cell entities. A previously described unicortical tibial defect model was utilized in diabetic mice (Lepr(db-/-)). Isogenic mouse adipose-derived stem cells (mASCs)(db-/db-) were harvested, transfected with a green fluorescent protein vector, and isografted into tibial defects (150,000 living cells per defect). Alternatively, control groups were treated with Dulbecco's modified Eagle's medium or mASCs(WT). In addition, wild-type mice were identically treated. By means of immunohistochemistry, proteins specific for angiogenesis, cell proliferation, cell differentiation, and bone formation were analyzed at early (3 days) and late (7 days) stages of bone regeneration. Additionally, histomorphometry was performed to examine bone formation rate and remodeling. Histomorphometry revealed significantly increased bone formation in mASC(db-/db-)-treated diabetic mice as compared with the respective control groups. Furthermore, locally applied mASCs(db-/db-) significantly enhanced neovascularization and osteogenic differentiation. Moreover, bone remodeling was upregulated in stem cell treatment groups. Local application of mACSs can restore impaired diabetic bone regeneration and may represent a therapeutic option for the future. This study showed that stem cells obtained from fat pads of type 2 diabetic mice are capable of

  3. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  4. [HUMAN ADIPOSE-DERIVED STEM CELLS COMBINED WITH SMALL INTESNITAL SUBMUCOSA POWDER/CHITOSAN CHLORIDE-β-GLYCEROL PHOSPHATE DISODIUM-HYDROXYETHYL CELLULOSE HYBRID FOR ADIPOSE TISSUE ENGINEERING].

    Science.gov (United States)

    Zhang, Shu; Luo, Jingcong; Lü, Qing; Deng, Xueqin; Xiong, Bingjun

    2015-08-01

    To study the feasibility of human adipose-derived stem cells (hADSCs) combined with small intestinal submucosa powder (SISP)/chitosan chloride (CSCl)-β-glycerol phosphate disodium (GP)-hydroxyethyl cellulose (HEC) for adipose tissue engineering. hADSCs were isolated from human breast fat with collagenase type I digestion, and the third passage hADSCs were mixed with SISP/CSCl-GP-HEC at a density of 1 x 10(6) cells/mL. Twenty-four healthy female nude mice of 5 weeks old were randomly divided into experimental group (n = 12) and control group (n=12), and the mice were subcutaneously injected with 1 mL hADSCs+SISP/CSCl-GP-HEC or SISP/CSCl-GP-HEC respectively at the neck. The degradation rate was evaluated by implant volume measurement at 0, 1, 2, 4, and 8 weeks. Three mice were euthanized at 1, 2, 4, and 8 weeks respectively for general, histological, and immunohistochemical observations. The ability of adipogenesis (Oil O staining), angiopoiesis (CD31), and localized the hADSCs (immunostaining for human Vimentin) were identified. The volume of implants of both groups decreased with time, but it was greater in experimental group than the control group, showing significant difference at 8 weeks (t = 3.348, P = 0.029). The general observation showed that the border of implants was clear with no adhesion at each time point; fat-liked new tissues were observed with capillaries on the surface at 8 weeks in 2 groups. The histological examinations showed that the structure of implants got compact gradually after injection, and SISP gradually degraded with slower degradation speed in experimental group; adipose tissue began to form, and some mature adipose tissue was observed at 8 weeks in the experimental group. The Oil O staining positive area of experimental group was greater than that of the control group at each time point, showing significant difference at 8 weeks (t = 3.41 1, P = 0.027). Immunohistochemical staining for Vemintin showed that hADSCs could survive at

  5. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Pilehvar-Soltanahmadi, Younes; Alizadeh, Effat; Ebrahimi-Kalan, Abbas; Mortazavi, Yousef; Zarghami, Nosratollah

    2017-12-01

    Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.

  6. Effect of hypothyroidism in the thyroidectomized rats on immunophenotypic characteristics and differentiation capacity of adipose tissue derived stem cells.

    Science.gov (United States)

    Simsek, T; Duruksu, G; Okçu, A; Aksoy, A; Erman, G; Utkan, Z; Cantürk, Z; Karaöz, E

    2014-01-01

    Thyroid hormones influence multiple physiological functions, like growth, differentiation, protein synthesis and metabolic rate. The hypothyroid state is a complex hormonal dysfunction rather than a single hormonal defect. The relation between hypothyroidism after thyroidectomy and stem cells is not clear. This study was designed to investigate the effect of thyroidectomy on the proliferation, telomerase enzyme activities, immunophenotypic properties and differentiation potentials of adipose tissue-derived (AT-) stem cells (SCs). AT-SCs after 60 and 120 days of thyroidectomized (Tx) rats were compared to normal rats by flow cytometry and immunocytochemistry analyses, and their telomerase activities were estimated. The telomerase activity was found to be positive for AT-SCs of Tx rats of both 60 and 120 days used in this study, but a decrease was noticed in the cells with the long-term exposure to hypothyroidism. This might indicate the decrease in the regenerative ability of the AT-SCs after 120 days of Tx compared to cells after 60 days of Tx. Both cell lines were induced to differentiate into adipogenic, osteogenic and neurogenic cell lineages, but osteogenic marker expression was not detected in the undifferentiated AT-SCs of the Tx rats. Osteogenic differentiation was also failed in stem cells derived from Tx rats, shown by Alizarin red S staining and alkaline phosphates enzyme assays. These results suggest that hypothyroidism affected SCs, altered stem cell characteristics, like telomerase activity and loss of in vitro bone formation, but not adipogenic or neurogenic differentiation ability. Hypothyroidism after Tx affects the osteogenic differentiation capacity of stem cells, which might be one of the factors of bone loss due to postnatal hypothyroidism.

  7. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy.

    Science.gov (United States)

    Varghese, Jajini; Griffin, Michelle; Mosahebi, Afshin; Butler, Peter

    2017-02-28

    The applications for fat grafting have increased recently, within both regenerative and reconstructive surgery. Although fat harvesting, processing and injection techniques have been extensively studied and standardised, this has not had a big impact on the variability of outcome following fat grafting. This suggests a possible larger role of patient characteristics on adipocyte and adipose-derived stem cell (ADSC) viability and function. This systematic review aims to collate current evidence on the effect of patient factors on adipocyte and ADSC behaviour. A systematic literature review was performed using MEDLINE, Cochrane Library and EMBASE. It includes outcomes observed in in vitro analyses, in vivo animal studies and clinical studies. Data from basic science work have been included in the discussion to enhance our understanding of the mechanism behind ADSC behaviour. A total of 41 papers were included in this review. Accumulating evidence indicates decreased proliferation and differentiation potential of ADSCs with increasing age, body mass index, diabetes mellitus and exposure to radiotherapy and Tamoxifen, although this was not uniformly seen across all studies. Gender, donor site preference, HIV status and chemotherapy did not show a significant influence on fat retention. Circulating oestrogen levels have been shown to support both adipocyte function and graft viability. Evidence so far suggests no significant impact of total cholesterol, hypertension, renal disease, physical exercise and peripheral vascular disease on ADSC yield. A more uniform comparison of all factors highlighted in this review, with the application of a combination of tests for each outcome measure, is essential to fully understand factors that affect adipocyte and ADSC viability, as well as functionality. As these patient factors interact, future studies looking at adipocyte viability need to take them into consideration for conclusions to be meaningful. This would provide crucial

  8. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells

    DEFF Research Database (Denmark)

    Glovinski, Peter Viktor; Herly, Mikkel; Mathiasen, Anders B

    2017-01-01

    BACKGROUND: Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore......, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. METHODS: PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs...... time, cell yield, differentiation potential and cell surface markers. Gene expression profiles were analyzed using microarray assays, and growth factor concentrations in the cell culture medium were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: Of the three PL compositions produced...

  9. [Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells].

    Science.gov (United States)

    Cheng, W; Han, X P; Mou, S L; Yang, F; Liu, L P

    2017-04-09

    Objective: To build scaffold materials with different concentrations of alginate and collagen, and to observe the effects of alginate/collagen ratio on the proliferation of human adipose-derived mesenchymal stem cells (hAMSC) and osteogenic differentiation. The optimal concentration of alginate/collagen will be chosen for constructing hydrogel that will be used for bone tissue engineering. Methods: Soluble hydrogel scaffold materials containing alginate/collagen were prepared, and the following groups were established based on different alginate/collagen ratio: 4∶1 (group A), 2∶1 (group B), and 1∶1 (group C). Cell proliferation on the material surface was observed using the cell counting kit-8 (CCK-8) assay, while cell viability in each material group were observed using live/dead staining. Quantitative real-time PCR(qPCR) was used to measure the differential expression of osteogenesis-related genes on and in the materials. Immunofluorescence staining was used to measure the differential gene expression of osteogenesis-related proteins in each group. Results: The results from the CCK-8 assay showed increasing cell proliferation rate on the lyophilized hydrogel material surface as the collagen concentration increased, and the highest cell proliferation was observed in group C. Live/dead staining assay indicated that cells were able to proliferate in all three types of hydrogel materials, and the highest cell viability was found in material from group B ([87.50±2.65]%). qPCR showed that the expression of osteogenesis-related genes in group C was the highest, among the three groups, while the expression of osteocalcin in group B was significantly higher than those in the other two groups ( Pcell proliferation of hAMSC and osteogenenic differentiation. Bone tissue engineering can use 10% hydrogel material, and when the sodium alginate and collagen have a ratio of 2∶1, the hydrogel can be conducive to cell differentiation and proliferation.

  10. The role of adipose-derived stem cells in a self-organizing 3D model with regard to human soft tissue healing.

    Science.gov (United States)

    Oberringer, Martin; Bubel, Monika; Jennewein, Martina; Guthörl, Silke; Morsch, Tamara; Bachmann, Sophie; Metzger, Wolfgang; Pohlemann, Tim

    2018-01-05

    The clinical phenomenon of inadequate soft tissue healing still remains an important issue. The occurrence of chronic wounds is correlated to the life span, which is still increasing in western countries. Tissue engineering products containing adipose-derived stem cells are discussed as a promising therapeutic approach. Several studies confirmed the value of these cells for soft tissue healing improvement, suggesting a paracrine as well as a direct effect on vessel repair and angiogenesis. In an attempt to figure out specific effects of adipose-derived stem cells on dermal microvascular endothelial cells with respect to the different phases of soft tissue healing, we designed a 3D in vitro model on the basis of spheroids. Basic parameters like spheroid volume, cell numbers, and rate of apoptotic cells were determined in dependence on culture time, on different oxygen conditions and using mono- as well as co-cultures of both cell types. Furthermore we focused on gene expression and protein levels of interleukin-6, interleukin-8, monocyte chemoattractant protein-1, and vascular endothelial growth factor, which are discussed against the background of therapies for chronic wounds. The visualization of α-smooth muscle actin allowed the estimation of the function of adipose-derived stem cells as stabilizer for dermal microvascular endothelial cells. The results of the present 3D model underscore a paracrine effect of adipose-derived stem cells on microvessel repair during early hypoxic conditions, whereas a stabilizing effect occurs during a later phase of soft tissue healing, simultaneously to reoxygenation.

  11. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell

    Directory of Open Access Journals (Sweden)

    Nur Shuhaidatul Sarmiza Abdul Halim

    2014-08-01

    Full Text Available Mesenchymal stem cells (MSCs hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1 and enhanced green fluorescent protein (eGFP into human adipose-derived MSCs (hAD-MSCs. The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.

  12. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  13. Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells.

    Science.gov (United States)

    Park, Seah; Lee, Dong Ryul; Nam, Ji Sun; Ahn, Chul Woo; Kim, Haekwon

    2018-02-13

    The use of fetal bovine serum (FBS) as a cryopreservation supplement is not suitable for the banking of mesenchymal stem cells (MSCs) due to the risk of transmission of disease as well as xenogeneic immune reactions in the transplanted host. Here, we investigated if human serum albumin (HSA), human serum (HS), or knockout serum replacement (KSR) can replace FBS for the cryopreservation of MSCs. In addition, we examined the characteristics of MSCs after multiple rounds of cryopreservation. Human adipose-derived stem cells (ASCs) cryopreserved with three FBS replacements, 9% HSA, 90% HS, or 90% KSR, in combination with 10% dimethyl sulfoxide (Me 2 SO) maintained stem cell properties including growth, immunophenotypes, gene expression patterns, and the potential to differentiate into adipogenic, osteogenic, and chondrogenic lineages, similar to ASCs frozen with FBS. Moreover, the immunophenotype, gene expression, and differentiation capabilities of ASCs were not altered by up to four freeze-thaw cycles. However, the performance of three or four freeze-thaw cycles significantly reduced the proliferation ability of ASCs, as indicated by the longer population doubling time and reduced colony-forming unit-fibroblast frequency. Together, our results suggest that HSA, HS, or KSR can replace FBS for the cryopreservation of ASCs, without altering their stemness, and should be processed with no more than two freeze-thaw cycles for clinical approaches. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Elhami, Esmat [University of Manitoba, Department of Radiology, Winnipeg (Canada); University of Winnipeg, Department of Physics, Winnipeg, MB (Canada); Goertzen, Andrew L.; Mzengeza, Shadreck [University of Manitoba, Department of Radiology, Winnipeg (Canada); Xiang, Bo; Deng, Jixian; Stillwell, Chris; Tian, Ganghong [National Research Council Canada, Cardiac Studies Group, Institute for Biodiagnostics, Winnipeg (Canada); Arora, Rakesh C.; Freed, Darren [St. Boniface General Hospital, Cardiac Science Program, Winnipeg (Canada)

    2011-07-15

    Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, {sup 18}F-fluoro-2-deoxy-D-glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10{sup 5} ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent

  15. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  16. Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells.

    Science.gov (United States)

    Razavi, Shahnaz; Razavi, Mohamad Reza; Zarkesh Esfahani, Hamid; Kazemi, Mohammad; Mostafavi, Fatemeh Sadat

    2013-08-01

    Adipose derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) may be equally beneficial in treating neurodegenerative diseases. However, ADSCs have practical advantages. In this study, we aimed to induce neurotrophic factors secreting cells in human ADSCs. Then, we compared the level of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion in neurotrophic factors secreting cells from human adipose and bone marrow-derived stem cells. Isolated human ADSCs and BMSCs were induced to neurotrophic factor (NTF)-secreting cells. The levels of expression and secretion of BDNF and CTNF of induced cells were assessed using immunocytochemical, Real-Time polymerase chain reaction, and enzyme linked immunosorbent assay (ELISA). The level of BDNF significantly increased in both the induced mesenchymal stem cells (MSCs) relative to ADSCs and the BMSCs (P < 0.01). Moreover, ELISA analysis showed that the release of BDNF in the induced BMSCs was almost twofold more than the induced ADSCs. Overall, NTF-secreting factor cells derived BMSCs and ADSCs could secret a range of different growth factors. Therefore, the variation in neurotrophic factors of different induced MSC populations suggest the possible beneficial effect of each specific kind of neurotrophic factor secreting cells for the treatment of a particular neurodegenerative disease. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  17. Safety of Allogeneic Canine Adipose Tissue-Derived Mesenchymal Stem Cell Intraspinal Transplantation in Dogs with Chronic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Cláudia Cardoso Maciel Escalhão

    2017-01-01

    Full Text Available This is a pilot clinical study primarily designed to assess the feasibility and safety of X-ray-guided percutaneous intraspinal injection of allogeneic canine adipose tissue-derived mesenchymal stem cells in dogs with chronic spinal cord injury. Six dogs with chronic paraplegia (≥six months were intraparenchymally injected with allogeneic cells in the site of lesion. Cells were obtained from subcutaneous adipose tissue of a healthy dog, cultured to passage 3, labeled with 99mTechnetium, and transplanted into the lesion by percutaneous X-ray-guided injection. Digital X-ray efficiently guided cell injection as 99mTechnetium-labeled cells remained in the injection site for at least 24 hours after transplantation. No adverse effects or complications (infection, neuropathic pain, or worsening of neurological function were observed during the 16-week follow-up period after transplantation. Three animals improved locomotion as assessed by the Olby scale. One animal walked without support, but no changes in deep pain perception were observed. We conclude that X-ray-guided percutaneous intraspinal transplantation of allogeneic cells in dogs with chronic spinal cord injury is feasible and safe. The efficacy of the treatment will be assessed in a new study involving a larger number of animals.

  18. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy.

    Science.gov (United States)

    Li, Chun-yu; Wu, Xiao-yun; Tong, Jia-bei; Yang, Xin-xin; Zhao, Jing-li; Zheng, Quan-fu; Zhao, Guo-bin; Ma, Zhi-jie

    2015-04-13

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapies. Human platelet lysate represents an efficient alternative to fetal bovine serum for clinical-scale expansion of MSCs. Different media used in culture processes should maintain the biological characteristics of MSCs during multiple passages. However, bone marrow-derived MSCs and adipose tissue-derived MSCs have not yet been directly compared with each other under human platelet lysate conditions. This study aims to conduct a direct head-to-head comparison of the biological characteristics of the two types of MSCs under human platelet lysate-supplemented culture conditions for their ability to be used in regenerative medicine applications. The bone marrow- and adipose tissue-derived MSCs were cultured under human platelet lysate conditions and their biological characteristics evaluated for cell therapy (morphology, immunophenotype, colony-forming unit-fibroblast efficiency, proliferation capacity, potential for mesodermal differentiation, secreted proteins, and immunomodulatory effects). Under human platelet lysate-supplemented culture conditions, bone marrow- and adipose tissue-derived MSCs exhibited similar fibroblast-like morphology and expression patterns of surface markers. Adipose tissue-derived MSCs had greater proliferative potential than bone marrow-derived MSCs, while no significantly difference in colony efficiency were observed between the two types of cells. However, bone marrow-derived MSCs possessed higher capacity toward osteogenic and chondrogenic differentiation compared with adipose tissue-derived MSCs, while similar adipogenic differentiation potential wase observed between the two types of cells. There were some differences between bone marrow- and adipose tissue-derived MSCs for several secreted proteins, such as cytokine (interferon-γ), growth factors (basic fibroblast growth factor, hepatocyte growth factor, and insulin-like growth factor-1), and chemokine (stem

  19. Biodistribution and Efficacy of Human Adipose-Derived Mesenchymal Stem Cells Following Intranodal Administration in Experimental Colitis

    Directory of Open Access Journals (Sweden)

    Mercedes Lopez-Santalla

    2017-06-01

    Full Text Available Mesenchymal stem cells (MSCs have a large potential in cell therapy for treatment of inflammatory and autoimmune diseases, thanks to their immunomodulatory properties. The encouraging results in animal models have initiated the translation of MSC therapy to clinical trials. In cell therapy protocols with MSCs, administered intravenously, several studies have shown that a small proportion of infused MSCs can traffic to the draining lymph nodes (LNs. This is accompanied with an increase of different types of regulatory immune cells in the LNs, suggesting the importance of migration of MSCs to the LNs in order to contribute to immunomodulatory response. Intranodal (IN, also referred as intralymphatic, injection of cells, like dendritic cells, is being proposed in the clinic for the treatment of cancer and allergy, showing that this route of administration is clinically safe and efficient. In this study, we investigated, for the first time, the biodistribution and the efficacy of Luciferase+ adipose-derived MSCs (Luci-eASCs, infused through the inguinal LNs (iLNs, in normal mice and in inflamed mice with colitis. Most of the Luci-eASCs remain in the iLNs and in the adipose tissue surrounding the inguinal LNs. A small proportion of Luci-eASCs can migrate to other locations within the lymphatic system and to other tissues and organs, having a preferential migration toward the intestine in colitic mice. Our results show that the infused Luci-eASCs protected 58% of the mice against induced colitis. Importantly, a correlation between the response to eASC treatment and a higher accumulation of eASCs in popliteal, parathymic, parathyroid, and mesenteric LNs were found. Altogether, these results suggest that IN administration of eASCs is feasible and may represent an effective strategy for cell therapy protocols with human adipose-derived MSCs in the clinic for the treatment of immune-mediated disorders.

  20. AUTOTRANSPLANTATION OF MESENCHYMAL STEM CELLS FROM ADIPOSE TISSUE – INNOVATIVE PATHOGENETIC METHOD OF TREATMENT OF PATIENTS WITH INCISIONAL HERNIAS (FIRST CASES REPORT

    Directory of Open Access Journals (Sweden)

    V. G. Bogdan

    2012-01-01

    Full Text Available In the article a complex technology of receiving a biological transplant with autologous mesenchymal stem cells from the adipose tissue is presented. Possibility of successful clinical performance of reconstruction of extensive defects of anterior belly wall with the use of a multicomponent biological transplant with autologous mesenchy- mal stem cells from the adipose tissue, differentiated in the fibroblast direction is shown. The use of the proposed method of plasticity promotes the improvement of quality of surgical treatment, expansies the scope of cellular technologies in practical health care, improves the patients quality of life in the postoperative period. 

  1. Human Adipose-Derived Mesenchymal Stem Cells Are Resistant to HBV Infection during Differentiation into Hepatocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-04-01

    Full Text Available The therapeutic methods for chronic hepatitis B are limited. The shortage of organ donors and hepatitis B virus (HBV reinfection obstruct the clinical application of orthotopic liver transplantation (OLT. In the present study, adipose-derived mesenchymal stem cells (AD-MSCs and bone marrow-derived mesenchymal stem cells (BM-MSCs were isolated from chronic hepatitis B patients and characterized for morphology, growth potency, surface phenotype and the differentiation potential. The results showed that both MSCs had adipogenic, osteogenic and neuron differentiation potential, and nearly all MSCs expressed CD105, CD44 and CD29. Compared with AD-MSCs, BM-MSCs of chronic hepatitis B patients proliferated defectively. In addition, the ability of AD-MSCs to differentiate into hepatocyte was evaluated and the susceptibility to HBV infection were assessed. AD-MSCs could differentiate into functional hepatocyte-like cells. These cells express the hepatic-specific markers and have glycogen production and albumin secretion function. AD-MSCs and hepatic differentiation AD-MSCs were not susceptible to infection by HBV in vitro. Compared with BM-MSCs, AD-MSCs may be alternative stem cells for chronic hepatitis B patients.

  2. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Min Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Mun, Ji-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kwon, Ohsuk [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kwon, Ki-Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Oh, Doo-Byoung, E-mail: dboh@kribb.re.kr [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  3. Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats.

    Science.gov (United States)

    Shi, Rongfeng; Jin, Yinpeng; Cao, Chuanwu; Han, Shilong; Shao, Xiaowen; Meng, Lingyu; Cheng, Jie; Zhang, Meiling; Zheng, Jiayi; Xu, Jun; Li, Maoquan

    2016-10-22

    Diabetic foot ulcer (DFU) is an intractable diabetic complication. Patients suffering from diabetes mellitus (DM) frequently present with infected DFUs. In this study, a wound healing model on diabetic rat foot was established to mimic the pathophysiology of clinical patients who suffer from DFUs. Our study aimed to explore the localization of human adipose-derived stem cells (hADSCs) and the role of these cells in the repair of foot ulcerated tissue in diabetic rats, and thus to estimate the possibilities of adipose-derived stem cells for diabetic wound therapy. Sprague-Dawley rats were used to establish diabetic models by streptozotocin injection. A full-thickness foot dorsal skin wound was created by a 5 mm skin biopsy punch and a Westcott scissor. These rats were randomly divided into two groups: the hADSC-treated group and the phosphate-buffered saline (PBS) control group. The hADSC or PBS treatment was delivered through the left femoral vein of rats. We evaluated the localization of hADSCs with fluorescence immunohistochemistry and the ulcer area and ulcerative histology were detected dynamically. The hADSCs had a positive effect on the full-thickness foot dorsal skin wound in diabetic rats with a significantly reduced ulcer area at day 15. More granulation tissue formation, angiogenesis, cellular proliferation, and higher levels of growth factors expression were also detected in wound beds. Our data suggest that hADSC transplantation has the potential to promote foot wound healing in diabetic rats, and transplantation of exogenous stem cells may be suitable for clinical application in the treatment of DFU.

  4. Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging

    International Nuclear Information System (INIS)

    Quach, Cung Hoa Thien; Jung, Kyung-Ho; Paik, Jin-Young; Park, Jin-Won; Lee, Eun Jeong; Lee, Kyung-Han

    2012-01-01

    Objective: Strategies to overcome the problem of extensive early stem cell loss following transplantation requires a method to quantitatively assess their efficacy. This study compared the ability of sodium/iodide symporter (NIS) and enhanced green fluorescent protein (EGFP) imaging to monitor the effectiveness of treatments to enhance early stem cell survival. Methods: Human adipose-derived stem cells (ADSCs) transduced with an adenoviral vector to express both NIS and EGFP were mixed with culture media (control), matrigel (matrigel group) or pro-survival cocktail (PSC group), and 5 × 10 6 cells were injected into thigh muscles of C57BL/6 mice. Animals underwent serial optical imaging and 99m TcO 4 - scintigraphy. Image-based EGFP fluorescence and 99m TcO 4 - uptake was measured by region-of-interest analysis, and extracted tissues were measured for 99m Tc activity. Fluorescent intensity measured from homogenized muscle tissue was used as reference for actual amount of viable ADSCs. Results: ADSCs were efficiently transduced to express EGFP and NIS without affecting proliferative capacity. The absence of significant apoptosis was confirmed by annexin V FACS analysis and Western blots for activated caspase-3. Both fluorescence optical imaging and 99m TcO 4 - scintigraphy visualized implanted cells in living mice for up to 5 days. However, optical imaging displayed large variations in fluorescence intensity, and thus failed to detect difference in cell survival between groups or its change over time. In comparison, 99m TcO 4 - scintigraphy provided more reliable assessment of within-in group donor cell content as well as its temporal change. As a result, NIS imaging was able to discern beneficial effects of matrigel and pro-survival cocktail treatment on early ADSC survival, and provided quantitative measurements that correlated to actual donor cell content within implanted tissue. Conclusion: NIS reporter imaging may be useful for noninvasively assessing the

  5. Alterations in the Secretome of Clinically Relevant Preparations of Adipose-Derived Mesenchymal Stem Cells Cocultured with Hyaluronan

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2015-01-01

    Full Text Available Osteoarthritis (OA can be a debilitating degenerative disease and is the most common form of arthritic disease. There is a general consensus that current nonsurgical therapies are insufficient for younger OA sufferers who are not candidates for knee arthroplasties. Adipose-derived mesenchymal stem cells (MSCs therapy for the treatment of OA can slow disease progression and lead to neocartilage formation. The mechanism of action is secretion driven. Current clinical preparations from adipose tissue for the treatment of OA include autologous stromal vascular fraction (SVF, SVF plus mature adipocytes, and culture-purified MSCs. Herein we have combined these human adipose-derived preparations with Hyaluronan (Hylan G-F 20: Synvisc in vitro and measured alterations in cytokine profile. SVF plus mature adipocytes showed the greatest decreased in the proinflammatory cytokines IL-1β, IFN-γ, and VEGF. MCP-1 and MIP-1α decreased substantially in the SVF preparations but not the purified MSCs. The purified MSC preparation was the only one to show increase in MIF. Overall the SVF plus mature adipocytes preparation may be most suited of all the preparations for combination with HA for the treatment of OA, based on the alterations of heavily implicated cytokines in OA disease progression. This will require further validation using in vivo models.

  6. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.

    Science.gov (United States)

    Stanko, Peter; Kaiserova, Katarina; Altanerova, Veronika; Altaner, Cestmir

    2014-09-01

    Our aims were to characterize human mesenchymal stem cells isolated from various tissues by pluripotent stem cells gene expression profile. Four strains of dental pulp stem cells (DP-MSCs) were isolated from dental pulp tissue fragments adhered to plastic tissue culture dishes. Mesenchymal stem cells derived from umbilical cord tissue (UBC-MSCs) were isolated with the same technique. Bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated from nucleated cells of bone marrow obtained by density gradient centrifugation. Human mesenchymal stem cells from adipose tissue (AT-MSCs) were isolated by collagenase digestion. All kinds of MSCs used in this study were cultivated in low glucose DMEM containing 5% or human platelet extract. All stem cell manipulation was performed in GMP conditions. Expression of 15 pluripotent stem cells genes on the level of proteins was measured by Proteome Profiler Human Pluripotent Stem Cell Array. Induction of MSCs to in vitro differentiation to adipocytes, osteoblasts, chondroblasts was achieved by cultivation of cells in appropriate differentiation medium. All MSCs tested were phenotypically similar and of fibroblastoid morphology. DP-MSCs and UBC-MSCs were more proliferative than bone marrow BM-MSCs and AT-MSCs. Protein expression of 15 genes typical for pluripotent stem cells distinguished them into two groups. While the gene expression profiles of BM-MSC, AT-MSCs and UBC-MSCs were similar, DP-MSCS differed in relative gene expression on the level of their products in several genes. Dental pulp mesenchymal stem cells cultivated in vitro under the same conditions as MSCs from bone marrow, adipose tissue and umbilical cord tissue can be distinguished by pluripotent stem cell gene expression profile.

  7. Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage

    Directory of Open Access Journals (Sweden)

    P. Schendzielorz

    2016-01-01

    Full Text Available Adipose-derived stem cells (ASCs have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342 represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL, with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.

  8. Comparative Analysis of Cardiovascular Development Related Genes in Stem Cells Isolated from Deciduous Pulp and Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Zhang Xin Loo

    2014-01-01

    Full Text Available Human exfoliated deciduous teeth (SHED and adipose stem cells (ASC were suggested as alternative cell choice for cardiac regeneration. However, the true functionability of these cells toward cardiac regeneration is yet to be discovered. Hence, this study was carried out to investigate the innate biological properties of these cell sources toward cardiac regeneration. Both cells exhibited indistinguishable MSCs characteristics. Human stem cell transcription factor arrays were used to screen expression levels in SHED and ASC. Upregulated expression of transcription factor (TF genes was detected in both sources. An almost equal percentage of > 2-fold changes were observed. These TF genes fall under several cardiovascular categories with higher expressions which were observed in growth and development of blood vessel, angiogenesis, and vasculogenesis categories. Further induction into cardiomyocyte revealed ASC to express more significantly cardiomyocyte specific markers compared to SHED during the differentiation course evidenced by morphology and gene expression profile. Despite this, spontaneous cellular beating was not detected in both cell lines. Taken together, our data suggest that despite being defined as MSCs, both ASC and SHED behave differently when they were cultured in a same cardiomyocytes culture condition. Hence, vigorous characterization is needed before introducing any cell for treating targeted diseases.

  9. Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration.

    Science.gov (United States)

    Rigol, Montserrat; Solanes, Núria; Farré, Jordi; Roura, Santiago; Roqué, Mercè; Berruezo, Antonio; Bellera, Neus; Novensà, Laura; Tamborero, David; Prat-Vidal, Cristina; Huzman, M A Angeles; Batlle, Montserrat; Hoefsloot, Margo; Sitges, Marta; Ramírez, José; Dantas, Ana Paula; Merino, Anna; Sanz, Ginés; Brugada, Josep; Bayés-Genís, Antoni; Heras, Magda

    2010-04-01

    Cell-based therapies offer a promising approach to reducing the short-term mortality rate associated with heart failure after a myocardial infarction. The aim of the study was to analyze histological and functional effects of adipose tissue-derived stem cells (ADSCs) after myocardial infarction and compare 2 types of administration pathways. ADSCs from 28 pigs were labeled by transfection. Animals that survived myocardial infarction (n = 19) received: intracoronary culture media (n = 4); intracoronary ADSCs (n = 5); transendocardial culture media (n = 4); or transendocardial ADSCs (n = 6). At 3 weeks' follow-up, intracoronary and transendocardial administration of ADSCs resulted in similar rates of engrafted cells (0.85 [0.19-1.97] versus 2 [1-2] labeled cells/cm(2), respectively; P = NS) and some of those cells expressed smooth muscle cell markers. The intracoronary administration of ADSCs was more effective in increasing the number of small vessels than transendocardial administration (223 +/- 40 versus 168 +/- 35 vessels/mm(2); P < .05). Ejection fraction was not modified by stem cell therapy. This is the first study to compare intracoronary and transendocardial administration of autologous ADSCs in a porcine model of myocardial infarction. Both pathways of ADSCs delivery are feasible, producing a similar number of engrafted and differentiated cells, although intracoronary administration was more effective in increasing neovascularization. (c) 2010 Elsevier Inc. All rights reserved.

  10. Recent progresses in plastic surgery using adipose-derived stem cells, biomaterials and growth factors.

    Science.gov (United States)

    Zarei, Farshad; Negahdari, Babak

    2017-11-01

    Plastic and reconstructive surgery is a distinct specialty, which entails craniofacial and hand surgery; trauma, oncologic and congenital reconstruction; burn care, and aesthetic surgery. However, advances in nanotechnology have significantly affected wound management, skin care, implant and prosthetic design, tissue engineering, and drug delivery systems. Presently, plastic surgeons are applying the efficacy of stem cells (ADSCs), biomaterials and growth factors in different facets of plastic surgery. In this review, we will elucidate the applications of stem cells, biomaterials and growth factors in plastic surgeries.

  11. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs

    Directory of Open Access Journals (Sweden)

    Walter M. Hodges

    2017-12-01

    Full Text Available Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative complications remain a concern. Advances in regenerative techniques utilizing mesenchymal stem cell populations from bone and adipose tissue have opened the door to improving bone repair in the limbs, spine, and craniofacial skeleton. The widespread availability, ease of extraction, and lack of immunogenicity have made adipose-derived stem cells (ASCs particularly attractive as a stem cell source for regenerative strategies. Recently it has been shown that small, non-coding miRNAs are involved in the osteogenic differentiation of ASCs. Specifically, microRNAs such as miR-17, miR-23a, and miR-31 are expressed during the osteogenic differentiation of ASCs, and appear to play a role in inhibiting various steps in bone morphogenetic protein-2 (BMP2 mediated osteogenesis. Importantly, a number of microRNAs including miR-17 and miR-31 that act to attenuate the osteogenic differentiation of ASCs are themselves stimulated by transforming growth factor β-1 (TGFβ-1. In addition, transforming growth factor β-1 is also known to suppress the expression of microRNAs involved in myogenic differentiation. These data suggest that preconditioning strategies to reduce TGFβ-1 activity in ASCs may improve the therapeutic potential of ASCs for musculoskeletal application. Moreover, these findings support the isolation of ASCs from subcutaneous fat depots that tend to have low endogenous levels of TGFβ-1 expression.

  12. Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis.

    Science.gov (United States)

    Robert, Anny Waloski; Angulski, Addeli Bez Batti; Spangenberg, Lucia; Shigunov, Patrícia; Pereira, Isabela Tiemy; Bettes, Paulo Sergio Loiacono; Naya, Hugo; Correa, Alejandro; Dallagiovanna, Bruno; Stimamiglio, Marco Augusto

    2018-03-16

    Mesenchymal stem cells (MSCs) have been widely studied with regard to their potential use in cell therapy protocols and regenerative medicine. However, a better comprehension about the factors and molecular mechanisms driving cell differentiation is now mandatory to improve our chance to manipulate MSC behavior and to benefit future applications. In this work, we aimed to study gene regulatory networks at an early step of osteogenic differentiation. Therefore, we analyzed both the total mRNA and the mRNA fraction associated with polysomes on human adipose tissue-derived stem cells (hASCs) at 24 h of osteogenesis induction. The RNA-seq results evidenced that hASC fate is not compromised with osteogenesis at this time and that 21 days of continuous cell culture stimuli are necessary for full osteogenic differentiation of hASCs. Furthermore, early stages of osteogenesis induction involved gene regulation that was linked to the management of cell behavior in culture, such as the control of cell adhesion and proliferation. In conclusion, although discrete initial gene regulation related to osteogenesis occur, the first 24 h of induction is not sufficient to trigger and drive in vitro osteogenic differentiation of hASCs.

  13. Involvement of PI3K and MMP1 in PDGF-induced Migration of Human Adipose-derived Stem Cells.

    Science.gov (United States)

    Lim, Yoonhwa; Lee, Minji; Jeong, Hyeju; Kim, Haekwon

    2017-06-01

    Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo . To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro . A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro .

  14. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    Science.gov (United States)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  15. Elevated Expression of Dkk-1 by Glucocorticoid Treatment Impairs Bone Regenerative Capacity of Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Kimura, Kenichi; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu

    2018-01-15

    Glucocorticoids are steroid hormones used as anti-inflammatory treatments. However, this strong immunomodulation causes undesirable side effects that impair bones, such as osteoporosis. Glucocorticoid therapy is a major risk factor for developing steroid-induced osteonecrosis of the femur head (ONFH). Since ONFH is incurable, therapy with mesenchymal stem cells (MSCs) that can differentiate into osteoblasts are a first-line choice. Bone marrow-derived MSCs (BM-MSCs) are often used as a source of stem cell therapy for ONFH, but their proliferative activity is impaired after steroid treatment. Adipose tissue-derived MSCs (AT-MSCs) may be an attractive alternative source; however, it is unknown whether AT-MSCs from steroid-induced ONFH (sAT-MSCs) have the same differentiation ability as BM-MSCs or normal AT-MSCs (nAT-MSCs). In this study, we demonstrate that nAT-MSCs chronically exposed to glucocorticoids show lower alkaline phosphatase activity leading to reduced osteogenic differentiation ability. This impaired osteogenesis is mediated by high expression of Dickkopf1 (Dkk-1) that inhibits wnt/β-catenin signaling. Increased Dkk-1 also causes impaired osteogenesis along with reductions in bone regenerative capacity in sAT-MSCs. Of note, plasma Dkk-1 levels are elevated in steroid-induced ONFH patients. Collectively, our findings suggest that glucocorticoid-induced expression of Dkk-1 could be a key factor in modulating the differentiation ability of MSCs used for ONFH and other stem cell therapies.

  16. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Marta Dossena

    Full Text Available Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ in the N-terminal androgen receptor (ARpolyQ confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK and three control volunteers (ADSCs. We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes, whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  17. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  18. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-01-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC

  19. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  20. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    NARCIS (Netherlands)

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the

  1. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  2. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs

    Directory of Open Access Journals (Sweden)

    Marieta Costache

    2013-01-01

    Full Text Available Current clinical strategies for adipose tissue engineering (ATE, including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.

  3. Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Mohmmad Mardani

    2013-06-01

    Full Text Available   Objective(s: Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose derived stem cells (ADSCs was compared with natural articular chondrocytes cultured in alginate scaffold.   Materials and Methods: Human ADSCs were obtained from subcutaneous adipose tissue and human articular chondrocytes from non-weight bearing areas of knee joints. Cells were seeded in 1.5% alginate and cultured in chondrogenic media for three weeks with and without TGFβ3. The genes expression of types II and X collagens was assessed by Real Time PCR and the amount of aggrecan (AGC and type I collagen measured by ELISA and the content of glycosaminoglycan evaluated by GAG assay. Results: Our findings showed that type II collagen, GAG and AGC were expressed, in differentiated ADSCs. Meanwhile, they produced a lesser amount of types II and X collagens but more AGC, GAG and type I collagen in comparison with natural chondrocytes (NCs. Conclusion: Further attempt should be carried out to optimize achieving type II collagen in DCs, as much as, natural articular chondrocytes and decline of the production of type I collagen in order to provide efficient hyaline cartilage after chondrogenic induction, prior to the usage of harvested tissues in clinical trials.

  4. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs)

    Science.gov (United States)

    Dinescu, Sorina; Galateanu, Bianca; Albu, Madalina; Cimpean, Anisoara; Dinischiotu, Anca; Costache, Marieta

    2013-01-01

    Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications. PMID:23325052

  5. Correlation between ECM guidance and actin polymerization on osteogenic differentiation of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Vivian; Deiwick, Andrea [Laser Zentrum Hannover e.V., Department of Nanotechnology, Hollerithallee 8, D-30419 Hannover (Germany); Pflaum, Michael [Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover (Germany); Schlie-Wolter, Sabrina, E-mail: s.schlie@lzh.de [Laser Zentrum Hannover e.V., Department of Nanotechnology, Hollerithallee 8, D-30419 Hannover (Germany); Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, D-30617 Hannover (Germany)

    2016-10-01

    The correlation between extracellular matrix (ECM) components, cell shape, and stem cell guidance can shed light in understanding and mimicking the functionality of stem cell niches for various applications. This interplay on osteogenic guidance of human adipose-derived stem cells (hASCs) was focus of this study. Proliferation and osteogenic markers like alkaline phosphatase activity and calcium mineralization were slightly increased by the ECM components laminin (LA), collagen I (COL), and fibronectin (FIB); with control medium no differentiation occurred. ECM guided differentiation was rather dependent on osterix than on Runx2 pathway. FIB significantly enhanced cell elongation even in presence of actin polymerization blockers cytochalasin D (CytoD) and ROCK inhibitor Y-27632, which generally caused more rounded cells. Except for the COL surface, both inhibitors increased the extent of osterix, while the Runx2 pathway was more sensitive to the culture condition. Both inhibitors did not affect hASC proliferation. CytoD enabled osteogenic differentiation independently from the ECM, while it was rather blocked via Y-27632 treatment; on FIB the general highest extent of differentiation occurred. Taken together, the ECM effect on hASCs occurs indirectly and selectively via a dominant role of FIB: it sustains osteogenic differentiation in case of a tension-dependent control of actin polymerization. - Highlights: • Interplay of ECM and cell shape guides osteogenic differentiation of hASCs. • ECM components only present a promotive but not stimulative effect. • No direct correlation between ECM-enhanced cell elongation and differentiation. • Suppression of differentiation depends on a specific actin polymerization blocking. • Fibronectin sustains cell elongation and differentiation in case of blocking actin.

  6. Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat.

    Science.gov (United States)

    Pilehvar-Soltanahmadi, Younes; Nouri, Mohammad; Martino, Mikaël M; Fattahi, Amir; Alizadeh, Effat; Darabi, Masoud; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah

    2017-08-15

    Electrospun nanofibrous scaffolds containing natural substances with wound healing properties such as Emu oil (EO) may have a great potential for increasing the efficiency of stem cell-based skin bioengineering. For this purpose, EO blended PCL/PEG electrospun nanofibrous mats were successfully fabricated and characterized using FE-SEM, FTIR and Universal Testing Machine. The efficiency of the scaffolds in supporting the adherence, cytoprotection, proliferation and differentiation of adipose tissue-derived stem cells (ADSCs) to keratinocyte was evaluated. GC/MS and HPLC were used to determine the composition of pure EO, which revealed to be mainly fatty acids and carotenoids. FE-SEM and cell proliferation assays showed that adhesion and proliferation of ADSCs on EO-PCL/PEG nanofibers was significantly higher than on PCL/PEG nanofibers. Additionally, EO-PCL/PEG nanofibers with free radical scavenging properties conferred a cytoprotective effect against cell-damaging free radicals, while the ability to support cell adhesion and growth was maintained or even improved. Immunostaining of ADSCs on EO-PCL/PEG nanofibers confirmed the change in morphology of ADSCs from spindle to polygonal shape suggesting their differentiation toward an epidermal linage. Moreover, the expression levels of the keratin 10, filaggrin, and involucrin that are involved in epidermal differentiation were upregulated in a stage-specific manner. This preliminary study shows that EO-PCL/PEG nanofibers could be a good candidate for the fabrication of wound dressings and skin bioengineered substitutes with ADSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. In vivo cell tracking imaging of hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate labeled adipose derived stem cells (ADSCs) in rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Lee, Kyo Chul [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    Monitoring of transplanted stem cells for cardiac repair is important part in regenerative medicine. Direct cell labeling techniques using [{sup 18}F]FDG, [{sup 64}Cu]PTSM and [{sup 99m}Tc]-HMPAO have been developed for in vivo imaging. Especially, {sup 18}F-labeled derivates have been widely used for direct labeling agent. But the {sup 18}F has short half life (T{sub 1/2}={approx}2 h), thus this imaging agent has limitation of in vivo imaging. We used {sup 123}I or {sup 124}I which has relative long half life, to track the transplanted stem cells for a long-term imaging. This study is aimed to track the transplanted adipose derived stem cells (ADSCs) in rat heart using hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate ([{sup 123,} {sup 124}I]HIB) mediated direct labeling method in vivo

  8. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    Energy Technology Data Exchange (ETDEWEB)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin; Seker, Sukran; Durkut, Serap; Dalva, Klara; Elçin, Yaşar Murat, E-mail: elcinmurat@gmail.com

    2017-03-15

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety of inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and interpretation

  9. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration.

    Science.gov (United States)

    Sándor, George K; Tuovinen, Veikko J; Wolff, Jan; Patrikoski, Mimmi; Jokinen, Jari; Nieminen, Elina; Mannerström, Bettina; Lappalainen, Olli-Pekka; Seppänen, Riitta; Miettinen, Susanna

    2013-05-01

    Large mandibular resection defects historically have been treated using autogenous bone grafts and reconstruction plates. However, a major drawback of large autogenous bone grafts is donor-site morbidity. This report describes the replacement of a 10-cm anterior mandibular ameloblastoma resection defect, reproducing the original anatomy of the chin, using a tissue-engineered construct consisting of β-tricalcium phosphate (β-TCP) granules, recombinant human bone morphogenetic protein-2 (BMP-2), and Good Manufacturing Practice-level autologous adipose stem cells (ASCs). Unlike prior reports, 1-step in situ bone formation was used without the need for an ectopic bone-formation step. The reconstructed defect was rehabilitated with a dental implant-supported overdenture. An additive manufactured medical skull model was used preoperatively to guide the prebending of patient-specific hardware, including a reconstruction plate and titanium mesh. A subcutaneous adipose tissue sample was harvested from the anterior abdominal wall of the patient before resection and simultaneous reconstruction of the parasymphysis. ASCs were isolated and expanded ex vivo over the next 3 weeks. The cell surface marker expression profile of ASCs was similar to previously reported results and ASCs were analyzed for osteogenic differentiation potential in vitro. The expanded cells were seeded onto a scaffold consisting of β-TCP and BMP-2 and the cell viability was evaluated. The construct was implanted into the parasymphyseal defect. Ten months after reconstruction, dental implants were inserted into the grafted site, allowing harvesting of bone cores. Histologic examination and in vitro analysis of cell viability and cell surface markers were performed and prosthodontic rehabilitation was completed. ASCs in combination with β-TCP and BMP-2 offer a promising construct for the treatment of large, challenging mandibular defects without the need for ectopic bone formation and allowing

  10. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler : a feasibility study of a single surgical procedure in goats

    NARCIS (Netherlands)

    Kroeze, Robert J.; Smit, Theo H.; Vergroesen, Pieter P.; Bank, Ruud A.; Stoop, Reinout; van Rietbergen, Bert; van Royen, Barend J.; Helder, Marco N.

    2015-01-01

    To assess the feasibility of a one-step surgical concept, employing adipose stem cells (ASCs) and a novel degradable radiolucent cage filler (poly-L-lactide-co-caprolactone; PLCL), within polyetheretherketone cages in a stand-alone caprine spinal fusion model. A double-level fusion study was

  11. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: a feasibility study of a single surgical procedure in goats

    NARCIS (Netherlands)

    Kroeze, R.J.; Smit, T.H.; Vergroesen, P.P.A.; Bank, R.A.; Stoop, R.; van Rietbergen, B.; van Royen, B.J.; Helder, M.N.

    2015-01-01

    Purpose: To assess the feasibility of a one-step surgical concept, employing adipose stem cells (ASCs) and a novel degradable radiolucent cage filler (poly-L-lactide-co-caprolactone; PLCL), within polyetheretherketone cages in a stand-alone caprine spinal fusion model. Methods: A double-level fusion

  12. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: a feasibility study of a single surgical procedure in goats

    NARCIS (Netherlands)

    Kroeze, R.J.; Smit, T.H.; Vergroesen, P.P.; Bank, R.A.; Stoop, R.; Rietbergen, B. van; Royen, B.J. van; Helder, M.N.

    2015-01-01

    PURPOSE: To assess the feasibility of a one-step surgical concept, employing adipose stem cells (ASCs) and a novel degradable radiolucent cage filler (poly-L-lactide-co-caprolactone; PLCL), within polyetheretherketone cages in a stand-alone caprine spinal fusion model. METHODS: A double-level fusion

  13. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: a feasibility study of a single surgical procedure in goats

    NARCIS (Netherlands)

    Kroeze, Robert J.; Smit, Theo H.; Vergroesen, Pieter P.; Bank, Ruud A.; Stoop, Reinout; van Rietbergen, Bert; van Royen, Barend J.; Helder, Marco N.

    2015-01-01

    To assess the feasibility of a one-step surgical concept, employing adipose stem cells (ASCs) and a novel degradable radiolucent cage filler (poly-L-lactide-co-caprolactone; PLCL), within polyetheretherketone cages in a stand-alone caprine spinal fusion model. A double-level fusion study was

  14. Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels

    NARCIS (Netherlands)

    Schelbergen, R.F.P.; Dalen, S. van; Huurne, M. Ter; Roth, J.; Vogl, T.; Noel, D.; Jorgensen, C.; Berg, W.B. van den; Loo, F.A.J. van de; Blom, A.B.; Lent, P.L.E.M. van

    2014-01-01

    OBJECTIVE: Synovitis is evident in a substantial subpopulation of patients with osteoarthritis (OA) and is associated with development of pathophysiology. Recently we have shown that adipose-derived stem cells (ASC) inhibit joint destruction in collagenase-induced experimental OA (CIOA). In the

  15. Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo

    Directory of Open Access Journals (Sweden)

    Xiangwei Liu

    2016-01-01

    Full Text Available Adipose mesenchymal stem cells (ASCs are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid (PLGA scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair.

  16. Development of Hydrogel with Anti-Inflammatory Properties Permissive for the Growth of Human Adipose Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    R. Sánchez-Sánchez

    2016-01-01

    Full Text Available Skin wound repair requires the development of different kinds of biomaterials that must be capable of restoring the damaged tissue. Type I collagen and chitosan have been widely used to develop scaffolds for skin engineering because of their cell-related signaling properties such as proliferation, migration, and survival. Collagen is the major component of the skin extracellular matrix (ECM, while chitosan mimics the structure of the native polysaccharides and glycosaminoglycans in the ECM. Chitosan and its derivatives are also widely used as drug delivery vehicles since they are biodegradable and noncytotoxic. Regulation of the inflammatory response is crucial for wound healing and tissue regeneration processes; and, consequently, the development of biomaterials such as hydrogels with anti-inflammatory properties is very important and permissive for the growth of cells. In the last years, it has been shown that mesenchymal stem cells have clinical importance in the treatment of different pathologies, for example, skin injuries. In this paper, we describe the anti-inflammatory activity of collagen type 1/chitosan/dexamethasone hydrogel, which is permissive for the culture of human adipose-derived mesenchymal stem cells (hADMSC. Our results show that hADMSC cultured in the hydrogel are viable, proliferate, and secrete the anti-inflammatory cytokine interleukin-10 (IL-10 but not the inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α.

  17. Topically Delivered Adipose Derived Stem Cells Show an Activated-Fibroblast Phenotype and Enhance Granulation Tissue Formation in Skin Wounds

    Science.gov (United States)

    Hong, Seok Jong; Xu, Wei; Leung, Kai P.; Mustoe, Thomas A.; Galiano, Robert D.

    2013-01-01

    Multipotent mesenchymal stem cells (MSCs) are found in various tissues and can proliferate extensively in vitro. MSCs have been used in preclinical animal studies and clinical trials in many fields. Adipose derived stem cells (ASCs) have several advantages compared to other MSCs for use in cell-based treatments because they are easy to isolate with relative abundance. However, quantitative approaches for wound repair using ASCs have been limited because of lack of animal models which allow for quantification. Here, we addressed the effect of topically delivered ASCs in wound repair by quantitative analysis using the rabbit ear model. We characterized rabbit ASCs, and analyzed their multipotency in comparison to bone marrow derived-MSCs (BM-MSCs) and dermal fibroblasts (DFs) in vitro. Topically delivered ASCs increased granulation tissue formation in wounds when compared to saline controls, whereas BM-MSCs or DFs did not. These studies suggest that ASCs and BM-MSCs are not identical, though they have similar surface markers. We found that topically delivered ASCs are engrafted and proliferate in the wounds. We showed that transplanted ASCs exhibited activated fibroblast phenotype, increased endothelial cell recruitment, and enhanced macrophage recruitment in vivo. PMID:23383253

  18. The Efficacy and Safety of Platelet-Rich Plasma and Adipose-Derived Stem Cells: An Update

    Directory of Open Access Journals (Sweden)

    Jaehoon Choi

    2012-11-01

    Full Text Available During the past decade, many studies using platelet-rich plasma (PRP or adipose-derivedstem cells (ASCs have been conducted in various medical fields, from cardiovascular researchto applications for corneal diseases. Nonetheless, there are several limitations of practicalapplications of PRP and ASCs. Most reports of PRP are anecdotal and few include controlsto determine the specific role of PRP. There is little consensus regarding PRP production andcharacterization. Some have reported the development of an antibody to bovine thrombin,which was the initiator of platelet activation. In the case of ASCs, good manufacturing practicesare needed for the production of clinical-grade human stem cells, and in vitro expansion ofASCs requires approval of the Korea Food and Drug Administration, such that considerableexpense and time are required. Additionally, some have reported that ASCs could have apotential risk of transformation to malignant cells. Therefore, the authors tried to investigatethe latest research on the efficacy and safety of PRP and ASCs and report on the current stateand regulation of these stem cell-based therapies.

  19. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-11-01

    Full Text Available Abstract Background Human adipose-derived mesenchymal stem cells (haMSCs have shown efficacy in treating osteoarthritis (OA both preclinically and clinically via intra-articular (IA injection. However, understanding the mode of action of the cell therapy has been limited by cell tracking capability and correlation between the pharmacokinetics of the injected cells and the intended pharmacodynamics effect. This study aims to explore methodology and to understand in vivo biodistribution of clinical-grade haMSCs labeled with fluorescent dye and injected into an immunocompetent OA rat model. Methods haMSCs labeled with fluorescent dye were investigated for their proliferation and differentiation capabilities. Labeled cells were used to establish detection threshold of a noninvasive biofluorescent imaging system before the cells (2.5 × 106 were injected into a conventional rat OA model induced by medial meniscectomy for 8 weeks. We attempted to reveal the existence of labeled cells in vivo by imaging and a molecular biomarker approach, and to correlate with the in vivo efficacy and physical presence over a follow-up period up to 10 weeks. Results In vitro proliferation and differentiation of haMSCs were not affected by the labeling of DiD dye. Detection thresholds of the labeled cells in vitro and in vivo were determined to be 104 and 105 cells, respectively. When 2.5 × 106 haMSCs were injected into the joints of a rat OA model, fluorescent signals (or >105 cells lasted for about 10 weeks in the surgical knee joint at the same time as efficacy was observed. Signals in nonsurgical rats only lasted for 4 weeks. The human MSCs were shown to engraft to the rat joint tissues and were proliferative. Human FOXP2 gene was only detected in the knee joint tissue, suggesting limited biodistribution locally to the joints. Conclusions The current study represents the first attempt to correlate cell therapy efficacy on OA with the physical presence

  20. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model.

    Science.gov (United States)

    Li, Meng; Luo, Xuan; Lv, Xiaoteng; Liu, Victor; Zhao, Guangyu; Zhang, Xue; Cao, Wei; Wang, Richard; Wang, Wen

    2016-11-10

    Human adipose-derived mesenchymal stem cells (haMSCs) have shown efficacy in treating osteoarthritis (OA) both preclinically and clinically via intra-articular (IA) injection. However, understanding the mode of action of the cell therapy has been limited by cell tracking capability and correlation between the pharmacokinetics of the injected cells and the intended pharmacodynamics effect. This study aims to explore methodology and to understand in vivo biodistribution of clinical-grade haMSCs labeled with fluorescent dye and injected into an immunocompetent OA rat model. haMSCs labeled with fluorescent dye were investigated for their proliferation and differentiation capabilities. Labeled cells were used to establish detection threshold of a noninvasive biofluorescent imaging system before the cells (2.5 × 10 6 ) were injected into a conventional rat OA model induced by medial meniscectomy for 8 weeks. We attempted to reveal the existence of labeled cells in vivo by imaging and a molecular biomarker approach, and to correlate with the in vivo efficacy and physical presence over a follow-up period up to 10 weeks. In vitro proliferation and differentiation of haMSCs were not affected by the labeling of DiD dye. Detection thresholds of the labeled cells in vitro and in vivo were determined to be 10 4 and 10 5 cells, respectively. When 2.5 × 10 6 haMSCs were injected into the joints of a rat OA model, fluorescent signals (or >10 5 cells) lasted for about 10 weeks in the surgical knee joint at the same time as efficacy was observed. Signals in nonsurgical rats only lasted for 4 weeks. The human MSCs were shown to engraft to the rat joint tissues and were proliferative. Human FOXP2 gene was only detected in the knee joint tissue, suggesting limited biodistribution locally to the joints. The current study represents the first attempt to correlate cell therapy efficacy on OA with the physical presence of the injected haMSCs in the OA model, and demonstrates

  1. Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Regulate the Phenotype of Smooth Muscle Cells to Limit Intimal Hyperplasia.

    Science.gov (United States)

    Liu, Rong; Shen, Hong; Ma, Jian; Sun, Leiqing; Wei, Meng

    2016-04-01

    Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) play important roles in the reduction of inflammation in multiple disease models. However, their role in vein graft (VG) remodeling is undefined. We aimed to investigate the effect of EVs from adipose MSCs (ADMSC-EVs) on VG intimal hyperplasia and to explore the possible mechanisms. After generation and characterization of control-EVs and ADMSC-EVs in vitro, we investigated their effect on the proliferation and migration of vascular smooth muscle cells (VSMCs) in vitro. Next, we established a mouse model of VG transplantation. Mice underwent surgery and received control-EVs or ADMSC-EVs by intraperitoneal injection every other day for 20 days. VG remodeling was evaluated after 4 weeks. We also assessed the effect of ADMSC-EVs on macrophage migration and inflammatory cytokine expression. Significant inhibitory effects of ADMSC-EVs on in vitro VSMC proliferation (p < 0.05) and migration (p < 0.05) were observed compared with control-EVs. The extent of intimal hyperplasia was significantly decreased in ADMSC-EV-treated mice compared with control-EV-treated mice (26 ± 8.4 vs. 45 ± 9.0 μm, p < 0.05). A reduced presence of macrophages was observed in ADMSC-EV-treated mice (p < 0.05). Significantly decreased expression of inflammatory cytokines interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was also found in the ADMSC-EV-treated group (both p < 0.05). In addition, phosphorylation of Akt, Erk1/2, and p38 in VGs was decreased in the ADMSC-EV-treated group. We demonstrated that ADMSC-EVs exert an inhibitory effect on VG neointima formation by regulating VSMC proliferation and migration, macrophage migration, inflammatory cytokine expression, and the related signaling pathways.

  2. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Dreyer, Chris Halling; Ditzel, Nicholas

    2016-01-01

    Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture...

  3. Effects of Ionizing Radiation on Human Adipose Derived Mesenchymal Stem Cells and their Differentiation towards the Osteoblastic Lineage

    Science.gov (United States)

    Konda, Bikash; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther; Lau, Patrick

    Radiation exposure and musculoskeletal disuse are among the major challenges during space missions. Astronauts face the problem to lose bone calcium due to uncoupling of bone formation and resorption. Bone forming osteoblasts can be derived from the undifferentiated mesenchymal stem cell compartment (MSC). In this study, the ability of human adipose tissue derived stem cells (ATSC) to differentiate into the osteoblastic lineage was examined after radiation exposure in presence of medium supplementation with osteogenic additives (ß-glycerophosphate, ascorbic acid and dexamethasone). The SAOS-2 cell line (human osteosarcoma cell line) was used as control for osteoblastic differentiation. Changes in cellular morphology, cell cycle progression, as well as cellular radiation sensitivity were characterized after ionizing radiation exposure with X-rays and heavy ions (Ti). Rapidly proliferating SAOS-2 cells are less radiation-sensitive than slowly proliferating ATSC cells after X-ray (CFA: dose effect curves show D0 values of 1 Gy and 0.75 Gy for SAOS-2 and ATSC, respectively) exposure. Heavy ion (Ti) exposure resulted in a greater extent of cells accumulating in the G2/M phase of the cell cycle in a dose-dependent manner when compared to X-ray exposure. Differentiation of cells towards the osteoblastic lineage was quantified by hydroxyapatite (HA) deposition using Lonza OsteoImageTM mineralization assay. The deposition of HA after X- and Ti-irradiation for highly proliferating SAOS-2 cells showed a dose-dependent time delay while slowly proliferating ATSC showed no effect from radiation exposure.