WorldWideScience

Sample records for adipose derived stem

  1. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...... chronic wound models across different animals were treated with ASCs. Different ASC sources and delivery methods were used in the described studies. Studies demonstrated improved wound healing with utilization of ASC, and this treatment modality has so far shown great potential. However, more preclinical...

  2. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  3. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  4. The Effect of Antiseptics on Adipose-Derived Stem Cells.

    Science.gov (United States)

    Kim, Bong-Sung; Ott, Veronica; Boecker, Arne Hendrick; Stromps, Jan-Philipp; Paul, Nora Emilie; Alharbi, Ziyad; Cakmak, Ercan; Bernhagen, Jürgen; Bucala, Richard; Pallua, Norbert

    2017-03-01

    Although chemical antiseptics are the most basic measure to control wound infection and frequently come into contact with subcutaneous adipose tissue, no studies have evaluated their toxicity on adipose tissue and its cell fractions. In the present study, the effects of five different antiseptics on adipose-derived stem cells were evaluated. Human adipose-derived stem cells were harvested from healthy donors. Adipose-derived stem cell viability was measured after treatment with different concentrations of antiseptics over 5 days. Furthermore, the effect on the proliferation, adipogenic differentiation, and apoptosis/necrosis of adipose-derived stem cells was analyzed. Finally, the mRNA expression of the stem cell markers CD29, CD34, CD73, CD90, and CD105 was detected. Octenisept and Betaisodona significantly reduced cell proliferation and differentiation and led to considerable adipose-derived stem cell necrosis. Octenisept decreased stem cell viability at the lowest concentrations tested, and all stem cell markers were down-regulated by Octeniseptr and Betaisodona. Lavasept and Prontosan both led to reduced stem cell viability, proliferation, and differentiation, and increased apoptosis/necrosis, although the effects were less pronounced compared with Octenisept and Betaisodona. Adipose-derived stem cells survived treatment with mafenide acetate even at high concentrations, and mafenide acetate showed minimal negative effects on their proliferation, adipogenic differentiation, cell death, and stem cell marker expression. Mafenide acetate may be regarded as a feasible antiseptic for the treatment of wounds with exposed adipose tissue because of its low adipose-derived stem cell toxicity. Lavasept and Prontosan are possible alternatives to mafenide acetate. Octenisept and Betaisodona, by contrast, may be used only in highly diluted solutions. Therapeutic, V.

  5. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  6. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  7. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  8. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    Science.gov (United States)

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

  9. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  10. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  11. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  12. Adipose-derived stem cells: selecting for translational success.

    Science.gov (United States)

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2015-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.

  13. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  14. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  15. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  16. Generation of Neurospheres from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Erfang Yang

    2015-01-01

    Full Text Available Transplantation of neural stem cells (NSCs to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF, and epidermal growth factor (EGF; the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.

  17. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  18. Case Reports of Adipose-derived Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  19. Nanomechanics of human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Jungmann, Pia M; Mehlhorn, Alexander T; Schmal, Hagen

    2012-01-01

    OBJECTIVES: Human adipose-derived stem cells (ASCs) show gene expression of chondrogenic markers after three-dimensional cultivation. However, hypertrophy and osteogenic transdifferentiation are still limiting clinical applications. The aim of this study was to investigate the impact of small...... stem cells by single-cell elasticity measurements using atomic force microscopy. Results were matched with single-cell size measurements (diameter and volume) and quantitative real time-polymerase chain reaction for osteogenic and hypertrophic (alkaline phosphatase [ALP], collagen type X) as well...... a significantly lower deformability than chondrocytes (Young's modulus: 294.4 vs. 225.1 Pa; ANOVA: pstem cell elasticity to chondrocyte values (221.7 Pa). All other chondrogenic differentiated ASCs presented intermediate elasticity (BMP-2 stimulation: 269.1 Pa...

  20. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  1. Adipose tissue-derived stem cells in neural regenerative medicine.

    Science.gov (United States)

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  2. Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Kuhbier, Jörn W.; Weyand, Birgit; Radtke, Christine; Vogt, Peter M.; Kasper, Cornelia; Reimers, Kerstin

    While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.

  3. Epigenetic programming of adipose-derived stem cells in low birthweight individuals

    DEFF Research Database (Denmark)

    Broholm, Christa; Olsson, Anders H; Perfilyev, Alexander

    2016-01-01

    AIMS/HYPOTHESIS: Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction...

  4. Transplanted adipose-derived stem cells delay D-galactose-induced aging in rats

    Institute of Scientific and Technical Information of China (English)

    Chun Yang; Ou Sha; Jingxing Dai; Lin Yuan; Dongfei Li; Zhongqiu Wen; Huiying Yang; Meichun Yu; Hui Tao; Rongmei Qu; Yikuan Du; Yong Huang

    2011-01-01

    To investigate the effects of allogeneically transplanted, adipose-derived stem cells in aging rats, in the present study, we established a rat model of subacute aging using continuous subcutaneous injections of D-galactose. Two weeks after the adipose-derived stem cells transplantations, serum superoxide dismutase activity was significantly increased, malondialdehyde content was significantly reduced, hippocampal neuronal degeneration was ameliorated, the apoptotic index of hippocampal neurons was decreased, and learning and memory function was significantly improved in the aging rats. These results indicate that allogeneic transplantation of adipose-derived stem cells may effectively delay D-galactose-induced aging.

  5. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...

  6. Neuronal differentiation of adipose-derived stem cells and their transplantation for cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Guoping Tian; Xiaoguang Luo; Jin Zhou; Jinge Wang; Bing Xu; Li Li; Feng Zhu; Jian Han; Jianping Li; Siyang Zhang

    2012-01-01

    OBJECTIVE: To review published data on the biological characteristics, differentiation and applications of adipose-derived stem cells in ischemic diseases.DATA RETRIEVAL: A computer-based online search of reports published from January 2005 to June 2012 related to the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia was performed in Web of Science using the key words"adipose-derived stem cells", "neural-like cells", "transplantation", "stroke", and "cerebral ischemia". SELECTION CRITERIA: The documents associated with the development of adipose-derived stem cells and their transplantation for treatment of cerebral ischemia were selected, and those published in the last 3-5 years or in authoritative journals were preferred in the same field. Totally 89 articles were obtained in the initial retrieval, of which 53 were chosen based on the inclusion criteria. MAIN OUTCOME MEASURES: Biological characteristics and induced differentiation ofadipose-derived stem cells and cell transplantation for disease treatment as well as the underlying mechanism of clinical application. RESULTS: The advantages of adipose-derived stem cells include their ease of procurement, wide availability, rapid expansion, low tumorigenesis, low immunogenicity, and absence of ethical constraints. Preclinical experiments have demonstrated that transplanted adipose-derived stem cells can improve neurological functions, reduce small regions of cerebral infarction, promote angiogenesis, and express neuron-specific markers. The improvement of neurological functions was demonstrated in experiments using different methods and time courses of adipose-derived stem cell transplantation, but the mechanisms remain unclear.CONCLUSION: Further research into the treatment of ischemic disease by adipose-derived stem cell transplantation is needed to determine their mechanism of action.

  7. In vitro isolation, culture and identification of adipose-derived stem cells*

    Institute of Scientific and Technical Information of China (English)

    Du Guo-jia; Chen Xiao-hong; Zhu Guo-hua; Fan Yan-dong; Wang Yun; Dang Mu-ren

    2013-01-01

    BACKGROUND:Adipose-derived stem cells are easily col ected and abundantly cultured, which can proliferate rapidly when being cultured in vitro. With multi-directional differentiation potential, adipose-derived stem cells are expected as seed cells for tissue engineering. OBJECTIVE:To isolate, culture and identify of adipose-derived stem cells from Sprague-Dawley rats in vitro. METHODS:The subcutaneous adipose tissue was obtained from the iliac region of rats under the aseptic condition, and then was digested with 0.075%type Ⅰ col agenase and cultured in vitro. The morphology and proliferation characteristics of the cells were observed under an inverted phase contrast microscope. The third passage was put into gauge for growth curve by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the cells were also identified by CD44, a stem cellmarker, with immunofluorescence staining. Adipose-derived stem cells were induced and differentiated into adipocytes in Dulbecco’s modified Eagle’s medium/Ham’s nutrient mixture F-12 containing 10%fetal bovine serum, dexamethasone and insulin, and then the cells were identified with oil red“O”staining. Adipose-derived stem cells were induced and differentiated into neural cells, and then the cells were identified with immunohistochemical staining. RESULTS AND CONCLUSION:The growth curve of adipose-derived stem cells was opposite-like“S”shape, and it strongly expressed CD44 that can designate a stem cell. The passage cells were exposed to a defined medium for adipocyte differentiation, and then could be stained with oil red. After being induced and differentiated into nerve cells, the cells expressed neuron-specific enolase. The adipose-derived stem cells of Sprague-Dawley rats are characterized by easy isolation, culture and proliferation in vitro, expressing related phenotypes of mesenchymal stem cells, as wel as induction and differentiation under certain conditions.

  8. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    Science.gov (United States)

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  9. A novel and effective strategy for the isolation of adipose-derived stem cells: minimally manipulated adipose-derived stem cells for more rapid and safe stem cell therapy.

    Science.gov (United States)

    Raposio, Edoardo; Caruana, Giorgia; Bonomini, Sabrina; Libondi, Guido

    2014-06-01

    Adipose-derived stem cells are an ideal mesenchymal stem cell population for regenerative medical application. The isolation procedure is performed by mechanical isolation under a laminar air flow bench without using serum or animal-derived reagents; cells were characterized by flow cytometric analysis. Cell availability is improved compared with enzymatic digestion procedures. The adipose-derived stem cell mechanical isolating procedure presented here is easier, safer, cheaper, and faster than traditional currently performed enzymatic procedures.

  10. Senescence in adipose-derived stem cells and its implications in nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Cristina Mantovani; Giorgio Terenghi; Valerio Magnaghi

    2014-01-01

    Adult mesenchymal stem cells, specifically adipose-derived stem cells have self-renewal and multiple differentiation potentials and have shown to be the ideal candidate for therapeutic applications in regenerative medicine, particularly in peripheral nerve regeneration. Adipose-de-rived stem cells are easily harvested, although they may show the effects of aging, hence their potential in nerve repair may be limited by cellular senescence or donor age. Cellular senescence is a complex process whereby stem cells grow old as consequence of intrinsic events (e.g., DNA damage) or environmental cues (e.g., stressful stimuli or diseases), which determine a permanent growth arrest. Several mechanisms are implicated in stem cell senescence, although no one is exclusive of the others. In this review we report some of the most important factors modulating the senescence process, which can inlfuence adipose-derived stem cell morphology and function, and compromise their clinical application for peripheral nerve regenerative cell therapy.

  11. Natural Killer Cells Differentiate Human Adipose-Derived Stem Cells and Modulate Their Adipogenic Potential.

    Science.gov (United States)

    Rezzadeh, Kameron S; Hokugo, Akishige; Jewett, Anahid; Kozlowska, Anna; Segovia, Luis Andres; Zuk, Patricia; Jarrahy, Reza

    2015-09-01

    Natural killer cells are thought to represent more than 30 percent of all lymphocytes within the stromal vascular fraction of lipoaspirates. However, their physiologic interaction with adipocytes and their precursors has never been specifically examined. The authors hypothesized that natural killer cells, by means of cytokine secretion, are capable of promoting the differentiation of adipose-derived stem cells. Human natural killer cells purified from healthy donors' peripheral blood mononuclear cells were activated with a combination of interleukin-2 and anti-CD16 monoclonal antibody; natural killer cell supernatant was collected. Adipose-derived stem cells isolated from raw human lipoaspirates from healthy patients were treated with growth media, growth media with natural killer cell supernatant, adipogenic media, and adipogenic media with natural killer cells supernatant. Flow cytometric analysis was performed on cells using antibodies against B7H1, CD36, CD44, CD34, CD29, and MHC-1. Adipogenic-related gene expression (PPAR-γ, LPL, GPD-1, and aP2) was assessed. Oil Red O staining was performed as a functional assay of adipocyte differentiation and adipogenesis. Adipose-derived stem cells maintained in growth media with natural killer cell supernatant lost markers of "stemness," including CD44, CD34, and CD29; and expressed markers of differentiation, including B7H1 and MHC-1. Adipose-derived stem cells treated with natural killer cell supernatant accumulated small amounts of lipid after 10 days of natural killer cell supernatant treatment. Adipose-derived stem cells treated with natural killer cell supernatant showed altered expression of adipogenesis-associated genes compared with cells maintained in growth media. Adipose-derived stem cells maintained in adipogenic media with natural killer cell supernatant accumulated less lipid than those cells in adipogenic media alone. The authors demonstrate that, through secreted factors, natural killer cells are capable

  12. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications.

    Science.gov (United States)

    Harasymiak-Krzyżanowska, Izabela; Niedojadło, Alicja; Karwat, Jolanta; Kotuła, Lidia; Gil-Kulik, Paulina; Sawiuk, Magdalena; Kocki, Janusz

    2013-12-01

    The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

  13. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  14. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    Science.gov (United States)

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Therapeutic potential of human adipose-derived stem cells in neurological disorders.

    Science.gov (United States)

    Chang, Keun-A; Lee, Jun-Ho; Suh, Yoo-Hun

    2014-01-01

    Stem cell therapy has been noted as a novel strategy to various diseases including neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and Huntington's disease that have no effective treatment available to date. The adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency with the ability to differentiate into various types of cells and immuno-modulatory property. These biological features make ASCs a promising source for regenerative cell therapy in neurological disorders. Here we discuss the recent progress of regenerative therapies in various neurological disorders utilizing ASCs.

  16. Adipose-derived stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available This book is pleasing the reader already by the Authors’ preface. It is one in a million case to find a figure or a graph in the foreword presentation of a book. Here, Professors Gimble and Bunnell decided to give a warning to the reader about the increasing relevance that the topics covered by the book is playing in the life sciences researches: they simply decided to show the ISI Web of knowledge annual publications and citations for adipose stem cells. Clear enough, the statistics is impressive: few papers in 2000, nearly 600 in 2009 and 2010. The same pattern is present in the citations per year, quite a few in 2000 – 2001 and something like 12,000 in 2010 ! I think that these numbers justify the idea to have a volume devoted to cover all of the topics related to these intriguing stem cell type, likely originating from a perivascular histological niche within highly vascularized fat tissue. The book is divided in four parts.......

  17. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...... and serum replacers were evaluated regarding their ability to support cell growth and preserve differentiation potential. Most of serum replacers proved inferior to fetal calf serum. Among the media tested, modified Eagle's media alpha was superior in promoting cell growth while preserving the ability...

  18. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy.

    Science.gov (United States)

    Jing, Wei; Wu, Ling; Lin, Yunfeng; Liu, Lei; Tang, Wei; Tian, Weidong

    2008-01-01

    Tooth regeneration using tissue engineering concepts is a promising biological approach to solving problems of tooth loss in elderly patients. The seeding cells, however, for tooth regeneration such as odontoblasts from dental germ, stem cells from dental pulp and deciduous teeth, and ectomesenchymal cells from the first branchial arch are difficult, even impossible to harvest in clinic. Bone marrow mesenchymal stem cells have odontogenic capacity, but their differentiation abilities significantly decrease with the increasing age of the donors. Therefore, the cells mentioned above are not practical in the clinical application of tooth regeneration in the old. Adipose derived stem cells have many clinical advantages over bone marrow mesenchymal stem cells, and their differentiation potential can be maintained with aging. Here we propose the hypothesis that adipose derived stem cells could be induced into odontogenic lineage and might be used as suitable seeding cells for tooth regeneration to replace the lost tooth of elderly patients.

  19. Healing of grafted adipose tissue: current clinical applications of adipose-derived stem cells for breast and face reconstruction.

    Science.gov (United States)

    Philips, Brian J; Marra, Kacey G; Rubin, J Peter

    2014-05-01

    Since their isolation and characterization nearly a decade ago, adipose-derived stem cells (ASCs) have become one of the most popular adult stem cell populations for soft tissue engineering and regenerative medicine applications. Compared with other stem cell sources, ASCs offer several advantages including abundant autologous source, minor invasive harvesting (liposuction), significant proliferative capacity in culture, and multilineage potential. In this mini review, we focus on some of the more salient published clinical and preclinical data to date regarding ASC treatment for breast and facial soft tissue reconstruction. © 2014 by the Wound Healing Society.

  20. Immunomagnetic Separation of Fat Depot-Specific Sca1high Adipose-Derived Stem Cells (Ascs)

    Science.gov (United States)

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function1, 2. The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance3, 4. When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1high ASCs. PMID:27583550

  1. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm(2). After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox (Nanog), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog (c-Myc), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc, were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  2. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    Science.gov (United States)

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  3. A Standardized Method of Isolating Adipose-Derived Stem Cells for Clinical Applications.

    Science.gov (United States)

    Raposio, Edoardo; Caruana, Giorgia; Petrella, Maira; Bonomini, Sabrina; Grieco, Michele P

    2016-01-01

    White adipose tissue is the most abundant and accessible source of stem cells in the adult human body. In this paper, we present a standardised and safe method of isolating and maximizing the number of adipose-derived stem cells (ASCs) from conventional liposuction for clinical applications, which was carried out through both mechanical (centrifuge) and enzymatic (collagenase) means. Isolated cells were characterized through flow cytometry assay. Gathered data showed a greater amount (9.06 × 10(5) ASCs from 100 mL of adipose tissue) of isolated ASCs compared to previous protocol, also with high (99%) cell vitality; the procedure we presented is easy and fast (80 minutes), allowing collecting a significative number of mesenchymal stem cells, which can be used for clinical purposes, such as wound healing.

  4. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis

    NARCIS (Netherlands)

    Huurne, M. ter; Schelbergen, R.; Blattes, R.; Blom, A.; Munter, W. de; Grevers, L.C.; Jeanson, J.; Noel, D.; Casteilla, L.; Jorgensen, C.; Berg, W.B. van den; Lent, P.L. van

    2012-01-01

    OBJECTIVE: In experimental collagenase-induced osteoarthritis (OA) in the mouse, synovial lining macrophages are crucial in mediating joint destruction. It was recently shown that adipose-derived stem cells (ASCs) express immunosuppressive characteristics. This study was undertaken to explore the ef

  5. Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Imura, Tetsuya; Numajiri, Toshiaki; Nishino, Kenichi; Tabata, Yasuhiko; Mazda, Osam

    2016-02-01

    During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.

  6. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Ishikawa, Tetsuya; Banas, Agnieszka; Hagiwara, Keitaro; Iwaguro, Hideki; Ochiya, Takahiro

    2010-06-01

    Severe hepatic dysfunctions including hepatic cirrhosis and hepatocarcinoma are life-threatening conditions for which effective medical treatments are needed. With the only effective treatment to date being orthotropic liver transplantation, alternative approaches are needed because of the limited number of donors and the possibility of immune-rejection. One alternative is regenerative medicine, which holds promise for the development of a cell-based therapy enabling hepatic regeneration through transplantation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) or hepatocyte-like cells generated from AT-MSCs. When compared with embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, the use of AT-MSCs as regenerative cells would be advantageous in regard to ethical and safety issues since AT-MSCs are somatic cells and have the potential to be used without in vitro culture. These autologous cells are immuno-compatible and exhibit controlled differentiation and multi-functional abilities and do not undergo post-transplantation rejection or unwanted differentiation such as formation of teratomas. AT-MSC-based therapies may provide a novel approach for hepatic regeneration and hepatocyte differentiation and thereby support hepatic function in diseased individuals.

  7. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  8. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  9. Characterization of adipose-derived stem cells of anatomical region from mice.

    Science.gov (United States)

    Luna, Arthur C L; Madeira, Maria E P; Conceição, Thais O; Moreira, José A L C; Laiso, Rosa A N; Maria, Durvanei A

    2014-08-20

    Stem cells constitute a group of great capacity for self-renewal, long-term viability, and multi-lineage potential. Several studies have provided evidence that adipose tissue represents an alternative source of stem cells, with the main benefit of adipose-derived stem cells being that they can be easily harvested from patients by a simple minimally invasive method and can be easily cultured. The aim of this study was to establish a culture protocol for obtaining and characterizing adipose-derived stem cells (ADSCs) from C57BL/6 J mice. The results showed that the yield, viability, and cell morphology obtained differ according to the age of isolated anatomic regions of the adipose tissue from ovarian and epididymis. The results of determination of cyclin D1 showed uniformity in the expression between different populations of ADSCs. A significant increase in the expression of caspase-3 active, was also observed in large cell populations from mice after 120 days. ADSCs were positive for mesenchymal markers CD90 and CD105, Nanog, SSEA-1, CD106, and VEGFR-1, and negative for hematopoietic markers CD34 and CD45. A large number of cells in S + G2/M phases was also observed for both sexes, demonstrating high proliferative capacity of ADSCs. We observed that the adipose tissue of C57BL/6 J mice, isolated from the studied anatomic regions, is a promising source for obtaining pluripotent mesenchymal stem cells with high viability and proliferative response.

  10. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  11. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  12. Neurogenic Differentiation of Murine Adipose Derived Stem Cells Transfected with EGFP in vitro

    Institute of Scientific and Technical Information of China (English)

    方忠; 杨琴; 熊伟; 李光辉; 肖骏; 郭风劲; 李锋; 陈安民

    2010-01-01

    Some studies indicate that adipose derived stem cells(ADSCs)can differentiate into adipogenic,chondrogenic,myogenic,and osteogenic cells in vitro.However,whether ADSCs can be induced to differentiate into neural cells in vitro has not been clearly demonstrated.In this study,the ADSCs isolated from the murine adipose tissue were cultured and transfected with the EGFP gene,and then the cells were induced for neural differentiation.The morphology of those ADSCs began to change within two days which developed i...

  13. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A; van der Graaf, Adrianus C; Henning, Robert H; Krenning, Guido

    2017-01-01

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  14. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A.; Graaf, Adrianus Cornelis van der; Henning, Robert H.; Krenning, Guido

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  15. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    Science.gov (United States)

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  16. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway.

    Science.gov (United States)

    Kim, You-Sun; Kim, Ji-Young; Cho, RyeonJin; Shin, Dong-Myung; Lee, Sei Won; Oh, Yeon-Mok

    2017-01-13

    Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies.

  17. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway

    Science.gov (United States)

    Kim, You-Sun; Kim, Ji-Young; Cho, RyeonJin; Shin, Dong-Myung; Lee, Sei Won; Oh, Yeon-Mok

    2017-01-01

    Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies. PMID:28082743

  18. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  19. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  20. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2012-01-01

    Full Text Available Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.

  1. Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres

    Science.gov (United States)

    2010-02-17

    into a tissue, ASC-loaded CSM were embedded in type-1 collagen scaffold by mixing them with type-1 collagen solution while inducing gelation. By 14 days...assessed for release from microsphere and phenotypic changes in the gel matrix.41 Materials and Methods Isolation of adipose-derived stem cells Rat ASC...free amino groups present in CSM, before and after ionic gelation, was determined using the trinitro benzenesulfonic ( TNBS ) acid assay of Bubins and

  2. Adipose-Derived Stem Cells Improve Efficacy of Melanocyte Transplantation in Animal Skin

    OpenAIRE

    Lim, Won-Suk; Kim, Chang-Hyun; Kim, Ji-Young; Do, Byung-Rok; Kim, Eo Jin; Lee, Ai-Young

    2014-01-01

    Vitiligo is a pigmentary disorder induced by a loss of melanocytes. In addition to replacement of pure melanocytes, cocultures of melanocytes with keratinocytes have been used to improve the repigmentation outcome in vitiligo treatment. We previously identified by in vitro studies, that adipose-derived stem cells (ADSCs) could be a potential substitute for keratinocytes in cocultures with melanocytes. In this study, the efficacy of pigmentation including durability of grafted melanocytes and ...

  3. Irradiation Response of Adipose-derived Stem Cells under Three-dimensional Culture Condition

    Institute of Scientific and Technical Information of China (English)

    DU Ya Rong; PAN Dong; CHEN Ya Xiong; XUE Gang; REN Zhen Xin; LI Xiao Man; ZHANG Shi Chuan; HU Bu Rong

    2015-01-01

    Objective Adipose tissue distributes widely in human body. The irradiation response of the adipose cells in vivo remains to be investigated. In this study we investigated irradiation response of adipose-derived stem cells (ASCs) under three-dimensional culture condition. Methods ASCs were isolated and cultured in low attachment dishes to form three-dimensional (3D) spheres in vitro. The neuronal differentiation potential and stem-liked characteristics was monitored by using immunofluoresence staining and flow cytometry in monolayer and 3D culture. To investigate the irradiation sensitivity of 3D sphere culture, the fraction of colony survival and micronucleus were detected in monolayer and 3D culture. Soft agar assays were performed for measuring malignant transformation for the irradiated monolayer and 3D culture. Results The 3D cultured ASCs had higher differentiation potential and an higher stem-like cell percentage. The 3D cultures were more radioresistant after either high linear energy transfer (LET) carbon ion beam or low LET X-ray irradiation compared with the monolayer cell. The ASCs’ potential of cellular transformation was lower after irradiation by soft agar assay. Conclusion These findings suggest that adipose tissue cell are relatively genomic stable and resistant to genotoxic stress.

  4. Current applications of adipose-derived stem cells and their future perspectives.

    Science.gov (United States)

    Kim, Eun-Hee; Heo, Chan Yeong

    2014-01-26

    Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells (ADSCs) are one of the most promising stem cell types, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.

  5. Clinical Grade Human Adipose Tissue-Derived Mesenchymal Stem Cell Banking

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2015-10-01

    Full Text Available In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10% fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors’ age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51%, and cell count was between 9×106 and 14×106 per microliter with the mean of 12.2×106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials.

  6. Original Research: Adipose-derived stem cells from younger donors, but not aging donors, inspire the host self-healing capability through its secreta.

    Science.gov (United States)

    Ma, Ning; Qiao, Chenhui; Zhang, Weihua; Luo, Hong; Zhang, Xin; Liu, Donghai; Zang, Suhua; Zhang, Liang; Bai, Jingyun

    2017-01-01

    Adipose-derived stem cells demonstrate promising effects in promoting cutaneous wound healing, but the mechanisms are still not well defined and contradictory views are still debatable. In the present research, we established a mouse cutaneous wound model and investigated the effects of adipose-derived stem cells in wound healing. Adipocyte, adipose-derived stem cells, and epidermal keratinocyte stem cells were isolated from younger and aged donors according to the standard protocol. The conditioned medium either from adipose-derived stem cells or from adipocytes was used to treat epidermal keratinocyte cells. The results showed that adipocytes or adipose-derived stem cells isolated from younger donors demonstrated mild advantage over those cells isolated from aging donors. Adipose-derived stem cells showed stronger stimuli than adipocytes, and the adipose-derived stem cells or adipocytes from younger donors enabled to support higher growth rate of keratinocyte stem cells. The invasion of vasculature was observed at day 10 after posttransplantation in the mice bearing the keratinocyte stem cells or combination of keratinocyte stem cells with adipose-derived stem cells; however, simply inoculating keratinocyte stem cells from aging donors did not result in vasculature formation. Adipose-derived stem cells isolated from younger donors were able to inspire the host's self-healing capabilities, and age-associated factors should be taken into consideration when designing a feasible therapeutic treatment for skin regeneration.

  7. MicroRNA regulation of adipose derived stem cells in aging rats.

    Directory of Open Access Journals (Sweden)

    Jia Fei

    Full Text Available BACKGROUND: Perturbations in abdominal fat secreted adipokines play a key role in metabolic syndrome. This process is further altered during the aging process, probably due to alterations in the preadipocytes (aka. stromal vascular fraction cells-SVF cells or adipose derived stem cells-ASCs composition and/or function. Since microRNAs regulate genes involved both in development and aging processes, we hypothesized that the impaired adipose function with aging is due to altered microRNA regulation of adipogenic pathways in SVF cells. METHODOLOGY AND PRINCIPAL FINDINGS: Alterations in mRNA and proteins associated with adipogenic differentiation (ERK5 and PPARg but not osteogenic (RUNX2 pathways were observed in SVF cells isolated from visceral adipose tissue with aging (6 to 30 mo in female Fischer 344 x Brown Norway Hybrid (FBN rats. The impaired differentiation capacity with aging correlated with altered levels of miRNAs involved in adipocyte differentiation (miRNA-143 and osteogenic pathways (miRNA-204. Gain and loss of function studies using premir or antagomir-143 validated the age associated adipocyte dysfunction. CONCLUSIONS AND SIGNIFICANCE: Our studies for the first time indicate a role for miRNA mediated regulation of SVF cells with aging. This discovery is important in the light of the findings that dysfunctional adipose derived stem cells contribute to age related chronic diseases.

  8. Potential of Adipose-derived stem cells in muscular regenerative therapies

    Directory of Open Access Journals (Sweden)

    Sonia eForcales

    2015-07-01

    Full Text Available Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs. These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous adipose-derived stem cells are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will discuss the use of ASCs in muscle regenerative approaches.

  9. Fat on sale: role of adipose-derived stem cells as anti-fibrosis agent in regenerative medicine.

    Science.gov (United States)

    Gupta, Manoj K; Ajay, Amrendra Kumar

    2015-12-01

    The potential use of stem cells for cell-based tissue repair and regeneration offers alternative therapeutic strategies for various diseases. Adipose-derived stem cells (ADSCs) have emerged as a promising source of stem cells suitable for transplantation in regenerative medicine and wound repair. A recent publication in Stem Cell Research & Therapy by Zhang and colleagues reports a new finding about the anti-fibrosis role of ADSCs and conditioned media derived from them on hypertrophic scar formation in vivo.

  10. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine.

    Science.gov (United States)

    Mizuno, Hiroshi; Tobita, Morikuni; Uysal, A Cagri

    2012-05-01

    The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in the genetic manipulation of human ESCs, even though these cells are, theoretically, highly beneficial. Mesenchymal stem cells seem to be an ideal population of stem cells for practical regenerative medicine, because they are not subjected to the same restrictions. In particular, large number of adipose-derived stem cells (ASCs) can be easily harvested from adipose tissue. Furthermore, recent basic research and preclinical studies have revealed that the use of ASCs in regenerative medicine is not limited to mesodermal tissue but extends to both ectodermal and endodermal tissues and organs, although ASCs originate from mesodermal lineages. Based on this background knowledge, the primary purpose of this concise review is to summarize and describe the underlying biology of ASCs and their proliferation and differentiation capacities, together with current preclinical and clinical data from a variety of medical fields regarding the use of ASCs in regenerative medicine. In addition, future directions for ASCs in terms of cell-based therapies and regenerative medicine are discussed.

  11. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  12. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Lauren H. Mangum

    2017-01-01

    Full Text Available Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS, which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP or from adipose associated with debrided burned skin (BH. Most (95–99% cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p<0.05. Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

  13. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Noor Azmi, Mat Adenan; Omar, Siti Zawiah [Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Chua, Kien Hui [Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Wan Safwani, Wan Kamarul Zaman, E-mail: wansafwani@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  14. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  15. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    Science.gov (United States)

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.

  16. Manual isolation of adipose-derived stem cells from human lipoaspirates.

    Science.gov (United States)

    Zhu, Min; Heydarkhan-Hagvall, Sepideh; Hedrick, Marc; Benhaim, Prosper; Zuk, Patricia

    2013-09-26

    In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.

  17. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available BACKGROUND: Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. METHODOLOGY/PRINCIPAL FINDINGS: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection. CONCLUSIONS/SIGNIFICANCE: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple

  18. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    Science.gov (United States)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  19. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  20. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  1. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview

    Directory of Open Access Journals (Sweden)

    Ezzatollah Fathi

    2016-01-01

    Full Text Available ABSTRACT The aim of this review was to describe the current state-of-the-art regarding isolation, characterization and aging of adipose tissue-derived mesenchymal stem cells (ADSCs. Mesenchymal stem cells (MSCs have recently received widespread attention because of their potential use in tissue-engineering applications. Various studies have indicated that MSCs with a fibroblast-like morphology migrate to the sites of injury and help to regenerate damaged tissue. Over the past few years, it has been recognized that fat is not only an energy supply, but also a rich source of multipotent stem cells that can be easily harvested, isolated and selected as compared with other tissues. ADSCs are particularly interesting because of their rapid proliferation and multidirectional differentiation potential.

  3. Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis

    Institute of Scientific and Technical Information of China (English)

    Qiaozhi Wang; Lile Zhou; Yong Guo; Guangyi Liu; Jiyan Cheng; Hong Yu

    2013-01-01

    Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10%Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Si-nensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in-ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani-sole-induced group, and the expression of glial fibril ary acidic protein was negative. After they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem celldifferentiation into neuron-like cells and produce less cytotoxicity.

  4. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  5. Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Dizaji Asl, Khadijeh; Shafaei, Hajar; Soleimani Rad, Jafar; Nozad, Hojjat Ollah

    2017-01-01

    BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics of AM-MSC and ASCs and CD271 expression were compared. METHODS Adult adipose tissue samples were obtained from patients undergoing elective surgical procedure, and samples of amniotic membrane were collected immediately after caesarean operation. After isolation and expansion of MSCs, the proliferation rate and viability of cells were evaluated through calculating DT and MTT assay. Expression of routine mesenchymal specific surface antigens of MSCs and CD271 was evaluated by flow cytometry for both types of cells. RESULTS The growth rate and viability of the MSCs from the amniotic membrane was significantly higher compared with the ASCs. The low expression of CD14 and CD45 indicated that AM-MSC and ASCs are non hematopoietic cells, and both cell types expressed high percentages of CD44, CD105. The results revealed that AM-MSC and ASCs expressed no CD271 on their surfaces. CONCLUSION This study showed that amniotic membrane is a suitable cell source for cell therapy, and CD271 is a negative marker for MSCs identification from amniotic membrane and adipose tissue.

  6. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  7. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue.

    Science.gov (United States)

    Naaijkens, B A; Krijnen, P A J; Meinster, E; ter Horst, E N; Vo, K; Musters, R J P; Kamp, O; Niessen, H W M; Juffermans, L J M; van Dijk, A

    2015-12-01

    In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.

  8. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  9. Sox9 Modulates Proliferation and Expression of Osteogenic Markers of Adipose-Derived Stem Cells (ASC

    Directory of Open Access Journals (Sweden)

    Sabine Stöckl

    2013-05-01

    Full Text Available Background: Mesenchymal stem cells (MSC are promising tools for tissue-engineering and musculoskeletal regeneration. They reside within various tissues, like adipose tissue, periosteum, synovia, muscle, dermis, blood and bone marrow, latter being the most common tissue used for MSC isolation. A promising alternative source for MSC is adipose tissue due to better availability and higher yield of MSC in comparison to bone marrow. A drawback is the yet fragmentary knowledge of adipose-derived stem cell (ASC physiology in order to make them a safe tool for in vivo application. Methods/Results: Here, we identified Sox9 as a highly expressed and crucial transcription factor in undifferentiated rat ASC (rASC. In comparison to rat bone marrow-derived stem cells (rBMSC, mRNA and protein levels of Sox9 were significantly higher in rASC. To study the role of Sox9 in detail, we silenced Sox9 with shRNA in rASC and examined proliferation, apoptosis and the expression of osteogenic differentiation markers. Our results clearly point to a difference in the expression profile of osteogenic marker genes between undifferentiated rASC and rBMSC in early passages. Sox9 silencing induced the expression of osteocalcin, Vegfα and Mmp13, and decreased rASC proliferation accompanied with an induction of p21 and cyclin D1 expression and delayed S-phase entry. Conclusions: We suggest a pro-proliferative role for Sox9 in undifferentiated rASC which may explain the higher proliferation rate of rASC compared to rBMSC. Moreover, we propose an osteogenic differentiation delaying role of Sox9 in rASC which suggests that Sox9 expression is needed to maintain rASC in an undifferentiated, proliferative state.

  10. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  11. Role of adipose-derived stem cells in fat grafting and reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Shaun S Tan

    2016-01-01

    Full Text Available Autologous fat grafting is commonly utilised to reconstruct soft tissue defects caused by ageing, trauma, chronic wounds and cancer resection. The benefits of fat grafting are minimal donor site morbidity and ease of availability through liposuction or lipectomy. Nonetheless, survival and longevity of fat grafts remain poor post-engraftment. Various methods to enhance fat graft survival are currently under investigation and its stem cell constituents are of particular interest. Cell-assisted lipotransfer refers to the addition of adipose-derived stem cell (ASC rich component of stromal vascular fraction to lipoaspirate, the results of which have proven promising. This article aims to review the role of ASCs in fat grafting and reconstructive surgery.

  12. Role of Adipose-derived Stem Cells in Fat Grafting and Reconstructive Surgery

    Science.gov (United States)

    Tan, Shaun S; Ng, Zhi Yang; Zhan, Weiqing; Rozen, Warren

    2016-01-01

    Autologous fat grafting is commonly utilised to reconstruct soft tissue defects caused by ageing, trauma, chronic wounds and cancer resection. The benefits of fat grafting are minimal donor site morbidity and ease of availability through liposuction or lipectomy. Nonetheless, survival and longevity of fat grafts remain poor post-engraftment. Various methods to enhance fat graft survival are currently under investigation and its stem cell constituents are of particular interest. Cell-assisted lipotransfer refers to the addition of adipose-derived stem cell (ASC) rich component of stromal vascular fraction to lipoaspirate, the results of which have proven promising. This article aims to review the role of ASCs in fat grafting and reconstructive surgery.

  13. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis

    Directory of Open Access Journals (Sweden)

    Maria Elena Falomo

    2015-01-01

    Full Text Available Endometriosis is a degenerative process due to a chronic inflammatory damage leading to extracellular matrix components deposition and glandular fibrosis. It is known that mesenchymal stem cells secrete a wide range of bioactive molecules, some of them modulating the immune inflammatory response, and others providing regeneration and remodeling of injured tissue. We have performed in vitro experiments in order to analyze the capability of allogenic equine adipose-derived stem cells (ADSCs to infiltrate mares’ endometrial tissues and to stimulate the expression of cytokines and metallopeptidases. Differences in the biologic response to the exposure to ADSCs between pathological and healthy endometrial tissue have been identified. These results could challenge researchers to progress forward with future studies for the development of a biological therapy with a possible application in translational medicine.

  14. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophy via paracrine signaling

    Directory of Open Access Journals (Sweden)

    Ji-qing Cao

    2016-01-01

    Full Text Available Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 10 6 were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR, eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the regeneration and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.

  15. Adipose-derived stem cells enhance myogenic differentiation in the mdx mouse model of muscular dystrophyvia paracrine signaling

    Institute of Scientific and Technical Information of China (English)

    Ji-qing Cao; Jie Kong; Cheng Zhang; Ying-yin Liang; Ya-qin Li; Hui-li Zhang; Yu-ling Zhu; Jia Geng; Li-qing Yang; Shan-wei Feng; Juan Yang

    2016-01-01

    Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 106) were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle ifbers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR), eIF-4E binding protein 1 and S6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and ifbrosis were reduced in the muscle ifbers. hTese ifndings suggest that adipose-derived stem cells promote the re-generation and survival of muscle cells by inhibiting apoptosis and ifbrosis, thereby alleviating muscle damage in muscular dystrophy.

  16. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    Science.gov (United States)

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  17. miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Zhang, Zi-ji; Zhang, Hao; Kang, Yan; Sheng, Pu-yi; Ma, Yuan-chen; Yang, Zi-bo; Zhang, Zhi-qi; Fu, Ming; He, Ai-shan; Liao, Wei-ming

    2012-03-01

    Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering. © 2011 Wiley Periodicals, Inc.

  18. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells

    Indian Academy of Sciences (India)

    Jung Ah Cho; Ho Park; Eun Hye Lim; Kyo Won Lee

    2011-04-01

    Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.

  19. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  20. Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia.

    Science.gov (United States)

    Mariani, Stefania; Di Rocco, Giuliana; Toietta, Gabriele; Russo, Matteo A; Petrangeli, Elisa; Salvatori, Luisa

    2016-11-14

    The sirtuin family comprises seven NAD(+)-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral

  1. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2011-04-15

    A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning.

  2. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field

    Science.gov (United States)

    Mardani, Mohammad; Roshankhah, Shiva; Hashemibeni, Batool; Salahshoor, Mohammadreza; Naghsh, Erfan; Esfandiari, Ebrahim

    2016-01-01

    Background: Since when the cartilage damage (e.g., with the osteoarthritis) it could not be repaired in the body, hence for its reconstruction needs cell therapy. For this purpose, adipose-derived stem cells (ADSCs) is one of the best cell sources because by the tissue engineering techniques it can be differentiated into chondrocytes. Chemical and physical inducers is required order to stem cells to chondrocytes differentiating. We have decided to define the role of electric field (EF) in inducing chondrogenesis process. Materials and Methods: A low frequency EF applied the ADSCs as a physical inducer for chondrogenesis in a 3D micromass culture system which ADSCs were extracted from subcutaneous abdominal adipose tissue. Also enzyme-linked immunosorbent assay, methyl thiazolyl tetrazolium, real time polymerase chain reaction and flowcytometry techniques were used for this study. Results: We found that the 20 minutes application of 1 kHz, 20 mv/cm EF leads to chondrogenesis in ADSCs. Although our results suggest that application of physical (EF) and chemical (transforming growth factor-β3) inducers at the same time, have best results in expression of collagen type II and SOX9 genes. It is also seen EF makes significant decreased expression of collagens type I and X genes. Conclusion: The low frequency EF can be a good motivator to promote chondrogenic differentiation of human ADSCs. PMID:27308269

  3. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman

    2017-02-21

    Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.

  4. Current progress in use of adipose derived stem cells inperipheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Shomari DL Zack-Williams; Peter E Butler; Deepak M Kalaskar

    2015-01-01

    Unlike central nervous system neurons; those in theperipheral nervous system have the potential for fullregeneration after injury. Following injury, recovery iscontrolled by schwann cells which replicate and modulatethe subsequent immune response. The level of nerverecovery is strongly linked to the severity of the initialinjury despite the significant advancements in imagingand surgical techniques. Multiple experimental modelshave been used with varying successes to augment thenatural regenerative processes which occur following nerveinjury. Stem cell therapy in peripheral nerve injury maybe an important future intervention to improve the bestattainable clinical results. In particular adipose derivedstem cells (ADSCs) are multipotent mesenchymal stemcells similar to bone marrow derived stem cells, which arethought to have neurotrophic properties and the ability todifferentiate into multiple lineages. They are ubiquitouswithin adipose tissue; they can form many structuresresembling the mature adult peripheral nervous system.Following early in vitro work; multiple small and largeanimal in vivo models have been used in conjunction withconduits, autografts and allografts to successfully bridgethe peripheral nerve gap. Some of the ADSC relatedneuroprotective and regenerative properties have beenelucidated however much work remains before a modelcan be used successfully in human peripheral nerve injury(PNI). This review aims to provide a detailed overview ofprogress made in the use of ADSC in PNI, with discussionon the role of a tissue engineered approach for PNI repair.

  5. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  6. The effect of adipose-derived stem cells on the survival of diced cartilage graft in rabbits

    Directory of Open Access Journals (Sweden)

    Mohammad reza Ebadi

    2016-10-01

    Full Text Available Backgrounds and Aims: The use of diced cartilage grafts in rhinoplasty in recent years, have been considered by most plastic surgeons. However, long-term resorption usually occurs. The aim of this study was to Examine the effects of adipose-derived stem cells on the viability of diced cartilage grafts. Materials and Methods: In this study, 10 New Zealand White male rabbits, weighing 2000-2500 g, approximately 12 to 16 weeks of age were used.Stem cells was harvested from inguinal adipose tissue of each rabbits. Grafts placed subcutaneously along the dorsal midline. Stem cells were injected in one side and the other side was control. The cartilage weights were recorded both before implantation and after explantation. Evaluation of living chondrocytes was conducted 12 weeks after implantation. Results: The mean difference of cartilage weights was varied between two groups (intervention and control sides; So that the average was significantly higher in stem cell side than that in the control side (p=0.021. The average number of live chondrocytes was significantly higher in the intervention side than the control side (p<0.001. Conclusions: These findings suggest that adipose-derived stem cells can maintain the viability of diced cartilage, although the exact mechanism remains to be defined. Because adipose-derived stem cells are autologous and easy to harvest, they may be useful for improving the long-term outcomes of diced cartilage grafting.

  7. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    Science.gov (United States)

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  8. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides.

    Science.gov (United States)

    Rodríguez-Serrano, Fernando; Alvarez, Pablo; Caba, Octavio; Picón, Manuel; Marchal, Juan A; Perán, Macarena; Prados, José; Melguizo, Consolación; Rama, Ana R; Boulaiz, Houria; Aránega, Antonia

    2010-09-01

    Adult stem cells are becoming the best option for regenerative medicine because they have low tumourigenic potential and permit autologous transplantation, even without in vitro culture. Our objectives were to evaluate the effects of exogenous nucleosides on the proliferation of hASCs (human adipose-derived stem cells), with or without co-treatment with 5-aza (5-azacytidine), and to analyse the expression of lamin A/C during cardiomyocyte differentiation of these cells. We isolated hASCs from human lipoaspirates that were positive for mesenchymal stem cell markers. We found that 5-aza induces a dose-dependent inhibition of hASC proliferation [IC50 (inhibitory concentration 50): 5.37 microM], whereas exogenous nucleosides significantly promote the proliferation of hASCs and partially revert the antiproliferative effect of the drug. Multipotentiality of isolated hASCs was confirmed by adipogenic, osteogenic and cardiomyogenic induction. 5-Aza-induced cells expressed cardiac troponins I and T and myosin light chain 2, myocardial markers that were directly correlated with lamin A/C expression. Our results support the importance of the nucleoside supplementation of media to improve conditions for the expansion and maintenance of hASCs in culture. In addition, the quantification of lamin A/C expression appears to be a good marker for the characterization of cardiomyocyte differentiation of stem cells that has rarely been used.

  9. Role of Endothelial Differentiated Adipose-derived Stem Cells in Repairing Calvarial Critical Size Defects in the Laboratory Rat (Rattus norvegicus)

    Science.gov (United States)

    2014-07-16

    Differentiated Adipose-derived Stem Cells in Repairing Calvarial Critical Size Defects in the Laboratory Rat (Rattus norvegicus) PRINCIPAL INVESTIGATOR...SUBTITLE FDG20110033A "Role of Endothelial Differentiated Adipose-derived Stem Cells in Repairing Calvarial Critical Size Defects in the Laboratory Rat (Rattus

  10. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum.

    Science.gov (United States)

    Wystrychowski, Wojciech; Patlolla, Bhagat; Zhuge, Yan; Neofytou, Evgenios; Robbins, Robert C; Beygui, Ramin E

    2016-06-13

    Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven

  11. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Galateanu Bianca

    2012-06-01

    Full Text Available Abstract Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs. Results Culture-expanded cells isolated from the stromal vascular fraction (SVF, corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix, and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix. Both hydrogels showed a porous structure under scanning electron microscopy (SEM and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for

  12. Adipose-Derived Mesenchymal Stem Cells from Ventral Hernia Repair Patients Demonstrate Decreased Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey Lisiecki

    2014-01-01

    Full Text Available Introduction. In adipose tissue healing, angiogenesis is stimulated by adipose-derived stromal stem cells (ASCs. Ventral hernia repair (VHR patients are at high risk for wound infections. We hypothesize that ASCs from VHR patients are less vasculogenic than ASCs from healthy controls. Methods. ASCs were harvested from the subcutaneous fat of patients undergoing VHR by the component separation technique and from matched abdominoplasty patients. RNA and protein were harvested on culture days 0 and 3. Both groups of ASCs were subjected to hypoxic conditions for 12 and 24 hours. RNA was analyzed using qRT-PCR, and protein was used for western blotting. ASCs were also grown in Matrigel under hypoxic conditions and assayed for tubule formation after 24 hours. Results. Hernia patient ASCs demonstrated decreased levels of VEGF-A protein and vasculogenic RNA at 3 days of growth in differentiation media. There were also decreases in VEGF-A protein and vasculogenic RNA after growth in hypoxic conditions compared to control ASCs. After 24 hours in hypoxia, VHR ASCs formed fewer tubules in Matrigel than in control patient ASCs. Conclusion. ASCs derived from VHR patients appear to express fewer vasculogenic markers and form fewer tubules in Matrigel than ASCs from abdominoplasty patients, suggesting decreased vasculogenic activity.

  13. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  14. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2014-04-01

    Conclusion: Although we have not the results of in vivo tests to support in vivo adipo-genesis either alone or in combination with natural or synthetic matrix, the results showed that stem cells isolation from adipose tissue was successful, and we provided an environment for differentiation of stem cells.

  15. Increased Adipogenic and Decreased Chondrogenic Differentiation of Adipose Derived Stem Cells on Nanowire Surfaces

    Directory of Open Access Journals (Sweden)

    Nathan A. Trujillo

    2014-03-01

    Full Text Available Despite many advances in tissue engineering, there are still significant challenges associated with restructuring, repairing, or replacing damaged tissue in the body. Currently, a major obstacle has been trying to develop a scaffold for cartilage tissue engineering that provides the correct mechanical properties to endure the loads associated with articular joints as well as promote cell-scaffold interactions to aid in extracellular matrix deposition. In addition, adipogenic tissue engineering is widely growing due to an increased need for more innovative reconstructive therapies following adipose tissue traumas and cosmetic surgeries. Recently, lipoaspirate tissue has been identified as a viable alternative source for mesenchymal stem cells because it contains a supportive stroma that can easily be isolated. Adipose derived stem cells (ADSCs can differentiate into a variety of mesodermal lineages including the adipogenic and chondrogenic phenotypes. Biodegradable polymeric scaffolds have been shown to be a promising alternative and stem cells have been widely used to evaluate the compatibility, viability, and bioactivity of these materials. Polycaprolactone is a bioresorbable polymer, which has been widely used for biomedical and tissue engineering applications. The fundamental concept behind successful synthetic tissue-engineered scaffolds is to promote progenitor cell migration, adhesion, proliferation, and induce differentiation, extracellular matrix synthesis, and finally integration with host tissue. In this study, we investigated the adhesion, proliferation, and chondrogenic and adipogenic differentiation of ADSCs on nanowire surfaces. A solvent-free gravimetric template technique was used to fabricate polycaprolactone nanowires surfaces. The results indicated that during the growth period i.e., initial 7 days of culture, the nanowire surfaces (NW supported adhesion and proliferation of the cells that had elongated morphologies. However

  16. Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Loibl, Markus; Lang, Siegmund; Hanke, Alexander; Herrmann, Marietta; Huber, Michaela; Brockhoff, Gero; Klein, Silvan; Nerlich, Michael; Angele, Peter; Prantl, Lukas; Gehmert, Sebastian

    2016-08-01

    Application of platelet-rich plasma and stem cells has become important in regenerative medicine. Recent literature supports the use of platelet-rich plasma as a cell culture media supplement to stimulate proliferation of adipose tissue-derived mesenchymal stem cells. The underlying mechanism of proliferation stimulation by platelet-rich plasma has not been investigated so far. Adipose tissue-derived mesenchymal stem cells were cultured in α-minimal essential medium supplemented with platelet-rich plasma or fetal calf serum. Cell proliferation was assessed with cell cycle kinetics using flow cytometric analyses after 48 hours. Differences in proteome expression of the adipose tissue-derived mesenchymal stem cells were analyzed using a reverse-phase protein array to quantify 214 proteins. Complementary Ingenuity Pathways Analysis and gene set enrichment analysis were performed using protein data, and confirmed by Western blot analysis. A higher percentage of adipose tissue-derived mesenchymal stem cells in the S phase in the presence of platelet-rich plasma advocates the proliferation stimulation. Ingenuity Pathways Analysis and gene set enrichment analysis confirm the involvement of the selected proteins in the process of cell growth and proliferation. Ingenuity Pathways Analysis revealed a participation in the top-ranked canonical pathways PI3K/AKT, PTEN, ILK, and IGF-1. Gene set enrichment analysis identified the authors' protein set as being part of significantly regulated protein sets with the focus on cell cycle, metabolism, and the Kyoto Encyclopedia of Genes and Genomes transforming growth factor-β signaling pathway. The present study provides evidence that platelet-rich plasma stimulates proliferation and induces a unique change in the proteomic profile of adipose tissue-derived mesenchymal stem cells. The interpretation of altered expression of regulatory proteins represents a step forward toward achieving good manufacturing practice-compliant criteria

  17. Effects of Adipose Tissue-Derived Stem Cell Therapy After Myocardial Infarction: Impact of the Route of Administration

    NARCIS (Netherlands)

    M. Rigol; N. Solanes; J. Farre; S. Roura; M. Roque; A. Berruezo; N. Bellera; L. Novensa; D. Tamborero Beng; C. Prat-Vidal; M. Angeles Huzman; M. Batlle; M. Hoefsloot; M. Sitges; J. Ramirez; A. Paula Dantas; A. Merino; G. Sanz; J. Brugada; A. Bayes-Genis; M. Heras

    2010-01-01

    Background: Cell-based therapies offer a promising approach to reducing the short-term mortality rate associated with heart failure after a myocardial infarction. The aim of the study was to analyze histological and functional effects of adipose tissue-derived stem cells (ADSCs) after myocardial inf

  18. The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells

    NARCIS (Netherlands)

    Zhang, X.; Guo, J.; Zhou, Y.; Wu, G.

    2014-01-01

    Large-size bone defects can severely compromise both aesthetics and musculoskeletal functions. Adipose-derived stem cells (ASCs)-based bone tissue engineering has recently become a promising treatment strategy for the above situation. As robust osteoinductive cytokines, bone morphogenetic proteins (

  19. Effects of heterodimeric bone morphogenetic protein-2/7 on osteogenesis of human adipose-derived stem cells

    NARCIS (Netherlands)

    Zhang, X.; Guo, J.; Wu, G.; Zhou, Y.

    2015-01-01

    Objective Roles of bone morphogenetic proteins (BMPs) on osteogenesis of human adipose-derived stem cells (hASCs) remain ambiguous. In this study, we evaluated in vitro and in vivo functional characteristics of BMPs of different dimerization types, with the aim of determining osteoinductive efficien

  20. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  1. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  2. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.

    Science.gov (United States)

    Guilak, Farshid; Lott, Kristen E; Awad, Hani A; Cao, Qiongfang; Hicok, Kevin C; Fermor, Beverley; Gimble, Jeffrey M

    2006-01-01

    Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.

  3. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  4. The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Soo-Wan Nam

    2012-01-01

    Full Text Available The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs, which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05 notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL. AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration.

  5. Xenotransplantation of human adipose-derived stem cells in the regeneration of a rabbit peripheral nerve.

    Science.gov (United States)

    Lasso, J M; Pérez Cano, R; Castro, Y; Arenas, L; García, J; Fernández-Santos, M E

    2015-12-01

    Adipose tissue-derived mesenchymal stem cells (AdMSCs) are useful in the regeneration of neural tissues. Furthermore, xenotransplantation of human adipose tissue-derived mesenchymal stem cells (hAdMSCs) into animal models has already been tested and the results encouraged us to study peripheral nerve regeneration in rabbits, in order to test the feasibility of a xenotransplantation of hAdMSCs. To promote end-to-end nerve fiber contacts of a 4-cm gap in the peroneal nerve of white New Zealand rabbits, an autologous vein conduit was used and three groups of animals were evaluated. In Group I, the gap was repaired with a vein conduit refilled with fibrin. Group II was similar, but the animals were treated with cyclosporine A. In Group III, a fibrin scaffold with hAdMSCs was placed inside the autologous vein conduit, and animals were treated with cyclosporine A. Neurofilament immunohistochemistry results showed 100% nerve regeneration at the vein guidance channel 90 days after the surgery in the hAdMSC-transplanted group but lesser neural regeneration in the neurofilaments of groups I and II. The analysis of variance (ANOVA) test showed statistically significant differences among all groups (p nerve regeneration through a vein conduit that connected a 4-cm gap created at the peroneal nerve of rabbits. Animals treated with hAdMSCs presented negative inflammatory response at the regenerated nerve gaps, but it was demonstrated that hAdMSCs were incorporated to the new nerve creating neural tissue and endothelial cells. However, hAdMSCs required immunosuppression with cyclosporine A to achieve axonal regeneration. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    Science.gov (United States)

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  7. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease.

    Science.gov (United States)

    Choi, Hee Soon; Kim, Hee Jin; Oh, Jin-Hwan; Park, Hyeong-Geun; Ra, Jeong Chan; Chang, Keun-A; Suh, Yoo-Hun

    2015-10-01

    The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. ISOLATION AND INDUCTION OF DIFFERENTIATION OF SEINE ADIPOSE-DERIVED MESENCHYMAL STEM CELLS

    Institute of Scientific and Technical Information of China (English)

    MA Yueying; YUAN Shuolong; ZHANG yue; XU liangwei; GUO Weiwei; ZHAO Lidong; ZHAI suoqiang; YANG Shiming

    2014-01-01

    Objectives To establish a method for high yield mesenchymal stem cells collection, as well as a culture method for iden-tifying mesenchymal stem cells from the swine adipose-derived mesenchymal stem cell (ADMSC). Methods Swine AD-MSCs were isolated from fat tissue with collagenase, followed by induction of differentiation to osteogenic, adipogenic and chondrogrnic cells. The survival curve of the ADMSC at the 37ºC and 38ºC were measured using WST-1Cell Proliferation As-say Reagent. Result ADMSCs isolated with collagenase from swine neck fat tissue generated a stable uniform appearance af-ter the second generation. The passage period was five days. ADMSC could differentiate into osteogenic, adipogenic or chon-drogrnic cells under different culture conditions. The highest growth rate was achieved at 38ºC in this study. Conclusion Swine ADMSCs have the potential to differentiate into osteogenic, adipogenic or chondrogrnic cells, and they may be appropriate for transplantation for both research and clinical purpose.

  9. Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice.

    Directory of Open Access Journals (Sweden)

    Marina Burgos-Silva

    Full Text Available Acute and chronic kidney injuries (AKI and CKI constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs in an experimental model of nephrotoxicity induced by folic acid (FA in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation.

  10. Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery.

    Science.gov (United States)

    Patel, Amit N; Yockman, James; Vargas, Vanessa; Bull, David A

    2013-01-01

    Mesenchymal stem cells have been isolated from various adult human tissues and are valuable for not only therapeutic applications but for the study of tissue homeostasis and disease progression. Subcutaneous adipose depots have been shown to contain large amounts of stem cells. There is little information that has been reported to date describing the isolation and characterization of mesenchymal stem cells from visceral adipose tissue. In this study, we describe a mesenchymal stem cell population isolated from mediastinal adipose depots. The cells express CD44, CD105, CD166, and CD90 and are negative for hematopoietic markers CD34, CD45, and HLA-DR. In addition, the cells have a multilineage potential, with the ability to differentiate into adipogenic, osteogenic, and chondrogenic cell types. The biological function of visceral adipose tissue remains largely unknown and uncharacterized. However, the proximity of adipose tissue to the heart suggests a potential role in the pathogenesis of cardiovascular disease in obesity. In addition, with the ability of fat to regulate metabolic activity in humans, this novel stem cell source may be useful to further study the mechanisms involved in metabolic disorders.

  11. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    Science.gov (United States)

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  12. Mesenchymal Stem Cells from Bichat's Fat Pad: In Vitro Comparison with Adipose-Derived Stem Cells from Subcutaneous Tissue.

    Science.gov (United States)

    Broccaioli, Eugenio; Niada, Stefania; Rasperini, Giulio; Ferreira, Lorena Maria; Arrigoni, Elena; Yenagi, Vijay; Brini, Anna Teresa

    2013-04-01

    Adipose-derived stem/stromal cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Since Bichat's fat pad is easily accessible for dentists and maxillo-facial surgeons, we compared the features of ASCs from Bichat's fat pad (BFP-ASCs) with human ASCs from subcutaneous adipose tissue (SC-ASCs). BFP-ASCs isolated from a small amount of tissue were characterized for their stemness and multidifferentiative ability. They showed an important clonogenic ability and the typical mesenchymal stem cell immunophenotype. Moreover, when properly induced, osteogenic and adipogenic differentiation markers, such as alkaline phosphatase activity, collagen deposition and lipid vacuoles formation, were promptly observed. Growth of both BFP-ASCs and SC-ASCs in the presence of human serum and their adhesion to natural and synthetic scaffolds were also assessed. Both types of ASCs adapted rapidly to human autologous or heterologous sera, increasing their proliferation rate compared to standard culture condition, and all the cells adhered finely to bone, periodontal ligament, collagen membrane, and polyglycol acid filaments that are present in the oral cavity or are commonly used in oral surgery. At last, we showed that amelogenin seems to be an early osteoinductive factor for BFP-ASCs, but not SC-ASCs, in vitro. We conclude that Bichat's fat pad contains BFP-ASCs with stemness features that are able to differentiate and adhere to biological supports and synthetic materials. They are also able to proliferate in the presence of human serum. For all these reasons we propose BFP-ASCs for future therapies of periodontal defects and bone regeneration.

  13. Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue

    OpenAIRE

    Saleh Heneidi; Simerman, Ariel A; Erica Keller; Prapti Singh; Xinmin Li; Dumesic, Daniel A; Gregorio Chazenbalk

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Mul...

  14. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    OpenAIRE

    Li Hu; Juan Wang; Xin Zhou; Zehuan Xiong; Jiajia Zhao; Ran Yu; Fang Huang; Handong Zhang; Lili Chen

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell mi...

  15. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    OpenAIRE

    Liu, Tao; MU, HONG; Shen, Zhongyang; SONG, ZHUOLUN; Chen, Xiaobo; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  16. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Ma

    Full Text Available This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs as seed cells and polylactic-co-glycolic acid (PLGA as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1 and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  17. [Induction of hepatic specification of human adipose-derived stem cells (hADSCs) in vitro].

    Science.gov (United States)

    Wang, Min; Pei, Hai-yun; Guan, Li-dong; Nan, Xue; Bai, Ci-xian; Liu, Hui; Li, Bao-wei; Wang, Yun-fang; Pei, Xue-tao

    2009-07-01

    To induce hepatic differentiation of human adipose-derived stem cells (hADSCs) in vitro. hADSCs were isolated from human adipose tissue and treated with improved hepatic medium containing HGF, bFGF and FGF4. After 7 days of culture, OSM was added to the culture media. Cell growth during hepatic differentiation was evaluated by CCK8 assay. Morphology of differentiation was examined under light microscope. Liver specific genes and proteins were detected by RT-PCR analysis and immunohistochemical staining, respectively. And functional characteristics of hepatocytes were also examined. The number of hADSCs cultured in the improved hepatic media was increased significantly in comparison to hADSCs cultured in control media from 5 days to 21 days (t=6.59, 8.69, 15.94 and 24.64, respectively, Pspecific activities, such as uptake and excretion of indocyanine green, glycogen storage and albumin production. hADSCs can be induced into hepatocyte-like cells in this differentiation system. And this differentiation system promoted the growth of hADSCs.

  18. Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration

    Institute of Scientific and Technical Information of China (English)

    Han Chao; Zhang Liang; Song Lin; Liu Yang; Zou Wei; Piao Hua; Liu Jing

    2014-01-01

    Background In order to suggest an ideal source of adult stem cells for the treatment of nervous system diseases,MSCs from human adipose tissue and bone marrow were isolated and studied to explore the differences with regard to cell morphology,surface markers,neuronal differentiation capacity,especially the synapse structure formation and the secretion of neurotrophic factors.Methods The neuronal differentiation capacity of human mesenchymal stem cells from adipose tissue (hADSCs) and bone marrow (hBMSCs) was determined based on nissl body and synapse structure formation,and neural factor secretion function.hADSCs and hBMSCs were isolated and differentiated into neuron-like cells with rat brain-conditioned medium,a potentially rich source of neuronal differentiation promoting signals.Specific neuronal proteins and neural factors were detected by immunohistochemistry and enzyme-linked immunosorbent assay analysis,respectively.Results Flow cytometric analysis showed that both cell types had similar phenotypes.Cell growth curves showed that hADSCs proliferated more quickly than hBMSCs.Both kinds of cells were capable of osteogenic and adipogenic differentiation.The morphology of hADSCs and hBMSCs changed during neuronal differentiation and displayed neuronlike cell appearance after 14 days' differentiation.Both hADSCs and hBMSCs were able to differentiate into neuron-like cells based on their production of neuron specific proteins including β-tubulin-Ⅲ,neuron-specific enolase (NSE),nissl bodies,and their ability to secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF).Assessment of synaptop hysin and growth-associated protein-43 (GAP-43) suggested synapse structure formation in differentiated hADSCs and hBMSCs.Conclusions Our results demonstrate that hADSCs have neuronal differentiation potential similar to hBMSC,but with a higher proliferation capacity than hBMSC.Adipose tissue is abundant,easily available and would be a potential ideal

  19. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation.

  20. Adipose-derived stem cells and platelet-rich plasma: the keys to functional periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-09-01

    Numerous different types of periodontal tissue regeneration therapies have been developed clinically with variable outcomes and serious limitations. A key goal of periodontal therapy is to regenerate the destroyed periodontal tissues including alveolar bone, cementum and periodontal ligament. The critical factors in attaining successful periodontal tissue regeneration are the correct recruitment of cells to the site and the production of a suitable extra cellular matrix consistent with the periodontal tissues. Adipose tissue, from which mesenchymal stem cells can be harvested easily and safely, is an especially attractive stem cell source, because adipose-derived stem cells have a strong potential for cell differentiation and growth factor secretion. Meanwhile, the usefulness of platelet-rich plasma in the field of dental surgery has attracted attention. Therapeutic effects of platelet-rich plasma are believed to occur through the provision of concentrated levels of platelet-derived growth factors. Further, recent reports suggested the effect of platelet-rich plasma on mesenchymal stem cell proliferation, differentiation and survival rate. Therefore, the admixture of mesenchymal stem cells and platelet-rich plasma may indicate the great potential for tissue regenerations including periodontal tissue regeneration. In this review, the potential of adipose-derived stem cells and platelet-rich plasma is introduced. Of particular interest, the usefulness in periodontal tissue regeneration and future perspective is discussed.

  1. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  2. Paroxetine Can Enhance Neurogenesis during Neurogenic Differentiation of Human Adipose-derived Stem Cells

    Science.gov (United States)

    Jahromi, Maliheh; Razavi, Shahnaz; Amirpour, Nushin; Khosravizadeh, Zahra

    2016-01-01

    Background: Some antidepressant drugs can promote neuronal cell proliferation in vitro as well as hippocampal neurogenesis in human and animal models. Furthermore, adipose tissue is an available source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human Adipose-Derived Stem Cells (hAD-SCs) may be a suitable source for regenerative medical applications. Since there is no evidence for the effect of Paroxetine as the most commonly prescribed antidepressant drug for neurogenic potential of hADSCs, an attempt was made to determine the effect of Paroxetine on proliferation and neural differentiation of hADSCs. Methods: ADSCs were isolated from human abdominal fat. These cells differentiated to neuron-like cells and were treated with Paroxetine. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and immunofluorescence technique were used for assessment of cell proliferation and neurogenic differentiation potential of induced cells, respectively. Results: MTT assay analysis showed that Paroxetine significantly increased the proliferation rate of induced hADSCs (p<0.05), while immunofluorescent staining indicated that Paroxetine treatment during neurogenic differentiation could enhance the mean percentage of Nestin and MAP2 (Microtubule-associated protein-2) positive cells but the mean percentage of GFAP (Glial acidic fibrillary protein) positive cells significantly decreased relative to control group (p<0.05). Conclusion: Our results provide evidence that Paroxetine can promote proliferation and differentiation rate during neurogenic differentiation of hADSCs. Moreover, Paroxetine can reduce gliogenesis of induced hADSCs during neurogenic differentiation. PMID:27920882

  3. From bench to bedside: use of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Feisst V

    2015-11-01

    Full Text Available Vaughan Feisst,1 Sarah Meidinger,1 Michelle B Locke2 1Dunbar Laboratory, School of Biological Sciences, 2Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, Auckland, New Zealand Abstract: Since the discovery of adipose-derived stem cells (ASC in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation. Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties. Keywords: standardization, bystander effect, stromal cells, mesenchymal stem cells, stromal vascular fraction

  4. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis.

    Directory of Open Access Journals (Sweden)

    Claudia Chavez-Munoz

    Full Text Available Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS. After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC; these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca(2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca(2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a

  5. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    Science.gov (United States)

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  6. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells

    Science.gov (United States)

    El Atat, Oula; Antonios, Diane; Hilal, George; Hokayem, Nabil; Abou-Ghoch, Joelle; Hashim, Hussein; Serhal, Rim; Hebbo, Clara; Moussa, Mayssam; Alaaeddine, Nada

    2016-01-01

    The use of adipose-derived stem cells (ADSC) in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH) activity of the initial stromal vascular fraction (SVF) and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells. PMID:27632538

  7. Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Zolikha Golipoor

    2010-06-01

    Full Text Available Objective(sBone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs, but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs for their Schwann-like cells differentiation potential. Materials and MethodsBMSCs and ADSCs were characterized for expression of MSCs-specific markers, osteogenic and adipogenic differentiation. They were induced to differentiate into Schwann-like cells and analyzed for expression of the Schwann specific markers. The immunocytochemical differentiation markers were S-100 and real time quantitative Real-time polymerase chain reaction (RT-PCR markers were S100, P75 and glial fibrillary acidic protein (GFAP. 3-(4, 5-Dimethylthiazol- 2-yl-2, 5-diphenyltetrazolium bromide (MTT assay and Annexin V-Fluorescein isothiocyanate (FITC/ Propidium iodide (PI double labeling method were employed to detect early stage cell apoptosis.ResultsBMSCs and ADSCs showed similarities in expression of the MSC-specific markers, osteogenic and adipogenic differentiation. Both quantitative RT-PCR and immunocytochemical analysis demonstrated that BMSCs and ADSCs had equal expression of the Schwann-specific markers following Schwann-like cells differentiation. However, gene expression of P75 was higher in BMSCs compared with ADSCs. MTT assay and flow cytometry found that of the total BMSCs and ADSCs in the culture medium, 20% to 30% of the cells died, but the remaining cell population remained strongly attached to the substrate and differentiated.ConclusionComparative analysis showed that Schwann-like cell differentiation potential of ADSCs was slightly decreased in comparison with BMSCs. Therefore, BMSCs are more favorable choice than ADSCs for tissue engineering.

  8. Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering.

    Science.gov (United States)

    Choi, Jaehoon; Chung, Jee-Hyeok; Kwon, Geun-Yong; Kim, Ki-Wan; Kim, Sukwha; Chang, Hak

    2013-09-01

    In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10%) on expansion and adipogenic differentiation of adipose-derived stem cells using 10% fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10% autologous serum > 10% fetal bovine serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10% fetal bovine serum > 10% autologous serum = 5% autologous serum > 2% autologous serum = 1% autologous serum. Ten percent autologous serum and 10% fetal bovine serum had greater differentiation capacity than 1 and 2% autologous serum in vivo, and no significant difference was observed between the groups at ≥ 5% concentration at 14 weeks. In conclusion, 10% autologous serum was at least as effective as 10% fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2% autologous serum was inferior.

  9. Optimal administration routes for adipose-derived stem cells therapy in ischaemic flaps.

    Science.gov (United States)

    Lee, Dong Won; Jeon, Yeo Reum; Cho, Eul Je; Kang, Jong Hwa; Lew, Dae Hyun

    2014-08-01

    Improvement of flap survival represents an ongoing challenge in reconstructive surgery. The angiogenic potential of adipose-derived stem cells (ASCs) offers a promising approach to improve the viability of random pattern flaps. Recently, to maximize the therapeutic effects of ASCs, increasing focus is being placed on how to deliver the stem cells to target lesions. The purpose of the present study was to compare the effectiveness of different administration routes of ASCs to improve the viability of the random pattern skin flap. ASCs labelled with PKH26 were applied via four methods to the cranially-based random pattern skin flaps of rats: (a) intravenous injection; (b) subcutaneous injection; (c) application with collagen sponge seeding; and (d) application with fibrin glue seeding. ASCs led to a significant increase in flap viability in the subcutaneous injection group and the collagen sponge group. Cutaneous blood flow was increased in the intravenous injection, subcutaneous injection and collagen sponge groups. Capillary density in the intravenous injection group and collagen sponge group was significantly greater than in the control group (no treatment). PKH26-positive cells via the collagen sponge were distributed more densely within the flap than in other groups. This study demonstrated that the collagen sponge method delivered ASCs most effectively within the flap and increased flap vascularity. The clinical therapeutic effects of ASCs can therefore be maximized when the optimal delivery route is chosen.

  10. Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates.

    Science.gov (United States)

    Faghihi, Shahab; Zia, Sonia; Taha, Masoumeh Fakhr

    2012-12-01

    Stainless steel (SS) is one of the most applicable materials in fabrication of cardiac implants. The aim of this study is to investigate the effect of atomic structure of polycrystalline stainless steel on the response of adipose tissue-derived stem cells (ADSCs). Samples are prepared from differently processed extruded rod and rolled sheet of 316L SS having different crystallographic structure. X-ray diffraction analysis indicated (200) and (111) orientations with distinct volume fractions in the specimens. Morphology and ADSCs behavior including adhesion, proliferation and differentiation are assessed. The expression of cardiac specific protein (cardiac troponin I) and genes of differentiating cardiomyocytes is analyzed by immunofluorescence and RT-PCR. The number of attached and grown cells on the rod sample is higher than the sheet sample also the scanning electron microscopy (SEM) analysis of ADSCs grown on the samples demonstrates higher cell density and spreading pattern on the surface of rod sample. In differentiated ADSCs on the rod sample the expression of all genes except ANF are detectable, while on the sheet sample only the MEF2C and β-MHC are expressed. This study shows that the cellular response is influenced by the crystal structure of the substrate therefore; the skill to alter the structure of substrate may lend itself to engineer a biomaterial which could be suitable for differentiation of stem cells into a definite lineage.

  11. Mechanisms of Edible Bird's Nest Extract-Induced Proliferation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Kyung-Baeg Roh

    2012-01-01

    Full Text Available Although edible bird's nest (EBN has been shown to potentiate mitogenic responses, scientific evidence of its efficacy is still limited. In addition, human adipose-derived stem cells (hADSCs are increasingly accepted as a source for stem cell therapy. Therefore, the aim of this study was to investigate the effects of the EBN extract (EBNE on the proliferation of hADSCs and its action mechanisms. We found that EBNE strongly promoted the proliferation of hADSCs. In addition, EBNE-induced proliferation was found to be mediated through the production of IL-6 and VEGF, which was induced by activation of AP-1 and NF-κB. Specially, we found that production of IL-6 and VEGF was induced by EBNE. In addition, EBNE-induced production of IL-6 and VEGF was inhibited by PD98059 (a p44/42 MAPK inhibitor, SB203580 (a p38 MAPK inhibitor, and PDTC (a NF-κB inhibitor, but not SP600125 (a JNK inhibitor. Similarly, EBNE-induced proliferation of hADSCs was also attenuated by PD98059, SB203580, and PDTC but not SP600125. Taken together, these findings suggest that the EBNE-induced proliferation of hADSCs primarily occurs through increased expression of IL-6 and VEGF genes, which is mediated by the activation of NF-κB and AP-1 through p44/42 MAPK and p38 MAPK.

  12. Tracking Intracavernously Injected Adipose-Derived Stem Cells to Bone Marrow

    Science.gov (United States)

    Lin, Guiting; Qiu, Xuefeng; Fandel, Thomas; Banie, Lia; Wang, Guifang; Lue, Tom F.; Lin, Ching-Shwun

    2012-01-01

    Intracavernous (IC) injection of stem cells (SCs) has been shown to improve erectile function in various erectile dysfunction (ED) animal models. However, the tissue distribution of the injected cells remains unknown. In this study we tracked IC injected adipose-derived stem cells (ADSCs) in various tissues. Rat paratesticular fat was processed for ADSC isolation and culture. The animals were then subject to cavernous nerve (CN) crush injury or sham operation, followed by IC injection of one million autologous or allogeneic ADSCs that were labeled with 5-ethynyl-2-deoxyuridine (EdU). Another group of rats received IC injection of EdU-labeled allogeneic penile smooth muscle cells (PSMCs). At 2 and 7 days post-injection, penises and femoral bone marrow were processed for histological analyses. Whole femoral bone marrows were also analyzed for EdU-positive cells by flow cytometry. The results show that ADSCs exited the penis within days of IC injection and migrated preferentially to bone marrow. Allogenicity did not affect ADSC's bone marrow appearance either at 2 or 7 days, while CN injury reduced the number of ADSCs in bone marrow significantly at 7 but not 2 days. The significance of these results in relation to SC therapy for ED is discussed. PMID:21796145

  13. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Directory of Open Access Journals (Sweden)

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  14. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  15. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel.

    Science.gov (United States)

    Haeri, Seyed Mohammad Jafar; Sadeghi, Yousef; Salehi, Mohammad; Farahani, Reza Masteri; Mohsen, Nourozian

    2016-05-01

    Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications.

  16. Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration.

    Science.gov (United States)

    Widgerow, Alan D; Salibian, Ara A; Lalezari, Shadi; Evans, Gregory R D

    2013-12-01

    Peripheral nerve injury requiring nerve gap reconstruction remains a major problem. In the quest to find an alternative to autogenous nerve graft procedures, attempts have been made to differentiate mesenchymal stem cells into neuronal lineages in vitro and utilize these cellular constructs for nerve regeneration. Unfortunately, this has produced mixed results, with no definitive procedure matching or surpassing traditional nerve grafting procedures. This review presents a different approach to nerve regeneration. The literature was reviewed to evaluate current methods of using adipose-derived stem cells (ADSCs) for peripheral nerve regeneration in in vivo models of animal peripheral nerve injury. The authors present cited evidence for directing nerve regeneration through paracrine effects of ADSCs rather than through in vitro nerve regeneration. The paracrine effects rely mainly, but not solely, on the elaboration of nerve growth factors and neurotrophic mediators that influence surrounding host cells to orchestrate in vivo nerve regeneration. Although this paradigm has been indirectly referred to in a host of publications, few major efforts for this type of neuromodulatory nerve regeneration have been forthcoming. The ADSCs are initially "primed" in vitro using specialized controlled medium (not for neuronal differentiation but for sustainability) and then incorporated into a hydrogel base matrix designed for this purpose. This core matrix is then introduced into a natural collagen-based nerve conduit. The prototype design concepts, evidence for paracrine influences, and regulatory hurdles that are avoided using this approach are discussed. Copyright © 2013 Wiley Periodicals, Inc.

  17. Biochanin A Promotes Osteogenic but Inhibits Adipogenic Differentiation: Evidence with Primary Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Shu-Jem Su

    2013-01-01

    Full Text Available Biochanin A has promising effects on bone formation in vivo, although the underlying mechanism remains unclear yet. This study therefore aimed to investigate whether biochanin A regulates osteogenic and adipogenic differentiation using primary adipose-derived stem cells. The effects of biochanin A (at a physiologically relevant concentration of 0.1–1 μM were assessed in vitro using various approaches, including Oil red O staining, Nile red staining, alizarin red S staining, alkaline phosphatase (ALP activity, flow cytometry, RT-PCR, and western blotting. The results showed that biochanin A significantly suppressed adipocyte differentiation, as demonstrated by the inhibition of cytoplasmic lipid droplet accumulation, along with the inhibition of peroxisome proliferator-activated receptor gamma (PPARγ, lipoprotein lipase (LPL, and leptin and osteopontin (OPN mRNA expression, in a dose-dependent manner. On the other hand, treatment of cells with 0.3 μM biochanin A increased the mineralization and ALP activity, and stimulated the expression of the osteogenic marker genes ALP and osteocalcin (OCN. Furthermore, biochanin A induced the expression of runt-related transcription factor 2 (Runx2, osteoprotegerin (OPG, and Ras homolog gene family, member A (RhoA proteins. These observations suggest that biochanin A prevents adipogenesis, enhances osteoblast differentiation in mesenchymal stem cells, and has beneficial regulatory effects in bone formation.

  18. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Science.gov (United States)

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects. © The Author(s) 2014.

  19. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    M.J. Crop (Meindert); C.C. Baan (Carla); S.S. Korevaar (Sander); J.N.M. IJzermans (Jan); M. Pescatori (Mario); A. Stubbs (Andrew); W.F.J. van IJcken (Wilfred); M.H. Dahlke (Marc); E. Eggenhofer (Elke); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2010-01-01

    textabstractThere is emerging interest in the application of mesenchymal stem cells (MSC) for the prevention and treatment of autoimmune diseases, graft-versus-host disease and allograft rejection. It is, however, unknown how inflammatory conditions affect phenotype and function of MSC. Adipose tiss

  20. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  1. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    Science.gov (United States)

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration.

  2. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  3. In vitro effects of tamoxifen on adipose-derived stem cells.

    Science.gov (United States)

    Pike, Steven; Zhang, Ping; Wei, Zhengyu; Wu, Nan; Klinger, Aaron; Chang, Shaohua; Jones, Robert; Carpenter, Jeffrey; Brown, Spencer A; DiMuzio, Paul; Tulenko, Thomas; Liu, Yuan

    2015-09-01

    In breast reconstructive procedures, adipose-derived stem cells (ASCs) that are present in clinical fat grafting isolates are considered to play the main role in improving wound healing. In patients following chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. However, it is unclear if tamoxifen (TAM) as the most widely used hormonal therapeutic agent for breast cancer treatment, affects the ASCs and ultimately wound healing. This study evaluated whether TAM exposure to in vitro human ASCs modulate cellular functions. Human ASCs were isolated and treated with TAM at various concentrations. The effects of TAM on cell cycle, cell viability and proliferation rates of ASCs were examined by growth curves, MTT assay and BrdU incorporation, respectively. Annexin V and JC-1 Mitochondrial Membrane Potential assays were used to analyze ASC apoptosis rates. ASCs were cultured in derivative-specific differentiation media with or without TAM (5 uM) for 3 weeks. Adipogenic and osteogenic differentiation levels were measured by quantitative RT-PCR and histological staining. TAM has cytotoxic effects on human ASCs through apoptosis and inhibition of proliferation in dose- and time-dependent manners. TAM treatment significantly down-regulates the capacity of ASCs for adipogenic and osteogenic differentiation (ptissue wound healing and decreased fat graft survival in cancer patients receiving TAM. © 2015 by the Wound Healing Society.

  4. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    Science.gov (United States)

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Neocartilage formation from predifferentiated human adipose derived stem cells in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiao-bing JIN; Yong-sheng SUN; Ke ZHANG; Jing WANG; Xiao-dong JU; Si-quan LOU

    2007-01-01

    Aim: To examine the chondrogenic potential of human adipose derived stem cells (hASC) induced by human transforming growth factor beta2 (hTGF beta2) in vitro, and to investigate if predifferentiated hASC can produce neocartilage in vivo. Methods: hASC were isolated from subcutaneous adipose tissue and cul-tured in pellets with the addition of hTGF beta2. Chondrogenic differentiation was assayed by RT-PCR, Western blotting, toluidine blue staining, and immuno-histochemistry staining for collagen type Ⅱ. For the in vivo study, intact induced cell pellets or the released cells embedded in alginate gel with different concentra-tions were implanted subcutaneously in nude mice. Specimens were harvested at different time points and carried with histological and immunohistochemistry ex-amination to evaluate the cartilage formation. Results: RT-PCR analysis revealed that hASC produced aggrecan and collagen type Ⅱ after 7 d of induction and continued throughout the culture period. This was also demonstrated by the Western blot analysis, positive staining of toluidine blue, and immunohistochem-istry for collagen type Ⅱ. After reseeding in the monolayer, the cells isolated from the pellets displayed a polygonal morphology compared with the primary spindle shape, hASC were released from the induced cell pellets when embedded in alginate gel (implanted cell concentration=5x106/mL or higher). They produced neocartilage after 12 weeks in vivo culture; however, intact induced cell pellets implanted subcutaneously rapidly lost their differentiated phenotype. Conclusion:Chondrogenesis of hASC in vitro can be induced by combining pellet culture and hTGF beta2 treatment. Predifferentiated hASC embedded in alginate gel have the ability of producing neocartilage in vivo.

  6. Differentiation of human adipose-derived stem cells into brite (brown-in-white adipocytes

    Directory of Open Access Journals (Sweden)

    Didier F Pisani

    2011-11-01

    Full Text Available It is well established now that adult humans possess active brown adipose tissue which represents a potential pharmacological target to combat obesity and associated diseases. We had shown previously that human multipotent adipose-derived stem (hMADS cells are able to differentiate into cells which exhibit the key properties of human white adipocytes, and to convert into functional brown adipocytes upon PPARγ activation that could explain UCP1-expressing cells within islets surrounded by white adipocytes. Herein we further characterize hMADS cells differentiation into brown adipocytes that behave like mouse brite adipocytes previously described. We analyzed the expression of gene markers known to be associated with mouse white and brown adipocytes. When shifting from a white to a brown fat cell phenotype, the striking enhancement of uncoupling activity appears mainly due, if not all, to an increase in UCP1 expression whereas induction of UCP2 is weak and UCP3 expression is unchanged. Conversion of white hMADS adipocytes is dependent on PPARγ activation with rosiglitazone as the most potent agonist and is inhibited by a PPARγ antagonist. Furthermore our data show that, in contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is not induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. No primary or clonal precursor cells of human brown adipocytes have been obtained so far that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable cell model to delineate the formation and/or the uncoupling capacity of human brown/brite adipocytes that could help to dissipate caloric excess intake among individuals.

  7. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    , the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... and the accumulation of its extracellular fraction. hASC from subjects harboring Ad-36 DNA in their adipose tissue due to natural infection had significantly greater ability to differentiate compared with Ad-36 DNA-negative counterparts, which offers a proof of concept. Thus, Ad-36 has the potential to induce...

  8. Transplantation of neural progenitor cells differentiated from adipose tissue-derived stem cells for treatment of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Shasha Dong§; Na Liu§; Yang Hu ; Ping Zhang; Chao Pan; Youping Zhang; Yingxin Tang; Zhouping Tang 

    2016-01-01

    Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult. Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoration at peripheral nerve injury sites. Methods:In this study, adipose tissue-derived stem cells were induced to differentiate into neural progenitor cells, transfected with a green fluorescent protein-containing lentivirus, and then transplanted into the lesions of rats with sciatic nerve compression injury. Results: Fluorescence microscopy revealed that the transplanted cells survived, migrated, and differentiated in rats. At two weeks post-operation, a large number of transplanted cells had migrated to the injured lesions; at six weeks post-operation, transplanted cells were visible around the injured nerve and several cells were observed to express a Schwann cell marker. Sciatic function index and electrophysiological outcomes of the transplantation group were better than those of the control group. Cell transplantation promoted the recovery of motor nerve conduction velocity and com-pound muscle action potential amplitude, and reduced gastrocnemius muscle atrophy. Conclusions: Our experimental findings indicate that neural progenitor cells, differentiated from adipose tissue-derived stem cells, are potential seed stem cells that can be transplanted into lesions to treat sciatic nerve injury. This provides a theoretical basis for their use in clinical applications.

  9. The role of SDF-1 in homing of human adipose-derived stem cells.

    Science.gov (United States)

    Stuermer, Ewa K; Lipenksy, Alexandra; Thamm, Oliver; Neugebauer, Edmund; Schaefer, Nadine; Fuchs, Paul; Bouillon, Bertil; Koenen, Paola

    2015-01-01

    One of the putative pathophysiological mechanisms of chronic wounds is a disturbed homing of stem cells. In this project, the stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor (CXCR) 4 and SDF-1/CXCR7 pathway were focused in human adipose-derived stem cells (ASCs). ASCs were incubated with acute (AWF) or chronic wound fluid (CWF) to analyze their effects by quantitative real-time polymerase chain reaction (SDF-1, CXCR4, CXCR7, TIMP3), enzyme-linked immunosorbent assay (SDF-1 in WFs and supernatant), and transwell migration assay with/without antagonization. Whereas SDF-1 amounted 73.5 pg/mL in AWF, it could not be detected in CWF. Incubation with AWF led to a significant enhancement (129.7 pg/mL vs. 95.5 pg/mL), whereas CWF resulted in a significant reduction (30 pg/mL vs. 95.5 pg/mL) of SDF-1 in ASC supernatant. The SDF-1 receptor CXCR7 was detected on ASCs. AWF but not CWF significantly induced ASC migration, which was inhibited by CXCR4 and CXCR7 antagonists. Expressions of SDF-1, CXCR4, and CXCR7 were significantly stimulated by AWF while TIMP3 expression was reduced. In conclusion, an uncontrolled inflammation in the chronic wound environment, indicated by a reduced SDF-1 expression, resulted in a decreased ASC migration. A disturbed SDF-1/CXCR4 as well as SDF-1/CXCR7 pathway seems to play an important role in the impaired healing of chronic wounds.

  10. The effect of adipose-derived stem cells on the increased survival of crushed cartilage graft in rabbits

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ebadi

    2016-10-01

    Full Text Available Background: In recent years the use of diced cartilage grafts in reconstructive surgery particulary rhinoplasty have been considered by most plastic surgeons. However, long-term resorption usually occurs. Stem cells are a powerful tool for reconstructive surgery to rebuild and maintain tissue with reduced complications. Since the adipose tissue-derived stem cells (ADSCs can rebuild a wide variety of tissues such as skin, fat, bone and cartilage are used, this is a very good chance for cosmetic surgery. The aim of this study was to examine the effects of adipose-derived stem cells on the viability of diced cartilage grafts. Methods: This interventional study was performed on May 2014 in animal laboratory of Hazrat Fatima Hospital on 10 New Zealand white male rabbits, weighing 2000-2500 grams, approximately 12 to 16 weeks of age. Stem cells was harvested from inguinal adipose tissue of each rabbits. After completely removing the skin and perichondrium, cartilage became divided into two equal pieces using a scalpel. Then place the ear amputation was restored by nylon 4 zero. After weighing cartilages, on either side of the center line on the back of each rabbits, left and right, subcutaneous pocket created equal weight and each piece of cartilage was placed in an envelope. Stem cells were injected in one side and the other side was control. The cartilage weights were recorded both before implantation and after explantation. Evaluation of living chondrocytes was conducted 12 weeks after implantation. Results: The mean difference of cartilage weights was varied between two groups (intervention and control sides, So that the average was significantly higher in stem cell side than that in the control side (P= 0.021. The average number of live chondrocytes was significantly higher in the intervention side than the control side (P< 0.001. Conclusion: Despite the unclear mechanism, these results suggest that adipose-derived stem cells can maintain the

  11. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics.

    Science.gov (United States)

    Katsuda, Takeshi; Oki, Katsuyuki; Ochiya, Takahiro

    2015-01-01

    In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell-cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer's disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.

  12. The Biomolecular Basis of Adipogenic Differentiation of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    2014-04-01

    Full Text Available There is considerable attention regarding the role of receptor signaling and downstream-regulated mediators in the homeostasis of adipocytes, but less information is available concerning adipose-derived stem cell (ASC biology. Recent studies revealed that the pathways regulating ASC differentiation involve the activity of receptor tyrosine kinases (RTKs, including fibroblast growth factor, vascular endothelial growth factor, ErbB receptors and the downstream-regulated serine/threonine protein kinase B (Akt and phosphatase and tensin homolog (PTEN activity. RTKs are cell surface receptors that represent key regulators of cellular homeostasis but also play a critical role in the progression of cancer. Many of the metabolic effects and other consequences of activated RTKs are mediated by the modulation of Akt and extracellular signal-regulated protein kinases 1 (Erk-1 signaling. Akt activity sustains survival and the adipogenic differentiation of ASCs, whereas Erk-1 appears downregulated. The inhibition of FGFR-1, EGFR and ErbB2 reduced proliferation, but only FGFR-1 inihibition reduced Akt activity and adipogenesis. Adipogenesis and neovascularization are also chronologically and spatially coupled processes and RTK activation and downstream targets are also involved in ASC-mediated angiogenesis. The potentiality of ASCs and the possibility to modulate specific molecular pathways underlying ASC biological processes and, in particular, those shared with cancer cells, offer new exciting strategies in the field of regenerative medicine.

  13. Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke.

    Science.gov (United States)

    Gutiérrez-Fernández, María; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Rodríguez-Frutos, Berta; Fuentes, Blanca; Díez-Tejedor, Exuperio

    2015-06-01

    Based on the positive results observed in experimental animal models, adipose tissue-derived mesenchymal stem cells (AD-MSCs) constitute a promising therapy for stroke treatment. However, several aspects need to be clarified to identify the optimal conditions for successful clinical translation. This review focuses on AD-MSC treatment for ischemic and hemorrhagic stroke in experimental animal models. In addition, we will explore the optimization of treatment conditions including AD-MSC production, administration routes and therapeutic windows for their appropriate use in patients. Finally we will provide an update on clinical trials on this therapy. Compared with other cell types, AD-MSCs have been less investigated in stroke studies. Currently, experimental animal models have shown safety and efficacy with this treatment after stroke. Due to several advantages of AD-MSCs, such as their abundance and accessibility, they can be considered a promising strategy for use in patients. However, many questions are still to be resolved regarding their mechanisms of action, immune system modulation and the effects of AD-MSCs on all components of the brain that may be affected after ischemic and hemorrhagic strokes.

  14. Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

    Science.gov (United States)

    Razavi, Shahnaz; Razavi, Mohamad Reza; Ahmadi, Nafiseh; Kazemi, Mohammad

    2015-01-01

    Objective(s): Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction medium containing neurobasal medium, N2 and B27 with or without 17β-estradiol (E2) treatment. Proliferation rate and neural differentiation of human ADSCs were assessed using MTT assay, immunostaining and real time RT- PCR analysis, respectively. Results: Analysis of data show that estradiol treatment can significantly increase proliferation rate of differentiated cells (P<0.05). Immunocytochemical and real time RT-PCR analysis revealed that the expression of precursor and mature neuronal markers (nestin and MAP2) was significantly higher in the E2 treated cell cultures when compared to the untreated cell cultures (P<0.05). Conclusion: According to our findings, estrogen can promote proliferation and neuronal differentiation of human ADSCs. PMID:26557969

  15. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2014-06-25

    Tuning the material properties in order to control the cellular behavior is an important issue in tissue engineering. It is now well-established that the surface chemistry can affect cell adhesion, proliferation, and differentiation. In this study, plasma polymerization, which is an appealing method for surface modification, was employed to generate surfaces with different chemical compositions. Allylamine (AAm), acrylic acid (AAc), 1,7-octadiene (OD), and ethanol (ET) were used as precursors for plasma polymerization in order to generate thin films rich in amine (-NH2), carboxyl (-COOH), methyl (-CH3), and hydroxyl (-OH) functional groups, respectively. The surface chemistry was characterized by X-ray photoelectron spectroscopy (XPS), the wettability was determined by measuring the water contact angles (WCA) and the surface topography was imaged by atomic force microscopy (AFM). The effects of surface chemical compositions on the behavior of human adipose-derive stem cells (hASCs) were evaluated in vitro: Cell Count Kit-8 (CCK-8) analysis for cell proliferation, F-actin staining for cell morphology, alkaline phosphatase (ALP) activity analysis, and Alizarin Red S staining for osteogenic differentiation. The results show that AAm-based plasma-polymerized coatings can promote the attachment, spreading, and, in turn, proliferation of hASCs, as well as promote the osteogenic differentiation of hASCs, suggesting that plasma polymerization is an appealing method for the surface modification of scaffolds used in bone tissue engineering.

  16. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh.

    Science.gov (United States)

    Deng, Meng; Gu, Yunpeng; Liu, Zhenjun; Qi, Yue; Ma, Gui E; Kang, Ning

    2015-01-01

    Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34- when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  17. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  18. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  19. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-07-22

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  20. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic

    Directory of Open Access Journals (Sweden)

    Nina Krešić

    2017-01-01

    Full Text Available Although canine adipose derived stem cells (cASCs morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3 and P5, which are mostly used in therapy. Influence of donors’ age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors’ cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors’ cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials.

  1. Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy.

    Science.gov (United States)

    Riis, S; Zachar, V; Boucher, S; Vemuri, M C; Pennisi, C P; Fink, T

    2015-06-08

    Since the discovery of adipose-derived stem cells (ASCs), there have been high expectations of their putative clinical use. Recent advances support these expectations, and it is expected that the transition from pre-clinical and clinical studies to implementation as a standard treatment modality is imminent. However ASCs must be isolated and expanded according to good manufacturing practice guidelines and a basic assurance of quality, safety, and medical effectiveness is needed for authorisation by regulatory agencies, such as European Medicines Agency and US Food and Drug Administration. In this review, a collection of studies investigating the influence of different steps of the isolation and expansion protocol on the yield and functionality of ASCs has been presented in an attempt to come up with best recommendations that ensure potential beneficial clinical outcome of using ASCs in any therapeutic setting. If the findings confirm the initial observations of beneficial effects of ASCs, the path is paved for implementing these ASC-based therapies as standard treatment options.

  2. Improvement of Anal Function by Adipose-Derived Stem Cell Sheets.

    Science.gov (United States)

    Inoue, Yusuke; Fujita, Fumihiko; Yamaguchi, Izumi; Kinoe, Hiroko; Kawahara, Daisuke; Sakai, Yusuke; Kuroki, Tamotsu; Eguchi, Susumu

    2017-05-12

    One of the most troublesome complications of anal preserving surgery is anal sphincter dysfunction. The aim of this study was to evaluate functional recovery after implantation of adipose-derived stem cell (ADSC) sheets, novel biotechnology, for an anal sphincter resection animal model. Eighteen female Sprague-Dawley rats underwent removal of the nearest half of the internal and external anal sphincter muscle. Nine rats received transplantation with ADSC sheets to the resected area while the remaining rats received no transplantation. The rats were evaluated for the anal function by measuring their resting pressure before surgery and on postoperative days 1, 7, 14, 28, and 56. In addition, the rats were examined for the presence of smooth muscle and also to determine its origin. The improvement of the anal pressure was significantly greater in the ADSC sheet transplantation group compared with the control group. Histologically, at the vicinity of the remaining smooth muscle, reproduction of smooth muscle was detected. Using in fluorescence in situ hybridization, the cells were shown to be from the recipient. Regenerative therapy using ADSC sheet has the potential to recover anal sphincter dysfunction due to anorectal surgery. © 2017 S. Karger AG, Basel.

  3. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    Directory of Open Access Journals (Sweden)

    Hyun Hee Ahn

    2014-01-01

    Full Text Available Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs. We prepared wettable and rough gradient polyethylene (PE surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90° to ~50° and rough (80 to ~120 nm surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness.

  4. Influence of smartphone Wi-Fi signals on adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo

    2014-09-01

    The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.

  5. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  6. [Use of adipose-derived stem cells in an experimental rotator cuff fracture animal model].

    Science.gov (United States)

    Barco, R; Encinas, C; Valencia, M; Carrascal, M T; García-Arranz, M; Antuña, S

    2015-01-01

    Rotator cuff repairs have shown a high level of re-ruptures. We hypothesized that the use of adipose-derived stem cells (ASC) could improve the biomechanical and histological properties of the repair. Controlled experimental study conducted on 44 BDIX rats with section and repair of the supraspinatus tendon and randomization to one of three groups: group A, no intervention (control); group B, local applications of a fibrin sealant; and group C, application of the fibrin sealant with 2 x 10(6) ASC. At 4 and 8 weeks a biomechanical and histological analysis was performed. There were no differences in load-to-failure at 4 and 8 weeks between groups. The load-to-failure did increase between week 4 and week 8. Histologically the tendon-to bone union showed a disorganized fibrovascular tissue. Group C showed a different inflammatory pattern, with less presence of neutrophils and more presence of plasma cells. The use of ASC does not improve the biomechanical or histological properties of the repair site. More studies are needed to improve techniques that enhance the healing site of the repair. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  7. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings.

    Directory of Open Access Journals (Sweden)

    Sarah Strauss

    Full Text Available Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.

  8. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings.

    Science.gov (United States)

    Strauss, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.

  9. An animal model study for bone repair with encapsulated differentiated osteoblasts from adipose-derived stem cells in alginate

    OpenAIRE

    Hashemibeni, Batool; Esfandiari, Ebrahim; Sadeghi, Farzaneh; Heidary, Fariba; Roshankhah, Shiva; Mardani, Mohammad; Goharian, Vahid

    2014-01-01

    Objective(s): Adipose derived stem cells (ADSCs) can be engineered to express bone specific markers. The aim of this study is to evaluate repairing tibia in animal model with differentiated osteoblasts from autologous ADSCs in alginate scaffold. Materials and Methods: In this study, 6 canine's ADSCs were encapsulated in alginate and differentiated into osteoblasts. Alkaline phosphatase assay (ALP) and RT-PCR method were applied to confirm the osteogenic induction. Then, encapsulated different...

  10. An animal model study for bone repair with encapsulated differentiated osteoblasts from adipose-derived stem cells in alginate

    OpenAIRE

    Shiva Roshankhah; Mohammad Mardani; Vahid Goharian

    2014-01-01

    Objective(s): Adipose derived stem cells (ADSCs) can be engineered to express bone specific markers. The aim of this study is to evaluate repairing tibia in animal model with differentiated osteoblasts from autologous ADSCs in alginate scaffold. Materials and Methods: In this study, 6 canine’s ADSCs were encapsulated in alginate and differentiated into osteoblasts. Alkaline phosphatase assay (ALP) and RT-PCR method were applied to confirm the osteogenic induction. Then, encapsulated differ...

  11. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  12. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  13. Effect of varied ionic calcium on human adipose-derived stem cell mineralization.

    Science.gov (United States)

    McCullen, Seth D; Zhan, Jackie; Onorato, Maureen L; Bernacki, Susan H; Loboa, Elizabeth G

    2010-06-01

    Human adipose-derived stem cells (hASCs) are a relatively abundant and accessible stem cell source with multilineage differentiation capability and have great potential for bone tissue engineering applications. The success of bone tissue engineering is intimately linked with the production of a mineralized matrix that mimics the natural mineral present within native bone. In this study, we examined the effects of ionic calcium levels of 1.8 (normal concentration in cell culture medium), 8, and 16 mM on hASCs seeded in both two-dimensional monolayer and three-dimensional electrospun scaffolds and cultured in either complete growth medium (CGM) or osteogenic differentiation medium (ODM). The impact of calcium supplementation on hASC viability, proliferation, and mineral deposition was determined. hASCs remained viable for all experimental treatments. hASC proliferation increased with the addition of 8 mM Ca(2+) CGM, but decreased for the 16 mM Ca(2+) CGM treatment. Materials deposited by hASCs were analyzed using four techniques: (1) histological staining with Alizarin Red S, (2) calcium quantification, (3) Fourier transform infrared spectroscopy, and (4) wide-angle X-ray diffraction. Mineral deposition was significantly enhanced under both growth and osteogenic medium conditions by increasing extracellular Ca(2+). The greatest mineral deposition occurred in the ODM 8 mM Ca(2+) treatment group. Fourier transform infrared spectroscopy analysis indicated that elevated calcium concentrations of 8 mM Ca(2+) significantly increased both PO(4) amount and PO(4) to protein ratio for ODM. X-ray diffraction indicated that mineral produced with elevated Ca(2+) in both CGM and ODM had a crystalline structure characteristic of hydroxyapatite. Ionic calcium should be considered a potent regulator in hASC mineralization and could serve as a potential treatment for inducing prompt ossification of hASC-seeded scaffolds for bone tissue engineering prior to implantation.

  14. Osteogenic Differentiation of Adipose-Derived Stem Cells Is Hypoxia-Inducible Factor-1 Independent

    Science.gov (United States)

    Sahai, Suchit; Williams, Amanda; Skiles, Matthew L.

    2013-01-01

    Tissue engineering is a promising approach to repair critical-size defects in bone. Damage to vasculature at the defect site can create a lower O2 environment compared with healthy bone. Local O2 levels influence stem cell behavior, as O2 is not only a nutrient, but also a signaling molecule. The hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates a wide range of O2-related genes and its contribution in bone repair/formation is an important area that can be exploited. In this study, we examined the effect of low O2 environments (1% and 2% O2) on the osteogenic differentiation of adipose-derived stem cells in both two-dimensional (2-D) and three-dimensional (3-D) culture systems. To determine the role of HIF-1 in the differentiation process, an inhibitor was used to block the HIF-1 activity. The samples were examined for osteogenesis markers as measured by quantification of the alkaline phosphatase (ALP) activity, mineral deposition, and expression of osteonectin (ON) and osteopontin (OPN). Results show a downregulation of the osteogenic markers (ALP activity, mineralization, ON, OPN) in both 1% and 2% O2 when compared to 20% O2 in both 2-D and 3-D culture. Vascular endothelial growth factor secretion over 28 days was significantly higher in low O2 environments and HIF-1 inhibition reduced this effect. The inhibition of the HIF-1 activity did not have a significant impact on the expression of the osteogenic markers, suggesting HIF-1-independent inhibition of osteogenic differentiation in hypoxic conditions. PMID:23394201

  15. Cytotoxic and Genotoxic effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs).

    Science.gov (United States)

    Shakoori, Ar; Ahmad, A

    2013-01-01

    Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs). Cells were exposed to 1-10 μg/ml and 10-100 μg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 μg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  16. Cytotoxic and Genotoxic Effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs

    Directory of Open Access Journals (Sweden)

    Shakoori A

    2013-10-01

    Full Text Available Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs. Cells were exposed to 1-10 µg/ml and 10-100 µg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 µg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  17. DNA Methylation and Histone Acetylation Patterns in Cultured Bovine Adipose Tissue-Derived Stem Cells (BADSCs

    Directory of Open Access Journals (Sweden)

    Beheshteh Abouhamzeh

    2015-01-01

    Full Text Available Objective: Many studies have focused on the epigenetic characteristics of donor cells to improve somatic cell nuclear transfer (SCNT. We hypothesized that the epigenetic status and chromatin structure of undifferentiated bovine adipose tissue-derived stem cells (BADSCs would not remain constant during different passages. The objective of this study was to determine the mRNA expression patterns of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b and histone deacetyltransferses (HDAC1, HDAC2, HDAC3 in BADSCs. In addition, we compared the measured levels of octamer binding protein-4 expression (OCT4 and acetylation of H3K9 (H3K9ac in BADSCs cultures and different passages in vitro. Materials and Methods: In this experimental study, subcutaneous fat was obtained from adult cows immediately post-mortem. Relative level of DNMTs and HDACs was examined using quantitative real time polymerase chain reaction (q-PCR, and the level of OCT4 and H3K9ac was analyzed by flow cytometry at passages 3 (P3, 5 (P5 and 7 (P7. Results: The OCT4 protein level was similar at P3 and P5 but a significant decrease in its level was seen at P7. The highest and lowest levels of H3K9ac were observed at P5 and P7, respectively. At P5, the expression of HDACs and DNMTs was significantly decreased. In contrast, a remarkable increase in the expression of DNMTs was observed at P7. Conclusion: Our data demonstrated that the epigenetic status of BADSCs was variable during culture. The P5 cells showed the highest level of stemness and multipotency and the lowest level of chromatin compaction. Therefore, we suggest that P5 cells may be more efficient for SCNT compared with other passages.

  18. Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Phuong Thi-Bich Le

    2016-12-01

    Full Text Available Introduction: Type 2 diabetes mellitus (T2D is the most common form of diabetes mellitus, accounting for 90% of diabetes mellitus in patients. At the present time, althoughT2D can be treated by various drugs and therapies using insulin replacement, reports have shown that complications including microvascular, macrovascular complications and therapy resistance can occur in patients on long term treatment. Stem cell therapy is regarded as a promising therapy for diabetes mellitus, including T2D. The aim of this study was to evaluate the safety and therapeutic effect of expanded autologous adipose derived stem cell (ADSC transplantation for T2D treatment; the pilot study included 3 patients who were followed for 3 months. Methods: The ADSCs were isolated from stromal vascular fractions, harvested from the belly of the patient,and expanded for 21 days per previously published studies. Before transplantation, ADSCs were evaluated for endotoxin, mycoplasma contamination, and karyotype.All patients were transfused with ADSCs at 1-2x106 cells/kg of body weight.Patients were evaluated for criteria related to transplantation safety and therapeutic effects; these included fever, blood glucose level before transplantation of ADSCs, and blood glucose level after transplantation (at 1, 2 and 3 months. Results: The results showed that all samples of ADSCs exhibited the MSC phenotype with stable karyotype (2n=46, there was no contamination of mycoplasma, and endotoxin levels were low (<0.25 EU/mL. No adverse effects were detected after 3 months of transplantation. Decreases of blood glucose levels were recorded in all patients. Conclusion: The findings from this initial study show that expanded autologous ADSCs may be a promising treatment for T2D.

  19. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  20. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Science.gov (United States)

    Li, Jin; Zeng, Guofang; Qi, Yawei; Tang, Xudong; Zhang, Jingjing; Wu, Zeyong; Liang, Jie; Shi, Lei; Liu, Hongwei; Zhang, Peihua

    2015-01-01

    Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  1. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  2. Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice

    Directory of Open Access Journals (Sweden)

    Ngoc Bich Vu

    2016-09-01

    Full Text Available Introduction: Bone marrow derived MSCs (BM-MSCs and adipose derived MSCs (AD-MSCs are among the types of stem cells most commonly studied. Our study aims to compare the therapeutic efficacy of allograft AD-MSCs versus BM-MSCs in a mouse model of hindlimb ischemia. Methods: AD-MSCs were isolated from belly fat and BM-MSCs were isolated from femur bone marrow. They were used to treat mice with acute hindlimb ischemia. Treatment efficacy was compared among 4 groups: injected with BM-MSCs, injected with AD-MSCs, non-treated and injected with phosphate buffered saline. Mice in the groups were evaluated for the following: necrosis grade of leg, leg edema, blood flow, muscle cell restructure and new blood vessel formation. Results: Results showed that AD-MSC transplantation significantly recovered acute limb ischemia, with 76.5% of mice fully recovered, while the ratio was only 48.5% in BM-MSC transplanted group, and 0% in the non-treated and PBS groups. Evaluation of leg edema, blood flow, muscle cell restructure and new blood vessel formation also supported the observation that AD-MSC transplantation was superior over BM-MSC transplantation. Conclusion: Therefore, AD-MSCs may serve as the more suitable MSC for hindlimb ischemia treatment and angiogenesis therapy. [Biomed Res Ther 2016; 3(9.000: 844-856

  3. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality.

    Science.gov (United States)

    Sampaio, R V; Chiaratti, M R; Santos, D C N; Bressan, F F; Sangalli, J R; Sá, A L A; Silva, T V G; Costa, N N; Cordeiro, M S; Santos, S S D; Ambrosio, C E; Adona, P R; Meirelles, F V; Miranda, M S; Ohashi, O M

    2015-01-15

    Adult stem cells are known for their plasticity and their potential to differentiate into several different cell types; these characteristics have implications for cell therapy and reproductive biotechnologies. In this study, we report on the isolation and characterization of mesenchymal stem cells (MSC) derived from bovine and buffalo adipose tissue. Cells isolated using enzymatic digestion of bovine and buffalo adipose-tissue biopsy samples were grown in vitro for at least 15 passages, verifying their capacity to proliferate. These cells were also subjected to immunophenotypic characterization for the presence of CD90, CD105, and CD79, and the absence of CD45, CD34, and CD73, which are positive and negative markers of MSC, respectively. To prove their multipotency, the cells were induced to differentiate into three different cell types, chondrocytes, osteoblasts, and adipocytes, which were stained with tissue-specific dyes (Chondrogenic-Alcian Blue, Osteogenic-Alizarin Red, and Adipogenic-Oil-Red O, respectively) to confirm differentiation. Gene expression analysis of pluripotency-related genes was also conducted. Our results suggest that adipose tissue from bovines and buffalos can be used as a source of MSC, making adipose tissue-derived cells an interesting option for cell therapy and regenerative medicine. Additionally, these findings have implications for reproductive biotechnology because the use of MSC as nuclear donors has been linked to an increase in the efficiency of nuclear transfer.

  4. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wentao Sun

    Full Text Available Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate (PBLG polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group and non-induced hASC/PBLG complex (ASC/PBLG group served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  5. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    Science.gov (United States)

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  6. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  7. Wound Healing Immediately Post-Thermal Injury Is Improved by Fat and Adipose Derived Stem Cell Isografts

    Science.gov (United States)

    Loder, Shawn; Peterson, Jonathan R.; Agarwal, Shailesh; Eboda, Oluwatobi; Brownley, Cameron; DeLaRosa, Sara; Ranganathan, Kavitha; Cederna, Paul; Wang, Stewart C.; Levi, Benjamin

    2014-01-01

    Objectives Patients with severe burns suffer functional, structural, and aesthetic complications. It is important to explore reconstructive options given that no ideal treatment exists. Transfer of adipose and adipose-derived stem cells (ASCs) has been shown to improve healing in various models. We hypothesize that use of fat isografts and/or ASCs will improve healing in a mouse model of burn injury. Methods Twenty 6–8 week old C57BL/6 male mice received a 30% surface area partial-thickness scald burn. Adipose tissue and ASCs from inguinal fat pads were harvested from a second group of C57BL/6 mice. Burned mice received 500μl subcutaneous injection at burn site of 1) processed adipose, 2) ASCs, 3) mixed adipose (adipose and ASCs), or 4) sham (saline) injection (n=5/group) on the first day post-injury. Mice were followed by serial photography until sacrifice at days 5 and 14. Wounds were assessed for burn depth and healing by Hematoxylin and Eosin (H&E) and immunohistochemistry. Results All treated groups showed improved healing over controls defined by decreased wound depth, area, and apoptotic activity. After 5 days, mice receiving ASCs or mixed adipose displayed a non-significant improvement in vascularization. No significant changes in proliferation were noted at 5 days. Conclusions Adipose isografts improve some early markers of healing post-burn injury. We demonstrate that addition of these grafts improve specific structural markers of healing. This improvement may be due to an increase in early wound vascularity post-graft. Further studies are needed to optimize use of fat or ASC grafts in acute and reconstructive surgery. PMID:25185931

  8. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  9. Amniotic membrane seeded with mesenchymal adipose-derived stem cell for coverage of wound in third degree burn: An experimental study

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Fatemi

    2014-09-01

    Conclusion: Acellular amnion seeded with adipose-derived stem cell can result in faster wound healing and better histopathology characteristic. The amnion as a scaffold and the fat derived stem cells as healing accelerator are recommended for coverage of the 3rd degree burn wounds after excision and it may reduce the need for skin graft.

  10. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  11. Effects of melatonin on the proliferation and differentiation of rat adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Zaminy Arash

    2008-01-01

    Full Text Available Background: Osteogenesis driven by adipose-derived stem cells (ADSCs is regulated by physiological and pathological factors. Accumulating evidence from in vitro and in vivo experiments suggests that melatonin may have an influence on bone formation. However, little is known about the effects of melatonin on osteogenesis, which thus remains to be elucidated. This study was performed to determine whether melatonin at physiological concentrations (0.01-10 nM could affect the in vitro proliferation and osteogenic differentiation of rat ADSCs. Materials and Methods: ADSCs were isolated from the fat of adult rats. After cell expansion in culture media and through three passages, osteogenesis was induced in a monolayer culture using osteogenic medium with or without melatonin at physiological concentrations (0.01-10 nM. After four weeks, the cultures were examined for mineralization by Alizarin Red S and von Kossa staining and for alkaline phosphatase (ALP activity using an ALP kit. Cell viability and apoptosis were also assayed by 3-(4, 5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTT assay and flow cytometry, respectively. Results: The results indicated that at physiological concentrations, melatonin suppressed proliferation and differentiation of ADSCs. These data indicate that ADSCs exposed to melatonin, had a lower ALP activity in contrast to the cells exposed to osteogenic medium alone. Similarly, mineral deposition (calcium level also decreased in the presence of melatonin. Flow cytometry confirmed that cell growth had decreased and that the numbers of apoptotic cells had increased. Conclusion: These results suggest that the physiological concentration of melatonin has a negative effect on ADSC osteogenesis.

  12. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Olivia S. [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Fonseca, Vera C. [Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Darling, Eric M., E-mail: Eric_Darling@brown.edu [Center for Biomedical Engineering, Brown University, Providence, RI (United States); Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI (United States); Department of Orthopaedics, Brown University, Providence, RI (United States); School of Engineering, Brown University, Providence, RI (United States)

    2014-10-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth

  13. Boiling Method-Based Zinc Oxide Nanorods for Enhancement of Adipose-Derived Stem Cell Proliferation.

    Science.gov (United States)

    Jin, Su-Eon; Ahn, Hyo-Sun; Kim, Ji Hye; Arai, Yoshie; Lee, Soo-Hong; Yoon, Tae-Jong; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2016-09-01

    Adipose-derived stem cells (ASCs) are typically expanded to acquire large numbers of cells for therapeutic applications. Diverse stimuli such as sphingosylphosphocholine and vitamin C have been used to increase the production yield and regenerative potential of ASCs. In the present study, we hypothesized that ZnO nanorods have promising potential for the enhancement of ASC proliferation. ZnO nanorods were prepared using three different methods: grinding and boiling at low temperature with and without surfactant. The physicochemical properties of the nanorods such as their crystallinity, morphology, size, and solvent compatibility were evaluated, and then, the ability of the synthesized ZnO nanorods to enhance ASC proliferation was investigated. Scanning electron microscopy images of all of the ZnO powders showed rod-shaped nanoflakes with lengths of 200-500 nm. Notably, although ZnO-G produced by the grinding method was well dispersed in ethanol, atomic force microscopy images of dispersions of both ZnO-B from boiling methods and ZnO-G indicated the presence of clusters of ZnO nanorods. In contrast, ZnO-B was freely dispersible in 5% dextrose of water and dimethyl sulfoxide, whereas ZnO-G and ZnO-M, produced by boiling with ethanolamine, were not. All three types of ZnO nanorods increased the proliferation of ASCs in a dose-dependent manner. These results collectively suggest that ZnO nanorods have promising potential for use as an agent for the enhancement of ASC proliferation.

  14. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh

    Directory of Open Access Journals (Sweden)

    Meng Deng

    2015-01-01

    Full Text Available Adipose-derived stem cell (ADSC is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34− when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  15. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Aso

    Full Text Available It has been shown that adipose-derived mesenchymal stem cells (AMSCs can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA plus cholera toxin (CT three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA and plasma IgG antibody (Ab responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer's patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice.

  16. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  17. Inhibition of pancreatic stellate cell activity by adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    Fu-Xiang Yu; Long-Feng Su; Chun-Lei Dai; Yang Wang; Yin-Yan Teng; Jun-Hui Fu; Qi-Yu Zhang; Yin-He Tang

    2015-01-01

    BACKGROUND: Pancreatic stellate cells (PSCs) play a critical role in the development of pancreatic ifbrosis. In this study we used a novel method to isolate and culture rat PSCs and then investigated the inhibitory effects of adipose-derived stem cells (ADSCs) on activation and proliferation of PSCs. METHODS: Pancreatic tissue was obtained from Sprague-Dawley rats for PSCs isolation. Transwell cell cultures were adopted for co-culture of ADSCs and PSCs. PSCs prolifera-tion and apoptosis were determined using CCK-8 and lfow cytometry, respectively.α-SMA expressions were analyzed using Western blotting. The levels of cytokines [nerve growth factor (NGF), interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1)] in conditioned medium were detected by ELISA. Gene expression (MMP-2, MMP-9 and TIMP-1) was analyzed using qRT-PCR. RESULTS: This method produced 17.6±6.5×103 cells per gram of the body weight with a purity of 90%-95% and a viability of 92%-97%. Co-culture of PSCs with ADSCs signiifcantly inhib-ited PSCs proliferation and induced PSCs apoptosis. Moreover,α-SMA expression was signiifcantly reduced in PSCs+ADSCs compared with that in PSC-only cultures, while expression of ifbrinolytic proteins (e.g., MMP-2 and MMP-9) was up-regulated and anti-ifbrinolytic protein (TIMP-1) was down-regulated. In addition, NGF expression was up-regulated, but IL-10 and TGF-β1 expressions were down-regulated in the co-culture conditioned medium compared with those in the PSC-only culture medium. CONCLUSIONS: This study provided an easy and reliable technique to isolate PSCs. The data demonstrated the inhibi-tory effects of ADSCs on the activation and proliferation of PSCsin vitro.

  18. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  19. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome.

    Science.gov (United States)

    Clark, Kaitlin C; Fierro, Fernando A; Ko, Emily Mills; Walker, Naomi J; Arzi, Boaz; Tepper, Clifford G; Dahlenburg, Heather; Cicchetto, Andrew; Kol, Amir; Marsh, Lyndsey; Murphy, William J; Fazel, Nasim; Borjesson, Dori L

    2017-03-20

    Adipose-derived mesenchymal stem cells (ASCs) are a promising cell therapy to treat inflammatory and immune-mediated diseases. Development of appropriate pre-clinical animal models is critical to determine safety and attain early efficacy data for the most promising therapeutic candidates. Naturally occurring diseases in cats already serve as valuable models to inform human clinical trials in oncologic, cardiovascular, and genetic diseases. The objective of this study was to complete a comprehensive side-by-side comparison of human and feline ASCs, with an emphasis on their immunomodulatory capacity and transcriptome. Human and feline ASCs were evaluated for phenotype, immunomodulatory profile, and transcriptome. Additionally, transwells were used to determine the role of cell-cell contact in ASC-mediated inhibition of lymphocyte proliferation in both humans and cats. Similar to human ASCs, feline ASCs were highly proliferative at low passages and fit the minimal criteria of multipotent stem cells including a compatible surface protein phenotype, osteogenic capacity, and normal karyotype. Like ASCs from all species, feline ASCs inhibited mitogen-activated lymphocyte proliferation in vitro, with or without direct ASC-lymphocyte contact. Feline ASCs mimic human ASCs in their mediator secretion pattern, including prostaglandin E2, indoleamine 2,3 dioxygenase, transforming growth factor beta, and interleukin-6, all augmented by interferon gamma secretion by lymphocytes. The transcriptome of three unactivated feline ASC lines were highly similar. Functional analysis of the most highly expressed genes highlighted processes including: 1) the regulation of apoptosis; 2) cell adhesion; 3) response to oxidative stress; and 4) regulation of cell differentiation. Finally, feline ASCs had a similar gene expression profile to noninduced human ASCs. Findings suggest that feline ASCs modulate lymphocyte proliferation using soluble mediators that mirror the human ASC secretion

  20. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  1. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Patrick; C; Baer

    2014-01-01

    Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs’ subpopulations, heterogeneity andculture standardization.

  2. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  3. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease.

    Science.gov (United States)

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E J; de Klein, Annelies; Douben, Hannie; Korevaar, Sander S; Mensah, Fane K F; Dor, Frank J M F; IJzermans, Jan N M; Betjes, Michiel G H; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2012-10-01

    Mesenchymal stem cells are a potential therapeutic agent in renal disease and kidney transplantation. Autologous cell use in kidney transplantation is preferred to avoid anti-HLA reactivity; however, the influence of renal disease on mesenchymal stem cells is unknown. To investigate the feasibility of autologous cell therapy in patients with renal disease, we isolated these cells from subcutaneous adipose tissue of healthy controls and patients with renal disease and compared them phenotypically and functionally. The mesenchymal stem cells from both groups showed similar morphology and differentiation capacity, and were both over 90% positive for CD73, CD105, and CD166, and negative for CD31 and CD45. They demonstrated comparable population doubling times, rates of apoptosis, and were both capable of inhibiting allo-antigen- and anti-CD3/CD28-activated peripheral blood mononuclear cell proliferation. In response to immune activation they both increased the expression of pro-inflammatory and anti-inflammatory factors. These mesenchymal stem cells were genetically stable after extensive expansion and, importantly, were not affected by uremic serum. Thus, mesenchymal stem cells of patients with renal disease have similar characteristics and functionality as those from healthy controls. Hence, our results indicate the feasibility of their use in autologous cell therapy in patients with renal disease.

  4. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2013-02-01

    Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.

  5. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture

    Science.gov (United States)

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-01

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were “adipose-like microtissues” that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

  6. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture.

    Science.gov (United States)

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-08

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were "adipose-like microtissues" that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

  7. The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment.

    Science.gov (United States)

    Wang, Jingkai; Tao, Yiqing; Zhou, Xiaopeng; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qi-Xin

    2016-08-03

    Recent studies indicated that cell-based therapy could be a promising approach to treat intervertebral disc degeneration. Though the harsh microenvironment in disc is still challenging to implanted cells, it could be overcome by pre-conditioning graft cells before transplantation, suggested by previous literatures. Therefore, we designed this study to identify the potential effect of chondrogenic pre-differentiation on adipose-derived mesenchymal stem cells in intervertebral disc-like microenvironment, characterized by limited nutrition, acidic, and high osmosis in vitro. Adipose-derived mesenchymal stem cells of rat were divided into five groups, embedded in type II collagen scaffold, and cultured in chondrogenic differentiation medium for 0, 3, 7, 10, and 14 days. Then, the adipose-derived mesenchymal stem cells were implanted and cultured in intervertebral disc-like condition. The proliferation and differentiation of adipose-derived mesenchymal stem cells were evaluated by cell counting kit-8 test, real-time quantitative polymerase chain reaction, and Western blotting and immunofluorescence analysis. Analyzed by the first week in intervertebral disc-like condition, the results showed relatively greater proliferative capability and extracellular matrix synthesis ability of the adipose-derived mesenchymal stem cells pre-differentiated for 7 and 10 days than the control. We concluded that pre-differentiation of rat adipose-derived mesenchymal stem cells in chondrogenic culture medium for 7 to 10 days could promote the regeneration effect of adipose-derived mesenchymal stem cells in intervertebral disc-like condition, and the pre-differentiated cells could be a promising cell source for disc regeneration medicine.

  8. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    Etsu; Suzuki; Daishi; Fujita; Masao; Takahashi; Shigeyoshi; Oba; Hiroaki; Nishimatsu

    2015-01-01

    Adipose tissue-deried stem cells( ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells(VECs), vascular smooth muscle cells(VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissueresident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction(AMI), ischemic cardiomyopathy(ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application.

  9. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  10. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  11. Estrogen Receptor α and β in Mouse: Adipose-Derived Stem Cell Proliferation, Migration, and Brown Adipogenesis In Vitro

    Directory of Open Access Journals (Sweden)

    Wentian Zhang

    2016-05-01

    Full Text Available Background/Aims: Adipose-derived stem cells (ASCs belong to mesenchymal stem cells and may play a potential role as seeding cells in stem cell transplantation. To be able to exploit stem cells as therapeutic tool, their defects in some important cellular functions, such as low survival rate and cellular activity, should be considered. This is especially the case for stem cells that are intended for transplantation. Of note, stem cell responses to hormones should be considered since estrogen is known to play a critical role in stem cell behavior. However, different impacts of the estrogen receptor (ER types α and β have not been fully determined in ASC function. In this study, we investigated effects of ERα and ERβ on ASC proliferation, migration, as well as in adipogenesis. Methods: ASCs obtained from mice were cultured with 100nM ERα or ERβ agonist PPT and DPN, respectively. The ERα and ERβ antagonist ICI 182,780 (100nM was used as control. Results: Compared to ERβ, ERα appears more potent in improving ASC proliferation and migration. Investigation of adipogenesis revealed that ERβ played a significant role in suppressing ASC-mediated brown tissue adipogenesis which is in contrast to ERα. These results correlated with reduced mRNA expression of UCP-1, PGC-1α and PPAR-γ. Conclusions: ERα plays a more critical role in promoting ASC proliferation and migration while ERβ is more potent in suppressing ASC brown adipose tissue differentiation mediated by decreased UCP-1, PGC-1α and PPAR-γ expression.

  12. The influence of sol-gel-derived silica coatings functionalized with betamethasone on adipose-derived stem cells (ASCs).

    Science.gov (United States)

    Donesz-Sikorska, Anna; Grzesiak, Jakub; Smieszeka, Agnieszk; Krzak, Justyna; Marycz, Krzysztof

    2014-09-01

    Silica-based sol-gel coatings have gained attention in bone therapies and orthopedic applications, due to the biocompatibility and bioactivity, including a high potential for the controlled release both in vitro and in vivo. Bioactive materials are created to facilitate the biocompatibility of orthopedic implants. One of the promising alternatives is biomaterials with immobilized drugs. In this study we demonstrated for the first time novel sol-gel-derived silica coatings with active amino groups (SiO2(NH2)) functionalized with a steroid drug-betamethasone, applied to a substrate 316 L using dip coating technique. The presence of betamethasone in functionalized coatings was directly confirmed by Raman spectroscopy and energy-dispersive X-ray spectroscopic analysis. The wettability was evaluated by the sessile drop method, while the surface free energy was estimated based on the contact angles measured. Our results showed a shift in surface properties from hydrophobic to hydrophilic after application of the coatings. We have investigated the morphology, proliferation factor, and the population doubling time of adipose-derived stem cells for biological purposes. Moreover, the analysis of the distribution and localization of cellular microvesicles was performed to evaluate the influence of functionalized surfaces on cellular cytophysiological activity. Increased proliferation and activation of cells, determined by the observations of microvesicles shedding processes, provided evidence of the availability of the drug. Therefore, we conclude that the sol-gel synthesis proposed here allows to improve the metal substrates and can be successfully used for immobilization of betamethasone. This in turn enables the direct delivery of the drug with implanted material into the wound site, and to stimulate the activity of cells to enhance tissue regeneration.

  13. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells.

    Science.gov (United States)

    Hutton, Daphne L; Moore, Erika M; Gimble, Jeffrey M; Grayson, Warren L

    2013-09-01

    Vasculature is essential to the functional integration of a tissue-engineered bone graft to enable sufficient nutrient delivery and viability after implantation. Native bone and vasculature develop through intimately coupled, tightly regulated spatiotemporal cell-cell signaling. The complexity of these developmental processes has been a challenge for tissue engineers to recapitulate, resulting in poor codevelopment of both bone and vasculature within a unified graft. To address this, we cultured adipose-derived stromal/stem cells (ASCs), a clinically relevant, single cell source that has been previously investigated for its ability to give rise to vascularized bone grafts, and studied the effects of initial spatial organization of cells, the temporal addition of growth factors, and the presence of exogenous platelet-derived growth factor-BB (PDGF-BB) on the codevelopment of bone and vascular tissue structures. Human ASCs were aggregated into multicellular spheroids via the hanging drop method before encapsulation and subsequent outgrowth in fibrin gels. Cellular aggregation substantially increased vascular network density, interconnectivity, and pericyte coverage compared to monodispersed cultures. To form robust vessel networks, it was essential to culture ASCs in a purely vasculogenic medium for at least 8 days before the addition of osteogenic cues. Physiologically relevant concentrations of exogenous PDGF-BB (20 ng/mL) substantially enhanced both vascular network stability and osteogenic differentiation. Comparisons with the bone morphogenetic protein-2, another pro-osteogenic and proangiogenic growth factor, indicated that this potential to couple the formation of both lineages might be unique to PDGF-BB. Furthermore, the resulting tissue structure demonstrated the close association of mineral deposits with pre-existing vascular structures that have been described for developing tissues. This combination of a single cell source with a potent induction factor

  14. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  15. Hyaluronan and Fibrin Biomaterial as Scaffolds for Neuronal Differentiation of Adult Stem Cells Derived from Adipose Tissue and Skin

    Directory of Open Access Journals (Sweden)

    Chiara Gardin

    2011-10-01

    Full Text Available Recently, we have described a simple protocol to obtain an enriched culture of adult stem cells organized in neurospheres from two post-natal tissues: skin and adipose tissue. Due to their possible application in neuronal tissue regeneration, here we tested two kinds of scaffold well known in tissue engineering application: hyaluronan based membranes and fibrin-glue meshes. Neurospheres from skin and adipose tissue were seeded onto two scaffold types: hyaluronan based membrane and fibrin-glue meshes. Neurospheres were then induced to acquire a glial and neuronal-like phenotype. Gene expression, morphological feature and chromosomal imbalance (kariotype were analyzed and compared. Adipose and skin derived neurospheres are able to grow well and to differentiate into glial/neuron cells without any chromosomal imbalance in both scaffolds. Adult cells are able to express typical cell surface markers such as S100; GFAP; nestin; βIII tubulin; CNPase. In summary, we have demonstrated that neurospheres isolated from skin and adipose tissues are able to differentiate in glial/neuron-like cells, without any chromosomal imbalance in two scaffold types, useful for tissue engineering application: hyaluronan based membrane and fibrin-glue meshes.

  16. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Duan-zhen; GAI Lu-yue; LIU Hong-wei; JIN Qin-hua; HUANG Jian-hua; ZHU Xian-yang

    2007-01-01

    Background Adipose-derived stem cells (ADSCs) are capable of differentiating into cardiomyogenic and endothelial cells in vitro. We tested the hypothesis that transplantation of ADSCs into myocardial scar may regenerate infracted myocardium and restore cardiac function.Methods ADSCs were isolated from the fatty tissue of New Zealand white rabbits and cultured in Iscove's modified dulbecco's medium. Three weeks after ligation of left anterior descending coronary artery of rabbits, either a graft of untreated ADSCs (UASCs, n=14), 5-azacytidine-pretreated ADSCs (AASCs, n=13), or phosphate buffer saline (n=13)were injected into the infarct region. Transmural scar size, cardiac function, and immunohistochemistry were performed 5 weeks after cell transplantation.Results ADSCs in culture demonstrated a fibroblast-like appearance and expressed CD29, CD44 and CD105. Five weeks after cell transplantation, transmural scar size in AASC-implanted hearts was smaller than that of the other hearts.Many ADSCs were differentiated into cardiomyocytes. The AASCs in the prescar appeared more myotube-like. AASCs in the middle of the scar and UASCs, in contrast, were poorly differentiated. Some ADSCs were differentiated into endothelial cells and participate in vessel-like structures formation. All the ADSC-implanted hearts had a greater capillary density in the infarct region than did the control hearts. Statistical analyses revealed significant improvement in left ventricular ejection fraction, myocardial performance index, end-diastolic pressure, and peak +dP/dt, in two groups of ADSC-implanted hearts relative to the control hearts. AASC-implanted hearts had higher peak -dP/dt values than did control, higher ejection fraction and peak +dP/dtvalues than did UASC-implanted hearts.Conclusions ADSCs transplanted into the myocardial scar tissue formed cardiac islands and vessel-like structures,induced angiogenesis and improved cardiac function. 5-Azacytidine pretreatment before

  17. Alignment and Elongation of Human Adipose-Derived Stem Cells in Response to Direct-Current Electrical Stimulation

    OpenAIRE

    Tandon, Nina; Goh, Brian; Marsano, Anna; Chao, Pen-Hsiu Grace; Montouri-Sorrentino, Chrystina; Gimble, Jeffrey; Vunjak-Novakovic, Gordana

    2009-01-01

    In vivo, direct current electric fields are present during embryonic development and wound healing. In vitro, direct current (DC) electric fields induce directional cell migration and elongation. For the first time, we demonstrate that cultured human adipose tissue-derived stem cells (hASCs) respond to the presence of direct-current electric fields. Cells were stimulated for 2–4 hours with DC electric fields of 6 V/cm that were similar to those encountered in vivo post-injury. Upon stimulatio...

  18. Pluripotential differentiation capability of human adipose-derived stem cells in a novel fibrin-agarose scaffold.

    Science.gov (United States)

    Nieto-Aguilar, R; Serrato, D; Garzón, I; Campos, A; Alaminos, M

    2011-03-01

    The potentiality of adipose-derived stem cells (ASCs) cultured on 2D systems has been previously established. Nevertheless, very little is known so far about the differentiation potentiality of ASCs in 3D culture systems using biomaterials. In this work, we have evaluated the transdifferentiation capabilities of ASCs cultured within a novel fibrin-agarose biomaterial by histological analysis, histochemistry and immunofluorescence. Our results showed that 3D fibrin-agarose biomaterial is highly biocompatible and supports the transdifferentiation capabilities of ASCs to the osteogenic, chondrogenic, adipogenic, and neurogenic lineages.

  19. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Science.gov (United States)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  20. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts

    Directory of Open Access Journals (Sweden)

    You Li

    2012-01-01

    Full Text Available Abstract Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467 involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs. Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.

  1. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-01-01

    Full Text Available Osteoarthritis is one of the most common diseases, and it affects 12% of the population around the world. Although the disease is chronic, it significantly reduces the patient's quality of life. At present, stem cell therapy is considered to be an efficient approach for treating this condition. Mesenchymal stem cells (MSCs show the most potential for stem cell therapy of osteoarthritis. In fact, MSCs can differentiate into certain mesodermal tissues such as cartilage and bone. Therefore, in the present study, we applied adipose tissue-derived MSCs to osteoarthritis treatment. This study aimed to evaluate the clinical efficiency of autologous adipose tissue-derived MSC transplantation in patients with confirmed osteoarthritis at grade II and III. Adipose tissue was isolated from the belly, and used for extraction of the stromal vascular fraction (SVF. The SVF was mixed with activated platelet- rich plasma before injection. The clinical efficiencies were evaluated by the pain score (VAS, Lysholm score, and MRI findings. We performed the procedure in 21 cases from 2012 to 2013. All 21 patients showed improved joint function after 8.5 months. The pain score decreased from 7.6+/-0.5 before injection to 3.5+/-0.7 at 3 months and 1.5+/-0.5 at 6 months after injection. The Lysholm score increased from 61+/-11 before injection to 82+/-8.1 after injection. Significant improvements were noted in MRI findings, with increased thickness of the cartilage layer. Moreover, there were no side-effects or complications related to microorganism infection, graft rejection, or tumorigenesis. These results provide a new opportunity for osteoarthritis treatment. Level of evidence: IV. [Biomed Res Ther 2014; 1(1.000: 02-08

  2. Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin

    Directory of Open Access Journals (Sweden)

    Rodney K. Chan

    2012-01-01

    Full Text Available Large body surface area burns pose significant therapeutic challenges. Clinically, the extent and depth of burn injury may mandate the use of allograft for temporary wound coverage while autografts are serially harvested from the same donor areas. The paucity of donor sites in patients with burns involving large surface areas highlights the need for better skin substitutes that can achieve early and complete coverage and retain normal skin durability with minimal donor requirements. We have isolated autologous stem cells from the adipose layer of surgically debrided burned skin (dsASCs, using a point-of-care stem cell isolation device. These cells, in a collagen—polyethylene glycol fibrin-based bilayer hydrogel, differentiate into an epithelial layer, a vascularized dermal layer, and a hypodermal layer. All-trans-retinoic acid and fenofibrate were used to differentiate dsASCs into epithelial-like cells. Immunocytochemical analysis showed a matrix- and time-dependent change in the expression of stromal, vascular, and epithelial cell markers. These results indicate that stem cells isolated from debrided skin can be used as a single autologous cell source to develop a vascularized skin construct without culture expansion or addition of exogenous growth factors. This technique may provide an alternative approach for cutaneous coverage after extensive burn injuries.

  3. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Directory of Open Access Journals (Sweden)

    Ken Ye

    Full Text Available Infrapatellar fat pad adipose stem cells (IPFP-ASCs have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  4. Paracrine Activity from Adipose-Derived Stem Cells on In Vitro Wound Healing in Human Tympanic Membrane Keratinocytes.

    Science.gov (United States)

    Ong, Huan Ting; Redmond, Sharon L; Marano, Robert J; Atlas, Marcus D; von Unge, Magnus; Aabel, Peder; Dilley, Rodney J

    2017-03-15

    Stem cell therapies for tympanic membrane repair have shown initial experimental success using mesenchymal stem cells in rat models to promote healing; however, the mechanisms providing this benefit are not known. We investigated in vitro the paracrine effects of human adipose-derived stem cells (ADSCs) on wound healing mechanisms for human tympanic membrane-derived keratinocytes (hTM) and immortalized human keratinocytes (HaCaT). ADSC conditioned media (CMADSC) were assessed for paracrine activity on keratinocyte proliferation and migration, with hypoxic conditions for ADSC culture used to generate contrasting effects on cytokine gene expression. Keratinocytes cultured in CMADSC showed a significant increase in cell number compared to serum-free cultures and further significant increases in hypoxic CMADSC. Assessment of ADSC gene expression on a cytokine array showed a range of wound healing cytokines expressed and under stringent hypoxic and serum-free conditions was upregulated (VEGF A, MMP9, Tissue Factor, PAI-1) or downregulated (CXCL5, CCL7, TNF-α). Several of these may contribute to the activity of conditioned media on the keratinocytes with potential applications in TM perforation repair. VEGFA protein was confirmed by immunoassay to be increased in conditioned media. Together with gene regulation associated with hypoxia in ADSCs, this study has provided several strong leads for a stem cell-derived approach to TM wound healing.

  5. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture.

    Science.gov (United States)

    Lei, Lei; Liao, WeiMing; Sheng, PuYi; Fu, Ming; He, AiShan; Huang, Gang

    2007-06-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: 61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t x log2/logNt - logN0" was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the 61 years old group (statistical analysis of variance (ANOVA), P=0.002, PhADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  6. Effect of hypoxia on the proliferation of porcine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells in 2- and 3-dimensional culture.

    Science.gov (United States)

    Burian, Egon; Probst, Florian; Palla, Benjamin; Riedel, Christina; Saller, Maximilian Michael; Cornelsen, Matthias; König, Florian; Schieker, Matthias; Otto, Sven

    2017-03-01

    Bone marrow-derived mesenchymal stem cells (MSCs) and adipose-derived mesenchymal stem cells (ASCs) currently represent a promising tool for the regeneration of large bony defects. Therefore, it is pivotal to find the best cell source within the body and the best conditions for in vitro cellular expansion. This study compared cellular response of MSCs and ASCs from a porcine animal in normoxic (21% O2) and hypoxic (2% O2) cell culture conditions via 2D and 3D experimental settings. The effect of constant exposure to hypoxia on primary pig stem cells was evaluated by two methods. First, a cumulative population doublings (cumPD) over a period of 40 days, a metabolic activity assay in both 2D and 3D beta-TCP-PHB scaffolds, followed by analysis of osteogenic differentiation potential in cell monolayers. Our results displayed enhanced cell culture proliferation in 2% O2 for both MSCs and ASCs, with impaired osteogenic differentiation of MSCs. The impact of constant hypoxia on porcine MSCs and ASCs exhibited a statistically significant decrease in osteogenic differentiation under hypoxic conditions with the MSCs. Our data suggest that MSCs and ASCs expanded in hypoxic culture conditions, might be more suitable for use in the clinical setting where large cell numbers are required. When differentiated in normoxic conditions, MSCs showed the highest osteogenic differentiation potential and might be the best choice of cells with consideration to bone repair. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  8. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  9. Adipose-Derived Mesenchymal Stem Cells for the Treatment of Articular Cartilage: A Systematic Review on Preclinical and Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Francesco Perdisa

    2015-01-01

    Full Text Available Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview of in vivo studies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.

  10. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    Science.gov (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-07-30

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  11. Osteogenic Capacity of Human Adipose-Derived Stem Cells is Preserved Following Triggering of Shape Memory Scaffolds.

    Science.gov (United States)

    Tseng, Ling-Fang; Wang, Jing; Baker, Richard M; Wang, Guirong; Mather, Patrick T; Henderson, James H

    2016-08-01

    Recent advances in shape memory polymers have enabled the study of programmable, shape-changing, cytocompatible tissue engineering scaffolds. For treatment of bone defects, scaffolds with shape memory functionality have been studied for their potential for minimally invasive delivery, conformal fitting to defect margins, and defect stabilization. However, the extent to which the osteogenic differentiation capacity of stem cells resident in shape memory scaffolds is preserved following programmed shape change has not yet been determined. As a result, the feasibility of shape memory polymer scaffolds being employed in stem cell-based treatment strategies remains unclear. To test the hypothesis that stem cell osteogenic differentiation can be preserved during and following triggering of programmed architectural changes in shape memory polymer scaffolds, human adipose-derived stem cells were seeded in shape memory polymer foam scaffolds or in shape memory polymer fibrous scaffolds programmed to expand or contract, respectively, when warmed to body temperature. Osteogenic differentiation in shape-changing and control scaffolds was compared using mineral deposition, protein production, and gene expression assays. For both shape-changing and control scaffolds, qualitatively and quantitatively comparable amounts of mineral deposition were observed; comparable levels of alkaline phosphatase activity were measured; and no significant differences in the expression of genetic markers of osteogenesis were detected. These findings support the feasibility of employing shape memory in scaffolds for stem cell-based therapies for bone repair.

  12. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review.

    Science.gov (United States)

    Freese, Kyle E; Kokai, Lauren; Edwards, Robert P; Philips, Brian J; Sheikh, M Aamir; Kelley, Joseph; Comerci, John; Marra, Kacey G; Rubin, J Peter; Linkov, Faina

    2015-04-01

    Obesity is a well recognized risk factor for several types of cancers, many of which occur solely or disproportionately in women. Adipose tissue is a rich source of adipose-derived stem cells (ASC), which have received attention for their role in cancer behavior. The purpose of this systematic review is to present the existing literature on the role of ASCs in the growth, development, progression, and metastasis of cancer, with an emphasis on malignancies that primarily affect women. To accomplish this goal, the bibliographic database PubMed was systematically searched for articles published between 2001 and 2014 that address ASCs' relationship to human cancer. Thirty-seven articles on ASCs' role in human cancer were reviewed. Literature suggests that ASCs exhibit cancer-promoting properties, influence/are influenced by the tumor microenvironment, promote angiogenesis, and may be associated with pathogenic processes through a variety of mechanisms, such as playing a role in hypoxic tumor microenvironment. ASCs appear to be important contributors to tumor behavior, but research in areas specific to women's cancers, specifically endometrial cancer, is scarce. Also, because obesity continues to be a major health concern, it is important to continue research in this area to improve understanding of the impact adiposity has on cancer incidence.

  13. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Park, Eun Jung; Kim, Min Jung; Kim, Geon A; Rhee, Sang Ho; Lim, Sang Hyun; Kang, Sung Keun; Lee, Byeong Chun

    2014-12-01

    In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.

  14. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats

    Directory of Open Access Journals (Sweden)

    Davood Mehrabani

    2015-01-01

    Full Text Available Context: Adipose tissue-derived mesenchymal stem cells (AT-MSCs are less invasive than bone marrow mesenchymal stem cells to obtain for cell therapy. Aims: The aims of this study were to evaluate the germinal cells characteristics and repairs in seminiferous tubules of busulfan-induced azoospermic rats after AT-MSCs transplantation. Settings and Design: Experimental case-control study. Materials and Methods: In the present experimental study, donors AT-MSCs were isolated from subcutaneous adipose tissue of two Sprague-Dawley rats. The recipients (n = 5 were received two doses of 10 mg/kg of busulfan with 21 days interval to stop endogenous spermatogenesis. After induction of azoospermia by busulfan, rats were injected with the AT-MSCs into the efferent duct of right testes. After 60 days, the right testes were injected AT-MSCs were compared to left azoospermic testes. Five untreated male rats served as negative control. Statistical Analysis Used: Stereological indices were analyzed by one-way ANOVA and LSD post-hoc test. The spermatogenesis index was compared using Mann-Whitney U test. Results: After stereological analyses, the seminiferous tubules treated with AT-MSCs had normal morphology. The untreated seminiferous tubules were empty. Spermatogenesis was observed in most cell-treated seminiferous tubules. Conclusions: The testis of busulfan-induced azoospermic rats accepted transplanted AT-MSCs. The transplanted AT-MSCs could induce spermatogenesis in seminiferous tubules of the rat.

  15. Equine Adipose-Derived Mesenchymal Stem Cells: Phenotype and Growth Characteristics, Gene Expression Profile and Differentiation Potentials

    Directory of Open Access Journals (Sweden)

    Faezeh Alipour

    2015-01-01

    Full Text Available Objective: Because of the therapeutic application of stem cells (SCs, isolation and characterization of different types of SCs, especially mesenchymal stem cells (MSCs, have gained considerable attention in recent studies. Adipose tissue is an abundant and accessible source of MSCs which can be used for tissue engineering and in particular for treatment of musculoskeletal disorders. This study was aimed to isolate and culture equine adipose-derived MSCs (AT-MSCs from little amounts of fat tissue samples and determine some of their biological characteristics. Materials and Methods: In this descriptive study, only 3-5 grams of fat tissue were collected from three crossbred mares. Immediately, cells were isolated by mechanical means and enzymatic digestion and were cultured in optimized conditions until passage 3 (P3. The cells at P3 were evaluated for proliferative capacities, expression of specific markers, and osteogenic, chondrogenic and adipogenic differentiation potentials. Results: Results showed that the isolated cells were plastic adherent with a fibroblast-like phenotype. AT-MSCs exhibited expression of mesenchymal cluster of differentiation (CD markers (CD29, CD44 and CD90 and not major histocompatibility complex II (MHC-II and CD34 (hematopoietic marker. Cellular differentiation assays demonstrated the chondrogenic, adipogenic and osteogenic potential of the isolated cells. Conclusion: Taken together, our findings reveal that equine MSCs can be obtained easily from little amounts of fat tissue which can be used in the future for regenerative purposes in veterinary medicine.

  16. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.

  17. Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity.

    Science.gov (United States)

    Roca-Rodríguez, María Mar; El Bekay, Rajaa; Garrido-Sanchez, Lourdes; Gómez-Serrano, María; Coin-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Lhamyani, Said; Clemente-Postigo, Mercedes; García-Santos, Eva; de Luna Diaz, Resi; Yubero-Serrano, Elena M; Fernández Real, José M; Peral, Belén; Tinahones, Francisco J

    2015-06-01

    This study aimed to define the potential role of PTHrP on adipogenic regulation and to analyze its relationship with obesity and insulin resistance. This was a cross-sectional study in which visceral (VAT) and subcutaneous (SAT) adipose tissue were extracted from 19 morbidly obese, 10 obese, and 10 lean subjects. PTHrP mRNA levels were measured in VAT and SAT. VAT mesenchymal stem cells and 3T3-L1 cells were differentiated into adipocytes in presence or absence of PTHrP siRNA. PTHrP mRNA and protein levels as well as adipogenic markers were evaluated by Western blotting or qPCR. Immunohistochemistry and immunofluorescence procedures were used for PTHrP intracellular localization. Both human VAT and SAT express PTHrP protein mainly in the nucleolar compartment of stromal vascular fraction cells. The highest levels of PTHrP mRNA and protein expression were detected in undifferentiated mesenchymal cells and progressively decreased during adipogenesis. Remarkably, adipogenic differentiation in human mesenchymal stem cells (A-hMSC) was significantly impaired in a pthrp knockdown. PTHrP seems to be related to obesity-associated insulin resistance (IR), given that we found that PTHrP mRNA expression was higher in VAT from morbidly obese with a low IR degree (MO-L-IR) subjects than those from morbidly obese with a high IR degree (MO-H-IR) and lean subjects, and correlated positively with body mass index and hip circumference. We also found that A-hMSC from MO-L-IRs displayed higher adipogenic capacity than those from both MO-H-IRs and leans. In addition, adipogenesis was impaired in VAT from MO-H-IRs, given that mRNA expression levels of key adipogenic regulators were lower than those from MO-L-IR subjects. PTHrP could be a potential new therapeutic target for the reprograming of adipogenesis and adipose tissue expansion, thus possibly ameliorating the metabolic syndrome in obese subjects.

  18. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Dreyer, Chris Halling; Ditzel, Nicholas;

    2016-01-01

    Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture...

  19. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  20. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Raquel Cuevas-Diaz Duran

    2013-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271, yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects.

  1. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells.

    Science.gov (United States)

    Kim, Jangho; Choi, Kyoung Soon; Kim, Yeonju; Lim, Ki-Tack; Seonwoo, Hoon; Park, Yensil; Kim, Deok-Ho; Choung, Pill-Hoon; Cho, Chong-Su; Kim, Soo Young; Choung, Yun-Hoon; Chung, Jong Hoon

    2013-12-01

    Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs.

  2. Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis.

    Science.gov (United States)

    Maria, Alexandre T J; Maumus, Marie; Le Quellec, Alain; Jorgensen, Christian; Noël, Danièle; Guilpain, Philippe

    2017-04-01

    Mesenchymal stromal/stem cells (MSC) are non-hematopoietic multipotent progenitor cells, first described in bone marrow in the middle of last century. Since then, MSC have been the objects of a myriad of publications, progressively increasing our knowledge on their potentialities and bringing high expectancies for their regenerative properties. During the same period, numerous tissues, such as adipose tissue, placenta, or umbilical cord, have been used as alternative sources of MSC in comparison with bone marrow. In particular, considering the accessibility and ease to harvest fat tissue, adipose-derived MSC have gained interest above bone marrow-derived MSC. More recently, the discovery of MSC immunomodulatory properties made MSC-based therapy progressively slip from the field of regenerative medicine to the one of autoimmunity. Indeed, in this group of disorders caused by aberrant activation of the immune system resulting in loss of self-tolerance and auto-reactivity, conventional immunosuppressant may be harmful. One advantage of MSC-based therapy would lie in their immune plasticity, resulting in space and time-limited immunosuppression. More specifically, among autoimmune disorders, systemic sclerosis appears as a peculiar multifaceted disease, in which autoimmune phenomena coexist with vascular abnormalities and multi-visceral fibrosis. Considering the pleiotropic effects of MSC, displaying immunomodulatory, angiogenic and antifibrotic capabilities, MSC-based therapy could counteract the three main pathogenic axes of systemic sclerosis and might thus represent a complete breakthrough in this intractable disease with unmet medical need. In this article, while reviewing most recent literature on MSC biology, we itemize their current applications in the field of autoimmunity and shed light onto the potential use of adipose-derived MSC as an innovative strategy to cure systemic sclerosis.

  3. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Marta Dossena

    Full Text Available Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ in the N-terminal androgen receptor (ARpolyQ confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK and three control volunteers (ADSCs. We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes, whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  4. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Dossena, Marta; Bedini, Gloria; Rusmini, Paola; Giorgetti, Elisa; Canazza, Alessandra; Tosetti, Valentina; Salsano, Ettore; Sagnelli, Anna; Mariotti, Caterina; Gellera, Cinzia; Navone, Stefania Elena; Marfia, Giovanni; Alessandri, Giulio; Corsi, Fabio; Parati, Eugenio Agostino; Pareyson, Davide; Poletti, Angelo

    2014-01-01

    Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ) in the N-terminal androgen receptor (ARpolyQ) confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs) as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK) and three control volunteers (ADSCs). We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes), whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  5. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  6. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    Science.gov (United States)

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  7. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    LEI Lei; LIAO WeiMing; SHENG PuYi; FU Ming; HE AiShan; HUANG Gang

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering, hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21-40years old, 41-60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45,CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell,and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro.The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t log2/logNt - logN0 "was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=-0.002, P<0.05). These findings suggested that a higher level of hADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  8. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell’s replication activity and the donor’s age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21―40 years old, 41―60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula “ log2T D = t logN t ? logN 0” was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=0.002, P<0.05). These find- ings suggested that a higher level of hADAS cells replication activity was found in the younger dona- tors, and they represent novel and valuable seed cells for studies of tissue engineering.

  9. Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

    Directory of Open Access Journals (Sweden)

    Qin JB

    2012-10-01

    Full Text Available Jin-Bao Qin,1,5,* Kang-An Li,2,* Xiang-Xiang Li,1,5 Qing-Song Xie,3 Jia-Ying Lin,4 Kai-Chuang Ye,1,5 Mi-Er Jiang,1,5 Gui-Xiang Zhang,2 Xin-Wu Lu1,51Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, China; 4Clinic for Gynecology, Charite-Universitatsmedizin Berlin, Berlin, Germany; 5Vascular Center, Shanghai Jiao Tong University, Shanghai, China*These two authors contributed equally to this workBackground: Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.Methods: GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.Results: GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide

  10. Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Fu Morgan

    2010-09-01

    Full Text Available Abstract Background We investigated whether early combined autologous adipose-derived mesenchymal stem cell (ADMSC and sildenafil therapy offers an additive benefit in preserving heart function in rat dilated cardiomyopathy (DCM. Methods Adult Lewis rats (n = 8 per group were divided into group 1 (normal control, group 2 (saline-treated DCM rats, group 3 [2.0 × 106 ADMSC implanted into left ventricular (LV myocardium of DCM rats], group 4 (DCM rats with sildenafil 30 mg/kg/day, orally, and group 5 (DCM rats with combined ADMSC-sildenafil. Treatment was started 1 week after DCM induction and the rats were sacrificed on day 90. Results The results showed that mitochondrial protein expressions of connexin43 and cytochrome-C were lowest in group 2, and lower in groups 3 and 4 than in group 5 (p Conclusion Early combined ADMSC/sildenafil is superior to either treatment alone in preserving LV function.

  11. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  12. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells

    DEFF Research Database (Denmark)

    Glovinski, Peter V; Herly, Mikkel; Mathiasen, Anders B

    2017-01-01

    BACKGROUND: Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore...... may be an efficient and reliable source of human growth supplement allowing for large-scale ASC expansion for clinical use....... stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling...

  13. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  14. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

    Science.gov (United States)

    Marycz, K; Pazik, R; Zawisza, K; Wiglusz, K; Maredziak, M; Sobierajska, P; Wiglusz, R J

    2016-12-01

    Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties.

  15. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn's fistula.

    Science.gov (United States)

    Cho, Yong Beom; Park, Kyu Joo; Yoon, Sang Nam; Song, Kee Ho; Kim, Do Sun; Jung, Sang Hun; Kim, Mihyung; Jeong, Hee Young; Yu, Chang Sik

    2015-05-01

    A previous phase II clinical trial of adipose-derived stem cell (ASC) therapy for fistulae associated with Crohn's disease, a devastating condition with a high recurrence rate, demonstrated safety and therapeutic potential with a 1-year sustained response. In the present study, 41 of the 43 phase II trial patients were followed for an additional year, regardless of response in the initial year. At 24 months, complete healing was observed in 21 of 26 patients (80.8%) in modified per protocol analysis and 27 of 36 patients (75.0%) in modified intention-to-treat analysis. No adverse events related to ASC administration were observed. Furthermore, complete closure after initial treatment was well-sustained. These results strongly suggest that autologous ASCs may be a novel treatment option for Crohn's fistulae. ©AlphaMed Press.

  16. Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Jeon, Gye Sun; Im, Wooseok; Shim, Yu-Mi; Lee, Mijung; Kim, Myung-Jin; Hong, Yoon-Ho; Seong, Seung-Yong; Kim, Manho; Sung, Jung-Joon

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The precise pathogenic mechanisms of the disease remain uncertain, and as of yet, there is no effective cure. Human adipose stem cells (hASC) can be easily obtained during operative procedures. hASC have a clinically feasible potential to treat neurodegenerative disorders, since cytosolic extract of hASC contain a number of essential neurotrophic factors. In this study, we investigated effects of hASC extract on the SOD1 G93A mouse model of ALS and in vitro test. Administration of hASC extract improved motor function and prolonged the time until symptom onset, rotarod failure, and death in ALS mice. In the hASC extracts group, choline acetyltransferase immunostaining in the ventral horn of the lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effect of hASC extract in ALS mice was also suggested by western blot analysis of spinal cord extract from ALS mice and in vitro test. hASC extract treatment significantly increased expression of p-Akt, p-CREB, and PGC-1α in SOD1 G93A mouse model and in vitro test. Our results indicated that hASC extract reduced apoptotic cell death and recovered mutant SOD1-induced mitochondrial dysfunction. Moreover, hASC extract reduced mitochondrial membrane potential. In conclusion, we have demonstrated, for the first time, that hASC extract exert a potential therapeutic action in the SOD1 G93A mouse model of ALS and in vitro test. These findings suggest that hASC hold promise as a novel therapeutic strategy for treating ALS.

  17. Metformin preconditioned adipose derived mesenchymal stem cells is a better option for the reversal of diabetes upon transplantation.

    Science.gov (United States)

    Shree, Nitya; Bhonde, Ramesh R

    2016-12-01

    Metformin is used worldwide as an insulin sensitizer. Adipose derived mesenchymal stem cells have shown promising results in the reducing hyperglycemia. We examined whether preconditioning of adipose derived mesenchymal stem cells (ASCs) with metformin could have a better therapeutic value for the reversal of type 2 diabetes. We compared the effect of metformin, ASCs and metformin preconditioned ASCs (MetASCs) in high fat diet induced C57BL/6 mice by injecting the cells intramuscularly only once where as metformin was given at a concentration of 300mg per kg body weight orally daily. Fasting glucose was measured every week for 4 weeks. At the end of the study insulin, triglycerides, IL6 and oxidised LDL were evaluated from the serum. Gene expression studies were performed for muscle (GLUT4) and liver tissues (IL6 and PAI1).There was a remarkable decrease in hyperglycemia within two weeks of injection by MetASCs as compared to metformin and ASCs alone. A significant decrement of hyperinsulinemia, triglyceridemia, serum IL6 and oxidised LDL were observed at the end of the study. Gene expression studies for muscle tissue revealed the drastic upregulation of GLUT4 gene levels in the MetASCs group indicating enhanced glucose uptake in muscle. Liver tissue analysed for the genes involved in inflammation viz. IL6 and PAI1 showed significant downregulation in the MetASCs group as compared to the other groups. This is a first report demonstrating the synergistic effect of metformin preconditioning of ASCs leading to reversal of hyperglycemia, hyperinsulinemia and triglyceridemia.

  18. In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

    Directory of Open Access Journals (Sweden)

    Chiara Garrovo

    2013-01-01

    Full Text Available Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.

  19. RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.

    Directory of Open Access Journals (Sweden)

    Kersti Jääger

    Full Text Available BACKGROUND: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. METHODOLOGY/PRINCIPAL FINDINGS: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs and dermal fibroblasts (FBs along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs.

  20. RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-Derived Stromal Stem Cells

    Science.gov (United States)

    Jääger, Kersti; Islam, Saiful; Zajac, Pawel; Linnarsson, Sten; Neuman, Toomas

    2012-01-01

    Background Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal Findings Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs) and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusions/Significance Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs. PMID:22723894

  1. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells.

    Science.gov (United States)

    Ko, Eunkyung; Yang, Kisuk; Shin, Jisoo; Cho, Seung-Woo

    2013-09-09

    Immobilization of osteoinductive molecules, including growth factors or peptides, on polymer scaffolds is critical for improving stem cell-mediated bone tissue engineering. Such molecules provide osteogenesis-stimulating signals for stem cells. Typical methods used for polymeric scaffold modification (e.g., chemical conjugation or physical adsorption), however, have limitations (e.g., multistep, complicated procedures, material denaturation, batch-to-batch inconsistency, and inadequate conjugation) that diminish the overall efficiency of the process. Therefore, in this study, we report a biologically inspired strategy to prepare functional polymer scaffolds that efficiently regulate the osteogenic differentiation of human adipose-derived stem cells (hADSCs). Polymerization of dopamine (DA), a repeated motif observed in mussel adhesive protein, under alkaline pH conditions, allows for coating of a polydopamine (pDA) layer onto polymer scaffolds. Our study demonstrates that predeposition of a pDA layer facilitates highly efficient, simple immobilization of peptides derived from osteogenic growth factor (bone morphogenetic protein-2; BMP-2) on poly(lactic-co-glycolic acid) (PLGA) scaffolds via catechol chemistry. The BMP-2 peptide-immobilized PLGA scaffolds greatly enhanced in vitro osteogenic differentiation and calcium mineralization of hADSCs using either osteogenic medium or nonosteogenic medium. Furthermore, transplantation of hADSCs using pDA-BMP-2-PLGA scaffolds significantly promoted in vivo bone formation in critical-sized calvarial bone defects. Therefore, pDA-mediated catechol functionalization would be a simple and effective method for developing tissue engineering scaffolds exhibiting enhanced osteoinductivity. To the best of our knowledge, this is the first study demonstrating that pDA-mediated surface modification of polymer scaffolds potentiates the regenerative capacity of human stem cells for healing tissue defect in vivo.

  2. Undifferentiated and differentiated adipose-derived stem cells improve nerve regeneration in a rat model of facial nerve defect.

    Science.gov (United States)

    Watanabe, Yorikatsu; Sasaki, Ryo; Matsumine, Hajime; Yamato, Masayuki; Okano, Teruo

    2017-02-01

    Autologous nerve grafting is the current procedure used for repairing facial nerve gaps. As an alternative to this method, tissue engineering cell-based therapy using induced pluripotent stem cells, Schwann cells and bone marrow-derived mesenchymal stem cells has been proposed. However, these cells have major problems, including tumorigenesis in induced pluripotent stem cells and invasiveness and limited tissue associated with harvesting for the other cells. Here, we investigated the therapeutic potential of adipose-derived stem cells (ASCs), which can be harvested easily and repeatedly by a minimally invasive liposuction procedure. The ASCs had characteristics of mesenchymal tissue lineages and could differentiate into Schwann-like cells that were relatively simple to isolate and expand in culture. In an in vivo study, a silicone conduit containing undifferentiated ASCs, differentiated ASCs or Schwann cells were transplanted, embedded in a collagen gel and the efficacy of repair of a 7 mm-gap in the rat facial nerve examined. Morphometric quantification analysis of regenerated facial nerves after a regeneration period of 13 weeks showed that undifferentiated ASCs, differentiated ASCs, and Schwann cells had similar potential for nerve regeneration. Furthermore, the functional recovery of facial nerve regeneration using a rat facial palsy scoring system in the three groups was close to that in autologous nerve graft positive controls. These findings suggest that undifferentiated and differentiated ASCs may both have therapeutic potential in facial nerve regeneration as a source of Schwann cells in cell-based therapy performed as an alternative to autologous nerve grafts. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Directory of Open Access Journals (Sweden)

    Antonio J. Villatoro

    2015-01-01

    Full Text Available Keratoconjunctivitis sicca (KCS or dry eye disease (DED is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs implanted around the lacrimal glands in 12 dogs (24 eyes with KCS, which is refractory to current available treatments. Schirmer tear test (STT and ocular surface integrity were assessed at 0 (before treatment, 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P<0.001 during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human.

  4. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Science.gov (United States)

    Villatoro, Antonio J.; Fernández, Viviana; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human. PMID:25802852

  5. Effects of Exendine-4 on The Differentiation of Insulin Producing Cells from Rat Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Layasadat Khorsandi

    2016-02-01

    Full Text Available Objective: To evaluate the effect of Exendine-4 (EX-4, a Glucagon-like peptide 1 (GLP-1 receptor agonist, on the differentiation of insulin-secreting cells (IPCs from rat adipose-derived mesenchymal stem cells(ADMSCs. Materials and Methods: In this experimental study, ADMSCs were isolated from rat adipose tissue and exposed to induction media with or without EX-4. After induction, the existence of IPCs was confirmed by morphology analysis, expression pattern analysis of islet-specific genes (Pdx-1, Glut-2 and Insulin and insulin synthesis and secretion. Results: IPCs induced in presence of EX-4 were morphologically similar to pancreatic islet-like cells. Expression of Pdx-1, Glut-2 and Insulin genes in EX-4 treated cells was significantly higher than the cells exposed to differentiation media without EX-4. Compared to EX-4 untreated ADMSCs, insulin release from EX-4 treated ADMSCs showed a nearly 2.5 fold (P<0.05 increase when exposed to a high glucose (25 mM medium. The percentage of insulin positive cells in the EX-4 treated group was approximately 4-fold higher than in the EX-4 untreated ADMSCs. Conclusion: The present study has demonstrated that EX-4 enhances the differentiation of ADMSCs into IPCs. Improvement of this method may help the formation of an unlimited source of cells for transplantation.

  6. Construction and characterization of osteogenic and vascular endothelial cell sheets from rat adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Hualin; Yu, Na; Zhou, Yueli; Ma, Hairong; Wang, Juan; Ma, Xuerong; Liu, Jinsong; Huang, Jin; An, Yilin

    2016-10-01

    In this study, adipose-derived mesenchymal stem cells (ADSCs) were isolated from adipose tissues of rats. Flow cytometry identification showed that ADSCs of passage 3 highly expressed CD29 and CD44, but hardly expressed CD31 and CD45. Adipogenic, osteogenic, and chondrogenic differentiation were confirmed by the results of oil red O staining, alkaline phosphatase (ALP), and alcian blue staining, respectively. ADSCs at a density of 1×10(6)/cm(2) were cultured in the osteogenic medium and the osteogenic cell sheets could be obtained after 14 d. The cell sheets were positive with von kossa staining. The transmission electron microscopy (TEM) result showed that needle-like calcium salt crystals were deposited on the ECM. These results suggested that the osteogenic cell sheets may have potential osteogenesis ability. ADSCs at a density of 1×10(6)/cm(2) were cultured in the endothelial cell growth medium-2 and the endothelial cell sheets can be formed after 16 d of culture. The TEM image confirmed that the Weibel-Palade corpuscle was seen in the cells. The expression of CD31 was positive, suggesting that the endothelial cell sheets may have a strong ability to form blood vessels. In this study, two types of cell sheets with the potential abilities of osteogenesis and blood vessels formation were obtained by induced culture of ADSCs in vitro, which lays a foundation to build vascularized tissue engineered bone for the therapy of bone defects.

  7. Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters.

    Science.gov (United States)

    Liu, Hui-Yu; Chen, Chih-Chien; Lin, Yuan-Yu; Chen, Yu-Jen; Liu, Bing-Hsien; Wong, Shiu-Chung; Wu, Cheng-Yu; Chang, Yun-Tsui; Chou, Han-Yi E; Ding, Shih-Torng

    2017-01-01

    The unique advantage of easy access and abundance make the adipose-derived stem cells (ADSCs) a promising system of multipotent cells for transplantation and regenerative medicine. Among the available sources, porcine ADSCs (pADSCs) deserve especial attention due to the close resemblance of human and porcine physiology, as well as for the upcoming availability of humanized porcine models. Here, we report on the isolation and conversion of pADSCs into glucose-responsive insulin-secreting cells. We used the stromal-vascular fraction of the dorsal subcutaneous adipose from 9-day-old male piglets to isolate pADSCs, and subjected the cells to an induction scheme for differentiation on chitosan-coated plates. This one-step procedure promoted differentiation of pADSCs into pancreatic islet-like clusters (PILC) that are characterized by the expression of a repertoire of pancreatic proteins, including pancreatic and duodenal homeobox (Pdx-1), insulin gene enhancer protein (ISL-1) and insulin. Upon glucose challenge, these PILC secreted high amounts of insulin in a dose-dependent manner. Our data also suggest that chitosan plays roles not only to enhance the differentiation potential of pADSCs, but also to increase the glucose responsiveness of PILCs. Our novel approach is, therefore, of great potential for transplantation-based amelioration of type 1 diabetes.

  8. [Effects of PRF and released three growth factors on migration of rat adipose tissue-derived stem cells].

    Science.gov (United States)

    Gao, Jie; Wang, Ming-guo; Yang, Shuai; Li, Xiu-mei; Yang, Shi-mao; Li, Xue

    2015-12-01

    To analyze the effects of PRF and released three growth factors on migration of rat adipose tissue-derived stem cells and to investigate the mechanism of migration. The inguinal adipose tissue of rat was excised at aseptic condition to obtain primary ADSCs by enzyme digestion. Multi-directional differentiation was used to identify the ADSCs. PRF membrane was acquired through one time centrifuge. The cell migration was examined by Transwell assay and wound healing assay. The mRNA expression of MMP2 and MT1-MMP was tested by real-time PCR. Statistical analysis was performed using SPSS 13.0 software package. Cell migration test showed that the migration of rat ADSCs in PRF group were significantly higher than those in the negative group(PPRF group than control group (PPRF and three growth factors consistently enhanced the migration of rat ADSCs in a dose-response manner. The migration increase of rat ADSCs may be associated with the up-regulation of MMP2 and MT1-MMP gene expression.

  9. Mouse adipose tissue-derived adult stem cells expressed osteogenic specific transcripts of osteocalcin and parathyroid hormone receptor during osteogenesis.

    Science.gov (United States)

    Teotia, P K; Hussein, K E-D; Park, K-M; Hong, S-H; Park, S-M; Park, I-C; Yang, S-R; Woo, H-M

    2013-10-01

    Adult mesenchymal stem cells (MSCs) have potential to differentiate into various lineages, replacing cells during normal turnover and tissue regeneration to replace damaged or lost adult tissues during osteoporosis and arthritis, or traumatic injuries. We investigated the osteogenic signature in mouse adipose tissue (AD)- and bone marrow (BM)-derived MSCs. MSCs from adipose tissue and bone marrow were compared for osteogenic endogenous mRNA markers by reverse-transcription polymerase chain reaction (RT-PCR). Cellular proliferation and immunophenotype analyzed by flow cytometry revealed that mouse AD-MSCs and BM-MSCs shared similar characteristics. Isolated AD-MSC and BM-MSC showed high proliferation rates and fibroblast morphology. Flow cytometry revealed positive markers for mesenchyme, but negative for primitive hematopoietic and endothelial cells. At day 21, Alizarin red S and Von-kossa staining of differentiated cells showed high calcium deposits compared with undifferentiated cells. After 21 days of osteogenic differentiation, AD-MSCs expressed osteocalcin and parathyroid hormone (PTH) compared with undifferentiated cells. Osteogenic-specific transcript of osteocalcin (OC), bone gamma carboxyglutamate protein, and PTH receptor (PTHr) were detected only in differentiated not undifferentiated cells. Undifferentiated BM-MSCs, expressed all markers at low intensity, which amplified during differentiation. Our findings suggest that the OC and PTHr can be used as differentiation markers for osteogenesis of mouse AD-MSC. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Sericin Enhances the Bioperformance of Collagen-Based Matrices Preseeded with Human-Adipose Derived Stem Cells (hADSCs

    Directory of Open Access Journals (Sweden)

    Marieta Costache

    2013-01-01

    Full Text Available Current clinical strategies for adipose tissue engineering (ATE, including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications.

  11. Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Mohmmad Mardani

    2013-06-01

    Full Text Available   Objective(s: Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose derived stem cells (ADSCs was compared with natural articular chondrocytes cultured in alginate scaffold.   Materials and Methods: Human ADSCs were obtained from subcutaneous adipose tissue and human articular chondrocytes from non-weight bearing areas of knee joints. Cells were seeded in 1.5% alginate and cultured in chondrogenic media for three weeks with and without TGFβ3. The genes expression of types II and X collagens was assessed by Real Time PCR and the amount of aggrecan (AGC and type I collagen measured by ELISA and the content of glycosaminoglycan evaluated by GAG assay. Results: Our findings showed that type II collagen, GAG and AGC were expressed, in differentiated ADSCs. Meanwhile, they produced a lesser amount of types II and X collagens but more AGC, GAG and type I collagen in comparison with natural chondrocytes (NCs. Conclusion: Further attempt should be carried out to optimize achieving type II collagen in DCs, as much as, natural articular chondrocytes and decline of the production of type I collagen in order to provide efficient hyaline cartilage after chondrogenic induction, prior to the usage of harvested tissues in clinical trials.

  12. Involvement of PI3K and MMP1 in PDGF-induced Migration of Human Adipose-derived Stem Cells.

    Science.gov (United States)

    Lim, Yoonhwa; Lee, Minji; Jeong, Hyeju; Kim, Haekwon

    2017-06-01

    Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo. To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro. A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro.

  13. Topically Delivered Adipose Derived Stem Cells Show an Activated-Fibroblast Phenotype and Enhance Granulation Tissue Formation in Skin Wounds

    Science.gov (United States)

    Hong, Seok Jong; Xu, Wei; Leung, Kai P.; Mustoe, Thomas A.; Galiano, Robert D.

    2013-01-01

    Multipotent mesenchymal stem cells (MSCs) are found in various tissues and can proliferate extensively in vitro. MSCs have been used in preclinical animal studies and clinical trials in many fields. Adipose derived stem cells (ASCs) have several advantages compared to other MSCs for use in cell-based treatments because they are easy to isolate with relative abundance. However, quantitative approaches for wound repair using ASCs have been limited because of lack of animal models which allow for quantification. Here, we addressed the effect of topically delivered ASCs in wound repair by quantitative analysis using the rabbit ear model. We characterized rabbit ASCs, and analyzed their multipotency in comparison to bone marrow derived-MSCs (BM-MSCs) and dermal fibroblasts (DFs) in vitro. Topically delivered ASCs increased granulation tissue formation in wounds when compared to saline controls, whereas BM-MSCs or DFs did not. These studies suggest that ASCs and BM-MSCs are not identical, though they have similar surface markers. We found that topically delivered ASCs are engrafted and proliferate in the wounds. We showed that transplanted ASCs exhibited activated fibroblast phenotype, increased endothelial cell recruitment, and enhanced macrophage recruitment in vivo. PMID:23383253

  14. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  15. DHL-HisZn, a novel antioxidant, enhances adipogenic differentiation and antioxidative response in adipose-derived stem cells.

    Science.gov (United States)

    Chen, Chien-Chih; Hsu, Li-Wen; Nakano, Toshiaki; Huang, Kuang-Tzu; Chen, Kuang-Den; Lai, Chia-Yun; Goto, Shigeru; Chen, Chao-Long

    2016-12-01

    Adipose-derived stem cells (ASCs) are multipotent progenitor cells that have the capacity to differentiate into specific mesenchymal cell lineages including adipocytes in response to environmental cues. Dysfunctional adipose tissue, rather than an excess of adipose tissue, has been proposed as a key factor in the pathogenesis of obesity-related diseases. The insulin-sensitizing effects of antidiabetic drugs are mediated by activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, we investigated the effects of sodium zinc histidine dithiooctanamide (DHL-HisZn), a strong antioxidant, on PPARγ activation, adipocyte differentiation and insulin sensitivity. Additionally, the effects of DHL-HisZn on cellular antioxidant response and inflammatory cytokine production were also evaluated. In ASCs, DHL-HisZn enhanced adipocyte differentiation and PPARγ expression in a dose-dependent manner. DHL-HisZn also increased the relative abundance of insulin-responsive glucose transporter 4 (GLUT4) and adiponectin mRNA. Furthermore, DHL-HisZn upregulated PPARγ downstream target gene expression. In addition, treatment with DHL-HisZn upregulated mRNA levels of endogenous antioxidants, such as glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase 2 (SOD2), catalase (CAT) and glutathione reductase (GR). DHL-HisZn treatment enhanced insulin signaling and inhibited NF-κB activation, which subsequently suppressed inflammatory cytokine IL-6 expression. Our results indicate that DHL-HisZn enhances insulin sensitivity in adipocytes by increasing the expression of GLUT4 and IRS-1 via the activation of PPARγ and improving the antioxidant response during adipogenic differentiation. Therefore, DHL-HisZn may have the capability to reduce insulin resistance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Science.gov (United States)

    Heneidi, Saleh; Simerman, Ariel A; Keller, Erica; Singh, Prapti; Li, Xinmin; Dumesic, Daniel A; Chazenbalk, Gregorio

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being

  17. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  18. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin

    Directory of Open Access Journals (Sweden)

    Cho Hyong-Ho

    2010-04-01

    Full Text Available Abstract Background Adult mesenchymal stem cells (MSCs derived from adipose tissue have the capacity to differentiate into mesenchymal as well as endodermal and ectodermal cell lineage in vitro. We characterized the multipotent ability of human adipose tissue-derived stem cells (hADSCs as MSCs and investigated the neural differentiation potential of these cells. Results Human ADSCs from earlobe fat maintained self-renewing capacity and differentiated into adipocytes, osteoblasts, or chondrocytes under specific culture conditions. Following neural induction with bFGF and forskolin, hADSCs were differentiated into various types of neural cells including neurons and glia in vitro. In neural differentiated-hADSCs (NI-hADSCs, the immunoreactivities for neural stem cell marker (nestin, neuronal markers (Tuj1, MAP2, NFL, NFM, NFH, NSE, and NeuN, astrocyte marker (GFAP, and oligodendrocyte marker (CNPase were significantly increased than in the primary hADSCs. RT-PCR analysis demonstrated that the mRNA levels encoding for ABCG2, nestin, Tuj1, MAP2, NFL, NFM, NSE, GAP43, SNAP25, GFAP, and CNPase were also highly increased in NI-hADSCs. Moreover, NI-hADSCs acquired neuron-like functions characterized by the display of voltage-dependent tetrodotoxin (TTX-sensitive sodium currents, outward potassium currents, and prominent negative resting membrane potentials under whole-cell patch clamp recordings. Further examination by RT-PCR showed that NI-hADSCs expressed high level of ionic channel genes for sodium (SCN5A, potassium (MaxiK, Kv4.2, and EAG2, and calcium channels (CACNA1C and CACNA1G, which were expressed constitutively in the primary hADSCs. In addition, we demonstrated that Kv4.3 and Eag1, potassium channel genes, and NE-Na, a TTX-sensitive sodium channel gene, were highly induced following neural differentiation. Conclusions These combined results indicate that hADSCs have the same self-renewing capacity and multipotency as stem cells, and can be

  19. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  20. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jung, Kwangseon; Cho, Jae Youl; Soh, Young-Jin; Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  1. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  2. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Pilehvar-Soltanahmadi, Younes; Alizadeh, Effat; Ebrahimi-Kalan, Abbas; Mortazavi, Yousef; Zarghami, Nosratollah

    2017-08-10

    Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.

  3. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2016-01-01

    Full Text Available Acute liver failure (ALF is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine.

  4. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model.

    Science.gov (United States)

    Chi, Kang; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Lin, Shinn-Zong; Huang, Pi-Chun; Lin, Po-Cheng; Chang, Fu-Kuei; Liu, Shih-Ping

    2016-01-01

    Stroke is a result of cerebral ischemia that triggers a cascade of both physiological and biochemical events. No effective treatment is available for stroke; however, stem cells have the potential to rescue tissue from the effects of stroke. Adipose-derived stem cells (ADSCs) are an abundant source of adult stem cells; therefore, ADSC therapy can be considered as a future strategy for regenerative medicine. However, more research is required to improve the effectiveness of transplanted ADSCs as a treatment for stroke in the mouse stroke model. Ligustilide, isolated from the herb Angelica sinensis, exhibits a protective effect on neurons and inhibits inflammation. We also demonstrated that ligustilide treatment increases the expression levels of homing factors such as SDF-1 and CXCR4. In the present study, we evaluated the therapeutic effects of ADSC transplantation and ligustilide treatment in a mouse thromboembolic stroke model by behavioral tests, including beam walking, locomotor activity, and rotarod analysis. ADSCs pretreated with ligustilide were transplanted into the brains of stroke mice. The results showed that the therapeutic effect of ADSCs pretreated with ligustilide was better than that of ADSCs without ligustilide pretreatment. There was no difference between the recovery of mice treated by ADSC transplantation combined with subcutaneous ligustilide injection and that of mice treated only with ADSCs. The TUNEL assay showed fewer apoptotic cells in the brains of mice transplanted with ADSCs pretreated with ligustilide as well as in those without pretreatment. In summary, pretreatment of ADSCs with ligustilide improves the therapeutic efficacy of ADSC transplantation. The results of this study will help improve stem cell therapies being developed for future clinical applications.

  5. Chondrogenic potential of adipose-derived stem cells versus bone marrow mesenchymal stem cells%脂肪干细胞与骨髓间充质干细胞成软骨能力的比较**

    Institute of Scientific and Technical Information of China (English)

    安荣泽; 赵俊延; 王兆杰

    2013-01-01

    BACKGROUND:Adipose-derived stem cel s and bone marrow mesenchymal stem cel s are used widely in cartilage tissue engineering, and there are many similarities in biological characteristics between two kinds of cel s. OBJECTIVE:To compare the chondrogenic potential of bone marrow mesenchymal stem cel s and adipose-derived stem cel s in vitro. METHODS:Adipose-derived stem cel s were isolated from the 3-month-old New Zealand white rabbits’ abdomen. Bilateral femurs of rabbits were obtained, and then the bone marrow mesenchymal stem cel s were separated with the adherence screening method. The growth curve of the passage 3 adipose-derived stem cel s and bone marrow mesenchymal stem cel s were drawn, and the doubling time of two kinds of cel s was compared. Then the passage 3 adipose-derived stem cel s and bone marrow mesenchymal stem cel s were treated with chondrogenic induction. After induced for 14 days, the adipose-derived stem cel s and bone marrow mesenchymal stem cel s were treated with toluidine blue staining and type Ⅱ immunohistochemistry staining respectively. RESULTS AND CONCLUSION:Primary bone marrow mesenchymal stem cel s showed aggregative growth, while the primary adipose-derived stem cel s were in single and scattered growth. The proliferation speed of adipose-derived stem cel s was faster than that of bone marrow mesenchymal stem cel s, while the doubling time of adipose-derived stem cel s was shorter than that of the bone marrow mesenchymal stem cel s. After chondrogenic induction for 14 days, both adipose-derived stem cel s and bone marrow mesenchymal stem cel s could express glycosaminoglycans and type Ⅱcol agen, and the expression level of type Ⅱ col agen in bone marrow mesenchymal stem cel s after chondrogenic induction was higher than that in the adipose-derived stem cel s. The in vitro proliferation of adipose-derived stem cel s and bone marrow mesenchymal stem cel s was rapid and stable, but the proliferative ability of adipose-derived

  6. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  7. RSPO3-LGR4 Regulates Osteogenic Differentiation Of Human Adipose-Derived Stem Cells Via ERK/FGF Signalling

    Science.gov (United States)

    Zhang, Min; Zhang, Ping; Liu, Yunsong; Lv, Longwei; Zhang, Xiao; Liu, Hao; Zhou, Yongsheng

    2017-01-01

    The four R-spondins (RSPOs) and their three related receptors, LGR4, 5 and 6, have emerged as a major ligand-receptor system with critical roles in development and stem cell survival. However, the exact roles of the RSPO-LGR system in osteogenesis remain largely unknown. In the present study, we showed that RSPO3-shRNA increased the osteogenic potential of human adipose-derived stem cells (hASCs) significantly. Mechanistically, we demonstrated that RSPO3 is a negative regulator of ERK/FGF signalling. We confirmed that inhibition of the ERK1/2 signalling pathway blocked osteogenic differentiation in hASCs, and the increased osteogenic capacity observed after RSPO3 knockdown in hASCs was reversed by inhibition of ERK signalling. Further, silencing of LGR4 inhibited the activity of ERK signalling and osteogenic differentiation of hASCs. Most importantly, we found that loss of LGR4 abrogated RSPO3-regulated osteogenesis and RSPO3-induced ERK1/2 signalling inhibition. Collectively, our data show that ERK signalling works downstream of LGR4 and RSPO3 regulates osteoblastic differentiation of hASCs possibly via the LGR4-ERK signalling. PMID:28220828

  8. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice.

    Science.gov (United States)

    Ma, Tuo; Gong, Kai; Ao, Qiang; Yan, Yufang; Song, Bo; Huang, Hongyun; Zhang, Xiufang; Gong, Yandao

    2013-01-01

    Recent studies suggest that transplantation of mesenchymal stem cells might have therapeutic effects in preventing pathogenesis of several neurodegenerative disorders. Adipose-derived mesenchymal stem cells (ADSCs) are a promising new cell source for regenerative therapy. However, whether transplantation of ADSCs could actually ameliorate the neuropathological deficits in Alzheimer's disease (AD) and the mechanisms involved has not yet been established. Here, we evaluated the therapeutic effects of intracerebral ADSC transplantation on AD pathology and spatial learning/memory of APP/PS1 double transgenic AD model mice. Results showed that ADSC transplantation dramatically reduced β-amyloid (Aβ) peptide deposition and significantly restored the learning/memory function in APP/PS1 transgenic mice. It was observed that in both regions of the hippocampus and the cortex there were more activated microglia, which preferentially surrounded and infiltrated into plaques after ADSC transplantation. The activated microglia exhibited an alternatively activated phenotype, as indicated by their decreased expression levels of proinflammatory factors and elevated expression levels of alternative activation markers, as well as Aβ-degrading enzymes. In conclusion, ADSC transplantation could modulate microglial activation in AD mice, mitigate AD symptoms, and alleviate cognitive decline, all of which suggest ADSC transplantation as a promising choice for AD therapy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.

  9. Therapeutic effects of mouse adipose-derived stem cells and losartan in the skeletal muscle of injured mdx mice.

    Science.gov (United States)

    Lee, Eun-Mi; Kim, Ah-Young; Lee, Eun-Joo; Park, Jin-Kyu; Lee, Myeong-Mi; Hwang, Meeyul; Kim, Choong-Yong; Kim, Shin-Yoon; Jeong, Kyu-Shik

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder caused by mutations in the dystrophin gene. Adipose-derived stem cells (ASCs) are an attractive source of cells for stem cell therapy. Losartan has been reported to improve ASC transplantation in injured mouse muscles. In the present study, we investigated whether the combined treatment of losartan and ASCs in the injured muscles of mdx mice improves regeneration. The combined treatment of ASCs and losartan remarkably improved muscle regeneration and induced muscle hypertrophy. In addition, ASCs and losartan treatment downregulated transforming growth factor-β and inhibited muscle fibrosis. We observed cells coexpressing green fluorescent protein (GFP) and dystrophin in the muscle samples of mice transplanted with GFP-positive ASCs. In the coculture in vitro experiment, we also observed that the GFP ASCs differentiated into dystrophin-expressing myotubes. The present study shows that the combination of transplanted ASCs and treatment with losartan ameliorated muscle fibrosis and improved muscle regeneration in injured mdx mice. Thus, we suggest that combined treatment with losartan and ASCs could help to improve muscle regeneration in the muscles of injured patients, including DMD patients.

  10. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  11. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-09-12

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.

  12. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing.

    Science.gov (United States)

    Koenen, Paola; Spanholtz, Timo A; Maegele, Marc; Stürmer, Ewa; Brockamp, Thomas; Neugebauer, Edmund; Thamm, Oliver C

    2015-02-01

    Wound healing is a complex biological process that requires a well-orchestrated interaction of mediators as well as resident and infiltrating cells. In this context, mesenchymal stem cells play a crucial role as they are attracted to the wound site and influence tissue regeneration by various mechanisms. In chronic wounds, these processes are disturbed. In a comparative approach, adipose-derived stem cells (ASC) were treated with acute and chronic wound fluids (AWF and CWF, respectively). Proliferation and migration were investigated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and transwell migration assay. Gene expression changes were analysed using quantitative real time-polymerase chain reaction. AWF had a significantly stronger chemotactic impact on ASC than CWF (77·5% versus 59·8% migrated cells). While proliferation was stimulated by AWF up to 136·3%, CWF had a negative effect on proliferation over time (80·3%). Expression of b-FGF, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 was strongly induced by CWF compared with a mild induction by AWF. These results give an insight into impaired ASC function in chronic wounds. The detected effect of CWF on proliferation and migration of ASC might be one reason for an insufficient healing process in chronic wounds. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  14. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  15. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  16. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering.

    Science.gov (United States)

    Daei-Farshbaf, Neda; Ardeshirylajimi, Abdolreza; Seyedjafari, Ehsan; Piryaei, Abbas; Fadaei Fathabady, Fatemeh; Hedayati, Mehdi; Salehi, Mohammad; Soleimani, Masoud; Nazarian, Hamid; Moradi, Sadegh-Lotfalah; Norouzian, Mohsen

    2014-02-01

    The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

  17. Transcriptional signature of human adipose tissue-derived stem cells (hASCs) preconditioned for chondrogenesis in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pilgaard, L.; Lund, P.; Duroux, M. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Lockstone, H.; Taylor, J. [Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Emmersen, J.; Fink, T. [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark); Ragoussis, J. [Genomics, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford, OX3 7BN (United Kingdom); Zachar, V., E-mail: vlaz@hst.aau.dk [Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg (Denmark)

    2009-07-01

    Hypoxia is an important factor involved in the control of stem cells. To obtain a better insight into the phenotypical changes brought about by hypoxic preconditioning prior to chondrogenic differentiation; we have investigated growth, colony-forming and chondrogenic capacity, and global transcriptional responses of six adipose tissue-derived stem cell lines expanded at oxygen concentrations ranging from ambient to 1%. The assessment of cell proliferation and colony-forming potential revealed that the hypoxic conditions corresponding to 1% oxygen played a major role. The chondrogenic inducibility, examined by high-density pellet model, however, did not improve on hypoxic preconditioning. While the microarray analysis revealed a distinctive inter-donor variability, the exposure to 1% hypoxia superseded the biological variability and produced a specific expression profile with 2581 significantly regulated genes and substantial functional enrichment in the pathways of cell proliferation and apoptosis. Additionally, exposure to 1% oxygen resulted in upregulation of factors related to angiogenesis and cell growth. In particular, leptin (LEP), the key regulator of body weight and food intake was found to be highly upregulated. In conclusion, the results of this investigation demonstrate the significance of donor demographics and the importance of further studies into the use of regulated oxygen tension as a tool for preparation of ASCs in order to exploit their full potential.

  18. Effect of Low-Level Laser Therapy on Human Adipose-Derived Stem Cells: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Min, Kyung Hee; Byun, Jin Hwan; Heo, Chan Yeong; Kim, Eun Hee; Choi, Hye Yeon; Pak, Chang Sik

    2015-10-01

    Low-level laser therapy (LLLT) continues to receive much attention in many clinical fields. Also, LLLT has been used to enhance the proliferation of various cell lines, including stem cells. This study investigated the effect of LLLT on human adipose-derived stem cells (ADSCs) through in vitro and in vivo studies. Low-level laser irradiation of cultured ADSCs was performed using a 830 nm Ga-Al-As (gallium-aluminum-arsenide) laser. Then, proliferation of ADSCs was quantified by a cell counting kit-8. In the in vivo study, irradiated ADSCs or non-irradiated ADSCs were transplanted, and then, low-level laser irradiation of each rat was performed as per the protocol. Cell viability was quantified by immunofluorescent staining using the human mitochondria antibody. In the in vitro study, the laser-irradiated groups showed an increase in absorbance compared to the control group. Also, in the in vivo study, there was a significant increase in the number of human ADSCs in the laser-irradiated groups compared to the control group (p Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .

  19. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    Directory of Open Access Journals (Sweden)

    Sebastian Gehmert

    2014-01-01

    Full Text Available Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs, these cells (ASCs provide a therapeutic option for Duchenne Muscular Dystrophy (DMD. But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  20. Compatibility of Porous Chitosan Scaffold with the Attachment and Proliferation of human Adipose-Derived Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Gomathysankar S

    2016-11-01

    Full Text Available Adipose-derived stem cells (ASCs have potential applications in the repair and regeneration of various tissues and organs. The use of various scaffold materials as an excellent template for mimicking the extracellular matrix to induce the attachment and proliferation of different cell types has always been of interest in the field of tissue engineering because ideal biomaterials are in great demand. Chitosan, a marine polysaccharide, have wide clinical applications and it acts as a promising scaffold for cell migration and proliferation. ASCs, with their multi-differentiation potential, and chitosan, with its great biocompatibility with ASCs, were investigated in the present study. ASCs were isolated and were characterized by two different methods: immunocytochemistry and flow cytometry, using the mesenchymal stem cell markers CD90, CD105, CD73 and CD29. The ASCs were then induced to differentiate into adipogenic, osteogenic and chondrogenic lineages. These ASCs were incorporated into a porous chitosan scaffold (PCS, and their structural morphology was studied using a scanning electron microscope and hematoxylin and eosin staining. The proliferation rate of the ASCs on the PCS was assessed using a PrestoBlue viability assay. The results indicated that the PCS provides an excellent template for the adhesion and proliferation of ASCs. Thus, this study revealed that PCS is a promising biomaterial for inducing the proliferation of ASCs, which could lead to successful tissue reconstruction in the field of tissue engineering.

  1. Scaffold-free Three-dimensional Graft From Autologous Adipose-derived Stem Cells for Large Bone Defect Reconstruction

    Science.gov (United States)

    Dufrane, Denis; Docquier, Pierre-Louis; Delloye, Christian; Poirel, Hélène A.; André, Wivine; Aouassar, Najima

    2015-01-01

    Abstract Long bone nonunion in the context of congenital pseudarthrosis or carcinologic resection (with intercalary bone allograft implantation) is one of the most challenging pathologies in pediatric orthopedics. Autologous cancellous bone remains the gold standard in this context of long bone nonunion reconstruction, but with several clinical limitations. We then assessed the feasibility and safety of human autologous scaffold-free osteogenic 3-dimensional (3D) graft (derived from autologous adipose-derived stem cells [ASCs]) to cure a bone nonunion in extreme clinical and pathophysiological conditions. Human ASCs (obtained from subcutaneous adipose tissue of 6 patients and expanded up to passage 4) were incubated in osteogenic media and supplemented with demineralized bone matrix to obtain the scaffold-free 3D osteogenic structure as confirmed in vitro by histomorphometry for osteogenesis and mineralization. The 3D “bone-like” structure was finally transplanted for 3 patients with bone tumor and 3 patients with bone pseudarthrosis (2 congenital, 1 acquired) to assess the clinical feasibility, safety, and efficacy. Although minor clones with structural aberrations (aneuploidies, such as tri or tetraploidies or clonal trisomy 7 in 6%–20% of cells) were detected in the undifferentiated ASCs at passage 4, the osteogenic differentiation significantly reduced these clonal anomalies. The final osteogenic product was stable, did not rupture with forceps manipulation, did not induce donor site morbidity, and was easily implanted directly into the bone defect. No acute (development, were associated with the graft up to 4 years after transplantation. We report for the first time that autologous ASC can be fully differentiated into a 3D osteogenic-like implant without any scaffold. We demonstrated that this engineered tissue can safely promote osteogenesis in extreme conditions of bone nonunions with minor donor site morbidity and no oncological side effects. PMID

  2. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Siciliano, Camilla; Chimenti, Isotta; Ibrahim, Mohsen; Napoletano, Chiara; Mangino, Giorgio; Scafetta, Gaia; Zoccai, Giuseppe Biondi; Rendina, Erino Angelo; Calogero, Antonella; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS

  3. Transplantation of adipose-derived stem cells with fibrin glue for treatment of acute myocardial infarction in rat

    Institute of Scientific and Technical Information of China (English)

    张雪莲

    2013-01-01

    Objective To investigate the cell survival of the combination of fibrin glue and adiposederived stem cells(ADSCs) in rats when implanted into ischemic myocardium and the improvement of heart function. Methods The rat ADSCs were isolated from the subcutaneous adipose

  4. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  5. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  6. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein.

    Science.gov (United States)

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-07-19

    Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China); Tang, Zhi-hui, E-mail: tang_zhihui@live.cn [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China)

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  8. Supplementation freeze-thawed media with selenium protect adipose-derived mesenchymal stem cells from freeze-thawed induced injury.

    Science.gov (United States)

    Valadbeygi, Arash; Naji, Tahere; Pirnia, Afshin; Gholami, Mohammadreza

    2016-10-01

    Successful freezed-thaw of adipose-derived mesenchymal stem cells (ADMSCs) could be a major step in regenerative medicine as well as in the cloning of animal breeds. The aim of this study was to evaluate the efficacy of selenium on the optimizing of freezed-thaw media in the ADMSCs. ADMSCs were extracted from NMRI mice and purified with positive selection Monoclonal CD105 Antibody (PE) and negative selection Monoclonal CD31 and CD45 Antibody using MACS method as well as differentiation to adipose and bone tissue. ADMSCs were divided into four groups. ADMSCs were freezed-thaw under standard condition with or without the addition of 5 ng/ml selenium to both the cryopreservation and thawing solutions. Frozen cells were thawed after four months and viability and cytotoxicity of the cells were analyzed by the Trypan blue test and MTT assay respectively. RNA was extracted and cDNA was synthesized and the expression of apoptotic genes (P53, Fas, Bax, Caspase3, and Bcl2) was examined using Real time-PCR Rotor gene 2009. This study compares slow and rapid methods of cryopreservation. After thawing, viability of the cells treated with selenium was higher than the control group in rapid and slow cryopreserved ADMSCs. Also, the percentage of living cells in the slow cooling method was considerably more than with the rapid cooling method. After analysis of the results using Real time-PCR, the Bcl2 gene was shown to be expressed in both the rapid and slow cooling methods. In the rapid cooling group in addition to the BCL-2 gene, p53 was also expressed. It appears that selenium prevented the apoptotic genes from expression due to its anti-apoptotic effects. The slow cooling method is better and more optimized for ADMSCs protecting them from oxidative damage to a greater extent compared to the rapid cooling method. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells.

    Science.gov (United States)

    Bekhite, Mohamed M; Finkensieper, Andreas; Rebhan, Jennifer; Huse, Stephanie; Schultze-Mosgau, Stefan; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2014-02-15

    The plasticity of human adipose tissue-derived stem cells (hASCs) is promising, but differentiation in vitro toward endothelial cells is poorly understood. Flow cytometry demonstrated that hASCs isolated from excised fat tissue were positive for CD29, CD44, CD70, CD90, CD105, and CD166 and negative for the endothelial marker CD31, and the hematopoietic cell markers CD34 and CD133. hASCs differentiated into adipocytes after cultivation in adipogenic medium. Exposure of hASCs for 10 days under hypoxia (3% oxygen) in combination with leptin increased the percentage of CD31(+) endothelial cells as well as CD31, VE-Cadherin, Flk-1, Tie2, von Willebrand factor, and endothelial cell nitric oxide synthase mRNA expression. This was enhanced on co-incubation of vascular endothelial growth factor (VEGF) and leptin, whereas VEGF alone was not sufficient. Moreover, hASCs cultured on a matrigel surface under hypoxia/VEGF/leptin, showed a stable branching network. Hypoxic conditions significantly decreased apoptosis as evaluated by cleaved caspase-3, and increased prolyl hydroxylase domain 3 mRNA expression. Hypoxia increased expression of VEGF as well as leptin transcripts, which were significantly inhibited on co-incubation with either VEGF or leptin or a combination of both. Furthermore, leptin treatment of hypoxic cells increased the expression of the long/signaling form of the leptin receptor (ObRL), which was augmented on co-incubation with VEGF. The observed endothelial differentiation was dependent on the Akt pathway, as co-administration with Akt inhibitor abolished the observed effects. In conclusion, our data demonstrate that hASCs can be efficiently differentiated to endothelial cells by mimicking the hypoxic and pro-angiogenic microenvironment of adipose tissue.

  10. Low Intensity Laser Irradiation and Growth Factors Influence Differentiation of Adipose Derived Stem Cells into Smooth Muscle Cells in a Coculture Environment over a Period of 72 Hours

    Directory of Open Access Journals (Sweden)

    Bernard Mvula

    2014-01-01

    Full Text Available Stem cells have the ability to self-renew and differentiate into several specialised cells. Low intensity laser irradiation (LILI has been shown to have positive effects on cells including adipose derived stem cells (ADSCs. Growth factors such as retinoic acid and transforming growth factor (TGF-β1 play significant roles in the differentiation of cells. This study aimed at investigating the role of LILI and growth factors on differentiation of adipose derived stem cells cocultured with smooth muscle cells (SMCs. The study used isolated human adipose derived stem cells and smooth muscle commercial cells (SKUT-1. The cells were cocultured directly in the ratio 1 : 1 using the established methods with and without growth factors (retinoic acid and TGF-β1 and then exposed to LILI at a wavelength of 636 nm with 5 J/cm2 using a diode laser. The cellular proliferation and expression of the both cell type markers were assessed using optical density and flow cytometry at 24 h and 72 h. The study showed that LILI increased the proliferation of cocultured cells. The expression of the smooth muscle cell markers increased in the coculture groups that were exposed to LILI in the presence of growth factors while those of the ADSCs decreased.

  11. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment

    Science.gov (United States)

    Yang, Mei; Zhang, Ge-Ge; Wang, Teng; Wang, Xi; Tang, Yan-Hong; Huang, He; Barajas-Martinez, Hector; Hu, Dan; Huang, Cong-Xin

    2016-01-01

    T-box 18 (TBX18) plays a crucial role in the formation and development of the head of the sinoatrial node. The objective of this study was to induce adipose-derived stem cells (ADSCs) to produce pacemaker-like cells by transfection with the TBX18 gene. A recombinant adenovirus vector carrying the human TBX18 gene was constructed to transfect ADSCs. The ADSCs transfected with TBX18 were considered the TBX18-ADSCs. The control group was the GFP-ADSCs. The transfected cells were co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs). The results showed that the mRNA expression of TBX18 in TBX18-ADSCs was significantly higher than in the control group after 48 h and 7 days. After 7 days of co-culturing with NRVMs, there was no significant difference in the expression of the myocardial marker cardiac troponin I (cTnI) between the two groups. RT-qPCR and western blot analysis showed that the expression of HCN4 was higher in the TBX18-ADSCs than in the GFP-ADSCs. The If current was detected using the whole cell patch clamp technique and was blocked by the specific blocker CsCl. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) showed approximately twice the current density compared with the ADSCs. Our study indicated that the TBX18 gene induces ADSCs to differentiate into pacemaker-like cells in the cardiac microenvironment. Although further experiments are required in order to assess safety and efficacy prior to implementation in clinical practice, this technique may provide new avenues for the clinical therapy of bradycardia. PMID:27632938

  12. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    Science.gov (United States)

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  13. Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Brian G Rowan

    Full Text Available BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9, IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of

  14. Dedifferentiated adipocyte-derived progeny cells (DFAT cells): Potential stem cells of adipose tissue.

    Science.gov (United States)

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J; Rasmussen, Theodore P; Bergen, Werner G; Dodson, Michael V

    2013-07-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.

  15. Transcriptome and Metabolome Analyses in Exogenous FABP4- and FABP5-Treated Adipose-Derived Stem Cells

    Science.gov (United States)

    Sugaya, Takeshi; Oikawa, Tsuyoshi; Matsumoto, Megumi; Funahashi, Yasuhito; Matsukawa, Yoshihisa; Gotoh, Momokazu; Miura, Tetsuji

    2016-01-01

    Adipose-derived stem cells (ADSC), which exist near adipocytes in adipose tissue, have been used as a potential tool of regenerative medicine. Lipid chaperones, fatty acid-binding protein 4 (FABP4) and 5 (FABP5), are abundantly expressed in adipocytes. FABP4 has recently been shown to be secreted from adipocytes during lipolysis in a non-classical pathway and may act as an adipokine. Here, we investigated the role of exogenous FABP4 and FABP5 in transcriptional and metabolic regulation in ADSC. FABP4 and FABP5 were little expressed in ADSC. However, both FABP4 and FABP5 were significantly induced after adipocyte differentiation of ADSC and were secreted from the differentiated adipocytes. Analysis of microarray data, including gene ontology enrichment analysis and cascade analysis of the protein-protein interaction network using a transcription factor binding site search, demonstrated that treatment of ADSC with FABP4 or FABP5 affected several kinds of genes related to inflammatory and metabolic responses and the process of cell differentiation. Notably, myogenic factors, including myocyte enhancer factors, myogenic differentiation 1 and myogenin, were modulated by treatment of ADSC with FABP4, indicating that exogenous FABP4 treatment is partially associated with myogenesis in ADSC. Metabolome analysis showed that treatment of ADSC with FABP4 and with FABP5 similarly, but differently in extent, promoted hydrolysis and/or uptake of lipids, consequentially together with enhancement of β oxidation, inhibition of downstream of the glycolysis pathway, accumulation of amino acids, reduction of nucleic acid components and increase in the ratio of reduced and oxidized nicotinamide adenine dinucleotide phosphates (NADPH/NADP+), an indicator of reducing power, and the ratio of adenosine triphosphate and adenosine monophosphate (ATP/AMP), an indicator of the energy state, in ADSC. In conclusion, secreted FABP4 and FABP5 from adipocytes as adipokines differentially affect

  16. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection.

    Directory of Open Access Journals (Sweden)

    XiYou Wang

    Full Text Available The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs for diabetes induced erectile dysfunction (DED. AMSCs were pretreated with normoxia (20% O2, N-AMSCs or sub-lethal hypoxia (1% O2, H-AMSCs. The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF and its receptor FIK-1, angiotensin (Ang-1, basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, stromal derived factor-1 (SDF-1 and its CXC chemokine receptor 4 (CXCR4. DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg and were randomly divided into three groups-Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP and intracavernosal pressure (ICP were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05. Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF (p<0.01 and smooth muscle markers (α-SMA (p<0.01. Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

  17. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions.

    Directory of Open Access Journals (Sweden)

    Xinjian Qu

    Full Text Available Induced pluripotent stem cells (iPSCs can be generated from somatic cells by ectopic expression of defined transcription factors (TFs. However, the optimal cell type and the easy reprogramming approaches that minimize genetic aberrations of parent cells must be considered before generating the iPSCs. This paper reports a method to generate iPSCs from adult human adipose-derived stem cells (hADSCs without the use of a feeder layer, by ectopic expression of the defined transcription factors OCT4, SOX2, KLF4 and C-MYC using a polycistronic plasmid. The results, based on the expression of pluripotent marker, demonstrated that the iPSCs have the characteristics similar to those of embryonic stem cells (ESCs. The iPSCs differentiated into three embryonic germ layers both in vitro by embryoid body generation and in vivo by teratoma formation after being injected into immunodeficient mice. More importantly, the plasmid DNA does not integrate into the genome of human iPSCs as revealed by Southern blotting experiments. Karyotypic analysis also demonstrated that the reprogramming of hADSCs by the defined factors did not induce chromosomal abnormalities. Therefore, this technology provides a platform for studying the biology of iPSCs without viral vectors, and can hopefully overcome immune rejection and ethical concerns, which are the two important barriers of ESC applications.

  18. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    Science.gov (United States)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  19. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in

  20. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease.

    NARCIS (Netherlands)

    Verhoekx, J.S.; Mudera, V.; Walbeehm, E.T.; Hovius, S.E.

    2013-01-01

    BACKGROUND: In an attempt to provide minimally invasive treatment for Dupuytren's disease, percutaneous disruption of the affected tissue followed by lipografting is being tested. Contractile myofibroblasts drive this fibroproliferative disorder, whereas stem cells have recently been implicated in p

  1. Proliferation of Keratinocytes Induced by Adipose-Derived Stem Cells on a Chitosan Scaffold and Its Role in Wound Healing, a Review

    Directory of Open Access Journals (Sweden)

    Sankaralakshmi Gomathysankar

    2014-09-01

    Full Text Available In the field of tissue engineering and reconstruction, the development of efficient biomaterial is in high demand to achieve uncomplicated wound healing. Chronic wounds and excessive scarring are the major complications of tissue repair and, as this inadequate healing continues to increase, novel therapies and treatments for dysfunctional skin repair and reconstruction are important. This paper reviews the various aspects of the complications related to wound healing and focuses on chitosan because of its unique function in accelerating wound healing. The proliferation of keratinocytes is essential for wound closure, and adipose-derived stem cells play a significant role in wound healing. Thus, chitosan in combination with keratinocytes and adipose-derived stem cells may act as a vehicle for delivering cells, which would increase the proliferation of keratinocytes and help complete recovery from injuries.

  2. Topically Delivered Adipose Derived Stem Cells Show an Activated-Fibroblast Phenotype and Enhance Granulation Tissue Formation in Skin Wounds

    Science.gov (United States)

    2013-01-31

    Euthasol followed by a bilateral thoracotomy to assure the death of rabbits. Wounds were immersed in 10% zinc - formalin for fixation. Histological and...healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution

  3. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  4. Bioluminescence-mediated longitudinal monitoring of adipose-derived stem cells in a large mammal ex vivo organ culture.

    Science.gov (United States)

    Peeters, Mirte; van Rijn, Sjoerd; Vergroesen, Pieter-Paul A; Paul, Cornelis P L; Noske, David P; Vandertop, W Peter; Wurdinger, Thomas; Helder, Marco N

    2015-09-09

    Recently, ex vivo three-dimensional organ culture systems have emerged to study the physiology and pathophysiology of human organs. These systems also have potential as a translational tool in tissue engineering; however, this potential is limited by our ability to longitudinally monitor the fate and action of cells used in regenerative therapies. Therefore, we investigated luciferase-mediated bioluminescence imaging (BLI) as a non-invasive technique to continuously monitor cellular behavior in ex vivo whole organ culture. Goat adipose-derived stem cells (gADSCs) were transduced with either Firefly luciferase (Fluc) or Gaussia luciferase (Gluc) reporter genes and injected in isolated goat intervertebral discs (IVD). Luciferase activity was monitored by BLI for at least seven days of culture. Additionally, possible confounders specific to avascular organ culture were investigated. Gluc imaging proved to be more suitable compared to Fluc in monitoring gADSCs in goat IVDs. We conclude that BLI is a promising tool to monitor spatial and temporal cellular behavior in ex vivo organ culture. Hence, ex vivo organ culture systems allow pre-screening and pre-validation of novel therapeutic concepts prior to in vivo large animal experimentation. Thereby, organ culture systems can reduce animal use, and improve the speed of innovation by overcoming technological, ethical and financial challenges.

  5. Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer's disease.

    Science.gov (United States)

    Yamazaki, Hiromitsu; Jin, Yu; Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    2015-11-16

    The present study investigated the effect of adipose-derived stem cell-conditioned medium (ASC-CM) on behavioral disorders in 5xFAD transgenic mice, a model of Alzheimer's disease (AD). The immobility time in the tail suspension and forced swim tests for 5xFAD mice was shorter than that for wild-type mice. Intravenous injection with ASC-CM restored the shortened immobility time for 5xFAD mice to the normal levels or to an extent, being still persistent 4 weeks after injection. ASC-CM significantly suppressed phosphorylation of Akt at Ser473 and glycogen synthase kinase 3β (GSK-3β) at Ser9 in the hypothalamus of 5xFAD mice, without affecting Tau phosphorylation, as compared with that for control 5xFAD mice without ASC-CM injection. ASC-CM did not affect cell surface localization of the N-methyl-d-aspartate (NMDA) receptor subunits NR1, -2A, and -2B both in the hippocampus and hypothalamus of 5xFAD mice. The results of the present study show that ASC-CM ameliorates antidepression-related behaviors in 5xFAD mice, perhaps by inhibiting Akt and activating GSK-3β. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress.

    Directory of Open Access Journals (Sweden)

    Sarah Strauß

    Full Text Available The development of large tissue engineered bone remains a challenge in vitro, therefore the use of hybrid-implants might offer a bridge between tissue engineering and dense metal or ceramic implants. Especially the combination of the pseudoelastic implant material Nitinol (NiTi with adipose derived stem cells (ASCs opens new opportunities, as ASCs are able to differentiate osteogenically and therefore enhance osseointegration of implants. Due to limited knowledge about the effects of NiTi-structures manufactured by selective laser melting (SLM on ASCs the study started with an evaluation of cytocompatibility followed by the investigation of the use of SLM-generated 3-dimensional NiTi-structures preseeded with ASCs as osteoimplant model. In this study we could demonstrate for the first time that osteogenic differentiation of ASCs can be induced by implant-mediated mechanical stimulation without support of osteogenic cell culture media. By use of an innovative implant design and synthesis via SLM-technique we achieved high rates of vital cells, proper osteogenic differentiation and mechanically loadable NiTi-scaffolds could be achieved.

  7. Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells.

    Science.gov (United States)

    Wang, Chuan; Xiao, Ran; Cao, Yi-Lin; Yin, Hong-Yu

    2017-09-09

    Cryopreservation provides an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs). Dimethylsulfoxide (DMSO) and fetal bovine serum (FBS) are frequently used as cryoprotectants for this purpose. However, the use of DMSO can result in adverse effects and toxic reactions and FBS can introduce risks of viral, prion, zoonose contaminations and evoke immune responses after injection. It is therefore crucial to reduce DMSO concentrations and use serum-free solution in the cryopreservation process. Human platelet lysate (PL) is a promising candidate for use as an alternative to DMSO and FBS. Therefore, in this study, with an aim to identify a cryoprotective agent for ASC cryopreservation, we determined the viability, proliferation potential, phenotype, and differentiation potential of fresh ASCs and ASCs cryopreserved using different combinations of three cryoprotective agents: fetal bovine serum (FBS), dimethylsulfoxide (DMSO), and human platelet lysate (PL). The viability of the ASCs cryopreserved with 90% FBS and 10% DMSO, 95% FBS and 5% DMSO, and 97% PL and 3% DMSO was >80%, and the proliferation potentials, cell phenotypes, and differentiation potentials of these groups were similar to those of fresh ASCs. Together, our findings suggest that a combination of 97% PL and 3% DMSO is an ideal cryoprotective agent for the efficient cryopreservation of human ASCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications.

  9. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taiwan (China); Lai, Wen-Fu T., E-mail: Laitw@tmu.edu.tw [Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan (China)

    2014-12-01

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering.

  10. Dose-dependent Effect of Boric Acid on Myogenic Differentiation of Human Adipose-derived Stem Cells (hADSCs).

    Science.gov (United States)

    Apdik, Hüseyin; Doğan, Ayşegül; Demirci, Selami; Aydın, Safa; Şahin, Fikrettin

    2015-06-01

    Boron, a vital micronutrient for plant metabolism, is not fully elucidated for embryonic and adult body development, and tissue regeneration. Although optimized amount of boron supplement has been shown to be essential for normal gestational development in zebrafish and frog and beneficial for bone regeneration in higher animals, effects of boron on myogenesis and myo-regeneration remains to be solved. In the current study, we investigated dose-dependent activity of boric acid on myogenic differentiation of human adipose-derived stem cells (hADSCs) using immunocytochemical, gene, and protein expression analysis. The results revealed that while low- (81.9 μM) and high-dose (819.6 μM) boron treatment increased myogenic gene expression levels such as myosin heavy chain (MYH), MyoD, myogenin, and desmin at day 4 of differentiation, high-dose treatment decreased myogenic-related gene and protein levels at day 21 of differentiation, confirmed by immunocytochemical analysis. The findings of the study present not only an understanding of boron's effect on myogenic differentiation but also an opportunity for the development of scaffolds to be used in skeletal tissue engineering and supplements for embryonic muscle growth. However, fine dose tuning and treatment period arranging are highly warranted as boron treatment over required concentrations and time might result in detrimental outcomes to myogenesis and myo-regeneration.

  11. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells.

    Science.gov (United States)

    Moslehi, Akram; Hashemi-Beni, Batool; Moslehi, Azam; Akbari, Maryam Ali; Adib, Minoo

    2016-07-01

    Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p valueG but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs.

  12. Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Peihua Zhang

    2016-01-01

    Full Text Available Tissue inhibitor of metalloproteinases-1 (TIMP-1 is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs. Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2, and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs.

  13. Intravenous Administration of Adipose-Derived Stem Cell Protein Extracts Improves Neurological Deficits in a Rat Model of Stroke

    Science.gov (United States)

    Zhao, Kai; Li, Rui; Gu, Changcong; Liu, Long; Jia, Yulong; Guo, Xize; Zhang, Wanping; Pei, Chunying; Tian, Linlu; Li, Bo; Jia, Jianrong; Cheng, Huakun

    2017-01-01

    Treatment of adipose-derived stem cell (ADSC) substantially improves the neurological deficits during stroke by reducing neuronal injury, limiting proinflammatory immune responses, and promoting neuronal repair, which makes ADSC-based therapy an attractive approach for treating stroke. However, the potential risk of tumorigenicity and low survival rate of the implanted cells limit the clinical use of ADSC. Cell-free extracts from ADSC (ADSC-E) may be a feasible approach that could overcome these limitations. Here, we aim to explore the potential usage of ADSC-E in treating rat transient middle cerebral artery occlusion (tMCAO). We demonstrated that intravenous (IV) injection of ADSC-E remarkably reduces the ischemic lesion and number of apoptotic neurons as compared to other control groups. Although ADSC and ADSC-E treatment results in a similar degree of a long-term clinical beneficial outcome, the dynamics between two ADSC-based therapies are different. While the injection of ADSC leads to a relatively mild but prolonged therapeutic effect, the administration of ADSC-E results in a fast and pronounced clinical improvement which was associated with a unique change in the molecular signature suggesting that potential mechanisms underlying different therapeutic approach may be different. Together these data provide translational evidence for using protein extracts from ADSC for treating stroke.

  14. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Wenyue Li

    Full Text Available Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7 that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1 onto the surface of poly-lactic-co-glycolic acid (PLGA substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs, being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP, osteocalcin (OC, and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  15. The Use of Human Adipose-Derived Stem Cells in the Treatment of Physiological and Pathological Vulvar Dystrophies

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available “Vulvar dystrophy” is characterized by chronic alterations of vulvar trophism, occurring in both physiological (menopause and pathological (lichen sclerosus, vulvar graft-versus-host disease conditions. Associated symptoms are itching, burning, dyspareunia and vaginal dryness. Current treatments often do not imply a complete remission of symptoms. Adipose-Derived Stem Cells (ADSCs injection represents a valid alternative therapy to enhance trophism and tone of dystrophic tissues. We evaluated efficacy of ADSCs-based therapy in the dystrophic areas. From February to April 2013 we enrolled 8 patients with vulvar dystrophy. A biopsy specimen was performed before and after treatment. Digital photographs were taken at baseline and during the follow-up. Pain was detected with Visual Analogue Scale and sexual function was evaluated with Female Sexual Function Index. All patients received 2 treatments in 3 months. Follow-up was at 1 week , 1 and 3 months, and 1 and 2 years. We obtained a significant vulvar trophism enhancement in all patients, who reported pain reduction and sexual function improvement. Objective exam with speculum was easy to perform after treatment. We believe ADSCs-based therapy finds its application in the treatment of vulvar dystrophies, since ADSCs could induce increased vascularization due to their angiogenic properties and tissue trophism improvement thanks to their eutrophic effect.

  16. Adipose tissue-derived stem cells promote the reversion of non-alcoholic fatty liver disease: An in vivo study.

    Science.gov (United States)

    Liao, Naishun; Pan, Fan; Wang, Yingchao; Zheng, Youshi; Xu, Bo; Chen, Wenwei; Gao, Yunzhen; Cai, Zhixiong; Liu, Xiaolong; Liu, Jingfeng

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver injury and seriously affects human health. In the present study, we aimed to investigate whether adipose tissue-derived stem cell (ADSC) transplantation in combination with dietary modification was capable of reversing the progression of NAFLD. After establishing a rat model of NAFLD by feeding them a high-fat diet (HFD), ADSCs were transplanted via the portal vein into rats with HFD-induced NAFLD, and simultaneously fed a modified diet. Thereafter, gross liver morphology, the hepatosomatic (HSI) index and indicators of liver function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were evaluated. Subsequently, the serum levels of total cholesterol (TC), triglycerides (TGs) and fatty acids (FAs) were also assayed. Furthermore, H&E and oil red O staining were used to confirm the pathological effects of NAFLD in the rat livers. Although dietary modification alone caused liver function to recover, ADSC transplantation in combination with dietary modification further decreased the HSI index, the serum levels of ALT, TBIL, TC, TGs, FAs, reduced lipid accumulation to normal levels, and reversed the hepatic pathological changes in the rat livers. Taken together, these findings suggest that ADSC transplantation assists in the reversion of NAFLD by improving liver function and promoting lipid metabolism, thereby exerting hepatoprotective effects. Thus, we suggest that ADSC transplantation is a promising, potential therapeutic strategy for NAFLD treatment.

  17. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.

    Science.gov (United States)

    Lin, Chi-Chang; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Intravenous Administration of Adipose-Derived Stem Cell Protein Extracts Improves Neurological Deficits in a Rat Model of Stroke

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2017-01-01

    Full Text Available Treatment of adipose-derived stem cell (ADSC substantially improves the neurological deficits during stroke by reducing neuronal injury, limiting proinflammatory immune responses, and promoting neuronal repair, which makes ADSC-based therapy an attractive approach for treating stroke. However, the potential risk of tumorigenicity and low survival rate of the implanted cells limit the clinical use of ADSC. Cell-free extracts from ADSC (ADSC-E may be a feasible approach that could overcome these limitations. Here, we aim to explore the potential usage of ADSC-E in treating rat transient middle cerebral artery occlusion (tMCAO. We demonstrated that intravenous (IV injection of ADSC-E remarkably reduces the ischemic lesion and number of apoptotic neurons as compared to other control groups. Although ADSC and ADSC-E treatment results in a similar degree of a long-term clinical beneficial outcome, the dynamics between two ADSC-based therapies are different. While the injection of ADSC leads to a relatively mild but prolonged therapeutic effect, the administration of ADSC-E results in a fast and pronounced clinical improvement which was associated with a unique change in the molecular signature suggesting that potential mechanisms underlying different therapeutic approach may be different. Together these data provide translational evidence for using protein extracts from ADSC for treating stroke.

  19. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Science.gov (United States)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  20. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  1. Adipose-Derived Stem Cells Alleviate Radiation-Induced Muscular Fibrosis by Suppressing the Expression of TGF-β1

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-01-01

    Full Text Available We aim to investigate the effects of adipose-derived stem cells (ASCs transplantation on irradiation-induced skeletal muscle fibrosis. Sixty-four rabbits were randomly divided into ASCs group and PBS group followed by irradiation at unilateral hip with a single dose of 80 Gy. Nonirradiated side with normal skeletal muscle served as normal control. Skeletal muscle tissues were collected from eight rabbits in each group at 1 w, 4 w, 8 w, and 26 w after irradiation. Migration of ASCs was observed in the peripheral tissues along the needle passage in the injured muscle. The proportion of the area of collagen fibers to the total area in sections of ASCs group was lower than those of PBS groups at 4 w, 8 w, and 26 w after irradiation. Significant decrease was noted in the integrated optimal density of the transforming growth factor β1 (TGF-β1 in the ASCs group compared with those of PBS group at 4 w, 8 w, and 26 w after irradiation. Moreover, the expression of TGF-β1 was lower in the ASCs group compared to those of the PBS group at each time point determined by Western blot analysis. ASCs transplantation could alleviate irradiation fibrosis by suppressing the level of TGF-β1 in the irradiated skeletal muscle.

  2. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells

    OpenAIRE

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho; Han, Jin

    2013-01-01

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contra...

  3. Human Adipose-derived Mesenchymal Stem Cells Attenuate Early Stage of Bleomycin Induced Pulmonary Fibrosis: Comparison with Pirfenidone

    Science.gov (United States)

    Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish

    2016-01-01

    Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152

  4. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2016-01-01

    Full Text Available Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks′ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs.

  5. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Directory of Open Access Journals (Sweden)

    Xueying Yan

    Full Text Available The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a as compared to Ad-MSCs isolated from younger donors (<45 a. 5-hydroxymethylcytosine (5 hmC and 5-methylcytonsine (5 mC distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors.

  6. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  7. Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro.

    Directory of Open Access Journals (Sweden)

    Qin Yang

    Full Text Available Calcitonin gene-related peptide (CGRP promotes neuron recruitment and neurogenic activity. However, no evidence suggests that CGRP affects the ability of stem cells to differentiate toward neurogenesis. In this study, we genetically modified rat adipose-derived stem cells (ADSCs with the CGRP gene (CGRP-ADSCs and subsequently cultured in complete neural-induced medium. The formation of neurospheres, cellular morphology, and proliferative capacity of ADSCs were observed. In addition, the expression of the anti-apoptotic protein Bcl-2 and special markers of neural cells, such as Nestin, MAP2, RIP and GFAP, were evaluated using Western blot and immunocytochemistry analysis. The CGRP-ADSCs displayed a greater proliferation than un-transduced (ADSCs and Vector-transduced (Vector-ADSCs ADSCs (p<0.05, and lower rates of apoptosis, associated with the incremental expression of Bcl-2, were also observed for CGRP-ADSCs. Moreover, upon neural induction, CGRP-ADSCs formed markedly more and larger neurospheres and showed round cell bodies with more branching extensions contacted with neighboring cells widely. Furthermore, the expression levels of Nestin, MAP2, and RIP in CGRP-ADSCs were markedly increased, resulting in higher levels than the other groups (p<0.05; however, GFAP was distinctly undetectable until day 7, when slight GFAP expression was detected among all groups. Wnt signals, primarily Wnt 3a, Wnt 5a and β-catenin, regulate the neural differentiation of ADSCs, and CGRP gene expression apparently depends on canonical Wnt signals to promote the neurogenesis of ADSCs. Consequently, ADSCs genetically modified with CGRP exhibit stronger potential for differentiation and neurogenesis in vitro, potentially reflecting the usefulness of ADSCs as seed cells in therapeutic strategies for spinal cord injury.

  8. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration

    Science.gov (United States)

    Xie, Qing; Wei, Wei; Ruan, Jing; Ding, Yi; Zhuang, Ai; Bi, Xiaoping; Sun, Hao; Gu, Ping; Wang, Zi; Fan, Xianqun

    2017-01-01

    Increasing evidence has indicated that bone morphogenetic protein 2 (BMP2) coordinates with microRNAs (miRNAs) to form intracellular networks regulating mesenchymal stem cells (MSCs) osteogenesis. This study aimed to identify specific miRNAs in rat adipose-derived mesenchymal stem cells (ADSCs) during BMP2-induced osteogenesis, we selected the most significantly down-regulated miRNA, miR-146a, to systematically investigate its role in regulating osteogenesis and bone regeneration. Overexpressing miR-146a notably repressed ADSC osteogenesis, whereas knocking down miR-146a greatly promoted this process. Drosophila mothers against decapentaplegic protein 4 (SMAD4), an important co-activator in the BMP signaling pathway, was miR-146a’s direct target and miR-146a exerted its repressive effect on SMAD4 through interacting with 3′-untranslated region (3′-UTR) of SMAD4 mRNA. Furthermore, knocking down SMAD4 attenuated the ability of miR-146a inhibitor to promote ADSC osteogenesis. Next, transduced ADSCs were incorporated with poly(sebacoyl diglyceride) (PSeD) porous scaffolds for repairing critical-sized cranial defect, the treatment of miR-146a inhibitor greatly enhanced ADSC-mediated bone regeneration with higher expression levels of SMAD4, Runt-related transcription factor 2 (Runx2) and Osterix in newly formed bone. In summary, our study showed that miR-146a negatively regulates the osteogenesis and bone regeneration from ADSCs both in vitro and in vivo. PMID:28205638

  9. Adipose-derived stem cells and keratinocytes in a chronic wound cell culture model: the role of hydroxyectoine.

    Science.gov (United States)

    Thamm, Oliver C; Theodorou, Panagiotis; Stuermer, Ewa; Zinser, Max J; Neugebauer, Edmund A; Fuchs, Paul C; Koenen, Paola

    2015-08-01

    Chronic wounds represent a major socio-economic problem in developed countries today. Wound healing is a complex biological process. It requires a well-orchestrated interaction of mediators, resident cells and infiltrating cells. In this context, mesenchymal stem cells and keratinocytes play a crucial role in tissue regeneration. In chronic wounds these processes are disturbed and cell viability is reduced. Hydroxyectoine (HyEc) is a membrane protecting osmolyte with protein and macromolecule stabilising properties. Adipose-derived stem cells (ASC) and keratinocytes were cultured with chronic wound fluid (CWF) and treated with HyEc. Proliferation was investigated using MTT test and migration was examined with transwell-migration assay and scratch assay. Gene expression changes of basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), matrix metalloproteinases-2 (MMP-2) and MMP-9 were analysed by quantitative real-time polymerase chain reaction (qRT-PCR). CWF significantly inhibited proliferation and migration of keratinocytes. Addition of HyEc did not affect these results. Proliferation capacity of ASC was not influenced by CWF whereas migration was significantly enhanced. HyEc significantly reduced ASC migration. Expression of b-FGF, VEGF, MMP-2 and MMP-9 in ASC, and b-FGF, VEGF and MMP-9 in keratinocytes was strongly induced by chronic wound fluid. HyEc enhanced CWF induced gene expression of VEGF in ASC and MMP-9 in keratinocytes. CWF negatively impaired keratinocyte function, which was not influenced by HyEc. ASC migration was stimulated by CWF, whereas HyEc significantly inhibited migration of ASC. CWF induced gene expression of VEGF in ASC and MMP-9 in keratinocytes was enhanced by HyEc, which might partly be explained by an RNA stabilising effect of HyEc. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction.

    Science.gov (United States)

    Hung, Man-Jung; Wen, Mei-Chin; Huang, Ying-Ting; Chen, Gin-Den; Chou, Min-Min; Yang, Vivian Cheng

    2014-10-01

    Mesh-augmented vaginal surgery for treatment of pelvic organ prolapse (POP) does not meet patients' needs. This study aims to test the hypothesis that fascia tissue engineering using adipose-derived stem cells (ADSCs) might be a potential therapeutic strategy for reconstructing the pelvic floor. Human ADSCs were isolated, differentiated, and characterized in vitro. Both ADSCs and fibroblastic-differentiated ADSCs were used to fabricate tissue-engineered fascia equivalents, which were then transplanted under the back skin of experimental nude mice. ADSCs prepared in our laboratory were characterized as a group of mesenchymal stem cells. In vitro fibroblastic differentiation of ADSCs showed significantly increased gene expression of cellular collagen type I and elastin (p fascia equivalents could be traced up to 12 weeks after transplantation in the subsequent animal study. Furthermore, the histological outcomes differed with a thin (111.0 ± 19.8 μm) lamellar connective tissue or a thick (414.3 ± 114.9 μm) adhesive fibrous tissue formation between the transplantation of ADSCs and fibroblastic-differentiated ADSCs, respectively. Nonetheless, the implantation of a scaffold without cell seeding (the control group) resulted in a thin (102.0 ± 17.1 μm) fibrotic band and tissue contracture. Our results suggest the ADSC-seeded implant is better than the implant alone in enhancing tissue regeneration after transplantation. ADSCs with or without fibroblastic differentiation might have a potential but different role in fascia tissue engineering to repair POP in the future. Copyright © 2013. Published by Elsevier B.V.

  11. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair.

    Directory of Open Access Journals (Sweden)

    Dezhong Yang

    Full Text Available BACKGROUND: Recent studies have demonstrated that transplantation of adipose-derived stem cell (ADSC can improve cardiac function in animal models of myocardial infarction (MI. However, the mechanisms underlying the beneficial effect are not fully understood. In this study, we characterized the paracrine effect of transplanted ADSC and investigated its relative importance versus direct differentiation in ADSC transplantation mediated cardiac repair. METHODOLOGY/PRINCIPAL FINDINGS: MI was experimentally induced in mice by ligation of the left anterior descending coronary artery. Either human ADSC, conditioned medium (CM collected from the same amount of ADSC or control medium was injected into the peri-infarct region immediately after MI. Compared with the control group, both ADSC and ADSC-CM significantly reduced myocardial infarct size and improved cardiac function. The therapeutic efficacy of ADSC was moderately superior to ADSC-CM. ADSC-CM significantly reduced cardiomyocyte apoptosis in the infarct border zone, to a similar degree with ADSC treatment. ADSC enhanced angiogenesis in the infarct border zone, but to a stronger degree than that seen in the ADSC-CM treatment. ADSC was able to differentiate to endothelial cell and smooth muscle cell in post-MI heart; these ADSC-derived vascular cells amount to about 9% of the enhanced angiogenesis. No cardiomyocyte differentiated from ADSC was found. CONCLUSIONS: ADSC-CM is sufficient to improve cardiac function of infarcted hearts. The therapeutic function of ADSC transplantation is mainly induced by paracrine-mediated cardioprotection and angiogenesis, while ADSC differentiation contributes a minor benefit by being involved in angiogenesis. Highlights 1 ADSC-CM is sufficient to exert a therapeutic potential. 2. ADSC was able to differentiate to vascular cells but not cardiomyocyte. 3. ADSC derived vascular cells amount to about 9% of the enhanced angiogenesis. 4. Paracrine effect is the major

  12. Adipose-derived stem cells differentiate into vascular endothelial cells%脂肪源干细胞向血管内皮细胞的分化**

    Institute of Scientific and Technical Information of China (English)

    刘琳; 张亚; 周云; 翟景梅; 曹戌

    2013-01-01

      BACKGROUND: Adipose-derived stem cel s are regarded as the potential seed cel s for tissue engineering due to abundance in vivo, rapid proliferation in vitro, and capacity of multi-directional differentiation. Accumulated evidence supports that adipose-derived stem cel s can be induced to differentiate into endothelial cel s and to promote angiogenesis. OBJECTIVE: To study the biological characteristics of vascular endothelial cel s differentiated from rabbit adipose-derived stem cel s cultured in vitro. METHODS: Adipose tissues were obtained from the epididymal fat pads of the rabbits. And adipose-derived stem cel s were isolated from adipose tissues by col agenase digestion and cultured in vitro to passage 3. Vascular endothelial growth factor and basic fibroblast growth factor within endothelial cel growth medium were used to induce adipose-derived stem cel s differentiation into endothelial-like cel s. Cel morphology was observed and growth curves were drawn before and after induction. Flow cytometry and immunohistochemistry were used to analyze the morphology and type of adipose-derived stem cel s and the differentiated cel s. RESULTS AND CONCLUSION: Rabbit adipose-derived stem cel s grew wel , and passage 3 adipose-derived stem cel s presented fibroblast-like growth. The growth curve was like “S” shape. No significant change in cel morphology was detected within passage 15. Vimentin was positive on passage 3 adipose-derived stem cel s by indirect immunofluorescence methods. The positive CD44 expression and negative CD32 expression were detected in passage 3 adipose-derived stem cel s by flow cytometric analysis. After induction, CD31 became positive while CD44 was negative. Paving stone-like cel appearance was seen under inverted microscope 21 days after induction. The differentiated cel s were Factor VIII-related antigen positively stained with immunohistological method, and Weibel-Palade body was observed under a transmission electron microscope

  13. Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin

    Science.gov (United States)

    2012-01-01

    Prescribed by ANSI Std Z39-18 2 Stem Cells International morbidity, loss of dermal thickness, excessive scarring, and increased pain . When the extent of a...Warren, “Autol- ogous fat grafting and facial reconstruction,” The Journal of Craniofacial Surgery, vol. 23, no. 1, pp. 315–318, 2012. [49] C. Hrabchak

  14. Cardiovascular tissue engineering and regeneration based on adipose tissue-derived stem/stromal cells

    NARCIS (Netherlands)

    Parvizi, Mojtaba

    2016-01-01

    Currently, the pre-clinical field is rapidly progressing in search of new therapeutic modalities that replace or complement current medication to treat cardiovascular disease. Among these are the single or combined use of stem cells, biomaterials and instructive factors, which together form the tria

  15. Adipose tissue-derived stem cells in oral mucosa tissue engineering ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... stem cells (ADSCs) may play an important role in this field. In this research ... secrete growth factors such as basic fibroblast growth factor (b-FGF) ..... resulting in accelerated wound-healing in animal models. Also, ADSCs can ...

  16. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration.

    Science.gov (United States)

    Xu, Fang-Tian; Liang, Zhi-Jie; Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-06-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.

  17. Amplification of rabbit adipose-derived stem cells using explants culture method%组织块贴壁法扩增兔脂肪干细胞

    Institute of Scientific and Technical Information of China (English)

    刘琴; 王丽平; 喻晶; 陈芳; 刁波; 张宜

    2014-01-01

    BACKGROUND:The rabbit adipose-derived stem cells are mostly isolated by type I col agenase digestion, but rarely by explants culture method. OBJECTIVE:To isolate rabbit adipose-derived stem cells for adipogenic and osteogenic differentiation. METHODS:The rabbit adipose-derived stem cells were isolated from rabbit adipose by explants culture method, and cultured in vitro fol owed by morphological observation. The grow curve and cellsurface markers CD29, CD44, CD45 of passage 3 cells were analyzed respectively by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry;cells from the third passages were induced for adipogenic and osteogenic differentiation by different revulsants, and cells were examined by oil red O staining and alizarin red staining . RESULTS AND CONCLUSION:The rabbit adipose-derived stem cells cultured in vitro exhibited a spindle-shaped appearance and could rapidly expand. Flow cytometry analysis revealed that the third passage of rabbit adipose-derived stem cells was positive for CD29, CD44, but negative for CD45. Rabbit adipose-derived stem cells were positive for oil red O staining at 14 days of adipogenic induction, and positive for alizarin red staining at 14 days of osteogenic induction. In conclusion, we could successful y isolate rabbit adipose-derived stem cells using explants culture method.%背景:研究显示兔脂肪干细胞的体外分离方法大多数为Ⅰ型胶原酶消化法,采用组织块贴壁法扩增兔脂肪干细胞尚不多见。  目的:采用组织块贴壁法从兔脂肪组织中分离培养兔脂肪干细胞,并进行成脂、成骨的诱导分化。  方法:采用组织块贴壁法分离出兔脂肪干细胞,进行体外培养,观察其形态特征。取对数生长期的第3代细胞,用MTT法绘制其生长曲线;流式细胞仪检测其表面抗原CD29、CD44、CD45的表达情况;分别用成脂和成骨诱导培养液诱导其向脂肪细胞和成骨细胞

  18. Adipose-Derived Stem Cells Enhance Cancer Stem Cell Property and Tumor Formation Capacity in Lewis Lung Carcinoma Cells Through an Interleukin-6 Paracrine Circuit.

    Science.gov (United States)

    Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping

    2016-12-01

    Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.

  19. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2016-01-01

    Full Text Available The paracrine effect is the major mechanism of stem cell therapy. However, the details of the effect’s mechanism remain unknown. The aim of this study is to investigate whether adipose tissue-derived stem cells (ADSCs can ameliorate cavernous nerve injury-induced erectile dysfunction (CNIED rats and to determine its mechanism. Twenty-eight days after intracavernous injection of 5-ethynyl-2-deoxyuridine- (EdU- labeled ADSCs, the erectile function of all the rats was evaluated by intracavernosal pressure (ICP. The ADSCs steadily secreted detectable pigment epithelium-derived factor (PEDF in vitro. The expression of PEDF increased in the penis of the bilateral cavernous nerve injury (BCNI group for 14 days and then gradually decreased. On day 28 after the intracavernous injection, the ADSCs group exhibited a significantly increased ICP compared with the phosphate buffered saline- (PBS- treated group. Moreover, the neuronal nitric oxide synthase (nNOS and S100 expression in penile dorsal nerves and the smooth muscle content to collagen ratio in penile tissues significantly increased. Furthermore, elevated PEDF, p-Akt, and p-eNOS were identified in the ADSCs group. This study demonstrated that intracavernous injection of ADSCs improved erectile function, repaired the nerve, and corrected penile fibrosis. One potential mechanism is the PEDF secretion of ADSCs and subsequent PI3K/Akt pathway activation.

  20. Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse.

    Science.gov (United States)

    Ko, Myung-Soon; Jung, Ji-Youl; Shin, Il-Seob; Choi, Eun-Wha; Kim, Jae-Hoon; Kang, Sung Keun; Ra, Jeong Chan

    2011-03-14

    Adipose-derived mesenchymal stem cells (AdMSCs) augment the ability to contribute to microvascular remodeling in vivo and to modulate vascular stability in fresh fat grafts. Although cryopreserved adipose tissue is frequently used for soft tissue augmentation, the viability of the fat graft is poor. The effects of culture-expanded human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on the survival and quality of the cryopreserved fat graft were determined. hAdMSCs from the same donor were mixed with fat tissues cryopreserved at -70 °C for 8 weeks and injected subcutaneously into 6-week-old BALB/c-nu nude mice. Graft volume and weight were measured, and histology was evaluated 4 and 15 weeks post-transplantation. The hAdMSC-treated group showed significantly enhanced graft volume and weight. The histological evaluation demonstrated significantly better fat cell integrity compared with the vehicle-treated control 4 weeks post-transplantation. No significant difference in graft weight, volume, or histological parameters was found among the groups 15 weeks post-transplantation. The hAdMSCs enhanced the survival and quality of transplanted cryopreserved fat tissues. Cultured and expanded hAdMSCs have reconstructive capacity in cryopreserved fat grafting by increasing the number of stem cells.

  1. 脂肪干细胞诱导分化的现状及前景%Induced differentiation of adipose-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    赵娜

    2015-01-01

    背景:脂肪干细胞是由中胚层发育而来的多能干细胞,在特殊的生长因子和环境等诱导培养条件下,可以向不同的谱系分化。目的:详细阐述脂肪干细胞诱导分化的条件及鉴定方法。方法:应用计算机检索万方数据库及PubMed数据库2005至2014年10年间的文献,中文检索词为“脂肪干细胞,诱导,分化”;英文检索词为“adipose derived stem cels,differentiation”。依据纳入排除标准选择37篇文献进行归纳总结。结果与结论:脂肪干细胞在抗坏血酸、胰岛素、地塞米松、转化生长因子β作用下可向软骨细胞分化;成脂诱导液的配方包括3-异丁基-1-甲基黄嘌呤(IBMX)、胰岛素、地塞米松、吲哚美辛;成骨分化常用的诱导剂包含地塞米松或维生素 D3、抗坏血酸,β-甘油磷酸钠;碱性成纤维细胞生长因子、表皮生长因子及维生素B27可联合应用诱导脂肪干细胞成神经分化;向心肌细胞分化普遍应用的诱导因子是5-氮杂胞苷;血管内皮生长因子和碱性成纤维细胞生长因子共同作用可以诱导脂肪干细胞向血管内皮细胞分化。随着分子生物学和细胞生物学的迅速发展,脂肪干细胞的分化研究也会更加深入,在目前对脂肪干细胞诱导分化现象观察的基础上,应加强对其内在的分子机制及调控脂肪干细胞可塑性的基因和蛋白的研究。%BACKGROUND:Adipose-derived stem cels are pluripotent stem cels developed from the mesoderm, which can differentiate into different lineages induced by specific growth factors and under certain environmental conditions. OBJECTIVE: To describe the induced differentiation and identification of adipose-derived stem cels in detail. METHODS:A computer-based search of Wanfang and PubMed databases was performed for relevant articles published from 2005 to 2014 using the keywords of “adipose derived stem cels, induced

  2. Clinical studies on the ex-vivo expansion of autologous adipose derived stem cells for the functional reconstruction of mucous membrane in empty nose syndrome

    Directory of Open Access Journals (Sweden)

    Liang LI

    2014-10-01

    Full Text Available Objective To analyze and evaluate the feasibility and effectiveness of using autologous adipose derived stem cells (ASCs for rebuilding the function of nasal mucosa in patients with empty nose syndrome (ENS. Methods Autologous adipose tissue 15-20ml were obtained from each of 5 ENS patients admitted from Aug. 2013 to Feb. 2014, and from which stem cells were isolated, cultured and expanded in vitro. The phenotype, differentiation, and genetic stability of the third generation of amplified stem cells were identified. For the patients with rudimental turbinate (n=3, ASCs were injected into the damaged nasal mucosa for 4 times (once every 10 days. For the patients with no rudimental turbinate (n=2, autologous pure fat granules 1-5ml were extracted after 3 times of ASCs injection into the damaged nasal mucosa, and mixed with the 3rd-6th generation of ASCs for inferior or middle nasal turbinate angioplasty. Nasal endoscopic examination was performed before treatment and 3, 6 and 9 months after treatment for comparison, and the data of SNOT-20 questionnaire, nasality resistance and nasal mucociliary clearance action were statistically analyzed. Results With injection transplantation of the 3rd-6th generation of ASCs in 2 patients with no rudimental turbinate, and 3, 6 and 9 months after the combined ASCs and fat granules transplantation in 3 patients with rudimental turbinate, nasal endoscopy showed that no obvious absorption in conchoplasty, nasal mucosa was improved significantly, and same as SNOT-20 scores, with statistically significant difference (P0.05. Conclusions The reconstruction of mucosa function by nasal turbinate angioplasty combined with adipose derived stem cells and autologous adipose transplantation may significantly improve the symptoms in patients with ENS with lasting effects. It is a new procedure which is helpful for the mucosal repair in patients with ENS. DOI: 10.11855/j.issn.0577-7402.2014.10.11

  3. Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro.

    Science.gov (United States)

    Iser, Isabele C; Ceschini, Stefanie M; Onzi, Giovana R; Bertoni, Ana Paula S; Lenz, Guido; Wink, Márcia R

    2016-12-01

    Mesenchymal stem cells (MSCs) have recently been described to home to brain tumors and to integrate into the tumor-associated stroma. Understanding the communication between cancer cells and MSCs has become fundamental to determine whether MSC-tumor interactions should be exploited as a vehicle for therapeutic agents or considered a target for intervention. Therefore, we investigated whether conditioned medium from adipose-derived stem cells (ADSCs-CM) modulate glioma tumor cells by analyzing several cell biology processes in vitro. C6 rat glioma cells were treated with ADSCs-CM, and cell proliferation, cell cycle, cell viability, cell morphology, adhesion, migration, and expression of epithelial-mesenchymal transition (EMT)-related surface markers were analyzed. ADSCs-CM did not alter cell viability, cell cycle, and growth rate of C6 glioma cells but increased their migratory capacity. Moreover, C6 cells treated with ADSC-CM showed reduced adhesion and underwent changes in cell morphology. Up-regulation of EMT-associated markers (vimentin, MMP2, and NRAS) was also observed following treatment with ADSC-CM. Our findings demonstrate that the paracrine factors released by ADSCs are able to modulate glioma cell biology. Therefore, ADSC-tumor cell interactions in a tumor microenvironment must be considered in the design of clinical application of stem cell therapy. Graphical Abstract Factors released by adipose-derived stem cells (ADSCs) may modulate the biology of C6 glioma cells. When C6 cells are exposed to a conditioned medium from adipose-derived stem cells (ADSCs-CM), some of these cells can undergo an EMT-like process and trans-differentiate into cells with a more mesenchymal phenotype, characterized by enhanced expression of EMT-related surface markers, reduced cell adhesion capacity, increased migratory capacity, as well as changes in cell and nuclei morphology.

  4. Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro

    Science.gov (United States)

    Calabrese, Giovanna; Forte, Stefano; Gulino, Rosario; Cefalì, Francesco; Figallo, Elisa; Salvatorelli, Lucia; Maniscalchi, Eugenia T.; Angelico, Giuseppe; Parenti, Rosalba; Gulisano, Massimo; Memeo, Lorenzo; Giuffrida, Raffaella

    2017-01-01

    Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could

  5. Wrapped omentum with periosteum concurrent with adipose derived adult stem cells for bone tissue engineering in dog model.

    Science.gov (United States)

    Sadegh, Amin Bigham; Basiri, Ehsan; Oryan, Ahmad; Mirshokraei, Pezhman

    2014-03-01

    Adipose derived adult stem cells (ASCs) are multipotent cells that are able to differentiate into osteoblasts in presence of certain factors. The histological characteristics of periosteum makes it a specific tissue with a unique capacity to be engineered. Higher flexibility of the greater omentum is useful for reconstructive surgery. These criteria make it suitable for tissue engineering. The present study was designed to evaluate bone tissue engineering with periosteal free graft concurrent with ASCs and pedicle omentum in dog model. Twelve young female indigenous dogs were used in this experiment. In omental group (n = 4), end of omentum was wrapped by periosteum of the radial bone in abdomen of each dog. In omental-autogenously ASCs group (n = 4), 1 ml of ASCs was injected into the wrapped omentum with periosteum while in omental-allogenously ASCs group (n = 4), 1 ml of allogenous ASCs was injected. Lateral view radiographs were taken from the abdominal cavity postoperatively at the 2nd, 4th, 6th and 8th weeks post-surgery. Eight weeks after operation the dogs were re-anesthetized and the wrapped omenum by periosteum in all groups was found and removed for histopathological evaluation. Our results showed that omentum-periosteum, omental-periosteum-autogenous ASCs and omental-periosteum-allogenous ASCs groups demonstrated bone tissue formation in the abdominal cavity in dog model. The radiological, macroscopical and histological findings of the present study by the end of 8 weeks post-surgery indicate bone tissue engineering in all three groups in an equal level. The present study has shown that the wrapped omentum with periosteum concurrent with ASCs (autogenous or allogenous ASCs) lead to a favorable bone tissue formation. We suggested that it may be useful when pedicle graft omentum used concurrent with periosteum in the bone defect reconstruction, and this phenomenon should be studied in future.

  6. Study of Carbon Nano-Tubes Effects on the Chondrogenesis of Human Adipose Derived Stem Cells in Alginate Scaffold

    Directory of Open Access Journals (Sweden)

    Ali Valiani

    2014-01-01

    Full Text Available Background: Osteoarthritis is one of the most common diseases in middle-aged populations in the World and could become the fourth principal cause of disability by the year 2020. One of the critical properties for cartilage tissue engineering (TE is the ability of scaffolds to closely mimic the extracellular matrix and bond to the host tissue. Therefore, TE has been presented as a technique to introduce the best combination of cells and biomaterial scaffold and to stimulate growth factors to produce a cartilage tissue resembling natural articular cartilage. The aim of study is to improve differentiation of adipose derived stem cells (ADSCs into chondrocytes in order to provide a safe and modern treatment for patients suffering from cartilage damages. Methods: After functionalization, dispersions and sterilizing carbon nano-tubes (CNTs, a new type of nanocomposite gel was prepared from water-soluble CNTs and alginate. ADSCs seeded in 1.5% alginate scaffold and cultured in chondrogenic media with and without transforming growth factor-β1 (TGF-β1 for 7 and 14 days. The genes expression of sex determining region Y-box 9 (SOX9, types II and X collagens was assessed by real-time polymerase chain reaction and the amount of aggrecan (AGC and type I collagen was measured by ELISA. Results: Our findings showed that the expression of essential cartilage markers, SOX9, type II collagen and AGC, in differentiated ADSCs at the concentration of 1 μg/ml CNTs in the presence of TGF-β1 were significantly increased in comparison with the control group (P < 0.001. Meanwhile, type X collagen expression and also type I collagen production were significantly decreased (P < 0.001. Conclusions: The results showed that utilized three-dimensional scaffold had a brilliant effect in promoting gene expression of chondrogenesis.

  7. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  8. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Science.gov (United States)

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  9. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering.

    Science.gov (United States)

    Zanetti, A S; McCandless, G T; Chan, J Y; Gimble, J M; Hayes, D J

    2015-04-01

    In this study, three different akermanite:poly-ϵ-caprolactone (PCL) composite scaffolds (wt%: 75:25, 50:50, 25:75) were characterized in terms of structure, compression strength, degradation rate and in vitro biocompatibility to human adipose-derived stem cells (hASC). Pure ceramic scaffolds [CellCeram™, custom-made, 40:60 wt%; β-tricalcium phosphate (β-TCP):hydroxyapatite (HA); and akermanite] and PCL scaffolds served as experimental controls. Compared to ceramic scaffolds, the authors hypothesized that optimal akermanite:PCL composites would have improved compression strength and comparable biocompatibility to hASC. Electron microscopy analysis revealed that PCL-containing scaffolds had the highest porosity but CellCeram™ had the greatest pore size. In general, compression strength in PCL-containing scaffolds was greater than in ceramic scaffolds. PCL-containing scaffolds were also more stable in culture than ceramic scaffolds. Nonetheless, mass losses after 21 days were observed in all scaffold types. Reduced hASC metabolic activity and increased cell detachment were observed after acute exposure to akermanite:PCL extracts (wt%: 75:25, 50:50). Among the PCL-containing scaffolds, hASC cultured for 21 days on akermanite:PCL (wt%: 75:25) discs displayed the highest viability, increased expression of osteogenic markers (alkaline phosphatase and osteocalcin) and lowest IL-6 expression. Together, the results indicate that akermanite:PCL composites may have appropriate mechanical and biocompatibility properties for use as bone tissue scaffolds.

  10. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Directory of Open Access Journals (Sweden)

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  11. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice.

    Science.gov (United States)

    Wu, Qingkai; Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2016-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs-scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 10(6) cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP. © 2016 by the Society for Experimental Biology and Medicine.

  12. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of preparing electrospun poly(lactic acid) nanofibers coated with polydopamine • Enhanced adhesion and proliferation of hADSCs on a PDA/PLA mat • Increased focal adhesion kinase (FAK), collagen I levels, cell attachment and cell cycle progression with a high PDA content • Up-regulation of the Ang-1 and vWF proteins associated with angiogenesis differentiation of hADSCs is observed. • A promising method for bio-inspired surface modification on organic fiber substrates using PDA.

  13. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    James, R [Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 (United States); Kumbar, S G; Laurencin, C T [Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030 (United States); Balian, G; Chhabra, A B, E-mail: ac2h@hscmail.mcc.virginia.edu [Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908 (United States)

    2011-04-15

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL{sup -1} GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  14. Thermally labile components of aqueous humor potently induce osteogenic potential in adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Morgan, Joshua T; Kwon, Heung Sun; Wood, Joshua A; Borjesson, Dori L; Tomarev, Stanislav I; Murphy, Christopher J; Russell, Paul

    2015-06-01

    Adipose-derived mesenchymal stem cells (ASCs) hold promise for use in cell-based therapies. Their intrinsic anti-inflammatory properties are potentially useful for treatments of inflammatory conditions such as uveitis, while their ability to differentiate along multiple cell lineages suggests use in regenerating damaged or degenerated tissue. However, how ASCs will respond to the intraocular environment is poorly studied. We have recently reported that aqueous humor (AH), the fluid that nourishes the anterior segment of the eye, potently increases alkaline phosphatase (ALP) activity of ASCs, indicating osteogenic differentiation. Here, we expand on our previous findings to better define the nature of this response. To this end, we cultured ASCs in the presence of 0, 5, 10, and 20% AH and assayed them for ALP activity. We found ALP activity correlates with increasing AH concentrations from 5 to 20%, and that longer treatments result in increased ALP activity. By using serum free media and pretreating AH with dextran-coated charcoal, we found that serum and charcoal-adsorbable AH components augment but are not required for this response. Further, by heat-treating the AH, we established that thermally labile components are required for the osteogenic response. Finally, we showed myocilin, a protein present in AH, could induce ALP activity in ASCs. However, this was to a lesser extent than untreated 5% AH, and myocilin could only partially rescue the effect after heat treatment, documenting there were additional thermally labile constituents of AH involved in the osteogenic response. Our work adds to the understanding of the induction of ALP in ASCs following exposure to AH, providing important insight in how ASCs will be influenced by the ocular environment. In conclusion, increased osteogenic potential upon exposure to AH represents a potential challenge to developing ASC cell-based therapies directed at the eye.

  15. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    Science.gov (United States)

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  16. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn's fistula.

    Science.gov (United States)

    Lee, Woo Yong; Park, Kyu Joo; Cho, Yong Beom; Yoon, Sang Nam; Song, Kee Ho; Kim, Do Sun; Jung, Sang Hun; Kim, Mihyung; Yoo, Hee-Won; Kim, Inok; Ha, Hunjoo; Yu, Chang Sik

    2013-11-01

    Fistula is a representative devastating complication in Crohn's patients due to refractory to conventional therapy and high recurrence. In our phase I clinical trial, adipose tissue-derived stem cells (ASCs) demonstrated their safety and therapeutic potential for healing fistulae associated with Crohn's disease. This study was carried out to evaluate the efficacy and safety of ASCs in patients with Crohn's fistulae. In this phase II study, forty-three patients were treated with ASCs. The amount of ASCs was proportioned to fistula size and fistula tract was filled with ASCs in combination with fibrin glue after intralesional injection of ASCs. Patients without complete closure of fistula at 8 weeks received a second injection of ASCs containing 1.5 times more cells than the first injection. Fistula healing at week 8 after final dose injection and its sustainability for 1-year were evaluated. Healing was defined as a complete closure of external opening without any sign of drainage and inflammation. A modified per-protocol analysis showed that complete fistula healing was observed in 27/33 patients (82%) by 8 weeks after ASC injection. Of 27 patients with fistula healing, 26 patients completed additional observation study for 1-year and 23 patients (88%) sustained complete closure. There were no adverse events related to ASC administration. ASC treatment for patients with Crohn's fistulae was well tolerated, with a favorable therapeutic outcome. Furthermore, complete closure was well sustained. These results strongly suggest that autologous ASC could be a novel treatment option for the Crohn's fistula with high-risk of recurrence. Copyright © 2013 AlphaMed Press.

  17. Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation

    Science.gov (United States)

    2013-01-01

    Background Antioxidants have been shown to enhance the proliferation of adipose-derived mesenchymal stem cells (ADMSCs) in vitro, although the detailed mechanism(s) and potential side effects are not fully understood. In this study, human ADMSCs cultured in ImF-A medium supplemented with antioxidants (N-acetyl-l-cysteine and ascorbic acid-2-phosphate) and fibroblast growth factor 2 (FGF-2) were compared with ADMSCs cultured with FGF-2 alone (ImF) or with FGF-2 under 5% pO2 conditions (ImF-H). Results During log-phase growth, exposure to ImF-A resulted in a higher percentage of ADMSCs in the S phase of the cell cycle and a smaller percentage in G0/G1 phase. This resulted in a significantly reduced cell-doubling time and increased number of cells in the antioxidant-supplemented cultures compared with those supplemented with FGF-2 alone, an approximately 225% higher cell density after 7 days. Western blotting showed that the levels of the CDK inhibitors p21 and p27 decreased after ImF-A treatment, whereas CDK2, CDK4, and CDC2 levels clearly increased. In addition, ImF-A resulted in significant reduction in the expression of CD29, CD90, and CD105, whereas relative telomere length, osteogenesis, adipogenesis, and chondrogenesis were enhanced. The results were similar for ADMSCs treated with antioxidants and those under hypoxic conditions. Conclusion Antioxidant treatment promotes entry of ADMSCs into the S phase by suppressing cyclin-dependent kinase inhibitors and results in rapid cell proliferation similar to that observed under hypoxic conditions. PMID:23915242

  18. Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Malini Visweswaran

    Full Text Available With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl and 6-bromo indirubin 3'oxime (BIO. We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4, which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIO-treated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPARγ and CCAAT/enhancer binding protein alpha (C/EBPα, and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPARγ, C/EBPα, and acetyl CoA carboxylase were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively and BIO (by 7, 17, and 5.6-fold respectively treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process.

  19. In vivo cell tracking imaging of hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate labeled adipose derived stem cells (ADSCs) in rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Lee, Kyo Chul [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    Monitoring of transplanted stem cells for cardiac repair is important part in regenerative medicine. Direct cell labeling techniques using [{sup 18}F]FDG, [{sup 64}Cu]PTSM and [{sup 99m}Tc]-HMPAO have been developed for in vivo imaging. Especially, {sup 18}F-labeled derivates have been widely used for direct labeling agent. But the {sup 18}F has short half life (T{sub 1/2}={approx}2 h), thus this imaging agent has limitation of in vivo imaging. We used {sup 123}I or {sup 124}I which has relative long half life, to track the transplanted stem cells for a long-term imaging. This study is aimed to track the transplanted adipose derived stem cells (ADSCs) in rat heart using hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate ([{sup 123,} {sup 124}I]HIB) mediated direct labeling method in vivo

  20. High-mobility group protein HMGA2-derived fragments stimulate the proliferation of chondrocytes and adipose tissue-derived stem cells.

    Science.gov (United States)

    Richter, A; Lübbing, M; Frank, H G; Nolte, I; Bullerdiek, J C; von Ahsen, I

    2011-04-11

    In previous research, it was shown that recombinant HMGA2 protein enhances the proliferation of porcine chondrocytes grown in vitro, opening up promising applications of this embryonic architectural transcription factor for tissue engineering, such as in cartilage repair. In this paper, we describe the development and analyses of two synthetic fragments comprising the functional AT-hook motifs of the HMGA2 protein, as well as the nuclear transport domain. They can be synthesised up to large scales, while eliminating some of the problems of recombinant protein production, including unwanted modification or contamination by the expression hosts, or of gene therapy approaches such as uncontrolled viral integration and transgene expression even after therapy. Application of one of these peptides onto porcine hyaline cartilage chondrocytes, grown in in vitro monolayer cell culture, showed a growth-promoting effect similar to that of the wild type HMGA2 protein. Furthermore, it also promoted cell growth of adult adipose tissue derived stem cells. Due to its proliferation inducing function and vast availability, this peptide is thus suitable for further application and investigation in various fields such as tissue engineering and stem cell research.

  1. [CHONDROGENESIS-SPECIFIC MICRORNA EXPRESSION PATTERN ANALYSIS IN CHONDROGENIC DIFFERENTIATION OF HUMAN ADIPOSE-DERIVED STEM CELLS].

    Science.gov (United States)

    Zhang, Ziji; Kang, Yan; Zhang, Zhiqi; Yang, Zibo; Fang, Shuying; Sheng, Puyi; He, Aishan; Fu, Ming; Liao, Weiming

    2015-01-01

    To investigate the microRNA (miRNA) expression profile during chondrogenic differentiation of human adipose-derived stem cells (hADSCs), and assess the roles of involved miRNAs during chondrogenesis. hADSCs were harvested and cultured from donors who underwent elective liposuction or other abdominal surgery. When the cells were passaged to P3, chondrogenic induction medium was used for chondrogenic differentiation. The morphology of the cells was observed by inverted phase contrast microscopy. Alcian blue staining was carried out at 21 days after induction to access the chondrogenic status. The expressions of chondrogenic proteins were detected by ELISA at 0, 7, 14, and 21 days. The miRNA expression profiles at pre- and post-chondrogenic induction were obtained by microarray assay, and differentially expressed miRNAs were verified by real-time quantitative PCR (qRT-PCR). The targets of the miRNAs were predicted by online software programs. hADSCs were cultured successfully and induced with chondrogenic medium. At 21 days after chondrogenic induction, the cells were stained positively for alcian blue staining. At 7, 14, and 21 days after chondrogenic induction, the levels of collogen type II, Col2a1, aggrecan, Coll0a1, and chondroitin sulfate in induced hADSCs were significantly higher than those in non-induced hADSCs (Pdifferentially expressed miRNAs were found, including seven up-regulated and four down-regulated. Predicted target genes of the differentially expressed miRNAs were based on the overlap from three public prediction algorithms, with the known functions of regulating chondrogenic differentiation of stem cells, self-renewal, signal transduction, intracellular signaling cascade, and cell cycle control. A group of miRNAs and their target genes are identified, which may play important roles in regulating chondrogenic differentiation of hADSCs. These results will facilitate the initial understanding of the molecular mechanism of chondrogenic differentiation

  2. Human adipose-derived mesenchymal stem cell could participate in angiogenesis in a mouse model of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Thuy Thi-Thanh Dao

    2016-08-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs transplantation for the treatment of acute hindlimb ischemia is recently attracting the attention of many scientists. Identifying the role of donor cells in the host is a crucial factor for improving the efficiency of treatment. This study evaluated the injury repair role of xenogeneic adipose-derived stem cell (ADSC transplantation in acute hindlimb ischemia mouse model. Methods: Human ADSCs were transplanted into the limb of ischemic mouse. The survival rate of grafted cells and expression of human VEGF-R2 and CD31 positive cells were assessed in the mouse. In addition, the morphological and functional recovery of ischemic hindlimb was also assessed. Results: The results showed that one-day post cell transplantation, the survival percentage of grafted cells was 3.62% +/- 2.06% at the injection site and 15.71% +/- 12.29% around the injection site. The rate of VEGFR2-positive cells had highest expression at 4 days post transplantation, 5.46% +/- 2.13% at the injection site; 9.12% +/- 7.17% at the opposite of injection site, and 7.22% +/- 4.59% at the lateral gastrocnemius. The percentage of CD31 positive cells increased on day 4 at the injection site to 0.8% +/- 1.60%, and further increased on day 8 at the lateral gastrocnemius site and the opposite injection site to 1.56% +/- 0.44% and 1.17% +/- 1.69%, respectively. After 14 days, the cell presentation and the angiogenesis marker expression were decreased to zero, except for CD31 expression at the opposite of injection site (0.72% +/- 1.03%. Histological structure of the cell-injected muscle tissue remained stable as that of the normal muscle. New small blood vessels were found growing in hindlimb. On the other hand, approximately 66.67% of mice were fully recovered from ischemic hindlimb at grade 0 and I after cell injection. Conclusion: Thus, xenotransplantation of human ADSCs might play a significant role in the formation of new blood vessel and can

  3. Células-tronco derivadas de tecido adiposo humano: desafios atuais e perspectivas clínicas Human adipose-derived stem cells: current challenges and clinical perspectives

    Directory of Open Access Journals (Sweden)

    Samira Yarak

    2010-10-01

    Full Text Available As células-tronco adultas ou somáticas detêm grande promessa para a reparação e regeneração de tecidos. Atualmente, o interesse dos cientistas é contínuo na investigação da biologia de células-tronco mesenquimais, tanto em aspectos básicos, quanto no potencial de aplicações terapêuticas. As células-tronco adultas derivadas do estroma do tecido adiposo, em comparação com as células-tronco derivadas do estroma da medula óssea, apresentam como vantagem o método fácil de obtenção da fonte tecidual. As células-tronco adultas derivadas do estroma do tecido adiposo apresentam potencial para se diferenciarem em células de tecidos mesodérmicos, como os adipócitos, as cartilagens, os ossos e o músculo esquelético e não mesodérmicos, como os hepatócitos, as células pancreáticas endócrinas, os neurônios, os hepatócitos e as células endoteliais vasculares. Entretanto, os dados disponíveis na literatura científica sobre as características das células-tronco adultas derivadas do estroma do tecido adiposo e os procedimentos para sua obtenção e manipulação no laboratório são inconsistentes. É necessário o desenvolvimento de metodologias e procedimentos eficazes de isolamento dessas células para obtenção de células em quantidade e qualidade suficientes para aplicação terapêutica. Nesta revisão, são discutidos os métodos correntes de coleta de tecido adiposo, isolamento e caracterização de células-tronco adultas derivadas do estroma do tecido adiposo, com ênfase na futura aplicação em medicina regenerativa e nos possíveis desafios nesse recente campo da ciência.Adult or somatic stem cells hold great promise for tissue regeneration. Currently, one major scientific interest is focused on the basic biology and clinical application of mesenchymal stem cells. Adipose tissue-derived stem cells share similar characteristics with bone marrow mesenchymal stem cells, but have some advantages including

  4. The collection of Adipose Derived Stem Cells using Water Jet Assisted Lipoplasty for their use in Plastic and Reconstructive Surgery: a preliminary study

    Directory of Open Access Journals (Sweden)

    Valeria Purpura

    2016-11-01

    Full Text Available The graft of autologous fat for the augmentation of soft tissue is a common practice frequently used in the field of plastic and reconstructive surgery. In addition, the presence of adipose derived stem cells (ASCs in adipose tissue stimulates the regeneration of tissue in which it is applied after the autologous fat grafting improving the final clinical results. Due to these characteristics, there is an increasing interest in the use of ASCs for the treatment of several clinical conditions. As a consequence, the use of clean room environment is required for the production of cell-based therapies. The present study is aimed to describe the biological properties of adipose tissue and cells derived from it cultured in vitro in clean room environment according to current regulation. The collection of adipose tissue was performed using the water – jet assisted liposuction in order to preserve an high cell viability increasing their chances of future use for different clinical application in the field of plastic and reconstructive surgery.

  5. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Vedavathi Madhu

    2016-01-01

    Full Text Available Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.

  6. High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways.

    Science.gov (United States)

    Shen, Haitao; Zhou, Enchen; Wei, Xiujing; Fu, Zhiwei; Niu, Chenguang; Li, Yang; Pan, Bing; Mathew, Anna V; Wang, Xu; Pennathur, Subramaniam; Zheng, Lemin; Wang, Yongyu

    2015-05-15

    Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1- phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.

  7. Experimental study on adipose tissue engineering with human adipose-derived stem cells and adipose tissue extracellular matrix scaffold%人细胞外基质支架联合脂肪干细胞构建脂肪组织

    Institute of Scientific and Technical Information of China (English)

    察鹏飞; 高建华; 陈阳; 鲁峰

    2012-01-01

    目的 探讨人脂肪组织细胞外基质(ECM)支架联合人脂肪来源干细胞(ADSCs)构建工程化脂肪组织的可行性.方法 以酶消化法从人抽脂术抽吸物脂质部分获取人ADSCs,体外进行多向分化诱导鉴定,并行DiI荧光标记.从抽脂术的脂质部分分离提取人脂肪组织细胞外基质,经过低温冻干、粉碎、灭菌等处理,制备成粉末状,电镜扫描观察表面特征并将其与ADSCs进行黏附实验,探讨其作为支架材料的可行性.收集人ADSCs,以2×109/L的细胞密度与提取的细胞外基质支架复合后移植于裸鼠背部皮下,同鼠对侧背部皮下移植ECM支架和细胞培养液作为对照,每侧移植0.5 ml,共6只实验鼠.8周后取材,称量标本湿重.取出的标本行苏木素-伊红(HE)染色和油红O染色进行定性判断,分析人脂肪组织ECM支架联合人ADSCs构建工程化脂肪组织的能力.结果 从脂肪组织中分离得到人ADSCs和ECM支架.ADSCs在相应的诱导环境下能够分化成为脂肪细胞、骨细胞和软骨细胞.ECM支架电镜扫描和大体观察具有疏松、多孔的结构特征,适合ADSCs的黏附生长.ADSCs与支架相容性良好,黏附率达(89.87±2.59)%,细胞在支架表面可充分伸展生长.体内移植8周后,实验组和对照组都能够形成新生物,湿重比较实验组较对照组重(P<0.05).经HE切片及油红O染色均证实实验组形成成熟的脂肪组织,对照组不能形成脂肪组织.结论 人脂肪组织ECM支架联合人ADSCs在体内能够成功构建成熟的脂肪组织,8周后支架并无明显吸收.%Objective To explore the possibility of building tissue-engineered adipose tissue with human adipose-derived stem cells (ADSCs) and adipose tissue extracellular matrix (ECM) scaffold,and provide experimental basis for clinical application of tissue-engineered adipose tissue for the repair of soft tissue defects.Methods ADSCs were isolated from adipose tissue by liposuction with the

  8. Comparison of Markers and Functional Attributes of Human Adipose-Derived Stem Cells and Dedifferentiated Adipocyte Cells from Subcutaneous Fat of an Obese Diabetic Donor.

    Science.gov (United States)

    Watson, James E; Patel, Niketa A; Carter, Gay; Moor, Andrea; Patel, Rekha; Ghansah, Tomar; Mathur, Abhishek; Murr, Michel M; Bickford, Paula; Gould, Lisa J; Cooper, Denise R

    2014-03-01

    Objective: Adipose tissue is a robust source of adipose-derived stem cells (ADSCs) that may be able to provide secreted factors that promote the ability of wounded tissue to heal. However, adipocytes also have the potential to dedifferentiate in culture to cells with stem cell-like properties that may improve their behavior and functionality for certain applications. Approach: ADSCs are adult mesenchymal stem cells that are cultured from the stromal vascular fraction of adipose tissue. However, adipocytes are capable of dedifferentiating into cells with stem cell properties. In this case study, we compare ADSC and dedifferentiated fat (DFAT) cells from the same patient and fat depot for mesenchymal cell markers, embryonic stem cell markers, ability to differentiate to adipocytes and osteoblasts, senescence and telomerase levels, and ability of conditioned media (CM) to stimulate migration of human dermal fibroblasts (HDFs). Innovation and Conclusions: ADSCs and DFAT cells displayed identical levels of CD90, CD44, CD105, and were CD34- and CD45-negative. They also expressed similar levels of Oct4, BMI1, KLF4, and SALL4. DFAT cells, however, showed higher efficiency in adipogenic and osteogenic capacity. Telomerase levels of DFAT cells were double those of ADSCs, and senescence declined in DFAT cells. CM from both cell types altered the migration of fibroblasts. Despite reports of ADSCs from a number of human depots, there have been no comparisons of the ability of dedifferentiated DFAT cells from the same donor and depot to differentiate or modulate migration of HDFs. Since ADSCs were from an obese diabetic donor, reprogramming of DFAT cells may help improve a patient's cells for regenerative medicine applications.

  9. Up-to-date Clinical Trials of Hair Regeneration using Conditioned Media of Adipose-Derived Stem Cells in Male and Female Pattern Hair Loss.

    Science.gov (United States)

    Shin, Hyoseung; Won, Chong Hyun; Chung, Woon-Kyung; Park, Byung-Soon

    2017-05-04

    The primary roles of mesenchymal stem cells (MSCs) are to maintain the stem cell niche, facilitate recovery after injury, and ensure healthy aging and the homeostasis of organ and tissues. MSCs have recently emerged as a new therapeutic option for hair loss. Since adipose-derived stem cells (ADSCs) are the most accessible sources of MSCs, ADSC-based hair regeneration is currently under investigation. Besides replacing degenerated cells in affected organs, ADSCs exhibit their beneficial effects through the paracrine actions of various cytokines and growth factors. Several laboratory experiments and animal studies have shown that ADSC-related proteins can stimulate hair growth. In this paper, we introduce our clinical pilot studies using conditioned media of ADSCs for pattern hair loss in men and women. We also discuss practical therapeutic challenges and the direction of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Sang-Hyug Park

    Full Text Available Adipose tissue-derived stem cells (ASCs are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen and integrin (CD11b and CD31 expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1 and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  11. Treatment of Crohn's-Related Rectovaginal Fistula With Allogeneic Expanded-Adipose Derived Stem Cells: A Phase I-IIa Clinical Trial.

    Science.gov (United States)

    García-Arranz, Mariano; Herreros, Maria Dolores; González-Gómez, Carolina; de la Quintana, Paloma; Guadalajara, Héctor; Georgiev-Hristov, Tihomir; Trébol, Jacobo; Garcia-Olmo, Damián

    2016-11-01

    : The aim of this clinical trial was to determine the safety and feasibility of expanded allogeneic adipose-derived stem cells to treat Crohn's-related rectovaginal fistula (CRRVF). We designed a phase I-II clinical trial (https://ClinicalTrials.gov, NCT00999115) to treat 10 patients with CRRVF. Patients receiving biological therapy during follow-up were excluded. Curettage was performed, and a vaginal or rectal flap was added if the surgeon considered it necessary. The therapeutic protocol included intralesional injection of 20 million stem cells in the vaginal walls (submucosal area) and fistula tract. Healing was evaluated 12 weeks later. If the fistula had not healed, a second dose of 40 million stem cells was administered. Patient follow-up was 52 weeks from last cell injection. Healing was defined as re-epithelialization of both vaginal and rectal sides and absence of vaginal drainage. Cytokines and immunological blood tests were monitored. Serious adverse events or rejection issues were not observed. Five patients were excluded because biologic drugs were required to treat a Crohn's disease flare-up during follow-up. Cytokine profiles and immunotoxicity assays showed no statistically significant alterations. Sixty percent of the nonexcluded patients achieved a complete healing. Expanded allogeneic adipose-derived stem-cell injection is a safe and feasible therapy for treating CRRVF, and the healing success rate seems promising (60%). The results of this trial encourage further exploration into this therapy. This may be the first publication in which allogeneic stem cells to treat rectovaginal fistula in Crohn´s disease seem to be a feasible and safe treatment. Additional studies are necessary to confirm the efficacy profile of the allogeneic stem cells strategy in a controlled design. ©AlphaMed Press.

  12. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  13. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Choi SY

    2015-07-01

    Full Text Available Seon Young Choi,1 Min Seok Song,1 Pan Dong Ryu,1 Anh Thu Ngoc Lam,2 Sang-Woo Joo,2 So Yeong Lee1 1Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 2Department of Chemistry, Soongsil University, Seoul, South Korea Abstract: Gold nanoparticles (AuNPs are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. Keywords: chitosan-conjugated gold nanoparticle, mineralization, nonphosphorylated beta-catenin

  14. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells.

    Science.gov (United States)

    Gugerell, Alfred; Kober, Johanna; Laube, Thorsten; Walter, Torsten; Nürnberger, Sylvia; Grönniger, Elke; Brönneke, Simone; Wyrwa, Ralf; Schnabelrauch, Matthias; Keck, Maike

    2014-01-01

    An irreversible loss of subcutaneous adipose tissue in patients after tumor removal or deep dermal burns makes soft tissue engineering one of the most important challenges in biomedical research. The ideal scaffold for adipose tissue engineering has yet not been identified though biodegradable polymers gained an increasing interest during the last years. In the present study we synthesized two novel biodegradable polymers, poly(ε-caprolactone-co-urethane-co-urea) (PEUU) and poly[(L-lactide-co-ε-caprolactone)-co-(L-lysine ethyl ester diisocyanate)-block-oligo(ethylene glycol)-urethane] (PEU), containing different types of hydrolytically cleavable bondings. Solutions of the polymers at appropriate concentrations were used to fabricate fleeces by electrospinning. Ultrastructure, tensile properties, and degradation of the produced fleeces were evaluated. Adipose-derived stem cells (ASCs) were seeded on fleeces and morphology, viability, proliferation and differentiation were assessed. The biomaterials show fine micro- and nanostructures composed of fibers with diameters of about 0.5 to 1.3 µm. PEUU fleeces were more elastic, which might be favourable in soft tissue engineering, and degraded significantly slower compared to PEU. ASCs were able to adhere, proliferate and differentiate on both scaffolds. Morphology of the cells was slightly better on PEUU than on PEU showing a more physiological appearance. ASCs differentiated into the adipogenic lineage. Gene analysis of differentiated ASCs showed typical expression of adipogenetic markers such as PPARgamma and FABP4. Based on these results, PEUU and PEU meshes show a promising potential as scaffold materials in adipose tissue engineering.

  15. In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs via Hepatic Injection in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mong-Jen Chen

    Full Text Available Adipose tissue derived stem cells (ADSCs transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one. Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two.Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted

  16. The Effects of Adipose-Derived Stem Cells in a Rat Model of Tobacco-Associated Erectile Dysfunction.

    Directory of Open Access Journals (Sweden)

    Yun-Ching Huang

    Full Text Available Tobacco use is associated with erectile dysfunction (ED via a number of mechanisms including vascular injury and oxidative stress in corporal tissue. Adipose derived stem cells (ADSC have been shown to ameliorate vascular/corporal injury and oxidative stress by releasing cytokines, growth factors and antioxidants. We assessed the therapeutic effects of intracavernous injection of ADSC in a rat model of tobacco-associated ED. Thirty male rats were used in this study. Ten rats exposed to room air only served as negative controls. The remaining 20 rats were passively exposed to cigarette smoke (CS for 12 weeks. At the 12-week time point, ADSC were isolated from paragonadal fat in all rats. Amongst the 20 CS exposed rats, 10 each were assigned to one of the two following conditions: (i injection of phosphate buffered saline (PBS into the corpora cavernosa (CS+PBS; or (ii injection of autologous ADSC in PBS into the corpora cavernosa (CS+ADSC. Negative control animals received PBS injection into the corpora cavernosa (normal rats [NR] + PBS. After injections all rats were returned to their previous air versus CS exposure state. Twenty-eight days after injection, all rats were placed in a metabolic cage for 24-hour urine collection to be testing for markers of oxidative stress. After 24-hour urine collection all 30 rats also underwent erectile function testing via intracavernous pressure (ICP testing and were then sacrificed. Corporal tissues were obtained for histological assessment and Western blotting. Mean body weight was significantly lower in CS-exposed rats than in control animals. Mean ICP, ICP /mean arterial pressure ratio, serum nitric oxide level were significantly lower in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Urine markers for oxidative stress were significantly higher in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Mean expression of corporal nNOS and histological markers for endothelial and smooth

  17. The Effects of Adipose-Derived Stem Cells in a Rat Model of Tobacco-Associated Erectile Dysfunction.

    Science.gov (United States)

    Huang, Yun-Ching; Kuo, Yi-Hung; Huang, Yan-Hua; Chen, Chih-Shou; Ho, Dong-Ru; Shi, Chung-Sheng

    2016-01-01

    Tobacco use is associated with erectile dysfunction (ED) via a number of mechanisms including vascular injury and oxidative stress in corporal tissue. Adipose derived stem cells (ADSC) have been shown to ameliorate vascular/corporal injury and oxidative stress by releasing cytokines, growth factors and antioxidants. We assessed the therapeutic effects of intracavernous injection of ADSC in a rat model of tobacco-associated ED. Thirty male rats were used in this study. Ten rats exposed to room air only served as negative controls. The remaining 20 rats were passively exposed to cigarette smoke (CS) for 12 weeks. At the 12-week time point, ADSC were isolated from paragonadal fat in all rats. Amongst the 20 CS exposed rats, 10 each were assigned to one of the two following conditions: (i) injection of phosphate buffered saline (PBS) into the corpora cavernosa (CS+PBS); or (ii) injection of autologous ADSC in PBS into the corpora cavernosa (CS+ADSC). Negative control animals received PBS injection into the corpora cavernosa (normal rats [NR] + PBS). After injections all rats were returned to their previous air versus CS exposure state. Twenty-eight days after injection, all rats were placed in a metabolic cage for 24-hour urine collection to be testing for markers of oxidative stress. After 24-hour urine collection all 30 rats also underwent erectile function testing via intracavernous pressure (ICP) testing and were then sacrificed. Corporal tissues were obtained for histological assessment and Western blotting. Mean body weight was significantly lower in CS-exposed rats than in control animals. Mean ICP, ICP /mean arterial pressure ratio, serum nitric oxide level were significantly lower in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Urine markers for oxidative stress were significantly higher in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Mean expression of corporal nNOS and histological markers for endothelial and smooth muscle cells

  18. [Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells].

    Science.gov (United States)

    Cheng, W; Han, X P; Mou, S L; Yang, F; Liu, L P

    2017-04-09

    Objective: To build scaffold materials with different concentrations of alginate and collagen, and to observe the effects of alginate/collagen ratio on the proliferation of human adipose-derived mesenchymal stem cells (hAMSC) and osteogenic differentiation. The optimal concentration of alginate/collagen will be chosen for constructing hydrogel that will be used for bone tissue engineering. Methods: Soluble hydrogel scaffold materials containing alginate/collagen were prepared, and the following groups were established based on different alginate/collagen ratio: 4∶1 (group A), 2∶1 (group B), and 1∶1 (group C). Cell proliferation on the material surface was observed using the cell counting kit-8 (CCK-8) assay, while cell viability in each material group were observed using live/dead staining. Quantitative real-time PCR(qPCR) was used to measure the differential expression of osteogenesis-related genes on and in the materials. Immunofluorescence staining was used to measure the differential gene expression of osteogenesis-related proteins in each group. Results: The results from the CCK-8 assay showed increasing cell proliferation rate on the lyophilized hydrogel material surface as the collagen concentration increased, and the highest cell proliferation was observed in group C. Live/dead staining assay indicated that cells were able to proliferate in all three types of hydrogel materials, and the highest cell viability was found in material from group B ([87.50±2.65]%). qPCR showed that the expression of osteogenesis-related genes in group C was the highest, among the three groups, while the expression of osteocalcin in group B was significantly higher than those in the other two groups (Palginate/collagen scaffold materials did not show adverse effects on the cell proliferation of hAMSC and osteogenenic differentiation. Bone tissue engineering can use 10% hydrogel material, and when the sodium alginate and collagen have a ratio of 2∶1, the hydrogel can be

  19. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  20. Extraction and identification of human adipose-derived stem cells%人脂肪干细胞的提取和鉴定

    Institute of Scientific and Technical Information of China (English)

    吴尉; 梁芳; 宋小琴; 胡平安; 刘敏

    2015-01-01

    BACKGROUND:Adipose-derived stem cel s are totipotent stem cel s in the adipose tissue, and have the function of self-renewal and multi-directional differentiation. Human adipose-derived stem cel s are ideal seed cel s with stable genetic milieu and few rejections. OBJECTIVE:To extract human adipose-derived stem cel s from human omental adipose tissue and to identify the cel s by adipogenic and osteogenic induction. METHODS:Omental adipose tissues were col ected from surgical patients to isolate and culture adipose-derived stem cel s using type I col agenase digestion, filtration and centrifugation. Cel growth was observed and proliferative curve of human adipose-derived stem cel s were drawn by cel counting method to calculate the doubling time at logarithmic growth phase. After adipogenic and osteogenic induction, induced cel s were identified using oil red O and alizarin red staining, respectively. RESULTS AND CONCLUSION:Human adipose-derived stem cel s were successful y isolated from the omentum tissues of surgical patients. Adherent cel s were fusiform-shaped and like fibroblasts. The growth curve of passage 3 cel s was in S shape, and the doubling time was 45.90 hours. After adipogenic and osteogenic induction for 2 and 3 hours, respectively, oil red O staining showed unequal-sized orange fat droplets, and alizarin red staining showed typical calcified nodules that were in orange. These findings indicate that adipose-derived stem cel s have the adipogenic and osteogenic capacity.%背景:脂肪干细胞是存在于脂肪中的全能干细胞,具备自我更新能力与多向分化潜能,遗传背景相当稳定,体内植入后免疫排斥少,是一种比较理想的种子细胞。目的:提取人大网膜脂肪干细胞,并进行成脂和成骨分化能力鉴定。  方法:收集手术患者大网膜的脂肪组织,经Ⅰ型胶原酶消化、过滤、离心后进行原代培养,观察细胞生长状态;用细胞计

  1. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Induced pluripotent stem cells (iPSCs are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs. They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs, using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4. Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i, naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.

  2. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    Science.gov (United States)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  3. Nanofiber poly ether sulfone as adipose derived stem cell holding scaffold with or without growth factor on wound healing in rat

    Directory of Open Access Journals (Sweden)

    Mohammd Javad Fatemi

    2017-03-01

    Full Text Available Background: Acute and chronic wound healing has always been problematic. Stem cells with or without the scaffold carrying these cells have been proposed as new methods in the treatment of wounds. In this case study we have tried to examine the effect of scaffold made of polyether sulfone (PES alone, with stem cells and along with stem cell and growth factor on wound healing in rats. Methods: This experimental study was conducted in Animal Laboratory of Hazrat Fatemeh Hospital in 2012. In this study, 48 rats were randomly divided into four groups. A wound created on the back of each rat at the size of 3×3 cm. The surface of the wound in the first group is covered with PES seeded with adipose-derived stem cell (ASC and growth factor (GF, in the second group with polyether Sulfone seeded with ASC, in the third group only with PEWS, and in the fourth group (control with Vaseline gauze. On 20th and 35th days, the surface of the wound was assessed by photography in order to understand the process of healing. In addition, on days 20 and 45, the histopathology characteristics of the samples were studied with a biopsy of the wounds. Results: The Results of wound healing in the control group was better than the other groups and its statistical difference between others was meaningful. (P=0.008, P=0.013, P=0.001 On day 20, by examining histopathological characteristics including epithelialization, the number of inflammatory cells, the amount of angiogenesis and collagen synthesis in control group, we gained better results. (P=0.000, But on day 45, the results in different parameters were not equal. Conclusion: polyether sulfone scaffold alone or with adipose-derived stem cells couldn’t improve the process of wound healing. Also adding vascular endothelial growth factor (VEGF did not change the results significantly.

  4. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    Science.gov (United States)

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  5. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    Science.gov (United States)

    Rodríguez-Jiménez, Francisco Javier; Valdes-Sánchez, Teresa; Carrillo, José M.; Rubio, Mónica; Monleon-Prades, Manuel; García-Cruz, Dunia Mercedes; García, Montserrat; Cugat, Ramón; Moreno-Manzano, Victoria

    2012-01-01

    Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs) have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF) treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration. PMID:24955632

  6. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    Directory of Open Access Journals (Sweden)

    Victoria Moreno-Manzano

    2012-08-01

    Full Text Available Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy ethyl ester (CLMA scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration.

  7. In vivo injectable human adipose tissue regeneration by adipose-derived stem cells isolated from the fluid portion of liposuction aspirates.

    Science.gov (United States)

    Dong, Ziqing; Luo, Lin; Liao, Yunjun; Zhang, Yunsong; Gao, Jianhua; Ogawa, Rei; Ou, Chunquan; Zhu, Ming; Yang, Bo; Lu, Feng

    2014-06-01

    Liposuction aspirates separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and isolated from the fluid portion termed liposuction aspirate fluid (LAF) cells, both of which contain adipose-derived stromal cells (ASCs). Here, we examined the biological differences between PLA and LAF cells and then tested the differentiation capacity of LAF cells in vivo. The cell surface marker and the multiple differentiation ability of fresh isolated PLA and LAF cells and which from passaged 3-5 were examined in vitro. LAF cells were then incubated in adipogenic medium, stained with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI), mixed with fibrin glue then injected to nude mice; fibrin glue without cells was as a control. Three months later, the transplants were subjected to macroscopic observation and histological analysis. PLA and LAF cells were similar in growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed increased expression of CD29, CD44, CD133 and HLA DR and decreased expression of CD34. In vivo differentiation assay showed the mixture of LAF cells and fibrin glue formed adipose tissue which contained red fluorescent DiI-positive adipocytes. LAF cells can be harvested more easily than PLA cells. The in vivo adipogenic capacity suggested LAF cells would be useful and valuable for cell-based therapies and soft tissue reconstruction.

  8. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment.

    Science.gov (United States)

    Tang, Yan; Pan, Zhang-Yi; Zou, Ying; He, Yi; Yang, Peng-Yuan; Tang, Qi-Qun; Yin, Feng

    2017-09-01

    The intra-articular injection of adipose-derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S-ASCs) and visceral ASCs (V-ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S-ASCs, V-ASCs or phosphate-buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co-culturing with macrophages. The proliferation of V-ASCs was significantly greater than that of S-ASCs, but S-ASCs had the greater adipogenic capacity than V-ASCs. In addition, the infracted cartilage treated with S-ASCs showed significantly greater improvement than cartilage treated with PBS or V-ASCs. Moreover, S-ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Editor's Highlight: Screening ToxCast Prioritized Chemicals for PPARG Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis.

    Science.gov (United States)

    Foley, Briana; Doheny, Daniel L; Black, Michael B; Pendse, Salil N; Wetmore, Barbara A; Clewell, Rebecca A; Andersen, Melvin E; Deisenroth, Chad

    2017-01-01

    The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the fetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the human relevance of these findings is unclear. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) is the master regulator of adipogenesis. Human adipose-derived stem cells (hASC) isolated from adipose tissue express endogenous isoforms of PPARG and represent a biologically relevant cell-type for evaluating activity of PPARG ligands. Here, a multi-endpoint approach based on a phenotypic adipogenesis assay was applied to screen a set of 60 chemical compounds identified in ToxCast Phase I as PPARG active (49) or inactive (11). Chemicals showing activity in the adipogenesis screen were further evaluated in a series of 4 orthogonal assays representing 7 different key events in PPARG-dependent adipogenesis, including gene transcription, protein expression, and adipokine secretion. An siRNA screen was also used to evaluate PPARG-dependence of the adipogenesis phenotype. A universal concentration-response design enabled inter-assay comparability and implementation of a weight-of-evidence approach for bioactivity classification. Collectively, a total of 14/49 (29%) prioritized chemicals were identified with moderate-to-strong activity for human adipogenesis. These results provide the first integrated screening approach of prioritized ToxCast chemicals in a human stem cell model of adipogenesis and provide insight into the capacity of PPARG-activating chemicals to modulate early life programming of adipose tissue.

  10. Editor’s Highlight: Screening ToxCast Prioritized Chemicals for PPARG Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis

    Science.gov (United States)

    Foley, Briana; Doheny, Daniel L.; Black, Michael B.; Pendse, Salil N.; Wetmore, Barbara A.; Clewell, Rebecca A.; Andersen, Melvin E.; Deisenroth, Chad

    2017-01-01

    The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the fetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the human relevance of these findings is unclear. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) is the master regulator of adipogenesis. Human adipose-derived stem cells (hASC) isolated from adipose tissue express endogenous isoforms of PPARG and represent a biologically relevant cell-type for evaluating activity of PPARG ligands. Here, a multi-endpoint approach based on a phenotypic adipogenesis assay was applied to screen a set of 60 chemical compounds identified in ToxCast Phase I as PPARG active (49) or inactive (11). Chemicals showing activity in the adipogenesis screen were further evaluated in a series of 4 orthogonal assays representing 7 different key events in PPARG-dependent adipogenesis, including gene transcription, protein expression, and adipokine secretion. An siRNA screen was also used to evaluate PPARG-dependence of the adipogenesis phenotype. A universal concentration-response design enabled inter-assay comparability and implementation of a weight-of-evidence approach for bioactivity classification. Collectively, a total of 14/49 (29%) prioritized chemicals were identified with moderate-to-strong activity for human adipogenesis. These results provide the first integrated screening approach of prioritized ToxCast chemicals in a human stem cell model of adipogenesis and provide insight into the capacity of PPARG-activating chemicals to modulate early life programming of adipose tissue. PMID:27664422

  11. Adipose tissue stem cells in sinus lift procedures and the use of a combination of bone marrow stem cells, blood derived growth factors and allograft for the augmentation of the severely resorbed maxilla

    Directory of Open Access Journals (Sweden)

    MS Maningky

    2016-06-01

    Full Text Available For smaller bone grafts combining bone substitutes with blood derived growth factors such as PRP and PRF leads to good results.However for the treatment of the extremely resorbed edentulous maxilla prior to implant placement, autogenous bone remains the gold standard. Due to the challenging grafts in often older medically compromised patients the use of bone substitutes alone is not as predictable as autogenous bone.Although autogenous bon