WorldWideScience

Sample records for adipokinetic hormone system

  1. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems

    DEFF Research Database (Denmark)

    Hansen, Karina Kiilerich; Stafflinger, Elisabeth; Schneider, Martina

    2010-01-01

    that are structurally related to the AKHs but represent a different neuropeptide signaling system. We have previously cloned an orphan GPCR from the malaria mosquito Anopheles gambiae that was structurally intermediate between the A. gambiae AKH and corazonin GPCRs. Using functional expression of the receptor in cells......Neuropeptides and their G protein-coupled receptors (GPCRs) play a central role in the physiology of insects. One large family of insect neuropeptides are the adipokinetic hormones (AKHs), which mobilize lipids and carbohydrates from the insect fat body. Other peptides are the corazonins...... in cell culture, we have now identified the ligand for this orphan receptor as being pQVTFSRDWNAamide, a neuropeptide that is structurally intermediate between AKH and corazonin and that we therefore named ACP (AKH/corazonin-related peptide). ACP does not activate the A. gambiae AKH and corazonin...

  2. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.

    2016-01-01

    the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin...

  3. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    The insect adipokinetic hormones (AKHs) are a large family of peptide hormones that are involved in the mobilization of sugar and lipids from the insect fat body during energy-requiring activities such as flight and locomotion, but that also contribute to hemolymph sugar homeostasis. Here, we have...... identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and......, therefore, to a better understanding of AKH heterogeneity and actions. Interestingly, the insect AKH receptors are structurally and evolutionarily related to the gonadotropin-releasing hormone receptors from vertebrates....

  4. Locust corpora cardiaca contain an inactive adipokinetic hormone.

    Science.gov (United States)

    Siegert, K J

    1999-03-26

    A neuropeptide from the migratory locust, Locusta migratoria, has been identified as a novel member of the family of adipokinetic hormones (AKHs). The peptide is probably synthesised in the brain because it is the first AKH found in the storage lobe, whilst the three 'classic' Locusta AKHs are present in the glandular lobe of the corpora cardiaca. In locusts, the peptide has no biological activity usually associated with AKHs. There is only 36-56% sequence identity with the three Lom-AKHs, but 78% identity with the Drosophila melanogaster AKH, Drm-HrTH. The new peptide is active in the American cockroach, Periplaneta americana, and was provisionally named 'L. migratoria hypertrehalosaemic hormone', Lom-HrTH; its biological role in locusts remains to be established. The high degree of identity with Drm-HrTH suggests that Lom-HrTH is an ancient molecule.

  5. The adipokinetic hormone family in Chrysomeloidea: structural and functional considerations *

    Science.gov (United States)

    Gäde, Gerd; Marco, Heather G.

    2011-01-01

    Abstract The presented work is a hybrid of an overview and an original research paper on peptides belonging to the adipokinetic hormone (AKH) family that are present in the corpora cardiaca of Chrysomeloidea. First, we introduce the AKH/red pigment-concentrating hormone (RPCH) peptide family. Second, we collate the available primary sequence data on AKH peptides in Cerambycidae and Chrysomelidae, and we present new sequencing data (from previously unstudied species) obtained by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. Our expanded data set encompasses the primary structure of AKHs from seven species of Cerambycidae and three species of Chrysomelidae. All of these species synthesise the octapeptide code-named Peram-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp amide). Whereas this is the sole AKH peptide in Cerambycidae, Chrysomelidae demonstrate a probable event of AKH gene duplication, thereby giving rise to an additional AKH. This second AKH peptide may be either Emppe-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp amide) or Peram-CAH-II (pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp amide). The peptide distribution and structural data suggest that both families are closely related and that Peram-CAH-I is the ancestral peptide. We hypothesise on the molecular evolution of Emppe-AKH and Peram-CAH-II from the ancestral peptide due to nonsynonymous missense single nucleotide polymorphism in the nucleotide coding sequence of prepro-AKH. Finally, we review the biological significance of the AKH peptides as hyperprolinaemic hormones in Chrysomeloidea, i.e. they cause an increase in the circulating concentration of proline. The mobilisation of proline has been demonstrated during flight in both cerambycid and chrysomelid beetles. PMID:22303105

  6. Hypertrehalosaemic and hyperlipaemic responses to adipokinetic hormone in fifth larval instar locusts, Locusta migratoria

    NARCIS (Netherlands)

    Horst, D.J. van der; Marrewijk, W.J.A. van; Broek, A.Th.M. van den; Beenakkers, A.M.Th.

    1984-01-01

    In fifth instar larvae of Locusta migratoria the haemolymph lipid concentration is elevated after injection of adipokinetic hormone (AKH). This hyperlipaemic response in larvae remains substantially lower than in adults; over 75% of the mobilized lipid consists of diacylglycerol. In addition, unlike

  7. Postembryonic proliferation of neuroendocrine cells expressing adipokinetic hormone peptides in the corpora cardiaca of the locust.

    Science.gov (United States)

    Kirschenbaum, S R; O'Shea, M

    1993-08-01

    Neuroendocrine glands that synthesize and secrete peptide hormones regulate the levels of these peptide messengers during development. In this article we describe a mechanism for regulating neuropeptide levels in the corpora cardiaca of the locust Schistocerca gregaria, a neuroendocrine gland structurally analogous to the vertebrate adenohypophysis. A set of five colocalized peptide hormones of the adipokinetic hormone family is synthesized in intrinsic neurosecretory cells in the corpora cardiaca. During postembryonic development there are progressive changes in the absolute and relative levels of these five peptide hormones. We show that the ability of the gland to increase peptide synthesis is due to a 100-fold increase in the number of cells which make up the gland. The gland grows by the addition of new cells derived from symmetrical division of undifferentiated precursor cells within the corpora cardiaca. We show, using double-label immunocytochemistry, that cells born in the glandular lobe mature into cells that express adipokinetic hormone peptides. The pattern of cell birth and peptide expression can account for the dramatic increase in postembryonic peptide levels.

  8. Evidence that locustatachykinin I is involved in release of adipokinetic hormone from locust corpora cardiaca.

    Science.gov (United States)

    Nässel, D R; Passier, P C; Elekes, K; Dircksen, H; Vullings, H G; Cantera, R

    1995-06-27

    The glandular cells of the corpus cardiacum of the locust Locusta migratoria, known to synthesize and release adipokinetic hormones (AKH), are contacted by axons immunoreactive to an antiserum raised against the locust neuropeptide locustatachykinin I (LomTK I). Electron-microscopical immunocytochemistry reveals LomTK immunoreactive axon terminals, containing granular vesicles, in close contact with the glandular cells cells. Release of AKH I from isolated corpora cardiaca of the locust has been monitored in an in vitro system where the amount of AKH I released into the incubation saline is determined by reversed phase high performance liquid chromatography with fluorometric detection. We could show that LomTK I induces release of AKH from corpora cardiaca in a dose-dependent manner when tested in a range of 10-200 microM. This is thus the first clear demonstration of a substance inducing release of AKH, correlated with the presence of the substance in fibers innervating the AKH-synthesizing glandular cells, in the insect corpora cardiaca.

  9. Structure elucidation and biological activity of an unusual adipokinetic hormone from corpora cardiaca of the butterfly, Vanessa cardui.

    Science.gov (United States)

    Köllisch, G V; Lorenz, M W; Kellner, R; Verhaert, P D; Hoffmann, K H

    2000-09-01

    A structurally unusual member of the adipokinetic hormone/red pigment-concentrating hormone peptide family was isolated from corpora cardiaca of the painted lady butterfly, Vanessa cardui. Its primary structure was assigned by Edman degradation and nano-electrospray-time-of-flight mass spectrometry as pQLTFTSSWGGK (Vac-AKH). Vac-AKH represents the first 11mer and the first nonamidated peptide in this family. The peptide shows significant adipokinetic activity in adult specimens of V. cardui. Injection of 10 pmol of synthetic Vac-AKH into 4-day-old decapitated males resulted in an approximately 150% increase of hemolymph lipids after 90 min. Half maximal adipokinetic activity was achieved with about 0. 1 pmol of Vac-AKH. During a 2-h incubation of corpora cardiaca/corpora allata complexes in medium containing 50 mM KCl, significant amounts of Vac-AKH were released from the glands.

  10. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana

    DEFF Research Database (Denmark)

    Hansen, Karina K; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta...... of both Pea-AKH-1 (EC50, 5 x 10(-9)M), and Pea-AKH-2 (EC50, 2 x 10(-9)M). Insects can be subdivided into two evolutionary lineages, holometabola (insects with a complete metamorphosis during development) and hemimetabola (incomplete metamorphosis). This paper describes the first AKH receptor from...

  11. Effects of Acute Administration of Adipokinetic Hormone on Depression, Anxiety, Pain, Locomotion and Memory in Mice.

    Science.gov (United States)

    Mutlu, Oguz; Ulak, Guner; Akar, Furuzan; Erden, Faruk; Celikyurt, Ipek Komsuoglu; Bektas, Emine; Tanyeri, Pelin; Kaya, Havva

    2017-04-30

    The neurosecretory cells in the corpus cardiacum of insects synthesize a set of hormones that are called adipokinetic, hypertrehalosemic or hyperprolinemic depending on the insect in question. They are the Adipokinetic Hormone/Red Pigment-Concentrating Hormone (AKH/RPCH) family of peptides. The present study investigated the effects of acute administration of Locusta Migratoria (Locmi-AKHII) and Anax Imperator (Anaim-AKH) on depression, anxiety, pain (analgesy), locomotion and memory in mice in forced swimming (FST), elevated plus maze (EPM), hot plate, locomotor activity and passive avoidance tests. Both Locmi-AKH-II (4 mg/kg) and Anaim-AKH (0.25 and 0.50 mg/kg) decreased immobility time (in sec, s) in the FST test. Anaim-AKH (0.5 and 1 mg/kg) increased the percentage of time spent in open arms/total time spent and the percentage of the number of open arm/total arm entries in the EPM test. Anaim-AKH (1 and 2 mg/kg) significantly increased latency (s) (initial time passed) for mice to lick their hind paws or jumping in the hot plate test. Anaim-AKH (4 mg/kg) significantly decreased the total distance (cm) moved, or the speed (cm/s) of movement of the animals in the locomotor activity test. Neither Locmi-AKH-II nor Anaim-AKH altered the retention latency (s) in the passive avoidance test. Both Locmi-AKH-II and Anaim-AKH exerted antidepressant effects, while only Anaim-AKH had anxiolytic and analgesic effects when administered acutely. Anaim-AKH diminished locomotion at higher doses while Locmi-AKH-II had no such effects. Neither Locmi-AKH-II nor Anaim-AKH disturbed learning and memory when acutely administered. Data of our studies suggest clinical potentials of AKH to be used in depression, anxiety and pain without disturbing memory.

  12. Knockdown of adipokinetic hormone synthesis increases susceptibility to oxidative stress in Drosophila – A role for dFoxO?

    Czech Academy of Sciences Publication Activity Database

    Bednářová, Andrea; Kodrík, Dalibor; Krishnan, N.

    2015-01-01

    Roč. 171, May 01 (2015), s. 8-14 ISSN 1532-0456 R&D Projects: GA ČR GA14-07172S; GA MŠk(CZ) LH14047 Grant - others:GA JU(CZ) 140/2014/P Institutional support: RVO:60077344 Keywords : adipokinetic hormone * Drosophila * hydrogen peroxide Subject RIV: ED - Physiology Impact factor: 2.546, year: 2015 http://www.sciencedirect.com/science/article/pii/S1532045615000265

  13. Conformational study of insect adipokinetic hormones using NMR constrained molecular dynamics

    Science.gov (United States)

    Nair, Margie M.; Jackson, Graham E.; Gäde, Gerd

    2001-03-01

    Mem-CC (pGlu-Leu-Asn-Tyr-Ser-Pro-Asp-Trp-NH2), Tem-HrTH (pGlu-Leu-Asn-Phe-Ser-Pro-Asn-Trp-NH2) and Del-CC (pGlu-Leu-Asn-Phe-Ser-Pro-Asn-Trp-Gly-Asn-NH2) are adipokinetic hormones, isolated from the corpora cardiaca of different insect species. These hormones regulate energy metabolism during flight and so are intimately involved in an insect's mobility. Secondary structural elements of these peptides and the N7 analogue, [N7]-Mem-CC (pGlu-Leu-Asn-Tyr-Ser-Pro-Asn-Trp-NH2), have been determined in dimethylsulfoxide solution using NMR restrained molecular mechanic simulations. The neuropeptides were all found to have an extended structure for the first 4 residues and a β-turn between residues 4-8. For Tem-HrTH and Del-CC, asparagine (N7) which is postulated to be involved in receptor binding and/or activation, projects outward form the β-turn. Mem-CC does not have an asparagine at position 7 while, for [N7]-Mem-CC, the N7 sidechain folds inside the β-turn preventing its interaction with the receptor.

  14. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut.

    Science.gov (United States)

    Bodláková, Karolina; Jedlička, Pavel; Kodrík, Dalibor

    2017-04-01

    This study examined the biochemical characteristics of α-amylase and hormonal (adipokinetic hormone: AKH) stimulation of α-amylase activity in the cockroach (Periplaneta americana) midgut. We applied two AKHs in vivo and in vitro, then measured resultant amylase activity and gene expression, as well as the expression of AKH receptor (AKHR). The results revealed that optimal amylase activity is characterized by the following: pH: 5.7, temperature: 38.4 °C, K m (Michaelis-Menten constant): 2.54 mg starch/mL, and V max (maximum reaction velocity): 0.185 μmol maltose/mL/min. In vivo application of AKHs resulted in significant increase of amylase activity: by two-fold in the gastric caeca and 4-7 fold in the rest of the midgut. In vitro experiments supported results seen in vivo: a 24-h incubation with the hormones resulted in the increase of amylase activity by 1.4 times in the caeca and 4-9 times in the midgut. Further, gene expression analyses reveal that AKHR is expressed in both the caeca and the rest of the midgut, although expression levels in the former were 23 times higher than levels in the latter. A similar pattern was found for the amylase (AMY) gene. Hormonal treatment did not affect the expression of either gene. This study is the first to provide evidence indicating direct AKH stimulation of digestive enzyme activity in the insect midgut, supported by specific AKHR gene expression in this organ. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. Two novel tyrosine-containing peptides (Tyr(4)) of the adipokinetic hormone family in beetles of the families Coccinellidae and Silphidae.

    Science.gov (United States)

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2015-11-01

    Novel members of the adipokinetic hormone family of peptides have been identified from the corpora cardiaca (CC) of two species of beetles representing two families, the Silphidae and the Coccinellidae. A crude CC extract (0.3 gland equivalents) of the burying beetle, Nicrophorus vespilloides, was active in mobilizing trehalose in a heterologous assay using the cockroach Periplaneta americana, whereas the CC extract (0.5 gland equivalents) of the ladybird beetle, Harmonia axyridis, exhibited no hypertrehalosemic activity. Primary sequences of one adipokinetic hormone from each species were elucidated by liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The multiple MS(N) electrospray mass data revealed an octapeptide with an unusual tyrosine residue at position 4 for each species: pGlu-Leu-Thr-Tyr-Ser-Thr-Gly-Trp amide for N. vespilloides (code-named Nicve-AKH) and pGlu-Ile-Asn-Tyr-Ser-Thr-Gly-Trp amide for H. axyridis (code-named Harax-AKH). Assignment of the correct sequences was confirmed by synthesis of the peptides and co-elution in reversed-phase high-performance liquid chromatography with fluorescence detection or by LC-MS. Moreover, synthetic peptides were shown to be active in the heterologous cockroach assay system, but Harax-AKH only at a dose of 30 pmol, which explains the negative result with the crude CC extract. It appears that the tyrosine residue at position 4 can be used as a diagnostic feature for certain beetle adipokinetic peptides, because this feature has not been found in another order other than Coleoptera.

  16. A possible role of SchistoFLRFamide in inhibition of adipokinetic hormone release from locust corpora cardiaca.

    Science.gov (United States)

    Vullings, H G; Ten Voorde, S E; Passier, P C; Diederen, J H; Van Der Horst, D J; Nässel, D R

    1998-12-01

    The distribution and actions of FMRFamide-related peptides (FaRPs) in the corpora cardiaca of the locust Locusta migratoria were studied. Antisera to FMRFamide and SchistoFLRFamide (PDVDHVFLRFamide) label neuronal processes that impinge on glandular cells in the glandular lobe of the corpora cardiaca known to produce adipokinetic hormones. Electron microscopic immunocytochemistry revealed that these FaRP-containing processes form synaptoid contacts with the glandular cells. Approximately 12% of the axon profiles present in the glandular part of the corpus cardiacum contained SchistoFLRFamide-immunoreactive material. Retrograde tracing of the axons in the nervus corporis cardiaci II with Lucifer yellow revealed 25-30 labelled neuronal cell bodies in each lateral part of the protocerebrum. About five of these in each hemisphere reacted with the SchistoFLRFamide-antiserum. Double-labelling immunocytochemistry showed that the FaRP-containing processes in the glandular lobe of the corpora cardiaca are distinct from neuronal processes, reacting with an antiserum to the neuropeptide locustatachykinin. The effect of the decapeptide SchistoFLRFamide and the tetrapeptide FMRFamide on the release of adipokinetic hormone I (AKH I) from the cells in the glandular part of the corpus cardiacum was studied in vitro. Neither the deca- nor the tetrapeptide had any effect on the spontaneous release of AKH I. Release of AKH I induced by the phosphodiesterase inhibitor IBMX, however, was reduced significantly by both peptides. These results point to an involvement of FaRPs as inhibitory modulators in the regulation of the release of adipokinetic hormone from the glandular cells.

  17. Primary structure of two neuropeptide hormones with adipokinetic and hypotrehalosemic activity isolated from the corpora cardiaca of horse flies (Diptera).

    Science.gov (United States)

    Jaffe, H; Raina, A K; Riley, C T; Fraser, B A; Nachman, R J; Vogel, V W; Zhang, Y S; Hayes, D K

    1989-01-01

    The primary structures of two neuropeptides, Tabanus atratus adipokinetic hormone (Taa-AKH) and Tabanus atratus hypotrehalosemic hormone (Taa-HoTH), from the corpora cardiaca of horse flies (Diptera: Tabanidae) have been determined. Amino acid sequences of Taa-AKH (less than Glu-Leu-Thr-Phe-Thr-Pro-Gly-Trp-NH2) and Taa-HoTH (less than Glu-Leu-Thr-Phe-Thr-Pro-Gly-Trp-Gly-Tyr-NH2) (where less than Glu = pyroglutamic acid) were determined by automated gas-phase Edman degradation of the peptides deblocked by pyroglutamate aminopeptidase and by fast atom bombardment mass spectrometry. The hormones were synthesized, and the natural and synthetic peptides exhibited identical chromatographic, spectroscopic, and biological properties. When assayed in adult face fly males, Taa-AKH and Taa-HoTH demonstrated hyperlipemic activity, in addition, Taa-HoTH also demonstrated a significant hypotrehalosemic activity. PMID:2813385

  18. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    Science.gov (United States)

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Unique translational modification of an invertebrate neuropeptide: a phosphorylated member of the adipokinetic hormone peptide family

    Science.gov (United States)

    2005-01-01

    Separation of an extract of corpora cardiaca from the protea beetle, Trichostetha fascicularis, by single-step RP (reverse-phase)-HPLC and monitoring of tryptophan fluorescence resulted in two distinctive peaks, the material of which mobilized proline and carbohydrates in a bioassay performed using the beetle. Material from one of these peaks was; however, inactive in the classical bioassays of locusts and cockroaches that are used for detecting peptides belonging to the AKH (adipokinetic hormone) family. After enzymatically deblocking the N-terminal pyroglutamic acid (pGlu) residue in the peptide material and sequencing by Edman degradation, a partial sequence was obtained: (pGlu)-Ile-Asn-Met-Thr-Xaa-Gly-Trp. The complete sequence was deduced from ESI-MSn (electrospray ionization multi-stage-MS); position six was identified as a phosphothreonine residue and the C-terminus is amidated. The peptide, code-named Trifa-CC, was chemically synthesized and used in confirmatory experiments to show that the primary structure had been correctly assigned. To our knowledge, this is the first report of a phosphorylated invertebrate neuropeptide. Synthetic Trifa-CC co-elutes with the natural peptide, found in the gland of the protea beetle, after RP-HPLC. Moreover, the natural peptide can be dephosphorylated by alkaline phosphatase and the product of that reaction has the same retention time as a synthetic nonphosphorylated octapeptide which has the same sequence as Trifa-CC. Finally, synthetic Trifa-CC has hypertrehalosaemic and hyperprolinaemic biological activity in the protea beetle, but even high concentrations of synthetic Trifa-CC are inactive in locusts and cockroaches. Hence, the correct peptide structure has been assigned. Trifa-CC of the protea beetle is an unusual member of the AKH family that is unique in its post-translational modification. Since it increases the concentration of carbohydrates and proline in the haemolymph when injected into the protea beetle, and

  20. Hyperprolinaemia caused by novel members of the adipokinetic hormone/red pigment-concentrating hormone family of peptides isolated from corpora cardiaca of onitine beetles.

    Science.gov (United States)

    Gäde, G

    1997-01-01

    Two novel members of the adipokinetic hormone/red pigment-concentrating hormone family of peptides were identified in dung beetles of the genus Onitis using heterologous (measuring lipid and carbohydrate mobilization in locusts and cockroaches) and a homologous (measuring proline increase in the haemolymph) bioassay(s). Isolation of the peptides was achieved by single-step reverse-phase HPLC of corpora cardiaca extracts. The primary structure was elucidated by automated Edman degradation and by electrospray MS. Both peptides are blocked octapeptides containing three aromatic amino acids. Peptide 1, designated Ona-CC-I, is pGlu-Tyr-Asn-Phe-Ser-Thr-Gly-Trp-NH2, and peptide 2, designated Ona-CC-II, is pGlu-Phe-Asn-Tyr-Ser-Pro-Asp-Trp-NH2. The synthetic peptides were chromatographically indistinguishable from the natural compounds. They both had a hyperprolinaemic effect in the dung beetle. Moreover, flight experiments established that proline is an important fuel to power flight metabolism in Onitis species. Therefore, it is concluded that these novel and unique peptides are involved in regulating proline-based flight metabolism.

  1. The adipokinetic hormone (AKH) of one of the most basal orders of Pterygota: structure and function of Ephemeroptera AKH.

    Science.gov (United States)

    Gäde, Gerd; Marco, Heather G

    2012-11-01

    This is the first reported primary sequence of a bioactive peptide isolated from three Ephemeroptera families. Peptides of the adipokinetic hormone (AKH) family from the corpora cardiaca of nymphs of Afronurus spp. (Family: Heptageniidae), Siphlonurus lacustris (Family: Siphlonuridae) and Ephemera danica (Family: Ephemeridae) were investigated functionally in homologous (hypertrehalosaemic activity demonstrated in E. danica nymphs) and heterologous (active in cockroach and locust) bioassays, and structurally by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. All species investigated synthesise the octapeptide code-named Anaim-AKH (pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp amide). Confirmation of this peptide being present in corpora cardiaca of E. danica nymphs was obtained via reverse phase-high pressure liquid chromatography. Phylogenetically, the presence of only one AKH peptide may constitute a basal condition; all other lower insect orders, e.g. Odonata, Blattodea, Orthoptera, amongst others, have more than one AKH analogue. We propose that Anaim-AKH is the ancestral peptide which may support the Palaeoptera hypothesis that mayflies (Ephemeroptera) and dragonflies (Odonata) form the Palaeoptera clade, the sister group of Neoptera. The structural data cannot, however, shed any light on the phylogenetic scenarios within Ephemeroptera itself. Finally, this study demonstrates the successful use of larvae as an alternative biological source to study neuropeptides in ephemeral, elusive or difficult to obtain adult insects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Several isoforms of locustatachykinins may be involved in cyclic AMP-mediated release of adipokinetic hormones from the locust Corpora cardiaca.

    Science.gov (United States)

    Nässel, D R; Vullings, H G; Passier, P C; Lundquist, C T; Schoofs, L; Diederen, J H; Van der Horst, D J

    1999-03-01

    Four locustatachykinins (LomTK I-IV) were identified in about equal amounts in extracts of corpora cardiaca of locusts, using reverse-phase high-performance liquid chromatography and radioimmunoassay with synthetic LomTK I-IV as standards. Brain extracts also contained the four isoforms in roughly equimolar concentrations. Retrograde tracing of the nervi corporis cardiaci II (NCC II) in vitro with Lucifer yellow in combination with LomTK immunocytochemistry revealed that about half of the secretomotor neurons in the lateral part of the protocerebrum projecting into the glandular lobe of the corpora cardiaca (CCG) contain LomTK-immunoreactive material. Since the four LomTKs are present in the CCG, these four or five neurons in each hemisphere are likely to contain colocalized LomTK I-IV. The role of two of the LomTKs in the regulation of the release of adipokinetic hormones (AKHs) from the adipokinetic cells in the CCG in the locust was investigated. Experiments performed in vitro showed that LomTK I and II induced release of AKH in a dose-dependent manner. These peptides also rapidly and transiently elevated the cyclic AMP-content of the CCG. The peak level of cyclic AMP occurred about 45 seconds after stimulation with LomTK. These results support the proposal that LomTKs are involved in controlling the release of the adipokinetic hormones and suggest that all LomTK isoforms may participate in this cyclic AMP-mediated event. Copyright 1999 Academic Press.

  3. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster.

    Science.gov (United States)

    Lee, Gyunghee; Park, Jae H

    2004-01-01

    Adipokinetic hormones (AKHs) are metabolic neuropeptides, mediating mobilization of energy substrates from the fat body in many insects. In delving into the roles of the Drosophila Akh (dAkh) gene, its developmental expression patterns were examined and the physiological functions of the AKH-producing neurons were investigated using animals devoid of AKH neurons and ones with ectopically expressing dAkh. The dAkh gene is expressed exclusively in the corpora cardiaca from late embryos to adult stages. Projections emanating from the AKH neurons indicated that AKH has multiple target tissues as follows: the prothoracic gland and aorta in the larva and the crop and brain in the adult. Studies using transgenic manipulations of the dAkh gene demonstrated that AKH induced both hypertrehalosemia and hyperlipemia. Starved wild-type flies displayed prolonged hyperactivity prior to death; this novel behavioral pattern could be associated with food-searching activities in response to starvation. In contrast, flies devoid of AKH neurons not only lacked this type of hyperactivity, but also displayed strong resistance to starvation-induced death. From these findings, we propose another role for AKH in the regulation of starvation-induced foraging behavior. PMID:15166157

  4. The adipokinetic hormone receptor modulates sexual behavior, pheromone perception and pheromone production in a sex-specific and starvation-dependent manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2016-01-01

    Full Text Available Food availability and nutritional status shape the reproductive activity of many animals. In rodents, hormones such as gonadotropin-releasing hormone (GnRH, restore energy homeostasis not only through regulating e.g. caloric intake and energy housekeeping, but also through modulating sex drive. We investigated whether the insect homologue of the GnRH receptor, the adipokinetic hormone receptor (AKHR modulates sexual behavior of the fruit fly Drosophila melanogaster depending on nutritional status. We found that AKHR regulates male, but not female sexual behavior in a starvation-dependent manner. Males lacking AKHR showed a severe decrease in their courtship activity when starved, as well as an increase in mating duration when fed. AKHR expression is particularly strong in the subesophageal zone (SEZ, Ito et al. 2014. We found axonal projections from AKHR-expressing neurons to higher brain centers including specific glomeruli in the antennal lobe. Among the glomeruli that received projections were those dedicated to detecting the male specific pheromone cis-vaccenyl acetate (cVA. Accordingly, responses to cVA were dependent on the nutritional status of flies. AKHR was also involved in the regulation of the production of cuticular pheromones, 7,11-heptacosadiene and 7-tricosene. This effect was observed only in females and depended on their feeding state. AKHR has therefore a dual role on both pheromone perception and production. For the first time our study shows an effect of AKHR on insect sexual behavior and physiology. Our results support the hypothesis of a conserved role of the GnRH/AKH pathway on a nutritional state-dependent regulation of reproduction in both vertebrates and invertebrates.

  5. Isolation and structure of a novel charged member of the red-pigment-concentrating hormone-adipokinetic hormone family of peptides isolated from the corpora cardiaca of the blowfly Phormia terraenovae (Diptera).

    Science.gov (United States)

    Gäde, G; Wilps, H; Kellner, R

    1990-01-01

    A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named 'Phormia terraenovae hypertrehalosaemic hormone' (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species. PMID:2386478

  6. The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha).

    Science.gov (United States)

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2017-07-14

    The rationale of "green pesticides" in food security is to use information about endogenous hormones of pest insects to make peptide mimetics that will act against the pest insects to alter their behaviour or physiology, while taking care not to harm beneficial insects or other organisms in the food chain. Such "green" insecticides are designed thus, on the basis of neuropeptide ligand-receptor interaction and it is of paramount interest to have finally a mimetic at hand that is harmful only to pest insects. For this concept to work, one has to identify the ligands in pest and beneficial insects. In this study we investigate adipokinetic hormones (AKHs) from a hemipteran source. The most harmful hemipterans on an economic scale are aphids (Hemiptera: Sternorrhyncha: Aphidoidea) of which the AKH is known. Here we identify the AKH complement of a member of a related suborder, the raintree bug or froghopper Ptyelus flavescens (Hemiptera: Cicadomorpha: Cercopoidea). Identification and sequence elucidation of the adipokinetic peptides of this species was achieved by a heterospecific and conspecific trehalose-mobilizing bioassay, and by liquid chromatography coupled to positive electrospray mass spectrometry (LC-ESI-MS) including tandem MS(2) spectra obtained by collision-induced dissociation. High resolution MS was employed to distinguish between Gln and Lys residues in the peptides. Three AKHs are discovered in the raintree bug: an octapeptide (Peram-CAH-I: pEVNFSPNW amide) previously known from cockroaches, and two novel decapeptides (Ptyfl-AKH-I: pEINFSTGWGQ amide and Ptyfl-AKH-II: pEINFSTAWGQ amide). The novel peptides were synthesized and the sequence assignments were unequivocally confirmed by co-elution of synthetic peptides and the natural equivalent and by identical MS data of the two forms. A conspecific bioassay in the froghopper describe the endogenous peptide Ptyfl-AKH-I as hypertrehalosemic. In heterologous bioassays the two novel AKHs induce an increase

  7. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress?

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Krishnan, Natraj; Habuštová, Oxana

    2007-01-01

    Roč. 28, č. 5, (2007), s. 974-980 ISSN 0196-9781 R&D Projects: GA ČR GA522/05/0151; GA ČR(CZ) GA522/06/1591 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * oxidative stress * GMO Subject RIV: ED - Physiology Impact factor: 2.368, year: 2007

  8. [Thyroid hormones and cardiovascular system].

    Science.gov (United States)

    Límanová, Zdeňka; Jiskra, Jan

    Cardiovascular system is essentially affected by thyroid hormones by way of their genomic and non-genomic effects. Untreated overt thyroid dysfunction is associated with higher cardiovascular risk. Although it has been studied more than 3 decades, in subclinical thyroid dysfunction the negative effect on cardiovascular system is much more controversial. Large meta-analyses within last 10 years have shown that subclinical hyperthyroidism is associated with higher cardiovascular risk than subclinical hypothyroidism. Conversely, in patients of age > 85 years subclinical hypothyroidism was linked with lower mortality. Therefore, subclinical hyperthyroidism should be rather treated in the elderly while subclinical hypothyroidism in the younger patients and the older may be just followed. An important problem on the border of endocrinology and cardiology is amiodarone thyroid dysfunction. Effective and safe treatment is preconditioned by distinguishing of type 1 and type 2 amiodarone induced hyperthyroidism. The type 1 should be treated with methimazol, therapeutic response is prolonged, according to recent knowledge immediate discontinuation of amiodarone is not routinely recommended and patient should be usually prepared to total thyroidectomy, or rather rarely 131I radioiodine ablation may be used if there is appropriate accumulation. In the type 2 there is a promt therapeutic response on glucocorticoids (within 1-2 weeks) with permanent remission or development of hypothyroidism. If it is not used for life-threatening arrhytmias, amiodarone may be discontinuated earlier (after several weeks). Amiodarone induced hypothyroidism is treated with levothyroxine without amiodarone interruption.Key words: amiodarone induced thyroid dysfunction - atrial fibrillation - cardiovascular risk - heart failure - hyperthyroidism - hypothyroidism - thyroid stimulating hormone.

  9. Endocrine archeology: do insects retain ancestrally inherited counterparts of the vertebrate releasing hormones GnRH, GHRH, TRH, and CRF?

    Science.gov (United States)

    De Loof, Arnold; Lindemans, Marleen; Liu, Feng; De Groef, Bert; Schoofs, Liliane

    2012-05-15

    Vertebrate releasing hormones include gonadotropin releasing hormone (GnRH), growth hormone releasing hormone (GHRH), corticotropin releasing hormone (CRF), and thyrotropin-releasing hormone (TRH). They are synthesized in the hypothalamus and stimulate the release of pituitary hormones. Here we review the knowledge on hormone releasing systems in the protostomian lineage. We address the question: do insects have peptides that may be phylogenetically related to an ancestral GnRH, GHRH, TRH, and CRF? Such endocrine archeology has become possible thanks to the growing list of fully sequenced genomes as well as to the continuously improving bioinformatic tool set. It has recently been shown that the ecdysozoan (nematodes and arthropods) adipokinetic hormones (AKHs), the lophotrochozoan (annelids and mollusks) GnRHs as well as the protochordate GnRHs are structurally related. The adipokinetic hormone precursor-related peptides (APRPs), in locusts encoded by the same gene that contains the AKH-coding region, have been forwarded as the structural counterpart of GHRH of vertebrates. CRF is relatively well conserved in insects, in which it functions as a diuretic hormone. Members of TRH-receptor family seem to have been conserved in some arthropods, but other elements of the thyroid hormone signaling system are not. A challenging idea is that in insects the functions of the thyroid hormones were taken over by juvenile hormone (JH). Our reconstruction suggests that, perhaps, the ancestral releasing hormone precursors played a role in controlling energy metabolism and water balance, and that releasing hormone functions as present in extant vertebrates were probably secondarily acquired. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Adipokinetic hormone activities in insect body infected by entomopathogenic nematode

    Czech Academy of Sciences Publication Activity Database

    Ibrahim, Emad; Hejníková, Markéta; Shaik, Haq Abdul; Doležel, David; Kodrík, Dalibor

    2017-01-01

    Roč. 98, April 01 (2017), s. 347-355 ISSN 0022-1910 R&D Projects: GA ČR(CZ) GA17-03253S Institutional support: RVO:60077344 Keywords : mortality * Akh gene expression * AKH receptor Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.227, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022191017300082

  11. Primary structure of a novel neuropeptide isolated from the corpora cardiaca of periodical cicadas having adipokinetic and hypertrehalosemic activities.

    Science.gov (United States)

    Raina, A; Pannell, L; Kochansky, J; Jaffe, H

    1995-09-01

    A new neuropeptide hormone was isolated from the corpora cardiaca of the periodical cicadas, Magicicada species. Primary structure of the peptide as determined by a combination of automated Edman degradation after enzymatic deblocking with pyroglutamate aminopeptidase and mass spectrometry is: pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp-Gly-Asn-NH2. Synthetic peptide assayed in the green stink bug Nezara viridula caused a 112% increase in hemolymph lipids at a dose of 0.625 pmol, and a 67% increase in hemolymph carbohydrates at a dose of 2.5 pmol. Based on these results we designate this peptide, a first from order Homoptera, as Magicicada species-adipokinetic hormone (Mcsp-AKH).

  12. Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum

    DEFF Research Database (Denmark)

    Li, Bin; Predel, Reinhard; Neupert, Susanne

    2008-01-01

    hormone (DH37 and DH47 of Tribolium), adipokinetic hormone (AKH), eclosion hormone, and insulin-like peptide. In addition, we found a gene encoding an arginine-vasopressin-like (AVPL) peptide and one for its receptor. Both genes occur only in Tribolium and not in other holometabolous insects...

  13. Hormonal regulation of the hypothalamic melanocortin system.

    Science.gov (United States)

    Kim, Jung D; Leyva, Stephanie; Diano, Sabrina

    2014-01-01

    Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

  14. Hormonal regulation of the hypothalamic melanocortin system

    Directory of Open Access Journals (Sweden)

    Jung Dae eKim

    2014-12-01

    Full Text Available Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

  15. Sex hormones in the cardiovascular system.

    Science.gov (United States)

    dos Santos, Roger Lyrio; da Silva, Fabrício Bragança; Ribeiro, Rogério Faustino; Stefanon, Ivanita

    2014-05-01

    Gender-associated differences in the development of cardiovascular diseases have been described in humans and animals. These differences could explain the low incidence of cardiovascular disease in women in the reproductive period, such as stroke, hypertension, and atherosclerosis. The cardiovascular protection observed in females has been attributed to the beneficial effects of estrogen on endothelial function. Besides estrogen, sex hormones are able to modulate blood pressure by acting on important systems as cardiovascular, renal, and neural. They can have complementary or antagonistic actions. For example, testosterone can raise blood pressure by stimulating the renin-angiotensin-aldosterone system, whereas estrogen alone or combined with progesterone has been associated with decreased blood pressure. The effects of testosterone in the development of cardiovascular disease are contradictory. Although some researchers suggest a positive effect, others indicate negative actions of testosterone. Estrogens physiologically stimulate the release of endothelium-derived vasodilator factors and inhibit the renin-angiotensin system. Although the cardioprotective effects of estrogen are widely appreciated, little is known about the effects of progesterone, which is commonly used in hormone replacement therapy. Progesterone has both vasodilatory and vasoconstrictive effects in the vasculature, depending on the location of the vessel and the level of exposure. Nevertheless, the mechanisms through which sex hormones modulate blood pressure have not been fully elucidated. Therefore, the characterization of those could lead to a better understanding of hypertension in women and men and perhaps to improved forms of therapy.

  16. 21 CFR 862.1370 - Human growth hormone test system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  17. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  18. Growth hormone and the cardiovascular system.

    Science.gov (United States)

    Palmeiro, Christopher R; Anand, Rishi; Dardi, Inderpreet Kaur; Balasubramaniyam, Nivas; Schwarcz, Monica D; Weiss, Irene A

    2012-01-01

    Growth hormone (GH) exerts its effects through insulin-like growth factor-1, and although ubiquitous in human tissues, it has a significant role in cardiovascular function. In recent years, there has been a great deal of interest in GH as an etiologic factor in many cardiovascular disease states. Acromegaly, a state of endogenous GH excess, results in myocardial hypertrophy and decreased cardiac performance with increased cardiovascular mortality. Additional insight into the role of excess GH on the cardiovascular system has been gained from data collected in athletes doping with GH. Likewise, GH deficiency is associated with increased mortality, possibly from the associated increase in atherosclerosis, lipid abnormalities, and endothelial dysfunction. However, further research is required to clarify the benefit of GH treatment in both deficient states and in heart failure patients.

  19. Structure determination of adipokinetic hormones using fast atom bombardment tandem mass spectrometry; An unknown adipokinetic hormone (AKH-III) from Locusta migratoria

    Energy Technology Data Exchange (ETDEWEB)

    Heerma, W.; Versluis, C.; Lankhof, H. (Utrecht University (Netherlands). Faculty of Chemistry, Department of Analytical Molecular Spectrometry); Oudejans, R.C.H.M.; Kooiman, F.P.; Beenakkers, A.M.T. (Utrecht University (Netherlands). Department of Experimental Zoology)

    1991-08-01

    Fast atom bombardment mass spectrometry combined with various tandem mass spectrometric techniques and accurate mass measurement were used to elucidate the structure of an unknown biologically active peptide isolated from Locusa migratoria. (author). 23 refs.; 6 figs.; 2 schemes.

  20. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2012-06-01

    Full Text Available Honey bees (Apis mellifera provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses usually feed the brood and other adult bees inside the nest, while older bees (foragers forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg and juvenile hormone (JH. However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1, the adipokinetic hormone receptor (AKHR, and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor. Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH, and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  1. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Science.gov (United States)

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  2. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690 Section 862.1690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... produced by the anterior pituitary are used in the diagnosis of thyroid or pituitary disorders. (b...

  3. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adrenocorticotropic hormone (ACTH) test system. 862.1025 Section 862.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and serum. ACTH measurements are used in the differential diagnosis and treatment of certain disorders...

  4. Beneficial effect of adipokinetic hormone on neuromuscular paralysis in insect body elicited by braconid wasp venom

    Czech Academy of Sciences Publication Activity Database

    Shaik, Haq Abdul; Mishra, Archana; Kodrík, Dalibor

    2017-01-01

    Roč. 196, JUN 01 (2017), s. 11-18 ISSN 1532-0456 R&D Projects: GA ČR(CZ) GA17-03253S Institutional support: RVO:60077344 Keywords : AKH * Akh gene expression * Habrobracon hebetor Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.416, year: 2016 http://www.sciencedirect.com/science/article/pii/S1532045617300510

  5. Effects of thyroid hormone on the cardiovascular system.

    Science.gov (United States)

    Fazio, Serafino; Palmieri, Emiliano A; Lombardi, Gaetano; Biondi, Bernadette

    2004-01-01

    Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that overt hyperthyroidism induces a hyperdynamic cardiovascular state (high cardiac output with low systemic vascular resistance), which is associated with a faster heart rate, enhanced left ventricular (LV) systolic and diastolic function, and increased prevalence of supraventricular tachyarrhythmias - namely, atrial fibrillation - whereas overt hypothyroidism is characterized by the opposite changes. However, whether changes in cardiac performance associated with overt thyroid dysfunction are due mainly to alterations of myocardial contractility or to loading conditions remains unclear. Extensive evidence indicates that the cardiovascular system responds to the minimal but persistent changes in circulating thyroid hormone levels, which are typical of individuals with subclinical thyroid dysfunction. Subclinical hyperthyroidism is associated with increased heart rate, atrial arrhythmias, increased LV mass, impaired ventricular relaxation, reduced exercise performance, and increased risk of cardiovascular mortality. Subclinical hypothyroidism is associated with impaired LV diastolic function and subtle systolic dysfunction and an enhanced risk for atherosclerosis and myocardial infarction. Because all cardiovascular abnormalities are reversed by restoration of euthyroidism ("subclinical hypothyroidism") or blunted by beta-blockade and L-thyroxine (L-T4) dose tailoring ("subclinical hyperthyroidism"), timely treatment is advisable in an attempt to avoid adverse cardiovascular effects. Interestingly, some data indicate that patients with acute and chronic cardiovascular disorders and those undergoing cardiac surgery may have altered peripheral thyroid hormone metabolism that, in turn, may contribute to altered cardiac function. Preliminary clinical investigations suggest that administration of

  6. Modeling the Nonlinear Time Dynamics of Multidimensional Hormonal Systems*

    Science.gov (United States)

    Keenan, Daniel M.; Wang, Xin; Pincus, Steven M.; Veldhuis, Johannes D.

    2012-01-01

    In most hormonal systems (as well as many physiological systems more generally), the chemical signals from the brain, which drive much of the dynamics, can not be observed in humans. By the time the molecules reach peripheral blood, they have been so diluted so as to not be assayable. It is not possible to invasively (surgically) measure these agents in the brain. This creates a difficult situation in terms of assessing whether or not the dynamics may have changed due to disease or aging. Moreover, most biological feedforward and feedback interactions occur after time delays, and the time delays need to be properly estimated. We address the following two questions: (1) Is it possible to devise a combination of clinical experiments by which, via exogenous inputs, the hormonal system can be perturbed to new steady-states in such a way that information about the unobserved components can be ascertained; and, (2) Can one devise methods to estimate (possibly, time-varying) time delays between components of a multidimensional nonlinear time series, which are more robust than traditional methods? We present methods for both questions, using the Stress (ACTH-cortisol) hormonal system as a prototype, but the approach is more broadly applicable. PMID:22977290

  7. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    Science.gov (United States)

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular

  8. Pesticide exposure: the hormonal function of the female reproductive system disrupted?

    Directory of Open Access Journals (Sweden)

    Zielhuis Gerhard A

    2006-05-01

    Full Text Available Abstract Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as

  9. 21 CFR 862.1545 - Parathyroid hormone test system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... is a device intended to measure the levels of parathyroid hormone in serum and plasma. Measurements of parathyroid hormone levels are used in the differential diagnosis of hypercalcemia (abnormally...

  10. Hormones in the immune system and their possible role. A critical review.

    Science.gov (United States)

    Csaba, György

    2014-09-01

    Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.

  11. Pesticide exposure: the hormonal function of the female reproductive system disrupted?

    NARCIS (Netherlands)

    Bretveld, R.W.; Thomas, C.M.G.; Scheepers, P.T.J.; Zielhuis, G.A.; Roeleveld, N.

    2006-01-01

    Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor,

  12. Contracepção hormonal e sistema cardiovascular Contracepción hormonal y sistema cardiovascular Hormonal contraception and cardiovascular system

    Directory of Open Access Journals (Sweden)

    Milena Bastos Brito

    2011-04-01

    Full Text Available A contracepção hormonal é o método mais utilizado para prevenção de gestações não planejadas. A literatura tem demonstrado associação entre risco cardiovascular e uso de hormonioterapia. A fim de melhorar a orientação contraceptiva para mulheres com fatores de risco para doença cardiovascular, realizamos uma revisão da literatura em relação ao assunto. Esta revisão descreve os dados mais recentes da literatura científica acerca da influência dos contraceptivos hormonais em relação a trombose venosa, arterial e hipertensão arterial sistêmica, doenças cada dia mais prevalentes na população feminina jovem.La contracepción hormonal es el método más utilizado para la prevención de los embarazos no planificados. La literatura ha venido demostrando la asociación que existe entre el riesgo cardiovascular y el uso de la hormonoterapia. Con el objetivo de mejorar la orientación en la contracepción en mujeres con factores de riesgo para el desarrollo de enfermedad cardiovascular, realizamos una revisión de la literatura con relación a ese asunto. Esa revisión describe los datos más recientes de la literatura científica acerca de la influencia de los anticonceptivos hormonales con relación a la trombosis venosa, arterial e hipertensión arterial sistémica, enfermedades cada día más prevalentes en la población femenina joven.Hormonal contraception is the most widely used method to prevent unplanned pregnancies. The literature has shown an association between cardiovascular risk and use of hormone therapy. With the purpose of providing better guidelines on contraception methods for women with risk factors for cardiovascular disease, we have reviewed the literature on the subject. This review describes the latest data from the scientific literature concerning the influence of hormonal contraceptives on arterial thrombosis, venous thrombosis and systemic high blood pressure, which are diseases that have become

  13. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    Science.gov (United States)

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  14. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    Directory of Open Access Journals (Sweden)

    Dongoh Lee

    2016-07-01

    Full Text Available 2,4,6-Tribromophenol (TBP is a brominated flame retardant (BFR. Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1 and thyroid hormone receptor β isoform 2 (Thrβ2 decreased in the pituitary gland. The levels of deiodinase 2 (Dio2 and growth hormone (Gh mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems

  15. Analysis of steroid hormones in a typical dairy waste disposal system.

    Science.gov (United States)

    Zheng, Wei; Yates, Scott R; Bradford, Scott A

    2008-01-15

    The environmental loading of steroid hormones contained in dairy wastes may cause an adverse effect on aquatic species. To better assess the potential risks of hormone contamination resulting from land application of dairy wastes, various steroid hormones were determined in a typical dairy waste disposal system. Quantitative methods using gas chromatography/mass spectrometry (GC/MS) were developed to monitor low levels of steroid hormones in complex solid and liquid samples contaminated with dairy manure. The preparation method for wastewater analysis consisted of solid-phase extraction and purification steps, which minimized interference from the sample matrices and achieved low detection limits for the studied hormones. In the dairy wastewater and lagoon water, three endogenous hormones-17alpha-estradiol, 17beta-estradiol, and estrone-were detected. The concentration of 17alpha-estradiol in fresh milk parlor effluent rapidly decreased along the wastewater disposal route, whereas the concentration of estrone increased along this same pathway. This suggests that 17alpha-estradiol was readily oxidized to the metabolite estrone. Levels of total steroid hormones in the sequencing lagoon water were approximately 1-3 orders of magnitude lower than those in the fresh dairy wastewaters, indicating significant removal of these hormones during the transport of dairy wastewater from source to field. In solid dairy waste samples, four steroid hormones were identified and quantified. Increasing the piling time of solid wastes and increasing the residence time of wastewater in sequencing lagoons are suggested to be economical and efficient agriculture practices to extend the degradation time of hormone contaminants and thereby reduce the hormone load to the environment.

  16. Interrelationships between Hormones, Behavior, and Affect during Adolescence: Complex Relationships Exist between Reproductive Hormones, Stress‐Related Hormones, and the Activity of Neural Systems That Regulate Behavioral Affect. Comments on Part III

    National Research Council Canada - National Science Library

    CAMERON, JUDY L

    2004-01-01

    ..., and changes in behavioral affect regulation. The interactions between activity in the reproductive axis, the neural systems that regulate stress, hormones produced in response to stress, and neural systems governing behavioral affect regulation...

  17. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons.

    Science.gov (United States)

    Pérez-Polanco, Paola; Garduño, Julieta; Cebada, Jorge; Zarco, Natanael; Segovia, José; Lamas, Mónica; García, Ubaldo

    2011-09-01

    In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones.

  18. Extrapituitary growth hormone in the chicken reproductive system.

    Science.gov (United States)

    Luna, Maricela; Martínez-Moreno, Carlos G; Ahumada-Solórzano, Marisela S; Harvey, Steve; Carranza, Martha; Arámburo, Carlos

    2014-07-01

    Increasing evidence shows that growth hormone (GH) expression is not limited to the pituitary, as it can be produced in many other tissues. It is known that growth hormone (GH) plays a role in the control of reproductive tract development. Acting as an endocrine, paracrine and/or autocrine regulator, GH influences proliferation, differentiation and function of reproductive tissues. In this review we substantiate the local expression of GH mRNA and GH protein, as well as the GH receptor (GHR) in both male and female reproductive tract, mainly in the chicken. Locally expressed GH was found to be heterogeneous, with a 17 kDa variant being predominant. GH secretagogues, such as GHRH and TRH co-localize with GH expression in the chicken testis and induce GH release. In the ovarian follicular granulosa cells, GH and GHR are co-expressed and stimulate progesterone production, which was neutralized by a specific GH antibody. Both testicular and follicular cells in primary cultures were able to synthesize and release GH to the culture medium. We also characterized GH and GH mRNA expression in the hen's oviduct and showed that it had 99.6% sequence identity with pituitary GH. Data suggest local reproductive GH may have important autocrine/paracrine effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A control system formulation of the mechanism that controls the secretions of serum group hormone in humans during sleep

    Science.gov (United States)

    Howard, J. C.; Young, D. R.

    1975-01-01

    Plasma growth hormone concentrations during sleep were determined experimentally. An elevated level of plasma growth hormone was observed during the initial phase of sleep and remained elevated for approximately 3 hr before returning to the steady-state level. Moreover, subsequent to a prolonged interruption of sleep, of the order of 2-3 hr, an elevated level of plasma growth hormone was again observed during the initial phase of resumed sleep. A control system formulation of the mechanism that controls the secretions of serum growth hormone in humans was used to account for the growth hormone responses observed.

  20. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    Science.gov (United States)

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  1. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    Full Text Available Thyroid hormones (THs play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR, the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5 was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA. These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in

  2. Is immune system-related hypertension associated with ovarian hormone deficiency?

    Science.gov (United States)

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2016-03-01

    What is the topic of this review? This review summarizes recent data on the role of ovarian hormones and sex in inflammation-related hypertension. What advances does it highlight? The adaptive immune system has recently been implicated in the development of hypertension in males but not in females. The role of the immune system in the development of hypertension in women and its relationship to ovarian hormone production are highlighted. The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  3. Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system.

    Science.gov (United States)

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W

    2014-10-07

    The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.

  4. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Follicle-stimulating hormone test system. 862.1300 Section 862.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... disorders. (b) Classification. Class I (general controls). The device is exempt from the premarket...

  5. Growth hormone treatment in cartilage-hair hypoplasia: effects on growth and the immune system.

    NARCIS (Netherlands)

    Bocca, G.; Weemaes, C.M.R.; Burgt, C.J.A. van der; Otten, B.J.

    2004-01-01

    Cartilage-hair hypoplasia (CHH) is a rare autosomal recessive disorder characterized by metaphyseal chondrodysplasia with severe growth retardation and impaired immunity. We studied the effects of growth hormone treatment on growth parameters and the immune system in four children with CHH. The

  6. Connexin-dependent signaling in neuro-hormonal systems.

    OpenAIRE

    Potolicchio Ilaria; Cigliola Valentina; Velazquez-Garcia Silvia; Klee Philippe; Valjevac Amina; Kapic Dina; Cosovic Esad; Lepara Orhan; Hadzovic-Dzuvo Almira; Mornjacovic Zakira; Meda Paolo

    2011-01-01

    The advent of multicellular organisms was accompanied by the development of short and long range chemical signalling systems including those provided by the nervous and endocrine systems. In turn the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution such mechanisms have diversified to become integrated in a complex regulatory network whereby individual endocrine and neuro endocrine cells sense the state of activity of th...

  7. Is immune system-related hypertension associated with ovarian hormone deficiency?

    OpenAIRE

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2015-01-01

    The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant change...

  8. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    Directory of Open Access Journals (Sweden)

    Ainhoa eMartinez-Medina

    2013-06-01

    Full Text Available Root colonization by selected Trichoderma isolates can activate in the plant a systemic defence response that is effective against a broad spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defence signalling network that leads to the induction of systemic resistance triggered by beneficial organisms (ISR. Among them, jasmonic acid (JA and ethylene (ET signalling pathways are generally essential for ISR. However, Trichoderma ISR (TISR is believed to involve a wider variety of signalling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defence related hormones JA, ET, salicylic acid (SA and abscisic acid (ABA and the peptide prosystemin (PS evidenced the requirement of intact JA, SA and ABA signalling pathways for a functional TISR. Expression analysis of several hormone related marker genes point to the role of priming for enhanced JA-dependent defence responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against the necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development

  9. Interactions between immune, stress-related hormonal and cardiovascular systems following strenuous physical exercise.

    Science.gov (United States)

    Menicucci, Danilo; Piarulli, Andrea; Mastorci, Francesca; Sebastiani, Laura; Laurino, Marco; Garbella, Erika; Castagnini, Cinzia; Pellegrini, Silvia; Lubrano, Valter; Bernardi, Giulio; Metelli, Maria; Bedini, Remo; L'abbate, Antonio; Pingitore, Alessandro; Gemignani, Angelo

    2013-09-01

    Physical exercise represents a eustress condition that promotes rapid coordinated adjustments in the immune, stress-related hormonal and cardiovascular systems, for maintaining homeostasis in response to increased metabolic demands. Compared to the tight multisystem coordination during exercise, evidence of between-systems cross talk in the early post exercise is still lacking. This study was aimed at identifying possible interactions between multiple systems following strenuous physical exercise (Ironman race) performed by twenty well-trained triathletes. Cardiac hemodynamics, left ventricle systolic and diastolic function and heart rate variability were measured along with plasma concentrations of immune messengers (cytokines and C-reactive protein) and stress-related hormones (catecholamines and cortisol) both 24h before and within 20 min after the race. Observed changes in antiinflammatory pathways, stress-related hormones and cardiovascular function were in line with previous findings; moreover, correlating parameters' changes (post versus pre-race) highlighted a dependence of cardiovascular function on the post-race biohumoral milieu: in particular, individual post-race variations of heart rate and diastolic function were strongly correlated with individual variations of anti-inflammatory cytokines, while individual baroreflex sensitivity changes were linked to IL-8 increase. Multiple correlations between anti-inflammatory cytokines and catecholamines were also found according with the autonomic regulation of immune function. Observed post-race cytokine and hormone levels were presumptively representative of the increases reached at the effort end while the cardiovascular parameters after the race were measured during the cardiovascular recovery; thus, results suggest that sustained strenuous exercise produced a stereotyped cardiovascular early recovery, whose speed could be conditioned by the immune and stress-related hormonal milieu.

  10. Involvement of Ghrelin-Growth Hormone Secretagogue Receptor System in Pathoclinical Profiles of Digestive System Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhigang WANG; Weigang WANG; Wencai QIU; Youben FAN; Jun ZHAO; Yu WANG; Qi ZHENG

    2007-01-01

    Ghrelin receptor has been shown to be expressed along the human gastrointestinal tract.Recent studies showed that ghrelin and a synthetic ghrelin receptor agonist improved weight gain and lean body mass retention in a rat model of cancer cachexia by acting on ghrelin receptor, that is, growth hormone secretagogue receptor (GHS-R). This study aims to explore the expression and the distribution of ghrelin receptor in human gastrointestinal tract cancers and to investigate the possible involvement of the ghrelin-GHS-R system in human digestive cancers. Surgical human digestive cancer specimens were obtained from various portions of the gastrointestinal tract from different patients. The expression of ghrelin receptor in these tissues was detected by tissue microarray technique. Our results showed that ghrelin receptor was expressed in cancers throughout the gastrointestinal tract, mainly in the cytoplasm of mucosal layer cells.Its expression level possibly correlated with organ type, histological grade, tumor-nodes-metastases stage,and nutrition status (weight loss) of the patients. For the first time, we identified the distribution of ghrelin receptor in digestive system cancers. Our results implied that the ghrelin-GHS-R system might be involved in the pathoclinical profiles of digestive cancers.

  11. The Functional State of Hormone-Sensitive Adenylyl Cyclase Signaling System in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Alexander O. Shpakov

    2013-01-01

    Full Text Available Diabetes mellitus (DM induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.

  12. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone.

    Science.gov (United States)

    Tritos, N A; Maratos-Flier, E

    1999-10-01

    Our understanding of the regulation of appetite and energy balance has advanced significantly over the past decade as several peptides, centrally or peripherally expressed, have been characterized and shown to profoundly influence food intake and energy expenditure. (1)The growing number of putative appetite-regulating neuropeptides includes peptides that are orexigenic (appetite-stimulating) signals and anorectic peptides. Neuropeptide Y (NPY), melanin concentrating hormone (MCH), orexins A and B, galanin, and agouti -related peptide (AgRP) all act to stimulate feeding while alpha-melanocyte stimulating hormone (alphaMSH), corticotropin releasing hormone (CRH), cholecystokinin (CCK), cocaine and amphetamine regulated transcript (CART), neurotensin, glucagon-like peptide 1 (GLP 1), and bombesin have anorectic actions.(1) Leptin, expressed in the periphery in white adipose tissue, acts in the CNS to modulate the expression of several of these hypothalamic peptides.(1) This creates a functional link between the adipose tissue and the brain that translates the information on body fat provided by leptin to input into energy balance regulating processes. In the current review we examine the significant role of the melanocortin system (alphaMSH, agouti and AgRP peptides, and their receptors and mahogany protein) and melanin concentrating hormone in the regulation of energy balance. Copyright 1999 Harcourt Publishers Ltd.

  13. Optimum method for administration of biosynthetic human growth hormone: a randomised crossover trial of an Auto Injector and a pen injection system.

    OpenAIRE

    Stanhope, R; Albanese, A; Moyle, L; Hamill, G

    1992-01-01

    The use of optimum conventional growth hormone administration, using a growth hormone vial combined with an Auto Injector, was compared with a pen injection system using a cartridge of growth hormone. In both methods of administration the concentration of growth hormone was 16 IU/ml. Thirty patients (22 boys, eight girls) who had all previously been treated with growth hormone (4 IU/ml) administered using needles and syringes (without an Auto Injector) were randomised into receiving one of ei...

  14. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility.

    Science.gov (United States)

    Karasu, T; Marczylo, T H; Maccarrone, M; Konje, J C

    2011-01-01

    Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogenous cannabinoids (also called endocannabinoids) bind to the same receptors as those of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid-hormone-cytokine network. Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction. The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabinoids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the maintenance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility. The available studies suggest that tight control of the endocannabinoid-hormone-cytokine network is required for successful implantation and early pregnancy maintenance. This hormone-cytokine network is a key element at the maternal-foetal interface, and any defect in such a network may result in foetal loss.

  15. Integrated Systems View on Networking by Hormones in Arabidopsis Immunity Reveals Multiple Crosstalk for Cytokinin[W

    Science.gov (United States)

    Naseem, Muhammad; Philippi, Nicole; Hussain, Anwar; Wangorsch, Gaby; Ahmed, Nazeer; Dandekar, Thomas

    2012-01-01

    Phytohormones signal and combine to maintain the physiological equilibrium in the plant. Pathogens enhance host susceptibility by modulating the hormonal balance of the plant cell. Unlike other plant hormones, the detailed role of cytokinin in plant immunity remains to be fully elucidated. Here, extensive data mining, including of pathogenicity factors, host regulatory proteins, enzymes of hormone biosynthesis, and signaling components, established an integrated signaling network of 105 nodes and 163 edges. Dynamic modeling and system analysis identified multiple cytokinin-mediated regulatory interactions in plant disease networks. This includes specific synergism between cytokinin and salicylic acid pathways and previously undiscovered aspects of antagonism between cytokinin and auxin in plant immunity. Predicted interactions and hormonal effects on plant immunity are confirmed in subsequent experiments with Pseudomonas syringae pv tomato DC3000 and Arabidopsis thaliana. Our dynamic simulation is instrumental in predicting system effects of individual components in complex hormone disease networks and synergism or antagonism between pathways. PMID:22643121

  16. [LED LIGHTING AS A FACTOR FOR THE STIMULATION OF THE HORMONE SYSTEM].

    Science.gov (United States)

    Deynego, V N; Kaptsov, V A

    2015-01-01

    There are considered questions of non-visual effects of blue LED light sources on hormonal systems (cortisol, glucose, insulin) providing the high human performance. In modern conditions hygiene strategy for child and adolescent health strategy was shown to be replaced by a strategy of light stimulation of the hormonal profile. There was performed a systematic analysis of the axis "light stimulus-hypothalamus-pituitary-adrenals-cortisol-glucose-insulin". The elevation of the content of cortisol leads to the increase of the glucose level in the blood and the stimulation of the production of insulin, which can, like excessive consumption of food, give rise to irreversible decline in the number of insulin receptors on the cell surface, and thus--to a steady reduction in the ability of cells to utilize glucose, i.e. to type 2 diabetes or its aggravation.

  17. The characterization of new hormonal systems in arthropods with a focus on neuropeptide GPCRs

    DEFF Research Database (Denmark)

    Stafflinger, Elisabeth

    Neuropeptides and their G-protein coupled receptors (GPCRs) occupy a high hierarchical position in the physiology of animals, because they steer important processes such as reproduction, development, and behaviour. Within the last nine years, several genomes have been sequenced providing the basis...... of genome comparisons and analysis. This yields new insights in GPCR evolution and ligand co-evolution, but also uncovers many new hormonal systems. In this thesis, I characterized a group of neuropeptide GPCRs and their ligands in arthropods and investigated GPCR evolution and co-evolution of their ligands...

  18. Hormone impostors

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, T.; Dumanoski, D.; Myers, J.P.

    1997-01-01

    This article discusses the accumulating evidence that some synthetic chemicals disrupt hormones in one way or another. Some mimic estrogen and others interfere with other parts of the body`s control or endocrine system such as testosterone and thyroid metabolism. Included are PCBs, dioxins, furans, atrazine, DDT. Several short sidebars highlight areas where there are or have been particular problems.

  19. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Jose Carlos Pereira Jr.

    2010-01-01

    Full Text Available Data collected from medical literature indicate that dopaminergic agonists alleviate Restless Legs Syndrome symptoms while dopaminergic agonists antagonists aggravate them. Dopaminergic agonists is a physiological regulator of thyroid-stimulating hormone. Dopaminergic agonists infusion diminishes the levels of thyroid hormones, which have the ability to provoke restlessness, hyperkinetic states, tremors, and insomnia. Conditions associated with higher levels of thyroid hormones, such as pregnancy or hyperthyroidism, have a higher prevalence of Restless Legs Syndrome symptoms. Low iron levels can cause secondary Restless Legs Syndrome or aggravate symptoms of primary disease as well as diminish enzymatic activities that are involved in dopaminergic agonists production and the degradation of thyroid hormones. Moreover, as a result of low iron levels, dopaminergic agonists diminishes and thyroid hormones increase. Iron therapy improves Restless Legs Syndrome symptoms in iron deprived patients. Medical hypothesis. To discuss the theory that thyroid hormones, when not counterbalanced by dopaminergic agonists, may precipitate the signs and symptoms underpinning Restless Legs Syndrome. The main cause of Restless Legs Syndrome might be an imbalance between the dopaminergic agonists system and thyroid hormones.

  20. The thyrotropin-releasing hormone (TRH)-immune system homeostatic hypothesis.

    Science.gov (United States)

    Kamath, J; Yarbrough, G G; Prange, A J; Winokur, A

    2009-01-01

    Decades of research have established that the biological functions of thyrotropin-releasing hormone (TRH) extend far beyond its role as a regulator of the hypothalamic-pituitary-thyroid axis. Gary et al. [Gary, K.A., Sevarino, K.A., Yarbrough, G.G., Prange, A.J. Jr., Winokur, A. (2003). The thyrotropin-releasing hormone (TRH) hypothesis of homeostatic regulation: implications for TRH-based therapeutics. J Pharmacol Exp Ther 305(2):410-416.] and Yarbrough et al. [Yarbrough, G.G., Kamath, J., Winokur, A., Prange, A.J. Jr. (2007). Thyrotropin-releasing hormone (TRH) in the neuroaxis: therapeutic effects reflect physiological functions and molecular actions. Med Hypotheses 69(6):1249-1256.] provided a functional framework, predicated on its global homeostatic influences, to conceptualize the numerous interactions of TRH with the central nervous system (CNS) and endocrine system. Herein, we profer a similar analysis to interactions of TRH with the immune system. Autocrine/paracrine cellular signaling motifs of TRH and TRH receptors are expressed in several tissues and organs of the immune system. Consistent with this functional distribution, in vitro and in vivo evidence suggests a critical role for TRH during the developmental stages of the immune system as well as its numerous interactions with the fully developed immune system. Considerable evidence supports a pivotal role for TRH in the pathophysiology of the inflammatory process with specific relevance to the "cytokine-induced sickness behavior" paradigm. These findings, combined with a number of documented clinical actions of TRH strongly support a potential utility of TRH-based therapeutics in select inflammatory disorders. Similar to its global role in behavioral and energy homeostasis a homeostatic role for TRH in its interactions with the immune system is consonant with the large body of available data. Recent advances in the field of immunology provide a significant opportunity for investigation of the TRH

  1. Imbalance in the blood antioxidant system in growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy

    Directory of Open Access Journals (Sweden)

    Maria S. Pankratova

    2015-06-01

    Full Text Available The aim of our study was to examine the effects of 12-month therapy with recombinant growth hormone (rGH on the blood antioxidant system in children with growth hormone deficiency (GHD. Total antioxidant capacity (TAC of plasma was measured by FRAP (ferric reducing antioxidant power or ferric reducing ability of plasma; activities of superoxide dismutase (SOD and catalase (CAT in erythrocytes were assessed; non-protein thiols (NT and ceruloplasmin (CP levels were also measured. These parameters were determined before and after 12 month of rGH treatment. Eleven treatment-naive prepubertal children with growth hormone deficiency were included in the study. Another 11 prepubertal children comprised a control group. Before rGH treatment, TAC of plasma and NT level in the control group were significantly lower (726 ± 196 vs. 525 ± 166 µmol/L, P = 0.0182 and 0.92 ± 0.18 vs. 0.70 ± 0.22 µmol/ml, P = 0.0319, before and after the therapy, respectively. The only parameter that significantly (19.6 ± 4.7 vs. 14.5 ± 3.4 Units/g Hb, P = 0.0396 exceeded the same in the control group after rGH therapy was SOD activity. However, none of the measured parameters of antioxidant system in GHD children, except for TAC (525 ± 166 vs. 658 ± 115 µmol/L, P = 0.0205, exhibited significant improvement toward the end of the 12-month treatment period, although non-significant changes in CAT activity and CP level were also observed. This work has demonstrated that some parameters of the blood antioxidant system are out of balance and even impaired in GHD children. A 12-month treatment with rGH resulted in a partial improvement of the antioxidant system.

  2. Development of gonadotropin-releasing hormone systems in the male African catfish, Clarias gariepinus

    NARCIS (Netherlands)

    Dubois, E.A.

    2001-01-01

    Reproductive processes are mainly regulated by the brain-pituitary-gonad axis (BPG-axis). Gonadotropin-releasing hormone (GnRH) neurons localized in the brain release their hormone GnRH, which allows the release of gonadotropic hormone by gonadotropic cells in the pituitary. Gonadotropic

  3. Effect of different culture systems and 3, 5, 3'-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice.

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    Full Text Available The mechanical method to isolate preantral follicle has been reported for many years. However, the culture systems in vitro are still unstable. The aim of this study was to analyze the effect of the culture system of mice preantral follicles on the follicular development in vitro. The results showed that the 96-well plate system was the most effective method for mice follicle development in vitro (volume change: 51.71%; survival rate: 89%, at day 4. Follicle-stimulating hormone (FSH and Thyroid hormone (TH are important for normal follicular development and dysregulation of hormones are related with impaired follicular development. To determine the effect of hormone on preantral follicular development, we cultured follicle with hormones in the 96-well plate culture system and found that FSH significantly increased preantral follicular growth on day 4. The FSH-induced growth action was markedly enhanced by T₃ although T₃ was ineffective alone. We also demonstrated by QRT-PCR that T₃ significantly enhanced FSH-induced up-regulation of Xiap mRNA level. Meanwhile, Bad, cell death inducer, was markedly down-regulated by the combination of hormones. Moreover, QRT-PCR results were also consistent with protein regulation which detected by Western Blotting analysis. Taken together, the findings of the present study demonstrate that 96-well plate system is an effective method for preantral follicle development in vitro. Moreover, these results provide insights on the role of thyroid hormone in increasing FSH-induced preantral follicular development, which mediated by up-regulating Xiap and down-regulating Bad.

  4. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions.

    Science.gov (United States)

    Dziurka, Michał; Janeczko, Anna; Juhász, Csilla; Gullner, Gábor; Oklestková, Jana; Novák, Ondrej; Saja, Diana; Skoczowski, Andrzej; Tóbiás, István; Barna, Balázs

    2016-12-01

    Phytohormone levels and the expression of genes encoding key enzymes participating in hormone biosynthetic pathways were investigated in pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation led to the development of hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic, compatible interaction. ObPV-inoculation markedly increased not only the levels of salicylic acid (SA) (73-fold) and jasmonic acid (8-fold) but also those of abscisic acid, indole-3-acetic acid, indole-3-butyric acid, cis-zeatin, cis-zeatin-9-riboside and trans-zeatin-9-riboside in the inoculated pepper leaves 3 days post inoculation. PMMoV infection increased only the contents of gibberellic acid and SA. Hormone contents did not change significantly after ObPV or PMMoV infection in non-infected upper leaves 20 days post inoculation. Concentrations of some brassinosteroids (BRs) and progesterone increased both in ObPV- and PMMoV inoculated leaves. ObPV inoculation markedly induced the expression of three phenylalanine ammonia-lyase (PAL) and a 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes, while that of an isochorismate synthase (ICS) gene was not modified. PMMoV inoculation did not alter the expression of PAL and ICS genes but induced the transcript abundance of ACO although later than ObPV. Pre-treatment of pepper leaves with exogenous 24-epi-brassinolide (24-epi-BR) prior to ObPV-inoculation strongly mitigated the visible symptoms caused by ObPV. In addition, 24-epi-BR pre-treatment markedly altered the level of several hormones in pepper leaves following ObPV-inoculation. These data indicate that ObPV- and PMMoV-inoculations lead to intricate but well harmonized hormonal responses that are largely determined by the incompatible or compatible nature of plant-virus interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. A comparative analysis shows morphofunctional differences between the rat and mouse melanin-concentrating hormone systems.

    Directory of Open Access Journals (Sweden)

    Sophie Croizier

    Full Text Available Sub-populations of neurons producing melanin-concentrating hormone (MCH are characterized by distinct projection patterns, birthdates and CART/NK3 expression in rat. Evidence for such sub-populations has not been reported in other species. However, given that genetically engineered mouse lines are now commonly used as experimental models, a better characterization of the anatomy and morphofunctionnal organization of MCH system in this species is then necessary. Combining multiple immunohistochemistry experiments with in situ hybridization, tract tracing or BrdU injections, evidence supporting the hypothesis that rat and mouse MCH systems are not identical was obtained: sub-populations of MCH neurons also exist in mouse, but their relative abundance is different. Furthermore, divergences in the distribution of MCH axons were observed, in particular in the ventromedial hypothalamus. These differences suggest that rat and mouse MCH neurons are differentially involved in anatomical networks that control feeding and the sleep/wake cycle.

  6. Parathyroid hormone-sensitive adenylate cyclase system in plasma membranes of rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, W.F.; Schneider, N.

    1980-12-01

    Purified plasma membranes were prepared from normal rat livers. These membranes were unable to degrade parathyroid hormone (PTH), bovine PTH-(1 to 84) (bPTH-(1 to 84)), or bPTH-(1 to 34). The entire molecule bPTH-(1 to 84) caused a marked activation of adenylate cyclase (cAMP production increased over 5-fold), with half-maximal stimulation at 6.9 x 10/sup -8/ M. The amino-terminal fragment bPTH-(1 to 34) was equipotent but gave a smaller maximal cAMP production. The human (h) amino acid sequence, hPTH-(1 to 34) was only weakly effective at a concentration of 10/sup -5/ M. A similar species specificity was shown with crude rat renal cortical membranes. Of a variety of ligands, only glucagon and 10/sup -3/ M F/sup -/ were cyclase activators in these liver plasma membranes. Binding of (/sup 125/I)iodo-bPTH by these membranes was fairly extensive but showed a saturation of binding only at high hormone concentrations (> 10/sup -6/ M). Clearly, cleavage of the intact molecule PTH-(1 to 84) is not required for activation of the adenylate cyclase system of liver membranes. It appears that two rat tissues, liver and kidney, exhibit some species specificity in cyclase activation, i.e. the hPTH-(1 to 34) (Niall sequence) is inactive.

  7. Protective actions of melatonin and growth hormone on the aged cardiovascular system.

    Science.gov (United States)

    Paredes, Sergio D; Forman, Katherine A; García, Cruz; Vara, Elena; Escames, Germaine; Tresguerres, Jesús A F

    2014-05-01

    Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.

  8. Age-related changes in Serum Growth Hormone, Insulin-like Growth Factor-1 and Somatostatin in System Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Malemud Charles J

    2004-10-01

    Full Text Available Abstract Background Systemic lupus erythematosus is an age- and gender-associated autoimmune disorder. Previous studies suggested that defects in the hypothalamic/pituitary axis contributed to systemic lupus erythematosus disease progression which could also involve growth hormone, insulin-like growth factor-1 and somatostatin function. This study was designed to compare basal serum growth hormone, insulin-like growth factor-1 and somatostatin levels in female systemic lupus erythematosus patients to a group of normal female subjects. Methods Basal serum growth hormone, insulin-like growth factor-1 and somatostatin levels were measured by standard radioimmunoassay. Results Serum growth hormone levels failed to correlate with age (r2 = 3.03 in the entire group of normal subjects (i.e. 20 – 80 years. In contrast, serum insulin-like growth factor-1 levels were inversely correlated with age (adjusted r2 = 0.092. Of note, serum growth hormone was positively correlated with age (adjusted r2 = 0.269 in the 20 – 46 year range which overlapped with the age range of patients in the systemic lupus erythematosus group. In that regard, serum growth hormone levels were not significantly higher compared to either the entire group of normal subjects (20 – 80 yrs or to normal subjects age-matched to the systemic lupus erythematosus patients. Serum insulin-like growth factor-1 levels were significantly elevated (p 55 yrs systemic lupus erythematosus patients. Conclusions These results indicated that systemic lupus erythematosus was not characterized by a modulation of the growth hormone/insulin-like growth factor-1 paracrine axis when serum samples from systemic lupus erythematosus patients were compared to age- matched normal female subjects. These results in systemic lupus erythematosus differ from those previously reported in other musculoskeletal disorders such as rheumatoid arthritis, osteoarthritis, fibromyalgia, diffuse idiopathic skeletal

  9. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  10. The effects of ozonation on select waterborne steroid hormones in recirculation aquaculture systems containing sexually mature Atlantic salmon Salmo salar

    Science.gov (United States)

    A controlled 3-month study was conducted in 6 replicated water recirculation aquaculture systems (RAS) containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether water ozonation is associated with a reduction in waterborne hormones. Post-smolt Atlantic salm...

  11. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  12. Melanin-concentrating hormone: unique peptide neuronal systems in the rat brain and pituitary gland

    Energy Technology Data Exchange (ETDEWEB)

    Zamir, N.; Skofitsch, G.; Bannon, M.J.; Jacobowitz, D.M.

    1986-03-01

    A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimuls (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake.

  13. Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sgro Jean-Yves

    2006-11-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs, but the GPCR(s critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR exist in C. elegans. Results Our sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs and corazonin receptors of arthropods. Conclusion This is the first report of a GnRHR orthologue in C. elegans, which

  14. A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule"

    Directory of Open Access Journals (Sweden)

    Nero Damion

    2009-06-01

    Full Text Available Abstract Background Nitrate-induced reprogramming of the transcriptome has recently been shown to be highly context dependent. Herein, a systems biology approach was developed to identify the components and role of cross-talk between nitrate and hormone signals, likely to be involved in the conditional response of NO3- signaling. Results Biclustering was used to identify a set of genes that are N-responsive across a range of Nitrogen (N-treatment backgrounds (i.e. nitrogen treatments under different growth conditions using a meta-dataset of 76 Affymetrix ATH1 chips from 5 different laboratories. Twenty-one biclusters were found to be N-responsive across subsets of this meta-dataset. N-bicluster 9 (126 genes was selected for further analysis, as it was shown to be reproducibly responsive to NO3- as a signal, across a wide-variety of background conditions and datasets. N-bicluster 9 genes were then used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling. For this, the 126 nitrate-regulated genes in N-bicluster 9 were biclustered over a meta-dataset of 278 ATH1 chips spanning a variety of hormone treatments. This analysis divided the bicluster 9 genes into two classes: i genes controlled by NO3- only vs. ii genes controlled by both NO3- and hormones. The genes in the latter group showed a NO3- response that is significantly enhanced, compared to the former. In silico analysis identified two Cis-Regulatory Elements candidates (CRE (E2F, HSE potentially involved the interplay between NO3- and hormonal signals. Conclusion This systems analysis enabled us to derive a hypothesis in which hormone signals are proposed to enhance the nitrate response, providing a potential mechanistic explanation for the link between nitrate signaling and the control of plant development.

  15. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid.

    Science.gov (United States)

    Pereira, Anderson Espirito Santo; Silva, Paula Mayara; Oliveira, Jhones Luis; Oliveira, Halley Caixeta; Fraceto, Leonardo Fernandes

    2017-02-01

    This work concerns the development of nanocarriers composed of alginate/chitosan (ALG/CS) and chitosan/tripolyphosphate (CS/TPP) for the plant growth regulator gibberellic acid (GA3). ALG/CS nanoparticles with and without GA3 presented mean size of 450±10nm, polydispersity index (PDI) of 0.3, zeta potential of -29±0.5mV, concentrations of 1.52×1011 and 1.92×1011 nanoparticles mL-1, respectively, and 100% encapsulation efficiency. CS/TPP nanoparticles with and without GA3 presented mean size of 195±1nm, PDI of 0.3, zeta potential of +27±3mV, concentrations of 1.92×1012 and 3.54×1012 nanoparticles mL-1, respectively, and 90% encapsulation efficiency. The nanoparticles were stable during 60days and the two systems differed in terms of the release mechanism, with the release depending on factors such as pH and temperature. Bioactivity assays using Phaseolus vulgaris showed that the ALG/CS-GA3 nanoparticles were most effective in increasing leaf area and the levels of chlorophylls and carotenoids. The systems developed showed good potential, providing greater stability and efficiency of this plant hormone in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Tsubasa Sakai

    2017-09-01

    Full Text Available Gonadotropin-releasing hormones (GnRHs play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate Gn

  17. A Review on the Importance of Hormones Monitoring and Their Removal in Conventional Wastewater Treatment Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ghaneian

    2017-06-01

    Conclusion: According to the current study, further studies are needed to determine the entry routes of steroid hormones into aquatic environment, the detection techniques and measurements, as well as the best removal method in Iran.

  18. Systemic but no local effects of combined zoledronate and parathyroid hormone treatment in experimental autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Kresten Krarup Keller

    Full Text Available INTRODUCTION: Local bone erosions and osteoporosis in rheumatoid arthritis (RA are the result of a more pronounced bone resorption than bone formation. Present treatment strategies for RA inhibit inflammation, but do not directly target bone erosions. The aim of the study was in experimental arthritis to investigate the juxtaarticular and systemic effects of simultaneous osteoclast inhibition with zoledronate (ZLN and osteoblast stimulation with parathyroid hormone (PTH. METHODS: Arthritis was induced in 36 SKG mice. The mice were randomized to three treatment groups and an untreated group: ZLN, PTH, PTH+ZLN, and untreated. Arthritis score and ankle width measurements were performed. Histological sections were cut from the right hind paw, and design-based stereological estimators were used to quantify histological variables of bone volume and bone formation and resorption. The femora were DXA- and μCT-scanned, and the bone strength was determined at the femoral neck and mid-diaphysis. RESULTS: Locally, we found no differences in arthritis score or ankle width throughout the study. Similarly, none of the treatments inhibited bone erosions or stimulated bone formation in the paw. Systemically, all treatments improved bone mineral density, strength of the femoral neck and mid-diaphysis, and μCT parameters of both cortical and trabecular bone. In addition, there was an additive effect of combination treatment compared with single treatments for most trabecular parameters including bone mineral density and bone volume fraction. CONCLUSIONS: No local effect on bone was found by the combined action of inhibiting bone resorption and stimulating bone formation. However, a clear systemic effect of the combination treatment was demonstrated.

  19. Avian melanocortin system: alpha-MSH may act as an autocrine/paracrine hormone: a minireview.

    Science.gov (United States)

    Takeuchi, Sakae; Takahashi, Sumio; Okimoto, Ronald; Schioth, Helgi B; Boswell, Timothy

    2003-06-01

    The interest in the physiological role of alpha-MSH in birds has been limited because they lack the intermediate lobe of the pituitary, the main source of circulating alpha-MSH in most vertebrates. Recent studies have improved our understanding of the avian melanocortin system. We have cloned and characterized all five MC-R subtypes, POMC, and AGRP in chicken. Analyses of the tissue distribution of expression of these genes revealed widespread expression throughout the body, corresponding to the situation in mammals in which alpha-MSH exerts a multiplicity of effects in different tissues by acting as a local mediator. We showed that the extended black locus controlling feather pigmentation in the chicken encodes MC1-R. Moreover, black chickens carrying the dominant allele, the extended black, express the MC1-R with ligand-independent activity as the somber-3J black mice. alpha-MSH and AGRP were expressed in the infundibular nucleus of POMC and NPY neurons, respectively, in the brain of Japanese quail. Furthermore, fasting stimulated AGRP expression and lowered POMC expression. These data indicate that at least two of the major melanocortin systems reported in mammals, that is, regulation of pigmentation and energy homeostasis, was developed in a common ancestor to chicken and mammals at least 300 million years ago. Furthermore, alpha-MSH peptide was identified in developing chicken eye, suggesting a possible involvement of alpha-MSH in regulation of ocular development. Collectively, the data reviewed here indicate that alpha-MSH is produced locally and acts as an autocrine/paracrine hormone in birds.

  20. Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs.

    Science.gov (United States)

    Przygrodzka, E; Kaczmarek, M M; Kaczynski, P; Ziecik, A J

    2016-02-01

    In order to characterize the transition of the corpora lutea (CL) from acquisition of luteolytic sensitivity to rescue of luteal function: i) the expression of 38 factors associated with steroids, prostanoids, and angiogenic systems and ii) concentrations of the main hormones responsible for maintenance of CL function in cyclic and pregnant pigs were examined. Additionally, the effect of prostaglandin (PG) E2 and F2 α on luteal function during the estrous cycle and pregnancy was evaluated in vitro. Significantly up-regulated gene expression was revealed in CL collected on day 14 of the estrous cycle (CYP19A1, ESR2, PTGS2, HIF1A, and EDN1) and on days 12-14 of pregnancy (SCARB1, PGRMC1, STAR, HSD3B1, NR5A1, PTGFR, PTGER4, and VEGFA). Elevated concentrations of estradiol-17β and PGE2 occurred in CL on days 12 and 14 of pregnancy respectively, while an increased intraluteal PGF2 α content was noted on day 14 of the estrous cycle. Both PGs increased the synthesis of progesterone by cultured luteal slices obtained on day 14 of pregnancy, in contrast to the action of PGF2 α on the corresponding day of the estrous cycle. PGE2 stimulated cAMP production via PTGER2 and PTGER4, while PGF2 α elevated the content of CREB in cultured luteal slices from CL of pregnant pigs. In silico analysis showed that infiltration of lymphocytes and apoptosis of microvascular endothelium were activated in CL on day 12 of the estrous cycle vs pregnancy. Summarizing, an abundance of E2 and PGE2 during pregnancy regulates specific pathways responsible for steroidogenesis, the prostanoid signaling system and angiogenesis during rescue from luteolysis in porcine CL. © 2016 Society for Reproduction and Fertility.

  1. Hormone replacement therapy and the cardiovascular system lessons learned and unanswered questions.

    Science.gov (United States)

    Ouyang, Pamela; Michos, Erin D; Karas, Richard H

    2006-05-02

    Cardiovascular disease is the leading cause of death among women in the U.S., exceeding breast cancer mortality in women of all ages. Women present with cardiovascular disease a decade after men, and this has been attributed to the protective effect of female ovarian sex hormones that is lost after menopause. Animal and observational studies have shown beneficial effects of hormone therapy when it is initiated early in the perimenopausal period or before the development of significant atherosclerosis. However, randomized, placebo-controlled trials in older women have not shown any benefit in either primary prevention or secondary prevention of cardiovascular events, with a concerning trend toward harm. This review outlines the lessons learned from the basic science, animal, observational, and randomized trials, and then summarizes yet-unanswered questions of hormone therapy and cardiovascular risk.

  2. Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis (Atheriniformes

    Directory of Open Access Journals (Sweden)

    S.E. Arranz

    2008-07-01

    Full Text Available Using biotechnology to increase the growth rates of fish is likely to reduce production costs per unit of food. Among vertebrates, fish appear to occupy a unique position, when growth patterns are considered. With few exceptions, fish species tend to grow indeterminately, implying that size is never fixed. Both hyperplasia and hypertrophy contribute to post-larval muscle growth in fish. Growth hormone (GH - Insulin-like Growth Factor I (IGF-I is the most important growth axis in fish. Our experimental model, the pejerrey, Odontesthes bonariensis (Ateriniformes is a South American inland water fish considered to be a promising species for intensive aquaculture. However, one major drawback to achieve this goal is its slow growth in captivity. In order to understand how growth is regulated in this species, our first objective was to characterized pejerrey GH- IGF-I axis. We first cloned and characterized pejerrey (pj GH, IGF-I and the growth hormone receptors (GHRs I and II. In addition to providing valuable data for evolutionary comparison of GH, investigation of GH action in teleosts is particularly important because of its potential application in aquaculture. GH can not only promote the somatic growth in fish but also lower dietary protein requirements. A prerequisite for providing sufficient amounts of GH for basic research and aquaculture application is a large-scale production of GH. For that purpose, recombinant pjGH was expressed in a bacterial system. Protocols for solubilization and proper folding were achieved. Activity of recombinant pjGH was assessed in fish by measuring the liver IGF-I response to different doses of GH. IGF-I transcript was measured in the liver after pjGHr in vivo stimulation by means of quantitative real-time PCR assays. A dose-dependent response of IGF-I mRNA was observed after pjGHr administration, and reached a 6 fold IGF-I maximum increase over control group when 2.5 µg pjGH /g-body weight were injected

  3. The influence of endogenous and exogenous sex hormones on systemic lupus erythematosus in pre- and postmenopausal women

    Directory of Open Access Journals (Sweden)

    Bogna Grygiel-Górniak

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE or lupus is a chronic inflammatory disease that occurs mainly in women. Typically, symptoms appear within the first few years of adolescence, but currently an increase can be observed in the percentage of postmenopausal women with this condition. This is possibly due to the sophisticated treatment of the disease, which significantly improves the survival curve and prognosis. Genetic and environmental factors are involved in the development of SLE. Both regulation of the immune system and the activity of this disease are influenced by a variety of hormones, including: 17-estradiol, testosterone, prolactin, progesterone and dehydroepiandrosterone (DHEA. Early menarche, menstrual cyclicity, the total number of years characterized by ovulatory cycles and early menopause are correlated with the development of SLE. Because of the health risks, attempts are increasingly being made to evaluate the impact of exogenous hormones (especially those applied exogenously on the course of SLE. In particular, the role of estrogens is being highlighted, either endo- or exogenous, including oral contraceptives (OC, therapy used in the treatment of infertility, and hormonal replacement therapy (HRT. The purpose of this manuscript is the revision of the literature concerning the impact of both endo- and exogenous estrogens on the development of lupus, inducement of flares and any possible complications.

  4. Identification of putative egg-laying hormone containing neuronal systems in gastropod molluscs

    NARCIS (Netherlands)

    van Minnen, J.; Schallig, H. D.; Ramkema, M. D.

    1992-01-01

    Of gastropod molluscs, only in the Aplysiidae and the Lymnaeidae have the genes encoding the respective egg-laying hormones been cloned and the neurons controlling egg laying and egg-laying behavior been identified. Immunocytochemistry, using antibodies raised against alpha-CDCP (one of the

  5. Protein Hormones and Immunity‡

    Science.gov (United States)

    Kelley, Keith W.; Weigent, Douglas A.; Kooijman, Ron

    2007-01-01

    A number of observations and discoveries over the past 20 years support the concept of important physiological interactions between the endocrine and immune systems. The best known pathway for transmission of information from the immune system to the neuroendocrine system is humoral in the form of cytokines, although neural transmission via the afferent vagus is well documented also. In the other direction, efferent signals from the nervous system to the immune system are conveyed by both the neuroendocrine and autonomic nervous systems. Communication is possible because the nervous and immune systems share a common biochemical language involving shared ligands and receptors, including neurotransmitters, neuropeptides, growth factors, neuroendocrine hormones and cytokines. This means that the brain functions as an immune-regulating organ participating in immune responses. A great deal of evidence has accumulated and confirmed that hormones secreted by the neuroendocrine system play an important role in communication and regulation of the cells of the immune system. Among protein hormones, this has been most clearly documented for prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-I), but significant influences on immunity by thyroid stimulating hormone (TSH) have also been demonstrated. Here we review evidence obtained during the past 20 years to clearly demonstrate that neuroendocrine protein hormones influence immunity and that immune processes affect the neuroendocrine system. New findings highlight a previously undiscovered route of communication between the immune and endocrine systems that is now known to occur at the cellular level. This communication system is activated when inflammatory processes induced by proinflammatory cytokines antagonize the function of a variety of hormones, which then causes endocrine resistance in both the periphery and brain. Homeostasis during inflammation is achieved by a balance between cytokines and

  6. Verification of epigenetic inheritance in a unicellular model system: multigenerational effects of hormonal imprinting.

    Science.gov (United States)

    Kőhidai, László; Lajkó, Eszter; Pállinger, Eva; Csaba, György

    2012-10-01

    The unicellular Tetrahymena has receptors for hormones of higher vertebrates, produces these hormones, and their signal pathways are similar. The first encounter with a hormone in higher dose provokes the phenomenon of hormonal imprinting, by which the reaction of the cell is quantitatively modified. This modification is transmitted to the progeny generations. The duration of the single imprinter effect of two representative signal molecules, insulin and 5-HT (5-hydroxytryptamine), in two concentrations (10(-6) and 10(-15) M) were studied. The effects of imprinting were followed in 5 physiological indices: (i) insulin binding, (ii) 5-HT synthesis, (iii) swimming behaviour, (iv) cell growth and (v) chemotaxis in progeny generations 500 and 1000. The result of each index was different from the non-imprinted control functions, growth rate, swimming behaviour and chemotactic activity to insulin being enhanced, while others, e.g. synthesis and chemotactic responsiveness of 5-HT and the binding of insulin were reduced. This means that a function-specific heritable epigenetic change during imprinting occurs, and generally a single encounter with a femtomolar hormone concentration is enough for provoking durable and heritable imprinting in Tetrahymena. The experiments demonstrate the possibility of epigenetic effects at a unicellular level and call attention to the possibility that the character of unicellular organisms has changed through to the present day due to an enormous amount of non-physiological imprinter substances in their environment. The results - together with results obtained earlier in mammals - point to the validity of epigenetic imprinting effects throughout the animal world.

  7. Data for the homology modelling of the red pigment-concentrating hormone receptor (Dappu-RPCHR) of the crustacean Daphnia pulex, and docking of its cognate agonist (Dappu-RPCH).

    Science.gov (United States)

    Jackson, Graham E; Pavadai, Elumalai; Gäde, Gerd; Timol, Zaheer; Andersen, Niels H

    2017-12-01

    The data presented in this article are related to the publication "Interaction of the red pigment-concentrating hormone of the crustacean Daphnia pulex, with its cognate receptor, Dappu-RPCHR: A nuclear magnetic resonance and modeling study" (Jackson et al., 2017) [1]. This article contains the data for homology modeling of the red pigment-concentrating hormone (RPCH) receptor of the water flea, Daphnia pulex (Dappu-RPCHR), which was constructed from its primary sequence. This is the first 3D model of a crustacean G-protein coupled receptor. Docking of the agonist, pGlu-Val-Asn-Phe-Ser-Thr-Ser-Trp amide (Dappu-RPCH), was used to find a binding pocket on the receptor and compared to the binding pocket of the adipokinetic hormone (AKH) receptor from the malaria mosquito. Data for the receptor, with and without loop refinement, together with the docked agonist, are presented.

  8. Gastrointestinal hormone research - with a Scandinavian annotation

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2015-01-01

    Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones un......, but also constitute regulatory systems operating in the whole organism. This overview of gut hormone biology is supplemented with an annotation on some Scandinavian contributions to gastrointestinal hormone research....

  9. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions

    Czech Academy of Sciences Publication Activity Database

    Dziurka, M.; Janeczko, A.; Juhasz, C.; Gullner, G.; Oklešťková, Jana; Novák, Ondřej; Saja, D.; Skoczowski, A.; Tobias, I.; Barna, B.

    2016-01-01

    Roč. 109, DEC (2016), s. 355-364 ISSN 0981-9428 R&D Projects: GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : tobacco-mosaic-virus * pathogenesis-related proteins * salicylic-acid * abscisic-acid * acquired- resistance * disease resistance * nicotiana-benthamiana * arabidopsis-thaliana * defense response * immune-responses * Brassinosteroids * Ethylene * Hormone * Pepper * Phenylalanine ammonia lyase * Progesterone * Salicylic acid * Tobamovirus Subject RIV: EF - Botanics Impact factor: 2.724, year: 2016

  10. Sex hormones and urticaria.

    Science.gov (United States)

    Kasperska-Zajac, A; Brzoza, Z; Rogala, B

    2008-11-01

    Chronic urticaria is characterized by mast cells/basophils activation which initiate the inflammatory response. Pathogenetically, the disease may in many cases represent an autoimmune phenomenon. Altered function of the neuro-endocrine-immune system due to stress and other factors has also been implicated its pathogenesis. Sex hormones modulate immune and inflammatory cell functions, including mast cell secretion, and are regarded as responsible for gender and menstrual cycle phase-associated differential susceptibility and severity of some autoimmune and inflammatory diseases. Chronic urticaria is approximately twice more frequent in women than in men. In addition, urticaria may be associated with some diseases and conditions characterized by hormonal changes, including endocrinopathy, menstrual cycle, pregnancy, menopause and hormonal contraceptives or hormone replacement therapy. Hypersensitivity reactions to endogenous or exogenous female sex hormones have been implicated in the pathogenesis of urticarial lesions associated with estrogen and autoimmune progesterone dermatitis. We observed lower serum dehydroepiandrosterone sulfate (DHEA-S) concentration in patients with chronic urticaria with positive and negative response to autologous serum skin test. Thus, the influence of fluctuations in the hormonal milieu and altered sex hormone expression on the triggering-off, maintenance or aggravation of urticaria should be taken into account. In addition, the possible impact of estrogen mimetics, in the environment and in food, on the development of disease associated with mast cell activation must be considered. This review endeavours to outline what is known about the possible influence of sex hormones in the expression of urticaria.

  11. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences.

    Science.gov (United States)

    Christie, Andrew E

    2016-05-01

    The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hormonally impregnated intrauterine systems (IUSs) versus other forms of reversible contraceptives as effective methods of preventing pregnancy.

    Science.gov (United States)

    French, R; Van Vliet, H; Cowan, F; Mansour, D; Morris, S; Hughes, D; Robinson, A; Proctor, T; Summerbell, C; Logan, S; Helmerhorst, F; Guillebaud, J

    2004-01-01

    In the 1970s a new approach to the delivery of hormonal contraception was researched and developed. It was suggested that the addition of a progestogen to a non-medicated contraceptive device improved its contraceptive action. An advantage of these hormonally impregnated intrauterine systems (IUS) is that they are relatively maintenance free, with users having to consciously discontinue using them to become pregnant rather than taking a proactive daily decision to avoid conception. To assess the contraceptive efficacy, tolerability and acceptability of hormonally impregnated intrauterine systems (IUSs) in comparison to other reversible contraceptive methods. Literature was identified through database searches, reference lists and individuals/organisations working in the field. Searches covered the period from 1972 to November 2003. All randomised controlled trials comparing IUSs with other forms of reversible contraceptives and reporting on pre-determined outcomes in women of reproductive years. The primary outcomes were pregnancy due to method/user failure and continuation rate. The quality assessment of studies and data extraction were completed independently by two blinded reviewers. A quality checklist was designed to identify general methodological and contraceptive specific factors which could bias results. Events per women months and single decrement life table rates were extracted where possible for pregnancy, continuation, adverse events and reasons for discontinuation. Events per total number of women at follow up were collected for hormonal side effects and menstrual disturbance. When appropriate, data were pooled at the same points of follow up to calculate rate ratios in order to determine the relative effectiveness of one method compared to another. For the single decrement life table rates, the rate differences were pooled to determine the absolute difference in effectiveness of one method compared to another. Interventions were only combined if the

  13. Stress hormones predict a host superspreader phenotype in the West Nile virus system

    Science.gov (United States)

    Gervasi, Stephanie; Burgan, Sarah; Hofmeister, Erik K.; Unnasch, Thomas R.; Martin, Lynn B.

    2017-01-01

    Glucocorticoid stress hormones, such as corticosterone (CORT), have profound effects on the behaviour and physiology of organisms, and thus have the potential to alter host competence and the contributions of individuals to population- and community-level pathogen dynamics. For example, CORT could alter the rate of contacts among hosts, pathogens and vectors through its widespread effects on host metabolism and activity levels. CORT could also affect the intensity and duration of pathogen shedding and risk of host mortality during infection. We experimentally manipulated songbird CORT, asking how CORT affected behavioural and physiological responses to a standardized West Nile virus (WNV) challenge. Although all birds became infected after exposure to the virus, only birds with elevated CORT had viral loads at or above the infectious threshold. Moreover, though the rate of mortality was faster in birds with elevated CORT compared with controls, most hosts with elevated CORT survived past the day of peak infectiousness. CORT concentrations just prior to inoculation with WNV and anti-inflammatory cytokine concentrations following viral exposure were predictive of individual duration of infectiousness and the ability to maintain physical performance during infection (i.e. tolerance), revealing putative biomarkers of competence. Collectively, our results suggest that glucocorticoid stress hormones could directly and indirectly mediate the spread of pathogens.

  14. Activation of arcuate nucleus neurons by systemic administration of leptin and growth hormone-releasing peptide-6 in normal and fasted rats.

    Science.gov (United States)

    Luckman, S M; Rosenzweig, I; Dickson, S L

    1999-08-01

    Both leptin and growth hormone secretagogues are believed to have stimulatory effects on the hypothalamic growth hormone pulse generator, though whether these are achieved through the same pathway is unknown. Systemic administration of a normally maximal effective dose of the growth hormone secretagogue GHRP-6 to male rats causes the induction of c-Fos protein in the ventromedial aspect of the hypothalamic arcuate nucleus. The effect of the same dose of GHRP-6 is, however, much greater in animals that have been fasted for 48 h, suggesting that in the food-replete rat, arcuate neurons either show reduced sensitivity to endogenous growth hormone secretagogues or they are under the tonic inhibitory influences of other factors. The major populations of arcuate neurons activated by GHRP-6 have been shown to contain neuropeptide Y or growth hormone-releasing factor, while leptin is thought to be inhibitory to neuropeptide Y neurons. Leptin did not alter the response of the rats to GHRP-6. However, it was able by itself to induce c-Fos protein immunoreactivity in the ventral, including the ventrolateral, arcuate nucleus of fasted rats. This is a clear demonstration of the acute activation of arcuate neurons in the rat following systemic leptin injection and suggests that GHRP-6 and leptin act on the growth hormone axis via different pathways.

  15. Hormone Therapy

    Science.gov (United States)

    ... vaginal lining gets thinner, dryer, and less elas- tic. Vaginal dryness may cause pain during sexual intercourse . ... when a woman starts taking hormone therapy. Some research suggests that for women who start combined therapy ...

  16. Growth Hormone

    Science.gov (United States)

    ... of GHD and/or hypopituitarism , such as: Decreased bone density Fatigue Adverse lipid changes, such as high cholesterol Reduced exercise tolerance Other hormone testing, such as thyroid testing , ...

  17. Growth Hormone

    Science.gov (United States)

    ... High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV ... 003706.htm . Accessed October 2010. (© 1995-2010). Unit Code 8688: Growth Hormone, Serum. Mayo Clinic, Mayo Medical ...

  18. Hormone Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hormones quantified from marine mammal and sea turtle tissue provide information about the status of each animal sampled, including its sex, reproductive status and...

  19. NCBI nr-aa BLAST: CBRC-AGAM-02-0026 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0026 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 5e-71 44% ...

  20. NCBI nr-aa BLAST: CBRC-CBRI-01-0008 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRI-01-0008 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 4e-46 34% ...

  1. NCBI nr-aa BLAST: CBRC-AGAM-02-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0058 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 1e-112 60% ...

  2. NCBI nr-aa BLAST: CBRC-CBRE-01-1475 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRE-01-1475 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 2e-29 32% ...

  3. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile.

    Science.gov (United States)

    Lequeux, Hélène; Hermans, Christian; Lutts, Stanley; Verbruggen, Nathalie

    2010-08-01

    Growth, in particular reorganization of the root system architecture, mineral homeostasis and root hormone distribution were studied in Arabidopsis thaliana upon copper excess. Five-week-old Arabidopsis plants growing in hydroponics were exposed to different Cu(2+) concentrations (up to 5 muM). Root biomass was more severely inhibited than shoot biomass and Cu was mainly retained in roots. Cu(2+) excess also induced important changes in the ionome. In roots, Mg, Ca, Fe and Zn concentrations increased, whereas K and S decreased. Shoot K, Ca, P, and Mn concentrations decreased upon Cu(2+) exposure. Further, experiments with seedlings vertically grown on agar were carried out to investigate the root architecture changes. Increasing Cu(2+) concentrations (up to 50 muM) reduced the primary root growth and increased the density of short lateral roots. Experiment of split-root system emphasized a local toxicity of Cu(2+) on the root system. Observations of GUS reporter lines suggested changes in auxin and cytokinin accumulations and in mitotic activity within the primary and secondary root tips treated with Cu(2+). At toxic Cu(2+) concentrations (50 muM), these responses were accompanied by higher root apical meristem death. Contrary to previous reports, growth on high Cu(2+) did not induce an ethylene production. Finally lignin deposition was detected in Cu(2+)-treated roots, probably impacting on the translocation of nutrients. The effects on mineral profile, hormonal status, mitotic activity, cell viability and lignin deposition changes on the Cu(2+)-induced reorganization of the root system architecture are discussed. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  4. Using Digital Images of the Zebra Finch Song System as a Tool to Teach Organizational Effects of Steroid Hormones: A Free Downloadable Module

    Science.gov (United States)

    Grisham, William; Schottler, Natalie A.; Beck McCauley, Lisa M.; Pham, Anh P.; Ruiz, Maureen L.; Fong, Michelle C.; Cui, Xinran

    2011-01-01

    Zebra finch song behavior is sexually dimorphic: males sing and females do not. The neural system underlying this behavior is sexually dimorphic, and this sex difference is easy to quantify. During development, the zebra finch song system can be altered by steroid hormones, specifically estradiol, which actually masculinizes it. Because of the…

  5. A review on distribution and monitoring of hormones in the environment and their removal in wastewater treatment systems

    Directory of Open Access Journals (Sweden)

    Rahele Kafaei

    2014-11-01

    Full Text Available Steroid hormones of the Endocrine disrupting compounds (EDC are steroid hormones, which cause negative effects on human health, animals and ecosystems balance, have become a major concern in modern societies. In recent years numerous studies have performed on hormone distribution in the environment, especially in aquatic environments and the ways that they have been removed. Hormones entrance into the environment primarily is through wastewater, municipal wastewater treatment sludge, hospital wastewater and livestock activity. Measured values in the wastewater treatment influent, livestock lagoons, surface water and groundwater, showed different concentrations of hormones in the range of ng/L. But it is important to know even in trace concentration of ng/L, hormones can have adverse effects on environment. By biodegradation, biosorption and biotransformation, hormones will be degraded and their activities will be decreased. Wastewater treatment processes includes preliminary, primary, secondary and advanced treatment, that are the most important ways to prevent the entrance of hormonal compounds to the environment. Sludge should be cleaned by available technology before entering the environment. Wastewater processes in both liquid and sludge phase, under various operating conditions, show different range of hormones removal. In this paper authors try to discuss about the problem and different environmental aspects of hormones.

  6. Development of systemic lupus erythematosus in a male-to-female transsexual: the role of sex hormones revisited.

    Science.gov (United States)

    Chan, K L; Mok, C C

    2013-11-01

    Systemic lupus erythematosus (SLE) predominantly affects women of childbearing age. The infrequency of SLE in men and disease onset in prepubertal or postmenopausal women suggests a role of estrogen in the predisposition to the disease. Patients with hypergonadotrophic hypogonadism are prone to the development of SLE, and the use of exogenous estrogens in women increases the relative risk of SLE onset and disease flares. These observations provide indirect evidence for an opposite role of estrogens and androgens in the pathogenesis of SLE. We report on a male-to-female transsexual who developed SLE 20 years after sex-reassignment surgery and prolonged estrogen therapy. The role of sex hormones in SLE is revisited.

  7. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system.

    Science.gov (United States)

    Zhang, Mingcai; Duan, Liusheng; Tian, Xiaoli; He, Zhongpei; Li, Jianmin; Wang, Baomin; Li, Zhaohu

    2007-06-01

    This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.

  8. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us?

    Science.gov (United States)

    Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia

    2017-10-01

    The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Systemic intermittent parathyroid hormone treatment improves osseointegration of press-fit inserted implants in cancellous bone.

    Science.gov (United States)

    Daugaard, Henrik; Elmengaard, Brian; Andreassen, Troels Torp; Lamberg, Anders; Bechtold, Joan Elisabeth; Soballe, Kjeld

    2012-08-01

    Intermittent administration of parathyroid hormone (PTH) has an anabolic effect on bone, as confirmed in human osteoporosis studies, distraction osteogenesis, and fracture healing. PTH in rat models leads to improved fixation of implants in low-density bone or screw insertion transcortically. We examined the effect of human PTH (1-34) on the cancellous osseointegration of unloaded implants inserted press-fit in intact bone of higher animal species. 20 dogs were randomized to treatment with human PTH (1-34), 5 μg/kg/day subcutaneously, or placebo for 4 weeks starting on the day after insertion of a cylindrical porous coated plasma-sprayed titanium alloy implant in the proximal metaphyseal cancellous bone of tibia. Osseointegration was evaluated by histomorphometry and fixation by push-out test to failure. Surface fraction of woven bone at the implant interface was statistically significantly higher in the PTH group by 1.4 fold with (median (interquartile range) 15% (13-18)) in the PTH group and 11% (7-13) in control. The fraction of lamellar bone was unaltered. No significant difference in bone or fibrous tissue was observed in the circumferential regions of 0-500, 500-1,000, and 1,000-2,000 μm around the implant. Mechanically, the implants treated with PTH showed no significant differences in total energy absorption, maximum shear stiffness, or maximum shear strength. Intermittent treatment with PTH (1-34) improved histological osseointegration of a prosthesis inserted press-fit at surgery in cancellous bone, with no additional improvement of the initial mechanical fixation at this time point.

  10. Functional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas

    Directory of Open Access Journals (Sweden)

    Jodi L. Alexander

    2018-01-01

    Full Text Available Neuropeptides play a central role as neurotransmitters, neuromodulators and hormones in orchestrating arthropod physiology. The post-genomic surge in identified neuropeptides and their putative receptors has not been matched by functional characterization of ligand-receptor pairs. Indeed, until very recently no G protein-coupled receptors (GPCRs had been functionally defined in any crustacean. Here we explore the structurally-related, functionally-diverse gonadotropin-releasing hormone paralogs, corazonin (CRZ and red-pigment concentrating hormone (RPCH and their G-protein coupled receptors (GPCRs in the crab, Carcinus maenas. Using aequorin luminescence to measure in vitro Ca2+ mobilization we demonstrated receptor-ligand pairings of CRZ and RPCH. CRZR-activated cell signaling in a dose-dependent manner (EC50 0.75 nM and comparative studies with insect CRZ peptides suggest that the C-terminus of this peptide is important in receptor-ligand interaction. RPCH interacted with RPCHR with extremely high sensitivity (EC50 20 pM. Neither receptor bound GnRH, nor the AKH/CRZ-related peptide. Transcript distributions of both receptors indicate that CRZR expression was, unexpectedly, restricted to the Y-organs (YO. Application of CRZ peptide to YO had no effect on ecdysteroid biosynthesis, excepting a modest stimulation in early post-molt. CRZ had no effect on heart activity, blood glucose levels, lipid mobilization or pigment distribution in chromatophores, a scenario that reflected the distribution of its mRNA. Apart from the well-known activity of RPCH as a chromatophorotropin, it also indirectly elicited hyperglycemia (which was eyestalk-dependent. RPCHR mRNA was also expressed in the ovary, indicating possible roles in reproduction. The anatomy of CRZ and RPCH neurons in the nervous system is described in detail by immunohistochemistry and in situ hybridization. Each peptide has extensive but non-overlapping distribution in the CNS, and neuroanatomy

  11. The Effects of Local and Systemic Growth Hormone Treatment on Germ Cell Population and Fertility in an Experimental Unilateral Testicular Torsion and Orchiectomy Model.

    Science.gov (United States)

    Ates, Ufuk; Gollu, Gulnur; Bingol-Kologlu, Meltem; Billur, Deniz; Kucuk, Gonul; Oruklu, Nihan; Bagrıacik, Umit; Hasırcı, Nesrin; Dindar, Hüseyin

    2015-12-01

    We evaluated the effects of local and systemic growth hormone on the germ cell population of the contralateral testes of pubertal rats subjected to unilateral testicular torsion and orchiectomy 24 hours later. A total of 40 male Wistar-Albino rats at age 3 weeks were divided into 5 groups. In the sham operated group the right testis was sutured and orchiectomy was performed 24 hours later. In groups 2 to 5 orchiectomy was performed 24 hours later following testicular torsion. In groups 3 and 4 unloaded and growth hormone loaded gelatin films, respectively, were sutured on the contralateral testes. In group 5 systemic growth hormone was administered for 7 days. Five weeks later each rat was cohabited with 2 female rats and the left testes were removed for evaluation. Mean seminiferous tubular diameter, mean testicular biopsy score and the mean haploid cell percentage were calculated. Mating studies were performed and fertility parameters were assayed. Mean seminiferous tubular diameter, mean testicular biopsy score and the mean haploid cell percentage of the contralateral testes were significantly decreased in the control and gelatin groups compared with the other groups. There was no difference between the local and systemic growth hormone groups regarding the haploid cell percentage. There were no differences between the groups in mean fetus numbers, mating or fertility and fecundity indexes except in the gelatin group, in which the mean fetus number was significantly lower. Fertility is not affected in rats after 24 hours of testicular torsion and orchiectomy, although there is germ cell injury and a decrease in the percent of haploid cells. Growth hormone administration resulted in the restoration of germ cell histology and an increase in the haploid cell percentage of the contralateral testes. Growth hormone may improve fertility after unilateral testicular torsion and orchiectomy. Copyright © 2015 American Urological Association Education and Research, Inc

  12. Safety of hormonal replacement therapy and oral contraceptives in systemic lupus erythematosus: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Rojas-Villarraga

    Full Text Available There is conflicting data regarding exogenous sex hormones [oral contraceptives (OC and hormonal replacement therapy (HRT] exposure and different outcomes on Systemic Lupus Erythematosus (SLE. The aim of this work is to determine, through a systematic review and meta-analysis the risks associated with estrogen use for women with SLE as well as the association of estrogen with developing SLE.MEDLINE, EMBASE, SciElo, BIREME and the Cochrane library (1982 to July 2012, were databases from which were selected and reviewed (PRISMA guidelines randomized controlled trials, cross-sectional, case-control and prospective or retrospective nonrandomized, comparative studies without language restrictions. Those were evaluated by two investigators who extracted information on study characteristics, outcomes of interest, risk of bias and summarized strength of evidence. A total of 6,879 articles were identified; 20 full-text articles were included. Thirty-two meta-analyses were developed. A significant association between HRT exposure (Random model and an increased risk of developing SLE was found (Rate Ratio: 1.96; 95%-CI: 1.51-2.56; P-value<0.001. One of eleven meta-analyses evaluating the risk for SLE associated with OC exposure had a marginally significant result. There were no associations between HRT or OC exposure and specific outcomes of SLE. It was not always possible to Meta-analyze all the available data. There was a wide heterogeneity of SLE outcome measurements and estrogen therapy administration.An association between HRT exposure and SLE causality was observed. No association was found when analyzing the risk for SLE among OC users, however since women with high disease activity/Thromboses or antiphospholipid-antibodies were excluded from most of the studies, caution should be exercised in interpreting the present results. To identify risk factors that predispose healthy individuals to the development of SLE who are planning to start HRT or OC

  13. Growth Hormone Alters the Glutathione S-Transferase and Mitochondrial Thioredoxin Systems in Long-Living Ames Dwarf Mice

    Science.gov (United States)

    Rojanathammanee, Lalida; Rakoczy, Sharlene

    2014-01-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH’s actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. PMID:24285747

  14. TSH (Thyroid-Stimulating Hormone) Test

    Science.gov (United States)

    ... feedback system to maintain stable amounts of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) in the blood ... their thyroid gland removed is receiving too little thyroid hormone replacement medication and the dose may need to ...

  15. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    Science.gov (United States)

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Twenty-one hormones fail to inhibit the brain to blood transport system for Tyr-MIF-1 and the enkephalins in mice.

    Science.gov (United States)

    Banks, W A; Kastin, A J

    1988-04-01

    Tyr-MIF-1 (Tyr-Pro-Leu-Gly-amide) and methionine enkephalin are transported intact across the blood-brain barrier by a saturable, stereospecific system. This system has been found to be modulated by a few non-peptide substances and by certain conditions such as ageing and some stresses. We investigated the possibility that hormones structurally unrelated to Tyr-MIF-1 and the enkephalins might also be capable of modulating this transport. Twenty-one hormones were tested including steroids, proteins, glycoproteins, peptides, and thyroid hormones, in doses ranging from 0.01 pmol to 1 nmol/mouse by injecting each hormone directly into the lateral ventricle simultaneously with [125I]Tyr-MIF-1. No clear effect on transport could be established for any of the substances at the doses tested. None of these substances seemed able to act as competitive inhibitors, to share their respective transport systems with Tyr-MIF-1, or to modulate immediately the saturable transport system.

  17. Epidermal growth factor and human growth hormone induce two sodium-dependent arginine transport systems after massive enterectomy.

    Science.gov (United States)

    Iannoli, P; Miller, J H; Sax, H C

    1998-01-01

    A combination of epidermal growth factor (EGF) and human growth hormone (hGH) after massive enterectomy induces a 400% increase in arginine transport in the remnant distal small intestine. The kinetic mechanism(s) responsible for enhanced arginine transport under these conditions is unknown. New Zealand White rabbits underwent 70% midjejunoileal resection. After a 1-week recovery period, animals received hGH (0.2 mg/kg/d IM), EGF (1.5 microg/kg/h SC), hGH + EGF, or vehicle (equal volume) for 7 days. Transport of tritiated arginine into brush border membrane vesicles prepared from distal remnant small intestinal mucosa was quantified in the presence and absence of a sodium gradient over a range of arginine concentrations (25 to 5000 micromol/L). Eadie-Hofstee transformation of the kinetic data demonstrates two sodium-dependent arginine transport systems, comprising a high-capacity, low-affinity system and a low-capacity, high-affinity system. A combination of EGF and hGH significantly upregulates both the high-capacity (685%) and low-capacity (350%) maximum transport velocity (Vmax). Additionally, EGF alone significantly upregulates Vmax by 200% in the low-capacity system. There were no significant changes in transport affinity (Km) in either system. There are two quiescent sodium-dependent arginine transport systems in the distal small intestine. A combination of EGF and hGH after massive enterectomy increase arginine transport by Vmax upregulation in both the high-capacity/low-affinity and low-capacity/high-affinity systems.

  18. The use of hormonal treatments to improve the reproductive performance of lactating dairy cows in feedlot or pasture-based management systems.

    Science.gov (United States)

    Lucy, M C; McDougall, S; Nation, D P

    2004-07-01

    Hormonal interventions have been used to increase the probability of estrous detection and insemination, and to increase pregnancy rates of dairy cattle under a variety of management systems. The present review addresses the basic principles of hormonal intervention and presents typical examples that illustrate the methodology. The hormones used to control the estrous cycle mimic the reproductive hormones found within the normal cow. Most estrous synchronization systems employ a method for controlling follicular wave development, promoting ovulation in anestrous cows, regressing the corpus luteum in cyclic cows, and synchronizing estrus and (or) ovulation at the end of treatment. A wide range of reproductive systems are in place on dairy farms. In most herds, a non-intervention period is practiced where postpartum cows are observed estrus estrus. Cows not observed in estrus are then treated. A number of studies in pasture-based and confinement systems have demonstrated net benefits of whole-herd synchronization. Despite the advantages of whole-herd reproductive programs, their uptake has been inconsistent globally. The benefits of a timed artificial insemination (AI) system increase under conditions of poor estrous detection rate and poor conception rate. The unpopular nature of timed AI programs in pasture-fed cows relates to high rates of estrous detection and conception for pasture-based dairying. Regardless of production system, some cows must be re-inseminated because they are not pregnant after first insemination. The presence of "phantom cows" (non-pregnant cows that do not return to estrus) creates a serious reproductive challenge for both pasture-based and confinement-style operations. Early pregnancy diagnosis and second insemination timed AI may reduce the effects of phantom cows on dairy herds. Fundamental research into anestrous, the hormonal control of the estrous cycle, and early pregnancy detection should elucidate new methods that can be used to

  19. Abundance and fate of antibiotics and hormones in a vegetative treatment system receiving cattle feedlot runoff

    Science.gov (United States)

    Vegetative treatment systems (VTS) have been developed and built as an alternative to conventional holding pond systems for managing run-off from animal feeding operations. Initially developed to manage runoff nutrients via uptake by grasses, their effectiveness at removing other runoff contaminant...

  20. Individualised growth response optimisation (iGRO) tool: an accessible and easy-to-use growth prediction system to enable treatment optimisation for children treated with growth hormone.

    Science.gov (United States)

    Loftus, Jane; Lindberg, Anders; Aydin, Ferah; Gomez, Roy; Maghnie, Mohamad; Rooman, Raoul; Steinkamp, Heinz; Doerr, Helmuth; Ranke, Michael; Camacho-Hubner, Cecilia

    2017-10-26

    Growth prediction models (GPMs) exist to support clinical management of children treated with growth hormone (GH) for growth hormone deficiency (GHD), Turner syndrome (TS) and for short children born small for gestational age (SGA). Currently, no prediction system has been widely adopted. The objective was to develop a stand-alone web-based system to enable the widespread use of an 'individualised growth response optimisation' (iGRO) tool across European endocrinology clinics. A modern platform was developed to ensure compatibility with IT systems and web browsers. Seventeen GPMs derived from the KIGS database were included and tested for accuracy. The iGRO system demonstrated prediction accuracy and IT compatibility. The observed discrepancies between actual and predicted height may support clinicians in investigating the reasons for deviations around the expected growth and optimise treatment. This system has the potential for wide access in endocrinology clinics to support the clinical management of children treated with GH for these three indications.

  1. Types of hormone therapy

    Science.gov (United States)

    ... your doctor for regular checkups when taking HT. Alternative Names HRT- types; Estrogen replacement therapy - types; ERT- types of hormone therapy; Hormone replacement therapy - types; Menopause - types of hormone therapy; HT - types; Menopausal hormone ...

  2. Bioidentical Hormones and Menopause

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource Menopause Map™ View Bioidentical Hormones January 2012 Download PDFs English Espanol Editors Howard ... take HT for symptom relief. What are bioidentical hormones? Bioidentical hormones are identical to the hormones that ...

  3. Seasonal changes in plasma levels of sex hormones in the greater Rhea (Rhea americana, a South American Ratite with a complex mating system.

    Directory of Open Access Journals (Sweden)

    Diego J Valdez

    Full Text Available Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana, a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July, whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes. Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the "Challenge Hypothesis". In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period.

  4. Insulin in central nervous system: more than just a peripheral hormone

    National Research Council Canada - National Science Library

    Duarte, Ana I; Moreira, Paula I; Oliveira, Catarina R

    2012-01-01

    Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases...

  5. Systems approaches to genomic and epigenetic inter-regulation of peptide hormones in stress and reproduction.

    Science.gov (United States)

    Lovejoy, David A; Barsyte-Lovejoy, Dalia

    2013-12-01

    The evolution of the organismal stress response and fertility are two of the most important aspects that drive the fitness of a species. However, the integrated regulation of the hypothalamic pituitary adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes has been traditionally thwarted by the complexity of these systems. Pepidergic signalling systems have emerged as critical integrating systems for stress and reproduction. Current high throughput systems approaches are now providing a detailed understanding of peptide signalling in stress and reproduction. These approaches were dependent upon a long history of discovery aimed at the structural characterization of the associated molecular components. The combination of comparative genomics, microarray and epigenetic studies has led not only to a much greater understanding of the integration of stress and reproduction but also to the discovery of novel physiological systems. Recent epigenomic approaches have similarly yielded a new level of complexity in the interaction of these physiological systems. Together, such studies have provided a greater understanding of the effects of stress and reproduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia.

    Science.gov (United States)

    Pace, Marta; Adamantidis, Antoine; Facchin, Laura; Bassetti, Claudio

    2017-01-01

    Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.

  7. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia.

    Directory of Open Access Journals (Sweden)

    Marta Pace

    Full Text Available Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH and orexin/hypocretin (OX systems. This study aims to 1 assess the relationship between sleep and recovery; 2 test the association between MCH and OX systems with the pathological mechanisms of stroke.Sprague-Dawley rats were assigned to four experimental groups: (i SD_IS: SD performed before ischemia; (ii IS: ischemia; (iii SD_Sham: SD performed before sham surgery; (iv Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR.A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group.Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.

  8. Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care's Genitourinary Cancer Disease Site Group

    Directory of Open Access Journals (Sweden)

    Hotte Sébastien

    2006-05-01

    Full Text Available Abstract Background Prostate cancer that has recurred after local therapy or disseminated distantly is usually treated with androgen deprivation therapy; however, most men will eventually experience disease progression within 12 to 20 months. New data emerging from randomized controlled trials (RCTs of chemotherapy provided the impetus for a systematic review addressing the following question: which non-hormonal systemic therapies are most beneficial for the treatment of men with hormone-refractory prostate cancer (HRPC and clinical evidence of metastases? Methods A systematic review was performed to identify RCTs or meta-analyses examining first-line non-hormonal systemic (cytotoxic and non-cytotoxic therapy in patients with HRPC and metastases that reported at least one of the following endpoints: overall survival, disease control, palliative response, quality of life, and toxicity. Excluded were RCTs of second-line hormonal therapies, bisphosphonates or radiopharmaceuticals, or randomized fewer than 50 patients per trial arm. MEDLINE, EMBASE, the Cochrane Library, and the conference proceedings of the American Society of Clinical Oncology were searched for relevant trials. Citations were screened for eligibility by four reviewers and discrepancies were handled by consensus. Results Of the 80 RCTs identified, 27 met the eligibility criteria. Two recent, large trials reported improved overall survival with docetaxel-based chemotherapy compared to mitoxantrone-prednisone. Improved progression-free survival and rates of palliative and objective response were also observed. Compared with mitoxantrone, docetaxel treatment was associated with more frequent mild toxicities, similar rates of serious toxicities, and better quality of life. More frequent serious toxicities were observed when docetaxel was combined with estramustine. Three trials reported improved time-to-disease progression, palliative response, and/or quality of life with mitoxatrone

  9. Optimum method for administration of biosynthetic human growth hormone: a randomised crossover trial of an Auto Injector and a pen injection system.

    Science.gov (United States)

    Stanhope, R; Albanese, A; Moyle, L; Hamill, G

    1992-08-01

    The use of optimum conventional growth hormone administration, using a growth hormone vial combined with an Auto Injector, was compared with a pen injection system using a cartridge of growth hormone. In both methods of administration the concentration of growth hormone was 16 IU/ml. Thirty patients (22 boys, eight girls) who had all previously been treated with growth hormone (4 IU/ml) administered using needles and syringes (without an Auto Injector) were randomised into receiving one of either treatment for three months and then crossed over for a further three months. Fourteen patients (10 boys, four girls) initially received KabiVial 16 IU/ml combined with an Auto Injector while 16 patients (12 boys, four girls) were treated with KabiPen 16 IU/ml. Mean age in both groups was 9.6 years. The majority of patients in both groups were treated with a regimen of either 15 or 20 units/m2/week as a daily subcutaneous injection. Of the 30 patients who started in this trial, two who commenced using an Auto Injector refused to change to a pen system and were excluded from further analysis. When scored on a scale of -5 to +5 general convenience when changing from an Auto Injector to the KabiPen decreased from +4.7 to +1.0. When assessed for pain, the Auto Injector group scored +4.7, which decreased to -0.2 (more painful) for the pen. At the end of the trial 23 patients (82%) chose to continue with the KabiVial/Auto Injector combination as they found this less painful and the child did not see the needle or need to insert the needle manually. Five patients (18%) continued with the KabiPen as they considered the device smaller and easier to use. The accuracy of dosing using KabiVial was 100% compared with the range of 88% to 111% using KabiPen as the latter was available only in 0.5 unit increments. No growth hormone was wasted using KabiVial, although a mean of 0.6 units was wasted with every 16 IU cartridge in the KabiPen system. It is concluded that patients should be

  10. Phosphate Availability Alters Architecture and Causes Changes in Hormone Sensitivity in the Arabidopsis Root System1

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-01-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 μm), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. PMID:12011355

  11. Foetal and neonatal development of luteinising hormone and its regulatory systems in the pig.

    Science.gov (United States)

    Parvizi, N

    2006-01-01

    This review is a short summary of the "state-of-the-art" regarding the ontogeny of LH and part of its control system in the pig. The maturity of pituitary gonadotropin cells and the vascular drainage between the hypothalamus and pituitary are probably the most important steps in the developmental process of gonadotropin (LH) secretion. In the pig, these are achieved at around day 80 of foetal age, when LH cell density is comparable to that observed in adults. The hypothalamus regulates foetal pituitary LH secretion via LHRH well ahead of parturition. However, the main prerequisite of ovarian activity (ovulation), the "GnRH pulse generator", is not ready to function in the foetus. Pulsatile LH release is inducible by treatment of the foetal pituitary with LHRH, but extrahypothalamic modulating systems are not fully functioning until after birth. Likewise, there is no gonadal steroid feedback control of pituitary LH secretion up to the second week of neonatal age.

  12. The Impact of Growth Hormone and Gamma-Hydroxybutyrate (GHB) on Systems Related to Cognition

    OpenAIRE

    Johansson, Jenny

    2012-01-01

    Drug dependence is a serious and increasing problem in our society, especially among adolescents. The use of the large variety of substances available can result in a range of physiological and psychological adverse effects on individuals and negative consequences on the society overall. Several different types of drugs induce neurotoxicological damages, which in turn can generate impairment in for example the reward system and affect cognitive parameters.  The drug gamma-hydroxybutyrate (GHB...

  13. Characterization of two melanin-concentrating hormone genes in zebrafish reveals evolutionary and physiological links with the mammalian MCH system.

    Science.gov (United States)

    Berman, Jennifer R; Skariah, Gemini; Maro, Géraldine S; Mignot, Emmanuel; Mourrain, Philippe

    2009-12-10

    Melanin-concentrating hormone (MCH) regulates feeding and complex behaviors in mammals and pigmentation in fish. The relationship between fish and mammalian MCH systems is not well understood. Here, we identify and characterize two MCH genes in zebrafish, Pmch1 and Pmch2. Whereas Pmch1 and its corresponding MCH1 peptide resemble MCH found in other fish, the zebrafish Pmch2 gene and MCH2 peptide share genomic structure, synteny, and high peptide sequence homology with mammalian MCH. Zebrafish Pmch genes are expressed in closely associated but non-overlapping neurons within the hypothalamus, and MCH2 neurons send numerous projections to multiple MCH receptor-rich targets with presumed roles in sensory perception, learning and memory, arousal, and homeostatic regulation. Preliminary functional analysis showed that whereas changes in zebrafish Pmch1 expression correlate with pigmentation changes, the number of MCH2-expressing neurons increases in response to chronic food deprivation. These findings demonstrate that zebrafish MCH2 is the putative structural and functional ortholog of mammalian MCH and help elucidate the nature of MCH evolution among vertebrates.

  14. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses

    Directory of Open Access Journals (Sweden)

    Mahmoud Ameri

    2014-05-01

    Full Text Available This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC. Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables.

  15. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    Science.gov (United States)

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua; Li, Maoteng

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  16. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    Directory of Open Access Journals (Sweden)

    Jawadayn Talib Alkooranee

    Full Text Available Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR, and its culture filtrate (CF triggers a systemic acquired resistance (SAR response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA and jasmonic acid/ethylene (JA/ET are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi], six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  17. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    Science.gov (United States)

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (pGrowth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (pgrowth hormone receptor and insulin-like growth factor-1 (pgrowth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Insulin hormone: Mechanism and effects on the body and relationship with central nervous system

    Directory of Open Access Journals (Sweden)

    B. Zuhal Altunkaynak

    2012-06-01

    Full Text Available Diabetes mellitus (DM is one of the most common andchronic disease all over the world. It is characterized witheither insulin deficiency or insulin resistance. Insulin is ahormone which is secreted by beta cells in the LangerhansIslets of pancreas and playing a role in carbohydratemetabolism regulation in association with glucagon. Regardingthe insulin’s effects on carbohydrates, almost inall tissues (except brain insulin increases the facilitateddiffusion of glucose into cells and shows and an effect toreduce the blood glucose levels. In other words, it haveregulator role on blood sugar level; insulin secretion isknown to be associated with an increase in the amountof energy. Insulin secretion is related with increasing glucoselevel. It has been shown that it is closely relatedwith intracellular enzymes and has a stimulating effecton transcription of glucokinase, pyruvate kinase, phosphofructokinase and fructose-2,6 biphosphatase thatare glicolytic and an inhibitory effect on transcription ofphosphophenolpyruvate carboxykinase that is gluconeogenetic.Besides being the primary regulator of carbohydratemetabolism, insulin also has an important effect onlipid and protein metabolisms that are interrelated withcarbohydrate metabolism. For the basis of diabetes effectson Central Nervous system (CNS two mechanismsare emphasized; first is the oxidative stress developeddue to metabolic changes and the second is damagesof calcium ion metabolism. In this review, it was intendedto reach detailed information by reviewing insulin’s basiceffect mechanism, its reflection on cellular level and itsrelationship with central nervous system.

  19. Insulin in Central Nervous System: More than Just a Peripheral Hormone

    Directory of Open Access Journals (Sweden)

    Ana I. Duarte

    2012-01-01

    Full Text Available Insulin signaling in central nervous system (CNS has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.

  20. Gonadotrophic hormone and reinforcement sensitivity systems in women with premenstrual dysphoric disorder.

    Science.gov (United States)

    Ko, Chih-Hung; Long, Cheng-Yu; Yen, Cheng-Fang; Chen, Cheng-Sheng; Wang, Peng-Wei; Yen, Ju-Yu

    2014-11-01

    Behavior inhibition and behavior approach system (BIS/BAS) determine the sensitivity to aversion and rewarding stimuli, respectively. This study aimed at evaluating the BIS/BAS of premenstrual dysphoric disorder (PMDD) and effect of estrogen and progesterone on the BIS/BAS. Women with PMDD without treatment and control subjects were recruited from the community. The PMDD diagnosis was based on psychiatric interviewing and the result of two-menstrual-cycle follow up. A total of 67 women with PMDD and 75 control subjects were recruited and entered the final analysis. They were evaluated with BIS/BAS scale and for estrogen and progesterone levels in both premenstrual and follicular phases. The results revealed that BAS score was higher among women with PMDD in both premenstrual and follicular phases. Progesterone level negatively correlated with fun-seeking, and its change in the menstrual cycle also negatively correlated to a change in fun-seeking score among women with PMDD. Women with PMDD had a higher score in BIS in the premenstrual phase and the BIS score correlated to depression, anxiety, and hostility among them. These results suggest reward sensitivity of women with PMDD is vulnerable to the effect of progesterone change in the menstrual cycle. Furthermore, the sensitivity to aversive stimuli plays an important role involving core symptoms of PMDD. The reinforcement sensitivity of PMDD deserves further detailed study. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  1. Ovarian hormones and obesity.

    Science.gov (United States)

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N; Asarian, Lori

    2017-05-01

    Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a

  2. Genotoxic potential of nonsteroidal hormones

    Directory of Open Access Journals (Sweden)

    Topalović Dijana

    2015-01-01

    Full Text Available Hormones are cellular products involved in the regulation of a large number of processes in living systems, and which by their actions affect the growth, function and metabolism of cells. Considering that hormones are compounds normally present in the organism, it is important to determine if they can, under certain circumstances, lead to genetic changes in the hereditary material. Numerous experimental studies in vitro and in vivo in different systems, from bacteria to mammals, dealt with the mutagenic and genotoxic effects of hormones. This work presents an overview of the research on genotoxic effects of non­steroidal hormones, although possible changes of genetic material under their influence have not still been known enough, and moreover, investigations on their genotoxic influence have given conflicting results. The study results show that mechanisms of genotoxic effect of nonsteroidal hormones are manifested through the increase of oxidative stress by arising reactive oxygen species. A common mechanism of ROS occurence in thyroid hormones and catecholamines is through metabolic oxidation of their phenolic groups. Manifestation of insulin genotoxic effect is based on production of ROS by activation of NADPH isophorms, while testing oxytocin showed absence of genotoxic effect. Considering that the investigations on genotoxicity of nonsteroidal hormones demonstrated both positive and negative results, the explanation of this discordance involve limitations of test systems themselves, different cell types or biological species used in the experiments, different level of reactivity in vitro and in vivo, as well as possible variations in a tissue-specific expression. Integrated, the provided data contribute to better understanding of genotoxic effect of nonsteroidal hormones and point out to the role and mode of action of these hormones in the process of occurring of effects caused by oxidative stress. [Projekat Ministarstva nauke Republike

  3. Growth hormone test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003706.htm Growth hormone test To use the sharing features on this page, please enable JavaScript. The growth hormone test measures the amount of growth hormone in ...

  4. Growth hormone suppression test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  5. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    Science.gov (United States)

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  6. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; van Eden, C. G.; Goncharuk, V. D.; Kalsbeek, A.

    2003-01-01

    The biological clock, the suprachiasmatic nucleus (SCN), is essential for our daily well-being. it prepares us for the upcoming period of activity by an anticipatory rise in heart rate, glucose and cortisol. At the same time the 'hormone of the darkness', melatonin, decreases. Thus, the time-of-day

  7. Nosema ceranae alters a highly conserved hormonal stress pathway in honeybees.

    Science.gov (United States)

    Mayack, C; Natsopoulou, M E; McMahon, D P

    2015-12-01

    Nosema ceranae, an emerging pathogen of the western honeybee (Apis mellifera), is implicated in recent pollinator losses and causes severe energetic stress. However, whether precocious foraging and accelerated behavioural maturation in infected bees are caused by the infection itself or via indirect energetic stress remains unknown. Using a combination of nutritional and infection treatments, we investigated how starvation and infection alters the regulation of adipokinetic hormone (AKH) and octopamine, two highly conserved physiological pathways that respond to energetic stress by mobilizing fat stores and increasing search activity for food. Although there was no response from AKH when bees were experimentally infected with N. ceranae or starved, supporting the notion that honeybees have lost this pathway, there were significant regulatory changes in the octopamine pathway. Significantly, we found no evidence of acute energetic stress being the only cause of symptoms associated with N. ceranae infection. Therefore, the parasite itself appears to alter regulatory components along a highly conserved physiological pathway in an infection-specific manner. This indicates that pathogen-induced behavioural alteration of chronically infected bees should not just be viewed as a coincidental short-term by-product of pathogenesis (acute energetic stress) and may be a result of a generalist manipulation strategy to obtain energy for reproduction. © 2015 The Royal Entomological Society.

  8. The influence of ovarian factors on the somatostatin-growth hormone system during the postnatal growth and sexual development in lambs.

    Science.gov (United States)

    Wańkowska, Marta; Polkowska, Jolanta; Misztal, Tomasz; Romanowicz, Katarzyna

    2012-07-01

    The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Preparation of Single-cohort Colonies and Hormone Treatment of Worker Honeybees to Analyze Physiology Associated with Role and/or Endocrine System.

    Science.gov (United States)

    Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo

    2016-09-06

    Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone

  10. The breast cancer hormone receptor retesting controversy in Newfoundland and Labrador, Canada: lessons for the health system.

    Science.gov (United States)

    Gregory, Deborah M; Parfrey, Patrick S

    2010-01-01

    The treatment of newly diagnosed breast cancer patients with hormonal treatment is determined by the presence of estrogen receptor and progesterone receptor status in breast cancer. In Newfoundland and Labrador (NL), 425 of 1088 (39.1%) patients who had original "negative" receptor tests conducted between 1997 and 2005, had positive results upon retesting in a specialized laboratory. This commentary addresses (1) the diagnostic utility of estrogen and progesterone testing for breast cancer in general, (2) specific testing problems that occurred in NL, (3) scientific problems associated with retesting, and (4) the impact on public trust and the resulting legal and political responses that occurred as a result of the adverse events associated with false-negative hormone receptor tests. Finally, the lessons learned will be discussed including known high false-negative rates associated with the tests and the bias associated with retesting, the need for quality assurance and national standards, public education, and appropriate communication with patients and the public.

  11. Investigation of the effect of body mass index (BMI on semen parameters and male reproductive system hormones

    Directory of Open Access Journals (Sweden)

    Mehmet Zeynel Keskin

    2017-10-01

    Full Text Available Aim: To evaluate the effects of body mass index (BMI ratio on semen parameters and serum reproductive hormones. Materials and methods: The data of 454 patients who prsented to male infertility clinics in our hospital between 2014 and 2015 were analyzed retrospectively. Weight, height, serum hormone levels and semen analysis results of the patients were obtained. BMI values were calculated by using the weight and height values of the patients and they were classified as group 1 for BMI values ≤ 25 kg/m2, as group 2 for BMI values 25-30 kg/m2 and as group 3 for BMI values ≥ 30 kg/m2. Results: The mean values of BMI, semen volume, concentration, total motility, progressive motility, total progressive motile sperm count (TPMSC, normal morphology according to Kruger, head abnormality, neck abnormality, tail abnormality, FSH, LH, prolactin, T/E2, total testosterone and estradiol parameters of the patients were considered. Patients were divided according to BMI values in Group 1 (n = 165, Group 2 (n = 222 and Group 3 (n = 56. There was no statistically significant difference in terms of all variables between the groups. Conclusions: We analyzed the relationship between BMI level and semen parameters and reproductive hormones, demonstrating no relationship between BMI and semen parameters. In our study, BMI does not affect semen parameters although it shows negative correlation with prolactin and testosterone levels.

  12. Investigation of the effect of body mass index (BMI) on semen parameters and male reproductive system hormones.

    Science.gov (United States)

    Keskin, Mehmet Zeynel; Budak, Salih; Aksoy, Evrim Emre; Yücel, Cem; Karamazak, Serkan; Ilbey, Yusuf Ozlem; Kozacıoğlu, Zafer

    2017-10-03

    To evaluate the effects of body mass index (BMI) ratio on semen parameters and serum reproductive hormones. The data of 454 patients who prsented to male infertility clinics in our hospital between 2014 and 2015 were analyzed retrospectively. Weight, height, serum hormone levels and semen analysis results of the patients were obtained. BMI values were calculated by using the weight and height values of the patients and they were classified as group 1 for BMI values ≤ 25 kg/m2, as group 2 for BMI values 25-30 kg/m2 and as group 3 for BMI values ≥ 30 kg/m2. The mean values of BMI, semen volume, concentration, total motility, progressive motility, total progressive motile sperm count (TPMSC), normal morphology according to Kruger, head abnormality, neck abnormality, tail abnormality, FSH, LH, prolactin, T/E2, total testosterone and estradiol parameters of the patients were considered. Patients were divided according to BMI values in Group 1 (n = 165), Group 2 (n = 222) and Group 3 (n = 56). There was no statistically significant difference in terms of all variables between the groups. We analyzed the relationship between BMI level and semen parameters and reproductive hormones, demonstrating no relationship between BMI and semen parameters. In our study, BMI does not affect semen parameters although it shows negative correlation with prolactin and testosterone levels.

  13. Hormones and absence epilepsy

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Tolmacheva, E.A.; Budziszewska, B.

    2017-01-01

    Hormones have an extremely large impact on seizures and epilepsy. Stress and stress hormones are known to reinforce seizure expression, and gonadal hormones affect the number of seizures and even the seizure type. Moreover, hormonal concentrations change drastically over an individual's lifetime,

  14. Hormones and absence epilepsy

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Budziszewska, B.; Tolmacheva, E.A.

    2009-01-01

    Hormones have an extremely large impact on seizures and epilepsy. Stress and stress hormones are known to reinforce seizure expression, and gonadal hormones affect the number of seizures and even the seizure type. Moreover, hormonal concentrations change drastically over an individual's lifetime,

  15. Positive impact of hormone replacement therapy on the fibrinolytic system: a long-term randomized controlled study in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Madsen, J S; Kristensen, S R; Gram, J

    2003-01-01

    BACKGROUND: The mechanisms by which postmenopausal hormone replacement therapy (HRT) may influence risk of cardiovascular disease are still unclear. Impaired fibrinolytic function is associated with an enhanced risk of cardiovascular disease and therefore the effect of HRT on fibrinolysis may...... be of importance. OBJECTIVES: To investigate the prolonged effect of HRT on the fibrinolytic system and to determine whether two common polymorphisms in the plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) genes modulate this effect. Methods: Healthy postmenopausal women (n...

  16. Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans

    DEFF Research Database (Denmark)

    Janjua, Nadeem Rezaq; Mortensen, Gerda Krogh; Andersson, Anna-Maria

    2007-01-01

    In vitro and animal studies have reported endocrine-disrupting activity of chemicals used commonly as additives in cosmetics and skin care products. We investigated whether diethyl phthalate (DEP), dibutyl phthalate (DBP), and butyl paraben (BP) were systemically absorbed and influenced endogenous...... reproductive and thyroid hormone levels in humans after topical application. In a two-week single-blinded study, 26 healthy young male volunteers were assigned to daily whole-body topical application of 2 mg/cm2 basic cream formulation each without (week one) and with (week two) the three 2% (w/w) compounds...

  17. Hormone therapy in acne

    Directory of Open Access Journals (Sweden)

    Chembolli Lakshmi

    2013-01-01

    Full Text Available Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  18. Data for the homology modelling of the red pigment-concentrating hormone receptor (Dappu-RPCHR of the crustacean Daphnia pulex, and docking of its cognate agonist (Dappu-RPCH

    Directory of Open Access Journals (Sweden)

    Graham E. Jackson

    2017-12-01

    Full Text Available The data presented in this article are related to the publication “Interaction of the red pigment-concentrating hormone of the crustacean Daphnia pulex, with its cognate receptor, Dappu-RPCHR: A nuclear magnetic resonance and modeling study” (Jackson et al., 2017 [1]. This article contains the data for homology modeling of the red pigment-concentrating hormone (RPCH receptor of the water flea, Daphnia pulex (Dappu-RPCHR, which was constructed from its primary sequence. This is the first 3D model of a crustacean G-protein coupled receptor. Docking of the agonist, pGlu-Val-Asn-Phe-Ser-Thr-Ser-Trp amide (Dappu-RPCH, was used to find a binding pocket on the receptor and compared to the binding pocket of the adipokinetic hormone (AKH receptor from the malaria mosquito. Data for the receptor, with and without loop refinement, together with the docked agonist, are presented. Keywords: Daphnia pulex, Red pigment-concentrating hormone, Homology modeling, Molecular docking

  19. Effects of 17{alpha}-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Anne S. [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway)], E-mail: arukwe@bio.ntnu.no

    2007-11-30

    Pharmaceuticals are ubiquitous pollutants in the aquatic environment where their potential effects on non-target species like fish has only recently become subject of systematic investigations. In the present study, experiments were undertaken to examine the effects of a synthetic pharmaceutical endocrine disruptor, ethynylestradiol (EE2), given in water at 5 or 50 ng/L and sampled at days 0 (control), 3 and 7 after exposure, on hepatic phase I and II biotransformation and hormonal pathways of juvenile salmon using quantitative (real-time) polymerase chain reaction (qPCR), Vtg ELISA and 7-ethoxyresorufin O-deethylase (EROD) catalytic activity. Our data show that EE2 produced time- and concentration-specific modulation of estrogen receptor isoforms (ER{alpha}, ER{beta}) and androgen receptor-{beta} (AR{beta}). EE2 produced a concentration-specific induction of vitellogenin (Vtg) and zona radiata protein (Zr-protein) at day 3 after exposure. At day 7, Vtg and Zr-protein mRNA (and plasma Vtg protein) expression were significantly decreased in the group given 5 ng EE2/L, compared to dimethyl sulfoxide (DMSO) control group. In the xenobiotic biotransformation pathway, EE2 produced a significant increase of aryl hydrocarbon receptor-{alpha} (AhR{alpha}) at day 3 in the group given 5 ng EE2/L and AhR{beta} was decreased at the same concentration at day 7. While CYP3A was not significantly affected by EE2 exposure, the CYP1A1, AhR nuclear translocator (Arnt) and AhR repressor (AhRR) mRNA showed an apparent EE2 concentration and time-dependent decrease. The expression of uridine diphosphoglucuronosyl transferase (UGT) and glutathione S-transferase class pi-like (GSTpi-like) mRNA were decreased after exposure to 50 ng EE2/L at both day 3 and 7 after exposure. The effect of EE2 on the CYP1A1 gene expressions paralleled effect on EROD and AhRR mRNA, suggesting a direct role of EE2 in controlling cellular detoxification machinery. Interestingly, the carrier vehicle, DMSO

  20. The effects of long-term endurance training on the immune and endocrine systems of elderly men: the role of cytokines and anabolic hormones

    Directory of Open Access Journals (Sweden)

    Natale Valéria

    2006-08-01

    Full Text Available Abstract Background a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed. Results elderly runners showed a significantly higher T cell proliferative response and IL-2 production than sedentary elderly controls. IL-2 production was similar to that in young adults. Their serum IL-6 levels were significantly lower than their sedentary peers. They also showed significantly lower IL-3 production in comparison to sedentary elderly subjects but similar to the youngs. Anabolic hormone levels did not differ between elderly groups and no clear correlation was found between hormones and cytokine levels. Conclusion highly conditioned elderly men seem to have relatively better preserved immune system than the sedentary elderly men. Long-term endurance training has the potential to decelerate the age-related decline in immune function but not the deterioration in endocrine function.

  1. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases.

    Science.gov (United States)

    Miyoshi, Yasuhide; Yoneyama, Shuko; Kawahara, Takashi; Hattori, Yusuke; Teranishi, Jun-ichi; Kondo, Keiichi; Moriyama, Masatoshi; Takebayashi, Shigeo; Yokomizo, Yumiko; Yao, Masahiro; Uemura, Hiroji; Noguchi, Kazumi

    2016-02-19

    The bone scan index (BSI) using a computer-aided diagnosis system for bone scans is expected to be an objective and quantitative clinical tool for evaluating bone metastatic prostate cancer. This study aimed to evaluate the pretreatment BSI as a prognostic factor in hormone-naive prostate cancer patients with bone metastases. The study included 60 patients with hormone-naive, bone metastatic prostate cancer that was initially treated with combined androgen blockade therapy. The BONENAVI system was used for calculating the BSI. We evaluated the correlation between overall survival (OS) and pretreatment clinicopathological characteristics, including patients' age, initial prostate-specific antigen (PSA) value, Gleason scores, clinical TNM stage, and the BSI. Cox proportional hazards regression models were used for statistical analysis. The median follow-up duration was 21.4 months. Clinical or PSA progression occurred in 37 (61.7%) patients and 18 (30.0%) received docetaxel. Death occurred in 16 (26.7%) patients. Of these deaths, 15 (25.0%) were due to prostate cancer. The median OS was not reached. In multivariate analysis, age and the BSI were independent prognostic factors for OS. We evaluated the discriminatory ability of our models, including or excluding BSI by quantifying the C-index. The BSI improved the C-index from 0.751 to 0.801 for OS. Median OS was not reached in patients with a BSI ≤ 1.9 and median OS was 34.8 months in patients with a BSI >1.9 (p = 0.039). The pretreatment BSI and patients' age are independent prognostic factors for patients with hormone-naive, bone metastatic prostate cancer.

  2. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone delivery. Keywords: Transdermal, Delivery systems, ... delivery compared with gels, emulsions, patches, and subcutaneous implants. Among .... In a safety announcement, the US Food and. Drug Administration (FDA) warned that ...

  3. The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha)

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Marco, H. G.

    2017-01-01

    Roč. 49, č. 10 (2017), s. 1679-1690 ISSN 0939-4451 R&D Projects: GA ČR(CZ) GA17-22276S Institutional support: RVO:60077344 Keywords : "green" insecticide * receptor-ligand interaction * insects Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.173, year: 2016 https://link.springer.com/article/10.1007%2Fs00726-017-2461-y

  4. Long-acting reversible hormonal contraception | Dahan-Farkas ...

    African Journals Online (AJOL)

    Long-acting reversible hormonal contraceptives are effective methods of birth control that provide contraception for an extended period without requiring user action. Long-acting reversible hormonal contraceptives include progesterone only injectables, subdermal implants and the levonorgestrel intrauterine system.

  5. Deciding about hormone therapy

    Science.gov (United States)

    ... to continue seeing your doctor for regular checkups. Alternative Names HRT - deciding; Estrogen replacement therapy - deciding; ERT- deciding; Hormone replacement therapy - deciding; Menopause - deciding; HT - deciding; Menopausal hormone therapy - deciding; MHT - ...

  6. Hormones and Hypertension

    Science.gov (United States)

    Fact Sheet Hormones and Hypertension What is hypertension? Hypertension, or chronic (long-term) high blood pressure, is a main cause of ... tobacco, alcohol, and certain medications play a part. Hormones made in the kidneys and in blood vessels ...

  7. Menopause and Hormones

    Science.gov (United States)

    ... Consumer Information by Audience For Women Menopause and Hormones: Common Questions Share Tweet Linkedin Pin it More ... reproduction and distribution. Learn More about Menopause and Hormones Menopause--Medicines to Help You Links to other ...

  8. Antidiuretic hormone blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003702.htm Antidiuretic hormone blood test To use the sharing features on this page, please enable JavaScript. Antidiuretic blood test measures the level of antidiuretic hormone (ADH) in ...

  9. Informing women on menopause and hormone therapy: Know The Menopause a multidisciplinary project involving local healthcare system.

    Directory of Open Access Journals (Sweden)

    Serena Donati

    Full Text Available BACKGROUND: Hormone therapy (HT in the menopause is still a tricky question among healthcare providers, women and mass media. Informing women about hormone replacement therapy was a Consensus Conference (CC organized in 2008: the project Know the Menopause has been launched to shift out the results to women and healthcare providers and to assess the impact of the cc's statement. METHODS: And Findings: The project, aimed at women aged 45-60 years, was developed in four Italian Regions: Lombardy, Tuscany, Lazio, Sicily, each with one Local Health Unit (LHU as "intervention" and one as "control". Activities performed were: survey on the press; training courses for health professionals; educational materials for target populations; survey aimed at women, general practitioners (GPs, and gynaecologists; data analysis on HT drugs' prescription. Local activities were: training courses; public meetings; dissemination on mass media. About 3,700 health professionals were contacted and 1,800 participated in the project. About 146,500 printed leaflets on menopause were distributed to facilitate the dialogue among women and health care professionals. Training courses and educational cascade-process activities: participation ranged 25- 72% of GPs, 17-71% of gynaecologists, 14-78% of pharmacists, 34-85% of midwives. SURVEY: 1,281 women interviewed. More than 90% believed menopause was a normal phase in life. More than half did not receive information about menopause and therapies. HT prescription analysis: prevalence fell from 6% to 4% in five years. No differences in time trends before-after the intervention. Major limitations are: organizational difficulties met by LHU, too short time for some local activities. CONCLUSIONS: A huge amount of information was spread through health professionals and women. The issue of menopause was also used to discuss women's wellbeing. This project offered an opportunity to launch a multidisciplinary, multimodal approach to

  10. The Hormonal Control of Food Intake

    Science.gov (United States)

    Coll, Anthony P.; Farooqi, I. Sadaf; O'Rahilly, Stephen

    2007-01-01

    Numerous circulating peptides and steroids produced in the body influence appetite through their actions on the hypothalamus, the brain stem, and the autonomic nervous system. These hormones come from three major sites—fat cells, the gastrointestinal tract, and the pancreas. In this Review we provide a synthesis of recent evidence concerning the actions of these hormones on food intake. PMID:17448988

  11. Effects of lactational exposure to organochlorine pesticides, PCBs and dioxins on immune response and thyroid hormone systems in Japanese male and female infants

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, J. [School of Health Sciences, Kyushu Univ., Fukuoka (Japan); Tsuji, H. [Kitakyushu-Tsuyazaki Hospital, Fukuoka (Japan); Iida, T.; Nakagawa, R.; Matsueda, T.; Hirakawa, H. [Fukuoka Inst. of Health and Environmental Sciences, Fukuoka (Japan); Shiraha, A.; Yanagawa, T. [Graduate School of Mathematics, Kyushu Univ., Fukuoka (Japan); Fukushige, J. [Fukuoka Children' s Hospital, Fukuoka (Japan); Watanabe, T. [Watanabe O.B.G.Y. Clinic, Fukuoka (Japan)

    2004-09-15

    Our environments including food have been polluted with some organochlorine compounds such as dioxins, polychlorinated biphenyls (PCBs) and pesticides. Japanese people have also been contaminated with these chemicals. Consequently, some pesticides such as hexachlorocyclohexans (HCHs), 1,1,1-trichloro- 2,2-bis-(4-chlorophenyl)-ethane (DDT), dieldrin and heptachlor epoxide (HCE), and PCBs have been determined in Japanese breast milk and their mean or median concentrations on fat weight basis were about 420, 330, 3, 4 and 110 ppb, respectively. Their levels were considered more than 100 to 10,000 times higher than those of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and coplanar polychlorinated biphenyls (Co-PCBs), so-called dioxins, in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) value as a whole. Therefore, we should give due attention to possible health consequences of these organochlorine pesticides and PCBs as well as dioxins in Japanese infants. We have already reported effects of the perinatal exposure to these compounds on lymphocyte subsets and thyroid hormone statuses in the peripheral blood of Japanese infants. In this study, in order to clarify the sexual distinction in their effects on the immune response and thyroid hormone systems, we investigated the lymphocyte subsets and thyroid related chemicals in the blood of Japanese male and female infants in relation to their concentrations of the breast milk.

  12. Exploiting pi-acceptors for the determination of thyroid hormones (T3 and T4) using a single interface flow system.

    Science.gov (United States)

    Silvestre, Cristina I C; Santos, João L M; Lima, José L F C; Zagatto, Elias A G

    2009-09-15

    A fully automated methodology was developed for the determination of the thyroid hormones levothyroxine (T4) and liothyronine (T3). The proposed method exploits the formation of highly coloured charge-transfer (CT) complexes between these compounds, acting as electron donors, and pi-acceptors such as chloranilic acid (CLA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). For automation of the analytical procedure a simple, fast and versatile single interface flow system (SIFA) was implemented guaranteeing a simplified performance optimisation, low maintenance and a cost-effective operation. Moreover, the single reaction interface assured a convenient and straightforward approach for implementing Job's method of continuous variations used to establish the stoichiometry of the formed CT complexes. Linear calibration plots for levothyroxine and liothyronine concentrations ranging from 5.0 x 10(-5) to 2.5 x 10(-4) mol L(-1) and 1.0 x 10(-5) to 1.0 x 10(-4)mol L(-1), respectively, were obtained, with good precision (R.S.D. <4.6% and <3.9%) and with a determination frequency of 26 h(-1) for both drugs. The results obtained for pharmaceutical formulations were statistically comparable to the declared hormone amount with relative deviations lower than 2.1%. The accuracy was confirmed by carrying out recovery studies, which furnished recovery values ranging from 96.3% to 103.7% for levothyroxine and 100.1% for liothyronine.

  13. Longitudinal Profiles of Metabolism and Bioenergetics Associated with Innate Immune Hormonal Inflammatory Responses and Amino-Acid Kinetics in Severe Sepsis and Systemic Inflammatory Response Syndrome in Children.

    Science.gov (United States)

    Spanaki, Anna Maria; Tavladaki, Theonymfi; Dimitriou, Helen; Kozlov, Andrey V; Duvigneau, J Catharina; Meleti, Eftychia; Weidinger, Adelheid; Papakonstantinou, Evangelos; Briassoulis, George

    2018-01-16

    Experimental data indicate that sepsis influences the mitochondrial function and metabolism. We aim to investigate longitudinal bioenergetic, metabolic, hormonal, amino-acid, and innate immunity changes in children with sepsis. Sixty-eight children (sepsis, 18; systemic inflammatory response syndrome [SIRS], 23; healthy controls, 27) were enrolled. Plasma amino acids were determined by high-performance liquid chromatography (HPLC); flow-cytometry expressed as mean fluorescence intensity (MFI) of heat shock protein (HSP) levels from monocytes (m) and neutrophils (n); resistin, adiponectin, and extracellular (e) HSPs evaluated by ELISA; ATP levels in white blood cells by luciferase luminescent assay; lipid peroxidation products (TBARS) by colorimetric test; nitrite and nitrate levels by chemiluminescent assay; biliverdin reductase (BVR) activity by enzymatic assay; and energy-expenditure (EE) by E-COVX. Resistin, eHSP72, eHSP90α, and nitrate were longitudinally higher in sepsis compared with SIRS (pmetabolic pattern were repressed in sepsis compared with SIRS (pmetabolism, mHSP72, and induced resistin and adiponectin (pmetabolic-hormones and eHSP72/HSP90α, repression of bioenergetics and innate immunity, hypo-metabolism, and amino-acid kinetics changes discriminate sepsis from SIRS; malnutrition, hypo-metabolism, and persistently increased resistin and adiponectin are associated with poor outcome. © 2018 American Society for Parenteral and Enteral Nutrition.

  14. Growth Hormone Deficiency in Adults

    Science.gov (United States)

    ... Balance › Growth Hormone Deficiency in Adults Patient Guide Growth Hormone Deficiency in Adults June 2011 Download PDFs English ... depression, or moodiness What are the benefits of growth hormone therapy? Growth hormone treatment involves injections (shots) of ...

  15. Curcumin and Quercetin Ameliorated Cypermethrin and Deltamethrin-Induced Reproductive System Impairment in Male Wistar Rats by Upregulating The Activity of Pituitary-Gonadal Hormones and Steroidogenic Enzymes

    Directory of Open Access Journals (Sweden)

    Poonam Sharma

    2018-01-01

    Full Text Available Background Dietary antioxidants protect tissues and organs against insecticides/xenobiotic-induced damage. In the present study, we evaluated the results of exposure to synthetic pyrethroid insecticides, cypermethrin (Cyp and deltamethrin (Del and possible protective effects of curcumin and quercetin on reproductive system in male Wistar rats. Materials and Methods In this controlled experimental study, 42 male Wistar rats were randomly divided into 7 groups of 6 animals. Group A served as control, group B was exposed to Cyp (2 mg/kg.bw, group C was exposed to Del (2 mg/kg.bw, group D was exposed to Cyp+Del (2 mg/kg.bw each, group E was exposed to Cyp+Del and treated with curcumin (100 mg/kg.bw, group F was exposed to Cyp+Del and treated with quercetin (100 mg/kg.bw and group G was exposed to Cyp+Del and treated with quercetin+curcumin for 45 days. Results Exposure to Cyp and Del caused decreases in reproductive organs weight, sperm count, sperm motility, level of sex hormones viz. testosterone (T, follicle stimulating hormone (FSH and luteinizing hormone (LH, steroidogenic enzymes viz. 3β-hydroxyl steroid dehydrogenase (3β-HSD and 17β-HSD, non-enzymatic antioxi- dant glutathione (GSH and enzymatic antioxidants viz. superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST and glutathione reductase (GR activity and increases in sperm abnormalities and lipid peroxidation (LPO. The exposure also adversely affected the histo-achitecture of testes. Single and combined treatment with curcumin and quercetin significantly ameliorated Cyp and Del-induced damage in reproductive system. Conclusion Curcumin and quercetin protected against Cyp and Del-induced reproductive system toxicity and oxidative damage in rats. The increases in activities of 3β-HSD and 17β-HSD with concomitant increases in testosterone were mainly responsible for ameliorating effects of curcumin and quercetin. Curcumin showed slightly

  16. Hormonal crosstalk in plant immunity

    NARCIS (Netherlands)

    van der Does, A.

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect

  17. Sex, hormones and the brain

    NARCIS (Netherlands)

    van Lunsen, R. H.; Laan, E.

    1997-01-01

    The human sexual response is a complicated biopsychosocial phenomenon in which internal and external stimuli are modulated by the central and peripheral nervous system, resulting in a cascade of biochemical, hormonal and circulatory changes that lead to cognitive and physical sexual arousal. In this

  18. A Transgenic Mouse Model for Studying the Role of the Parathyroid Hormone-Related Protein System in Renal Injury

    Science.gov (United States)

    Bosch, Ricardo J.; Ortega, Arantxa; Izquierdo, Adriana; Arribas, Ignacio; Bover, Jordi; Esbrit, Pedro

    2011-01-01

    Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches. PMID:21052497

  19. A Transgenic Mouse Model for Studying the Role of the Parathyroid Hormone-Related Protein System in Renal Injury

    Directory of Open Access Journals (Sweden)

    Ricardo J. Bosch

    2011-01-01

    Full Text Available Parathyroid hormone- (PTH- related protein (PTHrP and its receptor, the PTH1 receptor (PTH1R, are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF, obstructive nephropathy (ON as well as diabetic nephropathy (DN. In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II, a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.

  20. Genomic growth hormone, growth hormone receptor and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Lei et al., 2007). Recently, the effects of bovine growth hormone gene polymorphism at codon 127 and 172 were determined on carcass traits and fatty acid compositions in Japanese Black cattle using allele specific-multiplex ...

  1. Can the usage of human growth hormones affect facial appearance and the accuracy of face recognition systems?

    Science.gov (United States)

    Rose, Jake; Martin, Michael; Bourlai, Thirimachos

    2014-06-01

    In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. The goal of the study is to demonstrate that steroid usage significantly affects human facial appearance and hence, the performance of commercial and academic face recognition (FR) algorithms. In this work, we evaluate the performance of state-of-the-art FR algorithms on two unique face image datasets of subjects before (gallery set) and after (probe set) steroid (or human growth hormone) usage. For the purpose of this study, datasets of 73 subjects were created from multiple sources found on the Internet, containing images of men and women before and after steroid usage. Next, we geometrically pre-processed all images of both face datasets. Then, we applied image restoration techniques on the same face datasets, and finally, we applied FR algorithms in order to match the pre-processed face images of our probe datasets against the face images of the gallery set. Experimental results demonstrate that only a specific set of FR algorithms obtain the most accurate results (in terms of the rank-1 identification rate). This is because there are several factors that influence the efficiency of face matchers including (i) the time lapse between the before and after image pre-processing and restoration face photos, (ii) the usage of different drugs (e.g. Dianabol, Winstrol, and Decabolan), (iii) the usage of different cameras to capture face images, and finally, (iv) the variability of standoff distance, illumination and other noise factors (e.g. motion noise). All of the previously mentioned complicated scenarios make clear that cross-scenario matching is a very challenging problem and, thus, further investigation is required.

  2. Adrenocorticotropic hormone gel in the treatment of systemic lupus erythematosus: A retrospective study of patients. [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2016-02-01

    Full Text Available Objectives: Acthar Gel is a long-acting formulation of adrenocorticotropic hormone (ACTH with anti-inflammatory effects thought to be mediated in part through melanocortin receptor activation. This study was initiated to understand the role of Acthar Gel in SLE treatment in rheumatology practices. Methods: This is a retrospective case series of nine adult female patients treated with Acthar Gel for at least six months at five academic centers. Treating physicians completed a one-page questionnaire on lupus medications, disease activity, and outcomes. Clinical response was defined using SLEDAI 2K and improvement in the clinical manifestation(s being treated. Results: The most common clinical SLE manifestations/indications requiring therapy with Acthar Gel were arthritis, rash, and inability to taper corticosteroids. The mean SLEDAI 2K score at baseline was 5.8 ± 5.0 (range 0-16. Six patients were concomitantly treated with corticosteroids (mean dose 18.3mg/day. All patients were on background SLE medications including immunosuppressives. Seven of nine patients had an overall improvement, with a decrease in SLEDAI 2K from 5.8 ± 5.0 at baseline to 3.5 ± 2.7 (range 0-8; four of five patients had improvement or resolution in arthritis, and one of two patients had resolution of inflammatory rash. Four patients discontinued corticosteroids and one patient tapered below 50% of the initial dose by 3 months of treatment with Acthar Gel. No adverse events were reported. Conclusions: This study suggests a role for Acthar Gel as an alternative to corticosteroids in the treatment of SLE. Acthar Gel appears to be safe and well-tolerated after 6 months of treatment, with a significant reduction in disease activity.

  3. Growth hormone and epidermal growth factor together enhance amino acid transport systems B0,+ and A in remnant small intestine after massive enterectomy.

    Science.gov (United States)

    Ray, Edward C; Avissar, Nelly E; Vukcevic, Dubravka; Toia, Liana; Ryan, Charlotte K; Berlanga-Acosta, Jorge; Sax, Harry C

    2003-11-01

    Sodium-dependent brush-border nutrient transport is decreased 2 weeks after massive enterectomy. This down-regulation is ameliorated by a 1-week infusion of parenteral growth hormone (GH) and epidermal growth factor (EGF) started 1 week after resection. We hypothesize that glutamine (GLN) transport will be enhanced by earlier and longer growth factor infusion, with differential effects on the Na(+)-dependent GLN transport systems A, B(0,+), and B(0)/ASCT2. New Zealand White rabbits underwent 70% small bowel resection then immediately received parenteral EGF, GH, both EGF and GH, or neither for 2 weeks. Na(+)-dependent 3H-GLN uptake by jejunal and ileal brush-border membrane vesicles was measured and the contribution of systems A, B(0,+), and B(0) was then determined by competitive inhibition. Data were analyzed using one-way analysis of variance. In nonresected animals, the relative contribution of the systems was similar in jejunum (A 9%, B(0,+) 20%, and B(0) 71%) and ileum (A 13%, B(0,+) 27%, and B(0) 60%). Na(+)-dependent GLN uptake was reduced by one half in resected untreated controls, primarily because of decreased B(0) activity. EGF or GH alone did not affect Na(+)-dependent GLN transport, but, as a combination, there was increased uptake in the residual ileum and jejunum by 144% and 150%, respectively, over resected controls (P enterectomy, synergistically enhance GLN uptake by systems A and B(0,+).

  4. Growth hormone and epidermal growth factor together enhance amino acid transport systems B(0,+) and A in remnant small intestine after massive enterectomy.

    Science.gov (United States)

    Ray, Edward C; Avissar, Nelly E; Vukcevic, Dubravka; Toia, Liana; Ryan, Charlotte K; Berlanga-Acosta, Jorge; Sax, Harry C

    2003-08-01

    Sodium-dependent brush border nutrient transport is decreased 2 weeks after massive enterectomy. This downregulation is ameliorated by a 1-week infusion of parenteral growth hormone (GH) and epidermal growth factor (EGF) started 1 week after resection. We hypothesized that glutamine (GLN) transport would be enhanced by earlier and longer growth factor infusion, with differential effects on the Na(+)-dependent GLN transport systems A, B(0,+), and B0/ASCT2. New Zealand White rabbits underwent 70% small bowel resection then immediately received parenteral EGF, GH, both, or neither for 2 weeks. Na(+)-dependent 3H-GLN uptake by jejunal and ileal brush-border membrane vesicles was measured and the contribution of systems A, B(0,+), and B0 then determined by competitive inhibition. Data were analyzed using one-way analysis of variance. In nonresected animals, the relative contribution of the systems was similar in jejunum (A, 9%, B(0,+), 20%; and B0, 71%) and ileum (A, 13%; B(0,+), 27%; and B0, 60%). Na(+)-dependent GLN uptake was reduced by half in resected, untreated controls, primarily because of decreased B(0) activity. EGF or GH alone did not affect Na(+)-dependent GLN transport, but as a combination, increased uptake in the residual ileum and jejunum by 144% and 150%, respectively, over resected controls (Penterectomy, synergistically enhance GLN uptake by systems A and B(0,+).

  5. Endocrine determinants of haemostasis and thrombosis risk: Focus on thyroid hormone

    NARCIS (Netherlands)

    Elbers, L.P.B.

    2016-01-01

    This thesis explores endocrine determinants of the haemostatic system and thrombosis risk with main focus on thyroid hormone. It describes, in three parts, the effects of thyroid hormone on the haemostatic system, the effects of thyroid hormone (mimetics) on lipids and the effects of other hormones

  6. Oxytocin - The Sweet Hormone?

    Science.gov (United States)

    Leng, Gareth; Sabatier, Nancy

    2017-05-01

    Mammalian neurons that produce oxytocin and vasopressin apparently evolved from an ancient cell type with both sensory and neurosecretory properties that probably linked reproductive functions to energy status and feeding behavior. Oxytocin in modern mammals is an autocrine/paracrine regulator of cell function, a systemic hormone, a neuromodulator released from axon terminals within the brain, and a 'neurohormone' that acts at receptors distant from its site of release. In the periphery oxytocin is involved in electrolyte homeostasis, gastric motility, glucose homeostasis, adipogenesis, and osteogenesis, and within the brain it is involved in food reward, food choice, and satiety. Oxytocin preferentially suppresses intake of sweet-tasting carbohydrates while improving glucose tolerance and supporting bone remodeling, making it an enticing translational target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Standardization of hormone determinations.

    Science.gov (United States)

    Stenman, Ulf-Håkan

    2013-12-01

    Standardization of hormone determinations is important because it simplifies interpretation of results and facilitates the use of common reference values for different assays. Progress in standardization has been achieved through the introduction of more homogeneous hormone standards for peptide and protein hormones. However, many automated methods for determinations of steroid hormones do not provide satisfactory result. Isotope dilution-mass spectrometry (ID-MS) has been used to establish reference methods for steroid hormone determinations and is now increasingly used for routine determinations of steroids and other low molecular weight compounds. Reference methods for protein hormones based on MS are being developed and these promise to improve standardization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Hormonal therapy for acne.

    Science.gov (United States)

    George, Rosalyn; Clarke, Shari; Thiboutot, Diane

    2008-09-01

    Acne affects more than 40 million people, of which more than half are women older than 25 years of age. These women frequently fail traditional therapy and have high relapse rates even after isotretinoin. Recent advances in research have helped to delineate the important role hormones play in the pathogenesis of acne. Androgens such as dihydrotestosterone and testosterone, the adrenal precursor dehydroepiandrosterone sulfate, estrogens, growth hormone, and insulin-like growth factors may all contribute to the development of acne. Hormonal therapy remains an important part of the arsenal of acne treatments available to the clinician. Women dealing with acne, even those without increased serum androgens, may benefit from hormonal treatments. The mainstays of hormonal therapy include oral contraceptives and antiandrogens such as spironolactone, cyproterone acetate, or flutamide. In this article, we discuss the effects of hormones on the pathogenesis of acne, evaluation of women with suspected endocrine abnormalities, and the myriad of treatment options available.

  9. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms.

    Science.gov (United States)

    Yam, Kit-Yi; Naninck, Eva F G; Schmidt, Mathias V; Lucassen, Paul J; Korosi, Aniko

    2015-01-01

    Clinical and pre-clinical studies have shown that early-life adversities, such as abuse or neglect, can increase the vulnerability to develop psychopathologies and cognitive decline later in life. Remarkably, the lasting consequences of stress during this sensitive period on the hypothalamic-pituitary-adrenal axis and emotional function closely resemble the long-term effects of early malnutrition and suggest a possible common pathway mediating these effects. During early-life, brain development is affected by both exogenous factors, like nutrition and maternal care as well as by endogenous modulators including stress hormones. These elements, while mostly considered for their independent actions, clearly do not act alone but rather in a synergistic manner. In order to better understand how the programming by early-life stress takes place, it is important to gain further insight into the exact interplay of these key elements, the possible common pathways as well as the underlying molecular mechanisms that mediate their effects. We here review evidence that exposure to both early-life stress and early-life under-/malnutrition similarly lead to life-long alterations on the neuroendocrine stress system and modify emotional functions. We further discuss how the different key elements of the early-life environment interact and affect one another and next suggest a possible role for the early-life adversity induced alterations in metabolic hormones and nutrient availability in shaping later stress responses and emotional function throughout life, possibly via epigenetic mechanisms. Such knowledge will help to develop intervention strategies, which gives the advantage of viewing the synergistic action of a more complete set of changes induced by early-life adversity.

  10. A dynamic, sex-specific expression pattern of genes regulating thyroid hormone action in the developing zebra finch song control system.

    Science.gov (United States)

    Raymaekers, Sander R; Verbeure, Wout; Ter Haar, Sita M; Cornil, Charlotte A; Balthazart, Jacques; Darras, Veerle M

    2017-01-01

    The zebra finch (Taeniopygia guttata) song control system consists of several series of interconnected brain nuclei that undergo marked changes during ontogeny and sexual development, making it an excellent model to study developmental neuroplasticity. Despite the demonstrated influence of hormones such as sex steroids on this phenomenon, thyroid hormones (THs) - an important factor in neural development and maturation - have not been studied in this regard. We used in situ hybridization to compare the expression of TH transporters, deiodinases and receptors between both sexes during all phases of song development in male zebra finch. Comparisons were made in four song control nuclei: Area X, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (used as proper name) and the robust nucleus of the arcopallium (RA). Most genes regulating TH action are expressed in these four nuclei at early stages of development. However, while general expression levels decrease with age, the activating enzyme deiodinase type 2 remains highly expressed in Area X, HVC and RA in males, but not in females, until 90days post-hatch (dph), which marks the end of sensorimotor learning. Furthermore, the L-type amino acid transporter 1 and TH receptor beta show elevated expression in male HVC and RA respectively compared to surrounding tissue until adulthood. Differences compared to surrounding tissue and between sexes for the other TH regulators were minor. These developmental changes are accompanied by a strong local increase in vascularization in the male RA between 20 and 30dph but not in Area X or HVC. Our results suggest that local regulation of TH signaling is an important factor in the development of the song control nuclei during the song learning phase and that TH activation by DIO2 is a key player in this process. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Introduction to the Endocrine System

    Science.gov (United States)

    ... Spikes Is mealtime insulin right for you? The Endocrine System Access more 3D visualizations by downloading the Hormone ... Endocrinologist Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ...

  12. Introduction to the Endocrine System

    Science.gov (United States)

    ... Resources Featured Resource Find an Endocrinologist Search The Endocrine System Access more 3D visualizations by downloading the Hormone ... About Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone Abuse Peer ...

  13. Sex hormones and hypertension

    OpenAIRE

    Dubey, Raghvendra K; Oparil, Suzanne; Imthurn, Bruno; Jackson, Edwin K.

    2017-01-01

    Gender has an important influence on blood pressure, with premenopausal women having a lower arterial blood pressure than age-matched men. Compared with premenopausal women, postmenopausal women have higher blood pressures, suggesting that ovarian hormones may modulate blood pressure. However, whether sex hormones are responsible for the observed gender-associated differences in arterial blood pressure and whether ovarian hormones account for differences in blood pressure in premenopausal ver...

  14. Modulation of the endocannabinoid system in viable and non-viable first trimester pregnancies by pregnancy-related hormones

    Directory of Open Access Journals (Sweden)

    Taylor Anthony H

    2011-11-01

    Full Text Available Abstract Background In early pregnancy, increased plasma levels of the endocannabinoid anandamide (AEA are associated with miscarriage through mechanisms that might affect the developing placenta or maternal decidua. Methods In this study, we compare AEA levels in failed and viable pregnancies with the levels of the trophoblastic hormones (beta-human chorionic gonadotrophin (beta-hCG, progesterone (P4 and (pregnancy-associated placental protein-A (PAPP-A essential for early pregnancy success and relate that to the expression of the cannabinoid receptors and enzymes that modulate AEA levels. Results The median plasma AEA level in non-viable pregnancies (1.48 nM; n = 20 was higher than in viable pregnancies (1.21 nM; n = 25; P = 0.013, as were progesterone and beta-hCG levels (41.0 vs 51.5 ng/mL; P = 0.052 for P4 and 28,650 vs 6,560 mIU/L; P = 0.144 for beta-hCG, respectively, but were not statistically significant. Serum PAPP-A levels in the viable group were approximately 6.8 times lower than those in the non-viable group (1.82 vs 12.25 mg/L; P = 0.071, but again these differences were statistically insignificant. In the spontaneous miscarriage group, significant correlations between P4 and beta-hCG, P4 and PAPP-A and AEA and PAPP-A levels were observed. Simultaneously, immunohistochemical distributions of the two main cannabinoid receptors and the AEA-modifying enzymes, fatty acid amide hydrolase (FAAH and N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, changed within both the decidua and trophoblast. Conclusions The association of higher AEA levels with early pregnancy failure and with beta-hCG and PAPP-A, but not with progesterone concentrations suggest that plasma AEA levels and pregnancy failure are linked via a mechanism that may involve trophoblastic beta-hCG, and PAPP-A, but not, progesterone production. Although the trophoblast, decidua and embryo contain receptors for AEA, the main AEA target in early pregnancy failure

  15. Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress.

    Science.gov (United States)

    Said, Mona A; El-Gohary, Ola A

    2016-07-01

    Noise pollution has been realized as an environmental stressor associated with modern life style that affects our health without being consciously aware of it. The present study investigated the effect of acute, chronic intermittent and chronic continuous exposure to noise of intensity 80-100 dB on heart rate and mean systemic arterial blood pressure in rats and the possible underlying mechanisms. Noise stress causes significant increase in heart rate, mean systemic arterial blood pressure as well as significant increase in plasma levels of corticosterone, adrenaline, noradrenaline, endothelin-1, nitric oxide and malondialdehyde with significant decrease in superoxide dismutase and these values are significantly more worse in chronic continuous exposure to noise than acute or chronic intermittent exposure. These findings suggest that noise stress has many adverse effects on cardiovascular system via increasing plasma levels of stress hormones, oxidative stress and endothelial dysfunction. These findings have major implication in the management of adverse cardiovascular reactions of people subjected to daily noise stress.

  16. Functional State of Pituitary-Gonadal System in Men with Non-functional Pituitary Adenomas and Growth Hormone Deficiency in Adults

    Directory of Open Access Journals (Sweden)

    Yu.M. Urmanova

    2014-04-01

    Full Text Available We examined 71 adult patients with growth hormone deficiency caused by non-functional masses of chiasmosellar area. Patients were divided into two groups: the first one — men aged 18 to 49 years and the second one — 49 years and above. Investigation of the hormonal profile of the first group patients showed that in them low indices of the mean values of luteinizing hormone (LH, follicle-stimulating hormone (FSH, free and total testosterone (hypogonadotropic hypogonadism dominated on the background of moderate hyperprolactinemia. In the patients of the second group we found similar violations of the pituitary-gonadal axis. In patients of older age group the low indices of the mean values of LH, FSH, total testosterone (hypogonadotropic hypogonadism also dominated on the background of moderate hyperprolactinemia. At that, the average values of these hormones were significantly lower than in the first group.

  17. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    Science.gov (United States)

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems.

  18. Usability and Tolerability of the Norditropin NordiFlex® Injection Device in Children Never Previously Treated With Growth Hormone

    Science.gov (United States)

    2014-06-23

    Growth Hormone Disorder; Growth Hormone Deficiency in Children; Genetic Disorder; Turner Syndrome; Foetal Growth Problem; Small for Gestational Age; Chronic Kidney Disease; Chronic Renal Insufficiency; Delivery Systems

  19. Parathyroid Hormone Injection

    Science.gov (United States)

    ... have any questions about how to inject this medication.Parathyroid hormone injection comes in a cartridge to be mixed in ... and vitamin D while you are taking this medication.Parathyroid hormone injection controls hypoparathyroidism but does not cure it. Continue ...

  20. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  1. Aging changes in hormone production

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/004000.htm Aging changes in hormone production To use the sharing ... that produce hormones are controlled by other hormones. Aging also changes this process. For example, an endocrine ...

  2. Hormone therapy for prostate cancer

    Science.gov (United States)

    ... gov/ency/patientinstructions/000908.htm Hormone therapy for prostate cancer To use the sharing features on this page, ... the growth of prostate cancer. Male Hormones and Prostate Cancer Androgens are male sex hormones. Testosterone is one ...

  3. Growth Hormone Deficiency in Children

    Science.gov (United States)

    ... c m y one in Children What is growth hormone deficiency? Growth hormone deficiency (GHD) is a rare condition in which the body does not make enough growth hormone (GH). GH is made by the pituitary gland, ...

  4. Isotretinoin influences pituitary hormone levels in acne patients.

    Science.gov (United States)

    Karadag, Ayse Serap; Ertugrul, Derun Taner; Tutal, Emre; Akin, Kadir Okhan

    2011-01-01

    Besides suppressing sebum production, the exact mechanism of action of isotretinoin in acne vulgaris is not known. Several hormones have been linked to the pathogenesis of acne. In this study, we investigated the effects of isotretinoin on the pituitary-adrenal axis, whose activity may be increased in acne. Various hormone systems were evaluated before and after 3 months of isotretinoin treatment in 47 acne patients. Free triiodothyronine (T3), thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibody levels decreased significantly during isotretinoin treatment (p testosterone (p isotretinoin causes mild suppression of pituitary hormone levels, which may be beneficial for tackling the pathogenesis of acne.

  5. Stress and Female Reproductive System: Disruption of Corticotropin-Releasing Hormone/Opiate Balance by Sympathetic Nerve Traffic

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2009-09-01

    Full Text Available Nowadays stress is an integral part of everyday living and the physiological and behavioral consequences of exposure to stressful situations have been extensively studied for decades. The stress response is a necessary mechanism but disrupts homeostatic process and it is sub served by a complex system located in both the central nervous system (CNS and the periphery. Stressor-induced activation of the hypothalamus–pituitary–adrenal (HPA axis and the sympathetic nervous system (SNS results in a series of neural and endocrine adaptations known as the "stress response" or "stress cascade." The stress cascade is responsible for allowing the body to make the necessary physiological and metabolic changes required to cope with the demands of a homeostatic challenge. Normal activation of the HPA axis is essential for reproduction, growth, metabolic homeostasis, and responses to stress and they are critical for adapting to changes in the external environment. The regulation of gonadal function in men and women is under the control of the HPA. This regulation is complex and sex steroids are important regulators of GnRH and gonadotropin release through classical feedback mechanisms in the hypothalamus and the pituitary. The present overview focuses on the neuroendocrine infrastructure of the adaptive response to stress and its effects on the female reproductive system

  6. Foetal hypothalamic and pituitary expression of gonadotrophin-releasing hormone and galanin systems is disturbed by exposure to sewage sludge chemicals via maternal ingestion.

    Science.gov (United States)

    Bellingham, M; Fowler, P A; Amezaga, M R; Whitelaw, C M; Rhind, S M; Cotinot, C; Mandon-Pepin, B; Sharpe, R M; Evans, N P

    2010-06-01

    Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) that are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. The verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in utero, when sensitivity to EC exposure is high. The present study aimed to determine whether the foetal sheep reproductive neuroendocrine axis, particularly gondotrophin-releasing hormone (GnRH) and galaninergic systems, were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations, but is frequently recycled to land as a fertiliser. We found that foetuses exposed to the EDC mixture in utero through their mothers had lower GnRH mRNA expression in the hypothalamus and lower GnRH receptor (GnRHR) and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression, although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. The present study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real-world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known role programming role in utero, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in utero changes in the activity of these systems are likely to have long-term consequences in adulthood and represent a novel pathway through

  7. Impact of thyroid hormone dysfunction on periodontal disease

    National Research Council Canada - National Science Library

    Shaila Kothiwale; Vishal Panjwani

    2016-01-01

    .... This case report presents the influence of thyroid hormone dysfunction and its impact on periodontal disease progression, systemic health of the patient, and the management of periodontal disease...

  8. Mechanisms of genotoxic effects of hormones

    Directory of Open Access Journals (Sweden)

    Đelić Ninoslav J.

    2002-01-01

    Full Text Available A concept that compounds commonly present in biological systems lack genotoxic and mutagenic activities is generally in use, hence a low number of endogenous substances have ever been tested to mutagenicity. Epidemiological and experimental analyses indicated, however, that sexual steroids could contribute to initiation and/or continuation of malign diseases. Detailed studies using methods of biochemistry, molecular biology, cytogenetics and other branches, showed that not only epigenetic mechanisms, such as a stimulation of cell proliferation, but also certain hormones, that can express genotoxic effects, such as covalent DNA modification, then chromosomal lesions and chromosomal aberrations, are in the background of malign transformation under activities of hormones. In the case of oestrogens, it was shown that excessive hormonal stimulation led to a metabolic conversion of these hormones to reactive intermediates with formation of reactive oxygenic derivates, so that cells were virtually under conditions of oxidative stress. Individual and tissue susceptibility to occurrence of deterioration of DNA and other cell components generally results from the differences in efficiency of enzymic and non-enzymic mechanisms of resistance against oxidative stress. Besides, steroid thyeroid hormones and catecholamine (dopamine, noradrenaline/norepinephrine and adrenaline can express genotoxic effects in some test-systems. It is interesting that all above mentioned hormones have a phenolic group. Data on possible genotoxic effects of peptide and protein hormones are very scarce, but based on the available literature it is considered that this group of hormones probably lacks mutagenic activities. The possibility that hormones, as endogenous substances, express mutagenic activities results from the fact that DNA is, regardless of chemical and metabolic stability susceptible, to a certain extent, to changeability compatible with the processes of the

  9. Vitamins as hormones.

    Science.gov (United States)

    Reichrath, J; Lehmann, B; Carlberg, C; Varani, J; Zouboulis, C C

    2007-02-01

    Vitamins A and D are the first group of substances that have been reported to exhibit properties of skin hormones, such as organized metabolism, activation, inactivation, and elimination in specialized cells of the tissue, exertion of biological activity, and release in the circulation. Vitamin A and its two important metabolites, retinaldehyde and retinoic acids, are fat-soluble unsaturated isoprenoids necessary for growth, differentiation and maintenance of epithelial tissues, and also for reproduction. In a reversible process, vitamin A is oxidized IN VIVO to give retinaldehyde, which is important for vision. The dramatic effects of vitamin A analogues on embryogenesis have been studied by animal experiments; the clinical malformation pattern in humans is known. Retinoic acids are major oxidative metabolites of vitamin A and can substitute for it in vitamin A-deficient animals in growth promotion and epithelial differentiation. Natural vitamin A metabolites are vitamins, because vitamin A is not synthesized in the body and must be derived from carotenoids in the diet. On the other hand, retinoids are also hormones - with intracrine activity - because retinol is transformed in the cells into molecules that bind to and activate specific nuclear receptors, exhibit their function, and are subsequently inactivated. The mechanisms of action of natural vitamin A metabolites on human skin are based on the time- and dose-dependent influence of morphogenesis, epithelial cell proliferation and differentiation, epithelial and mesenchymal synthetic performance, immune modulation, stimulation of angiogenesis and inhibition of carcinogenesis. As drugs, vitamin A and its natural metabolites have been approved for the topical and systemic treatment of mild to moderate and severe, recalcitrant acne, photoaging and biologic skin aging, acute promyelocytic leukaemia and Kaposi's sarcoma. On the other hand, the critical importance of the skin for the human body's vitamin D endocrine

  10. Melanin-Concentrating Hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake.

    Science.gov (United States)

    Romero-Picó, Amparo; Sanchez-Rebordelo, Estrella; Imbernon, Monica; González-Touceda, David; Folgueira, Cintia; Senra, Ana; Fernø, Johan; Blouet, Clémence; Cabrera, Roberto; van Gestel, Margriet; Adan, Roger A; López, Miguel; Maldonado, Rafael; Nogueiras, Ruben; Diéguez, Carlos

    2018-03-01

    Melanin-Concentrating Hormone (MCH) is one of the most relevant orexigenic factors specifically located in the lateral hypothalamic area (LHA), with its physiological relevance demonstrated in studies using several genetically manipulated mice models. However, the central mechanisms controlling MCH-induced hyperphagia remain largely uncharacterized. Here, we show that central injection of MCH in mice deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To determine the hypothalamic area responsible for this MCH/k-OR interaction, we performed virogenetic studies and found that downregulation of k-OR by adeno-associated viruses (shOprk1-AAV) in LHA, but not in other hypothalamic nuclei, was sufficient to block MCH-induced food intake. Next, we sought to investigate the molecular signaling pathway within the LHA that mediates acute central MCH stimulation of food intake. We found that MCH activates k-OR and that increased levels of phosphorylated extracellular signal regulated kinase (ERK) are associated with downregulation of phospho-S6 Ribosomal Protein. This effect was prevented when a pharmacological inhibitor of k-OR was co-administered with MCH. Finally, the specific activation of the direct upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated food consumption. Our results reveal that lateral hypothalamic k-OR system modulates the orexigenic action of MCH via the p70S6K/S6 pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of the effects of thyrotropin releasing hormone (TRH) therapy on regional cerebral blood flow in the cerebellar variant of multiple system atrophy using 3DSRT.

    Science.gov (United States)

    Kimura, Noriyuki; Kumamoto, Toshihide; Masuda, Teruaki; Nomura, Yuki; Hanaoka, Takuya; Hazama, Yusuke; Okazaki, Toshio

    2011-04-01

    Thyrotropin releasing hormone (TRH) improves cerebellar ataxia and cerebellar perfusion in patients with spinocerebellar degeneration. It is not known whether TRH therapy can improve the cerebellar regional cerebral blood flow (rCBF) or not in patients with cerebellar variant of multiple-system atrophy (MSA-C). Seven patients with MSA-C received TRH intravenously (2 mg/day) for 14 days. Clinical efficacy was assessed using the International Cooperative Ataxia Rating Scale (ICARS) and brain perfusion single photon emission-computed tomography was performed before and after therapy. The rCBF in each region of interest (ROI) was calculated using 3DSRT, a fully automated the ROI technique. The ICARS scores slightly improved in 6 of the 7 patients after TRH therapy, but this was not statistically significant. After TRH therapy, the cerebellar rCBF reduced in the 6 of 7 patients and the mean rCBF in cerebellum also significantly decreased (P=0.029, paired t-test), whereas the rCBF in the precentral segment tend to increase (P=0.048, paired t-test). TRH therapy may be less effective on cerebellar ataxia and cerebellar rCBF in MSA-C. The 3DSRT program may be useful for the evaluation of the efficacy of TRH therapy on cerebral blood flow. Copyright © 2009 by the American Society of Neuroimaging.

  12. The luteinising hormone surge-generating system is functional in male goats as in females: involvement of kisspeptin neurones in the medial preoptic area.

    Science.gov (United States)

    Matsuda, F; Nakatsukasa, K; Suetomi, Y; Naniwa, Y; Ito, D; Inoue, N; Wakabayashi, Y; Okamura, H; Maeda, K-I; Uenoyama, Y; Tsukamura, H; Ohkura, S

    2015-01-01

    A luteinising hormone (LH) surge is fundamental to the induction of ovulation in mammalian females. The administration of a preovulatory level of oestrogen evokes an LH surge in ovariectomised females, whereas the response to oestrogen in castrated males differs among species; namely, the LH surge-generating system is sexually differentiated in some species (e.g. rodents and sheep) but not in others (e.g. primates). In the present study, we aimed to determine whether there is a functional LH surge-generating system in male goats, and whether hypothalamic kisspeptin neurones in male goats are involved in the regulation of surge-like LH secretion. By i.v. infusion of oestradiol (E2; 6 μg/h) for 16 h, a surge-like LH increase occurred in both castrated male and ovariectomised female goats, although the mean peak LH concentration was lower and the mean peak of the LH surge was later in males compared to females. Dual staining with KISS1 in situ hybridisation and c-Fos immunohistochemistry revealed that E2 treatment significantly increased c-Fos expression in the medial preoptic area (mPOA) KISS1 cells in castrated males, as well as ovariectomised females. By contrast, dual-labelled cells were scarcely detected in the arcuate nucleus (ARC) after E2 treatment in both sexes. These data suggest that kisspeptin neurones in the mPOA, but not those in the ARC, are involved in the induction of surge-like LH secretion in both male and female goats. In summary, our data show that the mechanism that initiates the LH surge in response to oestrogen, the mPOA kisspeptin neurones, is functional in male goats. Thus, sexual differentiation of the LH surge-generating system would not be applicable to goats. © 2014 British Society for Neuroendocrinology.

  13. The proprotein convertase encoded by amontillado (amon) is required in Drosophila corpora cardiaca endocrine cells producing the glucose regulatory hormone AKH.

    Science.gov (United States)

    Rhea, Jeanne M; Wegener, Christian; Bender, Michael

    2010-05-27

    Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado (amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)-producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH-producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones.

  14. Reproductive Hormones and Mood Disorders

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2010-12-01

    Full Text Available During the menstrual cycle, pregnancy and breast-feeding periods, as well as in menopausal and post-menopausal periods, the physiological and psychological processes that change according to the hormonal fluctuations influence every women similarly and each one differently. These physiological processes are controlled by neuroendocrine sequences, of which the hypothalamo-pituitary-adrenal axis and the hypothalamo-pituitary-gonadal axis are the most important ones. The hypothalamo-pituitary-gonadal axis affects mood, anxiety, cognition and pain. The interaction of these hormones with mood and behavior is bidirectional. The differences in phenomenology and epidemiology of mood disorders with regards to gender can be explained with the effects of hormones. All of the periods mentioned above are related with mood disorders at terms of risk factors, disease symptoms, progress of disease and response to treatment. Epidemiologic data supports the relationship between the mood disorders and reproductive processes. The prevalence of major depression increases in women with the menarche and ceases in post- menopausal period. Similarly, the initial symptoms of bipolar disorder begins around the menarche period in 50% of the cases. Despite proper treatment, some female patients with major depression experience recurrence during the premenstrual period of their menstrual cycles. The conformity and change in a woman’s brain during pregnancy is controlled dominantly by the neuroendocrine systems, while it is controlled by the external stimuli actively related to the baby during nursing period. The changes that occur are closely related to postpartum mood disorders. Again, all the changes and suspension of medication during this procedure are risk factors for early depressive and dysphoric situations. Variables of a wide range, from follicle stimulating hormone, melatonin, and sleep to body mass index interact with mood disorders in menopausal and post

  15. Growth hormone releasing hormone or growth hormone treatment in growth hormone insufficiency?

    OpenAIRE

    Smith, P J; Brook, C G

    1988-01-01

    Sixteen prepubertal children who were insufficient for growth hormone were treated with growth hormone releasing hormone (GHRH) 1-40 and GHRH 1-29 for a mean time of nine months (range 6-12 months) with each peptide. Eleven children received GHRH 1-40 in four subcutaneous nocturnal pulses (dose 4-8 micrograms/kg/day) and eight (three of whom were also treated with GHRH 1-40) received GHRH 1-29 twice daily (dose 8-16 micrograms/kg/day). Altogether 73% of the children receiving GHRH 1-40 and 63...

  16. [Hormonal contraception in men].

    Science.gov (United States)

    de Ronde, W; Meuleman, E J H

    2007-11-17

    Over the past few decades, female hormonal contraception has been seen to be very successful. However, this has still not resulted in a hormonal contraceptive for men. Certain injectable combinations ofandrogens and progestagens have been found to suppress spermatogenesis. All combinations that have been tested so far suffer from a relative lack of efficacy, a long lag time to achieve azoospermia, requiring the user to undergo one or more semen analyses, a moderate user friendliness, and concerns about the long-term safety and reversibility. It is not to be expected that male hormonal contraception will become a serious alternative to the already existing female equivalent during the coming 5 years.

  17. Growth hormone, inflammation and aging

    Directory of Open Access Journals (Sweden)

    Michal M. Masternak

    2012-04-01

    Full Text Available Mutant animals characterized by extended longevity provide valuable tools to study the mechanisms of aging. Growth hormone and insulin-like growth factor-1 (IGF-1 constitute one of the well-established pathways involved in the regulation of aging and lifespan. Ames and Snell dwarf mice characterized by GH deficiency as well as growth hormone receptor/growth hormone binding protein knockout (GHRKO mice characterized by GH resistance live significantly longer than genetically normal animals. During normal aging of rodents and humans there is increased insulin resistance, disruption of metabolic activities and decline of the function of the immune system. All of these age related processes promote inflammatory activity, causing long term tissue damage and systemic chronic inflammation. However, studies of long living mutants and calorie restricted animals show decreased pro-inflammatory activity with increased levels of anti-inflammatory adipokines such as adiponectin. At the same time, these animals have improved insulin signaling and carbohydrate homeostasis that relate to alterations in the secretory profile of adipose tissue including increased production and release of anti-inflammatory adipokines. This suggests that reduced inflammation promoting healthy metabolism may represent one of the major mechanisms of extended longevity in long-lived mutant mice and likely also in the human.

  18. Effects of feeding system on growth performance, plasma biochemical components and hormones, and carcass characteristics in Hanwoo steers

    Directory of Open Access Journals (Sweden)

    Chan Sung Chung

    2017-08-01

    Full Text Available Objective This study was conducted to compare growth performance, blood components and carcass traits by two feeding systems (concentrate with roughage separately [CON] vs total mixed ration [TMR] in Hanwoo steers, and to learn the relationship between blood components during fattening or finishing phases and carcass traits in Hanwoo steers. Methods Sixty steers aged 8 months were allotted to two feeding systems and fed similar amounts of average dry matter and total digestible nutrient throughout whole experimental period according to each feeding program. Steers were weighed monthly, taken blood at the end of growing, fattening and finishing periods, and slaughtered at 30 month of age. Results Growing performance was higher (p<0.05 in the CON group compared to the TMR group during fattening and finishing periods. The CON group was lower (p<0.05 in blood aspartic acid transaminase, blood urea nitrogen and retinol levels during growing period, but higher in triglyceride and cholesterol levels during fattening and finishing periods compared to the TMR group. The CON group was greater (p<0.05 in rib-eye area, and lighter (p<0.05 red in meat color compared to the TMR group. In the correlation coefficients between blood components of steers and carcass traits, retinol had a negative (p<0.05 correlation with marbling score and rib-eye area. Leptin had a positive (p<0.05 correlation with back fat thickness. Blood cholesterol and triglyceride were positively (p<0.05 correlated with carcass weight and rib-eye area. Conclusion Growth performance, carcass ribeye area and meat color showed a more desirable result in the CON compared to the TMR in Hanwoo steers. Assessing the accumulated data of carcass traits with blood components including hormones—particularly retinol, cholesterol, triglyceride, and leptin—during the fattening or finishing phases, it may be possible to find a biomarker for determining beef quality in living animals.

  19. Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects.

    Science.gov (United States)

    Sturm, Sebastian; Ramesh, Divya; Brockmann, Axel; Neupert, Susanne; Predel, Reinhard

    2016-01-30

    We investigated the peptide inventory of the corpora cardiaca (CC) of the honey bee, Apis mellifera, by direct tissue profiling using MALDI-TOF MS combined with proteomic approaches focusing on cysteine-containing peptides. An agatoxin-like peptide (ALP) was identified as a component of the glandular part of the CC and was associated with the presence of the adipokinetic hormone in mass spectra. Although abundant in the CC, ALP does not belong to the toxins observed in the venom gland of A. mellifera. Homologs of ALP are highly conserved in major groups of arthropods and in line with this we detected ALP in the CC of non-venomous insects such as cockroaches and silverfish. In the American cockroach, Periplaneta americana, ALP was also identified in the CNS and stomatogastric nervous system. This is the first report that establishes the presence of ALPs in the neuroendocrine tissues of insects and further studies are necessary to reveal common functions of these peptides, e.g. as antimicrobial agents, ion channel modulators or classical neuropeptides. Among the messenger molecules of the nervous system, neuropeptides represent the structurally most diverse class and basically participate in the regulation of all physiological processes. The set of neuropeptides, their functions and spatial distribution are particularly well-studied in insects. Until now, however, several potential neuropeptide receptors remained orphan, which indicates the existence of so far unknown ligands. In our study, we used proteomic methods such as cysteine modification, enzymatic digestion and peptide derivatization, combined with direct tissue profiling by MALDI-TOF mass spectrometry, for the discovery of novel putative messenger molecules in the neuroendocrine system. The described presence of agatoxin-like peptides in the nervous system of the honey bee and other insects was overseen so far and is thus a remarkable addition to the very well studied neuropeptidome of insects. It is not

  20. ADH (Antidiuretic Hormone) Test

    Science.gov (United States)

    ... Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle Antibody (SMA) ... Ratio Valproic Acid Vancomycin Vanillylmandelic Acid (VMA) VAP Vitamin A Vitamin B12 and Folate Vitamin D Tests ...

  1. ACTH (Adrenocorticotropic Hormone) Test

    Science.gov (United States)

    ... Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle Antibody (SMA) ... Ratio Valproic Acid Vancomycin Vanillylmandelic Acid (VMA) VAP Vitamin A Vitamin B12 and Folate Vitamin D Tests ...

  2. Hormonal effects in newborns

    Science.gov (United States)

    ... can cause an infection under the skin ( abscess ). Hormones from the mother may also cause some fluid to leak from the infant's nipples. This is called witch's milk. It is common and most often goes away ...

  3. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3

    Science.gov (United States)

    Kim, Jung; Neufeld, Thomas P.

    2015-01-01

    Secreted ligands of the insulin family promote cell growth and maintain sugar homeostasis. Insulin release is tightly regulated in response to dietary conditions, but how insulin producing cells (IPCs) coordinate their responses to distinct nutrient signals is unclear. Here, we show that regulation of insulin secretion in Drosophila larvae has been segregated into distinct branches: whereas amino acids promote secretion of Drosophila insulin-like peptide 2 (Dilp2), circulating sugars promote selective release of Dilp3. Dilp3 is uniquely required for sugar-mediated activation of TOR signaling and suppression of autophagy in the larval fat body. Sugar levels are not sensed directly by the IPCs, but rather by the adipokinetic hormone (AKH)-producing cells of the corpora cardiaca, and we demonstrate that AKH signaling is required in the IPCs for sugar-dependent Dilp3 release. Thus, IPCs integrate multiple cues to regulate secretion of distinct insulin subtypes under varying nutrient conditions. PMID:25882208

  4. [Dehydroepiandrosterone [DHEA(S)]: anabolic hormone?].

    Science.gov (United States)

    Luci, Michele; Valenti, Giorgio; Maggio, Marcello

    2010-09-01

    The role of dehydroepiandrosterone (DHEA) and its sulphated form (DHEAS) as anabolic hormones is still debated in the literature. In this review we describe the fundamental steps of DHEA physiological secretion and its peripheral metabolism. Moreover we will list all the observational and intervention studies conducted in humans. Many observational studies have tested the relationship between low DHEA levels and age-related changes in skeletal muscle and bone, while intervention studies underline the positive and significant effects of DHEA treatment on several parameters of body composition. Surprisingly, observational studies are not consistent with different effects in men and women. There is recent evidence of a significant role of DHEA in frailty syndrome and as predictor of mortality. However a more complete approach of the problem suggests the opportunity to not focus only on one single hormonal derangement but to analyze the parallel dysregulation of anabolic hormones including sex steroids, GH-IGF-1 system and other catabolic hormones.

  5. Body segments and growth hormone.

    OpenAIRE

    Bundak, R; Hindmarsh, P C; Brook, C G

    1988-01-01

    The effects of human growth hormone treatment for five years on sitting height and subischial leg length of 35 prepubertal children with isolated growth hormone deficiency were investigated. Body segments reacted equally to treatment with human growth hormone; this is important when comparing the effect of growth hormone on the growth of children with skeletal dysplasias or after spinal irradiation.

  6. Thyroid hormone and seasonal rhythmicity

    Directory of Open Access Journals (Sweden)

    Hugues eDardente

    2014-02-01

    Full Text Available Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone conversion. Here we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of thyroid hormone signalling within the medio-basal hypothalamus through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, thyroid hormone might also be involved in longer term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the medio-basal hypothalamus, in seasonal rhythmicity.

  7. Thyroid Hormone Regulation of Metabolism

    Science.gov (United States)

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  8. Performance characteristics of the Access AMH assay for the quantitative determination of anti-Müllerian hormone (AMH) levels on the Access* family of automated immunoassay systems.

    Science.gov (United States)

    Demirdjian, Gaiane; Bord, Stephanie; Lejeune, Caroline; Masica, Ryan; Rivière, Dominique; Nicouleau, Lucie; Denizot, Philippe; Marquet, Pierre-Yves

    2016-11-01

    Anti-Müllerian hormone (AMH) measurement is useful as an aid in the evaluation of ovarian reserve. In the past, its conventional use was restricted by the low-throughput and variability of existing manual AMH assays. We developed the automated Access AMH assay for the quantitative determination of AMH levels on the Access family of immunoassay systems. The analytical performance of this new assay was evaluated. Sensitivity, dilution linearity, assay imprecision, AMH sample stability, lot-to-lot comparison and correlation with AMH Gen II assay (Beckman Coulter, Inc.) were evaluated. Reference intervals for Access AMH were established in healthy females, males, newborns (≤60days) and pediatric males classified by Tanner stages. The limit of blank and limit of detection were below 0.0077 and 0.0098ng/mL, respectively. The limit of quantitation was 0.010ng/mL. The total imprecision ranged from 2.4 to 5.2%. Linearity was observed up to 24ng/mL. Sample storage at room temperature up to 48h, at 2-8°C up to 7days and at -20°C up to 15months had no impact on measured AMH. The correlation study gave a coefficient between 0.99 and 1 and a regression slope between 0.89 and 0.92. Excellent lot-to-lot comparability was observed on controls and patient samples with a maximum bias of 3.7% between 2.81 and 15.03ng/mL. The fully automated Access AMH immunoassay demonstrates excellent analytical performance. As a consequence, the availability of this assay will represent a robust, fast and precise alternative to manual AMH assay testing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Gclust Server: 138673 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available DME_CG1171_17647147 Cluster Sequences - 79 Akh: Adipokinetic hormone-like CG1171-PA 1 1.00e-40 0.0 0.0 0.0 0.0 0.0 12...79 Representative annotation Akh: Adipokinetic hormone-like CG1171-PA Number of Sequences 1 Homologs 1

  10. Headache And Hormones

    Directory of Open Access Journals (Sweden)

    Shukla Rakesh

    2002-01-01

    Full Text Available There are many reasons to suggest a link between headache and hormones. Migraine is three times common in women as compared to men after puberty, cyclic as well as non-cyclic fluctuations in sex hormone levels during the entire reproductive life span of a women are associated with changes in frequency or severity of migraine attack, abnormalities in the hypothalamus and pineal gland have been observed in cluster headache, oestrogens are useful in the treatment of menstrual migraine and the use of melatonin has been reported in various types of primary headaches. Headache associated with various endocrinological disorders may help us in a better understanding of the nociceptive mechanisms involved in headache disorders. Prospective studies using headache diaries to record the attacks of headache and menstrual cycle have clarified some of the myths associated with menstrual migraine. Although no change in the absolute levels of sex hormones have been reported, oestrogen withdrawal is the most likely trigger of the attacks. Prostaglandins, melatonin, opioid and serotonergic mechanisms may also have a role in the pathogenesis of menstrual migraine. Guidelines have been published by the IHS recently regarding the use of oral contraceptives by women with migraine and the risk of ischaemic strokes in migraineurs on hormone replacement therapy. The present review includes menstrual migraine, pregnancy and migraine, oral contraceptives and migraine, menopause and migraine as well as the hormonal changes in chronic migraine.

  11. Stress and hormones

    Directory of Open Access Journals (Sweden)

    Salam Ranabir

    2011-01-01

    Full Text Available In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves′ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm.

  12. Sex Hormones and Tendon

    DEFF Research Database (Denmark)

    Hansen, Mette; Kjaer, Michael

    2016-01-01

    The risk of overuse and traumatic tendon and ligament injuries differ between women and men. Part of this gender difference in injury risk is probably explained by sex hormonal differences which are specifically distinct during the sexual maturation in the teenage years and during young adulthood....... The effects of the separate sex hormones are not fully elucidated. However, in women, the presence of estrogen in contrast to very low estrogen levels may be beneficial during regular loading of the tissue or during recovering after an injury, as estrogen can enhance tendon collagen synthesis rate. Yet...

  13. LUTEINIZING HORMONE (LH)

    African Journals Online (AJOL)

    ... period and ovulation in rats.J. Endocr. 57,235. JOcHLE, W., 1969. Latest trends and practical problems arising during oestrus synchronisation. Proc. S. Afr. Soc. Anim. Prod. 8,23. KANN, G., 1971. Variations des concentrations plasmatiques de l'hormone luteinisant et de la prolactin au cours du cycle oestrien de la brebis.

  14. Thyroid hormone and obesity.

    Science.gov (United States)

    Pearce, Elizabeth N

    2012-10-01

    To review several of the most recent and most important clinical studies regarding the effects of thyroid treatments on weight change, associations between thyroid status and weight, and the effects of obesity and weight change on thyroid function. Weight decreases following treatment for hypothyroidism. However, following levothyroxine treatment for overt hypothyroidism, weight loss appears to be modest and mediated primarily by loss of water weight rather than fat. There is conflicting evidence about the effects of thyroidectomy on weight. In large population studies, even among euthyroid individuals, serum thyroid-stimulating hormone is typically positively associated with body weight and BMI. Both serum thyroid-stimulating hormone and T3 are typically increased in obese compared with lean individuals, an effect likely mediated, at least in part, by leptin. Finally, there is no consistent evidence that thyroid hormone treatment induces weight loss in obese euthyroid individuals, but thyroid hormone analogues may eventually be useful for weight loss. The interrelationships between body weight and thyroid status are complex.

  15. Hormones and postpartum cardiomyopathy.

    NARCIS (Netherlands)

    Clapp, C.; Thebault, S.C.; Martinez de la Escalera, G.M.

    2007-01-01

    Prolactin, a hormone fundamental for lactation, was recently shown to mediate postpartum cardiomyopathy, a life-threatening disease in late-term and lactating mothers. The detrimental effect of prolactin results from myocardial upregulation of cathepsin-D, which in turn cleaves prolactin to a 16 kDa

  16. Luteinizing hormone (LH) blood test

    Science.gov (United States)

    ICSH - blood test; Luteinizing hormone - blood test; Interstitial cell stimulating hormone - blood test ... to temporarily stop medicines that may affect the test results. Be sure to tell your provider about ...

  17. Hormonal contraception and venous thromboembolism

    DEFF Research Database (Denmark)

    Lidegaard, Øjvind; Milsom, Ian; Geirsson, Reynir Tomas

    2012-01-01

    New studies about the influence of hormonal contraception on the risk of venous thromboembolism (VTE) have been published.......New studies about the influence of hormonal contraception on the risk of venous thromboembolism (VTE) have been published....

  18. Gastrointestinal hormones and their targets

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2014-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone producing organ in the body. Modern biology makes...... it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization......, or differentiated maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed in cells outside the gut, some only in extraintestinal endocrine cells and neurons but others also in other...

  19. Hormone Therapy for Breast Cancer

    Science.gov (United States)

    ... hormones? Hormones are substances that function as chemical messengers in the body. They affect the actions of ... at the National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT ...

  20. SHBG (Sex Hormone Binding Globulin)

    Science.gov (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Sex Hormone Binding Globulin (SHBG) Send Us Your Feedback ... As Testosterone-estrogen Binding Globulin TeBG Formal Name Sex Hormone Binding Globulin This article was last reviewed ...

  1. Melatonin – apleiotropic hormone

    Directory of Open Access Journals (Sweden)

    Maciej Brzęczek

    2016-06-01

    Full Text Available Melatonin, a tryptophan derivative, is synthesised in mammals mainly in the pineal gland. It coordinates the biological clock by regulating the circadian rhythm. Its production is dependent on light and its concentrations change with age. Thanks to its specific chemical structure, melatonin is capable of crossing all biological barriers in the organism and affecting other tissues and cells, both in indirect and direct ways. Its mechanism of action involves binding with membrane receptors, nuclear receptors and intracellular proteins. Melatonin shows antioxidant activity. Moreover, its immunomodulatory and antilipid effects as well as its role in secreting other hormones, such as prolactin, luteinizing hormone, follicle-stimulating hormone, somatotropin, thyroliberin, adrenocorticotropin hormone or corticosteroids, are essential. In the recent years, research studies have been mainly focussed on the potential influence of melatonin on the aetiology and development of various disease entities, such as sleep disorders, gastrointestinal diseases, cancers, psychiatric and neurological conditions, cardiovascular diseases or conditions with bone turnover disorders. Indications for melatonin use in paediatrics are being discussed more and more frequently. Among others, authors debate on its use in dyssomnias in children with neurodevelopmental disorders, such as attention deficit hyperactivity disorder, supportive treatment in febrile seizures and epilepsy as well as potential use in paediatric anaesthesia. The molecular mechanism and broad-spectrum action of melatonin have not been sufficiently researched and its clinical relevance is often underestimated. This hormone is a promising link in achieving alternative therapeutic solutions.

  2. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  3. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    DEFF Research Database (Denmark)

    Comasco, Erika; Frøkjær, Vibe; Sundström-Poromaa, Inger

    2014-01-01

    these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in several cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized...

  4. Sex Hormonal Pattern of the Female African Giant Rat ( Cricetomys ...

    African Journals Online (AJOL)

    Enzymeimmunoassay (EIA) system was used to measure the serum concentrations of follicle stimulating hormone (FSH), luteinising hormone (LH), estrogen, progesterone and prolactin in a total of thirty-five sexually matured female African giant rats (cricetomys gambianus, Waterhouse) at different stages of the oestrous ...

  5. Hormone Profiling in Plant Tissues.

    Science.gov (United States)

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  6. Estrogen and Progestin (Hormone Replacement Therapy)

    Science.gov (United States)

    ... Estrogen and progestin are two female sex hormones. Hormone replacement therapy works by replacing estrogen hormone that is no ... menopausal women. Progestin is added to estrogen in hormone replacement therapy to reduce the risk of uterine cancer in ...

  7. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension

    Directory of Open Access Journals (Sweden)

    Sandeep Chopra

    2011-01-01

    Full Text Available Thyroid disorders and primary hyperparathyroidism have been known to be associated with increases in blood pressure. The hypertension related to hypothyroidism is a result of increased peripheral resistance, changes in renal hemodynamics, hormonal changes and obesity. Treatment of hypothyroidism with levo-thyroxine replacement causes a decrease in blood pressure and an overall decline in cardiovascular risk. High blood pressure has also been noted in patients with subclinical hypothyroidism. Hyperthyroidism, on the other hand, is associated with systolic hypertension resulting from an expansion of the circulating blood volume and increase in stroke volume. Increased serum calcium levels associated with a primary increase in parathyroid hormone levels have been also associated with high blood pressure recordings. The mechanism for this is not clear but the theories include an increase in the activity of the renin-angiotensin-aldosterone system and vasoconstriction. Treatment of primary hyperparathyroidism by surgery results in a decline in blood pressure and a decrease in the plasma renin activity. Finally, this review also looks at more recent evidence linking hypovitaminosis D with cardiovascular risk factors, particularly hypertension, and the postulated mechanisms linking the two.

  8. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes).

    Science.gov (United States)

    Inagaki, T; Smith, N L; Sherva, K M; Ramakrishnan, S

    2016-12-01

    Growing evidence indicates that chronic exposure to Bisphenol A (BPA) may disrupt normal brain function and behavior mediated by gonadotropin-releasing hormone (GnRH) pathways. Previous studies have shown that low dose BPA (200ng/ml) exposure during embryogenesis altered development of extra-hypothalamic GnRH3 systems and non-reproductive locomotor behavior in medaka. Effects of parental low-dose BPA exposure on the development of GnRH3 systems and locomotor behavior of offspring are not well known. This study examines whether the neurophysiological and behavioral effects of BPA in parents (F0 generation) are carried over to their offspring (F1 generation) using stable transgenic medaka embryos/larvae with GnRH3 neurons tagged with green fluorescent protein (GFP). Parental fish were exposed to BPA (200ng/ml) for either life-long or different developmental time windows. Fertilized F1 eggs were collected and raised in egg/fish water with no environmental exposure to BPA. All experiments were performed on F1 embryos/larvae, which were grouped based on the following parental (F0) BPA exposure conditions - (i) Group 1 (G1): through life; (ii) G2: during embryogenesis and early larval development [1-14days post fertilization (dpf)]; (iii) G3: during neurogenesis (1-5dpf); and (iv) G4: during sex differentiation (5-14dpf). Embryos from unexposed vehicle treated parents served as controls (G0). G1 embryos showed significantly reduced survival rates and delayed hatching time compared to other groups, while G4 embryos hatched significantly earlier than all other groups. At 3 dpf, the GnRH3-GFP intensity was increased by 47% in G3 embryos and decreased in G4 embryos by 59% compared to controls. At 4dpf, G1 fish showed 42% increased intensity, while GFP intensity was reduced by 44% in G3 subjects. In addition, the mean brain size of G1, G3 and G4 embryos were smaller than that of control at 4dpf. At 20dpf, all larvae from BPA-treated parents showed significantly decreased

  9. Hormonal and nonhormonal treatment of vasomotor symptoms.

    Science.gov (United States)

    Krause, Miriam S; Nakajima, Steven T

    2015-03-01

    This article focuses on the cause, pathophysiology, differential diagnosis of, and treatment options for vasomotor symptoms. In addition, it summarizes important points for health care providers caring for perimenopausal and postmenopausal women with regard to health maintenance, osteoporosis, cardiovascular disease, and vaginal atrophy. Treatment options for hot flashes with variable effectiveness include systemic hormone therapy (estrogen/progestogen), nonhormonal pharmacologic therapies (selective serotonin reuptake inhibitors, selective norepinephrine reuptake inhibitors, clonidine, gabapentin), and nonpharmacologic therapy options (behavioral changes, acupuncture). Risks and benefits as well as contraindications for hormone therapy are further discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Gut Hormones in Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2011-01-01

    Full Text Available Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.

  11. Thyroid Hormones, Oxidative Stress, and Inflammation

    Directory of Open Access Journals (Sweden)

    Antonio Mancini

    2016-01-01

    Full Text Available Inflammation and oxidative stress (OS are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS that typically manifests as reduced conversion of thyroxine (T4 to triiodothyronine (T3 in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  12. Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies.

    Science.gov (United States)

    Hou, C S; Li, B B; Deng, S; Diao, Q Y

    2016-09-23

    Varroa destructor mites pose an increasing global threat to the apicultural industry and agricultural ecology; however, the issue of whether certain environmental factors reflect the level of mite infection is far from resolved. Here, a wireless sensor network (WSN) system was used to examine how V. destructor, which has vital impacts on honeybee (Apis mellifera) health and survival, affects the temperature and humidity of honeybee hives in a field experiment. This approach may facilitate early identification of V. destructor in hives, and thus enable timely remedial action. Using quantitative PCR, we also evaluated the expression of two genes, adipokinetic hormone (AKH) and adipokinetic hormone receptor (AKHR).The results showed that temperature in highly infested broods was higher than that in broods with low infestation. Moreover, mite infection in honeybee colonies was positively correlated with temperature but negatively correlated with humidity (P Varroa infection not only causes changes in temperature inside honeybee colonies, but also affects the expression of honeybee energy metabolism genes.

  13. Gut hormones and gastric bypass

    DEFF Research Database (Denmark)

    Holst, Jens J.

    2016-01-01

    Gut hormone secretion in response to nutrient ingestion appears to depend on membrane proteins expressed by the enteroendocrine cells. These include transporters (glucose and amino acid transporters), and, in this case, hormone secretion depends on metabolic and electrophysiological events elicited...... that determines hormone responses. It follows that operations that change intestinal exposure to and absorption of nutrients, such as gastric bypass operations, also change hormone secretion. This results in exaggerated increases in the secretion of particularly the distal small intestinal hormones, GLP-1, GLP-2......, oxyntomodulin, neurotensin and peptide YY (PYY). However, some proximal hormones also show changes probably reflecting that the distribution of these hormones is not restricted to the bypassed segments of the gut. Thus, cholecystokinin responses are increased, whereas gastric inhibitory polypeptide responses...

  14. Hormonal Control of Lactation

    OpenAIRE

    青野, 敏博; Toshihiro, AONO; 徳島大学; Department of Obstetrics and Gynecology, University of Tokushima, School of Medicine

    1990-01-01

    We studied the mechanism of normal lactation, especially the roles of prolactin (PRL) and oxytocin (OXT) in the initiation of lactation, the lactation in the women complicated with endocrinological disorders, and medical therapies for stimulation and suppression of lactation. The level of serum PRL increases as pregnancy progresses, and reachs to a peak on the day of delivery. Despite high PRL level, milk secretion does not appear during pregnancy, because the sex steroid hormones suppress bi...

  15. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    Directory of Open Access Journals (Sweden)

    Claudia eBarth

    2015-02-01

    Full Text Available Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.

  16. LEARNING HORMONE ACTION MECHANISMS WITH BIOINFORMATICS

    Directory of Open Access Journals (Sweden)

    João Carlos Sousa

    2007-05-01

    Full Text Available The ability to manage the constantly growing information in genetics availableon the internet is becoming crucial in biochemical education and medicalpractice. Therefore, developing students skills in working with bioinformaticstools is a challenge to undergraduate courses in the molecular life sciences.The regulation of gene transcription by hormones and vitamins is a complextopic that influences all body systems. We describe a student centered activityused in a multidisciplinary “Functional Organ System“ course on the EndocrineSystem. By receiving, as teams, a nucleotide sequence of a hormone orvitamin-response element, students navigate through internet databases to findthe gene to which it belongs. Subsequently, student’s search how thecorresponding hormone/vitamin influences the expression of that particulargene and how a dysfunctional interaction might cause disease. This activity,proposed for 4 consecutive years to cohorts of 50-60 students/year enrolled inthe 2nd year our undergraduate medical degree, revealed that 90% of thestudents developed a better understanding of the usefulness of bioinformaticsand that 98% intend to use them in the future. Since hormones and vitaminsregulate genes of all body organ systems, this web-based activity successfullyintegrates the whole body physiology of the medical curriculum and can be ofrelevance to other courses on molecular life sciences.

  17. Effect of thyrotropin releasing hormone and some of its histidine analogs on the cardiovascular system and prolactin release in the conscious rat

    OpenAIRE

    Sirén, Anna-Leena; Feuerstein, G.; Labroo, V. M.; Coleen, L. A.; Lozovsky, D.

    2012-01-01

    The cardiovascular and endocrine activity of three analogs of thyrotropin releasing hor.mone (TRH), 4-nitro-imidazole TRH (4-nitroTRH), 2-trifluoro-methyl-imidazole TRH (2-TFM-TRH) and 4-trifluoromethyl- imidazole TRH (4-TFM-TRH), was compared to TRH in conscious rats. Injection of TRH or the three analogs (1 mg/kg or 5 mg/kg) into the arterial line induced increases in mean arterial pressure, pulse pressure and heart rate and raised plasma prolactin (PRL). None of the analogs were more poten...

  18. Development and validation of in vitro bioassays for thyroid hormone receptor mediated endocrine disruption

    NARCIS (Netherlands)

    Freitas, de J.

    2012-01-01

    Thyroid hormones regulate crucial processes in vertebrates such as reproduction, development and energy metabolism. Endocrine disruption via the thyroid hormone system is gaining more attention both from scientists and regulators, because of the increasing incidence of hormone-related cancers and

  19. Central and peripheral effects of thyroid hormone signalling in the control of energy metabolism

    NARCIS (Netherlands)

    Alkemade, A.

    2010-01-01

    Increasing evidence points towards a role for thyroid hormone signalling in the central nervous system with respect to the development of symptoms of thyroid disease, in addition to the well-known peripheral effects of thyroid hormone. Thyroid hormone affects target tissues directly via thyroid

  20. Growth hormone and insulin-like growth factor-1 in acute myocardial infarction

    DEFF Research Database (Denmark)

    Friberg, L; Werner, S; Eggertsen, G

    2000-01-01

    Growth hormone therapy after myocardial infarction improves cardiac function and survival in animals. Beneficial effects in humans are reported from studies where patients with idiopathic dilated cardiomyopathy were treated with growth hormone. We have studied the role of the endogenous growth...... hormone system in myocardial infarction....

  1. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility.

    Science.gov (United States)

    Pitia, Ali M; Uchiyama, Kyoko; Sano, Hiroaki; Kinukawa, Masashi; Minato, Yoshiaki; Sasada, Hiroshi; Kohsaka, Tetsuya

    2017-04-01

    Insulin-like factor 3 (INSL3) is essential for fetal testis descent, and has been implicated in the testicular and sperm functions in adult males; however, similar functions in domestic ruminants remain largely unknown. This study investigated the functional INSL3 hormone-receptor system in adult ruminant testes and spermatozoa, and explored its potential to diagnose the fertility of sires. Testes and spermatozoa were obtained from fertile bulls, rams and he-goats, whereas subfertile testes and spermatozoa were obtained only from bulls. As expected, INSL3 was visualized in Leydig cells, while we clearly demonstrated that the functional receptor, relaxin family peptide receptor 2 (RXFP2), enabling INSL3 to bind was identified in testicular germ cells and in the sperm equatorial segment of bulls, rams and he-goats. In comparison to fertile bulls, the percentage of INSL3- and RXFP2-expressing cells and their expression levels per cell were significantly reduced in the testes of subfertile bulls. In addition, the population of INSL3-binding spermatozoa was also significantly reduced in the semen of subfertile bulls. These results provide evidence for a functional INSL3 hormone-receptor system operating in ruminant testes and spermatozoa, and its potential to predict subfertility in sires. © 2016 Japanese Society of Animal Science.

  2. Puberty, hormones, and sex differences in alcohol abuse and dependence.

    Science.gov (United States)

    Witt, Ellen D

    2007-01-01

    Sex differences in patterns of drinking and rates of alcohol abuse and dependence begin to emerge during the transition from late puberty to young adulthood. Increases in pubertal hormones, including gonadal and stress hormones, are a prominent developmental feature of adolescence and could contribute to the progression of sex differences in alcohol drinking patterns during puberty. This paper reviews experimental and correlational studies of gonadal and stress-related hormone changes and their effects on alcohol drinking and other associated actions of alcohol. Mechanisms are suggested by which reproductive hormones and stress-related hormones may modulate neural circuits within the brain reward system to produce sex differences in alcohol drinking patterns and vulnerability to alcohol abuse and dependence which become apparent during the late pubertal period.

  3. The study of endocrine hormone changes in patients with CLL

    Directory of Open Access Journals (Sweden)

    Vojgani M

    1993-04-01

    Full Text Available Results of some cancer researches show that a number of hormones in ceratin tumors are growing up. Often, the majority of these hormones are produced by tumor cells or by an unknown origin in the neoplastic area. Also, it is clear that some of these ectopic hormones are produced only by specific tumors. In addition, different effects of these abnormally produced hormones on the immune system are shown in recent years. Thus, we decided to study the hormonal status of patients with chronic lymphocytic leukemia (CLL patients. The results of this study showed that the LH and FSH levels in the majority of patients are rising above normal while testosterone level in many of them is decreased. In the next step, we are going to study the immunological effects of LH, FSH, and testosterone one the lymphocyte function in vitro.

  4. Spontaneous Coronary Artery Dissection following Topical Hormone Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Alexander L. Pan

    2012-01-01

    Full Text Available Spontaneous coronary artery dissection is a rare condition, usually presenting as an acute coronary syndrome, and is often seen in states associated with high systemic estrogen levels such as pregnancy or oral contraceptive use. While topical hormonal replacement therapy may result in increased estrogen levels similar to those documented with oral contraceptive use, there are no reported cases of spontaneous coronary dissection with topical hormonal replacement therapy. We describe a 53-year-old female who developed two spontaneous coronary dissections while on topical hormonal replacement therapy. The patient had no other risk factors for coronary dissection. After withdrawal from topical hormonal therapy, our patient has done well and has not had recurrent coronary artery dissections over a one-year follow-up period. The potential contributory role of topical hormonal therapy as a cause of spontaneous coronary dissection should be recognized.

  5. Steroid hormone concentrations and physiological toxicity of water ...

    African Journals Online (AJOL)

    The results suggest that water from Goreangab and Swakoppoort dams may have the potential to modulate endocrine systems, and shows physiological toxicity. Keywords: cytokines, cytotoxicity, endocrine disrupting chemicals, ephemeral rivers, inflammatory response, neurotoxicity, steroid hormones, water quality

  6. Sleep Characteristics in Children with Growth Hormone Deficiency

    National Research Council Canada - National Science Library

    Verrillo, Elisabetta; Bizzarri, Carla; Cappa, Marco; Bruni, Oliviero; Pavone, Martino; Ferri, Raffaele; Cutrera, Renato

    2011-01-01

    Background/Aims: Growth hormone (GH) is preferentially secreted during slow wave sleep and the interactions between human sleep and the somatotropic system are well documented, although only few studies have investigated the sleep EEG...

  7. Growth Hormone and Aging

    Science.gov (United States)

    2000-08-01

    34Retrasos de crecimiento " 2a Ed., Diaz de al 1999), together with an increase in physical Santos. Madrid. pp 365-376 (1996). capacity (Jorgensen et al 1991...A, Marrama P, Agnati LF, Moiller EE. "Retrasos de crecimiento " 2’ Ed., Diaz de Reduced growth hormone releasing factor Santos. Madrid. pp 377-396...P, Skakkeback, Christiansen JS. variantes en (Moreno y Tresguerres dir). Three years of GH treatment in GH deficient "Retrasos de crecimiento " 2a Ed

  8. Hypermetabolic Conversion of Plant Oil into Water: Endothermic Biochemical Process Stimulated by Juvenile Hormone in the European Firebug, L.

    Directory of Open Access Journals (Sweden)

    Karel Sláma

    2016-01-01

    difference between the warm and cold larvae of P. apterus was only some 30% (not a reported 10-fold difference, which was presumably due to their ability to drink. We conclude that a very important, though still largely neglected, epigenetic biochemical role of insect JH depends on switchover between the utilization of dietary lipid (+JH; production of metabolic water and carbohydrate (-JH; lipid storage in the fat body. The hypermetabolic water supply in insects fed on dry food, which is associated with enormous rates of O 2 consumption, liberates endothermic energy that heats the body and potentially influences the insect thermoregulation. A possibility that the JH-dependent lipolytic hormone stimulates the total metabolic breakdown of nutritional lipids may be absolutely different from the currently known adipokinetic peptides that have been emphasized.

  9. Scientific and regulatory policy committee (SRPC) paper: Assessment of Circulating Hormones in Nonclinical Toxicity Studies. III Female Reproductive Hormones

    Science.gov (United States)

    Hormonally mediated effects on the female reproductive system may manifest in pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies of female reprod...

  10. Kinetic study of internalization and degradation of sup 131 I-labeled follicle-stimulating hormone in mouse Sertoli cells and its relevance to other systems

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A.; Kawashima, S. (Hayashibara Biochemical Lab., Okayama (Japan))

    1989-08-15

    The behavior of 131I-labeled follicle-stimulating hormone (FSH) after binding to cell-surface receptors in cultured Sertoli cells of C57BL/6NCrj mice was investigated. Sertoli cells cultured in F12/DME were pulse-labeled with 131I-FSH for 10 min at 4 degrees C, followed by cold chase for various periods of time. After the cold chase Sertoli cells were treated with 0.2 M acetate (pH 2.5) to dissociate membrane-bound 131I-FSH (surface radioactivity). The medium containing radioactivity after cold chase was mixed with 20% trichloroacetic acid, centrifuged, and the radioactivity of the supernatant was measured (degraded hormone). The radiolabeled materials associated with each process (surface binding, internalization, and degradation) were concentrated with ultrafiltration and characterized with gel filtration and/or thin layer chromatography. The effects of lysosomotropic agents, NH4Cl and chloroquine, were studied. The cold chase study at 32 degrees C showed that the surface radioactivity was the largest among the three kinds of radioactivities associated with each process immediately after pulse labeling, but the surface radioactivity rapidly decreased, while the internalized radioactivity increased. The cold chase study at 4 degrees C did not show such time-related changes in radioactivities, and a high level of surface radioactivity constantly persisted. The surface and internalized radioactivities were due to 131I-FSH, and the degraded radioactivity was mainly due to (131I)monoiodotyrosine. When Sertoli cells were cultured with lysosomotropic agents, the internalized radioactivity increased, while the degraded radioactivity decreased. Based on these observations, a kinetic model was proposed and the relationships among the surface, internalized, and degraded radioactivities and cold chase time were calculated algebraically.

  11. Hormonal Regulation of Adipogenesis.

    Science.gov (United States)

    Lee, Mi-Jeong

    2017-09-12

    Adipose tissue includes multiple anatomical depots that serve as an energy reserve that can expand or contract to maintain metabolic homeostasis. During normal growth and in response to overnutrition, adipose tissue expands by increasing the volume of preexisting adipocytes (hypertrophy) and/or by generating new adipocytes (hyperplasia) via recruitment and differentiation of adipose progenitors. This so-called healthy expansion through hyperplasia is thought to be beneficial in that it protects against obesity associated metabolic disorders by allowing for the "safe" storage of excess energy. Remodeling adipose tissue to replace dysfunctional adipocytes that accumulate with obesity and age also requires new fat cell formation and is necessary to maintain metabolic health. Adipogenesis is the process by which adipose progenitors become committed to an adipogenic lineage and differentiate into mature adipocytes. This transition is regulated by complex array of transcriptional factors and numerous autocrine, paracrine, and endocrine signals. We will focus on hormonal factors that regulate adipocyte differentiation and their molecular mechanisms of actions on adipogenesis as studied in vitro and in vivo. Accumulating evidence indicates that adipose progenitors isolated from different adipose tissues exhibit intrinsic differences in adipogenic potential that may contribute to the depot and sex differences in adipose expansion and remodeling capacity. We will put special emphasis on the hormonal factors that are known to depot-dependently affect body fat accumulation and adipocyte development. © 2017 American Physiological Society. Compr Physiol 7:1151-1195, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  12. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  13. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms.

    Science.gov (United States)

    Stolzenberg, Danielle S; Champagne, Frances A

    2016-01-01

    This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...

  15. Reproductive hormones as psychotropic agents?

    African Journals Online (AJOL)

    QuickSilver

    need to understand the role of reproductive hormones in psy- chiatric disorders. There is much research on the interaction between mood and endocrine factors that is impacting on the practice of women's health. Hormone fluctuations are linked to behavioural changes as well as the onset and recurrence of mood disorders.

  16. Hormonal contraception, thrombosis and age

    DEFF Research Database (Denmark)

    Lidegaard, Øjvind

    2014-01-01

    INTRODUCTION: This paper reviews the risk of thrombosis with use of different types of hormonal contraception in women of different ages. AREAS COVERED: Combined hormonal contraceptives with desogestrel, gestodene, drospirenone or cyproterone acetate (high-risk products) confer a sixfold increased...

  17. Hormones and β-Agonists

    NARCIS (Netherlands)

    Ginkel, van L.A.; Bovee, T.F.H.; Blokland, M.H.; Sterk, S.S.; Smits, N.G.E.; Pleadin, Jelka; Vulić, Ana

    2016-01-01

    This chapter provides some updated information on contemporary methods for hormone and β-agonist analyses. It deals with the classical approaches for the effective detection and identification of exogenous hormones. The chapter examines specific problems related to control strategies for natural

  18. Sex hormones and cardiometabolic risk

    NARCIS (Netherlands)

    Brand, J.S.M.

    2012-01-01

    In this thesis, we set out to investigate the complex relationship between endogenous sex hormones and cardiometabolic risk in men and women. The first part of this thesis is devoted to studies in women, and the second part describes the association between sex hormones and cardiometabolic risk in

  19. [Hormonal treatment of transsexual persons].

    Science.gov (United States)

    Tinkanen, Helena; Das, Pia

    2015-01-01

    The primary investigations and starting the hormonal treatment of transsexual persons takes place in Helsinki and Tampere University hospitals as part of the real life period. The hormones used are estrogen and anti-androgen for MtoF and testosterone for FtoM persons. The medication suppresses the endogenous sex-hormone production and brings about the desired features of the other sex. While the recommended doses result in physiological hormone levels, higher doses do not hasten or increase the desired changes and are a health risk. After the transition period, the follow up is referred to the person's home district. The physical and psychological status and laboratory values are evaluated at the yearly follow-up doctor visits. Although the hormone doses are lowered and percutaneous administration route is favored upon aging, stopping the medication is not recommended.

  20. Headaches and Hormones: What's the Connection?

    Science.gov (United States)

    ... make headaches worse. Though fluctuating hormone levels can influence headache patterns, you're not completely at the mercy of your hormones. Your doctor can help you treat — or prevent — hormone-related ...

  1. Growth hormone stimulation test - series (image)

    Science.gov (United States)

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. ... performed on infants and children to identify human growth hormone (hGH) deficiency as a cause of growth retardation. ...

  2. Hormones and autoimmunity: animal models of arthritis.

    Science.gov (United States)

    Wilder, R L

    1996-05-01

    Hormones, particularly those involved in the hypothalamic-pituitary-gonadal and -adrenal axes (HPG and HPA), play important roles in various animal models of autoimmunity such as systemic lupus erythematosus in mice and collagen-induced arthritis (CIA) in mice and rats, and the streptococcal cell wall, adjuvant and avridine arthritis models in rats. Intimately linked to the subject of hormones and autoimmunity are gender, sex chromosomes and age. The importance of these factors in the various animal models is emphasized in this chapter. Several major themes are apparent. First, oestrogens promote B-cell dependent immune-complex mediated disease (e.g. lupus nephritis) but suppress T-cell dependent pathology (CIA in mice and rats), and vice versa. Second, testosterone's effects are complicated and depend on species and disease model. In rats, testosterone suppresses both T-cell and B-cell immunity. In mice, the effects are complex and difficult to interpret, e.g. they tend to enhance CIA arthritis and suppress lupus. Sex chromosome/sex hormone interactions are clearly involved in generating these complicated effects. Third, studies in Lewis and Fischer F344 rats exemplify the importance of corticosteroids, corticotrophin releasing hormone and the HPA axis in the regulation of inflammation and the predisposition to autoimmune diseases. Fourth, the HPA axis is intimately linked to the HPG axis and is sexually dimorphic. Oestrogens stimulate higher corticosteroid responses in females. The animal model data have major implications for understanding autoimmunity in humans. In particular, adrenal and gonadal hormone deficiency is likely to facilitate T-cell dependent diseases like rheumatoid arthritis, while high oestrogen levels or effects, relative to testosterone, are likely to promote B-cell dependent immune-complex-mediated diseases such as lupus nephritis.

  3. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    Science.gov (United States)

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (pgrowth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409

  4. Evolution of systemic treatment for hormone-sensitive breast cancer: from sequential use of single agents to the upfront administration of drug combinations

    Directory of Open Access Journals (Sweden)

    E. N. Imyanitov

    2016-01-01

    Full Text Available Current standards of treatment of endocrine-dependent cancers (breast cancer (BC, prostate cancer imply sequential use of endocrine therapy and cytotoxic agents: it is believed, that steroid hormone antagonists cease the division of transformed cells and therefore make them resistant to other therapeutic modalities. It is important to recognize that conceptual investigations in this field were carried out dozens of years ago, and often involved relatively non-efficient drugs, imperfect laboratory tests, etc. There are several recent examples of combined use of endocrine therapy and other compounds. The addition of docetaxel (6 cycles to androgen deprivation resulted in significant improvement of overall survival in men with metastatic prostate cancer. Clinical trial involving the combined use of exemestane and everolimus demonstrated promising results. There are ongoing studies on inhibitors of cycline-dependent kinases. Use of these drugs in the beginning of endocrine therapy may significantly delay resistance to the antagonists of estrogen signaling.

  5. Quantification of Locusta diuretic hormone in the central nervous system and corpora cardiaca: influence of age and feeding status, and mechanism of release.

    Science.gov (United States)

    Audsley, N; Goldsworthy, G J; Coast, G M

    1997-03-12

    Locusta-DH is known to have a hormonal function in the control of post-feeding diuresis in the migratory locust. This study has quantified Locusta-DH in tissues from V(th) instar nymphs and adults, and investigated the K+-induced release of the peptide from corpora cardiaca. Locusta-DH is present in thoracic and abdominal ganglia, but the amounts are small (25-200 fmol) compared with brain (approximately 1 pmol) and corpora cardiaca ( > 5 pmol) from 14-day old locusts. About 50% of the immunoreactive material in corpora cardiaca coelutes with Locusta-DH on reversed-phase HPLC. An earlier eluting fraction is also biologically active, suggesting locusts have a second, previously undetected, CRF-related peptide. The amount of peptide stored in corpora cardiaca varies with age and physiological status. Reductions on day 1 of the adult instar and immediately after feeding suggest Locusta-DH controls post-eclosion as well as post-feeding diureses. Locusta-DH is released by a Ca2+-dependent mechanism from corpora cardiaca held in salines containing > or =40 mM K+. This is blocked by verapamil, implicating L-type Ca2+ channels. Release is most rapid shortly after transfer to a high K+ saline, and more peptide is released from glands allowed to recover in normal saline between successive K+ depolarisations.

  6. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    Erika eComasco

    2014-12-01

    Full Text Available The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. This review summarizes the findings of thirty-four studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women’s brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal

  7. Compounded bioidentical menopausal hormone therapy.

    Science.gov (United States)

    2012-08-01

    Although improvement in long-term health is no longer an indication for menopausal hormone therapy, evidence supporting fewer adverse events in younger women, combined with its high overall effectiveness, has reinforced its usefulness for short-term treatment of menopausal symptoms. Menopausal therapy has been provided not only by commercially available products but also by compounding, or creation of an individualized preparation in response to a health care provider's prescription to create a medication tailored to the specialized needs of an individual patient. The Women's Health Initiative findings, coupled with an increase in the direct-to-consumer marketing and media promotion of compounded bioidentical hormonal preparations as safe and effective alternatives to conventional menopausal hormone therapy, have led to a recent increase in the popularity of compounded bioidentical hormones as well as an increase in questions about the use of these preparations. Not only is evidence lacking to support superiority claims of compounded bioidentical hormones over conventional menopausal hormone therapy, but these claims also pose the additional risks of variable purity and potency and lack efficacy and safety data. The Committee on Gynecologic Practice of the American College of Obstetricians and Gynecologists and the Practice Committee of the American Society for Reproductive Medicine provide an overview of the major issues of concern surrounding compounded bioidentical menopausal hormone therapy and provide recommendations for patient counseling. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Systemic photoprotection in solar urticaria with α-melanocyte-stimulating hormone analogue [Nle4-D-Phe7]-α-MSH.

    Science.gov (United States)

    Haylett, A K; Nie, Z; Brownrigg, M; Taylor, R; Rhodes, L E

    2011-02-01

    Solar urticaria is a rare photosensitivity disorder demonstrating a range of action spectra, which can inflict a very large impact on life quality despite available treatments. Melanin broadly reduces skin penetration by ultraviolet-visible wavelengths, thus increased melanization may protect in solar urticaria. To examine quantitatively for impact of the potent α-melanocyte stimulating hormone analogue afamelanotide ([Nle(4)-D-Phe(7)]-α-MSH, Scenesse(®); Clinuvel Pharmaceuticals Ltd, Melbourne, Vic., Australia) on the solar urticaria response and skin melanization. Five patients with solar urticaria received a single dose of 16 mg subcutaneous afamelanotide implant in winter time. Melanin density was assessed spectrophotometrically from day 0 to day 60. Detailed monochromated light testing to geometric dose series (increment ) of wavelengths 300-600 nm was performed at 0, 30 and 60 days, with assessment of weal and flare area and minimum urticarial dose (MUD). Data were analysed by repeated-measures anova. Mean melanin density increased by day 7, peaked at day 15 and remained elevated at day 60 (P=0·03, 0·01, 0·02 vs. baseline, respectively). Baseline phototesting revealed action spectra of 320-400 (n=1), 320-500 (n=2), 300-600 (n=1) and 370-500 nm (n=1), and on afamelanotide mean rises in MUD of 1-12 and 1-3 dose increments were seen at the individual wavelengths tested, at 30 and 60 days, respectively. A significant fall in weal area occurred across responding wavelengths from 300 to 600 nm at 60 days postimplant (P=0·049 vs. baseline), accompanied by greater than twofold overall increase in MUD (P=0·058 vs. baseline). Melanization following afamelanotide is accompanied by reduction in solar urticaria response across a broad spectrum of wavelengths. Further study is warranted to assess clinical benefit under ambient conditions in summer. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  9. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    Science.gov (United States)

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways. © 2015 Wiley Periodicals, Inc.

  10. Hormonal correlates of acne and hirsutism.

    Science.gov (United States)

    Lucky, A W

    1995-01-16

    Acne is a multifactorial disorder reflecting the role of infection, abnormal keratinization and immunologic reaction, as well as hormonal influences, on the pilosebaceous unit. Clinical studies have correlated elevated levels of androgens, originating in both the adrenal glands and ovaries, with acne. These include total and free testosterone, delta 4-androstenedione, dehydroepiandrosterone and its sulfate, and low levels of sex hormone binding globulin. The pathogenesis of acne initiation in childhood has been linked to rising serum levels of dehydroepiandrosterone sulfate. Hirsutism has been more directly correlated with increased levels of serum androgens, notably free testosterone. Underlying causes of elevated androgens in both disorders include very rare tumors, partial or late-onset forms of congenital adrenal hyperplasia, developmental adrenal abnormalities and, most commonly, polycystic ovary syndrome. Early acne treatment may include topical benzoyl peroxide, antibiotics, and tretinoin. More severe disease can be treated systemically (with antibiotics and/or isotretinoin). Very-low-dose corticosteroids can be used to eliminate the adrenal component of hyperandrogenism. Oral contraceptives, especially those that contain low-androgenic progestins, can reduce excessive androgens from any source and specifically suppress the ovary in polycystic ovary syndrome. Gonadotropin-releasing hormone agonists, with or without estrogen supplementation, and systemic or topical antiandrogens may play a more important role in the future.

  11. Steroid hormones, stress and the adolescent brain: a comparative perspective.

    Science.gov (United States)

    Brown, G R; Spencer, K A

    2013-09-26

    Steroid hormones, including those produced by the gonads and the adrenal glands, are known to influence brain development during sensitive periods of life. Until recently, most brain organisation was assumed to take place during early stages of development, with relatively little neurogenesis or brain re-organisation during later stages. However, an increasing body of research has shown that the developing brain is also sensitive to steroid hormone exposure during adolescence (broadly defined as the period from nutritional independence to sexual maturity). In this review, we examine how steroid hormones that are produced by the gonads and adrenal glands vary across the lifespan in a range of mammalian and bird species, and we summarise the evidence that steroid hormone exposure influences behavioural and brain development during early stages of life and during adolescence in these two taxonomic groups. Taking a cross-species, comparative perspective reveals that the effects of early exposure to steroid hormones depend upon the stage of development at birth or hatching, as measured along the altricial-precocial dimension. We then review the evidence that exposure to stress during adolescence impacts upon the developing neuroendocrine systems, the brain and behaviour. Current research suggests that the effects of adolescent stress vary depending upon the sex of the individual and type of stressor, and the effects of stress could involve several neural systems, including the serotonergic and dopaminergic systems. Experience of stressors during adolescence could also influence brain development via the close interactions between the stress hormone and gonadal hormone axes. While sensitivity of the brain to steroid hormones during early life and adolescence potentially leaves the developing organism vulnerable to external adversities, developmental plasticity also provides an opportunity for the developing organism to respond to current circumstances and for behavioural

  12. Adrenal gland hormone secretion (image)

    Science.gov (United States)

    The adrenal gland secretes steroid hormones such as cortisol and aldosterone. It also makes precursors that can be converted ... steroids (androgen, estrogen). A different part of the adrenal gland makes adrenaline (epinephrine). When the glands produce ...

  13. Hormonal modulation of plant immunity

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Does, D. van der; Zamioudis, C.; Leon-Reyes, A.; Wees, A.C.M. van

    2012-01-01

    Plant hormones have pivotal roles in the regulation of plant growth, development, and reproduction. Additionally, they emerged as cellular signal molecules with key functions in the regulation of immune responses to microbial pathogens, insect herbivores, and beneficial microbes. Their signaling

  14. Controversies in hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    A. Baziad

    2001-09-01

    Full Text Available Deficiency of estrogen hormone will result in either long-term or short-term health problems which may reduce the quality of life. There are numerous methods by which the quality of female life can be achieved. Since the problems occuring are due to the deficiency of estrogen hormone, the appropriate method to tackle the problem is by administration of estrogen hormone. The administration of hormone replacement therapy (HRT with estrogen may eliminate climacteric complaints, prevent osteoporosis, coronary heart disease, dementia, and colon cancer. Although HRT has a great deal of advantage, its use is still low and may result in controversies. These controversies are due to fact that both doctor and patient still hold on to the old, outmoded views which are not supported by numerous studies. Currently, the use of HRT is not only based on experience, or temporary observation, but more on evidence based medicine. (Med J Indones 2001; 10: 182-6Keywords: controversies, HRT

  15. Hormone replacement therapy in menopause

    National Research Council Canada - National Science Library

    Pardini, Dolores

    2014-01-01

    Although estrogen has been clinically available for more than six decades, women have been confused by different opinions regarding the risks and benefits of menopausal hormone therapy (HT), estrogen therapy (ET...

  16. Parathyroid hormone (PTH) blood test

    Science.gov (United States)

    ... gov/ency/article/003690.htm Parathyroid hormone (PTH) blood test To use the sharing features on this page, ... to measure the amount of PTH in your blood. How the Test is Performed A blood sample is needed. How ...

  17. Role of insulin hormone in modulation of inflammatory phenomena

    Directory of Open Access Journals (Sweden)

    Antonio Di Petta

    2011-09-01

    Full Text Available Evidence demonstrates the involvement of hormones in thedevelopment of inflammatory response. Inflammation evokes markedstructural alterations of microvasculature, besides migration ofleukocytes from microcirculation to the site of lesion. These alterations are caused primarily by release or activation of endogenous mediators, in which hormones play an integral role in this regulatory system. Binding sites for many hormones may be characterized by vascular structures and hematogenous cells involved with the inflammatory response. Quantitative alterations of inflammatory events involving the decrease in microvascular response to inflammatory mediators, deficiency in the leukocyte-endothelium interaction, reduction of cell concentration in the inflammatory exudate, and failure of the phagocyte function of mononuclear cells were observed in insulindeficient states. Therefore, inflammation is not merely a local response, but rather a process controlled by hormones in which insulin plays an essential role in modulation of these phenomena, and assures tissue repair and remodeling within the limits of normality.

  18. Hormone replacement therapy in Denmark, 1995-2004

    DEFF Research Database (Denmark)

    Løkkegaard, Ellen; Lidegaard, Ojvind; Møller, Lisbeth Nørgaard

    2007-01-01

    Recently, the Danish National Register of Medicinal Product Statistics (NRM) was opened for research purposes, and therefore, on an individual basis, can merge with other national registers. The aim of this study was to analyse the use of hormones based on the individual data of the entire Danish...... female population, with the focus on a detailed evaluation of specific hormone regimens and factors associated with systemic hormone replacement therapy (HRT).......Recently, the Danish National Register of Medicinal Product Statistics (NRM) was opened for research purposes, and therefore, on an individual basis, can merge with other national registers. The aim of this study was to analyse the use of hormones based on the individual data of the entire Danish...

  19. The effect of different doses of isotretinoin on pituitary hormones.

    Science.gov (United States)

    Karadag, Ayse Serap; Takci, Zennure; Ertugrul, Derun Taner; Bilgili, Serap Gunes; Balahoroglu, Ragip; Takir, Mumtaz

    2015-01-01

    There are a limited number of studies investigating the side effects and effectiveness of various doses of isotretinoin (ISO). We have previously shown that high-dose ISO affects pituitary hormones. To our knowledge, there is no study in the literature looking into the effects of various doses of ISO on pituitary hormones. We searched pituitary hormones in three groups of different doses in acne patients. We included 105 acne vulgaris patients from two different centers. We divided the patients into three groups; the first group received 0.5-1 mg/kg/day, the second 0.2-0.5 mg/kg/day and the third intermittent 0.5-1 mg/kg/day (only 1 week in 1 month) ISO treatment. Blood samples were collected for biochemistry and hormone analysis, before the treatment and after 3 months. After 3 months of treatment with ISO, luteinizing hormone (LH) (p testosterone (p < 0.001), adrenocorticotropic hormone (ACTH) (p < 0.001), cortisol (p < 0.001), insulin-like growth factor-binding protein 3 (p < 0.001), insulin-like growth factor 1 (IGF-1) (p = 0.002), growth hormone (GH) (p = 0.002) and free T3 (fT3) (p < 0.001) levels had decreased significantly. Furthermore, we split data into three different groups. Among the patients receiving intermittent-dose ISO, LH, ACTH, IGF-1, GH and fT3 measurements lost significance. Most of the significant measurements observed in the whole group were also significant among the patients receiving high-dose ISO. Additionally, dehydroepiandrosterone sulfate (p = 0.003) levels increased, and free T4 levels decreased significantly. ISO affects pituitary hormones at all of these three doses. The differences in pituitary hormones are more pronounced in high-dose treatment. The weakest effect was observed in the intermittent-dose group. Choosing lower doses of ISO may decrease side effects, however the effectiveness of the treatment may also be diminished. ISO, by affecting the PPARγ/RXR system, may affecting hormone systems. These changes in various

  20. Chemosignals, hormones, and amphibian reproduction.

    Science.gov (United States)

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hormonal regulation of energy partitioning.

    Science.gov (United States)

    Rohner-Jeanrenaud, F

    2000-06-01

    A loop system exists between hypothalamic neuropeptide Y (NPY) and peripheral adipose tissue leptin to maintain normal body homeostasis. When hypothalamic NPY levels are increased by fasting or by intracerebroventricular (i.c.v.) infusion, food intake and body weight increase. NPY has genuine hormono-metabolic effects. It increases insulin and corticosterone secretion relative to controls. These hormonal changes, acting singly or combined, favor adipose tissue lipogenic activity, while producing muscle insulin resistance. They also promote leptin release from adipose tissue. When infused i.c.v. to normal rats to mimic its central effects, leptin decreases NPY levels, thus food intake and body weight. Leptin i.c.v. has also genuine hormono-metabolic effects. It decreases insulinemia and adipose tissue storage ability, enhancing glucose disposal. Leptin increases the expression of uncoupling proteins (UCP-1, -2, -3) and thus energy dissipation. Leptin-induced changes favor oxidation at the expense of storage. Circadian fluctuations of NPY and leptin levels maintain normal body homeostasis. In animal obesity, defective hypothalamic leptin receptor activation prevent leptin from acting, with resulting obesity, insulin and leptin resistance.

  2. Thyroid hormone receptors in health and disease

    NARCIS (Netherlands)

    Boelen, A.; Kwakkel, J.; Fliers, E.

    2012-01-01

    Thyroid hormones (TH) play a key role in energy homeostasis throughout life. Thyroid hormone production and secretion by the thyroid gland is regulated via the hypothalamus-pituitary-thyroid (HPT)-axis. Thyroid hormone has to be transported into the cell, where it can bind to the thyroid hormone

  3. Hormone therapy and ovarian borderline tumors

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    Little is known about the influence of postmenopausal hormone therapy on the risk of ovarian borderline tumors. We aimed at assessing the influence of different hormone therapies on this risk.......Little is known about the influence of postmenopausal hormone therapy on the risk of ovarian borderline tumors. We aimed at assessing the influence of different hormone therapies on this risk....

  4. Ghrelin: much more than a hunger hormone

    Science.gov (United States)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  5. Transport of thyroid hormone in brain

    Directory of Open Access Journals (Sweden)

    Eva K Wirth

    2014-06-01

    Full Text Available Thyroid hormone (TH transport into the brain is not only pivotal for development and differentiation, but also for maintenance and regulation of adult central nervous system (CNS function. In this review, we highlight some key factors and structures regulating thyroid hormone uptake and distribution. Serum TH binding proteins play a major role for the availability of TH since only free hormone concentrations may dictate cellular uptake. One of these proteins, transthyretin is also present in the cerebrospinal fluid (CSF after being secreted by the choroid plexus. Entry routes into the brain like the blood-brain-barrier (BBB and the blood-CSF-barrier will be explicated regarding fetal and adult status. Recently identified TH transmembrane transporters (THTT like monocarboxylate transporter 8 (Mct8 play a major role in uptake of TH across the BBB but as well in transport between cells like astrocytes and neurons within the brain. Species differences in transporter expression will be presented and interference of TH transport by endogenous and exogenous compounds including endocrine disruptors and drugs will be discussed.

  6. Benefits and risks of hormonal contraception for women

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2007-08-01

    contraception. Headache appeared mostly only at the beginning of the use of combined oral contraceptives. Progestogen-only contraceptives worsened the results of the glucose tolerance test. A review of low evidence reported further risks of hormonal contraceptives (concerning menstrual problems, ovarian cysts, bone density, thyroid diseases and rheumatoid arthritis as well as further benefits (concerning blood pressure and Crohn’s disease. Hormonal spirals were shown to be more effective than spirals which do not release hormones. In emergency contraception, Levonorgestrel was more effective than the Yuzpe method. Most other proven differences between hormonal contraceptives were related to menstrual problems. After spirals with or without hormone release, the other hormonal contraceptives were shown in typical use to be the second most cost-effective reversible methods of contraception. Discussion: The addressed questions could be answered only on relatively low evidence level, partly only for applications with estrogen doses which are not used in Germany any more. The transferability of the results of the analysed primary health-economics studies on the current situation in Germany is limited (clinical assumptions from out-dated information sources of low evidence levels, cost assumptions from the American health system. Conclusions: In perfect use, hormonal contraceptives have to be classified as the most effective reversible contraceptive methods. For the individual decision concerning the use of hormonal contraception, benefits should be related to the additional risks. Alternative methods such as spirals should be prioritised if perfect use seems to be impossible. In this case, spirals are also preferable from health-economics perspective. No ethical-social or legal conclusions can be derived from the available data.

  7. Thyroid Hormone Deiodinases and Cancer

    Directory of Open Access Journals (Sweden)

    Antonio eBianco

    2012-06-01

    Full Text Available Deiodinases constitute a group of thioredoxin-containing selenoenzymes that play an important function in thyroid hormone homeostasis and control of thyroid hormone action. There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4 to T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and terminates T3 action. A number of studies indicate that deiodinase expression is altered in several types of cancers, suggesting that (i they may represent a useful cancer marker and/or (ii could play a role in modulating cell proliferation - in different settings thyroid hormone modulates cell proliferation. For example, although D2 is minimally expressed in human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS-13 cells is 3-4 fold higher. In basal cell carcinoma (BCC cells, sonic hedgehog (Shh-induced cell proliferation is accompanied by induction of D3 and inactivation of D2. Interestingly a 5-fold reduction in the growth of BCC in nude mice was observed if D3 expression was knocked down. A decrease in D1 activity has been described in renal clear cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were significantly higher in follicular thyroid cancer tissue, in follicular adenoma and in anaplastic thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor cells affect thyroid hormone signaling and possibly interfere with tumor progression could lead to new antineoplastic approaches.

  8. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kolsen-Petersen, J A; Bendtzen, K; Tonnesen, E

    2008-01-01

    Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery.......Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery....

  9. Roles of plant hormones in the regulation of host-virus interactions.

    Science.gov (United States)

    Alazem, Mazen; Lin, Na-Sheng

    2015-06-01

    Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones. © 2014 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY JOHN WILEY & SONS LTD AND BSPP.

  10. Hormonal Approaches to Male contraception

    Science.gov (United States)

    Wang, Christina; Swerdloff, Ronald S.

    2010-01-01

    Purpose of review Condoms and vasectomy are male controlled family planning methods but suffer from limitations in compliance (condoms) and limited reversibility (vasectomy); thus many couples desire other options. Hormonal male contraceptive methods have undergone extensive clinical trials in healthy men and shown to be efficacious, reversible and appear to be safe. Recent Findings The success rate of male hormonal contraception using injectable testosterone alone is high and comparable to methods for women. Addition of progestins to androgens improved the rate of suppression of spermatogenesis. Supported by government or non-government organizations, current studies aim to find the best combination of testosterone and progestins for effective spermatogenesis suppression and to explore other delivery methods for these hormones. Translation of these advances to widespread use in the developed world will need the manufacturing and marketing skills of the pharmaceutical industry. Availability of male contraceptives to the developing world may require commitments of governmental and non-governmental agencies. In a time when imbalance of basic resources and population needs are obvious, this may prove to be a very wise investment. Summary Male hormonal contraception is efficacious, reversible and safe for the target population of younger men in stable relationships. Suppression of spermatogenesis is achieved with a combination of an androgen and a progestin. Partnership with industry will accelerate the marketing of a male hormonal contraceptive. Research is ongoing on selective androgen and progesterone receptor modulators that suppress spermatogenesis, minimize potential adverse events while retaining the androgenic actions. PMID:20808223

  11. The impact of water exchange rate and treatment processes on water-borne hormones in recirculation aquaculture systems containing sexually maturing Atlantic salmon Salmo salar

    Science.gov (United States)

    A controlled seven-month study was conducted in six replicated water recirculation aquaculture systems (WRAS) to assess post-smolt Atlantic salmon (Salmo salar) performance in relation to WRAS water exchange rate. Unexpectedly high numbers of precocious sexually mature fish were observed in all WRAS...

  12. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Stress hormones and physical activity

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1991-07-01

    Full Text Available Hormone secretion during physical activity of specific duration and intensity is part of the stress response. In a study to investigate the secretion of ß-endorphin, leucine enkephalin and other recognised stress hormones during physical exercise, blood samples were taken from fourteen (14 healthy, male athletes who competed in a 21 km roadrace. Blood samples were collected before and after completion of the race. This study shows that ß-endorphin/ß-lipotropin, leucine enkephalin, prolactin, and melatonin may be classified as stress hormones in physical activity of duration 80 to 120 minutes and intensity exceeding 75%-V0₂max. Widespread intra-individual variation in serum cortisol concentrations prevent definite conclusion. The un­expected increase in serum testosterone levels warrants further research.

  14. Hormone therapy and ovarian cancer

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2009-01-01

    of Medicinal Product Statistics provided individually updated exposure information. The National Cancer Register and Pathology Register provided ovarian cancer incidence data. Information on confounding factors and effect modifiers was from other national registers. Poisson regression analyses with 5-year age......CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal...... bands included hormone exposures as time-dependent covariates. PARTICIPANTS: A total of 909,946 women without hormone-sensitive cancer or bilateral oophorectomy. MAIN OUTCOME MEASURE: Ovarian cancer. RESULTS: In an average of 8.0 years of follow-up (7.3 million women-years), 3068 incident ovarian...

  15. Thyroid hormone deficiency disrupts rat eye neurodevelopment.

    Science.gov (United States)

    Pinazo-Durán, Maria D; Pons-Vázquez, Sheila; Gallego-Pinazo, Roberto; Galbis Estrada, Carmen; Zanón-Moreno, Vicente; Vila Bou, Vicente; Sanz Solana, Pedro

    2011-05-25

    Clinical and experimental studies have highlighted the role played by thyroid hormones (TH) in neural and neuro-sensorial development. However, knowledge on TH mechanisms on the developing visual system is still incomplete. To uncover TH actions on the eyes and vision we carried out a microscopical study on the role of TH in the developing retina and optic nerve, in a rat model of controlled TH deficiency (THD). Morphometric and stereological analyses of the retina and optic nerve showed a reduction in the volume of the eye (peye disorders as well as neurodegenerative retinal processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Foetal Hypothalamic and Pituitary Expression of Gonadotrophin Releasing Hormone and Galanin Systems is Disturbed by Exposure to Sewage Sludge Chemicals via Maternal Ingestion

    Science.gov (United States)

    Bellingham, Michelle; Fowler, Paul A.; Amezaga, Maria R.; Whitelaw, Christine M.; Rhind, Stewart M.; Cotinot, Corinne; Mandon-Pepin, Beatrice; Sharpe, Richard M.; Evans, Neil P.

    2016-01-01

    Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) which are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. Verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in- utero, when sensitivity to EC exposure is high. The aim of this study was to determine whether the fetal sheep reproductive neuroendocrine axis, particularly GnRH and galaninergic systems were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations but is frequently recycled to land as a fertiliser. We found that foetuses exposed, to the EDC mixture in-utero through their mothers, had lower GnRH mRNA expression in the hypothalamus and lower GnRHR and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. This study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real-world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known in-utero programming role, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in-utero changes in the activity of these systems are likely to have long term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function

  17. Foetal Hypothalamic and Pituitary Expression of Gonadotrophin Releasing Hormone and Galanin Systems is Disturbed by Exposure to Sewage Sludge Chemicals via Maternal Ingestion

    OpenAIRE

    Bellingham, Michelle; Fowler, Paul A; Amezaga, Maria R.; Whitelaw, Christine M.; Rhind, Stewart M; Cotinot, Corinne; Mandon-Pepin, Beatrice; Richard M Sharpe; Evans, Neil P.

    2010-01-01

    Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) which are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. Verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminant...

  18. Hormonal treatment of acne vulgaris: an update

    Directory of Open Access Journals (Sweden)

    Elsaie ML

    2016-09-01

    Full Text Available Mohamed L Elsaie Department of Dermatology and Venereology, National Research Centre, Cairo, Egypt Abstract: Acne vulgaris is a common skin condition associated with multiple factors. Although mostly presenting alone, it can likewise present with features of hyperandrogenism and hormonal discrepancies. Of note, hormonal therapies are indicated in severe, resistant-to-treatment cases and in those with monthly flare-ups and when standard therapeutic options are inappropriate. This article serves as an update to hormonal pathogenesis of acne, discusses the basics of endocrinal evaluation for patients with suspected hormonal acne, and provides an overview of the current hormonal treatment options in women. Keywords: acne, hormones, hyperandrogenism

  19. Advances in male hormonal contraception

    Directory of Open Access Journals (Sweden)

    Costantino Antonietta

    2014-01-01

    Full Text Available Contraception is a basic human right for its role on health, quality of life and wellbeing of the woman and of the society as a whole. Since the introduction of female hormonal contraception the responsibility of family planning has always been with women. Currently there are only a few contraceptive methods available for men, but recently, men have become more interested in supporting their partners actively. Over the last few decades different trials have been performed providing important advances in the development of a safe and effective hormonal contraceptive for men. This paper summarizes some of the most recent trials.

  20. Advances in male hormonal contraception.

    Science.gov (United States)

    Costantino, Antonietta; Gava, Giulia; Berra, Marta; Meriggiola Maria, Cristina

    2014-11-01

    Contraception is a basic human right for its role on health, quality of life and wellbeing of the woman and of the society as a whole. Since the introduction of female hormonal contraception the responsibility of family planning has always been with women. Currently there are only a few contraceptive methods available for men, but recently, men have become more interested in supporting their partners actively. Over the last few decades different trials have been performed providing important advances in the development of a safe and effective hormonal contraceptive for men. This paper summarizes some of the most recent trials.

  1. Measurement of the incretin hormones

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Wewer Albrechtsen, Nicolai Jacob; Hartmann, Bolette

    2015-01-01

    The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma concentrat......The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma...

  2. Study on breast carcinoma Her2/neu and hormonal receptors status assessed by automated images analysis systems: ACIS III (Dako and ScanScope (Aperio.

    Directory of Open Access Journals (Sweden)

    Wojciech Staniszewski

    2010-06-01

    Full Text Available Her-2/neu is overexpressed in 20-30% of breast cancer patients and is associated with a more aggressive disease. Identification of Her-2/c-erbB-2-neu overexpression is based on immunohistochemical [ihc] detection of protein and/or gene amplification in fluorescence in situ hybridization test (FISH. Also Estrogen receptors [ER] and Progesterone receptors [PR] are the prognostic and predictive biomarkers, recently analysed by ihc methods. Subjective, manual scoring of the ihc Her-2/neu expression and expression of the ER/PR reported as the percentage of immunopositive cells are the most common mode of interpretation among pathologists. Automated microscopy and computerised processing have provided increased accuracy in quantification and standardisation. The aims of our study were: to evaluate the scoring reproducibility of Her-2 /neu ihc expression tested by two automated systems: ACIS (Dako and ScanScope (Aperio; to estimate the ER/PR expression in ihc staining methods with different anti-ER/anti-PR antibodies (the monoclonal and the ER/PR pharmDx TM Kit by the ACIS system. Her-2/neu ihc expression was measured in 114 primary invasive breast carcinomas by the manual and the automated scoring (ACIS and Aperio system. 106 slides stained ihc with two types of anti-ER/anti-PR antibodies entered the quantisation. The results of our investigations showed very high reproducibility of Her-2/neu scores in intra- and interobserver analysis by ACIS evaluation. The major concordance was present in strong 3+ ihc cases; very small discordance was shown by cases with low expression of Her-2/neu. The accuracy of scoring by the Aperio was little lower in comparison to ACIS but it might result from the smaller and variable series of samples analysed by Aperio. The concordance in scoring of two automated systems was 86.5% (p<0.0001; gamma=0.887; the discordance was referred only to the lower expression of Her-2/neu. The concordance in manual scoring performed by

  3. Pediatric stress: hormonal mediators and human development.

    Science.gov (United States)

    Charmandari, Evangelia; Kino, Tomoshige; Souvatzoglou, Emmanuil; Chrousos, George P

    2003-01-01

    Stress activates the central and peripheral components of the stress system, i.e., the hypothalamic-pituitary-adrenal (HPA) axis and the arousal/sympathetic system. The principal effectors of the stress system are corticotropin-releasing hormone (CRH), arginine vasopressin, the proopiomelanocortin-derived peptides alpha-melanocyte-stimulating hormone and beta-endorphin, the glucocorticoids, and the catecholamines norepinephrine and epinephrine. Appropriate responsiveness of the stress system to stressors is a crucial prerequisite for a sense of well-being, adequate performance of tasks and positive social interactions. By contrast, inappropriate responsiveness of the stress system may impair growth and development, and may account for a number of endocrine, metabolic, autoimmune and psychiatric disorders. The development and severity of these conditions primarily depend on the genetic vulnerability of the individual, the exposure to adverse environmental factors and the timing of the stressful event(s), given that prenatal life, infancy, childhood and adolescence are critical periods characterized by increased vulnerability to stressors. The developing brain undergoes rapid growth and is characterized by high turnover of neuronal connections during the prenatal and early postnatal life. These processes and, hence, brain plasticity, slow down during childhood and puberty, and plateau in young adulthood. Hormonal actions in early life, and to a much lesser extent later, can be organizational, i.e., can have effects that last for long periods of time, often for the entire life of the individual. Hormones of the stress system and sex steroids have such effects, which influence the behavior and certain physiologic functions of individuals for life. Exposure of the developing brain to severe and/or prolonged stress may result in hyperactivity/hyperreactivity of the stress system, with resultant amygdala hyperfunction (fear reaction), decreased activity of the hippocampus

  4. Cloning and Expression of Luteinizing Hormone Subunits in Chinese Hamster Ovary Cell Line

    Directory of Open Access Journals (Sweden)

    Zeinab Soleimanifar

    2016-10-01

    Full Text Available Background: Luteinizing hormone (LH was secreted by the stimulating cells of the testes and ovaries in the anterior pituitary gland. The application of this hormone is in the treatment of men and women with infertility and amenorrhea respectively.Materials and Methods: In the present study the alpha and beta subunits of human LH gene were cloned into the pEGFP-N1 expression vector and produced the recombinant LH hormone in Chinese hamster ovary (CHO eukaryotic system.Results: Alpha and beta subunits of LH hormone were cloned between NheI and BamHI cut sites of pEGFP_N1 expression plasmid and confirmed by PCR.  Hormone expression was evaluated in CHO cell line by Western blotting using the specific antibody.Conclusion: Alpha and beta subunits of LH hormone were expressed in CHO cell line perfectly.

  5. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium.

    Science.gov (United States)

    Speroni, Lucia; Sweeney, Michael F; Sonnenschein, Carlos; Soto, Ana M

    2016-02-07

    The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression.

  6. Analysis and comparison of changing in thyroid hormones after percutaneous and surgical tracheotomy.

    Science.gov (United States)

    Esen, Erkan; Karaman, Murat; Deveci, Ildem; Tatlıpınar, Arzu; Tuncel, Arzu; Sheidaei, Shahrouz; Esen, Senem

    2012-12-01

    To evaluate the effect of the surgical and percutaneous tracheotomy on the thyroid hormones and their comparisons. Between January and May 2010, the surgical and percutaneous tracheotomy had been performed on 40 patients with respiration problems. The thyroid hormone levels were measured just before, after one and three hour of the operation and than these measurements were compared statistically. The effect of the surgical and percutaneous tracheotomy on serum thyroglobulin (TG), free thyroxine (fT4), free triiodothyronine (fT3) and thyroid stimulating hormone (TSH) levels was found statistically significant. The surgeons should not forget the possible increase of the serum thyroid hormone levels after the surgical and percutaneous tracheotomy because of the systemic effects of thyroid hormones. The patients, especially who have cardiac rhythm problems, should be monitored for a while after these processes because the increase of serum thyroid hormones may cause undesired cardiovascular effects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Impact of thyroid hormone dysfunction on periodontal disease

    Directory of Open Access Journals (Sweden)

    Shaila Kothiwale

    2016-01-01

    Full Text Available Thyroid hormones play an important role in the regulation of physiologic processes. Thyroid dysfunction is the second most common glandular disorder of the endocrine system and is increasing predominantly among women. Thyroid disease can lead to imbalance in the homeostasis of the body and affect the healing capacity of tissues. However, limited data are available regarding the relationship between thyroid hormone imbalance and periodontal health. This case report presents the influence of thyroid hormone dysfunction and its impact on periodontal disease progression, systemic health of the patient, and the management of periodontal disease. The report emphasizes the need for frequent professional evaluations, patient education, and consistent educational reinforcement by health care providers in patients with hypothyroidism.

  8. In the nose of the beholder: are olfactory influences on human mate choice driven by variation in immune system genes or sex hormone levels?

    Science.gov (United States)

    Roberts, Thomas; Roiser, Jonathan P

    2010-11-01

    The human leukocyte antigen (HLA) is the most polymorphic region of the genome, coding for proteins that mediate human immune response. This polymorphism may be maintained by balancing selection and certain populations show deviations from expected gene frequencies. Supporting this hypothesis, studies into olfactory preferences have suggested that females prefer the scent of males with dissimilar HLA to their own. However, it has also been proposed that androstenones play a role in female mate choice, and as these molecules inhibit the immune system, this has implications for the theory of HLA-driven mate preference. This review will critically analyze the findings of studies investigating olfactory preference in humans, and their implications for these two contrasting theories of mate choice.

  9. Hormonal contraceptives and venous thrombosis

    NARCIS (Netherlands)

    Stegeman, Berendina Hendrika (Bernardine)

    2013-01-01

    Oral contraceptive use is associated with venous thrombosis. However, the mechanism behind this remains unclear. The aim of this thesis was to evaluate genetic variation in the first-pass metabolism of contraceptives, to identify the clinical implications of hormonal contraceptive use after a

  10. Anti-Müllerian Hormone

    Science.gov (United States)

    ... High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV ... arupconsult.com . Accessed May 2011. (© 1995–2011). Unit Code 89711: Antimullerian Hormone (AMH), Serum. Mayo Clinic Mayo ...

  11. Luteinizing hormone in testicular descent

    DEFF Research Database (Denmark)

    Toppari, Jorma; Kaleva, Marko M; Virtanen, Helena E

    2007-01-01

    alone is not sufficient for normal testicular descent. The regulation of androgen production is influenced both by placental human chorionic gonadotropin (hCG) and pituitary luteinizing hormone (LH). There is evidence that the longer pregnancy continues, the more important role pituitary LH may have...

  12. Hormonal determinants of pubertal growth.

    NARCIS (Netherlands)

    Delamarre-van Waal, H.A.; Coeverden, S.C. van; Rotteveel, J.J.

    2001-01-01

    Pubertal growth results from increased sex steroid and growth hormone (GH) secretion. Estrogens appear to play an important role in the regulation of pubertal growth in both girls and boys. In girls, however, estrogens cannot be the only sex steroids responsible for pubertal growth, as exogenous

  13. Network identification of hormonal regulation

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Hoefsloot, H.C.J.; Roelfsema, F.; Greef, J. van der; Hendriks, M.M.W.B.; Smilde, A.K.

    2014-01-01

    Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for

  14. Hormones, Women and Breast Cancer

    Science.gov (United States)

    ... women who • Are older • Have no children • Delayed pregnancy until after age 30 • Have used combination hormone therapy (estrogen plus progestin) for more than five years • Have a mother, sister, or daughter who has had breast cancer Did you know? Breast pain alone is not ...

  15. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, pcognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  16. Hormonal signaling in plant immunity

    NARCIS (Netherlands)

    Caarls, L.

    2016-01-01

    Insect hervivores and pathogens are a major problem in agriculture and therefore, control of these pests and diseases is essential. For this, understanding the plant immune response can be instrumental. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play an essential role in defense

  17. Hormones as Difference Makers in Cognitive and Socioemotional Aging Processes

    Directory of Open Access Journals (Sweden)

    Natalie eEbner

    2015-01-01

    Full Text Available Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems—cortisol, estrogen, testosterone, and oxytocin—as difference makers in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: 1 examining both singular actions and interrelations of these four hormonal systems; 2 exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and 3 considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions.

  18. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals

    NARCIS (Netherlands)

    Murk, A.J.; Rijntjes, E.; Blaauboer, B.J.; Clewell, R.; Crofton, K.M.; Dingemans, M.M.L.; Furlow, J.D.; Kavlock, R.; Kohrle, J.; Opitz, R.; Traas, T.; Visser, T.J.; Xia, M.; Gutleb, A.C.

    2013-01-01

    The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems,

  19. Peptide Hormones in the Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2015-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone-producing organ in the body. Modern biology makes...... it feasible to conceive the hormones under five headings. (1) The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. (2) The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem...... organization, or differentiated maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. (3) Gut hormone genes are also widely expressed outside the gut, some only in extraintestinal endocrine cells and neurons but others...

  20. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available Tomato yellow leaf curl Sardinia virus (TYLCSV, a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.

  1. Iodothyronine Deiodinases: structure-function analysis and their role in the regulation of thyroid hormone levels

    NARCIS (Netherlands)

    F.W.J.S. Wassen (Frank)

    2005-01-01

    textabstractThyroid hormone is important for energy metabolism, the metabolism of nutrients, inorganic ion fluxes and thermogenesis. Thyroid hormone is also essential for stimulation of growth and development of various tissues at critical periods including the central nervous system. Whereas in

  2. Music increase altruism through regulating the secretion of steroid hormones and peptides.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2014-12-01

    Music is well known for its effect on human behavior especially of their bonding and empathy towards others. Music provokes one's emotion and activates mirror neurons and reward system. It also regulates social hormones such as steroid hormones or peptides, and increases empathy, pro-sociality and altruism. As a result, it improves one's reproductive success. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effects of some humidity and IBA hormone dose applicatıons on ...

    African Journals Online (AJOL)

    USER

    2010-04-26

    Apr 26, 2010 ... ratio of cutting callus formation was found in control group (58%) in 95 - 100% humidity level and 2500 ppm IBA hormone dose ... Key words: M9, sooftwood top cutting, misting system, humidity, hormone, rooting. INTRODUCTION. Anatolia ... Turkey produced about 6 million pieces of apple saplings in 2007 ...

  4. Determination of hormonal combination for increased multiplication ...

    African Journals Online (AJOL)

    Eight hormonal combinations were formulated and tested using a completely randomized design with three replicates in the tissue culture laboratory. Ten shoot tips from in-vitro raised plantlets were excised and transferred to each of these hormonal combinations. The effect of hormonal combinations was variety dependant ...

  5. Thyroid hormone signaling in the hypothalamus

    NARCIS (Netherlands)

    Alkemade, Anneke; Visser, Theo J.; Fliers, Eric

    2008-01-01

    PURPOSE OF REVIEW: Proper thyroid hormone signaling is essential for brain development and adult brain function. Signaling can be disrupted at many levels due to altered thyroid hormone secretion, conversion or thyroid hormone receptor binding. RECENT FINDINGS: Mutated genes involved in thyroid

  6. Hormonal regulation of spermatogenesis in zebrafish

    NARCIS (Netherlands)

    de Waal, P.P.|info:eu-repo/dai/nl/304835595

    2009-01-01

    Across vertebrates, spermatogenesis is under the endocrine control of two hormones, follicle-stimulating hormone (FSH) and androgens; the testicular production and secretion of the latter are controlled by luteinizing hormone. In fish, also the strong steroidogenic potency of Fsh should be taken

  7. Correlations Between Seminal Plasma Hormones and Sperm ...

    African Journals Online (AJOL)

    Context: There is a complex relationship between seminal plasma hormone levels and infertility in men. Previous studies had shown no specific pattern in the serum or seminal plasma hormone profiles of men with infertility and it is debatable whether there is a need to perform routine seminal hormone assays in the ...

  8. Headaches and Hormones: What's the Connection?

    Science.gov (United States)

    Headaches and hormones: What's the connection? Being female has some real health advantages, but not when it comes to headaches — particularly ... a relationship between headaches and hormonal changes. The hormones estrogen (ES-truh-jen) and progesterone (pro-JES- ...

  9. HORMONAL EVALUATION IN FEMALES HAVING MELASMA

    OpenAIRE

    Sharique; Suraj; Sharma

    2015-01-01

    BACKGROUND: Melasma is a commonly acquired hyperpigmentation which present as irregular, light to dark brown macules on sun exposed skin due to various etiological factors including hormonal imbalance. AIM : To assist the level of various hormones and study the clinical and hormonal correlation in patients of melasma. METHODS : 50 female p...

  10. Hormone Replacement Therapy and Your Heart

    Science.gov (United States)

    Hormone replacement therapy and your heart Are you taking — or considering — hormone therapy to treat bothersome menopausal symptoms? Understand ... for you. By Mayo Clinic Staff Long-term hormone replacement therapy used to be routinely prescribed for postmenopausal women ...

  11. Parathyroid hormone-related protein blood test

    Science.gov (United States)

    ... ency/article/003691.htm Parathyroid hormone-related protein blood test To use the sharing features on this page, ... measures the level of a hormone in the blood, called parathyroid hormone-related protein. How the Test is Performed A blood sample is needed . How ...

  12. Alimentary triggers of hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    T. Y. Lykholat

    2014-04-01

    Full Text Available Breast cancer (BC consistently holds the leading positions in the structure of morbidity and mortality of the female population. Food containing veterinary hormones is extremely dangerous to human health: estrogens are female sex hormones. Excessive level of estrogen in the body gives rise to diseases of varying severity: in women (especially of older age it may cause breast cancer. The paper investigates the processes of lipid peroxidation and the status of antioxidant protection system in rats of different ages exposed to exogenous estrogens. The purpose of the work is to study lipid peroxidation and antioxidative protection status in rats of different ages exposed to exogenous estrogens for determining the trigger mechanisms for tumor development. Experiments were conducted on female Wistar rats exposed to exogenous estrogen for 45 days. At the beginning of the experiment, age of experimental animals was 3 months in pubertal period and 6 months as mature ones. The control groups consisted of intact animals of appropriate age. To simulate the influence of exogenous estrogen, rats’ food was treated with the Sinestron drug at the rate of 2 mg per kg. The research materials were serum and liver of rats. Objects of the research were indicators of lipid peroxidation activity (content of TBA-active products and antioxidant protection system (reduced glutathione (RG level, glutathione transferase (GT, glutathione reductase (GR, glutathione peroxidase (GP, superoxide dismutase (SOD activity, and total antioxidative activity (AOA. Data obtained was treated with standard methods of estimation of variation series. Various degrees of peroxidation intensification depending on the age and organs were determined. Maximum excess of control indexes in the serum was observed and it indicated synthetic estrogen effect of on all major body systems. In prepubertal period females’ liver the reaction of prooxidant system and tension in the antioxidant

  13. Growth hormone (GH) activity is associated with increased serum oestradiol and reduced Anti-Müllerian Hormone in healthy male volunteers treated with GH and a GH antagonist

    DEFF Research Database (Denmark)

    Andreassen, M; Frystyk, Jan; Faber, J

    2013-01-01

    Growth hormone (GH) and insulin-like growth factor I (IGF-I) receptors are present on pituitary gonadotrophs and on testicular Leydig and Sertoli cells. Thus, the GH/IGF-I system may modulate the pituitary-gonadal axis in males. This is a randomized cross-over study. Eight healthy male volunteers...... of luteinizing hormone (LH), follicle-stimulating hormone, testosterone, oestradiol, sex hormone-binding globulin, inhibin B and Anti-Müllerian Hormone (AMH) were measured. During GH treatment, IGF-I increased [(median (IQR)] 166 (162-235) vs. 702 (572-875) μg/L, p .../IGF-I stimulates aromatase activity in vivo. As a novel observation, we found that high GH activity was associated with reduced levels of the Sertoli cell marker AMH. Further studies are needed to evaluate possible effects of GH on Sertoli cell function and/or spermatogenesis....

  14. Hormones, ionic regulation and kidney function in fishes.

    Science.gov (United States)

    Henderson, I W; Hazon, N; Hughes, K

    1985-01-01

    Renal osmoregulatory mechanisms in the context of hormones is considered in three types of fish: the Agnatha, the Chondrichthyes and the Osteichthyes. Particular reference is made to endocrine status and hormonal interplay in renal homeostatic mechanisms. Among Agnatha, hagfishes display atypical osmoregulatory characteristics and their endocrine repertoire is poorly understood. Hormonal actions are unclear although the kidney appears to act as a regulator of extracellular fluid volume. Lampreys show many similarities with teleost fish with respect to osmoregulation, but again their endocrine system requires further definition. Chondricthyean fishes have a number of unique hormones, among them 1-alpha-hydroxycorticosterone from the adrenocortical homologue (interrenal gland). Their complex kidneys have not been extensively studied with respect to hormonal regulation, but a key role is certainly the maintenance of high plasma levels of urea and trimethylamine oxide. The importance of the ratio of these two compounds with respect to urea tolerance is discussed. Evidence is presented and discussed that points to 1-alpha-hydroxycorticosterone playing a role in osmoregulation, although its sites and mechanisms of action are not known. The presence of a non-hypophysial control of interrenal function (a renin-angiotensin system) is indicated. The largest group of fishes, the Teleostei, are considered with respect to renal mechanisms involved in euryhalinity. Highly selective reference is made to the renin-angiotensin system and arginine vasotocin. In fresh water eels a clear negative feedback relationship exists between angiotensin II and arginine vasotocin, while in seawater-adapted animals the interplay is less clear. It is suggested that the observed increases in both arginine vasotocin and angiotensin II in eels adapted to environments hyperosmotic to their extracellular fluid in some way affects the "setting" of the feedback between the two. The possible interactions

  15. Hot issues in female and male hormonal contraception.

    Science.gov (United States)

    Gava, Giulia; Lantadilla, Claudia; Martelli, Valentina; Fattorini, Anna; Seracchioli, Renato; Meriggiola, Maria C

    2016-02-01

    In recent years a number of significant developments in the field of female hormonal contraception have been made which have produced new formulations and delivery systems providing high efficacy, safety and important non-contraceptive benefits. In particular long-acting reversible contraception (LARC) formulations have been demonstrated to ensure extremely high efficacy in typical use, minimal contraindications, optimal safety in all women thereby representing the best option for most women of all ages. Their effectiveness is not reliant upon user adherence and their ability to reduce unintended pregnancies and abortions has been proven. Unfortunately the same considerations cannot be made for male hormonal contraception. Although a large number of men are interested and would welcome the opportunity to use male contraceptive methods, no safe, effective and reversible methods are available on the market. Current methods available for men are limited to condoms and vasectomy. Highly effective prototype regimens have been developed but the pharmaceutical industry is unwilling to pursue further development and market these products. Of all new approaches to male contraception, hormonal methods are the closest to clinical application. These are based on the reversible suppression of luteinizing hormone and follicle stimulating hormone with subsequent reversible inhibition of spermatogenesis and consequent replacement to maintain androgen dependent physiological functions. Most approaches tested combination regimens such as testosterone and a progestin or testosterone and a GnRH analog.

  16. Hormonal derangement and abnormal renal haemodynamics in the ...

    African Journals Online (AJOL)

    A severe burn is characterized by the development of hyperenzymatic levels in plasma and biochemical changes in the blood as well as generalized hormonal dysregulation. This hypercatabolic state reflects the generalized enhanced proteolytic enzyme systems following severe burns. Since anuria often develops in the ...

  17. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  18. hormonal derangement and abnormal renal haemodynamics in the ...

    African Journals Online (AJOL)

    Dr Olaleye

    A severe burn is characterized by the development of hyperenzymatic levels in plasma and biochemical changes in the blood as well as generalized hormonal dysregulation. This hypercatabolic state reflects the generalized enhanced proteolytic enzyme systems following severe burns. Since anuria often develops in the ...

  19. Effect of smoking on acute phase reactants, stress hormone ...

    African Journals Online (AJOL)

    However, the mechanisms which underpin these harmful inflammatory responses, have not been well documented. Objectives: The current study was undertaken to determine possible associations between systemic biomarkers of inflammation (acute phase reactants, stress hormones, leukocyte vitamin C) and smoking ...

  20. Sex Steroid Hormones and Reproductive Disorders : Impact on Women's Health

    NARCIS (Netherlands)

    Fauser, Bart C. J. M.; Laven, Joop S. E.; Tarlatzis, Basil C.; Moley, Kelle H.; Critchley, Hilary O. D.; Taylor, Robert N.; Berga, Sarah L.; Mermelstein, Paul G.; Devroey, Paul; Gianaroli, Luca; D'Hooghe, Thomas; Vercellini, Paolo; Hummelshoj, Lone; Rubin, Susan; Goverde, Angelique J.; De Leo, Vincenzo; Petraglia, Felice

    The role of sex steroid hormones in reproductive function in women is well established. However, in the last two decades it has been shown that receptors for estrogens, progesterone and androgens are expressed in non reproductive tissue /organs (bone, brain, cardiovascular system) playing a role in

  1. Heritability of reproductive hormones in adult male twins

    NARCIS (Netherlands)

    Kuijper, E.A.M.; Lambalk, C.B.; Boomsma, D.I.; van der Sluis, S.; Blankenstein, M.A.; de Geus, E.J.C.; Posthuma, D.

    2007-01-01

    Background: Proper functioning of the male reproductive axis depends on complex feedback systems between several hormones. In this study, the genetic contribution of various endocrine components of the hypothalamic-pituitary-testicular axis is evaluated and previously observed differences in FSH and

  2. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy.

    Science.gov (United States)

    Burwell, R Geoffrey; Aujla, Ranjit K; Grevitt, Michael P; Dangerfield, Peter H; Moulton, Alan; Randell, Tabitha L; Anderson, Susan I

    2009-10-31

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic

  3. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  4. Thyroid Hormone and the Neuroglia: Both Source and Target

    Science.gov (United States)

    Mohácsik, Petra; Zeöld, Anikó; Bianco, Antonio C.; Gereben, Balázs

    2011-01-01

    Thyroid hormone plays a crucial role in the development and function of the nervous system. In order to bind to its nuclear receptor and regulate gene transcription thyroxine needs to be activated in the brain. This activation occurs via conversion of thyroxine to T3, which is catalyzed by the type 2 iodothyronine deiodinase (D2) in glial cells, in astrocytes, and tanycytes in the mediobasal hypothalamus. We discuss how thyroid hormone affects glial cell function followed by an overview on the fine-tuned regulation of T3 generation by D2 in different glial subtypes. Recent evidence on the direct paracrine impact of glial D2 on neuronal gene expression underlines the importance of glial-neuronal interaction in thyroid hormone regulation as a major regulatory pathway in the brain in health and disease. PMID:21876836

  5. Thyroid Hormone and the Neuroglia: Both Source and Target

    Directory of Open Access Journals (Sweden)

    Petra Mohácsik

    2011-01-01

    Full Text Available Thyroid hormone plays a crucial role in the development and function of the nervous system. In order to bind to its nuclear receptor and regulate gene transcription thyroxine needs to be activated in the brain. This activation occurs via conversion of thyroxine to T3, which is catalyzed by the type 2 iodothyronine deiodinase (D2 in glial cells, in astrocytes, and tanycytes in the mediobasal hypothalamus. We discuss how thyroid hormone affects glial cell function followed by an overview on the fine-tuned regulation of T3 generation by D2 in different glial subtypes. Recent evidence on the direct paracrine impact of glial D2 on neuronal gene expression underlines the importance of glial-neuronal interaction in thyroid hormone regulation as a major regulatory pathway in the brain in health and disease.

  6. Impact of animal manure separation technologies on steroid hormone distribution

    DEFF Research Database (Denmark)

    Hansen, Martin; Popovic, Olga; Björklund, Erland

    2015-01-01

    When steroid hormones are emitted into the environment, they may have harmful effects on the reproduction system of aquatic life. Until now, research has primarily focused on human excretion, demonstrating that steroid hormones reach the aquatic environment due to insufficient removal in waste...... developed technology, which separates raw animal manure into a solid and a liquid fraction. This technology offers an improved handling and refined distribution of the manure nutrients to the farmlands and the possibility to reduce the environmental impact of manure nutrients, especially avoiding...... the surplus load of phosphorous. In the present work we investigated the distribution of 9 steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, dihydrotestosterone, estrone, 17α-estradiol and 17β-estradiol) in raw manure and manure separates from 10 to 15...

  7. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  8. The Central Effects of Thyroid Hormones on Appetite

    Directory of Open Access Journals (Sweden)

    Anjali Amin

    2011-01-01

    Full Text Available Obesity is a major public health issue worldwide. Current pharmacological treatments are largely unsuccessful. Determining the complex pathways that regulate food intake may aid the development of new treatments. The hypothalamic-pituitary-thyroid (HPT axis has well-known effects on energy expenditure, but its role in the regulation of food intake is less well characterised. Evidence suggests that the HPT axis can directly influence food intake. Thyroid dysfunction can have clinically significant consequences on appetite and body weight. Classically, these effects were thought to be mediated by the peripheral effects of thyroid hormone. However, more recently, local regulation of thyroid hormone in the central nervous system (CNS is thought to play an important role in physiologically regulating appetite. This paper focuses on the role of the HPT and thyroid hormone in appetite and provides evidence for potential new targets for anti-obesity agents.

  9. Important species differences regarding lymph contribution to gut hormone responses

    DEFF Research Database (Denmark)

    Hansen, Marie; Hjøllund, Karina R; Hartmann, Bolette

    2015-01-01

    the lymphatic system might contribute to the final level(s) of systemic circulating intact GLP-1 and, in addition, whether secretory profiles in intestinal lymph might reflect lamina propria levels of GLP-1 i.e. before capillary uptake and degradation by endothelial dipeptidyl peptidase-4 (DPP-4). METHOD: 7...... of intact GLP-1 to the systemic circulation, and that GLP-1 levels in cisternal lymph do not reflect the hormone levels in the intestinal lamina propria....

  10. Hormonal treatment of acne vulgaris: an update

    Science.gov (United States)

    Elsaie, Mohamed L

    2016-01-01

    Acne vulgaris is a common skin condition associated with multiple factors. Although mostly presenting alone, it can likewise present with features of hyperandrogenism and hormonal discrepancies. Of note, hormonal therapies are indicated in severe, resistant-to-treatment cases and in those with monthly flare-ups and when standard therapeutic options are inappropriate. This article serves as an update to hormonal pathogenesis of acne, discusses the basics of endocrinal evaluation for patients with suspected hormonal acne, and provides an overview of the current hormonal treatment options in women. PMID:27621661

  11. Growth hormone insensitivity: diagnostic and therapeutic approaches.

    Science.gov (United States)

    Kurtoğlu, S; Hatipoglu, N

    2016-01-01

    Growth hormone resistance defines several genetic (primary) and acquired (secondary) pathologies that result in completely or partially interrupted activity of growth hormone. An archetypal disease of this group is the Laron-type dwarfism caused by mutations in growth hormone receptors. The diagnosis is based on high basal levels of growth hormone, low insulin like growth factor-I (IGF-1) level, unresponsiveness to IGF generation test and genetic testing. Recombinant IGF-1 preparations are used in the treatment In this article, clinical characteristics, diagnosis and therapeutic approaches of the genetic and other diseases leading to growth hormone insensitivity are reviewed.

  12. Antimüllerian hormone as a predictor of live birth following assisted reproduction: an analysis of 85,062 fresh and thawed cycles from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System database for 2012-2013.

    Science.gov (United States)

    Tal, Reshef; Seifer, David B; Wantman, Ethan; Baker, Valerie; Tal, Oded

    2018-02-01

    To determine if serum antimüllerian hormone (AMH) is associated with and/or predictive of live birth assisted reproductive technology (ART) outcomes. Retrospective analysis of Society for Assisted Reproductive Technology Clinic Outcome Reporting System database from 2012 to 2013. Not applicable. A total of 69,336 (81.8%) fresh and 15,458 (18.2%) frozen embryo transfer (FET) cycles with AMH values. None. Live birth. A total of 85,062 out of 259,499 (32.7%) fresh and frozen-thawed autologous non-preimplantation genetic diagnosis cycles had AMH reported for cycles over this 2-year period. Of those, 70,565 cycles which had embryo transfers were included in the analysis. Serum AMH was significantly associated with live birth outcome per transfer in both fresh and FET cycles. Multiple logistic regression demonstrated that AMH is an independent predictor of live birth in fresh transfer cycles and FET cycles when controlling for age, body mass index, race, day of transfer, and number of embryos transferred. Receiver operating characteristic (ROC) curves demonstrated that the areas under the curve (AUC) for AMH as predictors of live birth in fresh cycles and thawed cycles were 0.631 and 0.540, respectively, suggesting that AMH alone is a weak independent predictor of live birth after ART. Similar ROC curves were obtained also when elective single-embryo transfer (eSET) cycles were analyzed separately in either fresh (AUC 0.655) or FET (AUC 0.533) cycles, although AMH was not found to be an independent predictor in eSET cycles. AMH is a poor independent predictor of live birth outcome in either fresh or frozen embryo transfer for both eSET and non-SET transfers. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Stress Hormones mediated by the Built Environment

    DEFF Research Database (Denmark)

    Fich, Lars Brorson; Wallergård, Mattias; Hansen, Åse Marie

    2017-01-01

    is a neurodegenerative disease that starts in the hippocampus structure in the brain’s limbic system. The hippocampus has three interconnected functions; it holds the cognitive map we use for way-finding, it creates new memories and it forms part of the feedback mechanism that controls the stress hormone cortisol......Due to the aging society, dementia is one of the major challenges to the health care systems all over the world. The growing number of patients, the long process and intensive need for care, especially in the later stages of the disease, make the growth in human as well as socioeconomic costs huge....... The development of design strategies for nursing homes and other health care facilities such as day care centers addressing the needs of dementia patients is therefore very important. The vast majority of dementia cases is Alzheimer’s Disease, representing approximately 70% of all cases. Alzheimer’s disease...

  14. Menopause, micronutrients, and hormone therapy.

    Science.gov (United States)

    Wylie-Rosett, Judith

    2005-05-01

    Micronutrient and herbal/phytochemical supplements are of increasing interest as potential alternatives to using estrogen therapy in treating menopausal symptoms. This article provides an overview of the questionnaires that assess menopausal symptoms and research efforts to better standardize symptom assessment. The reported rate of symptoms varies by ethnicity, stage of menopause, hormonal therapy and the measurement method. The use of estrogen therapy has declined sharply after the Women's Health Initiative (WHI) Hormone Trial was stopped early because the potential risks outweighed potential benefits. There is a limited research base that addresses the efficacy of supplements in controlling menopausal symptoms. The generalizability of several studies is limited because the study participants experiences menopause as the results of treatment for breast cancer. The article concludes with a review of guidelines and of issues that need to be addressed in future research studies with emphasis on questions related to clinical practice.

  15. Progestogens in menopausal hormone therapy

    Directory of Open Access Journals (Sweden)

    Małgorzata Bińkowska

    2015-06-01

    Full Text Available Progestogens share one common effect: the ability to convert proliferative endometrium to its secretory form. In contrast, their biological activity is varied, depending on the chemical structure, pharmacokinetics, receptor affinity and different potency of action. Progestogens are widely used in the treatment of menstrual cycle disturbances, various gynaecological conditions, contraception and menopausal hormone therapy. The administration of progestogen in menopausal hormone therapy is essential in women with an intact uterus to protect against endometrial hyperplasia and cancer. Progestogen selection should be based on the characteristics available for each progestogen type, relying on the assessment of relative potency of action in experimental models and animal models, and on the indirect knowledge brought by studies of the clinical use of different progestogen formulations. The choice of progestogen should involve the conscious use of knowledge of its benefits, with a focus on minimizing potential side effects. Unfortunately, there are no direct clinical studies comparing the metabolic effects of different progestogens.

  16. Obesity and hormonal contraceptive efficacy.

    Science.gov (United States)

    Robinson, Jennifer A; Burke, Anne E

    2013-09-01

    Obesity is a major public health concern affecting an increasing proportion of reproductive-aged women. Avoiding unintended pregnancy is of major importance, given the increased risks associated with pregnancy, but obesity may affect the efficacy of hormonal contraceptives by altering how these drugs are absorbed, distributed, metabolized or eliminated. Limited data suggest that long-acting, reversible contraceptives maintain excellent efficacy in obese women. Some studies demonstrating altered pharmacokinetic parameters and increased failure rates with combined oral contraceptives, the contraceptive patch and emergency contraceptive pills suggest decreased efficacy of these methods. It is unclear whether bariatric surgery affects hormonal contraceptive efficacy. Obese women should be offered the full range of contraceptive options, with counseling that balances the risks and benefits of each method, including the risk of unintended pregnancy.

  17. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  18. Oxytocin is a cardiovascular hormone

    OpenAIRE

    Gutkowska, J.; Jankowski, M.; Mukaddam-Daher, S.; McCann, S.M.

    2000-01-01

    Oxytocin (OT), a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, sugges...

  19. Obesity and hormonal contraceptive efficacy

    OpenAIRE

    Jennifer A. Robinson; Burke, Anne E.

    2013-01-01

    Obesity is a major public health concern affecting an increasing proportion of reproductive-aged women. Avoiding unintended pregnancy is of major importance, given the increased risks associated with pregnancy, but obesity may affect the efficacy of hormonal contraceptives by altering how these drugs are absorbed, distributed, metabolized or eliminated. Limited data suggest that long-acting, reversible contraceptives maintain excellent efficacy in obese women. Some studies demonstrating alter...

  20. Contraception and hormonal management in the perimenopause.

    Science.gov (United States)

    Long, Margaret E; Faubion, Stephanie S; MacLaughlin, Kathy L; Pruthi, Sandhya; Casey, Petra M

    2015-01-01

    This literature review focuses on contraception in perimenopausal women. As women age, their fecundity decreases but does not disappear until menopause. After age 40, 75% of pregnancies are unplanned and may result in profound physical and emotional impact. Clinical evaluation must be relied on to diagnose menopause, since hormonal levels fluctuate widely. Until menopause is confirmed, some potential for pregnancy remains; at age 45, women's sterility rate is 55%. Older gravidas experience higher rates of diabetes, hypertension, and death. Many safe and effective contraceptive options are available to perimenopausal women. In addition to preventing an unplanned and higher-risk pregnancy, perimenopausal contraception may improve abnormal uterine bleeding, hot flashes, and menstrual migraines. Long-acting reversible contraceptives, including the levonorgestrel intrauterine system (LNG-IUS), the etonogestrel subdermal implant (ESI), and the copper intrauterine device (Cu-IUD), provide high efficacy without estrogen. LNG-IUS markedly decreases menorrhagia commonly seen in perimenopause. Both ESI and LNG-IUS provide endometrial protection for women using estrogen for vasomotor symptoms. Women without cardiovascular risk factors can safely use combined hormonal contraception. The CDC's Medical Eligibility Criteria for Contraceptive Use informs choices for women with comorbidities. No medical contraindications exist for levonorgestrel emergency-contraceptive pills, though obesity does decrease efficacy. In contrast, the Cu-IUD provides reliable emergency and ongoing contraception regardless of body mass index (BMI).

  1. Hormonal therapy in traumatic spinal cord injury.

    Science.gov (United States)

    Ludwig, Parker E; Patil, Arun A; Chamczuk, Andrea J; Agrawal, Devendra K

    2017-01-01

    Traumatic spinal cord injuries are major health problems and the underlying pathophysiological events and treatment strategies are currently under investigation. In this article, we critically reviewed the literature investigating the effects of estrogen, progesterone, and human chorionic gonadotropin on spinal cord damage or preservation following traumatic spinal cord injury. The National Library of Medicine database was searched through December 2016 using PubMed for articles addressing the clinical relevance of the hormones to improve neural structural integrity following traumatic spinal cord injury. It was found that each of these hormones, through varied mechanisms, could serve to reduce the harmful effects associated with spinal cord injury, and could aid in restoring some function to the injured spinal cord in the animal models. The most striking effects were seen in the reduction of inflammation commonly linked to injury of the central nervous system. The effects of human chorionic gonadotropin administration following spinal cord injury have received far less attention than those of either estrogen or progesterone, and additional inquiry could be of general benefit. In this article, we discussed the outstanding questions and suggested future directions for further investigation.

  2. Encoding and decoding mechanisms of pulsatile hormone secretion.

    Science.gov (United States)

    Walker, J J; Terry, J R; Tsaneva-Atanasova, K; Armstrong, S P; McArdle, C A; Lightman, S L

    2010-12-01

    Ultradian pulsatile hormone secretion underlies the activity of most neuroendocrine systems, including the hypothalamic-pituitary adrenal (HPA) and gonadal (HPG) axes, and this pulsatile mode of signalling permits the encoding of information through both amplitude and frequency modulation. In the HPA axis, glucocorticoid pulse amplitude increases in anticipation of waking, and, in the HPG axis, changing gonadotrophin-releasing hormone pulse frequency is the primary means by which the body alters its reproductive status during development (i.e. puberty). The prevalence of hormone pulsatility raises two crucial questions: how are ultradian pulses encoded (or generated) by these systems, and how are these pulses decoded (or interpreted) at their target sites? We have looked at mechanisms within the HPA axis responsible for encoding the pulsatile mode of glucocorticoid signalling that we observe in vivo. We review evidence regarding the 'hypothalamic pulse generator' hypothesis, and describe an alternative model for pulse generation, which involves steroid feedback-dependent endogenous rhythmic activity throughout the HPA axis. We consider the decoding of hormone pulsatility by taking the HPG axis as a model system and focussing on molecular mechanisms of frequency decoding by pituitary gonadotrophs. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  3. Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis.

    Science.gov (United States)

    Pitts, Natalie L; Mykles, Donald L

    2017-01-01

    In decapod crustaceans, molting is controlled by the pulsatile release of molt-inhibiting hormone (MIH) from neurosecretory cells in the X-organ/sinus gland (XO/SG) complex in the eyestalk ganglia (ESG). A drop in MIH release triggers molting by activating the molting gland or Y-organ (YO). Post-transcriptional mechanisms ultimately control MIH levels in the hemolymph. Neurotransmitter-mediated electrical activity controls Ca2+-dependent vesicular release of MIH from the SG axon terminals, which may be modulated by nitric oxide (NO). In green shore crab, Carcinus maenas, nitric oxide synthase (NOS) protein and NO are present in the SG. Moreover, C. maenas are refractory to eyestalk ablation (ESA), suggesting other regions of the nervous system secrete sufficient amounts of MIH to prevent molting. By contrast, ESA induces molting in the blackback land crab, Gecarcinus lateralis. Double-label immunofluorescence microscopy and quantitative polymerase chain reaction were used to localize and quantify MIH and NOS proteins and transcripts, respectively, in the ESG, brain, and thoracic ganglion (TG) of C. maenas and G. lateralis. In ESG, MIH- and NOS-immunopositive cells were closely associated in the SG of both species; confocal microscopy showed that NOS was localized in cells adjacent to MIH-positive axon terminals. In brain, MIH-positive cells were located in a small number of cells in the olfactory lobe; no NOS immunofluorescence was detected. In TG, MIH and NOS were localized in cell clusters between the segmental nerves. In G. lateralis, Gl-MIH and Gl-crustacean hyperglycemic hormone (CHH) mRNA levels were ~105-fold higher in ESG than in brain or TG of intermolt animals, indicating that the ESG is the primary source of these neuropeptides. Gl-NOS and Gl-elongation factor (EF2) mRNA levels were also higher in the ESG. Molt stage had little or no effect on CHH, NOS, NOS-interacting protein (NOS-IP), membrane Guanylyl Cyclase-II (GC-II), and NO-independent GC

  4. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters

    NARCIS (Netherlands)

    W.M. van der Deure (Wendy); R.P. Peeters (Robin); T.J. Visser (Theo)

    2010-01-01

    textabstractThyroid hormone is a pleiotropic hormone with widespread biological actions. For instance, adequate levels of thyroid hormone are critical for the development of different tissues such as the central nervous system, but are also essential for the regulation of metabolic processes

  5. Plants altering hormonal milieu: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2017-02-01

    Full Text Available The aim of the present review article is to investigate the herbs which can alter the levels of hormones like Follicle stimulating hormone, Prolactin, Growth hormone, Insulin, Thyroxine, Estrogen, Progesterone, Testosterone, and Relaxin etc. Hormones are chemical signal agents produced by different endocrine glands for regulating our biological functions. The glands like pituitary, thyroid, adrenal, ovaries in women and testes in men all secrete a number of hormones with different actions. However, when these hormones are perfectly balanced then people become healthy and fit. But several factors like pathophysiological as well as biochemical changes, disease conditions, changes in the atmosphere, changes in the body, diet changes etc. may result in imbalance of various hormones that produce undesirable symptoms and disorders. As medicinal plants have their importance since ancient time, people have been using it in various ways as a source of medicine for regulation of hormonal imbalance. Moreover, it is observed that certain herbs have a balancing effect on hormones and have great impact on well-being of the people. So, considering these facts we expect that the article provides an overview on medicinal plants with potential of altering hormone level.

  6. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    Science.gov (United States)

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Nonlinear analysis and prediction of pulsatile hormone secretion

    Energy Technology Data Exchange (ETDEWEB)

    Prank, K. [Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, D-30623 Hannover (Germany)]|[Howard Hughes Medical Institute and Computational Neurobiology Laboratory, The Salk Institute, San Diego, California 92186-5800 (United States); Kloppstech, M. [Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, D-30623 Hannover (Germany); Nowlan, S.J. [Howard Hughes Medical Institute and Computational Neurobiology Laboratory, The Salk Institute, San Diego, California 92186-5800 (United States); Harms, H.M.; Brabant, G.; Hesch, R. [Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, D-30623 Hannover (Germany); Sejnowski, T.J. [Howard Hughes Medical Institute and Computational Neurobiology Laboratory, The Salk Institute, San Diego, California 92186-5800 (United States)

    1996-06-01

    Pulsatile hormone secretion is observed in almost every hormonal system. The frequency of episodic hormone release ranges from approximately 10 to 100 pulses in 24 hours. This temporal mode of secretion is an important feature of intercellular information transfer in addition to a dose-response dependent regulation. It has been demonstrated in a number of experiments that changes in the temporal pattern of pulsatile hormone secretion specifically regulate cellular and organ function and structure. Recent evidence links osteoporosis, a disease characterized by loss of bone mass and structure, to changes in the dynamics of pulsatile parathyroid hormone (PTH) secretion. In our study we applied nonlinear and linear time series prediction to characterize the secretory dynamics of PTH in both healthy human subjects and patients with osteoporosis. Osteoporotic patients appear to lack periods of high predictability found in normal humans. In contrast to patients with osteoporosis patients with hyperparathyroidism, a condition which despite sometimes reduced bone mass has a preserved bone architecture, show periods of high predictability of PTH secretion. Using stochastic surrogate data sets which match certain statistical properties of the original time series significant nonlinear determinism could be found for the PTH time series of a group of healthy subjects. Using classical nonlinear analytical techniques we could demonstrate that the irregular pattern of pulsatile PTH secretion in healthy men exhibits characteristics of deterministic chaos. Pulsatile secretion of PTH in healthy subjects seems to be a first example of nonlinear determinism in an apparently irregular hormonal rhythm in human physiology. {copyright} {ital 1996 American Institute of Physics.}

  8. Hormonal Influence on Coenzyme Q10 Levels in Blood Plasma

    Directory of Open Access Journals (Sweden)

    Alfredo Pontecorvi

    2011-12-01

    Full Text Available Coenzyme Q10 (CoQ10, also known as ubiquinone for its presence in all body cells, is an essential part of the cell energy-producing system. However, it is also a powerful lipophilic antioxidant protecting lipoproteins and cell membranes. Due to these two actions, CoQ10 is commonly used in clinical practice in chronic heart failure, male infertility, and neurodegenerative disease. However, it is also taken as an anti-aging substance by healthy people aiming for long-term neuroprotection and by sportsmen to improve endurance. Many hormones are known to be involved in body energy regulation, in terms of production, consumption and dissipation, and their influence on CoQ10 body content or blood values may represent an important pathophysiological mechanism. We summarize the main findings of the literature about the link between hormonal systems and circulating CoQ10 levels. In particular the role of thyroid hormones, directly involved in the regulation of energy homeostasis, is discussed. There is also a link with gonadal and adrenal hormones, partially due to the common biosynthetic pathway with CoQ10, but also to the increased oxidative stress found in hypogonadism and hypoadrenalism.

  9. Towards the emerging crosstalk: ERBB family and steroid hormones.

    Science.gov (United States)

    D'Uva, Gabriele; Lauriola, Mattia

    2016-02-01

    Growth factors acting through receptor tyrosine kinases (RTKs) of ERBB family, along with steroid hormones (SH) acting through nuclear receptors (NRs), are critical signalling mediators of cellular processes. Deregulations of ERBB and steroid hormone receptors are responsible for several diseases, including cancer, thus demonstrating the central role played by both systems. This review will summarize and shed light on an emerging crosstalk between these two important receptor families. How this mutual crosstalk is attained, such as through extensive genomic and non-genomic interactions, will be addressed. In light of recent studies, we will describe how steroid hormones are able to fine-tune ERBB feedback loops, thus impacting on cellular output and providing a new key for understanding the complexity of biological processes in physiological or pathological conditions. In our understanding, the interactions between steroid hormones and RTKs deserve further attention. A system biology approach and advanced technologies for the analysis of RTK-SH crosstalk could lead to major advancements in molecular medicine, providing the basis for new routes of pharmacological intervention in several diseases, including cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Growth hormone in chronic renal disease

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2012-01-01

    Full Text Available Severe growth retardation (below the third percentile for height is seen in up to one-third children with chronic kidney disease. It is thought to be multifactorial and despite optimal medical therapy most children are unable to reach their normal height. Under-nutrition, anemia, vitamin D deficiency with secondary hyperparathyroidism, metabolic acidosis, hyperphosphatemia, renal osteodystrophy; abnormalities in the growth hormone/insulin like growth factor system and sex steroids, all have been implicated in the pathogenesis of growth failure. Therapy includes optimization of nutritional and metabolic abnormalities. Failure to achieve adequate height despite 3-6 months of optimal medical measures mandates the use of recombinant GH (rGH therapy, which has shown to result in catch-up growth, anywhere from 2 cm to 10 cm with satisfactory liner, somatic and psychological development.

  11. Hormone-Related Migraine Headaches and Mood Disorders: Treatment with Estrogen Stabilization.

    Science.gov (United States)

    Warnock, Julia K; Cohen, Lawrence J; Blumenthal, Harvey; Hammond, Jordan E

    2017-01-01

    Because estrogens and the trigeminal system are inherently linked, prescribers who are treating a woman with a hormonally related mood disorder and migraine headaches should consider hormonal options to optimize the patient's treatment. This article discusses the interrelationships of estrogen, serotonin, and the trigeminal system as they relate to menstrual migraine occurrence and hormone-related mood symptoms. In addition, clinical examples are provided to facilitate the prescribers treating women during reproductive transitions in which declining estrogens are related to their suffering. © 2016 Pharmacotherapy Publications, Inc.

  12. Thyroid hormone metabolism in poultry

    Directory of Open Access Journals (Sweden)

    Darras V.M.

    2000-01-01

    Full Text Available Thyroid hormone (TH receptors preferentially bind 3.5,3'-triiodothyronine (T3. Therefore the metabolism of thyroxine (T4 secreted by the thyroid gland in peripheral tissues, resulting in the production and degradation of receptor-active T3, plays a major role in thyroid function. The most important metabolic pathway for THs is deiodination. Another important pathway is sulfation, which is a reversible pathway that has been shown to interact with TH deiodination efficiency. The enzymes catalysing TH deiodination consist of three types. Type 1 deiodinase (D1 catalyses both outer ring (ORD and inner ring deiodinalion (IRD. Type II deiodinase (D2 only catalyses ORD while type III (D3 only catalyses IRD. The three chicken deiodinase cDNAs have been cloned recently. These enzymes all belong to the family of selenoproteins. Ontogenetic studies show that the availability of deiodinases is regulated in a tissue specific and developmental stage dependent way. Characteristic for the chicken is the presence of very high levels off, inactivating D3 enzyme in the embryonic liver. Hepatic D3 is subject to acute regulation in a number of situations. Both growth hormone and glucocorticoid injection rapidly decrease hepatic D3 levels, hereby increasing plasma T3 without affecting hepatic D1 levels. The inhibition of D3 seems to be regulated mainly at the level of D3 gene transcription. The effect of growth hormone on D3 expression persists throughout life, while glucocorticoids start to inhibit hepatic D1 expression in posthatch chickens. Food restriction in growing chickens increases hepatic D3 levels. This contributes to the decrease in plasma T3 necessary to reduce energy loss. Refeeding restores hepatic D3 and plasma T3 to control levels within a few hours. It can be concluded that the tissue and time dependent regulation of the balance between TH activating and inactivating enzymes plays an essential role in the control of local T3 availability and hence in

  13. The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism

    Directory of Open Access Journals (Sweden)

    Tae Won Kim

    2015-01-01

    Full Text Available The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity.

  14. The impact of sleep and circadian disturbance on hormones and metabolism.

    Science.gov (United States)

    Kim, Tae Won; Jeong, Jong-Hyun; Hong, Seung-Chul

    2015-01-01

    The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity.

  15. Changes in Gut Hormones After Roux en Y Gastric bypass, Sleeve Gastrectomy, and Adjustable Gastric Banding

    Directory of Open Access Journals (Sweden)

    Miroslav Ilić

    2015-12-01

    Full Text Available The obesity epidemic has burdened healthcare systems worldwide. Bariatric surgery is currently the most effective method for long-term weight loss in obese adults, but the exact mechanism of weight loss is poorly understood. Bariatric procedures were initially classified by their presumed mechanism of action into restrictive, malabsoptive, or mixed procedures; however, due to recent advancements in the field of neuroendocrinology, hormones are increasing being recognized as important regulators of satiation, hunger, and energy expenditure. Studies examining changes in gut hormones following bariatric surgery have yielded conflicting results and the relationship between these hormones and weight loss is nothing but clear. This review will summarize the effect of Roux en Y gastric bypass, sleeve gastrectomy and adjustable gastric banding on various gut hormones including ghrelin, cholecystokinin, glucagon-like polypeptide-1, peptide YY3, and pancreatic polypeptide. Furthermore, the relationship between these hormones and weight loss will be examined.

  16. Free thyroid hormones in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Bueber, V.

    1984-06-01

    Several groups of patients with normal and abnormal thyroid function as well as patients with goitre on hormone substitution are discussed with respect to the diagnostic value of the free thyroid hormone methods. The free T/sub 3/ technique under investigation separates clearly between euthyroidism and hyperthyroidism, however, during application of contraceptive pills and during pregnancy free T/sub 3/ is slightly enhanced. Free T/sub 4/ can be found in the normal range even in hypothyroidism, during T/sub 4/ substitution free T/sub 4/ is useful for control of adequate hormone substitution. Free thyroid hormones are advantageous to be performed with respect to practicability compared to the estimation of total hormone concentrations by enzyme as well as radioimmunoassay. Normally there is no additional demand for measurement of thyroid hormone binding proteins, another rather economical argument for using these parameters in thyroid diagnosis.

  17. Incretin hormone secretion over the day

    DEFF Research Database (Denmark)

    Ahren, B; Carr, RD; Deacon, Carolyn F.

    2010-01-01

    . Regulation of incretin hormone secretion is less well characterized. The main stimulus for incretin hormone secretion is presence of nutrients in the intestinal lumen, and carbohydrate, fat as well as protein all have the capacity to stimulate GIP and GLP-1 secretion. More recently, it has been established...... that a diurnal regulation exists with incretin hormone secretion to an identical meal being greater when the meal is served in the morning compared to in the afternoon. Finally, whether incretin hormone secretion is altered in disease states is an area with, so far, controversial results in different studies......, although some studies have demonstrated reduced incretin hormone secretion in type 2 diabetes. This review summarizes our knowledge on regulation of incretin hormone secretion and its potential changes in disease states....

  18. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  19. Effect of sodium oxybate on growth hormone secretion in narcolepsy patients and healthy controls

    NARCIS (Netherlands)

    Donjacour, C.E.; Aziz, N.A.; Roelfsema, F.; Frolich, M.; Overeem, S.; Lammers, G.J.; Pijl, H.

    2011-01-01

    Hypocretin deficiency causes narcolepsy and may affect neuroendocrine systems and body composition. Additionally, growth hormone (GH) alterations my influence weight in narcolepsy. Symptoms can be treated effectively with sodium oxybate (SXB; gamma-hydroxybutyrate) in many patients. This study

  20. Computational Modeling of Thyroid Hormone Regulated Neurodevelopment for Chemical Prioritization (SOT)

    Science.gov (United States)

    Thyroid hormones (TH) are critical for normal brain development. Environmental chemicals may disrupt TH homeostasis through a variety of physiological systems including membrane transporters, serum transporters, synthesis and catabolic enzymes, and nuclear receptors. Current comp...

  1. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals

    Science.gov (United States)

    The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...

  2. Anticoncepción hormonal

    Directory of Open Access Journals (Sweden)

    Miguel Lugones Botell

    1997-02-01

    Full Text Available Se realizó una revisión de los anticonceptivos hormonales con énfasis en aspectos que van desde su descubrimiento, el mecanismo de acción, los diferentes tipos y formas de utilización, así como el esquema de administración terapéutica en algunas entidades, sus indicaciones, ventajas y contraindicaciones: A review of the hormonal contraceptives was carried out, emphasizing on features from their discovery, trigger mechanism, different kinds, and ways to use them, as well as the scheme of the therapeutical administration in some entities, its indications, advantages, and contraindications.

  3. Parathyroid hormone and bone healing

    DEFF Research Database (Denmark)

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-01-01

    , no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial...... in the treatment of fractures and could thus be a potentially new treatment option for induction of fracture healing in humans. Furthermore, fractures in animals with experimental conditions of impaired healing such as aging, estrogen withdrawal, and malnutrition can heal in an expedited manner after PTH treatment...

  4. Pharmacologic development of male hormonal contraceptive agents.

    Science.gov (United States)

    Roth, M Y; Amory, J K

    2011-01-01

    The world population continues to increase dramatically despite the existence of contraceptive technology. The use of male hormonal contraception may help in preventing un intended pregnancies and managing future population growth. Male hormonal contraception relies on the administration of exogenous hormones to suppress spermatogenesis. Clinical trials have tested several regimens using testosterone, alone or in combination with a progestin. These regimens were shown to be >90% effective in preventing conception and were not associated with serious adverse events.

  5. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design.

    Science.gov (United States)

    Schoenfeld, Brad J

    2013-06-01

    It has been well documented in the literature that resistance training can promote marked increases in skeletal muscle mass. Postexercise hypertrophic adaptations are mediated by a complex enzymatic cascade whereby mechanical tension is molecularly transduced into anabolic and catabolic signals that ultimately lead to a compensatory response, shifting muscle protein balance to favor synthesis over degradation. Myocellular signaling is influenced, in part, by the endocrine system. Various hormones have been shown to alter the dynamic balance between anabolic and catabolic stimuli in muscle, helping to mediate an increase or decrease in muscle protein accretion. Resistance training can have an acute impact on the postexercise secretion of several of these hormones including insulin-like growth factor, testosterone, and growth hormone (GH). Studies show that hormonal spikes are magnified after hypertrophy-type exercise that involves training at moderate intensities with shortened rest intervals as compared with high-intensity strength-oriented training. The observed positive relationship between anabolic hormones and hypertrophy-type training has led to the hormone hypothesis, which postulates that acute postexercise hormonal secretions mediate increases in muscle size. Several researchers have suggested that these transient hormonal elevations may be more critical to hypertrophic adaptations than chronic changes in resting hormonal concentrations. Theoretically, high levels of circulating hormones increase the likelihood of interaction with receptors, which may have particular hypertrophic importance in the postworkout period when muscles are primed for anabolism. Moreover, hormonal spikes may enhance intracellular signaling so that postexercise protein breakdown is rapidly attenuated and anabolic processes are heightened, thereby leading to a greater supercompensatory response. Although the hormone hypothesis has received considerable support in the literature

  6. Antimüllerian hormone in gonadotropin releasing-hormone antagonist cycles

    DEFF Research Database (Denmark)

    Arce, Joan-Carles; La Marca, Antonio; Mirner Klein, Bjarke

    2013-01-01

    To assess the relationships between serum antimüllerian hormone (AMH) and ovarian response and treatment outcomes in good-prognosis patients undergoing controlled ovarian stimulation using a gonadotropin-releasing hormone (GnRH) antagonist protocol....

  7. Hormones and the blood-brain barrier.

    Science.gov (United States)

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  8. Gastrointestinal Hormones Induced the Birth of Endocrinology.

    Science.gov (United States)

    Wabitsch, Martin

    2017-01-01

    The physiological studies by British physiologists William Maddock Bayliss and Ernest Henry Starling, at the beginning of the last century, demonstrated the existence of specific messenger molecules (hormones) circulating in the blood that regulate the organ function and physiological mechanisms. These findings led to the concept of endocrinology. The first 2 hormones were secretin, discovered in 1902, and gastrin, discovered in 1905. Both hormones that have been described are produced in the gut. This chapter summarizes the history around the discovery of these 2 hormones, which is perceived as the birth of endocrinology. It is noteworthy that after the discovery of these 2 gastrointestinal hormones, many other hormones were detected outside the gut, and thereafter gut hormones faded from both the clinical and scientific spotlight. Only recently, the clinical importance of the gut as the body's largest endocrine organ producing a large variety of hormones has been realized. Gastrointestinal hormones are essential regulators of metabolism, growth, development and behavior and are therefore the focus of a modern pediatric endocrinologist. © 2017 S. Karger AG, Basel.

  9. Effects of hormones on platelet aggregation.

    Science.gov (United States)

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  10. Intravaginal hormonal contraception for women of reproductive age with excessive body mass

    Directory of Open Access Journals (Sweden)

    I. B. Gridina

    2015-12-01

    Full Text Available There are a number of disadvantages inherent in all oral hormonal contraceptives: need for daily administration, fluctuations of hormone levels throughout the day, metabolism in the gastrointestinal tract, the effect of the first passage through the liver. All this became a prerequisite to the creation of prolonged oral hormonal methods of contraception, which would be devoid of these shortcomings. One of such method of hormonal contraception is intravaginal hormonal system. The aim was to determine the safety and efficacy of its use in women of reproductive age with overweight. 43 women were included. State of lipid metabolism, changes of the hemostatic system, blood pressure and weight fluctuations in the past 6 months of using intravaginal hormonal contraceptive system were studied. Results. It is established that hormonal intravaginal contraceptive ring gives minimal metabolic effects. Conclusion. This suggests that this ring can be used successfully in patients with excessive body mass, because there is no effect of the ring on hemostasis, lipid metabolism and body weight.

  11. Hormone-Sensitive Lipase Knockouts

    Directory of Open Access Journals (Sweden)

    Shen Wen-Jun

    2006-02-01

    Full Text Available Abstract All treatments for obesity, including dietary restriction of carbohydrates, have a goal of reducing the storage of fat in adipocytes. The chief enzyme responsible for the mobilization of FFA from adipose tissue, i.e., lipolysis, is thought to be hormone-sensitive lipase (HSL. Studies of HSL knockouts have provided important insights into the functional significance of HSL and into adipose metabolism in general. Studies have provided evidence that HSL, though possessing triacylglycerol lipase activity, appears to be the rate-limiting enzyme for cholesteryl ester and diacylglycerol hydrolysis in adipose tissue and is essential for complete hormone stimulated lipolysis, but other triacylglycerol lipases are important in mediating triacylglycerol hydrolysis in lipolysis. HSL knockouts are resistant to both high fat diet-induced and genetic obesity, displaying reduced quantities of white with increased amounts of brown adipose tissue, increased numbers of adipose macrophages, and have multiple alterations in the expression of genes involved in adipose differentiation, including transcription factors, markers of adipocyte differentiation, and enzymes of fatty acid and triglyceride synthesis. With disruption of lipolysis by removal of HSL, there is a drastic reduction in lipogenesis and alteration in adipose metabolism.

  12. Gastrin: old hormone, new functions.

    Science.gov (United States)

    Dockray, Graham; Dimaline, Rod; Varro, Andrea

    2005-01-01

    It is exactly a century since the gastric hormone gastrin was first described as a blood-borne regulator of gastric acid secretion. The identities of the main active forms of the hormone (the "classical gastrins") and their cellular and molecular sites of action in regulating acid secretion have all attracted sustained attention. However, recent work on peptides derived from the gastrin precursor that do not stimulate acid secretion ("non-classical gastrins"), together with studies on mice over-expressing the gene, or in which the gastrin gene has been deleted, suggest hitherto unsuspected roles in regulating cell proliferation, migration, and differentiation. Moreover, microarray and proteomic studies have identified previously unsuspected target genes of the classical gastrins. Some of the newer actions have implications for our understanding of the progression to cancer in oesophagus, stomach, pancreas and colon, all of which have recently been linked in one way or another to dysfunctional signalling involving products of the gastrin gene. The present review focuses on recent progress in understanding the biology of both classical and non-classical gastrins.

  13. Postmenopausal hormone therapy and cognition.

    Science.gov (United States)

    McCarrey, Anna C; Resnick, Susan M

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Prior to the publication of findings from the Women's Health Initiative (WHI) in 2002, estrogen-containing hormone therapy (HT) was used to prevent age-related disease, especially cardiovascular disease, and to treat menopausal symptoms such as hot flushes and sleep disruptions. Some observational studies of HT in midlife and aging women suggested that HT might also benefit cognitive function, but randomized clinical trials have produced mixed findings in terms of health and cognitive outcomes. This review focuses on hormone effects on cognition and risk for dementia in naturally menopausal women as well as surgically induced menopause, and highlights findings from the large-scale WHI Memory Study (WHIMS) which, contrary to expectation, showed increased dementia risk and poorer cognitive outcomes in older postmenopausal women randomized to HT versus placebo. We consider the 'critical window hypothesis', which suggests that a window of opportunity may exist shortly after menopause during which estrogen treatments are most effective. In addition, we highlight emerging evidence that potential adverse effects of HT on cognition are most pronounced in women who have other health risks, such as lower global cognition or diabetes. Lastly, we point towards implications for future research and clinical treatments. Published by Elsevier Inc.

  14. Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans

    DEFF Research Database (Denmark)

    Janjua, Nadeem Rezaq; Mogensen, Brian; Andersson, Anna-Maria

    2004-01-01

    reproductive hormone levels in humans after topical application. In this 2-wk single-blinded study 32 healthy volunteers, 15 young males and 17 postmenopausal females, were assigned to daily whole-body topical application of 2 mg per cm(2) of basic cream formulation without (week 1) and with (week 2) the three...... sunscreens at 10% (wt/wt) of each. Maximum plasma concentrations were 200 ng per mL BP-3, 20 ng per mL 4-MBC, and 10 ng per mL OMC for females and 300 ng per mL BP-3, 20 ng per mL 4-MBC, and 20 ng per mL OMC for men. All three sunscreens were detectable in urine. The reproductive hormones FSH, LH were...

  15. Thyroid Hormone Receptor beta Mediates Acute Illness-Induced Alterations in Central Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    Boelen, Anita; Kwakkel, Joan; Chassande, Olivier; Fliers, Eric

    2009-01-01

    Acute illness in mice profoundly affects thyroid hormone metabolism in the hypothalamus and pituitary gland. It remains unknown whether the thyroid hormone receptor (TR)-beta is involved in these changes. In the present study, we investigated central thyroid hormone metabolism during

  16. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH...

  17. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    Science.gov (United States)

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  18. Effect of growth hormone replacement therapy on pituitary hormone secretion and hormone replacement therapies in GHD adults

    DEFF Research Database (Denmark)

    Hubina, Erika; Mersebach, Henriette; Rasmussen, Ase Krogh

    2004-01-01

    We tested the impact of commencement of GH replacement therapy in GH-deficient (GHD) adults on the circulating levels of other anterior pituitary and peripheral hormones and the need for re-evaluation of other hormone replacement therapies, especially the need for dose changes....

  19. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    Science.gov (United States)

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  20. Association of Hormonal Contraception with depression in the postpartum period.

    Science.gov (United States)

    Roberts, Timothy A; Hansen, Shana

    2017-09-01

    Studies have demonstrated an association between hormonal contraception use with subsequent depression and antidepressant use. This association has not been assessed among postpartum women. This study is a secondary analysis of insurance records from 75,528 postpartum women enrolled in the US military medical system, who delivered between October 2012 and September 2014. Our analyses excluded women who used antidepressants or had a diagnosis of depression in the 24months prior to delivery. We assessed the relationship of hormonal contraception use with subsequent antidepressant use or diagnosis with depression in the first 12months postpartum using Cox proportional hazards regression, with a time dependent covariate measuring exposure to hormonal contraception. Antidepressants were prescribed to 7.8% of women and 5.0% were diagnosed with depression. In multivariable analysis adjusting for demographics, both antidepressant use and diagnosis with depression were associated with: younger age, lower socioeconomic status, and a history of military service. Compared to women with no hormonal contraceptive use, use of etonogestrel containing contraception was associated with a higher risk of antidepressant use (Implant: adjHR:1.22(95%CI:1.06-1.41), ppills was associated with a lower risk of antidepressant use (0.58(0.52-0.64), pcontraception used. Further research is required to describe the mechanisms of these relationships. Published by Elsevier Inc.

  1. Possible stimuli for strength and power adaptation: acute hormonal responses.

    Science.gov (United States)

    Crewther, Blair; Keogh, Justin; Cronin, John; Cook, Christian

    2006-01-01

    The endocrine system plays an important role in strength and power development by mediating the remodelling of muscle protein. Resistance training scheme design regulates muscle protein turnover by modifying the anabolic (testosterone, growth hormone) and catabolic (cortisol) responses to a workout. Although resistance exercise increases the concentrations of insulin-like growth factor 1 in blood following exercise, the effect of scheme design is less clear, most likely due to the different release mechanisms of this growth factor (liver vs muscle). Insulin is non-responsive to the exercise stimulus, but in the presence of appropriate nutritional intake, elevated blood insulin levels combined with resistance exercise promotes protein anabolism. Factors such as sex, age, training status and nutrition also impact upon the acute hormonal environment and, hence, the adaptive response to resistance training. However, gaps within research, as well as inconsistent findings, limit our understanding of the endocrine contribution to adaptation. Research interpretation is also difficult due to problems with experimental design (e.g. sampling errors) and various other issues (e.g. hormone rhythms, biological fluid examined). In addition to the hormonal responses to resistance exercise, the contribution of other acute training factors, particularly those relating to the mechanical stimulus (e.g. forces, work, time under tension) must also be appreciated. Enhancing our understanding in these areas would also improve the prescription of resistance training for stimulating strength and power adaptation.

  2. Abnormal Bleeding during Menopause Hormone Therapy: Insights for Clinical Management

    Directory of Open Access Journals (Sweden)

    Sebastião Freitas De Medeiros

    2013-01-01

    Full Text Available Objective Our objective was to review the involved mechanisms and propose actions for controlling/treating abnormal uterine bleeding during climacteric hormone therapy. Methods A systemic search of the databases SciELO, MEDLINE, and Pubmed was performed for identifying relevant publications on normal endometrial bleeding, abnormal uterine bleeding, and hormone therapy bleeding. Results Before starting hormone therapy, it is essential to exclude any abnormal organic condition, identify women at higher risk for bleeding, and adapt the regimen to suit eachwoman's characteristics. Abnormal bleeding with progesterone/progestogen only, combined sequential, or combined continuous regimens may be corrected by changing the progestogen, adjusting the progestogen or estrogen/progestogen doses, or even switching the initial regimen to other formulation. Conclusion To diminish the occurrence of abnormal bleeding during hormone therapy (HT, it is important to tailor the regimen to the needs of individual women and identify those with higher risk of bleeding. The use of new agents as adjuvant therapies for decreasing abnormal bleeding in women on HT awaits future studies.

  3. Glucoregulatory function of thyroid hormones: role of pancreatic hormones

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.J.B.; Burger, A.G.; Ferrannini, E.; Jequier, E.; Acheson, K.J.

    1989-01-01

    Glucose metabolism was investigated in humans before and 14 days after 300 micrograms L-thyroxine (T4)/day using a sequential clamp protocol during short-term somatostatin infusion (500 micrograms/h, 0-6 h) at euglycemia (0-2.5 h), at 165 mg/dl (2.5-6 h), and during insulin infusion (1.0 mU.kg-1.min-1, 4.5-6 h). T4 treatment increased plasma T4 (+96%) and 3,5,3'-triiodothyronine (T3, +50%), energy expenditure (+8%), glucose turnover (+32%), and glucose oxidation (Glucox +87%) but decreased thyroid-stimulating hormone (-96%) and nonoxidative glucose metabolism (Glucnonox, -30%) at unchanged lipid oxidation (Lipox). During somatostatin and euglycemia glucose production (Ra, -67%) and disposal (Rd, -28%) both decreased in euthyroid subjects but remained at -22% and -5%, respectively, after T4 treatment. Glucox (control, -20%; +T4, -25%) fell and Lipox increased (control, +42%; +T4, +45%) in both groups, whereas Glucnonox decreased before (-36%) but increased after T4 (+57%). During somatostatin infusion and hyperglycemia Rd (control, +144%; +T4, +84%) and Glucnonox (control, +326%; +T4, +233%) increased, whereas Glucox and Lipox remained unchanged. Insulin further increased Rd (+76%), Glucox (+155%), and Glucnonox (+50%) but decreased Ra (-43%) and Lipox (-43%). All these effects were enhanced by T4 (Rd, +38%; Glucox, +45%; Glucnonox, +35%; Ra, +40%; Lipox, +11%). Our data provide evidence that, in humans, T3 stimulates Ra and Rd, which is in part independent of pancreatic hormones.

  4. Alternatives for optimal hormone replacement therapy.

    Science.gov (United States)

    Sitruk-Ware, R

    2003-08-01

    To satisfy the needs of women with a wide variety of different medical histories and preferences, a wide choice of various forms of hormone replacement therapy (HRT) is desirable. The potential long-term benefits of HRT, in terms of osteoporosis, cardiovascular disease and dementia, require good compliance, which in turn requires an HRT formulation that is highly acceptable. An absence of weight gain and lack of androgenic effects are of great importance, as are predictable bleeding and positive effects on postmenopausal symptoms and quality of life. HRT should be tailored to each woman's needs by the choice of appropriate estrogens and particularly a progestogen with a suitable pharmacological profile. An ideal progestogen should be targeted at preventing endometrial hyperplasia without opposing the effects of estrogen on the vessels. Several new progestogens have been synthesized in recent years. Dienogest, the progestogenic component of a new hormone replacement therapy with estradiol valerate, has many desirable features, including antiandrogenic properties; in this respect, it is unique amongst progestogens derived from testosterone. Tailored HRT should treat symptoms, minimize risk factors, meet personal preferences and lifestyle needs, and not be contraindicated for concomitant diseases. During the next decade, optimal HRT must match a number of trends, including an aging population, and is likely to be influenced by the outcome of major trials such as the Women's Health Initiative trial whose negative results will impact the prescriptions, the advent of new compounds--particularly the selective estrogen receptor modulators and progestogen receptor modulators--and the introduction of new methods of delivery, including vaginal rings and medicated intrauterine systems.

  5. Thermogenic mechanisms and their hormonal regulation.

    Science.gov (United States)

    Silva, J Enrique

    2006-04-01

    Increased heat generation from biological processes is inherent to homeothermy. Homeothermic species produce more heat from sustaining a more active metabolism as well as from reducing fuel efficiency. This article reviews the mechanisms used by homeothermic species to generate more heat and their regulation largely by thyroid hormone (TH) and the sympathetic nervous system (SNS). Thermogenic mechanisms antecede homeothermy, but in homeothermic species they are activated and regulated. Some of these mechanisms increase ATP utilization (same amount of heat per ATP), whereas others increase the heat resulting from aerobic ATP synthesis (more heat per ATP). Among the former, ATP utilization in the maintenance of ionic gradient through membranes seems quantitatively more important, particularly in birds. Regulated reduction of the proton-motive force to produce heat, originally believed specific to brown adipose tissue, is indeed an ancient thermogenic mechanism. A regulated proton leak has been described in the mitochondria of several tissues, but its precise mechanism remains undefined. This leak is more active in homeothermic species and is regulated by TH, explaining a significant fraction of its thermogenic effect. Homeothermic species generate additional heat, in a facultative manner, when obligatory thermogenesis and heat-saving mechanisms become limiting. Facultative thermogenesis is activated by the SNS but is modulated by TH. The type II iodothyronine deiodinase plays a critical role in modulating the amount of the active TH, T(3), in BAT, thereby modulating the responses to SNS. Other hormones affect thermogenesis in an indirect or permissive manner, providing fuel and modulating thermogenesis depending on food availability, but they do not seem to have a primary role in temperature homeostasis. Thermogenesis has a very high energy cost. Cold adaptation and food availability may have been conflicting selection pressures accounting for the variability of

  6. Monitoring strength training: neuromuscular and hormonal profile.

    Science.gov (United States)

    Bosco, C; Colli, R; Bonomi, R; von Duvillard, S P; Viru, A

    2000-01-01

    This study investigated changes induced by a single heavy resistance training session on neuromuscular and endocrine systems in trained athletes, using the same exercises for training and testing. Five different groups volunteered: track and field male sprinters (MS, N = 6), track and field female sprinters (FS, N = 6), body builders (BB, N = 6), and weight lifters performing low-repetition exercise (WLL, N = 4) and high-repetition exercise (WLH, N = 4). In training, the work performed during half and full squat exercise was monitored for mechanical power output as well as EMG analysis on leg extensor muscles of the subjects belonging to the MS, FS, and BB groups. Just before and immediately after the training session, venous blood samples were obtained for RIA determination of testosterone (T), cortisol (C), lutropin (LH), human prolactin (PRL), and follitropin (FSH) in FS and MS. In the other three groups (BB, WLH, and WLL), the hormonal profile was limited to T and human growth hormone (hGH) only. After training the power developed in full squat demonstrated a statistically significant decrease (P training session. Consequently, the EMG/Power ratio increased in both MS and FS, although only in MS a statistical significance was noted (P < 0.05). In MS immediately after the session the levels of C, T, and LH were significantly lower (P < 0.05). No changes were found in FS. In both groups and in BB significant negative correlation was found between changes in T level and EMG/Power ratio in half squat performance. It is likely that adequate T level may compensate the effect of fatigue in FT fibers by ensuring a better neuromuscular efficiency.

  7. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release.

    Science.gov (United States)

    Steyn, F J

    2015-07-01

    Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand. © 2015 British Society for Neuroendocrinology.

  8. Gender-specific regulation of response to thyroid hormone in aging

    Directory of Open Access Journals (Sweden)

    Suzuki Satoru

    2012-01-01

    Full Text Available Abstract Background Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for the assessment of thyroid hormone action is TSH level. Although age and gender are believed to modify the pituitary set point or response to free thyroid hormone concentration, the precise age- and gender-dependent responses to thyroid hormone have yet to be reported. Methods We analyzed the results of 3564 thyroid function tests obtained from patients who received medication at both out- and inpatient clinics of Shinshu University Hospital. Subjects were from among those with thyroid function test results in the normal or mildly abnormal range. Based on a log-linear relationship between the concentrations of FHs and TSH, we established the putative resistance index to assess the relation between serum FH and TSH levels. Results Free thyroid hormone and TSH concentration showed an inverse log-linear relation. In males, there was a negative relationship between the free T3 resistance index and age. In females, although there were no relationships between age and FHs, the indices were positively related to age. Conclusions These findings indicated that there is a gender-specific response to thyroid hormone with aging. Although the TSH level is a useful marker for the assessment of peripheral thyroid hormone action, the values should be interpreted carefully, especially with regard to age- and gender-related differences.

  9. Steroid hormones and brain development: some guidelines for understanding actions of pseudohormones and other toxic agents

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, B.S.

    1987-10-01

    Gonadal, adrenal, and thyroid hormones affect the brain directly, and the sensitivity to hormones begins in embryonic life with the appearance of hormone receptor sites in discrete populations of neurons. Because the secretion of hormones is also under control by its neural and pituitary targets, the brain-endocrine axis during development is in a delicately balanced state that can be upset in various ways, and any agent that disrupts normal hormone secretion can upset normal brain development. Moreover, exogenous substances that mimic the actions of natural hormones can also play havoc with CNS development and differentiation. This paper addresses these issues in the following order: First, actions of glucocorticoids on the developing nervous system related to cell division dendritic growth and neurotransmitter phenotype will be presented followed by a discussion of the developmental effects of synthetic steroids. Second, actions of estrogens related to brain sexual differentiation will be described, followed by a discussion of the actions of the nonsteroidal estrogen, diethylstilbestrol, as an example of exogenous estrogenic substances. The most important aspect of the potency of exogenous estrogens appears to be the degree to which they either bypass protective mechanisms or are subject to transformations to more active metabolites. Third, agents that influence hormone levels or otherwise modify the neuroendocrine system, such as nicotine, barbiturates, alcohol, opiates, and tetrahydrocannabinol, will be noted briefly to demonstrate the diversity of toxic agents that can influence neural development and affect personality, cognitive ability, and other aspects of behavior. 53 references.

  10. The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors

    Directory of Open Access Journals (Sweden)

    Mi Z

    2014-12-01

    Full Text Available Zhibao Mi,1 Dimitri Novitzky,2 Joseph F Collins,1 David KC Cooper3 1Cooperative Studies Program Coordinating Center, VA Maryland Health Care Systems, Perry Point, MD, USA; 2Department of Cardiothoracic Surgery, University of South Florida, Tampa, FL, USA; 3Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA Abstract: The management of brain-dead organ donors is complex. The use of inotropic agents and replacement of depleted hormones (hormonal replacement therapy is crucial for successful multiple organ procurement, yet the optimal hormonal replacement has not been identified, and the statistical adjustment to determine the best selection is not trivial. Traditional pair-wise comparisons between every pair of treatments, and multiple comparisons to all (MCA, are statistically conservative. Hsu’s multiple comparisons with the best (MCB – adapted from the Dunnett’s multiple comparisons with control (MCC – has been used for selecting the best treatment based on continuous variables. We selected the best hormonal replacement modality for successful multiple organ procurement using a two-step approach. First, we estimated the predicted margins by constructing generalized linear models (GLM or generalized linear mixed models (GLMM, and then we applied the multiple comparison methods to identify the best hormonal replacement modality given that the testing of hormonal replacement modalities is independent. Based on 10-year data from the United Network for Organ Sharing (UNOS, among 16 hormonal replacement modalities, and using the 95% simultaneous confidence intervals, we found that the combination of thyroid hormone, a corticosteroid, antidiuretic hormone, and insulin was the best modality for multiple organ procurement for transplantation. Keywords: best treatment selection, brain-dead organ donors, hormonal replacement, multiple binary endpoints, organ procurement, multiple comparisons

  11. The relationship of appetitive, reproductive and posterior pituitary hormones to alcoholism and craving in humans.

    Science.gov (United States)

    Kenna, George A; Swift, Robert M; Hillemacher, Thomas; Leggio, Lorenzo

    2012-09-01

    A significant challenge for understanding alcoholism lies in discovering why some, but not other individuals, become dependent on alcohol. Genetic, environmental, cultural, developmental, and neurobiological influences are recognized as essential factors underlying a person's risk for becoming alcohol dependent (AD); however, the neurobiological processes that trigger this vulnerability are still poorly understood. Hormones are important in the regulation of many functions and several hormones are strongly associated with alcohol use. While medical consequences are important, the primary focus of this review is on the underlying confluence of appetitive/feeding, reproductive and posterior pituitary hormones associated with distinct phases of alcoholism or assessed by alcohol craving in humans. While these hormones are of diverse origin, the involvement with alcoholism by these hormone systems is unmistakable, and demonstrates the complexity of interactions with alcohol and the difficulty of successfully pursuing effective treatments. Whether alcohol associated changes in the activity of certain hormones are the result of alcohol use or are the result of an underlying predisposition for alcoholism, or a combination of both, is currently of great scientific interest. The evidence we present in this review suggests that appetitive hormones may be markers as they appear involved in alcohol dependence and craving, that reproductive hormones provide an example of the consequences of drinking and are affected by alcohol, and that posterior pituitary hormones have potential for being targets for treatment. A better understanding of the nature of these associations may contribute to diagnosing and more comprehensively treating alcoholism. Pharmacotherapies that take advantage of our new understanding of hormones, their receptors, or their potential relationship to craving may shed light on the treatment of this disorder.

  12. The Relationship of Appetitive, Reproductive and Posterior Pituitary Hormones to Alcoholism and Craving in Humans

    Science.gov (United States)

    Kenna, George A.; Swift, Robert M.; Hillemacher, Thomas; Leggio, Lorenzo

    2012-01-01

    A significant challenge for understanding alcoholism lies in discovering why some, but not other individuals, become dependent on alcohol. Genetic, environmental, cultural, developmental, and neurobiological influences are recognized as essential factors underlying a person's risk for becoming alcohol dependent (AD); however, the neurobiological processes that trigger this vulnerability are still poorly understood. Hormones are important in the regulation of many functions and several hormones are strongly associated with alcohol use. While medical consequences are important, the primary focus of this review is on the underlying confluence of appetitive/feeding, reproductive and posterior pituitary hormones associated with distinct phases of alcoholism or assessed by alcohol craving in humans. While these hormones are of diverse origin, the involvement with alcoholism by these hormone systems is unmistakable, and demonstrates the complexity of interactions with alcohol and the difficulty of successfully pursuing effective treatments. Whether alcohol associated changes in the activity of certain hormones are the result of alcohol use or are the result of an underlying predisposition for alcoholism, or a combination of both, is currently of great scientific interest. The evidence we present in this review suggests that appetitive hormones may be markers as they appear involved in alcohol dependence and craving, that reproductive hormones provide an example of the consequences of drinking and are affected by alcohol, and that posterior pituitary hormones have potential for being targets for treatment. A better understanding of the nature of these associations may contribute to diagnosing and more comprehensively treating alcoholism. Pharmacotherapies that take advantage of our new understanding of hormones, their receptors, or their potential relationship to craving may shed light on the treatment of this disorder. PMID:22772772

  13. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories.

    Directory of Open Access Journals (Sweden)

    Manfred Hallschmid

    Full Text Available Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05. The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05. Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation.

  14. Floral induction, floral hormones and flowering

    NARCIS (Netherlands)

    Pol, van de P.A.

    1972-01-01

    The factors, influencing the synthesis and action of floral hormones, and possible differences between floral hormones in different plants were studied. The experimental results are summarized in the conclusions 1-20, on pages 35-36 (Crassulaceae'); 21-39 on pages

  15. Sweat secretion rates in growth hormone disorders

    DEFF Research Database (Denmark)

    Sneppen, S B; Main, K M; Juul, A

    2000-01-01

    While increased sweating is a prominent symptom in patients with active acromegaly, reduced sweating is gaining status as part of the growth hormone deficiency (GHD) syndrome.......While increased sweating is a prominent symptom in patients with active acromegaly, reduced sweating is gaining status as part of the growth hormone deficiency (GHD) syndrome....

  16. Cloning of partial putative gonadotropin hormone receptor ...

    Indian Academy of Sciences (India)

    Keywords. Glycoprotein hormone receptor; gonadotropin receptor; Labeo rohita; luteinizing hormone receptor; mariner transposon; PCR cloning. Abstract. A search for the presence of mariner-like elements in the Labeo rohita genome by polymerase chain reaction led to the amplification of a partial DNA sequence coding ...

  17. Hormones and absence epilepsy in genetic models

    NARCIS (Netherlands)

    Tolmacheva, E.A.; Luijtelaar, E.L.J.M. van

    2010-01-01

    Steroid hormones are known to have a tremendous impact on seizures and might play a prominent role in epileptogenesis. However, little is known about the role of steroid hormones in absence epilepsy. Here we review recently combined electrophysiological, pharmacological and behavioural studies in a

  18. Review of hormonal treatment of breast cancer

    African Journals Online (AJOL)

    2011-07-28

    Jul 28, 2011 ... cancer, cases of hormone resistance breast cancer have been described recently in the literature. This can happen from the beginning, or during treatment. Therefore, we aim to examine the causes of resistance to hormonal treatment with a view to understand the options of tackling this problem, and ...

  19. Incretin hormones as a target for therapy

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2016-01-01

    Incretin hormones are responsible for the incretin effect, which is the amplification of insulin secretion when nutrients are taken in orally, as opposed to intravenously.......Incretin hormones are responsible for the incretin effect, which is the amplification of insulin secretion when nutrients are taken in orally, as opposed to intravenously....

  20. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  1. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, Nikolaus; Groothuis, Ton G. G.; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  2. Therapy for obesity based on gastrointestinal hormones

    DEFF Research Database (Denmark)

    Bagger, Jonatan I; Christensen, Mikkel; Knop, Filip K

    2011-01-01

    It has long been known that peptide hormones from the gastrointestinal tract have significant impact on the regulation of nutrient metabolism. Among these hormones, incretins have been found to increase insulin secretion, and thus incretin-based therapies have emerged as new modalities...

  3. Relationship between Thyroid Hormone levels and Hyperthyroid ...

    African Journals Online (AJOL)

    12 (80%) had Graves disease while 3 (20%) had toxic multinodular goiter. All subjects had elevated thyroid hormones and Waynes score but HSS was normal in 6 940%) patients. WS corrected positively with HSS (r=0.66, p<0.05). There was no significant correlation between both parameters and thyroid hormone levels.

  4. Menstrual cycle hormones, food intake, and cravings

    Science.gov (United States)

    Objective: Food craving and intake are affected by steroid hormones during the menstrual cycle, especially in the luteal phase, when craving for certain foods has been reported to increase. However, satiety hormones such as leptin have also been shown to affect taste sensitivity, and therefore food ...

  5. The barrier within: endothelial transport of hormones.

    Science.gov (United States)

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  6. Recombinant Bovine Growth Hormone Criticism Grows.

    Science.gov (United States)

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  7. Maintaining euthyroidism: fundamentals of thyroid hormone ...

    African Journals Online (AJOL)

    Thyroid-related pathologies, especially subclinical and clinical hypothyroidism, are commonly described in clinical practice. While illnesses related to aberrant thyroid hormone homeostasis are the most prevalent endocrinological conditions diagnosed, important aspects related to thyroid hormone physiology are often ...

  8. Hormonal regulation of wheat growth during hydroponic culture

    Science.gov (United States)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  9. Non-hormonal management of vasomotor symptoms.

    Science.gov (United States)

    Sassarini, J; Lumsden, M A

    2013-08-01

    Vasomotor symptoms are the most common indication for the prescription of hormone replacement therapy since it is effective in over 80% of cases. In 1995, 37% of American women took hormone replacement therapy, principally for this purpose. However, following the publication of results from the Women's Health Initiative, as many as half of these women in the US and in the UK and New Zealand discontinued hormone therapy. Discontinuation of estrogen is often accompanied by a return of vasomotor symptoms; however, only a small number (18%) of women report restarting hormone therapy. Alternatives are available, but limited knowledge on etiology and mechanisms of hot flushing represents a major obstacle for the development of new, targeted, non-hormonal treatments, and no current alternatives are as effective as estrogen.

  10. Sex hormones and skeletal muscle weakness

    DEFF Research Database (Denmark)

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael

    2013-01-01

    Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia...... and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss...... properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal...

  11. Postmenopausal hormone replacement therapy--clinical implications

    DEFF Research Database (Denmark)

    Ravn, S H; Rosenberg, J; Bostofte, E

    1994-01-01

    . This review is based on the English-language literature on the effect of estrogen therapy and estrogen plus progestin therapy on postmenopausal women. The advantages of hormone replacement therapy are regulation of dysfunctional uterine bleeding, relief of hot flushes, and prevention of atrophic changes......The menopause is defined as cessation of menstruation, ending the fertile period. The hormonal changes are a decrease in progesterone level, followed by a marked decrease in estrogen production. Symptoms associated with these hormonal changes may advocate for hormonal replacement therapy...... in the urogenital tract. Women at risk of osteoporosis will benefit from hormone replacement therapy. The treatment should start as soon after menopause as possible and it is possible that it should be maintained for life. The treatment may be supplemented with extra calcium intake, vitamin D, and maybe calcitonin...

  12. Hormone therapy and different ovarian cancers

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    Postmenopausal hormone therapy use increases the risk of ovarian cancer. In the present study, the authors examined the risks of different histologic types of ovarian cancer associated with hormone therapy. Using Danish national registers, the authors identified 909,946 women who were followed from...... 1995-2005. The women were 50-79 years of age and had no prior hormone-sensitive cancers or bilateral oophorectomy. Hormone therapy prescription data were obtained from the National Register of Medicinal Product Statistics. The National Cancer and Pathology Register provided data on ovarian cancers......, including information about tumor histology. The authors performed Poisson regression analyses that included hormone exposures and confounders as time-dependent covariates. In an average of 8.0 years of follow up, 2,681 cases of epithelial ovarian cancer were detected. Compared with never users, women...

  13. Hormone therapy and different ovarian cancers

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    1995-2005. The women were 50-79 years of age and had no prior hormone-sensitive cancers or bilateral oophorectomy. Hormone therapy prescription data were obtained from the National Register of Medicinal Product Statistics. The National Cancer and Pathology Register provided data on ovarian cancers......Postmenopausal hormone therapy use increases the risk of ovarian cancer. In the present study, the authors examined the risks of different histologic types of ovarian cancer associated with hormone therapy. Using Danish national registers, the authors identified 909,946 women who were followed from......, including information about tumor histology. The authors performed Poisson regression analyses that included hormone exposures and confounders as time-dependent covariates. In an average of 8.0 years of follow up, 2,681 cases of epithelial ovarian cancer were detected. Compared with never users, women...

  14. Sexual Desire and Hormonal Contraception.

    Science.gov (United States)

    Boozalis, Amanda; Tutlam, Nhial T; Chrisman Robbins, Camaryn; Peipert, Jeffrey F

    2016-03-01

    To examine the effect of hormonal contraception on sexual desire. We performed a cross-sectional analysis of 1,938 of the 9,256 participants enrolled in the Contraceptive CHOICE Project. This subset included participants enrolled between April and September 2011 who completed a baseline and 6-month telephone survey. Multivariable logistic regression was used to assess the association between contraceptive method and report of lacking interest in sex controlling for potential confounding variables. More than 1 in 5 participants (23.9%) reported lacking interest in sex at 6 months after initiating a new contraceptive method. Of 262 copper intrauterine device (IUD) users (referent group), 18.3% reported lacking interest in sex. Our primary outcome was more prevalent in women who were young (younger than 18 years: adjusted odds ratio [OR] 2.04), black (adjusted OR 1.78), and married or living with a partner (adjusted OR 1.82). Compared with copper IUD users, participants using depot medroxyprogesterone (adjusted OR 2.61, 95% confidence interval [CI] 1.47-4.61), the vaginal ring (adjusted OR 2.53, 95% CI 1.37-4.69), and the implant (adjusted OR 1.60, 95% CI 1.03-2.49) more commonly reported lack of interest in sex. We found no association between use of the hormonal IUD, oral contraceptive pill, and patch and lack of interest in sex. CHOICE participants using depot medroxyprogesterone acetate, the contraceptive ring, and implant were more likely to report a lack of interest in sex compared with copper IUD users. Future research should confirm these findings and their possible physiologic basis. Clinicians should be reassured that most women do not experience a reduced sex drive with the use of most contraceptive methods.

  15. Hypophysectomy abolishes rhythms in rat thyroid hormones but not in the thyroid clock

    DEFF Research Database (Denmark)

    Fahrenkrug, J; Georg, B; Hannibal, J

    2017-01-01

    The endocrine body rhythms including the hypothalamic-pituitary-thyroid axis seem to be regulated by the circadian timing system, and daily rhythmicity of circulating thyroid-stimulating hormone (TSH) is well established. The circadian rhythms are generated by endogenous clocks in the central brain...... in circulating thyroid hormones were abolished and the levels were markedly lowered. No daily oscillations in the expression of TSH receptor mRNA were observed in neither control rats nor hypophysectomised rats. Our findings indicate that the daily rhythm of thyroid hormone secretion is governed by SCN...

  16. Temporal changes in cardiac function and cerebral blood flow during sequential postmenopausal hormone replacement

    DEFF Research Database (Denmark)

    Sørensen, M B; Fritz-Hansen, T; Jensen, H H

    2001-01-01

    and placebo in two 12-week periods. Temporal changes were measured by magnetic resonance flow mapping 8 times. RESULTS: Systemic vascular resistance was reduced during estradiol (-6.9%; P ... (maximum increase, 5.2%; P hormone replacement therapy (-37 mL/min; P =.01) but increased to baseline after...... the addition of norethindrone acetate. CONCLUSIONS: Sequential hormone replacement therapy is associated with changes in cardiac function, which are of therapeutic potential in cardiovascular disorders. Sequential hormone replacement therapy exhibits an overall neutral effect on cerebral blood flow....

  17. Hormone Replacement Therapy: Can It Cause Vaginal Bleeding?

    Science.gov (United States)

    Hormone replacement therapy: Can it cause vaginal bleeding? I'm taking hormone therapy for menopause symptoms, and my monthly ... www.mayoclinic.org/diseases-conditions/menopause/expert-answers/hormone-replacement-therapy/FAQ-20058499 . Mayo Clinic Footer Legal Conditions and ...

  18. Physical examination prior to initiating hormonal contraception: a systematic review.

    Science.gov (United States)

    Tepper, Naomi K; Curtis, Kathryn M; Steenland, Maria W; Marchbanks, Polly A

    2013-05-01

    Provision of contraception is often linked with physical examination, including clinical breast examination (CBE) and pelvic examination. This review was conducted to evaluate the evidence regarding outcomes among women with and without physical examination prior to initiating hormonal contraceptives. The PubMed database was searched from database inception through March 2012 for all peer-reviewed articles in any language concerning CBE and pelvic examination prior to initiating hormonal contraceptives. The quality of each study was assessed using the United States Preventive Services Task Force grading system. The search did not identify any evidence regarding outcomes among women screened versus not screened with CBE prior to initiation of hormonal contraceptives. The search identified two case-control studies of fair quality which compared women who did or did not undergo pelvic examination prior to initiating oral contraceptives (OCs) or depot medroxyprogesterone acetate (DMPA). No differences in risk factors for cervical neoplasia, incidence of sexually transmitted infections, incidence of abnormal Pap smears or incidence of abnormal wet mount findings were observed. Although women with breast cancer should not use hormonal contraceptives, there is little utility in screening prior to initiation, due to the low incidence of breast cancer and uncertain value of CBE among women of reproductive age. Two fair quality studies demonstrated no differences between women who did or did not undergo pelvic examination prior to initiating OCs or DMPA with respect to risk factors or clinical outcomes. In addition, pelvic examination is not likely to detect any conditions for which hormonal contraceptives would be unsafe. Published by Elsevier Inc.

  19. Degradation of estrogenic hormones in a silt loam soil.

    Science.gov (United States)

    Xuan, Richeng; Blassengale, Alma A; Wang, Qiquan

    2008-10-08

    Estrogenic hormones are endocrine-disrupting compounds, which disrupt the endocrine system function of animals and humans by mimicking and/or antagonizing endogenous hormones. With the application of sludge biosolid and animal manure as alternative fertilizers in agricultural lands, estrogens enter the soil and become an environmental concern. The degradation kinetics of 17beta-estradiol, an estrogenic hormone of major concern, in a silt loam soil were investigated in this study. It was found that 17beta-estradiol degraded rapidly in nonsterilized soil with a half-life of 0.17 day. The degradation rate constant was proportional to the percentage of nonsterilized soil, indicating that microorganisms are directly responsible for the rapid degradation of 17beta-estradiol in soil. The half-life of 17beta-estradiol in 20% nonsterilized soil was slightly shortened from 1.3 to 0.69 day with the increase of soil moisture from 10 to 20% and was greatly decreased from 4.9 to 0.92 day with the increase of temperature from 15 to 25 degrees C. The coexistence of 40 micromol kg (-1) sulfadimethoxine, a veterinary antibiotic, decreased the degradation rate constant of 17beta-estradiol from 0.750 +/- 0.038 to 0.492 +/- 0.016 day (-1). The degradation kinetics of another three estrogenic hormones, including 17alpha-estradiol, estrone, and estriol, were also investigated and compared. Estrone was identified as a degradation product of 17beta-estradiol and the most persistent hormone among the four investigated estrogens. Estriol was observed in the degradation of estrone and 17alpha-estradiol.

  20. Receptors for thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormones in the macaque uterus: effects of long-term sex hormone treatment.

    Science.gov (United States)

    Hulchiy, Mariana; Zhang, Hua; Cline, J Mark; Hirschberg, Angelica Lindén; Sahlin, Lena

    2012-11-01

    Thyroid gland dysfunction is associated with menstrual cycle disturbances, infertility, and increased risk of miscarriage, but the mechanisms are poorly understood. However, little is known about the regulation of these receptors in the uterus. The aim of this study was to determine the effects of long-term treatment with steroid hormones on the expression, distribution, and regulation of the receptors for thyrotropin-releasing hormone (TRHR) and thyroid-stimulating hormone (TSHR), thyroid hormone receptor α1/α2 (THRα1/α2), and THRβ1 in the uterus of surgically menopausal monkeys. Eighty-eight cynomolgus macaques were ovariectomized and treated orally with conjugated equine estrogens (CEE; n = 20), a combination of CEE and medroxyprogesterone acetate (MPA; n = 20), or tibolone (n = 28) for 2 years. The control group (OvxC; n = 20) received no treatment. Immunohistochemistry was used to evaluate the protein expression and distribution of the receptors in luminal epithelium, glands, stroma, and myometrium of the uterus. Immunostaining of TRHR, TSHR, and THRs was detected in all uterine compartments. Epithelial immunostaining of TRHR was down-regulated in the CEE + MPA group, whereas in stroma, both TRHR and TSHR were increased by CEE + MPA treatment as compared with OvxC. TRHR immunoreactivity was up-regulated, but THRα and THRβ were down-regulated, in the myometrium of the CEE and CEE + MPA groups. The thyroid-stimulating hormone level was higher in the CEE and tibolone groups as compared with OvxC, but the level of free thyroxin did not differ between groups. All receptors involved in thyroid hormone function are expressed in monkey uterus, and they are all regulated by long-term steroid hormone treatment. These findings suggest that there is a possibility of direct actions of thyroid hormones, thyroid-stimulating hormone and thyrotropin-releasing hormone on uterine function.

  1. Nondaily hormonal contraception: considerations in contraceptive choice and patient counseling.

    Science.gov (United States)

    Freeman, Sarah

    2004-06-01

    To review currently available choices for non-daily hormonal contraception, considering efficacy, safety, patient counseling issues, and appropriate patient selection. Worldwide medical literature and the individual products' prescribing information. Patients and clinicians have many nondaily hormonal contraceptive options available--from Depo-Provera quarterly injection, which has been available in the United States for over 10 years, to several new entries (Mirena 5-year intrauterine system, Lunelle monthly injection, NuvaRing monthly intravaginal ring, and Ortho Evra weekly transdermal patch). All these options offer high efficacy and enhanced convenience for many patients over daily oral contraceptives (OCs). Barriers to use of these agents may include patients' lack of information as well as fear or misconceptions regarding the hormones and methods. All of these can be addressed with adequate patient counseling and open dialogue. The clinician and patient need to be well-informed regarding these options so that they can work together and identify the best contraceptive fit for the patient---with the ultimate goal being to increase patient satisfaction and adherence and, thus, avoid unintended pregnancy. Despite the efficacy of OCs, missed pills are quite common and contribute to unintended pregnancy. Many women in all population categories would benefit from the convenience and reliability of nondaily hormonal contraceptives. The highest efficacy rates with typical use are associated with agents that require minimal user participation (i.e., Depo-Provera, Mirena). Compared to daily regimens, all nondaily options offer increased convenience and may contribute to improved patient adherence. However, barriers to use may exist. Patient fears regarding use of hormones can be minimized by discussing the long-term safety of hormonal contraceptives. (The data are predominantly derived from Depo-Provera and OCs because these agents have been available in the United

  2. Breast Milk Hormones and Regulation of Glucose Homeostasis

    OpenAIRE

    Francesco Savino; Stefania Alfonsina Liguori; Miriam Sorrenti; Maria Francesca Fissore; Roberto Oggero

    2011-01-01

    Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin...

  3. Sozzy: a hormone-driven autonomous vacuum cleaner

    Science.gov (United States)

    Yamamoto, Masaki

    1994-02-01

    Domestic robots are promising examples of the application of robotics to personal life. There have been many approaches in this field, but no successful results exist. The problem is that domestic environments are more difficult for robots than other environments, such as factory floors or office floors. Consequently, conventional approaches using a model of human intelligence to design robots have not been successful. In this paper, we report on a prototyped domestic vacuum-cleaning robot that is designed to be able to handle complex environments. The control software is composed of two layers, both of which are generally inspired by behaviors of living creatures. The first layer corresponds to a dynamically reconfigurable system of behaviors implemented in the subsumption architecture. The ability of the robot to support alternate configurations of its behaviors provides the robot with increased robustness. We have conveniently labeled particular configurations as specific `emotions' according to the interpretation of observers of the robot's behavior. The second layer simulates the hormone system. The hormone system is modeled using state variables, increased or decreased by stimuli from the environment. The hormone condition selects the robot's most suitable emotion, according to the changing environments. The robot hardware is built of off-the-shelf parts, such as an embedded CPU, inexpensive home-appliance sensors, and small motors. These parts keep the total building cost to a minimum. The robot also has a vacuum cleaning function to demonstrate its capability to perform useful tasks. We tested the robot in our laboratory, and successfully videotaped its robust behaviors. We also confirmed the hormone system to enhance the robot's plasticity and lifelike quality.

  4. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  5. Endocrine disorders in pregnancy: physiological and hormonal aspects of pregnancy.

    Science.gov (United States)

    Feldt-Rasmussen, Ulla; Mathiesen, Elisabeth R

    2011-12-01

    The endocrinology of pregnancy involves endocrine and metabolic changes as a consequence of physiological alterations at the foetoplacental boundary between mother and foetus. The vast changes in maternal hormones and their binding proteins complicate assessment of the normal level of most hormones during gestation. The neuroendocrine events and their timing in the placental, foetal and maternal compartments are critical for initiation and maintenance of pregnancy, for foetal growth and development, and for parturition. As pregnancy advances, the relative number of trophoblasts increase and the foeto-maternal exchange begins to be dominated by secretory function of the placenta. As gestation progresses toward term, the number of cytotrophoblasts again declines and the remaining syncytial layer becomes thin and barely visible. This arrangement facilitates transport of compounds including hormones and their precursors across the foeto-maternal interface. The endocrine system is the earliest system developing in foetal life, and it is functional from early intrauterine existence through old age. Regulation of the foetal endocrine system relies, to some extent, on precursors secreted by placenta and/or mother. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Leptin hormone in obese and non-obese stable and exacerbated cases of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Ahmad Elsayed Mahmoud

    2015-07-01

    Conclusion: Serum leptin hormone level (ng/ml was significantly higher in obese COPD cases than in controls and non-obese cases and during exacerbation than in stability which indicates that leptin plays a role in the systemic inflammatory process. Serum leptin hormone level positively correlated with BMI (kg/m2.

  7. Simultaneous analysis of fourteen endogenous steroid hormones by liquid chromatography tandem mass spectrometry with atmospheric pressure photoionization

    Science.gov (United States)

    Product Description: To understand how some chemicals affect the endocrine system, controlled lab experiments often monitor how chemicals impact natural steroid hormones in fish. Current methods can target only one or two hormones in a single sample, limiting the information that...

  8. HORMONE THERAPY WITH USAGE OF AGONISTS AND ANTAGONISTS OF LUTEINIZING HORMONE RELEASING HORMONE IN PATIENTS WITH PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    K. M. Nyushko

    2014-01-01

    Full Text Available Prostate cancer (PC is one of the most actual problems of modern oncourology. Hormone therapy (HT using medical castration is the main method of treatment of patients with metastatic PC. HT with usage of the new class of drugs that block the receptors for luteinizing hormone releasing hormone (LHRH is a promising and effective method of castration therapy that has a number of significant advantages over the use of analogues LHRH. This article presents areview of studies that compared the effectiveness and side effects of HT using antagonists and analogues LHRH.

  9. Investigation of the serum levels of anterior pituitary hormones in male children with autism

    OpenAIRE

    Iwata Keiko; Matsuzaki Hideo; Miyachi Taishi; Shimmura Chie; Suda Shiro; Tsuchiya Kenji J; Matsumoto Kaori; Suzuki Katsuaki; Iwata Yasuhide; Nakamura Kazuhiko; Tsujii Masatsugu; Sugiyama Toshirou; Sato Kohji; Mori Norio

    2011-01-01

    Abstract Background The neurobiological basis of autism remains poorly understood. The diagnosis of autism is based solely on behavioural characteristics because there are currently no reliable biological markers. To test whether the anterior pituitary hormones and cortisol could be useful as biological markers for autism, we assessed the basal serum levels of these hormones in subjects with autism and normal controls. Findings Using a suspension array system, we determined the serum levels o...

  10. Thyroxine and thyroid stimulating hormone levels in under-five severe malnourished children

    OpenAIRE

    Shelvi H. Tamzil; Ryadi Fadil; Diet S. Rustama; Melinda D. Nataprawira

    2016-01-01

    Background In Indonesia, protein energy malnutrition (PEM) in children is still a health problem. Malnourished children will have growth and development disruption, which is not only caused by nutritional factor, but might be associated with endocrine system, such as thyroid hormone metabolism. Hypothyroidism or thyroid hypofunction could be happened in malnourished children. Objective The purpose of this study was to assess thyroxine (T4) and thyroid stimulating hormone ...

  11. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants.

    Science.gov (United States)

    Smékalová, Veronika; Doskočilová, Anna; Komis, George; Samaj, Jozef

    2014-01-01

    The crosstalk between second messengers, hormones and mitogen-activated protein kinases (MAPKs) in plant signalling systems facilitates adaptation and survival in the face of diverse environmental stresses. This review focuses on the transduction of second messenger and hormone signals by MAPK modules in plant abiotic stress responses. We discuss how this crosstalk regulates gene expression (e.g. by controlling transcription factor activity) and other cellular and physiological responses to enable adaptation and/or resistance to abiotic stresses. © 2013.

  12. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Bendtzen, Klaus; Tønnesen, Else Kirstine

    2008-01-01

    with the other groups (Psaline before hysterectomy appears to have limited effect on the postoperative concentration of selected plasma cytokines and the hormonal stress......BACKGROUND: Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery. METHODS: Sixty-two women undergoing abdominal hysterectomy were randomized...

  13. Corticotropin?releasing hormone improves survival in pneumococcal pneumonia by reducing pulmonary inflammation

    OpenAIRE

    Burnley, Brittney; P. Jones, Harlan

    2017-01-01

    Abstract The use of glucocorticoids to reduce inflammatory responses is largely based on the knowledge of the physiological action of the endogenous glucocorticoid, cortisol. Corticotropin?releasing hormone (CRH) is a neuropeptide released from the hypothalamic?pituitary?adrenal axis of the central nervous system. This hormone serves as an important mediator of adaptive physiological responses to stress. In addition to its role in inducing downstream cortisol release that in turn regulates im...

  14. Pituitary hormone circadian rhythm alterations in cirrhosis patients with subclinical hepatic encephalopathy.

    Science.gov (United States)

    Velissaris, Dimitrios; Karanikolas, Menelaos; Kalogeropoulos, Andreas; Solomou, Ekaterini; Polychronopoulos, Panagiotis; Thomopoulos, Konstantinos; Labropoulou-Karatza, Chrissoula

    2008-07-14

    To analyze pituitary hormone and melatonin circadian rhythms, and to correlate hormonal alterations with clinical performance, hepatic disease severity and diagnostic tests used for the detection of hepatic encephalopathy in cirrhosis. Twenty-six patients with cirrhosis were enrolled in the study. Thirteen patients hospitalized for systemic diseases not affecting the liver were included as controls. Liver disease severity was assessed by the Child-Pugh score. All patients underwent detailed neurological assessment, electroencephalogram (EEG), brain magnetic resonance imaging (MRI), assays of pituitary hormone, cortisol and melatonin, and complete blood chemistry evaluation. Pituitary hormone and melatonin circadian patterns were altered in cirrhosis patients without clinical encephalopathy. Circadian hormone alterations were different in cirrhosis patients compared with controls. Although cortisol secretion was not altered in any patient with cirrhosis, the basal cortisol levels were low and correlated with EEG and brain MRI abnormalities. Melatonin was the only hormone associated with the severity of liver insufficiency. Abnormal pituitary hormone and melatonin circadian patterns are present in cirrhosis before the development of hepatic encephalopathy. These abnormalities may be early indicators of impending hepatic encephalopathy. Factors affecting the human biologic clock at the early stages of liver insufficiency require further study.

  15. Hormonal and developmental influences on adolescent suicide: a systematic review.

    Science.gov (United States)

    Manceaux, Pauline; Jacques, Denis; Zdanowicz, Nicolas

    2015-09-01

    Teen suicide is a major public health problem. In the United States, it is the third cause of death among the 10-24 year olds. Adolescence involves numerous changes, whether physical, social, emotional or hormonal. At a neurobiological level, a teenager's nervous system is also affected and undergoes significant modifications. We conducted a systematic review of electronic literature published between January 1990 and August 2014 via MEDLINE, PubMED and PsychINFO to list articles concerning the risk of teen depression and suicide risks in adolescents as well as those relating to the adolescent's neuro-anatomical brain and the effect that puberty has on it. When analyzing the various studies, it is clear that all support the idea that adolescence is a special period, both at neuroanatomical and biological levels. The risk of impulsiveness and depression is explained, anatomically, by a faster maturation of the limbic system, and biologically, by a higher sensitivity of the serotoninergic system and to glucocorticoids, which themselves are influenced by the specific hormonal environment during this period. Moreover and above all, adolescence is a vulnerable time for many reasons: physical, hormonal, social, cognitive, and emotional changes, self-development, etc. We should not restrict it to structural neurological changes without taking into account the other factors or compartmentalize young people into a reductive model based on determinism. Adolescence is a time of change, transformation, and adaptation. The hormonal events that occur during this period have significant effects on brain development, neuro-cerebral chemistry, adolescent behavior and risks of depression. It is important to try to prevent suicide and depression in adolescents considering its entirety and complexity but also by paying attention to neuro-biological factors even if, at present, many research projects are currently underway to develop an appropriate drug therapy strategy.

  16. Perioperative Management of Female Hormone Medications.

    Science.gov (United States)

    Seim, Lynsey A; Irizarry-Alvarado, Joan M

    2017-09-26

    No clear guideline exists for the management of female hormone therapy in the perioperative period. Besides oral contraceptives (OCPs), hormone medications have been prescribed to treat cancer, osteoporosis, and menopausal symptoms. Since the introduction of OCPs in the 1960s, the thromboembolic risk associated with these medications has been studied and alterations have been made in the hormone content. The continuation of hormone therapy in the perioperative period and its possible interactions with commonly used anesthetic agents are important information for all perioperative health care providers. A review was done on the current guideline and available literature for the mechanisms of action and perioperative management of OCPs, hormone replacement therapy (HRT), and antineoplastic hormonal modulators. Available guidelines and literature were reviewed and summarized. Based on the available literature, no definite guidelines have been established for perioperative management of OCPs and HRT. However, manufacturers have recommended that these medications should be held perioperatively. Other antineoplastic hormonal modulators have increased the risk of venous thromboembolism and have perioperative implications that should be discussed with the prescribing physicians and addressed with the patient. Until additional studies are performed, the risks and benefits must be weighed on an individual basis with consideration of prophylaxis when a decision is made to continue these medications in the perioperative period. Part of this decision making includes the risk of fetal harm in an unwanted pregnancy in preparation for nonobstetric surgery versus an increased risk of venous thromboembolism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Effects of hormones on lipids and lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  18. Hormonal Factors and Disturbances in Eating Disorders.

    Science.gov (United States)

    Culbert, Kristen M; Racine, Sarah E; Klump, Kelly L

    2016-07-01

    This review summarizes the current state of the literature regarding hormonal correlates of, and etiologic influences on, eating pathology. Several hormones (e.g., ghrelin, CCK, GLP-1, PYY, leptin, oxytocin, cortisol) are disrupted during the ill state of eating disorders and likely contribute to the maintenance of core symptoms (e.g., dietary restriction, binge eating) and/or co-occurring features (e.g., mood symptoms, attentional biases). Some of these hormones (e.g., ghrelin, cortisol) may also be related to eating pathology via links with psychological stress. Despite these effects, the role of hormonal factors in the etiology of eating disorders remains unknown. The strongest evidence for etiologic effects has emerged for ovarian hormones, as changes in ovarian hormones predict changes in phenotypic and genetic influences on disordered eating. Future studies would benefit from utilizing etiologically informative designs (e.g., high risk, behavioral genetic) and continuing to explore factors (e.g., psychological, neural responsivity) that may impact hormonal influences on eating pathology.

  19. Oxytocin is a cardiovascular hormone

    Directory of Open Access Journals (Sweden)

    Gutkowska J.

    2000-01-01

    Full Text Available Oxytocin (OT, a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP, a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels

  20. Parathyroid hormone binding to cultured avian osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Teti, A.; Rizzoli, R.; Zambonin Zallone, A. (Univ. of Bari (Italy))

    1991-02-14

    Parathyroid hormone (PTH) increases serum calcium concentration via a controversial cellular mechanism. We investigated whether PTH binds avian osteoclasts. Isolated hypocalcaemic hen osteoclasts were incubated with ({sup 125}I)--bovine PTH (1-84). Specific binding of the hormone to the cells, which reached the equilibrium within 60 min, was observed. Half maximal binding was reached by 10 min. Binding was competitively inhibited by increasing doses of unlabeled PTH, and was about 55% displaced by adding, at the equilibrium, 10(-6) M unlabeled PTH. Autoradiography demonstrated specific label on the osteoclast. The cellular mechanism activated by the hormone remains to be elucidated.