WorldWideScience

Sample records for adipokinetic hormone receptors

  1. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J. D.; Cazzamali, Giuseppe;

    2002-01-01

    The insect adipokinetic hormones (AKHs) are a large family of peptide hormones that are involved in the mobilization of sugar and lipids from the insect fat body during energy-requiring activities such as flight and locomotion, but that also contribute to hemolymph sugar homeostasis. Here, we have...... identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and......, therefore, to a better understanding of AKH heterogeneity and actions. Interestingly, the insect AKH receptors are structurally and evolutionarily related to the gonadotropin-releasing hormone receptors from vertebrates....

  2. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.;

    2016-01-01

    the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin...

  3. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana

    DEFF Research Database (Denmark)

    Hansen, Karina K; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta...

  4. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.;

    2016-01-01

    and in Lophotrochozoa. Furthermore, we have cloned and deorphanized two G protein-coupled receptors (GPCRs) from the oyster Crassostrea gigas (Mollusca) that are activated by low nanomolar concentrations of oyster AKH (pQVSFSTNWGSamide). Our discovery of functional AKH receptors in molluscs is especially significant...

  5. Localization and functional characterization of a novel adipokinetic hormone in the mollusk, Aplysia californica.

    Directory of Open Access Journals (Sweden)

    Joshua I Johnson

    Full Text Available Increasing evidence suggests that gonadotropin-releasing hormone (GnRH, corazonin, adipokinetic hormone (AKH, and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates.

  6. Localization and Functional Characterization of a Novel Adipokinetic Hormone in the Mollusk, Aplysia californica

    Science.gov (United States)

    Johnson, Joshua I.; Kavanaugh, Scott I.; Nguyen, Cindy; Tsai, Pei-San

    2014-01-01

    Increasing evidence suggests that gonadotropin-releasing hormone (GnRH), corazonin, adipokinetic hormone (AKH), and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates. PMID:25162698

  7. Novel members of the adipokinetic hormone family in beetles of the superfamily Scarabaeoidea.

    Science.gov (United States)

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2016-12-01

    Eight beetle species of the superfamily Scarabaeoidea were investigated with respect to peptides belonging to the adipokinetic hormone (AKH) family in their neurohemal organs, the corpora cardiaca (CC). The following beetle families are represented: Scarabaeidae, Lucanidae, and Geotrupidae. AKH peptides were identified through a heterospecific trehalose-mobilizing bioassay and by sequence analyses, using liquid chromatography coupled to positive electrospray mass spectrometry (LC-ESI-MS) and analysis of the tandem MS(2) spectra obtained by collision-induced dissociation. All the beetle species have octapeptide AKHs; some have two AKHs, while others have only one. Novel AKH members were found in Euoniticellus intermedius and Circellium bacchus (family Scarabaeidae), as well as in Dorcus parallelipipedus (family Lucanidae). Two species of the family Geotrupidae and two species of the Scarabaeidae subfamily Cetoniinae contain one known AKH peptide, Melme-CC, while E. intermedius produces a novel peptide code named Euoin-AKH: pEINFTTGWamide. Two AKH peptides were each identified in CC of C. bacchus and D. parallelipipedus: the novel Cirba-AKH: pEFNFSAGWamide and the known peptide, Scade-CC-I in the former, and the novel Dorpa-AKH: pEVNYSPVW amide and the known peptide, Melme-CC in the latter. Kheper bonelli (subfamily Scarabaeinae) also has two AKHs, the known Scade-CC-I and Scade-CC-II. All the novel peptides were synthesized and the amino acid sequence assignments were unequivocally confirmed by co-elution of the synthetic peptides with their natural equivalent, and identical MS parameters of the two forms. The novel synthetic peptides are all active in inducing hypertrehalosemia in cockroaches.

  8. Hormone receptors in breast cancer

    NARCIS (Netherlands)

    Suijkerbuijk, K. P M; van der Wall, E.; van Diest, P. J.

    2016-01-01

    Steroid hormone receptors are critical for the growth and development of breast tissue as well as of breast cancer. The importance of the role estrogens in breast cancer has been delineated for more than 100 years. The analysis of its expression has been used not only to classify breast cancers but

  9. Nuclear hormone receptors in podocytes

    Directory of Open Access Journals (Sweden)

    Khurana Simran

    2012-09-01

    Full Text Available Abstract Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.

  10. Genetic features of thyroid hormone receptors

    Indian Academy of Sciences (India)

    Maha Rebaï; Imen Kallel; Ahmed Rebaï

    2012-12-01

    Thyroid hormone receptors (TR) are prototypes of nuclear transcription factors that regulate the expression of target genes. These receptors play an important role in many physiological processes. Moreover, a dysfunction of these proteins is often implicated in several human diseases and malignancies. Here we report genetic variations and alterations of the TRs that have been described in the literature as well as their potential role in the development of some human diseases including cancers. The functional effects of some mutations and polymorphisms in TRs on disease susceptibility, especially on cancer risk, are now established. Therefore, further investigations are needed in order to use these receptors as therapeutic targets or as biological markers to decide on appropriate forms of treatment.

  11. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    Science.gov (United States)

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  12. Nuclear hormone receptors put immunity on sterols.

    Science.gov (United States)

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  13. Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status : a large prospective cohort study

    NARCIS (Netherlands)

    Ritte, Rebecca; Lukanova, Annekatrin; Berrino, Franco; Dossus, Laure; Tjonneland, Anne; Olsen, Anja; Overvad, Thure Filskov; Overvad, Kim; Clavel-Chapelon, Francoise; Fournier, Agnes; Fagherazzi, Guy; Rohrmann, Sabine; Teucher, Birgit; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Tumino, Rosario; Vineis, Paolo; Ramon Quiros, Jose; Buckland, Genevieve; Sanchez, Maria-Jose; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Sund, Malin; Lenner, Per; Bueno-de-Mesquita, Bas; van Gils, Carla H.; Peeters, Petra H. M.; Krum-Hansen, Sanda; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E.; Key, Timothy J.; Romieu, Isabelle; Rinaldi, Sabina; Siddiq, Afshan; Cox, David; Riboli, Elio; Kaaks, Rudolf

    2012-01-01

    Introduction: Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement

  14. In vitro studies on hormone-stimulated lipid mobilization from fat body and interconversion of haemolymph lipoproteins of Locusta migratoria

    NARCIS (Netherlands)

    Horst, D.J. van der; Heusden, M.C. van; Beenakkers, A.M.Th.

    1984-01-01

    Both adipokinetic hormone and octopamine have a stimulating effect on lipid release from locust fat body in vitro, when incubated in diluted haemolymph. The presence of adipokinetic hormone results in the formation of the flight-specific haemolymph lipoprotein A⁺ accepting the increased amount of li

  15. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  16. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel)

    2008-01-01

    textabstractThe luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein ho

  17. Thyroid Hormone Receptor beta Mediates Acute Illness-Induced Alterations in Central Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    A. Boelen; J. Kwakkel; O. Chassande; E. Fliers

    2009-01-01

    Acute illness in mice profoundly affects thyroid hormone metabolism in the hypothalamus and pituitary gland. It remains unknown whether the thyroid hormone receptor (TR)-beta is involved in these changes. In the present study, we investigated central thyroid hormone metabolism during lipopolysacchar

  18. Luteinizing hormone-releasing hormone receptor antagonist may reduce postmenopausal flushing

    NARCIS (Netherlands)

    Gastel, P. van; Zanden, M. van der; Telting, D.; Filius, M.; Bancsi, L.; Boer, H. de

    2012-01-01

    OBJECTIVE: Hormone therapy (HT) is the most effective treatment of postmenopausal (PMP) flushing; however, its use is often contraindicated. As an alternative option, we explored the efficacy of the luteinizing hormone-releasing hormone (LHRH) receptor antagonist cetrorelix in women with severe PMP

  19. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  20. Multiple exportins influence thyroid hormone receptor localization.

    Science.gov (United States)

    Subramanian, Kelly S; Dziedzic, Rose C; Nelson, Hallie N; Stern, Mary E; Roggero, Vincent R; Bondzi, Cornelius; Allison, Lizabeth A

    2015-08-15

    The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted toward the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function.

  1. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    Science.gov (United States)

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  2. Introduction to the general principles of hormone-receptor interactions.

    Science.gov (United States)

    Levey, G S; Robinson, A G

    1982-07-01

    This review presents a concise overview of the historical development of receptor theory and the molecular mechanisms of action of the three broad classes of hormones, steroids, tyrosine derivatives, and polypeptides. Key terms required for understanding the basic terminology and concepts currently utilized in membrane receptor research are defined. The basic information should enable the reader to critically assess and understand more detailed discussions of hormone-receptor interactions and their application to clinical medicine.

  3. Fast evolution of growth hormone receptor in primates and ruminants

    Institute of Scientific and Technical Information of China (English)

    HOU Zhenfang; LI Ying; ZHANG Yaping

    2005-01-01

    Pituitary growth hormone (GH) evolves very slowly in most of mammals, but the evolutionary rates appear to have increased markedly on two occasions during the evolution of primates and ruminants. To investigate the evolutionary pattern of growth hormone receptor (GHR), we sequenced the extracellular domain of GHR genes from four primate species. Our results suggested that GHR in mammal also shows an episodic evolutionary pattern, which is consistent with that observed in pituitary growth hormone. Further analysis suggested that this pattern of rapid evolution observed in primates and ruminants is likely the result of coevolution between pituitary growth hormone and its receptor.

  4. The reciprocal regulation of stress hormones and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Istvan eMody

    2012-01-01

    Full Text Available Stress-derived steroid hormones regulate the expression and function of GABAA receptors (GABAARs. Changes in GABAAR subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABAAR subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABAARs. Neurosteroids allosterically modulate GABAARs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABAARs, GABAARs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA axis, the activity of which is governed by corticotropin releasing hormone (CRH neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABAAR δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABAAR δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABAARs as well as the importance of GABAARs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABAARs following stress and the role in HPA axis regulation.

  5. Coherence between biosynthesis, storage, and release of adipokinetic hormones

    NARCIS (Netherlands)

    Harthoorn, Leunis Forrinus

    2002-01-01

    In insects, specific parts of the retrocerebral complex are essential for homeostatic control in response to changes in both internal and external environments. Neuroendocrine cells in the glandular part of the coprus cardiacum of Locusta migratoria represent the site of synthesis and release of thr

  6. Cloning of partial putative gonadotropin hormone receptor sequence from fish

    Indian Academy of Sciences (India)

    G Kumaresan; T Venugopal; A Vikas; T J Pandian; S M Athavan

    2000-03-01

    A search for the presence of mariner-like elements in the Labeo rohita genome by polymerase chain reaction led to the amplification of a partial DNA sequence coding for a putative transmembrane domain of gonadotropin hormone receptor. The amplified DNA sequence shows a high degree of homology to the available turkey and human luteinizing and follicle stimulating hormone receptor coding sequences. This is the first report on cloning such sequences of piscine origin.

  7. Thyroid Hormone Receptor alpha Modulates Lipopolysaccharide-Induced Changes in Peripheral Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    J. Kwakkel; O. Chassande; H.C. van Beeren; E. Fliers; W.M. Wiersinga; A. Boelen

    2010-01-01

    Acute inflammation is characterized by low serum T-3 and T-4 levels accompanied by changes in liver type 1 deiodinase (D1), liver D3, muscle D2, and muscle D3 expression. It is unknown at present whether thyroid hormone receptor alpha (TR alpha) plays a role in altered peripheral thyroid hormone met

  8. Adrenergic receptor control mechanism for growth hormone secretion.

    Science.gov (United States)

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  9. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  10. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    Science.gov (United States)

    2016-10-04

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  11. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia

    DEFF Research Database (Denmark)

    Hauser, Frank; Grimmelikhuijzen, Cornelis

    2014-01-01

    In this review we trace the evolutionary connections between GnRH receptors from vertebrates and the receptors for adipokinetic hormone (AKH), AKH/corazonin-related peptide (ACP), and corazonin from arthropods. We conclude that these G protein-coupled receptors (GPCRs) are closely related and have...... limpet Lottia gigantea (pQIHFSPTWGSamide), the oyster Crassostrea gigas (pQVSFSTNWGSamide), and the freshwater pearl mussel Hyriopsis cumingii (pQISFSTNWGSamide). We also found AKHs in the tardigrade Hysibius dujardini (pQLSFTGWGHamide), the rotifer Brachionus calycifloros (p...

  12. Diverse growth hormone receptor gene mutations in Laron syndrome.

    OpenAIRE

    Berg, M.A.; Argente, J.; Chernausek, S; Gracia, R.; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo,S.P.; Francke, U.

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR g...

  13. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  14. [Effects of steroid hormones on nicotinic acetylcholine receptor channel kinetics].

    Science.gov (United States)

    Nurowska, E; Dworakowska, B; Dołowy, K

    2000-01-01

    Classically steroid hormones acts through genomic mechanism. In the last period there is more evidence that some steroid hormones exert fast (in order of seconds) effects on membrane receptors. In the presented work we analysed the effects of some steroid hormones on muscle acetylcholine receptor (AChR) channel kinetics. We divided steroid hormone on two groups which exert different effects. The first group including hydrocortisone (HC), corticosterone (COR), dexamethasone decrease the mean open time increasing the number of openings in bursts. The effects do not depend on agonist concentration. Some effects of HC and COR are voltage-dependent. The mechanism of such voltage dependent action caused by steroids hormones that are uncharged molecules, is unknown. Some experiments suggest however that an agonist molecule is involved in the mechanism of steroid action. The second group consists of progesterone, some of its derivatives and deoxycorticosterone. For this group the most evident effect was decrease in the probability of openings without a decrease in the mean open time. The effect depends on agonist concentration, suggesting an involvement of an agonist molecule in the mechanism. For this hormones an involvement of an charged agonist molecule does not however induce a voltage dependency. Most probably two groups of steroids acts on different part of the AChR. The localization of a steroid action site can be crucial for inducing voltage dependency.

  15. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook;

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and...

  16. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...

  17. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    Science.gov (United States)

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  18. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    Directory of Open Access Journals (Sweden)

    Yue Yin

    2014-03-01

    Full Text Available The growth hormone secretagogue receptor (GHSR, also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed.

  19. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  20. Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection.

    Science.gov (United States)

    Bendo, Luana; Casanova, Monise; Figueira, Ana Carolina M; Polikarpov, Igor; Zucolotto, Valtencir

    2014-05-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptors (NRs) superfamily, being encoded by two genes: TRa and TRbeta. In this paper, the ligand-binding domain (LBD) of the TRbeta1 isoform was immobilized on the surface of nanostructured electrodes for TR detection. The platforms containing TRbeta1-LBD were applied to the detection of specific ligand agonists, including the natural hormones T3 (triiodothyronine) and T4 (thyroxine), and the synthetic agonists TRIAC (3,5,3'-triiodothyroacetic acid) and GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl phenoxy) acetic acid]. Detection was performed via impedance spectroscopy. The biosensors were capable of distinguishing between the thyroid hormones T3 and T4, and/or the analogues TRIAC and GC-1 at concentrations as low as 50 nM. The detection and separation of thyroid hormones and analogue ligands by impedance techniques represents an innovative tool in the field of nanomedicine because it allows the design of inexpensive devices for the rapid and real-time detection of distinct ligand/receptor systems.

  1. Resistance to Thyroid Hormone due to defective thyroid receptor alpha

    OpenAIRE

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.beem.2015.07.007 Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, ...

  2. Thyroid hormones and thyroid hormone receptors: Effects of thyromimetics on reverse cholesterol transport

    Institute of Scientific and Technical Information of China (English)

    Matteo; Pedrelli; Camilla; Pramfalk; Paolo; Parini

    2010-01-01

    Reverse cholesterol transport (RCT) is a complex process which transfers cholesterol from peripheral cells to the liver for subsequent elimination from the body via feces. Thyroid hormones (THs) affect growth, develop- ment, and metabolism in almost all tissues. THs exert their actions by binding to thyroid hormone receptors (TRs). There are two major subtypes of TRs, TRα and TRβ, and several isoforms (e.g. TRα1, TRα2, TRβ1, and TRβ2). Activation of TRα1 affects heart rate, whereas activation of TRβ1 has po...

  3. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  4. Immunohistochemical localization of sex hormone receptors in two Raillietina tapeworms.

    Science.gov (United States)

    Chen, L; Sun, Y M; Mu, L; Zeng, Y; Li, H Y; Yang, T H

    2017-03-08

    Sex hormone receptors play critical roles in development and reproduction. However, it is not known whether they exist in Raillietina tapeworms, and if they do, whether they have a similar function to that in vertebrates. We examined the immunohistochemical distributions of androgen receptors (ARs), estrogen receptors (ERs), and progesterone receptors (PRs) in the tissues of two tapeworm species: Raillietina echinobothrida and Raillietina tetragona. Immunopositive ARs were found in the entire reproductive system of R. echinobothrida, including the testes, ovaries, and oocysts, and weakly immunopositive ERs and PRs were found in the testes, ovaries, and oocysts. Immunopositive ARs were also found throughout the entire reproductive system of R. tetragona, including the testes, ovaries, and oocysts, and weakly immunopositive ERs were in the testes and oocysts; the PRs were distributed in an immunonegative manner. The results show that androgens and their receptors play critical roles in reproductive system development in the two tapeworms. The immunoreactivity and tissue localizations of the sex hormone receptors suggest that, in both species, they have similar functions as in vertebrates, and modulate reproduction.

  5. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  6. Osteopontin negatively regulates parathyroid hormone receptor signaling in osteoblasts.

    Science.gov (United States)

    Ono, Noriaki; Nakashima, Kazuhisa; Rittling, Susan R; Schipani, Ernestina; Hayata, Tadayoshi; Soma, Kunimichi; Denhardt, David T; Kronenberg, Henry M; Ezura, Yoichi; Noda, Masaki

    2008-07-11

    Systemic hormonal control exerts its effect through the regulation of local target tissues, which in turn regulate upstream signals in a feedback loop. The parathyroid hormone (PTH) axis is a well defined hormonal signaling system that regulates calcium levels and bone metabolism. To understand the interplay between systemic and local signaling in bone, we examined the effects of deficiency of the bone matrix protein osteopontin (OPN) on the systemic effects of PTH specifically within osteoblastic cell lineages. Parathyroid hormone receptor (PPR) transgenic mice expressing a constitutively active form of the receptor (caPPR) specifically in cells of the osteoblast lineage have a high bone mass phenotype. In these mice, OPN deficiency further increased bone mass. This increase was associated with conversion of the major intertrabecular cell population from hematopoietic cells to stromal/osteoblastic cells and parallel elevations in histomorphometric and biochemical parameters of bone formation and resorption. Treatment with small interfering RNA (siRNA) for osteopontin enhanced H223R mutant caPPR-induced cAMP-response element (CRE) activity levels by about 10-fold. Thus, in addition to the well known calcemic feedback system for PTH, local feedback regulation by the bone matrix protein OPN also plays a significant role in the regulation of PTH actions.

  7. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  8. Genetic models for the study of luteinizing hormone receptor function

    Directory of Open Access Journals (Sweden)

    Prema eNarayan

    2015-09-01

    Full Text Available The luteinizing hormone/chorionic gonadotropin receptor, LHCGR, is essential for fertility in men and women. LHCGR binds luteinizing hormone (LH as well as the highly homologous chorionic gonadotropin (CG. Signaling from LHCGR is required for steroidogenesis and gametogenesis in males and females and for sexual differentiation in the male. The importance of LHCGR in reproductive physiology is underscored by the large number of naturally occurring inactivating and activating mutations in the receptor that result in reproductive disorders. Consequently, several genetically modified mouse models have been developed for the study of LHCGR function. They include targeted deletion of LH and LHCGR that mimic inactivating mutations in hormone and receptor, expression of a constitutively active mutant in LHCGR that mimics activating mutations associated with familial male-limited precocious puberty and transgenic models of LH and hCG overexpression. This review summarizes the salient findings from these models and their utility in understanding the physiological and pathological consequences of loss and gain of function in LHCGR signaling.

  9. NCBI nr-aa BLAST: CBRC-CBRI-01-0008 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRI-01-0008 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 4e-46 34% ...

  10. NCBI nr-aa BLAST: CBRC-AGAM-02-0026 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0026 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 5e-71 44% ...

  11. NCBI nr-aa BLAST: CBRC-CBRE-01-1475 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CBRE-01-1475 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 2e-29 32% ...

  12. NCBI nr-aa BLAST: CBRC-AGAM-02-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-02-0058 ref|NP_001076809.1| adipokinetic hormone receptor [Tribolium cast...aneum] gb|ABE02225.1| adipokinetic hormone receptor [Tribolium castaneum] gb|ABN79650.1| adipokinetic hormone receptor [Tribolium castaneum] NP_001076809.1 1e-112 60% ...

  13. Expression of luteinizing hormone receptors in the mouse penis.

    Science.gov (United States)

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  14. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M.; Ishii, S. (Waseda Univ., Tokyo (Japan))

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  15. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Petersen, Elisabeth D.; Nielsen, Jens Høiriis

    1993-01-01

    of islet cells to these hormones is regulated on the receptor level, GH and PRL receptor gene expression was studied in pancreata from male rats and virgin, pregnant, and lactating female rats and in cultured islets and insulinoma cells (RIN-5AH) in response to various hormones. The mRNA levels were...... quantitated by ribonuclease protection assay, using probes specific for mRNA encoding, extracellular and intracellular domains of the GH receptor, and short and long forms of the PRL receptor, respectively. Specific transcripts for the GH receptor were present in pancreas, islets, and RIN-5AH cells...

  16. Androgen receptor gene mutations in hormone-refractory prostate cancer.

    Science.gov (United States)

    Wallén, M J; Linja, M; Kaartinen, K; Schleutker, J; Visakorpi, T

    1999-12-01

    Prostate cancer is considered to be one of the most hormone-dependent human malignancies. As a key mediator of hormonal response, the androgen receptor (AR) is believed to have an important role in the progression of prostate cancer. Mutations in the coding region of the AR gene have been found in both untreated and hormone-refractory prostate cancer, but the frequency of such mutations at different stages of the disease is poorly documented and even contradictory results have been published. In the present study, the frequency of AR gene mutations was determined in 30 locally recurrent and two metastatic hormone-refractory prostate tumours using the polymerase chain reaction (PCR), non-radioactive single strand conformation polymorphism (SSCP), and sequencing. The length of the polymorphic CAG repeat, which is inversely correlated with the ability of the AR to activate transcription, was also analysed as well as the GGC repeat. Twelve samples were known to contain an AR gene amplification. Altogether, one point mutation (Gly(674)-->Ala) and one microsatellite mutation (CAG(20)-->CAG(18)) were found, both in cancers containing the AR gene amplification. The mean lengths of the polymorphic CAG and GGC repeats were similar to those observed in the normal population. These results favour the view that mutations in the AR gene are rare in hormone-refractory prostate cancer and do not play an important role, at least, in local relapse. Instead, the amplification and consequent overexpression of the wild-type AR gene seem to be the most common alteration involving the AR in hormone-refractory prostate cancer.

  17. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne;

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  18. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    Many signaling pathways initiated by ligands that activate receptor tyrosine kinases have been shown to involve the binding of SH2 domain-containing proteins to specific phosphorylated tyrosines in the receptor. Although the receptor for growth hormone (GH) does not contain intrinsic tyrosine...

  19. Discovery & development of small molecule allosteric modulators of glycoprotein hormone receptors

    Directory of Open Access Journals (Sweden)

    Selvaraj G Nataraja

    2015-09-01

    Full Text Available Glycoprotein hormones, follicle-stimulating hormone (FSH, luteinizing hormone (LH, and thyroid stimulating hormone (TSH are heterodimeric proteins with a common subunit and hormone-specific subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G-protein coupled receptors (GPCR. FSH receptor (FSHR and LH receptor (LHR are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women & men respectively. TSH receptor (TSHR is expressed in thyroid cells and regulates the secretion of T3 & T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSH receptor and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical

  20. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Science.gov (United States)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  1. Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals

    DEFF Research Database (Denmark)

    Hauser, F; Nothacker, H P; Grimmelikhuijzen, C J

    1997-01-01

    Using oligonucleotide probes derived from consensus sequences for glycoprotein hormone receptors, we have cloned an 831-amino acid residue-long receptor from Drosophila melanogaster that shows a striking structural homology with members of the glycoprotein hormone (thyroid-stimulating hormone (TSH...... until after pupation. Adult male flies express high levels of receptor mRNA, but female flies express about 6 times less. The expression pattern in embryos and larvae suggests that the receptor is involved in insect development. This is the first report on the molecular cloning of a glycoprotein hormone...

  2. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Directory of Open Access Journals (Sweden)

    Geeta N Eick

    Full Text Available Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs, a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of

  3. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Science.gov (United States)

    Eick, Geeta N; Colucci, Jennifer K; Harms, Michael J; Ortlund, Eric A; Thornton, Joseph W

    2012-01-01

    Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs), a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of selection within real

  4. Influence of estrogen receptor alpha and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density.

    NARCIS (Netherlands)

    Duijnhoven, F.J.B. van; Peeters, P.H.; Warren, R.M.; Bingham, S.; Uitterlinden, A.G.; Noord, P.A.H. van; Monninkhof, E.M.; Grobbee, D.E.; Gils, C.H. van

    2006-01-01

    Postmenopausal hormone therapy increases mammographic density, a strong breast cancer risk factor, but effects vary across women. We investigated whether the effect of hormone therapy use is modified by polymorphisms in the estrogen receptor (ESR1) and progesterone receptor (PGR) genes in the Dutch

  5. The androgen receptor in hormone-refractory prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Hai-Lei Mao; Zhi-Qi Zhu; Charlie Degui Chen

    2009-01-01

    Advanced prostate cancer is responsive to hormone therapy that interferes with androgen receptor (AR) signalling.However,the effect is short-lived,as nearly all tumours progress to a hormone-refractory (HR) state,a lethal stage of the disease.Intuitively,the AR should not be involved because hormone therapy that blocks or reduces AR activity is not effective in treating HR turnouts.However,there is still a consensus that AR plays an essential role in HR prostate cancer (HRPC) because AR signalling is still functional in HR tumours.AR signalling can be activated in HR turnouts through several mechanisms.First,activation of intracellular signal transduction pathways can sensitize the AR to castrate levels of androgens.Also,mutations in the AR can change AR ligand specificity,thereby allowing it to be activated by non-steroids or anti-androgens.Finally,overexpression of the wild-type AR sensitizes itself to low concentrations of androgens.Therefore,drugs targeting AR signalling could still be effective in treating HRPC.

  6. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  7. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P;

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected...

  8. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors.

  9. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N;

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels ...

  10. The SOCS2 Ubiquitin Ligase Complex Regulates Growth Hormone Receptor Levels

    DEFF Research Database (Denmark)

    Vesterlund, Mattias; Zadjali, Fahad; Persson, Torbjörn

    2011-01-01

    Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness...

  11. Unsaturated fatty acids prevent desensitization of the human growth hormone secretagogue receptor by blocking its internalization

    NARCIS (Netherlands)

    P.J.D. Delhanty (Patric); A. Kerkwijk (Anke); M. Huisman (Martijn); B. van de Zande (Bedette); M. Verhoef-Post (Miriam); C. Gauna (Carlotta); L.J. Hofland (Leo); A.P.N. Themmen (Axel); A-J. van der Lely (Aart-Jan)

    2010-01-01

    textabstractThe composition of the plasma membrane affects the responsiveness of cells to metabolically important hormones such as insulin and vasoactive intestinal peptide. Ghrelin is a metabolically regulated hormone that activates the G protein-coupled receptor GH secretagogue receptor type 1a (G

  12. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Science.gov (United States)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  13. Reconstruction of HaSNPV with helicoverpa hormone receptor 3

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to develop a more efficient virus for controlling the cotton bollworm Helicoverpa armigera,Helicoverpa hormone receptor 3 (HHR3), which is involved in the ecdysteroid regulatory pathway, was used to genetically modify wild HaSNPV. HaSNPV-HHR3 budded virus and occlusion body virus were constructed in three steps: preparation of pFastBacHaPhpP10-HHR3 donor plasmid, transposition of HHR3 into the HaBacHZ8 bacmid, and transfection of HzAM1 cells to get HaSNPV-HHR3 virus. HHR3was proved to be expressed in the HaSNPV-HHR3 virus infected HzAM1 cells by immunoblotting. Results of bioassay indicated that the body weight of the HaSNPV-HHR3 infected larvae was lower than the larvae infected with wild virus and uninfected normal larvae, which suggests that HaSNPV-HHR3 delayed larval growth.

  14. Diverse growth hormone receptor gene mutations in Laron syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.A.; Francke, U. (Stanford Univ. School of Medicine, CA (United States)); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. (Univ. Autonoma, Madrid (Spain)); Chernausek, S. (Children' s Hospital Medical Center, Cincinnati, OH (United States)); Guevara-Aguirre, J. (Institute of Endocrinology, Metabolism, and Reproduction, Quito (Ecuador)); Hopp, M. (Univ. of Witwatersrand, Johannesburg (South Africa)); Rosenbloom, A.; Argente, J. (Univ. of Florida, Gainesville (United States)); Toledo, S.P.A. (Univ. of Sao Paulo (Brazil))

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  15. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  16. Dual activities of odorants on olfactory and nuclear hormone receptors.

    Science.gov (United States)

    Pick, Horst; Etter, Sylvain; Baud, Olivia; Schmauder, Ralf; Bordoli, Lorenza; Schwede, Torsten; Vogel, Horst

    2009-10-30

    We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.

  17. Panbo-Red Pigment Concentration Hormone u \\kur{Porcellio scaber} (stínka obecná)

    OpenAIRE

    ZRALÁ, Jana

    2007-01-01

    The Panbo-RPCH, one member of the AKH/RPCH (Adipokinetic Hormone/Red Pigment Concentrating Hormone) family, has been isolated from the rought woodlouse, Porcellio scaber CNS. The HPLC, ELISA and LC/MS analyses were used for characterization of the molecule. The peptide enhances lipid mobilization when injected into the red bug Pyrrhocoris apterus body with maximum response of 10 pmol.

  18. SIRTUIN 1 (SIRT1) AND STEROID HORMONE RECEPTOR ACTIVITY IN CANCER

    Science.gov (United States)

    Moore, R.L.; Dai, Y.; Faller, D.V.

    2013-01-01

    Sirtuins, which are class III NAD-dependent histone deacetylases (HDACs) that regulate a number of physiological processes, play important roles in the regulation of metabolism, aging, oncogenesis and cancer progression. More recently, a role for the sirtuins in the regulation of steroid hormone receptor signaling is emerging. In this mini-review, we will summarize current research into the regulation of estrogen, androgen, progesterone, mineralocorticoid and glucocorticoid signaling by sirtuins in cancer. Sirtuins can regulate steroid hormone signaling through a variety of molecular mechanisms, including acting as co-regulatory transcription factors, deacetylating histones in the promoters of genes with nuclear receptor binding sites, directly deacetylating steroid hormone nuclear receptors, and regulating pathways which modify steroid hormone receptors through phosphorylation. Furthermore, disruption of sirtuin activity may be an important step in the development of steroid hormone-refractory cancers. PMID:22159506

  19. Hormonal regulation in insects: facts, gaps, and future directions.

    Science.gov (United States)

    Gäde, G; Hoffmann, K H; Spring, J H

    1997-10-01

    There are two main classes of hormones in insects: 1) the true hormones produced by epithelial glands and belonging to the ecdysteroids or juvenile hormones and 2) the neuropeptide hormones produced by neurosecretory cells. Members of these classes regulate physiological, developmental, and behavioral events in insects. Detailed accounts are given on isolation, identification, structure-activity relationships, mode of action, biological function, biosynthesis, inactivation, metabolism, and feedback for hormones involved in 1) metabolic regulation such as the adipokinetic/hypertrehalosemic peptides and the diuretic and antidiuretic peptides; 2) stimulation or inhibition of muscle activity such as the myotropic peptides; 3) control of reproduction, growth, and development such as allatotropins, allatostatins, juvenile hormones, ecdysteroids, folliculostimulins and folliculostatins, ecdysis-triggering and eclosion hormones, pheromone biosynthesis activating neuropeptides, and diapause hormones; and 4) regulation of tanning and of color change. Because of the improvements in techniques for isolation and structure elucidation, there has been rapid progress in our knowledge of the chemistry of certain neuropeptide families. With the employment of molecular biological techniques, the genes of some neuropeptides have been successfully characterized. There are, however, areas that are still quite underdeveloped. These are, for example, 1) receptor studies, which are still in their infancy; 2) the hormonal status of certain sequenced peptides is not clarified; and 3) functional studies are lacking even for established hormones. The authors plead for a concerted effort to continue research in this field, which will also advance our knowledge into the use of insect hormones as safer and species-specific molecules for insect pest management.

  20. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis.

    Science.gov (United States)

    Barnard, Joanna C; Williams, Allan J; Rabier, Bénédicte; Chassande, Olivier; Samarut, Jacques; Cheng, Sheue-Yann; Bassett, J H Duncan; Williams, Graham R

    2005-12-01

    Childhood hypothyroidism causes growth arrest with delayed ossification and growth-plate dysgenesis, whereas thyrotoxicosis accelerates ossification and growth. Thyroid hormone (T(3)) regulates chondrocyte proliferation and is essential for hypertrophic differentiation. Fibroblast growth factors (FGFs) are also important regulators of chondrocyte proliferation and differentiation, and activating mutations of FGF receptor-3 (FGFR3) cause achondroplasia. We investigated the hypothesis that T(3) regulates chondrogenesis via FGFR3 in ATDC5 cells, which undergo a defined program of chondrogenesis. ATDC5 cells expressed two FGFR1, four FGFR2, and one FGFR3 mRNA splice variants throughout chondrogenesis, and expression of each isoform was stimulated by T(3) during the first 6-12 d of culture, when T(3) inhibited proliferation by 50%. FGFR3 expression was also increased in cells treated with T(3) for 21 d, when T(3) induced an earlier onset of hypertrophic differentiation and collagen X expression. FGFR3 expression was reduced in growth plates from T(3) receptor alpha-null mice, which exhibit skeletal hypothyroidism, but was increased in T(3) receptor beta(PV/PV) mice, which display skeletal thyrotoxicosis. These findings indicate that FGFR3 is a T(3)-target gene in chondrocytes. In further experiments, T(3) enhanced FGF2 and FGF18 activation of the MAPK-signaling pathway but inhibited their activation of signal transducer and activator of transcription-1. FGF9 did not activate MAPK or signal transducer and activator of transcription-1 pathways in the absence or presence of T(3). Thus, T(3) exerted differing effects on FGFR activation during chondrogenesis depending on which FGF ligand stimulated the FGFR and which downstream signaling pathway was activated. These studies identify novel interactions between T(3) and FGFs that regulate chondrocyte proliferation and differentiation during chondrogenesis.

  1. Dexamethasone increases growth hormone (GH)-releasing hormone (GRH) receptor mRNA levels in cultured rat anterior pituitary cells.

    Science.gov (United States)

    Tamaki, M; Sato, M; Matsubara, S; Wada, Y; Takahara, J

    1996-06-01

    To examine the effects of glucocorticoid (GC) on growth hormone (GH)-releasing hormone (GRH) receptor gene expression, a highly-sensitive and quantitative reverse-transcribed polymerase chain reaction (RT-PCR) method was used in this study. Rat anterior pituitary cells were isolated and cultured for 4 days. The cultured cells were treated with dexamethasone for 2, 6, and 24 h. GRH receptor mRNA levels were determined by competitive RT-PCR using a recombinant RNA as the competitor. Dexamethasone significantly increased GRH receptor mRNA levels at 5 nM after 6- and 24 h-incubations, and the maximal effect was found at 25 nM. The GC receptor-specific antagonist, RU 38486 completely eliminated the dexamethasone-induced enhancement of GRH receptor mRNA levels. Dexamethasone did not alter the mRNA levels of beta-actin and prolactin at 5 nM for 24 h, whereas GH mRNA levels were significantly increased by the same treatment. The GH response to GRH was significantly enhanced by the 24-h incubation with 5 nM dexamethasone. These findings suggest that GC stimulates GRH receptor gene expression through the ligand-activated GC receptors in the rat somatotrophs. The direct effects of GC on the GRH receptor gene could explain the enhancement of GRH-induced GH secretion.

  2. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    Science.gov (United States)

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region.

  3. Structure determination of adipokinetic hormones using fast atom bombardment tandem mass spectrometry; An unknown adipokinetic hormone (AKH-III) from Locusta migratoria

    Energy Technology Data Exchange (ETDEWEB)

    Heerma, W.; Versluis, C.; Lankhof, H. (Utrecht University (Netherlands). Faculty of Chemistry, Department of Analytical Molecular Spectrometry); Oudejans, R.C.H.M.; Kooiman, F.P.; Beenakkers, A.M.T. (Utrecht University (Netherlands). Department of Experimental Zoology)

    1991-08-01

    Fast atom bombardment mass spectrometry combined with various tandem mass spectrometric techniques and accurate mass measurement were used to elucidate the structure of an unknown biologically active peptide isolated from Locusa migratoria. (author). 23 refs.; 6 figs.; 2 schemes.

  4. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.

    2012-01-01

    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  5. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  6. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    Science.gov (United States)

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  7. Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export*

    OpenAIRE

    Mavinakere, Manohara S.; Powers, Jeremy M.; Subramanian, Kelly S.; Roggero, Vincent R.; Allison, Lizabeth A.

    2012-01-01

    Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we ...

  8. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues.

    Science.gov (United States)

    Matsubara, S; Sato, M; Mizobuchi, M; Niimi, M; Takahara, J

    1995-09-01

    Growth hormone (GH)-releasing hormone (GRH) acts on specific receptors in the anterior pituitary to stimulate the synthesis and release of GH. Recent reports suggest that GRH is also synthesized in extrahypothalamic tissues. To evaluate the potential roles of extrahypothalamic GRH, we studied the gene expression of GRH and GRH receptors in various rat tissues by reverse transcribed (RT)-polymerase chain reaction (PCR). Total RNA was extracted from twenty-three rat organs and RT-PCR was performed with GRH and GRH receptor primers. Highly-sensitive RT-PCR-Southern blotting showed that GRH and GRH receptor mRNA coexist in the widespread tissues (14 of 25 tissues). GRH mRNA was relatively abundant in the cerebral cortex, brain stem, testis, and placenta, while GRH receptor mRNA was abundant in renal medulla and renal pelvis. Northern blot hybridization using poly A+ RNA indicated that the transcript of GRH receptor gene found in the renal medulla was similar to the longer transcript (about 4 Kb) of pituitary GRH receptor in the size. These results suggest that GRH plays a potential role not only in the neuroendocrine axis, but also in the autocrine and paracrine systems in extrahypothalamic tissues.

  9. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2012-06-01

    Full Text Available Honey bees (Apis mellifera provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses usually feed the brood and other adult bees inside the nest, while older bees (foragers forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg and juvenile hormone (JH. However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1, the adipokinetic hormone receptor (AKHR, and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor. Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH, and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  10. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    DEFF Research Database (Denmark)

    Billestrup, N; Allevato, G; Norstedt, G

    1994-01-01

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated...... a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to mediate GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH...

  11. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  12. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    Most neuropeptide and protein hormone receptors belong to the large superfamily of G-protein-coupled receptors (GPCRs). These cell membrane proteins steer many important processes such as development, reproduction, homeostasis and behaviour when activated by their corresponding ligands. The first...... insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...

  13. Aberrant Monoaminergic System in Thyroid Hormone Receptor-β Deficient Mice as a Model of Attention-Deficit/Hyperactivity Disorder

    OpenAIRE

    Ookubo, Masanori; Sadamatsu, Miyuki; Yoshimura, Atsushi; SUZUKI, Satoru; Kato, Nobumasa; Kojima, Hideto; Yamada, Naoto; Kanai, Hirohiko

    2015-01-01

    Background: Thyroid hormone receptors are divided into 2 functional types: TRα and TRβ. Thyroid hormone receptors play pivotal roles in the developing brain, and disruption of thyroid hormone receptors can produce permanent behavioral abnormality in animal models and humans. Methods: Here we examined behavioralchanges, regional monoamine metabolism, and expression of epigenetic modulatory proteins, including acetylated histone H3 and histone deacetylase, in the developing brain of TRα-disrupt...

  14. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  15. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M

    1998-01-01

    Abstract Cnidarians (e.g., sea anemones and corals) are the lowest animal group having a nervous system. Previously, we cloned a receptor from sea anemones that showed a strong structural similarity to the glycoprotein hormone (TSH, FSH, LH/CG) receptors from mammals. Here, we determine the genomic...... organization of this sea anemone receptor. The receptor gene contains eight introns that are all localized within a region coding for the large extracellular N terminus. These introns occur at the same positions and have the same intron phasing as eight introns in the genes coding for the mammalian...

  16. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A;

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated...

  17. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    Science.gov (United States)

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  18. Thyroid hormone regulation of brain gene expression: role of thyroid hormone receptors

    OpenAIRE

    Gil-Ibáñez, Pilar

    2014-01-01

    Tesis doctoral inédita, leída en la Universidad Autónoma de Madrid. Facultad de Medicina. Departamento de Bioquímica. Fecha de lectura: 13 de junio, 2014 Thyroid hormones are important during development of the mammalian brain. They are involved in neuronal and glial cell differentiation and migration, axonal myelination, and synaptogenesis. The effects of thyroid hormones on brain development ...

  19. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  20. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  1. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  2. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Billestrup, N.; Moeldrup, A.; Serup, P.; Nielsen, J.H. (Hagedorn Research Lab., Gentofte (Denmark)); Mathews, L.S.; Norstedt, G. (Karolinska Inst., Huddinge (Sweden))

    1990-09-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 {mu}M Zn{sup 2+} was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells.

  3. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  4. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC Uncovers Potential Novel Drivers of Hormonal Resistance.

    Directory of Open Access Journals (Sweden)

    Luis Manso

    Full Text Available We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC. We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11 of tumors (primary and metastases at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001. Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001, and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC.

  5. EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments.

    Science.gov (United States)

    Baud, V; Chissoe, S L; Viegas-Péquignot, E; Diriong, S; N'Guyen, V C; Roe, B A; Lipinski, M

    1995-03-20

    Proteins with seven transmembrane segments (7TM) define a superfamily of receptors (7TM receptors) sharing the same topology: an extracellular N-terminus, three extramembranous loops on either side of the plasma membrane, and a cytoplasmic C-terminal tail. Upon ligand binding, cytoplasmic portions of the activated receptor interact with heterotrimeric G-coupled proteins to induce various second messengers. A small group, recently recognized on the basis of homologous primary amino acid sequences, comprises receptors to hormones of the secretin/vasoactive intestinal peptide/glucagon family, parathyroid hormone and parathyroid hormone-related peptides, growth hormone-releasing factor, corticotropin-releasing factor, and calcitonin. A cDNA, extracted from a neuroectodermal cDNA library, was predicted to encode a new 886-amino-acid protein with three distinct domains. The C-terminal third contains the seven hydrophobic segments and characteristic residues that allow the protein to be readily aligned with the various hormone receptors in the family. Six egf-like modules, at the N-terminus of the predicted mature protein, are separated from the transmembrane segments by a serine/threonine-rich domain, a feature reminiscent of mucin-like, single-span, integral membrane glycoproteins with adhesive properties. Because of its unique characteristics, this putative egf module-containing, mucin-like hormone receptor has been named EMR1. Southern analysis of a panel of somatic cell hybrids and fluorescence in situ hybridization have assigned the EMR1 gene to human chromosome 19p13.3.

  6. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease

    DEFF Research Database (Denmark)

    Brand, Oliver J; Barrett, Jeffrey C; Simmonds, Matthew J;

    2009-01-01

    Graves' disease (GD) is a common autoimmune disease (AID) that shares many of its susceptibility loci with other AIDs. The thyroid stimulating hormone receptor (TSHR) represents the primary autoantigen in GD, in which autoantibodies bind to the receptor and mimic its ligand, thyroid stimulating...... hormone, causing the characteristic clinical phenotype. Although early studies investigating the TSHR and GD proved inconclusive, more recently we provided convincing evidence for association of the TSHR region with disease. In the current study, we investigated a combined panel of 98 SNPs, including 70...

  7. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    Energy Technology Data Exchange (ETDEWEB)

    Schvartz, I.; Hazum, E.

    1987-12-15

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, (azidobenzoyl-D-Lys6)GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors.

  8. Osteoprotegerin and breast cancer risk by hormone receptor subtype

    DEFF Research Database (Denmark)

    Fortner, Renée T; Sarink, Danja; Schock, Helena

    2017-01-01

    BACKGROUND: Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may influence breast cancer risk via its role as the decoy receptor for both the RANK ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Circul...

  9. EVALUATION OF STEROID HORMONES AND THEIR RECEPTORS IN DEVELOPMENT AND PROGRESSION OF RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Nigel Bennett

    2014-06-01

    Full Text Available Steroid hormones and their receptors have important roles in normal kidney biology, and alterations in their expression and function help explain the differences in development of kidney diseases, such as nephrotic syndrome and chronic kidney disease. The distinct gender difference in incidence of renal cell carcinoma (RCC, with males having almost twice the incidence as females globally, also suggests a role for sex hormones or their receptors in RCC development and progression. There was a peak in interest in evaluating the roles of androgen and estrogen receptors in RCC pathogenesis in the late 20th century, with some positive outcomes for RCC therapy that targeted estrogen receptors, especially for metastatic disease. Since that time, however, there have been few studies that look at use of steroid hormone modulators for RCC, especially in the light of new therapies such as the tyrosine kinase inhibitors and new immune therapies, which are having some success for treatment of metastatic RCC. This review summarises past and current literature and attempts to stimulate renewed interest in research into the steroid hormones and their receptors, which might be used to effect, for example, in combination with the other newer targeted therapies for RCC.

  10. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones

    DEFF Research Database (Denmark)

    Dircksen, Heinrich; Neupert, Susanne; Predel, Reinhard

    2011-01-01

    We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic...

  11. A new mutation in the thyroid hormone receptor gene of a Chinese family with resistance to thyroid hormone

    Institute of Scientific and Technical Information of China (English)

    DONG Qian; GONG Chun-xiu; GU Yi; SU Chang

    2011-01-01

    Background Resistance to thyroid hormone (RTH) is a dominant inherited syndrome of reduced tissue responsiveness to thyroid hormone. It is usually due to mutations located at the ligand-binding domain and adjacent hinge region of the thyroid hormone receptor β(TRβ). We report the clinical and laboratory characteristics and the genetic analysis of a patient with this rare disorder and his family members.Methods The clinical presentations and changes of thyroid function tests (TFTs) including magnetic resonance imaging (MRI) of pituitary and other laboratory tests were analysed. TFTs of his family's members were detected as well. Direct DNA sequencing of the TRβ gene was done for those with abnormal TFTs.Results The RTH child had goiter, irritability, aggressiveness, and sudoresis. His TFTs showed high levels of circulating free thyroid hormones (FT4 and FT3) and normal thyroid-stimulating hormone (TSH) concentrations. He felt worse when treated as hyperthyroidism (Grave disease) with thiamazole and his clinical presentations got improved obviously when treated as RTH with bromocriptine without obvious advert effect. We identified a novel missense mutation, A317D, located in exon 9 of the gene of this boy and his mother. His mother had not any clinical presentation, but having abnormal TFTs results.Conclusions This patient reported here was concordant with the criteria of RTH. The feature is dysfunction of hypothalamus-pituitary-thyroid axis. A novel mutation was found in the TRβ, A317D, of this family. This research verified the phenomena that there is a clinical heterogeneity within the same mutation of different RTH patients.

  12. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    OpenAIRE

    Mavalli, Mahendra D.; DiGirolamo, Douglas J; FAN, Yong; Riddle, Ryan C.; Kenneth S Campbell; van Groen, Thomas; Frank, Stuart J; Sperling, Mark A.; Esser, Karyn A.; Bamman, Marcas M.; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  13. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications

    Science.gov (United States)

    PONIEWIERSKA-BARAN, AGATA; SCHNEIDER, GABRIELA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2016-01-01

    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  14. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with (/sup 125/I)triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    David-Inouye, Y.; Somack, R.; Nordeen, S.K.; Apriletti, J.W.; Baxter, J.D.; Eberhardt, N.L.

    1982-11-01

    (/sup 125/I)Triiodothyronine (T3) was used as a photoreactive probe for the thyroid hormone nuclear receptor in photoaffinity labelling experiments. Autoradiograms of photolysis products electrophoresed on either one or two-dimensional gels showed that (/sup 125/I)T3 covalently, but nonspecifically, labelled many proteins in the partially purified receptor preparations used. However, one of these proteins with an estimated molecular weight of 47,000 and an isoelectric point of approximately 6.2 +/- 0.5 pH units appears to be the thyroid hormone receptor, since, in contrast to the other proteins, its photoinduced labelling was blocked by concentrations of T3 and thyroxine (T4) similar to those that inhibit binding of (/sup 125/I)T3 by the receptor in equilibrium binding assays. In addition, the isoelectric point of the photolabelled protein agrees with that determined in separate equilibrium isoelectric focusing studies. These results indicate that (/sup 125/)T3 can serve as a photoreactive probe for the thyroid hormone nuclear receptor, and they suggest that this receptor is a single polypeptide chain of molecular weight 47,000 with an isoelectric point of 6.2 +/- 0.5 pH units.

  15. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with (/sup 125/I)triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    David-Inouye, Y. (Univ. of California, San Francisco); Somack, R; Nordeen, S.K.; Apriletti, J.W.; Baxter, J.D.; Eberhardt, N.L.

    1982-11-01

    (/sup 125/I)Triiodothyronine (T/sub 3/) was used as a photoreactive probe for the thyroid hormone nuclear receptor in photoaffinity labelling experiments. Autoradiograms of photolysis products electrophoresed on either one or two-dimensional gels showed that (/sup 125/I)T/sub 3/ covalently, but nonspecifically, labelled many proteins in the partially purified receptor preparations used. However, one of these proteins with an estimated molecular weight of 47,000 and an isoelectric point of approximately 6.2 +/- 0.5 pH units appears to be the thyroid hormone receptor, since, in contrast to the other proteins, its photoinduced labelling was blocked by concentrations of T/sub 3/ and thyroxine (T/sub 4/) similar to those that inhibit binding of (/sup 125/I)T/sub 3/ by the receptor in equilibrium binding assays. In addition, the isoelectric point of the photolabelled protein agrees with that determined in separate equilibrium isoelectric focusing studies. These results indicate that (/sup 125/I)T/sub 3/ can serve as a photoreactive probe for the thyroid hormone nuclear receptor, and they suggest that this receptor is a single polypeptide chain of molecular weight 47,000 with an isoelectric point of 6.2 +/- 0.5 pH units.

  16. Trialkyltin rexinoid-X receptor agonists selectively potentiate thyroid hormone induced programs of xenopus laevis metamorphosis

    NARCIS (Netherlands)

    Mengeling, Brenda J.; Murk, Albertinka J.; Furlow, J.D.

    2016-01-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the

  17. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5AH...

  18. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...

  19. On the denaturation mechanisms of the ligand binding domain of thyroid hormone receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Souza, Paulo C T; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of t

  20. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Telles de Souza, P C; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of t

  1. Desensitization, trafficking and resensitization of the pituitary thyrotropin-releasing hormone receptor

    Directory of Open Access Journals (Sweden)

    Patricia M Hinkle

    2012-12-01

    Full Text Available The pituitary receptor for thyrotropin-releasing hormone (TRH is a calcium-mobilizing G protein-coupled receptor (GPCR that signals through Gq/11, elevating calcium and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2 takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 minutes these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking.

  2. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    Energy Technology Data Exchange (ETDEWEB)

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  3. Effectiveness and tolerability of fulvestrant in postmenopausal women with hormone receptor-positive breast cancer.

    Science.gov (United States)

    Jones, Stephen E; Pippen, John

    2005-04-01

    Fulvestrant, an estrogen receptor antagonist that downregulates the estrogen receptor but has no known agonist effects, has been evaluated in 2 randomized trials involving postmenopausal women with hormone receptor-positive, progressive advanced-stage breast cancer after disease progression with antiestrogen therapy. These phase III studies, from which data were reported separately and in a planned combined analysis, showed that fulvestrant 250 mg per month intramuscularly was at least as effective as anastrozole 1 mg per day orally with respect to the primary endpoint of time to progression as well as secondary efficacy endpoints, which included objective response, clinical benefit, and survival. Both trials showed that patients treated with fulvestrant had a significantly longer duration of response, and a retrospective analysis found that pretreatment with fulvestrant did not preclude response to third-line hormonal therapy. More recently, fulvestrant was shown to be active as first-line hormonal therapy for advanced-stage breast cancer, with overall efficacy similar to that of tamoxifen in patients with hormone receptor-positive disease. Fulvestrant has been well tolerated in comparative trials published to date, translating into low study withdrawal rates and maintenance of quality of life. The incidence of adverse events was similar between the treatment arms in both trials of fulvestrant versus anastrozole, but it was notably lower for fulvestrant relative to tamoxifen in the first-line setting. In light of the results of comparative phase III trials, fulvestrant is effective and well tolerated in the treatment of postmenopausal women with hormone receptor-positive advanced-stage breast cancer.

  4. Expression of thyroid stimulating hormone receptor in differentiated thyroid carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    李清怀

    2013-01-01

    Objective To explore the expression of thyroid stimulating hormone (TSH) receptor in differentiated thyroid carcinoma and its clinical significance.Methods Seventy-four patients with differentiated thyroid carcinoma treated in our department from January 2009 to January 2011were selected as the observation group,and 28 patients with nodular goiter were selected as the control group.Expression of TSH receptor in the two groups were detected by immunohistochemistry.Results The positive rate of TSH receptor expression in the observation group was55.4 (41/74) ,significantly lower than that of the control

  5. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric (Van Andel); (Mayo)

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  6. Molecular identification of the first insect ecdysis triggering hormone receptors

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael

    2002-01-01

    The Drosophila Genome Project website (www.flybase.org) contains an annotated gene sequence (CG5911), coding for a G protein-coupled receptor. We cloned the cDNA corresponding to this sequence and found that the gene has not been correctly predicted. The corrected gene CG5911 has five introns and...

  7. Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling.

    Science.gov (United States)

    Guesdon, François; Kaabi, Yahia; Riley, Aiden H; Wilkinson, Ian R; Gray, Colin; James, David C; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J

    2012-12-01

    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH-GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize.

  8. Targeting the Diuretic Hormone Receptor to Control the Cotton Leafworm, Spodoptera littoralis

    Science.gov (United States)

    Apone, Fabio; Ruggiero, Alessandra; Tortora, Assunta; Tito, Annalisa; Grimaldi, Maria Rosaria; Arciello, Stefania; Andrenacci, Davide; Lelio, Ilaria Di; Colucci, Gabriella

    2014-01-01

    The cotton leafworm, Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae), is one of the most devastating pests of crops worldwide. Several types of treatments have been used against this pest, but many of them failed because of the rapid development of genetic resistance in the different insect populations. G protein coupled receptors have vital functions in most organisms, including insects; thus, they are appealing targets for species-specific pest control strategies. Among the insect G protein coupled receptors, the diuretic hormone receptors have several key roles in development and metabolism, but their importance in vivo and their potential role as targets of novel pest control strategies are largely unexplored. With the goal of using DHR genes as targets to control S. littoralis, we cloned a corticotropin-releasing factor-like binding receptor in this species and expressed the corresponding dsRNA in tobacco plants to knock down the receptor activity in vivo through RNA interference. We also expressed the receptor in mammalian cells to study its signaling pathways. The results indicate that this diuretic hormone receptor gene has vital roles in S. littoralis and represents an excellent molecular target to protect agriculturallyimportant plants from this pest. PMID:25368043

  9. Five gonadotrophin-releasing hormone receptors in a teleost fish: isolation, tissue distribution and phylogenetic relationships.

    Science.gov (United States)

    Moncaut, Natalia; Somoza, Gustavo; Power, Deborah M; Canário, Adelino V M

    2005-06-01

    Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50-55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the "classical" role of pituitary function regulation.

  10. Estradiol potentiation of gonadotropin-releasing hormone responsiveness in the anterior pituitary is mediated by an increase in gonadotropin-releasing hormone receptors

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.; Peegel, H.; Katta, V.

    1985-02-15

    In order to investigate the mechanism by which 17 beta-estradiol potentiates the action of gonadotropin-releasing hormone on the anterior pituitary in vitro, cultured pituitary cells from immature female rats were used as the model system. Cultures exposed to estradiol at concentrations ranging from 10(-10) to 10(-6) mol/L exhibited a significant augmentation of luteinizing hormone release in response to a 4-hour gonadotropin-releasing hormone (10 mumol/L) challenge at a dose of 10(-9) mol/L compared to that of control cultures. The estradiol augmentation of luteinizing hormone release was also dependent on the duration of estradiol exposure. When these cultures were incubated with tritium-labeled L-leucine, an increase in incorporation of radiolabeled amino acid into total proteins greater than that in controls was observed. A parallel stimulatory effect of estradiol on iodine 125-labeled D-Ala6 gonadotropin-releasing hormone binding was observed. Cultures incubated with estradiol at different concentrations and various lengths of time showed a significant increase in gonadotropin-releasing hormone binding capacity and this increase was abrogated by cycloheximide. Analysis of the binding data showed that the increase in gonadotropin-releasing hormone binding activity was due to a change in the number of gonadotropin-releasing hormone binding sites rather than a change in the affinity. These results suggest that (1) estradiol treatment increases the number of pituitary receptors for gonadotropin-releasing hormone, (2) the augmentary effect of estradiol on luteinizing hormone release at the pituitary level might be mediated, at least in part, by the increase in the number of binding sites of gonadotropin-releasing hormone, and (3) new protein synthesis may be involved in estradiol-mediated gonadotropin-releasing hormone receptor induction.

  11. Development of GR/MR Chimeric Receptors and Their Response to Steroid Hormones

    Institute of Scientific and Technical Information of China (English)

    Huang Qiman; Yang Qunying; Elisabeth Martinez; Guo Sandui

    2000-01-01

    We have established an effective and reliable technique of developing GR/MR chimeric receptors by DNA homologous recombination. To develop the method we transformed several different E. coli strains with a linearized plasmid containing full length of mGR(mouse GR) and hormone binding domain(HBD) of rMR(rat MR), the linear DNA undergoes recombination due to the homology of the mGR and the rMR and recircularize , and propagation in E. coli. PCR was performed to screen correct construction in which fusion between GR and MR took place. The constructs were digested with appropriate restriction endonucleases to test probable fusion sites of GR and HBD of MR. Precise fusion sites of GR and MR for constructs AB1157 # 2 , AB1157 # 18, AB 1157 # 22, AB1157 # 32, CMK603 # 6 were verified by DNA sequencing. Trans fection of COS- 7 cells with the constructs and subsequent treatment of transfected COS-7 cells with steroid hormones were carried out, the results showed that the constructs gave response to tested hormones. The study suggested that the GR/MR chimeric receptors can give rise to fusion proteins and their interactive function between hormone and receptor.

  12. Nuclear hormone receptor co-repressors: Structure and function

    OpenAIRE

    2012-01-01

    Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered “hub proteins” that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined ...

  13. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    Science.gov (United States)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  14. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms.

    Science.gov (United States)

    Chrousos, G P; Renquist, D; Brandon, D; Eil, C; Pugeat, M; Vigersky, R; Cutler, G B; Loriaux, D L; Lipsett, M B

    1982-03-01

    The concentrations of total and protein-unbound plasma cortisol of New World monkeys are higher than those of Old World primates and prosimians. The urinary free-cortisol excretion also is increased markedly. However, there is no physiologic evidence of increased cortisol effect. These findings suggest end-organ resistance to glucocorticoids. This was confirmed by showing that the hypothalamic-pituitary adrenal axis is resistant to suppression by dexamethasone. To study this phenomenon, glucocorticoid receptors were examined in circulating mononuclear leukocytes and cultured skin fibroblasts from both New and Old World species. The receptor content is the same in all species, but the New World monkeys have a markedly decreased binding affinity for dexamethasone. Thus, the resistance of these species to the action of cortisol is due to the decreased binding affinity of the glucocorticoid receptor. This presumed mutation must have occurred after the bifurcation of Old and New World primates (approximately 60 x 10(6) yr ago) and before the diversion of the New World primates from each other (approximately 15 x 10(6) yr ago).

  15. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor.

    Science.gov (United States)

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Delle Fave, Gianfranco; Jensen, Robert T

    2013-03-01

    Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.

  16. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  17. Ancient origins of metazoan gonadotropin-releasing hormone and their receptors revealed by phylogenomic analyses.

    Science.gov (United States)

    Plachetzki, David C; Tsai, Pei-San; Kavanaugh, Scott I; Sower, Stacia A

    2016-08-01

    The discovery of genes related to gonadotropin-releasing hormones (GnRH) and their receptors from diverse species has driven important advances in comparative endocrinology. However, our view of the evolutionary histories and nomenclature of these gene families has become inconsistent as several different iterations of GnRH and receptor relationships have been proposed. Whole genome sequence data are now available for most of the major lineages of animals, and an exhaustive view of the phylogenies of GnRH and their receptors is now possible. In this paper, we leverage data from publically available whole genome sequences to present a new phylogenomic analysis of GnRH and GnRH receptors and the distant relatives of each across metazoan phylogeny. Our approach utilizes a phylogenomics pipeline that searches data from 36 whole genome sequences and conducts phylogenetic analyses of gene trees. We provide a comprehensive analysis of the major groupings of GnRH peptides, related hormones and their receptors and provide some suggestions for a new nomenclature. Our study provides a framework for understanding the functional diversification of this family of neuromodulatory peptides and their receptors.

  18. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G;

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine...

  19. High expression of follicle stimulating hormone receptor in testicular tissue of idiopathic azoospermic patients with severe spermatogenic defects

    Institute of Scientific and Technical Information of China (English)

    Wang Liquan; Huang Hefeng; Jin Fan; Zhou Caiyun; Qian Yuli; Chen Jianhua

    2014-01-01

    Background Follicle stimulating hormone is necessary for normal reproduction in men.The biochemical actions of follicle stimulating hormone result from binding to the follicle stimulating hormone receptor in the plasma membrane of Sertoli cells.Here,we investigated the expression of the follicle stimulating hormone receptor in different testicular histological phenotypes of patients with idiopathic azoospermia.Methods Fifty-seven cases of idiopathic azoospermia were classified into three groups according to the results of testicular biopsy:patients with hypospermatogenesis,patients with maturation arrest,and patients with Sertoli cell-only syndrome.Thirteen azoospermic patients identified by testicular biopsy as being capable of completing spermatogenesis acted as the control group.Immunohistochemistry and real-time quantitative reverse-transcriptase polymerase chain reaction were performed in each case,and the serum hormone level was also measured in all patients.Results The serum follicle stimulating hormone level in patients with Sertoli cell-only syndrome was significantly higher than in patients with hypospermatogenesis,maturation arrest,and complete spermatogenesis (P<0.01).The serum follicle stimulating hormone level in patients with maturation arrest was significantly higher than in patients with hypospermatogenesis and complete spermatogenesis (P<0.05).There was no difference in serum follicle stimulating hormone levels in patients with hypospermatogenesis and complete spermatogenesis.The follicle stimulating hormone receptor expression level of testicular samples with Sertoli cell-only syndrome was significantly higher than in those with hypospermatogenesis,maturation arrest,and complete spermatogenesis (P<0.05),but no significant difference was observed among hypospermatogenesis,maturation arrest,and complete spermatogenesis testicular samples.Conclusions Different serum follicle stimulating hormone levels and follicle stimulating hormone receptor

  20. ELABELA: a hormone essential for heart development signals via the apelin receptor.

    Science.gov (United States)

    Chng, Serene C; Ho, Lena; Tian, Jing; Reversade, Bruno

    2013-12-23

    We report here the discovery and characterization of a gene, ELABELA (ELA), encoding a conserved hormone of 32 amino acids. Present in human embryonic stem cells, ELA is expressed at the onset of zebrafish zygotic transcription and is ubiquitous in the naive ectodermal cells of the embryo. Using zinc-finger-nuclease-mediated gene inactivation in zebrafish, we created an allelic series of ela mutants. ela null embryos have impaired endoderm differentiation potential marked by reduced gata5 and sox17 expression. Loss of Ela causes embryos to develop with a rudimentary heart or no heart at all, surprisingly phenocopying the loss of the apelin receptor (aplnr), which we show serves as Ela's cognate G protein-coupled receptor. Our results reveal the existence of a peptide hormone, ELA, which, together with APLNR, forms an essential signaling axis for early cardiovascular development.

  1. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma.

    Science.gov (United States)

    Herzig, Stephan; Hedrick, Susan; Morantte, Ianessa; Koo, Seung-Hoi; Galimi, Francesco; Montminy, Marc

    2003-11-13

    Fasting triggers a series of hormonal cues that promote energy balance by inducing glucose output and lipid breakdown in the liver. In response to pancreatic glucagon and adrenal cortisol, the cAMP-responsive transcription factor CREB activates gluconeogenic and fatty acid oxidation programmes by stimulating expression of the nuclear hormone receptor coactivator PGC-1 (refs 2-5). In parallel, fasting also suppresses lipid storage and synthesis (lipogenic) pathways, but the underlying mechanism is unknown. Here we show that mice deficient in CREB activity have a fatty liver phenotype and display elevated expression of the nuclear hormone receptor PPAR-gamma, a key regulator of lipogenic genes. CREB inhibits hepatic PPAR-gamma expression in the fasted state by stimulating the expression of the Hairy Enhancer of Split (HES-1) gene, a transcriptional repressor that is shown here to be a mediator of fasting lipid metabolism in vivo. The coordinate induction of PGC-1 and repression of PPAR-gamma by CREB during fasting provides a molecular rationale for the antagonism between insulin and counter-regulatory hormones, and indicates a potential role for CREB antagonists as therapeutic agents in enhancing insulin sensitivity in the liver.

  2. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Billestrup, N.; Allevato, G.; Moldrup, A. [Hagedorn Research Lab., Gentofte (Denmark)] [and others

    1994-12-31

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to medite GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH-stimulated metabolic effects such as protein synthesis and lipolysis. Furthermore, this mutant GH receptor internalized rapidly following GH binding. Another truncated GH receptor lacking all but five amino acids of the cytoplasmic domain could not mediate any effects of GH nor did it internalize. Deletion of the proline-rich region or changing the four prolines to alanines also resulted in a GH receptor deficient in signaling. Mutation of phenylalanine 346 to alanine resulted in a GH receptor which did not internalize rapidly; however, this mutant GH receptor was capable of mediating GH-stimulated transcription as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (1) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (2) for metabolic effects, a domain located in or near the proline-rich region is of importance; and (3) for internalization, phenylalanine 346 is necessary. 28 refs., 1 fig.

  3. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  4. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  5. Expression of anti-Mullerian hormone receptor on the appendix testis in connection with urological disorders

    Institute of Scientific and Technical Information of China (English)

    Kornél Kistamás; Olga Ruzsnavszky; Andrea Telek; Lívia Kosztka; Ilona Kovács; Beatrix Dienes; László Csernoch

    2013-01-01

    The female internal sex organs develop from the paramesonephric (Mullerian) duct.In male embryos,the regression of the Mullerian duct is caused by the anti-Mullerian hormone (AMH),which plays an important role in the process of testicular descent.The physiological remnant of the Mullerian duct in males is the appendix testis (AT).In our previous study,we presented evidence for the decreased incidence of AT in cryptorchidism with intraoperative surgery.In this report,the expression of the anti-Mullerian hormone receptor type 2 (AMHR2),the specific receptor of AMH,on the AT was investigated in connection with different urological disorders,such as hernia inguinalis,torsion of AT,cysta epididymis,varicocele,hydrocele testis and various forms of undescended testis.The correlation between the age of the patients and the expression of the AMHR2 was also examined.Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to detect the receptor's mRNA and protein levels,respectively.We demonstrate that AMHR2 is expressed in the ATs.Additionally,the presence of this receptor was proven at the mRNA and protein levels.The expression pattern of the receptor correlated with neither the examined urological disorders nor the age of the patients;therefore,the function of the AT remains obscure.

  6. Receptors of Hypothalamic-Pituitary-Ovarian-Axis Hormone in Uterine Myomas

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2014-01-01

    Full Text Available In this study the expression of GnRH, FSH, LH, ER-α, ER-β, and PR receptors was examined in uterine myomas of women in reproductive and perimenopausal age. In cases of GnRH and tropic hormones a membranous and cytoplasmic immunohistochemical reaction was detected, in cases of ER-α and PR the reaction was located in cell nucleus, and in the case of ER-β it manifested also a cytoplasmic location. In some of the examined cases the expression was detected in endometrium, myocytes, and endothelium of blood vessels, in uterine glands and myoma cells. In myometrium the level of GnRH and LH receptors increases with age, whereas the level of progesterone and both estrogen receptors decreases. In myomas of women in reproductive age, independently of their size, expression of GnRH, FSH, and LH receptors was more pronounced than in myometrium. In women of perimenopausal age, independently of myoma size, expression of LH and estrogen α receptors was higher while expression of GnRH receptors was lower than in myometrium. FSH receptor expression was not observed. Expression of estrogen receptor β was not affected by age of the woman or size of myoma. Analysis of obtained results indicates on existing in small myomas local feedback axis between GnRH-LH-progesterone.

  7. Expression of luteinizing hormone/chorionic gonadotropin receptor in the rat pineal gland.

    Science.gov (United States)

    Itoh, Masanori T; Hosaka, Takeshi; Takahashi, Noriyuki; Ishizuka, Bunpei

    2006-08-01

    Luteinizing hormone (LH) influences the secretion of melatonin (N-acetyl-5-methoxytryptamine) from the pineal gland. The present study examined the possible presence of LH/chorionic gonadotropin (CG) receptor in the pineal gland of adult female rats. Reverse transcriptase-polymerase chain reaction analyses demonstrated that LH/CG receptor mRNA is expressed in the pineal gland. Western blotting showed that the pineal gland, like the ovary, contains an 80 kDa receptor protein. Immunohistochemistry revealed that LH/CG receptor, arylalkylamine N-acetyltransferase (a regulatory enzyme in melatonin biosynthesis) and serotonin (a melatonin precursor) are localized primarily to the same cells of the pineal gland. We further found that the levels of pineal LH/CG receptor protein in normal cycling female rats change significantly during the estrous cycle, being lowest at early metestrus. These results demonstrate that LH/CG receptor is expressed in the pineal gland, primarily in melatonin-synthesizing cells, namely pinealocytes. Furthermore, it is suggested that LH influences pineal melatonin secretion through binding to this receptor. In addition, LH/CG receptor levels in the pineal gland are regulated during the estrous cycle under normal physiological conditions.

  8. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  9. Involvement of Ghrelin-Growth Hormone Secretagogue Receptor System in Pathoclinical Profiles of Digestive System Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhigang WANG; Weigang WANG; Wencai QIU; Youben FAN; Jun ZHAO; Yu WANG; Qi ZHENG

    2007-01-01

    Ghrelin receptor has been shown to be expressed along the human gastrointestinal tract.Recent studies showed that ghrelin and a synthetic ghrelin receptor agonist improved weight gain and lean body mass retention in a rat model of cancer cachexia by acting on ghrelin receptor, that is, growth hormone secretagogue receptor (GHS-R). This study aims to explore the expression and the distribution of ghrelin receptor in human gastrointestinal tract cancers and to investigate the possible involvement of the ghrelin-GHS-R system in human digestive cancers. Surgical human digestive cancer specimens were obtained from various portions of the gastrointestinal tract from different patients. The expression of ghrelin receptor in these tissues was detected by tissue microarray technique. Our results showed that ghrelin receptor was expressed in cancers throughout the gastrointestinal tract, mainly in the cytoplasm of mucosal layer cells.Its expression level possibly correlated with organ type, histological grade, tumor-nodes-metastases stage,and nutrition status (weight loss) of the patients. For the first time, we identified the distribution of ghrelin receptor in digestive system cancers. Our results implied that the ghrelin-GHS-R system might be involved in the pathoclinical profiles of digestive cancers.

  10. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation.

    Science.gov (United States)

    Troib, Ariel; Landau, Daniel; Kachko, Leonid; Rabkin, Ralph; Segev, Yael

    2013-11-01

    Linear growth retardation in children with chronic kidney disease (CKD) has been ascribed to insensitivity to growth hormone. This resistance state has been attributed to impaired growth hormone signaling through the JAK2/STAT5 pathway in liver and skeletal muscle leading to reduced insulin-like growth factor-I (IGF-I). Here we determine whether systemic and growth plate alterations in growth hormone signaling contribute to CKD-induced linear growth retardation using partially nephrectomized and pair-fed control 20-day-old rats. Serum growth hormone did not change in rats with CKD, yet serum IGF-I levels were decreased and growth retarded. The tibial growth plate hypertrophic zone was wider and vascularization at the primary ossification center was reduced in CKD. This was associated with a decrease in growth plate vascular endothelial growth factor (VEGF) mRNA and immunostainable VEGF and IGF-I levels. Growth plate growth hormone receptor and STAT5 protein levels were unchanged, while JAK2 was reduced. Despite comparable growth hormone and growth hormone receptor levels in CKD and control rats, relative STAT5 phosphorylation was significantly depressed in CKD. Of note, the mRNA of SOCS2, an inhibitor of growth hormone signaling, was increased. Thus, linear growth impairment in CKD can in part be explained by impaired long bone growth plate growth hormone receptor signaling through the JAK2/STAT5 pathway, an abnormality that may be caused by an increase in SOCS2 expression.

  11. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats.

    Science.gov (United States)

    López-Doval, S; Salgado, R; Lafuente, A

    2016-07-01

    This study was undertaken to evaluate the possible role of several reproductive hormone receptors on the disruption of the hypothalamic-pituitary-testis (HPT) axis activity induced by perfluorooctane sulfonate (PFOS). The studied receptors are the gonadotropin-releasing hormone receptor (GnRHr), luteinizing hormone receptor (LHr), follicle-stimulating hormone receptor (FSHr), and the androgen receptor (Ar). Adult male rats were orally treated with 1.0; 3.0 and 6.0 mg of PFOS kg(-1) d(-1) for 28 days. In general terms, PFOS can modify the relative gene and protein expressions of these receptors in several tissues of the reproductive axis. At the testicular level, apart from the expected inhibition of both gene and protein expressions of FSHr and Ar, PFOS also stimulates the GnRHr protein and the LHr gene expression. The receptors of the main hormones involved in the HPT axis may have an important role in the disruption exerted by PFOS on this axis.

  12. Expression of growth hormone receptor and its mRNA in hepatic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Wang; Shuang Chen; Jie Wang; Qing-Jia Ou; Chao Liu; Shu-Sen Zheng; Mei-Hai Deng; Xiao-Ping Liu

    2003-01-01

    AIM: To investigate the expression of growth hormone receptor (GHR) and mRNA of GHR in cirrhotic livers of rats with the intension to find the basis for application of recombinant human growth hormone (rhGH) to patients with liver cirrhosis.METHODS: Hepatic cirrhosis was induced in SpragueDawley rats by administration of thioacetamide intraperitoneally for 9-12 weeks. Collagenase Ⅳ was perfused in situ for isolation of hepatocytes. The expression of GHR and its mRNA in cirrhotic livers was studied with radio-ligand binding assay, RT-PCR and digital image analysis.RESULTS: One class of specific growth hormone-binding site, GHR, was detected in hepatocytes and hepatic tissue of cirrhotic livers. The binding capacity of GHR (RT, fmol/mg protein) in rat cirrhotic liver tissue (30.8±1.9) was significantly lower than that in normal control (74.9±3.9) at the time point of the ninth week after initiation of induction of cirrhosis (n=10, P<0.05), and it decreased gradually along with the accumulation of collagen in the process of formation and development of liver cirrhosis (P<0.05). The number of binding sites (×10 4/cell) of GHR on rat cirrhotic hepatocytes (0.86±0.16) was significantly lower than that (1.28±0.24)in control (n= 10, P<0.05). The binding affinity of GHR among liver tissue, hepatocytes of various groups had no significant difference (P>0.05). The expression of GHR mRNA (riOD,pixel) in rat cirrhotic hepatic tissues (23.3±3.1) was also significantly lower than that (29.3±3.4) in normal control (n=10, P<0.05).CONCLUSION: The growth hormone receptor was expressed in a reduced level in liver tissue of cirrhotic rats,and lesser expression of growth hormone receptors was found in a later stage of cirrhosis. The reduced expression of growth hormone receptor was partly due to its decreased expression on cirrhotic hepatocytes and the reduced expression of its mRNA in cirrhotic liver tissue.

  13. Study of V2 vasopressin receptor hormone binding site using in silico methods.

    Science.gov (United States)

    Sebti, Yeganeh; Sardari, Soroush; Sadeghi, Hamid Mir Mohammad; Ghahremani, Mohammad Hossein; Innamorati, Giulio

    2015-01-01

    The antidiuretic effect of arginine vasopressin (AVP) is mediated by the vasopressin V2 receptor. The docking study of AVP as a ligand to V2 receptor helps in identifying important amino acid residues that might be involved in AVP binding for predicting the lowest free energy state of the protein complex. Whereas previous researchers were not able to detect the exact site of the ligand-receptor binding, we designed the current study to identify the vasopressin V2 receptor hormone binding site using bioinformatic methods. The 3D structure of nonapeptide hormone vasopressin was extracted from Protein Data Bank. Since no suitable template resembling V2 receptor was found, an ab initio approach was chosen to model the protein receptor. Using protein docking methods such as Hex protein-protein docking, the model of V2 receptor was docked to the peptide ligand AVP to identify possible binding sites. The residues that involved in binding site are W293, W296, D297, A300, and P301. The lowest free energy state of the protein complex was predicted after mutation in the above residues. The amount of gained energies permits us to compare the mutant forms with native forms and help to asses critical changes such as positive and negative mutations followed by ranking the best mutations. Based on the mutation/docking predictions, we found some mutants such as W293D and A300E possess positively inducing effect in ligand binding and some of them such as A300R present negatively inducing effect in ligand binding.

  14. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems

    DEFF Research Database (Denmark)

    Hansen, Karina Kiilerich; Stafflinger, Elisabeth; Schneider, Martina

    2010-01-01

    aegypti, and Culex pipiens (Diptera), the silkworm Bombyx mori (Lepidoptera), the red flour beetle Tribolium castaneum (Coleoptera), the parasitic wasp Nasonia vitripennis (Hymenoptera), and the bug Rhodnius prolixus (Hemiptera). However, the ACP system is not present in 12 Drosophila species (Diptera...

  15. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  16. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  17. The Nuclear Hormone Receptor PPARγ as a Therapeutic Target in Major Diseases

    Directory of Open Access Journals (Sweden)

    Martina Victoria Schmidt

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor γ (PPARγ belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs, are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.

  18. Family history and breast cancer hormone receptor status in a Spanish cohort.

    Directory of Open Access Journals (Sweden)

    Xuejuan Jiang

    Full Text Available BACKGROUND: Breast cancer is a heterogenous disease that impacts racial/ethnic groups differently. Differences in genetic composition, lifestyles, reproductive factors, or environmental exposures may contribute to the differential presentation of breast cancer among Hispanic women. MATERIALS AND METHODS: A population-based study was conducted in the city of Santiago de Compostela, Spain. A total of 645 women diagnosed with operable invasive breast cancer between 1992 and 2005 participated in the study. Data on demographics, breast cancer risk factors, and clinico-pathological characteristics of the tumors were collected. Hormone receptor negative tumors were compared with hormone receptor postive tumors on their clinico-pathological characteristics as well as risk factor profiles. RESULTS: Among the 645 breast cancer patients, 78% were estrogen receptor-positive (ER+ or progesterone receptor-positive (PR+, and 22% were ER-&PR-. Women with a family history of breast cancer were more likely to have ER-&PR- tumors than women without a family history (Odds ratio, 1.43; 95% confidence interval, 0.91-2.26. This association was limited to cancers diagnosed before age 50 (Odds ratio, 2.79; 95% confidence interval, 1.34-5.81. CONCLUSIONS: An increased proportion of ER-&PR- breast cancer was observed among younger Spanish women with a family history of the disease.

  19. Characterization of pituitary growth hormone and its receptor in the green iguana (Iguana iguana).

    Science.gov (United States)

    Ávila-Mendoza, José; Carranza, Martha; Pérez-Rueda, Ernesto; Luna, Maricela; Arámburo, Carlos

    2014-07-01

    Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 μm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor.

  20. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system

    Science.gov (United States)

    Abel, E. Dale; Boers, Mary-Ellen; Pazos-Moura, Carmen; Moura, Egberto; Kaulbach, Helen; Zakaria, Marjorie; Lowell, Bradford; Radovick, Sally; Liberman, M. Charles; Wondisford, Fredric

    1999-01-01

    Thyroid hormone receptors (TRs) modulate various physiological functions in many organ systems. The TRα and TRβ isoforms are products of 2 distinct genes, and the β1 and β2 isoforms are splice variants of the same gene. Whereas TRα1 and TRβ1 are widely expressed, expression of the TRβ2 isoform is mainly limited to the pituitary, triiodothyronine-responsive TRH neurons, the developing inner ear, and the retina. Mice with targeted disruption of the entire TRβ locus (TRβ-null) exhibit elevated thyroid hormone levels as a result of abnormal central regulation of thyrotropin, and also develop profound hearing loss. To clarify the contribution of the TRβ2 isoform to the function of the endocrine and auditory systems in vivo, we have generated mice with targeted disruption of the TRβ2 isoform. TRβ2-null mice have preserved expression of the TRα and TRβ1 isoforms. They develop a similar degree of central resistance to thyroid hormone as TRβ-null mice, indicating the important role of TRβ2 in the regulation of the hypothalamic-pituitary-thyroid axis. Growth hormone gene expression is marginally reduced. In contrast, TRβ2-null mice exhibit no evidence of hearing impairment, indicating that TRβ1 and TRβ2 subserve divergent roles in the regulation of auditory function. PMID:10430610

  1. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  2. Alternative splicing of follicle-stimulating hormone receptor pre-mRNA: cloning and characterization of two alternatively spliced mRNA transcripts

    NARCIS (Netherlands)

    R. Kraaij (Robert); M. Verhoef-Post (Miriam); J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1998-01-01

    textabstractGlycoprotein hormone receptors contain a large extracellular domain that is encoded by multiple exons, facilitating the possibility of expressing alternatively spliced transcripts. We have cloned two new splice variants of the rat follicle-stimulating hormon

  3. Expression level of nuclear steroid hormone receptors in endometrium influence on female reproductive function

    Directory of Open Access Journals (Sweden)

    N. V. Avramenko

    2015-10-01

    Full Text Available Background. In recent years, rate of hyperplastic processes of reproductive system that relate to the common genital pathology in women of all age groups increased and ranges from 17 to 59% of all gynecological pathology. Recent studies have shown that the functional state of the endometrium is determined by the number of endometrial tissue receptors to corresponding steroid hormones. Objective. To explore the state of steroid hormones receptors in endometrial hyperplasia in compare with ultrasound, hysteroscopy and histological and hormonal background data research to improve diagnosis and recovery endometrium state. Methods: medical history analysis, clinical laboratory analysis, ultrasound diagnostics, hysteroscopy, histological methods. Hormones levels (FSH, LH, prolactin, estradiol, free testosterone, and expression of estrogen and progesterone receptors in the stroma and glands was evaluated by Histochemical score. Results. 50 women of 23–52 years with hyperplasia of endometrim, were divided into 3 randomized groups: I – 20 women with primary infertility, II – 13 women with secondary infertility, III – 17 women without infertility. Early sexual activity was almost twice as often observed in the first two groups of women (respectively 61.54%, 60.00% against 29.41% in the third group. Gynecological history was weighed almost all three groups of women with chronic bilateral salpingoophoritis, obesity (I gr. – 85%, II in December. – 76.92%, III gr. – 76.47%. Uterine leiomyoma found in every second woman III gr. – 9 (52.94%, p <0.05, 3 women (15%. At primary infertility there was US endometrial hyperplasia in every from four women, endometrial thickness less than the corresponding day of the cycle, which may indicate a lack of estrogen effect on the endometrium. In secondary infertility hyperplasia was detected in 14.29% of cases, in the third group – 7.14%. Estrogen (more and progesterone (less receptors level inhibition on

  4. Growth Hormone Receptor Antagonist Treatment Reduces Exercise Performance in Young Males

    DEFF Research Database (Denmark)

    Goto, K.; Doessing, S.; Nielsen, R.H.

    2009-01-01

    period, they exercised to determine exercise performance and hormonal and metabolic responses. Participants: Twenty healthy males participated in the study. Intervention: Subjects were treated with the GHR antagonist (n = 10; 10 mg/d) or placebo (n = 10). After the treatment period, they performed...... a maximal oxygen uptake ((V) over dotO(2max)) test and a prolonged exercise test, consisting of 60 min of submaximal cycling followed by exercise to fatigue at 90% of (V) over dotO(2max). Main Outcome Measures: (V) over dotO(2max) was measured before and after the treatment period. Hormonal and metabolic......Context: The effects of GH on exercise performance remain unclear. Objective: The aim of the study was to examine the effects of GH receptor (GHR) antagonist treatment on exercise performance. Design: Subjects were treated with the GHR antagonist pegvisomant or placebo for 16 d. After the treatment...

  5. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    Science.gov (United States)

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  6. The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2012-06-01

    Full Text Available Salicylic acid (SA is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys521 and Cys529 of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations. Binding of SA occurs through Cys521/529 via the transition metal copper. Mechanistically, our results suggest that binding of SA causes a conformational change in NPR1 that is accompanied by the release of the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. While NPR1 is already known as a link between the SA signaling molecule and defense-gene activation, we now show that NPR1 is the receptor for SA.

  7. Molecular cloning and functional analysis of Chinese sturgeon (Acipenser sinensis) growth hormone receptor

    Institute of Scientific and Technical Information of China (English)

    LIAO ZhiYong; CHEN XiaoLi; WU MingJiang

    2009-01-01

    A full length cDNA encoding the growth hormone receptor (GHR) of Chinese sturgeon was cloned in order to investigate the mechanism of growth hormone in regulating the growth of Chinese sturgeon.The open reading frame of the cloned Chinese sturgeon growth hormone receptor (csGHR) cDNA encodes a trans-membrane protein of 611 amino acids containing all the characteristic motifs of GHR. By sequence alignment, substitutions of amino acid residues highly conserved in other species were identified. Using the CHO cell culture system, the function of csGHR and the biological significance of the amino acid substitution in csGHR were examined. The promoter of serine protease inhibitor 2.1(Spi2.1) was trana-activated upon stimulation of seabream GH (sbGH) in the csGHR-expressing CHO cells. Furthermore, CHO cells stably expressing csGHR were stimulated to proliferate by sbGH. In agreement with our previous report, Chinese sturgeon growth hormone-binding protein (csGHBP) was detected in the culture medium of CHO cells stably expressing csGHR. Mutation of Asp residue in the ligand binding motif in csGHR to Glu significantly enhanced csGHR's biological function, whereas mutation of Asp residue to Ala decreased its biological function. The results demonstrated that the cloned csGHR was of full biological function and the csGHBP could be generated through proteolysis of csGHR. These findings might provide new insights into thoroughly understanding the regulatory mechanism of Chinese sturgeon growth.

  8. Molecular cloning and functional analysis of Chinese sturgeon (Acipenser sinensis) growth hormone receptor

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A full length cDNA encoding the growth hormone receptor (GHR) of Chinese sturgeon was cloned in order to investigate the mechanism of growth hormone in regulating the growth of Chinese sturgeon. The open reading frame of the cloned Chinese sturgeon growth hormone receptor (csGHR) cDNA encodes a trans-membrane protein of 611 amino acids containing all the characteristic motifs of GHR. By sequence alignment, substitutions of amino acid residues highly conserved in other species were identified. Using the CHO cell culture system, the function of csGHR and the biological significance of the amino acid substitution in csGHR were examined. The promoter of serine protease inhibitor 2.1 (Spi2.1) was trans-activated upon stimulation of seabream GH (sbGH) in the csGHR-expressing CHO cells. Furthermore, CHO cells stably expressing csGHR were stimulated to proliferate by sbGH. In agreement with our previous report, Chinese sturgeon growth hormone-binding protein (csGHBP) was detected in the culture medium of CHO cells stably expressing csGHR. Mutation of Asp residue in the ligand binding motif in csGHR to Glu significantly enhanced csGHR’s biological function, whereas mutation of Asp residue to Ala decreased its biological function. The results demonstrated that the cloned csGHR was of full biological function and the csGHBP could be generated through proteolysis of csGHR. These findings might provide new insights into thoroughly understanding the regulatory mechanism of Chinese sturgeon growth.

  9. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression.

    Science.gov (United States)

    Decherf, Stéphanie; Seugnet, Isabelle; Kouidhi, Soumaya; Lopez-Juarez, Alejandra; Clerget-Froidevaux, Marie-Stéphanie; Demeneix, Barbara A

    2010-03-01

    The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T(3)). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T(3) on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T(3) repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T(3)-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T(3), consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRalpha and TRbeta contribute to Mc4r regulation. T(3) repression of Mc4r transcription ensures that the energy-saving effects of T(3) feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T(3) on hypothalamic Mc4r and Trh contributes to energy homeostasis.

  10. Morphological and Hormonal Identiifcation of Porcine Atretic Follicles and Relationship Analysis of Hormone Receptor Levels During Granulosa Cell Apoptosis In vivo

    Institute of Scientific and Technical Information of China (English)

    YU De-bing; YU Min-li; LIN Fei; JIANG Bao-chun; YANG Li-na; WANG Si-yu; ZHAO Ying; WNAG Zheng-chao

    2014-01-01

    Recent reports have demonstrated that follicular atresia is initiated or caused by granulosa cell apoptosis followed by theca cell degeneration in mammalian ovaries, but the mechanism of follicular atresia is still to be elucidated. Therefore, our present study was designed to examine our hypothesis that the changes of follicular microenvironment induce the granulosa cell apoptosis during pocrine follicular atresia in vivo. We ifrstly isolated intact porcine antral follicles and identiifed them into three groups, healthy follicles (HF), early atretic follicles (EAF) and progressed atretic follicles (PAF) through morphology and histology. To further conifrm their status, we detected hormone levels in follicular lfuids and the expression level of apoptosis gene Bax in granulosa cells. The rate of progesterone (P) and estradiol (E2) was increased with the expression of Bax, indicating hormone can be used as a marker of granulosa cell apoptosis or follicular atresia. Finally, we analyzed the expression level of hormone receptor genes in granulosa cells and their relationship with follicular atresia. In PAF, the expression of Progesterone receptor (PGR) was increased signiifcantly while estradiol receptor (ER) had no notable changes, which suggesting the increased-PGR accelerated the effect of P-stimulated granulosa cell apoptosis. The dramatic increasing of androgen receptor (AR) expression in PAF and the obvious increase of tumor necrosis factor-αreceptor (TNFR) in EAF indicated that there are different pathways regulating granulosa cell apoptosis during follicular atresia. Together, our results suggested that different pathways of granulosa cell apoptosis was induced by changing the follicular microenvironment during follicular atresia.

  11. HER-2,P53 and Hormonal Receptors Protein Expression as Predictive Factors in Breast Cancer Prognosis

    Institute of Scientific and Technical Information of China (English)

    seyed Mohanmmad Rabiee Hashemi; Somayeh Rabiee Hashemi

    2008-01-01

    Breast cancer is a heterogeneous disease with vari-able biological and clinical characteristics. We conducted a study to evaluate P53,HER-2/neu and hormonal receptor expression as predictors of prognosis in breast cancer. METHODS In a prospective study, we recruited 81 consecutive patients with primary operable breast cancer who were treated with mastectomy followed by locoregional radiotherapy or che-motherapy and studied the presence of P53,HER-2/neu and hormonal receptors(ER/PR) expression in tumor tissues by im-munohistochemical staining. Associations between these markers expression and clinical outcomes, including local and regional recurrence and metastasis were evaluated. Statistical analysis was performed with the SPSS software. RESUITS The mean time of follow-up was (47.3±4.6)months. Expression of P53, HER-2/neu, Estrogen receptors and progester-one receptors were observed in 31.1%, 38.5%, 31.8%and 51.7%ofthe patients, respectively. P53,HER-2/neu and Negative ER status were potent predictors of local-regional recurrence(P=0.034,0.038,0.044,respectively).Also HER-2/neu,Negative ER and Negative PR status were strong predictors of metastasis(P=0.001,0.042,0.054,respectively).CONCLUSION OP53 and HER-2/neu expression and also steroid receptors status(ER/PR status)have an important role in predict-ing the outcome of breast cancer and thus may be of value in se-lecting suitable therapeutic strategy and determining prognosis in these patients.

  12. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    Full Text Available Abstract Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB] were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63 showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP, procollagen type 1 amino-terminal propeptides (P1NP, and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and

  13. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Pilar Gil-Ibáñez

    Full Text Available The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3 to its nuclear receptors (TR to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development.

  14. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  15. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    Science.gov (United States)

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  16. Effect of thyrotrophin releasing hormone on opiate receptors of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, A.M.; Shchurin, M.R.

    1987-01-01

    It has recently been shown that the hypothalamic thyrotropin releasing hormone (TRH) has the properties of a morphine antagonist, blocking its inhibitory action on respiration and, to a lesser degree, its analgesic action. This suggests that the antagonistic effects of TRH are mediated through its interaction with opiate receptors. The aim of this paper is to study this hypothesis experimentally. Tritium-labelled enkephalins in conjunction with scintillation spectroscopy were used to assess the receptor binding behavior. The results indicate the existence of interconnections between the opiate systems and TRH. Although it is too early to reach definite conclusions on the mechanisms of this mutual influence and its physiological significance it can be tentatively suggested that TRH abolishes the pharmacological effects of morphine by modulating the functional state of opiate reception.

  17. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Science.gov (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  18. Riboswitches as hormone receptors: hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Downes Brian

    2010-10-01

    Full Text Available Abstract Background Riboswitches are mRNA elements that change conformation when bound to small molecules. They are known to be key regulators of biosynthetic pathways in both prokaryotes and eukaryotes. Presentation of the Hypothesis The hypothesis presented here is that riboswitches function as receptors in hormone perception. We propose that riboswitches initiate or integrate signaling cascades upon binding to classic signaling molecules. The molecular interactions for ligand binding and gene expression control would be the same as for biosynthetic pathways, but the context and the cadre of ligands to consider is dramatically different. The hypothesis arose from the observation that a compound used to identify adenine binding RNA sequences is chemically similar to the classic plant hormone, or growth regulator, cytokinin. A general tenet of the hypothesis is that riboswitch-binding metabolites can be used to make predictions about chemically related signaling molecules. In fact, all cell permeable signaling compounds can be considered as potential riboswitch ligands. The hypothesis is plausible, as demonstrated by a cursory review of the transcriptome and genome of the model plant Arabidopsis thaliana for transcripts that i contain an adenine aptamer motif, and ii are also predicted to be cytokinin-regulated. Here, one gene, CRK10 (for Cysteine-rich Receptor-like Kinase 10, At4g23180, contains an adenine aptamer-related sequence and is down-regulated by cytokinin approximately three-fold in public gene expression data. To illustrate the hypothesis, implications of cytokinin-binding to the CRK10 mRNA are discussed. Testing the hypothesis At the broadest level, screening various cell permeable signaling molecules against random RNA libraries and comparing hits to sequence and gene expression data bases could determine how broadly the hypothesis applies. Specific cases, such as CRK10 presented here, will require experimental validation of direct

  19. Identification and characterization of growth hormone receptors in snakehead fish (Ophiocephalus argus cantor) liver.

    Science.gov (United States)

    Sun, X; Zhu, S; Chan, S S; Toresson, G; Cheng, C H

    1997-12-01

    The specific binding of 125I-labeled fish growth hormone (GH) to hepatic membranes prepared from several freshwater fish was assessed. A high level of growth hormone receptor (GHR) was detected on the hepatic membranes of the snakehead fish (Ophiocephalus argus Cantor). Scatchard analysis of the binding data showed a single class of high affinity binding site with a binding affinity (Ka) of 1.45 +/- 0.23 x 10(9) M-1 and a binding capacity (Bmax) of 198 +/- 57 fmol/mg protein. The binding was specific for fish GH and was saturable. In addition, the specific binding was temperature- and time-dependent, reaching a steady state after 16 hr of incubation at 25 degrees . The molecular weight of GHR as measured by Sephadex G-200 column chromatography and Western blot analysis using a monoclonal antibody (Mab263) against GHR was found to be 200-400 and 90-93 kDa, respectively. Two bands at 65 and 89 kDa were identified in ligand crosslinking studies of membrane receptors. A sensitive teleost GH radioreceptor assay (RRA) was developed, using recombinant fish GH and a membrane preparation from snakehead fish liver, capable of measuring bioactive GH in fish sera or other samples.

  20. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    Science.gov (United States)

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance.

  1. Effect of two human growth hormone receptor antagonists on glomerulosclerosis in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Shui-xian SHEN; Li-hua ZHU; En-bi WANG; Zeng-can YE; Jun LIN; Li-he GUO; Fei-hong LUO; Xi-hong LIU; Xin FANG

    2004-01-01

    AIM: To explore the feasibility of human growth hormone (hGH) receptor antagonist in the treatment of end-stage diabetic renal complications. METHODS: Two hGH mutants, hGHA1 (Cys-hGH-dell-4, G120R, K168A, E174A,C182S, de1186-191) and hGHA2 (hGH-H21A, G120R, E174A) were expressed in E coli. The IC50 (Mean±SD)values for the mutants for inhibiting 125I-hGH binding to rabbit growth hormone receptor were (65±10) ng for hGHA1, (27±5.6) ng for hGHA2, and (10±0.6) ng for wild type hGH, respectively. RESULTS: After treatment for 12 weeks, the renal histology analysis showed that treatment with hGHA2 at 4 mg/kg body weight daily markedly suppressed glomerulosclerosis in streptozotocin-induced diabetic Sprague-Dawley (SD) rats; hGHA1 at the same dosage slightly increased the renal damage compared with saline; while wild type hGH at 1 U/kg body weight daily severely worsened the glomerulo-sclerosis in diabetic SD rats. CONCLUSION: The data indicated that hGHA2 inhibited the end-stage glomerulosclerosis in diabetic rats, but hGHA1 mildly increased the glomerulosclerosis.

  2. Thyroid Hormone Receptor α1 Follows a Cooperative CRM1/Calreticulin-mediated Nuclear Export Pathway*

    Science.gov (United States)

    Grespin, Matthew E.; Bonamy, Ghislain M. C.; Roggero, Vincent R.; Cameron, Nicole G.; Adam, Lindsay E.; Atchison, Andrew P.; Fratto, Victoria M.; Allison, Lizabeth A.

    2008-01-01

    The thyroid hormone receptor α1 (TRα) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T3). Previously, we have shown that TRα, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRα is its ability to exit the nucleus through the nuclear pore complex. TRα export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRα. We show that, in addition to shuttling in heterokaryons, TRα shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRα directly interacts with calreticulin, and point to the intriguing possibility that TRα follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRα from the nucleus to cytoplasm. PMID:18641393

  3. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    Science.gov (United States)

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm.

  4. Genome inventory and analysis of nuclear hormone receptors in Tetraodon nigroviridis

    Indian Academy of Sciences (India)

    Raghu Prasad Rao Metpally; Ramakrishnan Vigneshwar; Ramanathan Sowdhamini

    2007-01-01

    Nuclear hormone receptors (NRs) form a large superfamily of ligand-activated transcription factors, which regulate genes underlying a wide range of (patho) physiological phenomena. Availability of the full genome sequence of Tetraodon nigroviridis facilitated a genome wide analysis of the NRs in fish genome. Seventy one NRs were found in Tetraodon and were compared with mammalian and fish NR family members. In general, there is a higher representation of NRs in fish genomes compared to mammalian ones. They showed high diversity across classes as observed by phylogenetic analysis. Nucleotide substitution rates show strong negative selection among fish NRs except for pregnane X receptor (PXR), estrogen receptor (ER) and liver X receptor (LXR). This may be attributed to crucial role played by them in metabolism and detoxification of xenobiotic and endobiotic compounds and might have resulted in slight positive selection. Chromosomal mapping and pairwise comparisons of NR distribution in Tetraodon and humans led to the identification of nine syntenic NR regions, of which three are common among fully sequenced vertebrate genomes. Gene structure analysis shows strong conservation of exon structures among orthologoues. Whereas paralogous members show different splicing patterns with intron gain or loss and addition or substitution of exons played a major role in evolution of NR superfamily.

  5. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Tang, Yuan [Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Yanzheng Street, Chongqing 400038 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye; Zhao, Bao-Quan [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  6. Autocrine role of estrogens in the augmentation of luteinizing hormone receptor formation in cultured rat granulosa cells.

    Science.gov (United States)

    Kessel, B; Liu, Y X; Jia, X C; Hsueh, A J

    1985-06-01

    The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate

  7. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  8. Functional Authentication of a Novel Gastropod Gonadotropin-Releasing Hormone Receptor Reveals Unusual Features and Evolutionary Insight

    OpenAIRE

    Kavanaugh, Scott I.; Tsai, Pei-San

    2016-01-01

    A gonadotropin-releasing hormone (GnRH)-like molecule was previously identified in a gastropod, Aplysia californica, and named ap-GnRH. In this study, we cloned the full-length cDNA of a putative ap-GnRH receptor (ap-GnRHR) and functionally authenticated this receptor as a bona fide ap-GnRHR. This receptor contains two potential translation start sites, each accompanied by a Kozak sequence, suggesting the translation of a long and a short form of the receptor is possible. The putative ap-GnRH...

  9. High-throughput screening of novel antagonists on melanin-concentrat-ing hormone receptor-1

    Institute of Scientific and Technical Information of China (English)

    Jian-hua YAN; Qun-yi LI; Jean A BOUTIN; M Pierre RENARD; Yi-xiang DING; Xiao-jiang HAO; Wei-min ZHAO; Ming-wei WANG

    2008-01-01

    Aim: To find new antagonists on human melanin-concentrating hormone recep-tor- 1 (MCHR-1) through high-throughput screening (HTS) of a diverse com-pound library. Methods: MCHR-1, [3H]SNAP7941, and FlashBlue G-protein-coupled receptor beads were used to measure the receptor-binding activities of various compounds based on scintillation proximity assay (SPA) technology. The guanosine 5' (γ-[35S]thio) triphosphate ([35S]GTPγS) binding assay was sub-sequently applied to functionally characterize the "hits" identified by the HTS campaign. Results: Of the 48 240 compounds screened with the SPA method, 12 hits were confirmed to possess MCHR-1 binding activities, 8 were function-ally studied subsequently with the [35S]GTPγS binding assay, and only 1 com-pound (NC 127816) displayed moderate human MCHR- 1 binding affinity (Ki=115.7 nmol/L) and relatively potent antagonism (KB=23.8 nmol/L). This compound shares a novel scaffold (1-ethoxy-2H-2-aza-1-phospha-naphthalene 1-oxide) with 3 other analogs in the group. Conclusion: Considering the marked difference in molecular shape and electrostatic status between NC127816 and the structures reported elsewhere, we anticipate that its derivatives may repre-sent a new class of potent MCHR-1 modulators.

  10. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium.

    Science.gov (United States)

    Rytved, K A; Nielsen, R

    1999-01-01

    We examined the effect of prostaglandin E2 (PGE2) on antidiuretic hormone (ADH)-dependent Na+ transport and cAMP production in isolated frog skin epithelium. ADH caused an increase in transepithelial Na+ transport and a decrease in cellular potential, indicating an increase in apical Na+ permeability. Subsequent addition of PGE2 decreased Na+ transport and repolarised the cells. The PGE2 receptor EP1/3-selective analogue sulprostone and the PGE2 receptor EP2/3-selective analogue misoprostol were able to mimic the effect of PGE2. ADH increased cellular cAMP levels, whereas PGE2, sulprostone and misoprostol were able to reduce the ADH-dependent cAMP production. Measurements of intracellular Ca2+ concentration ([Ca2+]i) revealed that it was unaffected by both PGE2 and sulprostone. The inhibitory effect of PGE2 on ADH-dependent Na+ transport was also observed in Ca2+-depleted epithelia. We conclude that ADH stimulates transepithelial Na+ transport by increasing cellular cAMP levels, whereas PGE2 inhibits ADH-dependent Na+ transport by activating EP3-type receptors, which decrease cellular cAMP levels. We have found no evidence that [Ca2+]i is involved in the regulation of ADH-dependent Na+ transport by PGE2.

  11. Chemotherapy-induced prospective memory impairment in breast cancer patients with different hormone receptor expression

    Science.gov (United States)

    Li, Wen; Gan, Chen; Lv, Yue; Wang, Shanghu; Cheng, Huaidong

    2017-01-01

    Abstract This study aimed to investigate prospective memory impairment in patients with breast cancer with different expression of hormone receptors, including the estrogen receptor (ER) and the progesterone receptor (PR). A total of 120 patients with breast cancer who underwent chemotherapy following surgery were divided into 2 groups. The A group included 60 patients with ER−/PR− status, and the B group included 60 patients with ER+/PR+ status. After 6 cycles of postoperative adjuvant chemotherapy, all patients were administered neuropsychological and prospective memory tests, such as the Mini-Mental State Examination (MMSE), verbal fluency test (VFT), and digit span test (DST), as well as examination of event-based prospective memory (EBPM) and time-based prospective memory (TBPM). As the neuropsychological background test results showed, there were no significant differences in MMSE, DST, and TBPM scores (∗:P > 0.05) between patients with breast cancer in the ER−/PR− and ER+/PR+ groups, while the VFT and EBPM scores were significantly greater in patients with breast cancer with ER+/PR+ status than in those with ER−/PR− status (∗∗: P memory impairment. PMID:28353608

  12. Usefulness of liquid-based cytology in hormone receptor analysis of breast cancer specimens.

    Science.gov (United States)

    Nishimura, Rieko; Aogi, Kenjiro; Yamamoto, Tamami; Takabatake, Daisuke; Takashima, Seiki; Teramoto, Norihiro; Kagawa, Akihiro; Morita, Sachiko

    2011-02-01

    Immunohistochemical (IHC) analysis of the hormone receptor (HR) in breast cancer cytology is an important issue nowadays. Several studies have shown discrepancy in the HR status between the primary tumor and metastases. Cytology can be used for patients with metastatic disease. Although cytological assessment of HR is an excellent method, it has not been routinely used because of the difficulty in consistently preparing multiple good quality slides. Liquid-based cytology (LBC) preparation is considered as the key to resolving the aforementioned problem; however, few studies have reported the HR assessment in breast cancer using LBC. Therefore, the HR status of LBC slides from 82 breast cancers was compared with that of the corresponding surgical specimens. The HR assay in both the LBC slides and surgical specimens was conducted by IHC using an autostainer. For the IHC staining, the protocol recommended by the manufacturer for paraffin-embedded sections was used for both the cytology and histology specimens. The HR results of the cytology agreed with those of the histology in 80 of the 82 cases (accuracy rate, 98%) for estrogen receptor, and in 78 of the 82 cases (accuracy rate, 95%) for progesterone receptor. The overall accuracy of the HR status on the cytology and the histology was 99% in 81 of the 82 cases. In conclusion, in HR analysis of breast cancers, LBC followed by IHC using an autostainer was useful for the standard processing of cytological specimens and showed a good correlation with the results of analysis on the histology specimens.

  13. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  14. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  15. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer.

    Science.gov (United States)

    Ha, S; Iqbal, N J; Mita, P; Ruoff, R; Gerald, W L; Lepor, H; Taneja, S S; Lee, P; Melamed, J; Garabedian, M J; Logan, S K

    2013-08-22

    Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.

  16. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  17. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Directory of Open Access Journals (Sweden)

    Dam Phuongan

    2011-06-01

    Full Text Available Abstract Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH receptor (LHR expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours. Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are

  18. Reproductive factors and hormone receptor status among very young (<35 years) breast cancer patients.

    Science.gov (United States)

    Jia, Xiaoqing; Liu, Guangyu; Mo, Miao; Cheng, Jingyi; Shen, Zhenzhou; Shao, Zhimin

    2015-09-15

    The prognosis for breast cancer occurs in young women is usually poor. The impact of different reproductive factors on disease characteristics is still largely unknown. We analyzed 261 patients aged ≤35 years old who were treated at the Cancer Hospital of Fudan University, Shanghai, China. The relationships between certain reproductive factors (age at menarche, parity, number of children, breastfeeding, history of abortion, age at first full-term pregnancy and oral contraceptive (OC) use) and disease characteristics were evaluated. Compared with patients who experienced fewer full-term pregnancies (menarche was ≥15 years exhibited a greater chance of PR-positive tumors (64.8%) (P = 0.036) compared with those whose age of menarche was menarche are more possible to exhibit hormone receptor-positive tumors. Additionally, patients who have taken OCs are more likely to present with advanced disease.

  19. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications.

    Science.gov (United States)

    Kopchick, John J; List, Edward O; Kelder, Bruce; Gosney, Elahu S; Berryman, Darlene E

    2014-04-05

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.

  20. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  1. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat

    Directory of Open Access Journals (Sweden)

    Jean Z. Lin

    2015-11-01

    Full Text Available The functional conversion of white adipose tissue (WAT into a tissue with brown adipose tissue (BAT-like activity, often referred to as “browning,” represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  2. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation.

    Science.gov (United States)

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M

    2016-04-12

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP-PPR system during root morphogenesis and tooth eruption.

  3. Taltirelin is a superagonist at the human thyrotropin-releasing hormone receptor

    Directory of Open Access Journals (Sweden)

    Nanthakumar eThirunarayanan

    2012-10-01

    Full Text Available Taltirelin (TAL is a thyrotropin-releasing hormone (TRH analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH. However, TAL exhibited higher intrinsic efficacy than TRH in stimulating inositol-1,4,5-trisphosphate second messenger generation. This is the first study that elucidates the pharmacology of TAL at TRH-R and shows that TAL is a superagonist at TRH-R. We suggest the superagonism exhibited by TAL may in part explain its higher activity in mediating CNS effects in humans compared to TRH.

  4. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet.

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S; Rocha, Juliana S; Bartke, Andrzej

    2009-12-01

    The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long lived; and this longevity is not responsive to 30% caloric restriction, in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction, we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting diet. The intermittent fasting diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction, we postulate that GHR-KO mice would be resistant to any manner of dietary restriction; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan extending potential of an intervention.

  5. Egg size-dependent expression of growth hormone receptor accompanies compensatory growth in fish.

    Science.gov (United States)

    Segers, F H I D; Berishvili, G; Taborsky, B

    2012-02-07

    Large egg size usually boosts offspring survival, but mothers have to trade off egg size against egg number. Therefore, females often produce smaller eggs when environmental conditions for offspring are favourable, which is subsequently compensated for by accelerated juvenile growth. How this rapid growth is modulated on a molecular level is still unclear. As the somatotropic axis is a key regulator of early growth in vertebrates, we investigated the effect of egg size on three key genes belonging to this axis, at different ontogenetic stages in a mouthbrooding cichlid (Simochromis pleurospilus). The expression levels of one of them, the growth hormone receptor (GHR), were significantly higher in large than in small eggs, but remarkably, this pattern was reversed after hatching: young originating from small eggs had significantly higher GHR expression levels as yolk sac larvae and as juveniles. GHR expression in yolk sac larvae was positively correlated with juvenile growth rate and correspondingly fish originating from small eggs grew faster. This enabled them to catch up fully in size within eight weeks with conspecifics from larger eggs. This is the first evidence for a potential link between egg size, an important maternal effect, and offspring gene expression, which mediates an adaptive adjustment in a relevant hormonal axis.

  6. Egg size-dependent expression of growth hormone receptor accompanies compensatory growth in fish

    Science.gov (United States)

    Segers, F. H. I. D.; Berishvili, G.; Taborsky, B.

    2012-01-01

    Large egg size usually boosts offspring survival, but mothers have to trade off egg size against egg number. Therefore, females often produce smaller eggs when environmental conditions for offspring are favourable, which is subsequently compensated for by accelerated juvenile growth. How this rapid growth is modulated on a molecular level is still unclear. As the somatotropic axis is a key regulator of early growth in vertebrates, we investigated the effect of egg size on three key genes belonging to this axis, at different ontogenetic stages in a mouthbrooding cichlid (Simochromis pleurospilus). The expression levels of one of them, the growth hormone receptor (GHR), were significantly higher in large than in small eggs, but remarkably, this pattern was reversed after hatching: young originating from small eggs had significantly higher GHR expression levels as yolk sac larvae and as juveniles. GHR expression in yolk sac larvae was positively correlated with juvenile growth rate and correspondingly fish originating from small eggs grew faster. This enabled them to catch up fully in size within eight weeks with conspecifics from larger eggs. This is the first evidence for a potential link between egg size, an important maternal effect, and offspring gene expression, which mediates an adaptive adjustment in a relevant hormonal axis. PMID:21752823

  7. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    Science.gov (United States)

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  8. Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis

    Institute of Scientific and Technical Information of China (English)

    BINDU D PAUL; YUN-BO SHI

    2003-01-01

    The biological effects of thyroid hormone(T3)are mediated by the thyroid hormone receptor(TR).Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3.T3 regulates a series of orchestrated developmental changes,which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog.T3 is presumed to bind to TRs,which in turn recruit coactivators,leading to gene activation.The best-studied coactivators belong to the p 160 or SRC family.Members of this family include SRC 1/NCoA- 1,SRC2/TIF2/GRIP 1,and SRC3/pCIP/ACTR/AIB- 1/RAC-3/TRAM- 1.These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP.Here,we studied the expression patterns of these coactivators during various stages of development.Amongst the coactivators cloned in Xenopus laevis,SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis,and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels.These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.

  9. The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels.

    Directory of Open Access Journals (Sweden)

    Mattias Vesterlund

    Full Text Available Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness to GH is under regulatory control to avoid excessive and off-target effects upon GHR activation. The suppressor of cytokine signalling 2 (SOCS is a key regulator of GHR sensitivity. This is clearly shown in mice where the SOCS2 gene has been inactivated, which show 30-40% increase in body length, a phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated that SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2⁻/⁻ mice and in the absence of SOCS2 in in vitro experiments. We showed that SOCS2 regulates cellular GHR levels through direct ubiquitination and in a proteasomally dependent manner. We also confirmed the importance of the SOCS-box for the proper function of SOCS2. Finally, we identified two phosphotyrosine residues in the GHR to be responsible for the interaction with SOCS2, but only Y487 to account for the effects of SOCS2. The demonstration that SOCS2 is an ubiquitin ligase for the GHR unveils the molecular basis for its physiological actions.

  10. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling.

    Science.gov (United States)

    McGarvey, Jennifer C; Xiao, Kunhong; Bowman, Shanna L; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W Bruce; Ardura, Juan A; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A; Friedman, Peter A

    2016-05-20

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.

  11. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    Directory of Open Access Journals (Sweden)

    Hwa Young Ahn

    2015-12-01

    Full Text Available BackgroundExpression of hepatic cholesterol 7α-hydroxylase (CYP7A1 is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP. In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1.MethodsWe injected thyroid hormone (triiodothyronine, T3 to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR. Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA were also performed using human hepatoma cell lineResultsInitial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding.ConclusionWe found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1.

  12. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R;

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were...

  13. ICON 2013: Practical consensus recommendations for hormone receptor-positive Her2-negative advanced or metastatic breastcancer

    Directory of Open Access Journals (Sweden)

    P M Parikh

    2014-01-01

    Full Text Available The management of hormone receptor-positive Her2-negative breast cancer patients with advanced or metastatic disease is a common problem in India and other countries in this region. This expert group used data from published literature, practical experience, and opinion of a large group of academic oncologists, to arrive at practical consensus recommendations for use by the community oncologists.

  14. ICON 2013: practical consensus recommendations for hormone receptor-positive Her2-negative advanced or metastatic breastcancer.

    Science.gov (United States)

    Parikh, P M; Gupta, S; Dawood, S; Rugo, H; Bhattacharyya, G S; Agarwal, A; Chacko, R; Sahoo, T P; Babu, G; Agarwal, S; Munshi, A; Goswami, C; Smruti, B K; Bondarde, S; Desai, C; Rajappa, S; Somani, N; Singh, M; Nimmagadda, R; Pavitran, K; Mehta, A; Parmar, V; Desai, S; Nair, R; Doval, D

    2014-01-01

    The management of hormone receptor-positive Her2-negative breast cancer patients with advanced or metastatic disease is a common problem in India and other countries in this region. This expert group used data from published literature, practical experience, and opinion of a large group of academic oncologists, to arrive at practical consensus recommendations for use by the community oncologists.

  15. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  16. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  17. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies.

  18. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L;

    2009-01-01

    . Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression...... and whether thyroid hormone controls expression of other genes in the pineal gland.......Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression...

  19. Involvement of chromatin and histone acetylation in theregulation of HIV-LTR by thyroid hormone receptor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology.Numerous host factors have been shown to participate in the regulation of the LTR promoter.Among them is the thyroid hormone (T3) receptor (TR).TR has been shown to bind to the critical region of the promoter that contain the NFκB and Sp1 binding sites.Interestingly,earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation,likely due to the use of different cell types and/or lack of proper chromatin organization.Here,using the frog oocyte as a model system that allows replication-coupled chromatin assembly,mimicking that in somatic cells,we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter.More importantly,we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.

  20. QSAR study of selective ligands for the thyroid hormone receptor beta.

    Science.gov (United States)

    Liu, Huanxiang; Gramatica, Paola

    2007-08-01

    In this paper, an accurate and reliable QSAR model of 87 selective ligands for the thyroid hormone receptor beta 1 (TRbeta1) was developed, based on theoretical molecular descriptors to predict the binding affinity of compounds with receptor. The structural characteristics of compounds were described wholly by a large amount of molecular structural descriptors calculated by DRAGON. Six most relevant structural descriptors to the studied activity were selected as the inputs of QSAR model by a robust optimization algorithm Genetic Algorithm. The built model was fully assessed by various validation methods, including internal and external validation, Y-randomization test, chemical applicability domain, and all the validations indicate that the QSAR model we proposed is robust and satisfactory. Thus, the built QSAR model can be used to fast and accurately predict the binding affinity of compounds (in the defined applicability domain) to TRbeta1. At the same time, the model proposed could also identify and provide some insight into what structural features are related to the biological activity of these compounds and provide some instruction for further designing the new selective ligands for TRbeta1 with high activity.

  1. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    Science.gov (United States)

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A.; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17β-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca2+ receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  2. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2016-01-01

    Full Text Available Steroid hormone receptors (SHRs act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD/AF2 and neglect intrinsically disordered (ID N-terminal domain (NTD/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor′s (AR′s ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR′s structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer.

  3. Gold-nanoparticle-based assay for instantaneous detection of nuclear hormone receptor-response elements interactions.

    Science.gov (United States)

    Tan, Yen Nee; Su, Xiaodi; Liu, Edison T; Thomsen, Jane S

    2010-04-01

    Gold nanoparticles (AuNPs) are widely used as colorimetric probes for biosensing, relying on their unique particle size-dependent and/or interparticle distance-dependent extinction spectrum and solution color. Herein, we describe an AuNP-based colorimetric assay to detect binding interactions between nuclear hormone receptors and their corresponding DNA-binding elements, particularly the human estrogen receptors (ERalpha and ERbeta) and their cognate estrogen response elements (EREs). We found that the protein-DNA (ER-ERE) complexes can stabilize citrate anion-capped AuNPs against salt-induced aggregation to a larger extent than the protein (ER) or the DNA (ERE) alone, due to their unique molecular size and charge properties that provide a strong electrosteric protection. Moreover, our results show that the extent of stabilization is sequence-dependent and can distinguish a single base variation in the ERE associated with minor changes in protein-DNA binding affinity. With this assay, many important parameters of protein-DNA binding events (e.g., sequence selectivity, distinct DNA binding properties of protein subtypes, binding stoichiometry, and sequence-independent transient binding) can be determined instantly without using labels, tedious sample preparations, and sophisticated instrumentation. These benefits, in particular the high-throughput potential, could enable this assay to become the assay of choice to complement conventional techniques for large scale characterization of protein-DNA interactions, a key aspect in biological research.

  4. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice.

    Science.gov (United States)

    Mavalli, Mahendra D; DiGirolamo, Douglas J; Fan, Yong; Riddle, Ryan C; Campbell, Kenneth S; van Groen, Thomas; Frank, Stuart J; Sperling, Mark A; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L

    2010-11-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions in myofiber number and area as well as accompanying deficiencies in functional performance. Defective skeletal muscle development, in both GHR and IGF-1R mutants, was attributable to diminished myoblast fusion and associated with compromised nuclear factor of activated T cells import and activity. Strikingly, mice lacking GHR developed metabolic features that were not observed in the IGF-1R mutants, including marked peripheral adiposity, insulin resistance, and glucose intolerance. Insulin resistance in GHR-deficient myotubes derived from reduced IR protein abundance and increased inhibitory phosphorylation of IRS-1 on Ser 1101. These results identify distinct signaling pathways through which GHR regulates skeletal muscle development and modulates nutrient metabolism.

  5. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  6. A comparison between radioligand and immunohistochemical assay of hormone receptors in primary breast cancer.

    Science.gov (United States)

    Charalambous, D; Kitchen, P R; Stillwell, R G; Smart, P J; Rode, J

    1993-08-01

    The detection of oestrogen and progesterone receptor (ER and PgR) levels in human breast carcinoma has traditionally been performed using a biochemical radioligand binding method. This method has several disadvantages including the requirement for generous tissue samples, the production of radioactive waste products and the inability to exclude non-malignant cellular material from the assay process. An alternative method for detecting hormone receptors is available with the use of a monoclonal antibody specific for the ER or PgR receptor using immunocytochemical assay (ER-ICA or PgR-ICA). Although designed for use on frozen section material, with modifications this method can be used on paraffin sections of routinely fixed and processed tissue, on archival material and on very small specimens. Further, an objective assessment or scoring of staining intensity is possible using computerized video-image analysis. Forty-three cases of primary breast carcinoma, treated from 1989 to 1991 at Goulburn Valley Base Hospital, Shepparton were assessed for ER and PgR content using both the radioligand method and immunohistochemistry with video-image analysis, and the results were compared. Of the 43 cases, ER-ICA and ER had a concordance of 81% (P < 0.001, r = 0.58) and in 39 cases, PgR and PgR-ICA had a concordance of 87% (P < 0.001, r = 0.54). Because the sample for radioligand assay is of uncertain composition and the immunohistochemical stain can be scored specifically for malignant epithelium, a degree of discordance is thought to be mostly attributable to the limitations of the radioligand assay.

  7. 腹腔注射LHRH-A对黑鲷生长激素及其受体的影响%Effects of Luteinizing Hormone-releasing Hormone Analogue Injection on Growth Hormone and Its Receptor in Black Seabream

    Institute of Scientific and Technical Information of China (English)

    邓利; 林浩然

    2003-01-01

    以海水硬骨鱼类黑鲷为研究对象,腹腔注射溶于生理盐水的促性腺激素,释放激素(gonadotropin-releasing hormone,GnRH)的类似物(analogue of luteinizing hormone- releasing hormone,LHRH-A),对照组注射生理盐水.24 h后注射LHRH-A组黑鲷血清生长激素(growth hormone,GH)水平显著高于对照组(p<0.05),于36 h又恢复到对照组水平.注射LHRH-A组肝脏生长激素受体(growth hormone receptor,GHR)及GHR mRNA均与对照组无显著差异.结果表明,腹腔注射LHRH-A刺激了处于性腺成熟期黑鲷GH的分泌,但对黑鲷肝脏GHR及其基因表达无明显影响.

  8. Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish.

    Science.gov (United States)

    Figueiredo, Marcio Azevedo; Mareco, Edson A; Silva, Maeli Dal Pai; Marins, Luis Fernando

    2012-06-01

    Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.

  9. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon

    Science.gov (United States)

    Lerner, Darren T.; Sheridan, Mark A.; McCormick, Stephen D.

    2012-01-01

    Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μg g−1 17β-estradiol (E2) or 150 μg g−1 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μg g−1 E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30–60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5 mM in FW and increased 10.5 mM in SW. There was no effect of NP or E2 on gill sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na+/K+-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.

  10. Expression of growth hormone and its receptor in chronic atrophic gastritis and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Si; Qian Cao; Min Gao

    2004-01-01

    AIM: To investigate the growth hormone (GH) and growth hormone receptor (GHR) expression of and its clinical significance in patients with chronic atrophic gastritis (CAG).METHODS:A total of 90 cases were enrolled in the study.Thirty were healthy controls,the other 60 patients were divided into two groups according to the endoscopical and histological diagnosis.Blood samples were drawn in the morning (menarche did not occur during the blood extraction in female patients),gastric mucosa was obtained by endoscopy.Serum GH and gastrice mucosal GHR levels were measured using radioimmunoassay (RIA) and En Vinsion technique.RESULTS:The average GH level was 1.021±0.132μ/L in CAG patients,in controls it was 2.869 0.512μ/L.There was a significant difference between these two groups(P<0.01).The positive rate of GHR in CAG patients was 10%,in controls the rate was 100%.There was a significant difference (P<0.01).There was no significant change of GH level (3.176±0.421μ/L) in patients with gastric carcinoma compared with controls (P>0.05).CONCLUSION:The study shows that levels of GH and GHR expression are low in CAG patients.CAG pathogenesis has a correlation with mucosal nutrient deficiency,decreased levels of GH and GHR have an adverse effect on the repair and regeneration of CAG.There is no significant change of GH in gastric carcinorma patients,GH dose not play a role in the pathogenesis of gastric cancer.

  11. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Niles Edward G

    2007-08-01

    Full Text Available Abstract Background: Thyroid hormone receptors (TRs function as molecular switches in response to thyroid hormone to regulate gene transcription. TRs were previously believed to be present only in chordates. Results: We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc, Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domain and/or ligand binding domain shows that invertebrate and vertebrate TRs cluster together, TRs from the vertebrates and from the jawless vertebrate (lamprey clustered within separate subgroups, Platyhelminth TRs cluster outside of the vertebrate TR subgroups and that the schistosome TRs and S. mediterranea TRs clustered within separate subgroups. Alignment of the C-terminus of the A/B domain revealed a conserved TR-specific motif, termed TR 'N-terminus signature sequence', with a consensus sequence of (G/PYIPSY(M/LXXXGPE(D/EX. Heterodimer formation between S. mansoni TRs and SmRXR1 suggests that the invertebrate TR protein gained the ability to form a heterodimer with RXR. ESMA analysis showed that SmTRα could bind to a conserved DNA core motif as a monomer or homodimer. Conclusion: Vertebrate TR genes originated from a common ancestor of the Bilateria. TR genes underwent duplication independently in the Protostomia and Deuterostomia. The duplication of TRs in deuterostomes occurred after the split of jawless and jawed vertebrates. In protostomes, TR genes underwent duplication in Platyhelminths, occurring independently in trematode and turbellarian lineages. Using S. mansoni TRs as an example, invertebrate TRs exhibited the ability to form a dimer with RXR prior to the emergence of the vertebrate TRs and were able to bind to vertebrate TR core DNA elements as a monomer or homodimer.

  12. Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R

    Science.gov (United States)

    Kanasaki, Haruhiko; Oride, Aki; Hara, Tomomi; Mijiddorj, Tselmeg; Sukhbaatar, Unurjargal; Kyo, Satoru

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R) has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of GnRH neurons

  13. Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R

    Directory of Open Access Journals (Sweden)

    Haruhiko Kanasaki

    2016-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH and follicle-stimulating hormone (FSH—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of Gn

  14. Flow cytometry analysis of hormone receptors on human peripheral blood mononuclear cells to identify stress-induced neuroendocrine effects

    Science.gov (United States)

    Meehan, R. T.

    1986-01-01

    Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.

  15. Thyroid hormone receptors bind to the promoter of the mouse histone H10 gene and modulate its transcription.

    Science.gov (United States)

    Bauer-Hofmann, R; Alonso, A

    1995-01-01

    It has been shown that the mouse histone H10 promoter contains a DNA element, composed of a direct repeat of the sequence GGTGACC separated by 7 nt, which is able to bind retinoic acid receptors and to modulate transcription of reporter genes following treatment with retinoic acid. We have now investigated whether this DNA motif is also responsive to thyroid hormone. We co-transfected CV-1 monkey kidney cells with chloramphenicol acetyltransferase (CAT) expression plasmids containing either 740 bp of the H10 wild-type promoter or five copies of the repeat element cloned in front of the thymidine kinase promoter and expression vectors for human thyroid hormone receptors (TRs) alpha or beta and retinoid X receptor alpha (RXR alpha). Treatment of transfected cells with triiodothyronine led to a dose-dependent increase in CAT activity. Transfection experiments with increasing amounts of expression vectors for either TR alpha or RXR alpha resulted in up to 6-fold enhancement of CAT transcription. Furthermore, point mutations within the half-sites of the response element of the H10 promoter, as well as deletions within the interspace region, lowered CAT activity to 60-80% of that of the wild-type control. Electrophoretic mobility shift assays showed that the repeat element was able to form retarded complexes with TR alpha homodimers, as well as with TR alpha-RXR alpha heterodimers. Our results suggest that thyroid hormone receptors are involved in the regulation of mouse histone H10 expression. Images PMID:8559662

  16. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Wang, X.; Kopchick, J J;

    1996-01-01

    The binding of growth hormone (GH) to its receptor results in its dimerization followed by activation of Jak2 kinase and tyrosine phosphorylation of the GH receptor itself, as well as Jak2 and the transcription factors Stat1, -3, and -5. In order to study the role of GH receptor tyrosine phosphor...

  17. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor

    Directory of Open Access Journals (Sweden)

    Takayoshi eUbuka

    2014-01-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH was first identified in Japanese quail to be an inhibitor of gonadotropin synthesis and release. GnIH peptides have since been identified in all vertebrates, and all share an LPXRFamide (X = L or Q motif at their C-termini. The receptor for GnIH is the G protein-coupled receptor 147 (GPR147, which inhibits cAMP signaling. Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN in birds and the dorsomedial hypothalamic area (DMH in most mammals. GnIH neurons in the PVN or DMH project to the median eminence to control anterior pituitary function via GPR147 expressed in gonadotropes. Further, GnIH inhibits gonadotropin-releasing hormone (GnRH -induced gonadotropin subunit gene transcription by inhibiting the adenylate cyclase/cAMP/PKA -dependent ERK pathway in an immortalized mouse gonadotrope cell line (LT2 cells. GnIH neurons also project to GnRH neurons that express GPR147 in the preoptic area (POA in birds and mammals. Accordingly, GnIH can inhibit gonadotropin synthesis and release by decreasing the activity of GnRH neurons as well as by directly inhibiting pituitary gonadotrope activity. GnIH and GPR147 can thus centrally suppress testosterone secretion and spermatogenesis by acting in the hypothalamic-pituitary-gonadal axis. GnIH and GPR147 are also expressed in the testis of birds and mammals, possibly acting in an autocrine/paracrine manner to suppress testosterone secretion and spermatogenesis. GnIH expression is also regulated by melatonin, stress and social environment in birds and mammals. Accordingly, the GnIH-GPR147 system may play a role in transducing physical and social environmental information to regulate optimal testicular activity in birds and mammals. This review discusses central and direct inhibitory effects of GnIH and GPR147 on testosterone secretion and spermatogenesis in birds and mammals.

  18. Funkce adipokinetických hormonů v metabolismu hmyzích lipidů

    OpenAIRE

    2010-01-01

    This PhD. thesis summarizes the effect of adipokinetic hormones (AKHs) on a spectrum of mobilized lipids in model insect species the locust Locusta migratoria and the firebug Pyrrhocoris apterus. The results revealed that mobilization of diacylglycerols and fatty acids from the fat body into the haemolymph is not uniform and suggested there is partial specificity of individual AKHs. This could contribute to the answer of the question why some insect species have more than one AKH. The results...

  19. Liver expression of steroid hormones and Apolipoprotein D receptors in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    FJ Vizoso; L Rodrigo; M Rodriguez; A Altadill; ML González-Diéguez; A Linares; LO González; S Junquera; F Fresno-Forcelledo; MD Corte

    2007-01-01

    AIM: To evaluate the tissular expression of Androgen (A), Estrogen (E) and Progesterone (Pg) receptors, and Apolipoprotein D (ApoD), in liver tumors from resected hepatocellular carcinoma (HCC) cases in order to assess their possible relationship to prognosis.METHODS We performed an immunohistochemical study using tissue microarrays (containing more than 260 cancer specimens, from 31 HCC patients and controls)to determine the presence of specific antibodies against AR, ER, PgR and ApoD, correlating their findings with several clinico-pathological and biological variables. The staining results were categorized using a semi-quantitive score based on their intensity, and the percentage of immunostained cells was measured.RESULTS: A total of 21 liver tumors (67.7%) were positive for AR; 16 (51.6%) for ER; 26 (83.9%) for PgR and 12 (38.7%) stained for ApoD. We have found a wide variability in the immunostaining score values for each protein, with a median (range) of 11.5 (11.5-229.5) for AR; 11.1 (8.5-65) for ER; 14.2 (4-61) for PgR; and 37.7 (13.8-81.1) for ApoD. A history of heavy ethanol consumption, correlated positively with AR and PgR and negatively with ER status. HCV chronic infection also correlated positively with AR and PgR status. However,the presence of ApoD immunostaining did not correlate with any of these variables. Tumors with a positive immuno-staining for PgR showed a better prognosis.CONCLUSION: Our results indicate a moderate clinical value of the steroid receptor status in HCC, emphasizing the need to perform further studies in order to evaluate the possible role of new hormonal-based therapies.

  20. Optimizing control of acromegaly: integrating a growth hormone receptor antagonist into the treatment algorithm.

    Science.gov (United States)

    Clemmons, David R; Chihara, Kazuo; Freda, Pamela U; Ho, Ken K Y; Klibanski, Anne; Melmed, Shlomo; Shalet, Stephen M; Strasburger, Christian J; Trainer, Peter J; Thorner, Michael O

    2003-10-01

    Acromegaly is associated with significant morbidities and a 2- to 3-fold increase in mortality because of the excessive metabolic action of GH and IGF-I, a marker of GH output. Reductions in morbidity correspond with decreases in IGF-I, and mortality is lowered following normalization of IGF-I or GH levels. Therefore, this has become an important end point. Current guidelines for the treatment of acromegaly have not considered recent advances in medical therapy, in particular, the place of pegvisomant, a GH receptor antagonist. Treatment goals include normalizing biochemical markers, controlling tumor mass, preserving pituitary function, and relieving signs and symptoms. Surgery reduces tumor volume and is considered first-line therapy. Radiation reduces tumor volume and GH and IGF-I levels, but the onset of action is slow and hypopituitarism typically develops. Therefore, pharmacotherapy is often used following surgery or as first-line therapy for nonresectable tumors. Dopamine agonists can be considered in patients exhibiting minimal disease or those with GH-prolactin-cosecreting tumors but will not achieve hormone normalization in most patients. Somatostatin analogs effectively suppress GH and IGF-I in most patients, but intolerance (e.g. diarrhea, cramping, gallstones) can occur. Pegvisomant, the newest therapeutic option, blocks GH action at peripheral receptors, normalizes IGF-I levels, reduces signs and symptoms, and corrects metabolic defects. Pegvisomant does not appear to affect tumor size and has few adverse effects. Pegvisomant is the most effective drug treatment for acromegaly in normalizing IGF-I and producing a clinical response; it is the preferred agent in patients resistant to or intolerant of somatostatin analogs.

  1. Stability of Human Follicle-Stimulating Hormone Receptor mRNA in Stably Transfected Cells

    Institute of Scientific and Technical Information of China (English)

    朱长虹; 田红

    2001-01-01

    In order to assess the impact of mRNA degradation on steady state levels of follicle-stimulating hormone receptor (FSHR) mRNA and on regulation of FSHR gene expression, the stability and half-life of FSHR mRNA were determined in transfected cells expressing recombinant FSHR. Time-dependent changes in FSHR mRNA content were determined by nuclease protection-solution hybridization assay (NPA) or by qualitative reverse transcription-competitive polymerase chain reaction (RT-PCR) in cultured hFSHR-YI cells, cell lines stably transfected with a human FSHR cDNA. FSHR mRNA content remained constant during 8 h control incubations of hFSHR-Y1 cells (NPA, 2.9±0.3 μg/mg RNA; RT-PCR, 2.7±0.3 μg/mg RNA). Actinomycin D (ActD, 5 μg/ml) inhibited mRNA synthesis, as assessed by incorporation of [3 H]uridine into total RNA, by 90 % within 1 h in hFSHR-Y1 cells. No effect of ActD on cellular morphology or viability was observed. ActD caused a time-dependent decrease in FSHR mRNA content in hFSHR-Y1 cell lines with a lag time of 1 h. There were no significant differences in the rate of FSHR mRNA degradation between the two methods of mRNA quantification. The half-life of hFSHR mRNA was 3.6±0.2 h by NPA and 3.1±0.1 h by RT-PCR. The results indicated that degradation of mRNA was an important process in maintenance of steady state expression of the FSHR gene in cells stably expressing recombinant receptor.

  2. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein.

    Science.gov (United States)

    Yan, Zhang; Jin, Su; Wei, Zhang; Huilian, Hou; Zhanhai, Yin; Yue, Teng; Juan, Li; Jing, Li; Libo, Yao; Xu, Li

    2014-09-01

    Prostate cancer frequently metastasizes to the skeleton but the underlying mechanism remains largely undefined. Discoidin domain receptor 2 (DDR2) is a member of receptor tyrosine kinase (RTK) family and is activated by collagen binding. This study aimed to investigate the function and detailed mechanism of DDR2 in prostate cancer bone dissemination. Herein we found that DDR2 was strongly expressed in bone-metastatic prostate cancer cells and tissues compared to that in normal controls. Enhanced expression of constitutively activated DDR2 led to elevation in motility and invasiveness of prostate cancer cells, whereas knockdown of DDR2 through specific shRNA caused a dramatic repression. Knockdown of DDR2 in prostate cancer cells resulted in significant decrease in the proliferation, differentiation and function of osteoblast. Over-expression of DDR2 in prostate cancer cells resulted in notable acceleration of osteoclast differentiation and bone resorption, whereas knockdown of DDR2 exhibited the opposite effects. An intrabone injection bone metastasis animal model demonstrated that DDR2 promoted osteolytic metastasis in vivo. Molecular evidence demonstrated that DDR2 regulated the expression, secretion, and promoter activity of parathyroid hormone-related protein (PTHrP), via modulating Runx2 phosphorylation and transactivity. DDR2 was responsive to TGF-β and involved in TGF-β-mediated osteoclast activation and bone resorption. In addition, DDR2 facilitated prostate cancer cells adhere to type I collagen. This study reveals for the first time that DDR2 plays an essential role in prostate cancer bone metastasis. The mechanism disclosure may provide therapeutic targets for the treatment of prostate cancer.

  3. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  4. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  5. The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression.

    Science.gov (United States)

    Much, J W; Slade, D J; Klampert, K; Garriga, G; Wightman, B

    2000-02-01

    Specification of neuron identity requires the activation of a number of discrete developmental programs. Among these is pathway selection by growth cones: in order for a neuron's growth cone to respond appropriately to guidance cues presented by other cells or the extracellular matrix, the neuron must express genes to mediate the response. The fax-1 gene of C. elegans is required for pathfinding of axons that extend along the ventral nerve cord. We show that fax-1 is also required for pathfinding of axons in the nerve ring, the largest nerve bundle in the nematode, and for normal expression of FMRFamide-like neurotransmitters in the AVK interneurons. The fax-1 gene encodes a member of the superfamily of nuclear hormone receptors and has a DNA-binding domain related to the human PNR and Drosophila Tailless proteins. We observe fax-1 expression in embryonic neurons, including the AVK interneurons, just prior to axon extension, but after neurogenesis. These data suggest that fax-1 coordinately regulates the transcription of genes that function in the selection of axon pathways, neurotransmitter expression and, perhaps, other aspects of the specification of neuron identity.

  6. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  7. The growth hormone receptor polymorphism in patients with acromegaly: relationship to BMI and glucose metabolism.

    Science.gov (United States)

    Turgut, Sebahat; Akın, Fulya; Ayada, Ceylan; Topsakal, Senay; Yerlikaya, Emrah; Turgut, Günfer

    2012-09-01

    The aim of this study was to investigate association between the frequencies of Growth Hormone receptor (d3GHR) gene polymorphisms and some clinical parameters of acromegalic patients. Total of 35 acromegalic patients were enrolled to study. The d3GHR polymorphism was identified by using polymerase chain reaction from peripheral blood samples. The levels of systolic and diastolic blood pressure, BMI, fasting plasma glucose (FPG), Fasting insulin, HOMA-IR, IGF-I, GH, IGFBP3, triglyceride, HDL and LDL cholesterol concentrations were evaluated. The frequencies of d3GHR genotypes were found as follows; 5 (14.3%) subjects had d3/d3, 11 (31.4%) had d3/fl and 19 (54.3%) had fl/fl in patients. The prevalence of the d3 and fl alleles was 30 and 70%, respectively. Systolic blood pressure, fasting insulin and HOMA-IR was found significantly increased in homozygote d3GHR genotype group compared to d3/fl subjects (P affect BMI, systolic blood pressure and insulin regulation. At the same time we can say homozygote d3GHR genotype and d3 allele carriers may have more risk than other genotypes for high BMI.

  8. The thyroid hormone receptor β induces DNA damage and premature senescence

    Science.gov (United States)

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M.; Garesse, Rafael

    2014-01-01

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate–activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism. PMID:24395638

  9. Correlation of expression of preprothyrotropin-releasing hormone and receptor with rat testis development

    Institute of Scientific and Technical Information of China (English)

    李臻; 张远强; 刘新平; 许若军

    2002-01-01

    Objective To investigate the expression regulation of thyrotrophin-releasing hormone (TRH) and TRH receptor (TRH-R), and their role in the development of rat testis.Methods Oligonucleotide primers were designed from the sequences of rat hypothalamus prepro TRH (ppTRH) and pituitary TRH-R cDNA for reverse transcription polymerase chain reaction (RT-PCR). Specific fragments of ppTRH and TRH-R cDNA were cloned and sequenced. Expression plasmids containing ppTRH and TRH-R genes were then constructed, and expression was found in E.coli DH5-α. ppTRH and TRH-R mRNA in the testis was quantitated in RNA samples prepared from rats at different developmental stages by real time quantitative RT-PCR.Results The quantitative analyses demonstrated that no ppTRH and TRH mRNA could be detected at the earliest stage (day 8). ppTRH and TRH mRNA signals were detected on day 15 and increased progressively on days 20, 35, 60 and 90. Conclusion Our results suggest that rat testis could specifically express TRH and TRH-R, and the transcriptions of ppTRH and TRH-R genes in the rat testis were development-dependent. The acquirement of expressed products for ppTRH and TRH-R can be used for further research on the physiological significance of TRH and TRH-R expression in rat testis.

  10. Vaginal estrogen products in hormone receptor-positive breast cancer patients on aromatase inhibitor therapy.

    Science.gov (United States)

    Sulaica, Elisabeth; Han, Tiffany; Wang, Weiqun; Bhat, Raksha; Trivedi, Meghana V; Niravath, Polly

    2016-06-01

    Atrophic vaginitis represents a major barrier to compliance with aromatase inhibitor (AI) therapy in breast cancer (BC) survivors. While local estrogen therapy is effective for postmenopausal vaginal dryness, the efficacy of such therapies has not been evaluated systematically in hormone receptor-positive (HR+) BC patients on AI therapy. Furthermore, the potential risk of breast cancer recurrence with vaginal estrogen therapy represents a long-term safety concern for the patients with HR + BC. Unfortunately, there is no standardized assay to measure very low concentrations of estradiol (E2) in these women being treated with AI therapy. This makes it difficult to evaluate even indirectly the potential risk of BC recurrence with vaginal estrogen therapy in HR + BC patients on AI therapy. In this review, we describe available assays to measure very low concentrations of E2, discuss the Food and Drug Administration-approved vaginal estrogen products on the market, and summarize published and ongoing clinical trials evaluating the safety and efficacy of vaginal estrogen in HR + BC patients on AI therapy. In the absence of any randomized controlled clinical trials, this review serves as a summary of available clinical data and ongoing studies to aid clinicians in selecting the best available option for their patients.

  11. Synthesis of inositol phosphate ligands of plant hormone-receptor complexes: pathways of inositol hexakisphosphate turnover.

    Science.gov (United States)

    Hanke, David E; Parmar, Paroo N; Caddick, Samuel E K; Green, Porntip; Brearley, Charles A

    2012-06-15

    Reduction of phytate is a major goal of plant breeding programs to improve the nutritional quality of crops. Remarkably, except for the storage organs of crops such as barley, maize and soybean, we know little of the stereoisomeric composition of inositol phosphates in plant tissues. To investigate the metabolic origins of higher inositol phosphates in photosynthetic tissues, we have radiolabelled leaf tissue of Solanum tuberosum with myo-[2-3H]inositol, undertaken a detailed analysis of inositol phosphate stereoisomerism and permeabilized mesophyll protoplasts in media containing inositol phosphates. We describe the inositol phosphate composition of leaf tissue and identify pathways of inositol phosphate metabolism that we reveal to be common to other kingdoms. Our results identify the metabolic origins of a number of higher inositol phosphates including ones that are precursors of cofactors, or cofactors of plant hormone-receptor complexes. The present study affords alternative explanations of the effects of disruption of inositol phosphate metabolism reported in other species, and identifies different inositol phosphates from that described in photosynthetic tissue of the monocot Spirodela polyrhiza. We define the pathways of inositol hexakisphosphate turnover and shed light on the occurrence of a number of inositol phosphates identified in animals, for which metabolic origins have not been defined.

  12. Growth hormone receptor exon 3 isoforms and their implication in growth disorders and treatment.

    Science.gov (United States)

    Jorge, Alexander A L; Arnhold, Ivo J P

    2009-04-01

    Human recombinant growth hormone (hGH) has been used to treat short stature in several different conditions, but considerable inter-individual variation in short- and long-term growth response exists. Pharmacogenomics can provide important insights into hGH therapy. The GH receptor (GHR) is the first key molecule mediating GH action. In the past 3 years, a common GHR polymorphism reflecting the presence (GHRfl) or absence (GHRd3) of exon 3 has been under intensive investigation regarding its influence on the response to hGH therapy. Studies that evaluated response to GH treatment determined by these two GHR isoforms in children with GH deficiency, girls with Turner syndrome, children born small for gestational age and patients with acromegaly showed that patients carrying the GHRd3 allele demonstrated a greater GH sensitivity than patients homozygous for the GHRfl allele. Other studies presented contradictory data, however, which may be caused by confounding factors such as small sample sizes and differences in experimental design. This GHR exon 3 genotype is the first identified genetic factor found to modulate the individual response to GH therapy. This article reviews the historical aspects and pharmacogenetic studies published to date in relation to this GHR polymorphism. The analyses of present and future validation studies may define the use of this and other polymorphisms in clinical practice, moving from pharmacogenetics to routine application and allowing individualization of hGH doses to optimize final outcome.

  13. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor.

    Science.gov (United States)

    DaSilva, John; Gioeli, Daniel; Weber, Michael J; Parsons, Sarah J

    2009-09-15

    During progression to an androgen-independent state following androgen ablation therapy, prostate cancer cells continue to express the androgen receptor (AR) and androgen-regulated genes, indicating that AR is critical for the proliferation of hormone-refractory prostate cancer cells. Multiple mechanisms have been proposed for the development of AR-dependent hormone-refractory disease, including changes in expression of AR coregulatory proteins, AR mutation, growth factor-mediated activation of AR, and AR protein up-regulation. The most prominent of these progressive changes is the up-regulation of AR that occurs in >90% of prostate cancers. A common feature of the most aggressive hormone-refractory prostate cancers is the accumulation of cells with neuroendocrine characteristics that produce paracrine factors and may provide a novel mechanism for the regulation of AR during advanced stages of the disease. In this study, we show that neuroendocrine-derived parathyroid hormone-related protein (PTHrP)-mediated signaling through the epidermal growth factor receptor (EGFR) and Src pathways contributes to the phenotype of advanced prostate cancer by reducing AR protein turnover. PTHrP-induced accumulation of AR depended on the activity of Src and EGFR and consequent phosphorylation of the AR on Tyr(534). PTHrP-induced tyrosine phosphorylation of AR resulted in reduced AR ubiquitination and interaction with the ubiquitin ligase COOH terminus of Hsp70-interacting protein. These events result in increased accumulation of AR and thus enhanced growth of prostate cancer cells at low levels of androgen.

  14. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia.

    Science.gov (United States)

    Hauser, Frank; Grimmelikhuijzen, Cornelis J P

    2014-12-01

    In this review we trace the evolutionary connections between GnRH receptors from vertebrates and the receptors for adipokinetic hormone (AKH), AKH/corazonin-related peptide (ACP), and corazonin from arthropods. We conclude that these G protein-coupled receptors (GPCRs) are closely related and have a common evolutionary origin, which dates back to the split of Proto- and Deuterostomia, about 700 million years ago. We propose that in the protostomian lineage, the ancestral GnRH-like receptor gene duplicated as did its GnRH-like ligand gene, followed by diversification, leading to (i) a corazonin receptor gene and a corazonin-like ligand gene, and (ii) an AKH receptor gene and an AKH-like ligand gene in the Mollusca and Annelida. Subsequently, the AKH receptor and ligand genes duplicated once more, yielding the situation that we know from arthropods today, where three independent hormonal systems exist, signalling with AKH, ACP, and corazonin. Our model for the evolution of GnRH signaling in the Protostomia is a striking example of receptor-ligand co-evolution. This model has been developed using several bioinformatics tools (TBLASTN searches, phylogenetic tree analyses), which also helped us to annotate six novel AKH preprohormones and their corresponding AKH sequences from the following molluscs: the sea hare Aplysia californica (AKH sequence: pQIHFSPDWGTamide), the sea slug Tritonia diomedea (pQIHFSPGWEPamide), the fresh water snail Bithynia siamensis goniomphalos (pQIHFTPGWGSamide), the owl limpet Lottia gigantea (pQIHFSPTWGSamide), the oyster Crassostrea gigas (pQVSFSTNWGSamide), and the freshwater pearl mussel Hyriopsis cumingii (pQISFSTNWGSamide). We also found AKHs in the tardigrade Hysibius dujardini (pQLSFTGWGHamide), the rotifer Brachionus calycifloros (pQLTFSSDWSGamide), and the penis worm Priapulus caudatus (pQIFFSKGWRGamide). This is the first report, showing that AKH signaling is widespread in molluscs.

  15. Functional Authentication of a Novel Gastropod Gonadotropin-Releasing Hormone Receptor Reveals Unusual Features and Evolutionary Insight.

    Science.gov (United States)

    Kavanaugh, Scott I; Tsai, Pei-San

    2016-01-01

    A gonadotropin-releasing hormone (GnRH)-like molecule was previously identified in a gastropod, Aplysia californica, and named ap-GnRH. In this study, we cloned the full-length cDNA of a putative ap-GnRH receptor (ap-GnRHR) and functionally authenticated this receptor as a bona fide ap-GnRHR. This receptor contains two potential translation start sites, each accompanied by a Kozak sequence, suggesting the translation of a long and a short form of the receptor is possible. The putative ap-GnRHR maintains the conserved structural motifs of GnRHR-like receptors and shares 45% sequence identity with the octopus GnRHR. The expression of the putative ap-GnRHR short form is ubiquitous in all tissues examined, whereas the long form is only expressed in parts of the central nervous system, osphradium, small hermaphroditic duct, and ovotestis. The cDNA encoding the long or the short receptor was transfected into the Drosophila S2 cell line and subject to a radioreceptor assay using 125I-labeled ap-GnRH as the radioligand. Further, the transfected cells were treated with various concentrations of ap-GnRH and measured for the accumulation of cAMP and inositol monophosphate (IP1). Radioreceptor assay revealed that only the long receptor bound specifically to the radioligand. Further, only the long receptor responded to ap-GnRH with an increased accumulation of IP1, but not cAMP. Our studies show that despite the more prevalent expression of the short receptor, only the long receptor is the functional ap-GnRHR. Importantly, this is only the second report on the authentication of a protostome GnRHR, and based on the function and the phylogenetic grouping of ap-GnRHR, we suggest that this receptor is more similar to protostome corazonin receptors than chordate GnRHRs.

  16. Functional Authentication of a Novel Gastropod Gonadotropin-Releasing Hormone Receptor Reveals Unusual Features and Evolutionary Insight

    Science.gov (United States)

    Kavanaugh, Scott I.

    2016-01-01

    A gonadotropin-releasing hormone (GnRH)-like molecule was previously identified in a gastropod, Aplysia californica, and named ap-GnRH. In this study, we cloned the full-length cDNA of a putative ap-GnRH receptor (ap-GnRHR) and functionally authenticated this receptor as a bona fide ap-GnRHR. This receptor contains two potential translation start sites, each accompanied by a Kozak sequence, suggesting the translation of a long and a short form of the receptor is possible. The putative ap-GnRHR maintains the conserved structural motifs of GnRHR-like receptors and shares 45% sequence identity with the octopus GnRHR. The expression of the putative ap-GnRHR short form is ubiquitous in all tissues examined, whereas the long form is only expressed in parts of the central nervous system, osphradium, small hermaphroditic duct, and ovotestis. The cDNA encoding the long or the short receptor was transfected into the Drosophila S2 cell line and subject to a radioreceptor assay using 125I-labeled ap-GnRH as the radioligand. Further, the transfected cells were treated with various concentrations of ap-GnRH and measured for the accumulation of cAMP and inositol monophosphate (IP1). Radioreceptor assay revealed that only the long receptor bound specifically to the radioligand. Further, only the long receptor responded to ap-GnRH with an increased accumulation of IP1, but not cAMP. Our studies show that despite the more prevalent expression of the short receptor, only the long receptor is the functional ap-GnRHR. Importantly, this is only the second report on the authentication of a protostome GnRHR, and based on the function and the phylogenetic grouping of ap-GnRHR, we suggest that this receptor is more similar to protostome corazonin receptors than chordate GnRHRs. PMID:27467252

  17. Expression of lymphocyte-derived growth hormone (GH) and GH-releasing hormone receptors in aging rats.

    Science.gov (United States)

    Weigent, Douglas A

    2013-04-01

    In the present study, we show that higher levels of lymphocyte GH are expressed in spleen cells from aging animals compared to young animals. Further, leukocytes from primary and secondary immune tissues and splenic T and B cells from aging rats all express higher levels of GHRH receptors compared to younger animals. Bone marrow and splenic T cells express the highest levels of GHRH receptor in aging animals. Spleen cells from aging animals showed no significant change in proliferation or GH induction after treatment with GHRH. Taken together, the data for the first time show alterations in GH synthesis and expression of the GHRH receptor on cells of the immune system that may play a role in the immune response in aging.

  18. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome

    OpenAIRE

    2004-01-01

    Background and aims: Corticotropin releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with an exaggerated response to stress. We hypothesised that peripheral administration of α-helical CRH (αhCRH), a non-selective CRH receptor antagonist, would improve gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation in IBS patient...

  19. Melanin concentrating hormone and estrogen receptor-α are coexstensive but not coexpressed in cells of male rat hypothalamus

    OpenAIRE

    Muschamp, John W.; Hull, Elaine M.

    2007-01-01

    In male rats, estradiol (E2) exerts marked anorectic effects. One mechanism proposed for this effect is an E2-mediated down-regulation of the orexigenic neuropeptide melanin concentrating hormone (MCH). Previous anatomical work has shown that both MCH and estrogen receptor α (ERα) are found in quantity in the lateral hypothalamic area (LHA), a structure long associated with appetite and ingestive behavior. It has been hypothesized that the most direct manner by which E2 could affect MCH expre...

  20. Effect of Yoga and Traditional Physical Exercise on Hormones and Percentage Insulin Binding Receptor in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Lorenzo Gordon

    2008-01-01

    Full Text Available The objective of the study was to investigate the short-term impact of a brief lifestyle intervention of yoga and traditional Physical Training (PT exercise regimens on: serum insulin, percentage insulin binding receptor, internalization of insulin-receptor complex, T3, T4, TSH and cortisol at baseline, 3 months and 6 months in patients with type 2 diabetes mellitus. A total of 231 patients completed this prospective randomized study with 77 type 2 diabetic patients in the yoga group (62 females and 15 males that were matched with the same number of patients in the traditional Physical Training (PT exercise and control groups. Biochemical parameters such as fasting Blood Glucose (FBG, serum insulin, percentage insulin binding receptor and internalization of insulin-receptor complex were determined at the beginning (baseline and two consecutive three monthly intervals. The effect of the lifestyle interventions on hormones such as cortisol, TSH, T4 and T3 were also investigated. The FBG concentration in the yoga and the traditional PT exercise groups were markedly decreased compared with control (P 0.05. The findings indicates the beneficial effects of yoga and traditional PT exercise regimens in improving glycaemic control by increasing percentage insulin binding receptor in type 2 diabetic patients with no significant change in cortisol and thyroid hormones.

  1. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R;

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...... proliferation after interleukin 3 withdrawal at a rate equal to maximally stimulated wild type GHR-expressing cells. Activation of STAT 5b was also observed in Fos-Jun-GHR-expressing cells at a level equal to that in chronically GH-treated GHR-expressing cells. Thus, forced dimerization of the transmembrane...... and cytoplasmic domains of the GHR in the absence of the extracellular domain can lead to the constitutive activation of known GH signaling end points, supporting the view that proximity of Janus kinase 2 (JAK2) kinases is the essential element in signaling. Such constitutively active GH receptors may have...

  2. Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays.

    Science.gov (United States)

    Van der Linden, Sander C; Heringa, Minne B; Man, Hai-Yen; Sonneveld, Edwin; Puijker, Leo M; Brouwer, Abraham; Van der Burg, Bart

    2008-08-01

    It is generally known that there are compounds present in the aquatic environment that can disturb endocrine processes, for example via interaction with the endogenous hormone receptors. Most research so far has focused on compounds that bind to the estrogen and/or androgen receptor, but ligands for other hormone receptors might also be present. In this study, a newly completed panel of human cell derived CALUX reporter gene bioassays was utilized to test water extracts for estrogen (ER), as well as androgen (AR), progesterone (PR), and glucocorticoid (GR) receptor mediated transactivation activity. Effluents from industry, hospital, and municipal sewage treatment plants, as well as tap water and different sources of surface water were tested. The CALUX reporter gene panel showed high sensitivity and specificity to known agonists, enabling discrimination between different receptor based endocrine responses present in the aquatic environment. Our results clearly showed the presence of agonistic activity on the ER, as well as on the AR, PR, and GR in the raw and wastewater and surface water extracts. However, no hormone receptor-mediated transactivation was detected in the drinking water or in the blank water. The levels of estrogenic activity were 0.2-0.5 ng E2-equiv/L for surface water and 0.4-1.0 ng E2-equiv/L for municipal effluents, which was consistent with previous studies. Surprisingly, the other hormonal activities were found to be present in similar or much higher levels. Most notably, glucocorticoid-like activity was detected in all samples, at surprisingly high levels ranging from 0.39-1.3 ng Dex-equiv/L in surface water and 11-243 ng Dex-equiv/L in effluents. When regarding the fact that dexamethasone in the GR CALUX bioassay is a factor 12 more potent than the natural hormone cortisol, results expressed as cortisol equivalents would range up to 2900 ng cortisol equiv/L. Further studies are needed to establish the identity of the active compounds and to

  3. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Gradishar WJ

    2016-07-01

    Full Text Available William J Gradishar Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA Abstract: Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. Keywords: community oncologists, hormone receptor-positive advanced breast cancer, endocrine resistance

  4. Expression of receptors for luteinizing hormone, gastric-inhibitory polypeptide, and vasopressin in normal adrenal glands and cortisol-secreting adrenocortical tumors in dogs

    NARCIS (Netherlands)

    Galac, S.; Kars, V.J.; Klarenbeek, S.; Teerds, K.J.; Mol, J.A.; Kooistra, H.S.

    2010-01-01

    Hypercortisolism caused by an adrenocortical tumor (AT) results from adrenocorticotropic hormone (ACTH)-independent hypersecretion of glucocorticoids. Studies in humans demonstrate that steroidogenesis in ATs may be stimulated by ectopic or overexpressed eutopic G protein-coupled receptors. We repor

  5. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    Science.gov (United States)

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  6. Prostate-Derived Ets Transcription Factor Overexpression is Associated with Nodal Metastasis, Hormone Receptor Positivity in Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Simon Turcotte

    2007-10-01

    Full Text Available Prostate-derived Ets transcription factor (PDEF has recently been associated with invasive breast cancer, but no expression profile has been defined in clinical specimens. We undertook a comprehensive PDEF transcriptional expression study of 86 breast cancer clinical specimens, several cell lines, normal tissues. PDEF expression profile was analyzed according to standard clinicopathologic parameters, compared with hormonal receptor, HER-2/neu status, to the expression of the new tumor biomarker Dikkopf-1 (DKK1. Wide ranging PDEF overexpression was observed in 74% of tested tumors, at higher levels than the average expression found in normal breasts. High PDEF expression was associated with hormone receptor positivity (P < .001, moderate to good differentiation (less than grade III, P = .01, dissemination to axillary lymph nodes (P = .002. PDEF was an independent risk factor for nodal involvement (multivariate analysis, odds ratio 1.250, P = .002. It was expressed in a different subgroup compared to DKK1-expressing tumors (P < .001. Our data imply that PDEF mRNA expression could be useful in breast cancer molecular staging. Further insights into PDEF functions at the protein level, possible links with hormone receptors biology, bear great potential for new therapeutic avenues.

  7. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    OpenAIRE

    Vamvakopoulos, N C; Sioutopoulou, T. O.; Mamuris, Z.; Marcoulatos, P.; Avgerinos, P. C.

    1996-01-01

    We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline....

  8. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status.

    Directory of Open Access Journals (Sweden)

    Rym Ghaddab-Zroud

    Full Text Available Reversing the escalating rate of obesity requires increased knowledge of the molecular mechanisms controlling energy balance. Liver X receptors (LXRs and thyroid hormone receptors (TRs are key physiological regulators of energetic metabolism. Analysing interactions between these receptors in the periphery has led to a better understanding of the mechanisms involved in metabolic diseases. However, no data is available on such interactions in the brain. We tested the hypothesis that hypothalamic LXR/TR interactions could co-regulate signalling pathways involved in the central regulation of metabolism. Using in vivo gene transfer we show that LXR activation by its synthetic agonist GW3965 represses the transcriptional activity of two key metabolic genes, Thyrotropin-releasing hormone (Trh and Melanocortin receptor type 4 (Mc4r in the hypothalamus of euthyroid mice. Interestingly, this repression did not occur in hypothyroid mice but was restored in the case of Trh by thyroid hormone (TH treatment, highlighting the role of the triiodothyronine (T3 and TRs in this dialogue. Using shLXR to knock-down LXRs in vivo in euthyroid newborn mice, not only abrogated Trh repression but actually increased Trh transcription, revealing a potential inhibitory effect of LXR on the Hypothalamic-Pituitary-Thyroid axis. In vivo chromatin immunoprecipitation (ChIP revealed LXR to be present on the Trh promoter region in the presence of T3 and that Retinoid X Receptor (RXR, a heterodimerization partner for both TR and LXR, was never recruited simultaneously with LXR. Interactions between the TR and LXR pathways were confirmed by qPCR experiments. T3 treatment of newborn mice induced hypothalamic expression of certain key LXR target genes implicated in metabolism and inflammation. Taken together the results indicate that the crosstalk between LXR and TR signalling in the hypothalamus centres on metabolic and inflammatory pathways.

  9. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.; Xu, H. Eric; (Van Andel); (Mass. Gen. Hosp.)

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.

  10. Hair-cycle-dependent expression of parathyroid hormone-related protein and its type I receptor: evidence for regulation at the anagen to catagen transition.

    Science.gov (United States)

    Cho, Yong Mee; Woodard, Grant L; Dunbar, Maureen; Gocken, Todd; Jimènez, Juan A; Foley, John

    2003-05-01

    The humoral hypercalcemia factor parathyroid hormone-related protein is a paracrine-signaling molecule that regulates the development of several organ systems, including the skin. In pathologic circumstances such as hypercalcemia and in development, parathyroid hormone-related protein signaling appears to be mediated by the type I parathyroid hormone/parathyroid hormone-related protein receptor. In order to clarify the role of the ligand and receptor pair in cutaneous biology, gene expression was monitored in a series of murine skin samples ranging from embryonic day 14 to 2 y with in situ hybridization and RNase protection. In all samples, high levels of parathyroid hormone-related protein transcripts were exclusively expressed in the developing and adult hair follicle but were not observed in the interfollicular epidermis. In the adult, parathyroid hormone-related protein mRNA expression was dynamically regulated as a function of the murine hair cycle in a way similar to other signaling molecules that regulate the anagen to catagen transition. PTH receptor transcripts were abundantly expressed in the developing dermis. In the adult skin, PTH receptor mRNA was markedly reduced, but again demonstrated hair-cycle-dependent expression. The dorsal skin of the keratin 14-parathyroid hormone-related protein mouse was used to evaluate the impact of overexpression of the peptide on the murine hair cycle. All types of hair were 30-40% shorter in adult keratin 14-parathyroid hormone-related protein mice as compared with wild-type littermates. This appeared to result from a premature entry into the catagen phase of the hair cycle. Finally, the relationship between parathyroid hormone-related protein signaling and other growth factors that regulate the hair cycle was examined by cross-breeding experiments employing keratin 14-parathyroid hormone-related protein mice and fibroblast growth factor-5-knockout mice. It appears that parathyroid hormone-related protein and

  11. Search for genetic variants in the retinoid X receptor-gamma-gene by polymerase chain reaction-single-strand conformation polymorphism in patients with resistance to thyroid hormone without mutations in thyroid hormone receptor beta gene.

    Science.gov (United States)

    Romeo, Stefano; Menzaghi, Claudia; Bruno, Rocco; Sentinelli, Federica; Fallarino, Mara; Fioretti, Francesca; Filetti, Sebastiano; Balsamo, Armando; Di Mario, Umberto; Baroni, Marco G

    2004-05-01

    Resistance to thyroid hormone (RTH) is an inherited disease characterized by reduced tissue sensitivity to thyroid hormone. Approximately 90% of subjects with RTH have mutation in the thyroid hormone receptor beta (TRbeta) gene. Approximately 10% of subjects diagnosed as having RTH do not carry mutation in the TRbeta gene. A possible linkage was reported with the retinoid X receptor-gamma (RXR-gamma) gene in two families. The aim of this study is to search for mutation within the RXR-gamma gene in unrelated subjects with diagnosed RTH without mutations in the TRbeta gene. Four subjects with RTH were studied, and sequence variants in the RXR-gamma gene were searched by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Analysis of all the 10 exons of the RXR-gamma gene, including intron-exon boundaries, promoter region and 3' untranslated region (UTR) reveled two variant bands in subjects II and III. Sequencing of these variants showed two single nucleotide polymorphisms (SNPs): 447C > T in exon 3 for patients II and IVS9 + 6A > G for patient III. Both SNPs were also present at high frequency in a group of normal subjects and in nonaffected relatives of subject III. In conclusion, in patients with RTH we have found two SNPs in the RXR-gamma gene; these SNPS are common in the general population, thus excluding a role for the RXR-gamma gene in these patients.

  12. Tolerability of Therapies Recommended for the Treatment of Hormone Receptor-Positive Locally Advanced or Metastatic Breast Cancer.

    Science.gov (United States)

    Ohno, Shinji

    2016-08-01

    For women with hormone receptor-positive advanced breast cancer, endocrine therapies, including the selective estrogen receptor modulator tamoxifen, the aromatase inhibitors anastrozole, letrozole, and exemestane, and the selective estrogen receptor degrader fulvestrant, are recommended in clinical guidelines. The addition of targeted agents such as everolimus or palbociclib to aromatase inhibitors are also recommended as treatment options. Chemotherapy remains an option, although clinical guidelines have recommended these agents be reserved for patients with immediately life-threatening disease or if resistance to endocrine therapy is known or suspected. The present review has consolidated the tolerability profiles of the agents approved for use in the treatment of hormone receptor-positive advanced or metastatic breast cancer based on phase III registration trial data. Endocrine therapies are generally well tolerated, although the addition of targeted therapies to aromatase inhibitors or fulvestrant appears to increase the proportion of patients experiencing adverse events, and palbociclib and chemotherapy appear to be more closely associated with serious adverse events, including neutropenia.

  13. Two gonadotropin-releasing hormone receptor subtypes with distinct ligand selectivity and differential distribution in brain and pituitary in the goldfish (Carassius auratus)

    OpenAIRE

    Illing, Nicola; Troskie, Brigitte E.; Nahorniak, Carol S.; Janet P Hapgood; Peter, Richard E.; Millar, Robert P.

    1999-01-01

    In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring...

  14. Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Danielle Doucet

    Full Text Available BACKGROUND: Acute lung injury (ALI and the development of the multiple organ dysfunction syndrome (MODS is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ERalpha and ERbeta in modulating the protective response of female rats to T/HS-induced gut and lung injury. METHODS/PRINCIPAL FINDINGS: The incidence of gut and lung injury was assessed in PE and ovariectomized (OVX female rats subjected to T/HS or trauma sham shock (T/SS as well as OVX rats that were administered estradiol (E2 or agonists for ERalpha or ERbeta immediately prior to resuscitation. Marked gut and lung injury was observed in OVX rats subjected to T/HS as compared to PE rats or E2-treated OVX rats subjected to T/HS. Both ERalpha and ERbeta agonists were equally effective in limiting T/HS-induced morphologic villous injury and bacterial translocation, whereas the ERbeta agonist was more effective than the ERalpha agonist in limiting T/HS-induced lung injury as determined by histology, Evan's blue lung permeability, bronchoalevolar fluid/plasma protein ratio and myeloperoxidase levels. Similarly, treatment with either E2 or the ERbeta agonist attenuated the induction of the intestinal iNOS response in OVX rats subjected to T/HS whereas the ERalpha agonist was only partially protective. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that estrogen attenuates T/HS-induced gut and lung injury and that its protective effects are mediated by the activation of ERalpha, ERbeta or both receptors.

  15. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Williams, Tanya J; Torres-Reveron, Annelyn; Chapleau, Jeanette D; Milner, Teresa A

    2011-02-01

    Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that

  16. Calcium-sensing receptor expression and parathyroid hormone secretion in hyperplastic parathyroid glands from humans.

    Science.gov (United States)

    Cañadillas, Sagrario; Canalejo, Antonio; Santamaría, Rafael; Rodríguez, Maria E; Estepa, Jose C; Martín-Malo, Alejandro; Bravo, Juan; Ramos, Blanca; Aguilera-Tejero, Escolastico; Rodríguez, Mariano; Almadén, Yolanda

    2005-07-01

    In uremic patients, severe parathyroid hyperplasia is associated with reduced parathyroid calcium-sensing receptor (CaR) expression. Thus, in these patients, a high serum Ca concentration may be required to inhibit parathyroid hormone (PTH) secretion. This study compares the magnitude of reduction in CaR expression and the degree of the abnormality in Ca-regulated PTH release in vitro. A total of 50 glands from 23 hemodialysis patients with refractory hyperparathyroidism were studied. Tissue slices were incubated in vitro to evaluate (1) the PTH secretory output in a normal Ca concentration (1.25 mM) and (2) the PTH secretory response to high (1.5 mM) and low (0.6 mM) Ca concentration. Tissue aliquots were processed for determination of CaRmRNA expression. The results showed that, corrected for DNA, parathyroid tissue with lowest CaR expression secreted more PTH than that with relatively high CaR expression (146 +/- 23 versus 60 +/- 2 pg/microg DNA; P < 0.01). Furthermore, glands with low CaR expression demonstrated a blunted PTH secretory response to both the inhibitory effect of high Ca and the stimulatory effect of low Ca. The study also showed that the larger the gland, the lower the CaRmRNA expression. Thus, large parathyroid glands produce a large amount of PTH not only as a result of the increased gland size but also because the parathyroid tissue secretory output is increased. These abnormalities in PTH regulation are related to low CaR expression.

  17. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development.

    Science.gov (United States)

    Mueller, Kristina M; Themanns, Madeleine; Friedbichler, Katrin; Kornfeld, Jan-Wilhelm; Esterbauer, Harald; Tuckermann, Jan P; Moriggl, Richard

    2012-09-25

    Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.

  18. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity.

    Directory of Open Access Journals (Sweden)

    Michael S Bonkowski

    Full Text Available Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15% CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30% CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.

  19. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs

    Institute of Scientific and Technical Information of China (English)

    XU; Qingfu; (胥清富); ZHAO; Zhihui; (赵志辉); NI; Yingdong; (倪迎冬); ZHAO; Ruqian; (赵茹茜); CHEN; Jie; (陈杰)

    2003-01-01

    Sixteen Large White × Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg@d-1) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  20. Design and characterization of a fluorescent ghrelin analog for imaging the growth hormone secretagogue receptor 1a.

    Science.gov (United States)

    McGirr, Rebecca; McFarland, Mark S; McTavish, Jillian; Luyt, Leonard G; Dhanvantari, Savita

    2011-12-10

    Ghrelin is a 28-amino acid peptide hormone produced in the stomach. It binds to the growth hormone secretagogue receptor 1a (GHS-R1a), a class A G-protein-coupled receptor. In the present study, we describe the design, synthesis and characterization of a truncated, 18-amino acid analog of ghrelin conjugated to a fluorescent molecule, fluorocein isothiocyanate (FITC), through the addition of a lysine at its C terminus ([Dpr(octanoyl)(3), Lys(fluorescein)(19)]ghrelin(1-19)). Receptor binding affinity of this novel fluorescein-ghrelin(1-18) was similar to that of wild-type ghrelin and a synthetic GHS-R1a ligand, hexarelin. Live cell imaging in CHO/GHS-R1a cells demonstrated cell surface receptor labeling and internalization, and agonist activity of fluorescein-ghrelin(1-18) was confirmed by increased phosphorylation of ERK1/2. We also show that GHS-R1a protein is expressed primarily in the heart when compared to all other organs, suggesting high receptor density in the left ventricle. Finally, we demonstrate that fluorescein-ghrelin(1-18) binds specifically to heart tissue in situ, and its binding is displaced by both wt ghrelin and hexarelin. We have therefore developed a novel imaging probe, fluorescein-ghrelin(1-18), that can be used to image GHS-R1a in situ, for the purposes of investigating mechanisms of receptor trafficking or pharmacological agents that target GHS-R1a.

  1. PET imaging of brain sex steroid hormone receptors and the role of estrogen in depression

    NARCIS (Netherlands)

    Khayum, Mohamed Abdul

    2015-01-01

    Androgens and estrogens are steroid hormones that are involved in several neurodegenerative and psychiatric disorders. Decreased levels of steroid hormones are associated with e.g. decreased cognition, anxiety and depression. Androgens and estrogens exert their biological effects through their corre

  2. T-Screen as a tool to identify thyroid hormone receptor active compounds

    NARCIS (Netherlands)

    Gutleb, A.C.; Meerts, I.A.T.M.; Bergsma, J.H.; Schriks, M.; Murk, A.J.

    2005-01-01

    The T-Screen represents an in vitro bioassay based on thyroid hormone dependent cell proliferation of a rat pituitary tumour cell line (GH3) in serum-free medium. It can be used to study interference of compounds with thyroid hormone at the cellular level, thus bridging the gap between limitations o

  3. Activation of GABA B receptors in the anterior pituitary inhibits prolactin and luteinizing hormone secretion.

    Science.gov (United States)

    Lux-Lantos, V; Rey, E; Libertun, C

    1992-11-01

    Previous work from our laboratory showed that baclofen could lower serum prolactin (PRL) levels acting at the central nervous system. The present experiments were designed to evaluate whether the gamma-aminobutyric acid B agonist was also effective in inhibiting hormone release at the pituitary level. In monolayer cultures of adenohypophyseal dispersed cells, baclofen inhibited basal PRL secretion after 1 or 2 h of incubation. This inhibition was significantly abolished by three antagonists: phaclofen, 3-aminopropyl-phosphonic acid and 4-aminobutylphosphonic acid. Furthermore, baclofen inhibited the thyrotropin-releasing hormone-induced PRL release in a concentration-dependent manner. With regard to gonadotropin secretion, baclofen was unable to modify basal luteinizing hormone (LH) secretion, but significantly inhibited the LH-releasing hormone-induced LH release. These results show that baclofen, in addition to its central neuroendocrine effects, inhibits pituitary hormone secretion, under basal and/or stimulated conditions, by direct action at the pituitary level.

  4. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    Science.gov (United States)

    Re, Michelle; Pampillo, Macarena; Savard, Martin; Dubuc, Céléna; McArdle, Craig A; Millar, Robert P; Conn, P Michael; Gobeil, Fernand; Bhattacharya, Moshmi; Babwah, Andy V

    2010-07-08

    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  5. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    Directory of Open Access Journals (Sweden)

    Michelle Re

    Full Text Available The mammalian type I gonadotropin releasing hormone receptor (GnRH-R is a structurally unique G protein-coupled receptor (GPCR that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME. Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  6. Luteal versus follicular phase surgical oophorectomy plus tamoxifen in premenopausal women with metastatic hormone receptor positive breast cancer

    Science.gov (United States)

    Love, Richard R.; Hossain, Syed Mozammel; Hussain, Md. Margub; Mostafa, Mohammad Golam; Laudico, Adriano V.; Siguan, Stephen Sixto S.; Adebamowo, Clement; Sun, Jing-zhong; Fei, Fei; Shao, Zhi-Ming; Yunjiang, Liu; Akram Hussain, Syed Md.; Zhang, Baoning; Lin, Cheng; Panigaro, Sonar; Walta, Fardiana; Chuan, Jiang Hong; Mirasol-Lumague, Maria Rica; Yip, Cheng-Har; Navarro, Narciso S.; Huang, Chiun-sheng; Lu, Yen-shen; Ferdousy, Tahmina; Salim, Reza; Akhter, Chameli; Nahar, Shamsun; Uy, Gemma; Young, Gregory S.; Hade, Erinn M.; Jarjoura, David

    2016-01-01

    Purpose In premenopausal women with metastatic hormone receptor positive breast cancer, hormonal therapy is the first line therapy. GnRH + tamoxifen therapies have been found to be more effective. The pattern of recurrence risk over time after primary surgery suggests that peri-operative factors impact recurrence. Secondary analyses of an adjuvant trial suggested that the luteal phase timing of surgical oophorectomy in the menstrual cycle simultaneous with primary breast surgery favorably influenced long-term outcomes. Methods 249 premenopausal women with incurable or metastatic hormone receptor positive breast cancer entered a trial in which they were randomized to historical mid-luteal or mid-follicular phase surgical oophorectomy followed by oral tamoxifen treatment. Kaplan-Meier methods, the log-rank test, and multivariable Cox regression models were used to assess overall and progression free survival in the two randomized groups and by hormone confirmed menstrual cycle phase. Results Overall survival (OS) and progression-free survival were not demonstrated to be different in the two randomized groups. In a secondary analysis, OS appeared worse in luteal phase surgery patients with progesterone levels of <2ng/ml (anovulatory patients) (adjusted hazard ratio 1.46, 95% CI: 0.89–2.41, p=0.14) compared to patients in luteal phase with progesterone 2ng/ml or higher. Median overall survival was 2.0 years (95% CI: 1.7 – 2.3) and OS at 4 years was 26%. Conclusions The history-based timing of surgical oophorectomy in the menstrual cycle did not influence outcomes in this trial of metastatic patients. ClinicalTrials.gov number NCT 00293540 PMID:27107325

  7. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, V G; Erritzoe, D; Madsen, J

    2009-01-01

    Gender influences brain function including serotonergic neurotransmission, which may play a role in the well-known gender variations in vulnerability to mood and anxiety disorders. Even though hormonal replacement therapy in menopause is associated with globally increased cerebral 5-HT(2A) receptor...... to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.......31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding....

  8. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    OpenAIRE

    PERONI, CIBELE N.; Cesar Y. Hayashida; Nancy Nascimento; LONGUINI, VIVIANE C.; Toledo, Rodrigo A.; Paolo Bartolini; Bowers, Cyril Y.; Toledo,Sergio P. A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormone-receptors, were compared to those ...

  9. Follicle-stimulating Hormone (FSH) Induced Internalization of Porcine FSH Receptor in Cultured Porcine Granulosa Cells and Chinese Hamster Ovary Cells Transfected with Recombinant Porcine FSH Receptor cDNA

    Institute of Scientific and Technical Information of China (English)

    ZHU; Changhong; TIAN; Hong; XIONG; Zhongming; XIA; Huizhu

    2001-01-01

    In order to study the fate of human follicle-stimulating hormone (FSH) when hormone binds to its receptor, a quick biochemical method that can differentiate between the surface-bound and internalized hormone was used to determine the internalization induced by FSH in cultured both porcine granulosa cells and Chinese hamster ovary (CHO) cells expressing recombinant porcine FSH receptor. The results showed that FSH was slowly internalized, and the internalized radioactivity (acid resistant) reached a peak 10-12 h after addition of 125I-hFSH. It was suggested that FSHR do not get internalized rapidly under physiological circumstances precisely because the appropriate sequences are absent.

  10. Neuropeptide S receptor 1 expression in the intestine and skin--putative role in peptide hormone secretion.

    Science.gov (United States)

    Sundman, L; Saarialho-Kere, U; Vendelin, J; Lindfors, K; Assadi, G; Kaukinen, K; Westerholm-Ormio, M; Savilahti, E; Mäki, M; Alenius, H; D'Amato, M; Pulkkinen, V; Kere, J; Saavalainen, P

    2010-01-01

    Neuropeptide S receptor 1 (NPSR1) was recently found to be genetically associated with inflammatory bowel disease in addition to asthma and related traits. Epithelia of several organs express NPSR1 isoforms A and B, including the intestine and the skin, and NPSR1 appears to be upregulated in inflammation. In this study, we used cell lines and tissue samples to characterize the expression of NPSR1 and its ligand neuropeptide S (NPS) in inflammation. We used polyclonal and monoclonal antibodies to investigate the expression of NPS and NPSR1 in intestinal diseases, such as celiac disease and food allergy, and in cutaneous inflammatory disorders. We found that NPSR1-A was expressed by the enteroendocrine cells of the gut. Overall, the expression pattern of NPS was similar to its receptor suggesting an autocrine mechanism. In an NPSR1-A overexpressing cell model, stimulation with NPS resulted in a dose-dependent upregulation of glycoprotein hormone, alpha polypeptide (CGA), tachykinin 1 (TAC1), neurotensin (NTS) and galanin (GAL) encoding peptide hormones secreted by enteroendocrine cells. Because NPSR1 was also expressed in macrophages, neutrophils, and intraepithelial lymphocytes, we demonstrated that stimulation with the pro-inflammatory cytokines tumour necrosis factor alpha and interferon gamma increased NPSR1 expression in the THP-1 monocytic cells. In conclusion, similar to other neuropeptides and their receptors, NPSR1 signalling might play a dual role along the gut-brain axis. The NPS/NPSR1 pathway may participate in the regulation of the peptide hormone production in enteroendocrine cells of the small intestine.

  11. Influence of Music on Steroid Hormones and the Relationship between Receptor Polymorphism and Musical Ability: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Hajime eFukui

    2013-12-01

    Full Text Available Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females were recruited and divided into musically talented and control groups. The subjects selected (1 music they preferred (chill-inducing music and (2 music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.

  12. Considerations for payers in managing hormone receptor-positive advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Chitre M

    2014-07-01

    Full Text Available Mona Chitre,1 Kristen M Reimers21Pharmacy Management, Excellus BlueCross BlueShield, Rochester, NY, USA; 2Clinical Drug Programs, Magellan Health/Icore, Orlando, FL, USAAbstract: Breast cancer (BC is the second most common cause of death in women. In 2010, the direct cost associated with BC care in the US was $16.5 billion, the highest among all cancers. By the year 2020, at the current rates of incidence and survival, the cost is projected to increase to approximately $20 billion. Although endocrine therapies to manage hormone receptor-positive (HR+ BC are highly effective, endocrine resistance results in disease progression. Increased understanding of endocrine resistance and the mechanisms of disease progression has led to development and subsequent approval of novel targeted treatments, resulting in the expansion of the therapeutic armamentarium to combat HR+ BC. Clear guidelines based on the safety and efficacy of treatment options exist; however, the optimal sequence of therapy is unknown, and providers, payers, and other key players in the health care system are tasked with identifying cost-effective and evidence-based treatment strategies that will improve patient outcomes and, in time, help curb the staggering increase in cost associated with BC care. Safety and efficacy are key considerations, but there is also a need to consider the impact of a given therapy on patient quality of life, treatment adherence, and productivity. To minimize cost associated with overall management, cost-effectiveness, and financial burden that the therapy can impose on patients, caregivers and managed care plans are also important considerations. To help evaluate and identify the optimal choice of therapy for patients with HR+ advanced BC, the available data on endocrine therapies and novel agents are discussed, specifically with respect to the safety, efficacy, financial impact on patients and the managed care plan, impact on quality of life and

  13. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    Science.gov (United States)

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  14. Evaluation of grading and hormone receptor immunostaining on fine needle aspirates in carcinoma breast

    Directory of Open Access Journals (Sweden)

    Uma Handa

    2015-01-01

    Conclusion: The grading along with ER and PR immunostaining of breast carcinoma on smears is advocated because of high concordance between cytology and histology. This allows the patient to be treated with hormonal therapy on the basis of FNAC alone.

  15. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    OpenAIRE

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet.

  16. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    Science.gov (United States)

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  17. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan.

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C; Wollam, Joshua; Dumas, Kathleen J; Zimmerman, Anna M; Campbell, Sydney L; Hu, Patrick J; Antebi, Adam; Schroeder, Frank C

    2014-01-07

    Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized, primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin D and liver X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network, including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs.

  18. Novel mutation involving the translation initiation codon of the growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Quinteiro, Celsa; Castro-Feijoo, Lidia; Loidi, Lourdes; Barreiro, Jesus; de la Fuente, Maria; Dominguez, Fernando; Pombo, Manuel

    2002-01-01

    Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS) is an autosomal recessive disease due to molecular defects in the GH receptor gene (GHR). Most of the identified mutations are located on the extracelular domain of the receptor. We studied the GHR gene in a patient with LS and found a homozygous missense mutation in exon 2. The novel mutation is an A-->T transversion (ATG -->TTG) that abolishes the translation initiation codon of the GHR gene. This mutation is expected to prevent the translation of the protein. We present clinical, biochemical and molecular evidence of Laron syndrome as the result of a mutation (ATG-->TTG) in the codon for the initial methionine of the GHR gene.

  19. Polymorphisms in luteinizing hormone receptor and hypothalamic gonadotropin-releasing hormone genes and their effects on sperm quality traits in Chinese Holstein bulls.

    Science.gov (United States)

    Sun, Li-Ping; Du, Qing-Zhi; Song, Ya-Pan; Yu, Jun-Na; Wang, Shu-Juan; Sang, Lei; Song, Luo-Wen; Yue, Yao-Min; Lian, Yu-Ze; Zhang, Sheng-Li; Hua, Guo-Hua; Zhang, Shu-Jun; Yang, Li-Guo

    2012-06-01

    Genes of hypothalamic-pituitary-gonadal axis play a key role in male reproductive performance. This study evaluated the polymorphisms of luteinizing hormone receptor (LHR) and hypothalamic gonadotropin-releasing hormone (GnRH) genes and their effects on sperm quality traits including semen volume per ejaculate (VOL), sperm density (SD), fresh sperm motility (FSM), thawed sperm motility (TSM), acrosome integrity rate (AIR), and abnormal sperm rate (ASR) collected from 205 Chinese Hostein bulls. The study bulls consisted of 205 mature Chinese Holstein, 27 Simmental, 28 Charolais, and 14 German yellow cattle. One single nucleotide polymorphism (SNP) (A883G) in exon 2 of GnRH and two SNPs (A51703G and G51656T) in intron 9 of LHR were identified in 274 bulls. Analysis of variance in 205 Chinese Holstein bulls showed that age had significant effect on both SD and FSM (P bulls with AG genotype had higher FSM than bulls with AA and GG genotype in LHR at 51,703 locus (P bulls with GG genotype had higher SD than bulls with TT genotype in LHR at G51656T locus (P < 0.10). Phenotypic correlation among the traits revealed that significant negative correlations were observed between ASR and AIR (r = -0.736, P < 0.01), ASR and AIR (r = -0.500, P < 0.01). There were moderate positive correlations between VOL and SD (r = 0.422, P < 0.01), as well as FSM (r = 0.411, P < 0.01). In conclusion, LHR may be a potential marker for sperm quality of SD and FSM.

  20. Circulating sex hormones and gene expression of subcutaneous adipose tissue oestrogen and alpha-adrenergic receptors in HIV-lipodystrophy: implications for fat distribution

    DEFF Research Database (Denmark)

    Andersen, Ove; Pedersen, Steen B; Svenstrup, Birgit;

    2007-01-01

    of alpha2A-adrenergic-receptor correlated positively with expression of oestrogen-receptor-alpha. CONCLUSIONS: The results fit the hypothesis that sex hormones play a role in altered fat distribution and insulin sensitivity of male patients with HIV-lipodystrophy. The effect of oestradiol......OBJECTIVE: Circulating oestradiol and testosterone, which have been shown to increase in human immunodeficiency virus (HIV)-infected patients following highly active antiretroviral therapy (HAART), may influence fat distribution and insulin sensitivity. Oestradiol increases subcutaneous adipose...... tissue in humans possibly through binding to oestrogen-receptor-alpha, which in turn activates anti-lipolytic alpha2A-adrenergic-receptor. DESIGN AND METHODS: To address these issues circulating pituitary-gonadal-axis hormones and gene expression of receptors in subcutaneous adipose tissue were...

  1. [Vitamin D hormone system and diabetes mellitus: lessons from selective activators of vitamin D receptor and diabetes mellitus].

    Science.gov (United States)

    Jódar-Gimeno, Esteban; Muñoz-Torres, Manuel

    2013-02-01

    The vitamin D hormone system has significant skeletal and extra-skeletal effects. Vitamin D receptor occurs in different tissues, and several cells other than renal cells are able to locally produce active vitamin D, which is responsible for transcriptional control of hundreds of genes related to its pleiotropic effects. There is increasing evidence relating vitamin D to development and course of type 1 and 2 diabetes mellitus. Specifically, influence of vitamin D on the renin-angiotensin-aldosterone system, inflammatory response, and urinary albumin excretion could explain the relevant impact of vitamin D status on diabetic nephropathy. Selective vitamin D receptor activators are molecules able to reproduce agonistic or antagonistic effects of active vitamin D depending on the tissue or even on the cell type. Specifically, paricalcitol has a beneficial profile because of its potency to reduce parathyroid hormone, with lower effects on serum calcium or phosphate levels. Moreover, in patients with diabetes and renal disease, paricalcitol decreases microalbuminuria, hospitalization rates, and cardiovascular mortality. Therefore, these molecules represent an attractive new option to improve prognosis of renal disease in patients with diabetes.

  2. Investigating the association between polymorphism of follicle-stimulating hormone receptor gene and ovarian response in controlled ovarian hyperstimulation

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Sheikhha

    2011-01-01

    Full Text Available Aim : The aim of the study was to investigate the association between follicle-stimulating hormone receptor (FSHR gene polymorphism at Position 680 and the outcomes of controlled ovarian hyperstimulation for in vitro fertilization and embryo transfer (IVF-ET in infertile women. Materials and Methods : One hundred and eight patients under 35 years of age who underwent IVF-ET procedures were included in this study. The hormonal profile and treatment of all patients were analyzed and FSHR polymorphism was examined by polymerase chain reaction-restriction fragment length polymorphism. Women from all groups were classified based on polymorphisms at Position 680, occupied either by asparagines (Asn or serine (Ser as Asn/Asn, Asn/Ser, and Ser/Ser genotype. Result : Our study showed that all patients in the Asn/Asn group were normal responders and in the Asn/Ser group 64.8% were normal responders and 21.1% and 14.1% were poor and hyper responders respectively. In the Ser/Ser group we did not have normal responders and 46.7% of these patients were poor responders and 53.3% were hyper responders. Conclusion : FSH receptor polymorphism is correlated with response to ovarian stimulation.

  3. Polychlorinated biphenyls disturb differentiation of normal human neural progenitor cells: clue for involvement of thyroid hormone receptors.

    Science.gov (United States)

    Fritsche, Ellen; Cline, Jason E; Nguyen, Ngoc-Ha; Scanlan, Thomas S; Abel, Josef

    2005-07-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental chemicals that accumulate in adipose tissues over the food chain. Epidemiologic studies have indicated that PCBs influence brain development. Children who are exposed to PCBs during development suffer from neuropsychologic deficits such as a lower full-scale IQ (intelligence quotient), reduced visual recognition memory, and attention and motor deficits. The mechanisms leading to these effects are not fully understood. It has been speculated that PCBs may affect brain development by interfering with thyroid hormone (TH) signaling. Because most of the data are from animal studies, we established a model using primary normal human neural progenitor (NHNP) cells to determine if PCBs interfere with TH-dependent neural differentiation. NHNP cells differentiate into neurons, astrocytes, and oligodendrocytes in culture, and they express a variety of drug metabolism enzymes and nuclear receptors. Like triiodothyronine (T3), treatment with the mono-ortho-substituted PCB-118 (2,3',4,4 ,5-pentachlorobiphenyl; 0.01-1 microM) leads to a dose-dependent increase of oligodendrocyte formation. This effect was congener specific, because the coplanar PCB-126 (3,3',4,4 ,5-pentachlorobiphenyl) had no effect. Similar to the T3 response, the PCB-mediated effect on oligodendrocyte formation was blocked by retinoic acid and the thyroid hormone receptor antagonist NH-3. These results suggest that PCB-118 mimics T3 action via the TH pathway.

  4. Dose-response effects of a new growth hormone receptor antagonist (B2036-PEG) on circulating, hepatic and renal expression of the growth hormone/insulin-like growth factor system in adult mice

    NARCIS (Netherlands)

    J.W. van Neck (Han); N.F. Dits (Natasja); V. Cingel-Ristic; I.A. Hoppenbrouwers (Ilse); S.L.S. Drop (Stenvert); A. Flyvbjerg (Allan)

    2000-01-01

    textabstractThe effects of growth hormone (GH) in regulating the expression of the hepatic and renal GH and insulin-like growth factor (IGF) system were studied by administering a novel GH receptor antagonist (GHRA) (B2036-PEG) at different doses (0, 1.25, 2.5, 5 and 10

  5. Distribution of growth hormone-like immunoreactive cells and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus, Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using immunohistochemical method and double staining technique, the localization of growth hormone (GH) and somatostatin receptors in the nervous system and Hatschek's pit of amphioxus has been investigated. The results showed that the growth hormone-like nerve cells and endocrine cells as well as three subtypes-of somatostatin receptors exist in the nervous system and Hatschek's pit, and GH-like nerve cells and endocrine cells co-exist with three subtypes of somatostatin receptors in the brain vesicle and Hatschek's pit. It is suggested that a primitive control system of inhibitory growth hormone secretion in Hatschek's pit could have been developed in amphioxus, as in vertebrates. The present study provides new evidence for the endocrinology and the evolution of Hatschek's pit.

  6. Reproductive parameters of double transgenic zebrafish (Danio rerio) males overexpressing both the growth hormone (GH) and its receptor (GHR).

    Science.gov (United States)

    Silva, Ana Cecilia Gomes; Almeida, Daniela Volcan; Nornberg, Bruna Felix; Pereira, Jessica Ribeiro; Pires, Diego Martins; Corcini, Carine Dahl; Junior, Antonio Sergio Varela; Marins, Luis Fernando

    2017-02-01

    Growth hormone (GH) transgenesis presents a high potential application in aquaculture. However, excess GH may have serious consequences due to pleiotropic actions. In order to study these effects in zebrafish (Danio rerio), two transgenic lines were developed. The first expresses GH ubiquitously and constitutively (F0104 line), while the second expresses the GH receptor in a muscle-specific manner (Myo-GHR line). Results from the F0104 line showed accelerated growth but increased reproductive difficulties, while Myo-GHR did not show the expected increase in muscle mass. Since the two lines appeared to display complementary characteristics, a double transgenic (GH/GHR) was created via crossing between them. This double transgenic displayed accelerated growth, however reproductive parameters remained uncertain. The objective of the present study was to determine the reproductive capacity of males of this new line, by evaluating sperm parameters, expression of spermatogenesis-related genes, and reproductive tests. Double transgenics showed a strong recovery in almost all sperm parameters analyzed when compared to the F0104 line. Gene expression analyses revealed that Anti-Müllerian Hormone gene (amh) appeared to be primarily responsible for this recovery. Reproductive tests showed that double transgenic males did not differ from non-transgenics. It is possible that GHR excess in the muscle tissues of double transgenics may have contributed to lower circulating GH levels and thus reduced the negative effects of this hormone with respect to reproduction. Therefore, it is clear that GH-transgenesis technology should take into account the need to obtain adequate levels of circulating hormone in order to achieve maximum growth with minimal negative side effects.

  7. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life.

    Science.gov (United States)

    Hirai, Takao; Chagin, Andrei S; Kobayashi, Tatsuya; Mackem, Susan; Kronenberg, Henry M

    2011-01-04

    Parathyroid hormone (PTH)-related protein (PTHrP), regulated by Indian hedgehog and acting through the PTH/PTHrP receptor (PPR), is crucial for normal cartilage development. These observations suggest a possible role of PPR signaling in the postnatal growth plate; however, the role of PPR signaling in postnatal chondrocytes is unknown. In this study, we have generated tamoxifen-inducible and cartilage-specific PPR KO mice to evaluate the physiological role of PPR signaling in postnatal chondrocytes. We found that inactivation of the PPR in chondrocytes postnatally leads to accelerated differentiation of chondrocytes, followed by disappearance of the growth plate. We also observed an increase of TUNEL-positive cells and activities of caspase-3 and caspase-9 in the growth plate, along with a decrease in phosphorylation of Bad at Ser155 in postnatal PPR KO mice. Administration of a low-phosphate diet, which prevents apoptosis of chondrocytes, prevented the disappearance of the growth plate. Taken together, these observations suggest that the major consequences of PPR activation are similar in both the fetal and postnatal growth plates. Moreover, chondrocyte apoptosis through the activation of a mitochondrial pathway may be involved in the process of premature disappearance of the growth plate by postnatal inactivation of the PPR in chondrocytes.

  8. BINDING OF GONADOTROPHIN-RELEASING HORMONE WITH ITS RECEPTORS ON HUMAN PLACENTAL MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    QIUXiu-Di; WANGHan-Zheng; GONGYue-Ting

    1989-01-01

    Theeffects of gonadotrophin--relensing hormone (GnRH) onthe bindingof125I-labelled GnRH agonist to human placental membranes were studied. The GnRH binding sites of human plaoenta had a high specificity but low affinity. The natural GnRH had a slightly

  9. Identification and expression of PBAN/diapause hormone and receptors from Aedes aegypti

    Science.gov (United States)

    Neuropeptides control various physiological functions and constitute more than 90% of insect hormones. The pheromone biosynthesis activating neuropeptide (PBAN)/pyrokinin family is a major group of insect neuropeptides and is well conserved in Insecta. This family of peptides has at least two closel...

  10. Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream.

    Science.gov (United States)

    Jiao, Baowei; Cheng, Christopher H K

    2010-06-01

    Environmental estrogen could mimic natural estrogens thereby disrupting the endocrine systems of human and animals. The actions of such endocrine disruptors have been studied mainly on reproduction and development. However, estrogen could also affect the somatotropic axis via multiple targets such as growth hormone (GH). In the present study, two endocrine disruptors were chosen to investigate their effects on the expression level and signal transduction of growth hormone receptor (GHR) in fish. Using real-time PCR, it was found that exposure to both the estrogenic (bisphenol A) and anti-estrogenic (malachite green) compounds could attenuate the expression levels of GHR1 and GHR2 in black seabream (Acanthopagrus schlegeli) hepatocytes. The expression level of IGF-I, the downstream effector of GHR activation in the liver, was decreased by bisphenol A but not by malachite green. Luciferase reporter assay of the beta-casein promoter was used to monitor GHR signaling in transfected cells. In the fish liver cell line Hepa-T1, both GHR1 and GHR2 signaling were attenuated by bisphenol A and malachite green. This attenuation could only occur in the presence of estrogen receptor, indicating that these agents probably produce their actions via the estrogen receptor. Results of the present study demonstrated that estrogenic or anti-estrogenic compounds could down-regulate the somatotropic axis in fish by affecting both the gene expression and signaling of GHR. In view of the increasing prevalence of these compounds in the environment, the impact on fish growth and development both in the wild and in aquaculture would be considerable.

  11. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor.

    Directory of Open Access Journals (Sweden)

    Marek Jindra

    2015-07-01

    Full Text Available Juvenile hormones (JHs play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met, along with its Drosophila melanogaster paralog germ cell-expressed (Gce, has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.

  12. Risk of Breast Cancer in Relation to Combined Effects of Hormone Therapy, Body Mass Index, and Alcohol Use, by Hormone-receptor Status

    DEFF Research Database (Denmark)

    Hvidtfeldt, Ulla Arthur; Tjonneland, Anne; Keiding, Niels;

    2015-01-01

    BACKGROUND: Alcohol consumption, increased body mass index (BMI), and hormone therapy are risk factors for postmenopausal breast cancer, but their combined effects are not well understood. Because hormone therapy is effective for the relief of menopausal symptoms, the identification of "high...... therapy users across all BMI strata (P for interaction = 0.003). A markedly higher risk of breast cancer was also observed for alcohol combined with hormone therapy use compared with abstinent nonusers (P for interaction = 0.02). These effects were primarily restricted to ER-positive cases. Combined...... effects of hormone therapy/high BMI and hormone therapy/alcohol on serum estradiol and testosterone supported the hypothesis of a hormonal pathway linking these exposures to breast cancer. CONCLUSION: These analyses suggest an increased risk of breast cancer associated with hormone therapy use-a risk...

  13. Missense mutations in the growth hormone receptor dimerization region in Laron syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.A.; Francke, U. [Howard Hughes Medical Institute, Stanford, CA (United States)]|[Univ. of Stanford, CA (United States); Geffner, M.E.; Bersch, N. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-09-01

    Laron syndrome (LS) is an autosomal recessively inherited condition characterized by insensitivity to endogenous and exogenous GH. Affected individuals have severe episodes and other characteristic features. GH receptor gene mutations are present in all affected individuals in whom molecular studies have been reported. The GH receptor is a plasma membrane-spanning protein in which the extracellular domain binds circulating GH and the intracellular domain interacts with the JAK-2 kinase and possibly other intracellular signaling molecules. GH receptor dimerization occurs on GH binding and is thought to be required for normal signal transduction. We have studied the GH receptor genes of four unrelated individuals affected with LS from the United States, Italy, Saudi Arabia, and India. We have identified four different missense mutations that alter consecutive amino acids 152 to 155 in or near the dimerization domain of the GH receptor. One of these mutations, D152H, has been reported previously in Asian LS patients and, in in vitro studies, the mutant receptor was unable to dimerize. This report increases to over 20 the number of different GH receptor gene mutations that have been reported in LS patients and defines the first apparent mutational {open_quotes}hotspot{close_quotes} region in this gene. This cluster of mutations in patients with classic LS phenotype provides additional in vivo evidence that receptor dimerization plays an important role in signaling GH`s growth promoting and metabolic effects. Further in vitro studies of the mutations in this region are in progress.

  14. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja;

    2016-01-01

    development, adulthood, and aging. GHR belongs to a family of receptors without intrinsic kinase activity. However, GH binding to homodimers of GHR results in a conformational change in the receptors and the associated tyrosine kinase Janus kinase 2 (JAK2) molecules. Activated JAK2 phosphorylates the GHR...

  15. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice

    DEFF Research Database (Denmark)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E;

    2016-01-01

    of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. RESULTS: As expected, bGH mice had increased body weight (p=3.70E(-8)) but decreased percent fat mass (p=4.87E(-4)). Likewise, GHR-/- mice had decreased body weight (p...... was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. DESIGN: Seven......-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression...

  16. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai; Swaminathan, Kunchithapadam; Xu, H. Eric (Van Andel); (NU Singapore)

    2012-02-21

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  17. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR. Crystal structures of a number of Class B GPCR extracellular domains (ECD bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  18. Rat insulinoma cells express both a 115-kDa growth hormone receptor and a 95-kDa prolactin receptor structurally related to the hepatic receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Insulin-producing rat islet RIN-5AH tumor cells express multiple binding sites for human growth hormone (hGH). The effect of rat growth hormone (rGH), rat prolactin (rPRL), and human placental lactogen (hPL) on the binding of 125I-labeled hGH (125I-hGH) to RIN-5AH cells revealed the presence...

  19. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  20. Density of mu-opioid receptors in the hippocampus of adult male and female rats is altered by prenatal morphine exposure and gonadal hormone treatment.

    Science.gov (United States)

    Slamberová, Romana; Rimanóczy, Agnes; Bar, Noffar; Schindler, Cheryl J; Vathy, Ilona

    2003-01-01

    The present in vitro autoradiography study demonstrates that prenatal exposure to morphine alters the density of mu-opioid receptors in the hippocampus of adult female but not adult male rats. Prenatal morphine exposure increased the mu-opioid receptor density in the CA1 of ovariectomized (OVX) females and in the CA3 of OVX, estradiol benzoate-plus progesterone (EB+P)-treated females, but decreased it in CA3 of OVX females. There were also hormonal effects on mu-opioid receptor density in adult female rats. In the CA1, only morphine-exposed but not saline-exposed, hormone-treated females (EB, P, or EB+P) had a decrease in mu-opioid receptor density relative to OVX females. Both saline-exposed and morphine-exposed, OVX females after gonadal hormone replacement had a lower density of mu-opioid receptors in the CA3 and in the dentate gyrus (DG) than OVX females. In male rats, there was a decrease in mu-opioid receptor density in the CA1 and CA3 of gonadectomized (GNX), testosterone 17beta-proprionate (TP)-treated males relative to GNX males regardless of prenatal morphine exposure. In the DG, the mu-opioid receptor density was reduced only in morphine-exposed but not in saline-exposed, TP-treated males compared with GNX males. Thus, our data demonstrate that mu-opioid receptor density in the hippocampus is affected by prenatal morphine exposure and by male and female gonadal hormones.

  1. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element.

    Science.gov (United States)

    Vashisth, Harish; Abrams, Cameron F

    2013-06-01

    Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.

  2. Steroid hormones, receptors, and perceptual and cognitive sex differences in the visual system.

    Science.gov (United States)

    Handa, Robert J; McGivern, Robert F

    2015-02-01

    The actions of gonadal steroid hormones induce morphological sex differences in many tissues in the body, including brain. These occur either during development to organize tissues in a sex-specific pattern and/or in adulthood to activate specific cellular pathways. Cellular and morphological changes in the brain, induced by androgens and estrogens, underlie behavioral sex differences in both reproductive and non-reproductive behaviors, including visual perception. A growing body of evidence indicates that some sex differences related to visual perception arise as the result of the organizational actions of gonadal steroid hormones on cerebral cortical pathways involved in visual processing of objects and movement. This review addresses the influence of gonadal steroids on structural, biochemical and morphological changes in tissues in the brain and body. These effects are extended to consider how gonadal hormone effects may contribute to cognitive sex differences across species that are related to processing within the dorsal and ventral visual streams for motion and objects, respectively. Lastly, this review considers the question of how cognitive sex differences related to processing of movement and objects in humans may be reflective of two types of cognitive style that are only superficially related to gender.

  3. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis

    Science.gov (United States)

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-01-01

    the same result. A key limitation was a lack of treatment-effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. Conclusions This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine. PMID:27504960

  4. The presence and role of progesterone receptor in the ovaries of postmenopausal women who have not applied hormone replacement therapy.

    Directory of Open Access Journals (Sweden)

    Małgorzata Piasecka

    2008-12-01

    Full Text Available At present, not much is known about progesterone receptor (PR expression and localization in postmenopausal women ovaries. In the ovaries of reproductive age women, PR is localized in internal theca and granulosa cells, corpus luteum, ovary surface epithelium (OSE and in stroma. PR expression depends on the serum concentration of progesterone, estrogen, gonadotropin and androgen. The goal of the conducted studies was to examine PR localization and expression in the ovaries of postmenopausal women who have not applied hormone replacement therapy so far. Also, the correlation was examined between PR expression and localization in the ovaries, steroid and gonadotropin hormone serum concentrations, and influence of the time from the last menstruation. The material came from 50 postmenopausal women who had their ovaries removed due to non-neoplastic diseases. The women were divided into 3 groups (A, B, C depending on the time from the last menstruation. The follitropin (FSH, luteotropin (LH, estradiol (E2, testosterone (T, androstendione (A and dehydroepiandrosterone sulphate (DHEAS concentrations in blood plasma were measured. Monoclonal mouse anti-human PR antibody was used for immunohistochemical detection (examination involved 50 postmenopausal ovaries. Between particular groups, E2 serum concentrations did not differ, but FSH, LH, T, A, DHEAS serum concentrations were significantly different. Immunohistochemical nuclear localization of PR in postmenopausal women ovaries was observed. PR expression was similar in all three groups (A, B, C. PR expression was observed in OSE nuclei and invaginations cysts deriving from the isolation of invaginated epithelium and metaplastic columnar epithelium and in stroma. In the ovaries of postmenopausal women who have not applied hormone replacement therapy so far, PR was detected in all three groups. Its expression did not depend on the time from menopause and was similar in all examined groups. FSH, LH, T, A

  5. Clinical features and growth hormone receptor gene mutations of patients with Laron syndrome from a Chinese family.

    Science.gov (United States)

    Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping

    2007-08-01

    Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.

  6. Screening for cardiovascular safety: a structure-activity approach for guiding lead selection of melanin concentrating hormone receptor 1 antagonists.

    Science.gov (United States)

    Kym, Philip R; Souers, Andrew J; Campbell, Thomas J; Lynch, John K; Judd, Andrew S; Iyengar, Rajesh; Vasudevan, Anil; Gao, Ju; Freeman, Jennifer C; Wodka, Dariusz; Mulhern, Mathew; Zhao, Gang; Wagaw, Seble H; Napier, James J; Brodjian, Sevan; Dayton, Brian D; Reilly, Regina M; Segreti, Jason A; Fryer, Ryan M; Preusser, Lee C; Reinhart, Glenn A; Hernandez, Lisa; Marsh, Kennan C; Sham, Hing L; Collins, Christine A; Polakowski, James S

    2006-04-06

    An inactin-anesthetized rat cardiovascular (CV) assay was employed in a screening mode to triage multiple classes of melanin-concentrating hormone receptor 1 (MCHr1) antagonists. Lead identification was based on a compound profile producing high drug concentration in both plasma (>40 microM) and brain (>20 microg/g) with optimization activities on multiple classes of MCHr1 antagonists were terminated. After providing evidence that the cardiovascular liabilities were not a function of MCHr1 antagonism, continued screening identified the chromone-substituted aminopiperidine amides as a class of MCHr1 antagonists that demonstrated a safe cardiovascular profile at high drug concentrations in both plasma and brain. The high incidence of adverse cardiovascular effects associated with an array of MCHr1 antagonists of significant chemical diversity, combined with the stringent safety requirements for antiobesity drugs, highlight the importance of incorporating cardiovascular safety assessment early in the lead selection process.

  7. Association between corticotropin-releasing hormone receptor 1 and 2 (CRHR1 and CRHR2) gene polymorphisms and personality traits.

    Science.gov (United States)

    Ishitobi, Yoshinobu; Nakayama, Shinya; Kanehisa, Masayuki; Higuma, Haruka; Maruyama, Yoshihiro; Okamoto, Shizuko; Inoue, Ayako; Imanaga, Junko; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Akiyoshi, Jotaro

    2013-12-01

    Previous studies have reported that the hypothalamic-pituitary-adrenal axis is involved with personality traits. We examined the association between corticotropin-releasing hormone receptor (CRHR) genes and personality traits. We investigated the 12 single-nucleotide polymorphisms of intron CRHR (six in CRHR1 and six in CRHR2, respectively) in 218 healthy volunteers using TaqMan PCR assays. Personality traits were assessed using the Revised NEO-Personality Inventory, the Temperament and Character Inventory, and the State-Trait Anxiety Inventory. No significant associations were observed between CRHR1 and CRHR2 expression and personality traits. These results fail to provide support for an association of CRHR1 and CRHR2 with personality traits in a Japanese adult population.

  8. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β.

    Science.gov (United States)

    Alamino, Vanina A; Mascanfroni, Iván D; Montesinos, María M; Gigena, Nicolás; Donadio, Ana C; Blidner, Ada G; Milotich, Sonia I; Cheng, Sheue-Yann; Masini-Repiso, Ana M; Rabinovich, Gabriel A; Pellizas, Claudia G

    2015-04-01

    Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy.

  9. Association between the Growth Hormone Receptor Exon 3 Polymorphism and Metabolic Factors in Korean Patients with Acromegaly

    Directory of Open Access Journals (Sweden)

    Hye Yoon Park

    2015-09-01

    Full Text Available BackgroundThis study investigated the association between the frequency of growth hormone receptor (GHR exon 3 polymorphism (exon 3 deletion; d3-GHR and metabolic factors in patients with acromegaly in Korea.MethodsDNA was extracted from the peripheral blood of 30 unrelated patients with acromegaly. GHR genotypes were evaluated by polymerase chain reaction and correlated with demographic data and laboratory parameters.ResultsNo patient had the d3/d3 genotype, while four (13.3% had the d3/fl genotype, and 26 (86.7% had the fl/fl genotype. Body mass index (BMI in patients with the d3/fl genotype was significantly higher than in those with the fl/fl genotype (P=0.001. Age, gender, blood pressure, insulin-like growth factor-1, growth hormone, fasting plasma glucose, triglycerides, high density lipoprotein cholesterol, and low density lipoprotein cholesterol levels showed no significant differences between the two genotypes.ConclusionThe d3-GHR polymorphism may be associated with high BMI but not with other demographic characteristics or laboratory parameters.

  10. Association of a novel single nucleotide polymorphism in growth hormone receptor gene with production traits in Bali cattle

    Directory of Open Access Journals (Sweden)

    Maskur .

    2014-11-01

    Full Text Available The growth hormone (GH is the main regulator of postnatal growth and metabolism in mammals. The action of GH on target cells depends on the growth hormone receptor (GHR. This is mediated through induced transcription of other genes. GHR gene is one of the candidate genes employed in selection strategy using DNA markers (marker assisted selection. This study was designed to identify the novel single nucleotide polymorphisms (SNPs in exon 8 and intron 8 of GHR gene that may affect production traits in Bali cattle. A SNP was identified by the direct sequencing technique. Genotypes of the SNPs were identified using PCR-RFLP. The SNP was located in intron 8 of the GHR gene and was caused by an A/G transition. It was identified using the HpyCH4III restriction enzyme. Polymorphism of GHR/HpyCH4III has a significant influence on weaning weight and average daily gain, but not on birth weight of Bali cattle.

  11. Consolidation of remote fear memories involves Corticotropin-Releasing Hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus.

    Science.gov (United States)

    Thoeringer, Christoph K; Henes, Kathrin; Eder, Matthias; Dahlhoff, Maik; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M; Moosmang, Sven; Wotjak, Carsten T

    2012-02-01

    Persistent dreadful memories and hyperarousal constitute prominent psychopathological features of posttraumatic stress disorder (PTSD). Here, we used a contextual fear conditioning paradigm to demonstrate that conditional genetic deletion of corticotropin-releasing hormone (CRH) receptor 1 within the limbic forebrain in mice significantly reduced remote, but not recent, associative and non-associative fear memories. Per os treatment with the selective CRHR1 antagonist DMP696 (3 mg/kg) attenuated consolidation of remote fear memories, without affecting their expression and retention. This could be achieved, if DMP696 was administered for 1 week starting as late as 24 h after foot shock. Furthermore, by combining electrophysiological recordings and western blot analyses, we demonstrate a delayed-onset and long-lasting increase in AMPA receptor (AMPAR) GluR1-mediated signaling in the dentate gyrus (DG) of the dorsal hippocampus 1 month after foot shock. These changes were absent from CRHR1-deficient mice and after DMP696 treatment. Inactivation of hippocampal GluR1-containing AMPARs by antisense oligonucleotides or philantotoxin 433 confirmed the behavioral relevance of AMPA-type glutamatergic neurotransmission in maintaining the high levels of remote fear in shocked mice with intact CRHR1 signaling. We conclude that limbic CRHR1 receptors enhance the consolidation of remote fear memories in the first week after foot shock by increasing the expression of Ca(2+)-permeable GluR1-containing AMPARs in the DG. These findings suggest both receptors as rational targets for the prevention and therapy, respectively, of psychopathology associated with exaggerated fear memories, such as PTSD.

  12. Alternative splicing in the fiddler crab cognate ecdysteroid receptor: variation in receptor isoform expression and DNA binding properties in response to hormone.

    Science.gov (United States)

    Durica, David S; Das, Sunetra; Najar, Fares; Roe, Bruce; Phillips, Barret; Kappalli, Sudha; Anilkumar, Gopinathan

    2014-09-15

    RXR cDNA cloning from three Uca species led to the identification of 4 conserved isoforms, indicative of alternative splicing in the hinge and ligand binding domains (LBD). Sequencing of overlapping clones from a Ucapugilator genomic library identified EcR isoforms matching previously identified cDNA variants; in addition, a cryptic exon in the LBD was detected and evidence for expression of this new isoform was obtained from next-generation sequencing. RNA-seq analysis also identified a new amino terminal EcR variant. EcR and RXR transcript abundance increases throughout ovarian maturation in U. pugilator, while cognate receptor transcript abundance remains constant in a related Indo-Pacific species with a different reproductive strategy. To examine if crab RXR LBD isoforms have different physical properties in vitro, electromobility shift assays were performed with different EcR isoforms. The cognate crab and fruit fly receptors differ in their responses to hormone. Ecdysteroids did not increase DNA binding for the crab heterodimers, while ecdysteroids stimulate binding for Drosophilamelanogaster EcR/USP heterodimers. In swapping experiments, UpEcR/USP heterodimers did not show ligand-responsive differences in DNA binding; both crab RXR LBD isoforms, however, conferred ligand-responsive increases in DNA binding with DmEcRs. These data indicate that both UpRXR LBD isoforms can heterodimerize with the heterologous DmEcR receptors and promote ligand and DNA binding. Unresponsiveness of the cognate receptors to ecdysteroid, however, suggest additional factors may be required to mediate endogenous, perhaps isoform-specific, differences in EcR conformation, consistent with previously reported effects of UpRXR isoforms on UpEcR ligand-binding affinities.

  13. Is altered expression of hepatic insulin-related genes in growth hormone receptor knockout mice due to GH resistance or a difference in biological life spans?

    Science.gov (United States)

    Panici, Jacob A; Wang, Feiya; Bonkowski, Michael S; Spong, Adam; Bartke, Andrzej; Pawlikowska, Ludmila; Kwok, Pui-Yan; Masternak, Michal M

    2009-11-01

    Growth hormone receptor knockout (GHRKO) mice live about 40%-55% longer than their normal (N) littermates. Previous studies of 21-month-old GHRKO and N mice showed major alterations of the hepatic expression of genes involved in insulin signaling. Differences detected at this age may have been caused by the knockout of the growth hormone receptor (GHR) or by differences in biological age between GHRKO and N mice. To address this question, we compared GHRKO and N mice at ages corresponding to the same percentage of median life span to see if the differences of gene expression persisted. Comparison of GHRKO and N mice at approximately 50% of biological life span showed significant differences in hepatic expression of all 14 analyzed genes. We conclude that these changes are due to disruption of GHR gene and the consequent suppression of growth hormone signaling rather than to differences in "biological age" between mutant and normal animals sampled at the same chronological age.

  14. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiao-Min, E-mail: rxm200318@gmail.com; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Gao, Yu, E-mail: francesscototti@gmail.com; Zhang, Bin-Tian, E-mail: nktianster@gmail.com; Wan, Bin, E-mail: binwan@rcees.ac.cn

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists.

  15. The nuclear hormone receptor coactivator NRC is a pleiotropic modulator affecting growth, development, apoptosis, reproduction, and wound repair.

    Science.gov (United States)

    Mahajan, Muktar A; Das, Sharmistha; Zhu, Hong; Tomic-Canic, Marjana; Samuels, Herbert H

    2004-06-01

    Nuclear hormone receptor coregulator (NRC) is a 2,063-amino-acid coregulator of nuclear hormone receptors and other transcription factors (e.g., c-Fos, c-Jun, and NF-kappaB). We and others have generated C57BL/6-129S6 hybrid (C57/129) NRC(+/-) mice that appear outwardly normal and grow and reproduce. In contrast, homozygous deletion of the NRC gene is embryonic lethal. NRC(-/-) embryos are always smaller than NRC(+/+) embryos, and NRC(-/-) embryos die between 8.5 and 12.5 days postcoitus (dpc), suggesting that NRC has a pleotrophic effect on growth. To study this, we derived mouse embryonic fibroblasts (MEFs) from 12.5-dpc embryos, which revealed that NRC(-/-) MEFs exhibit a high rate of apoptosis. Furthermore, a small interfering RNA that targets mouse NRC leads to enhanced apoptosis of wild-type MEFs. The finding that C57/129 NRC(+/-) mice exhibit no apparent phenotype prompted us to develop 129S6 NRC(+/-) mice, since the phenotype(s) of certain gene deletions may be strain dependent. In contrast with C57/129 NRC(+/-) females, 20% of 129S6 NRC(+/-) females are infertile while 80% are hypofertile. The 129S6 NRC(+/-) males produce offspring when crossed with wild-type 129S6 females, although fertility is reduced. The 129S6 NRC(+/-) mice tend to be stunted in their growth compared with their wild-type littermates and exhibit increased postnatal mortality. Lastly, both C57/129 NRC(+/-) and 129S6 NRC(+/-) mice exhibit a spontaneous wound healing defect, indicating that NRC plays an important role in that process. Our findings reveal that NRC is a coregulator that controls many cellular and physiologic processes ranging from growth and development to reproduction and wound repair.

  16. Evaluating the Survival Benefit Following Ovarian Function Suppression in Premenopausal Patients with Hormone Receptor Positive Early Breast Cancer.

    Science.gov (United States)

    Qiu, Lin; Fu, Fangmeng; Huang, Meng; Lin, Yuxiang; Chen, Yazhen; Chen, Minyan; Wang, Chuan

    2016-05-27

    There are divergent opinions regarding the use of ovarian function suppression or ablation (hereafter, OFS) in hormone receptor positive early breast cancer patients. In order to clarify the survival benefit of OFS, a meta-analysis was performed. The result is that use of OFS was more effective than no OFS on DFS (the pooled relative risk (pRR) = 0.86; 95% CI: 0.75-0.96) and on OS (pRR = 0.79; 95% CI: 0.70-0.89). In subgroup analysis, we found that increased DFS was positively associated with patients who had received chemotherapy (pRR = 0.85; 95% CI: 0.74-0.96), who were lymph node negative (pRR = 0.74; 95% CI: 0.61-0.91) and were less than 40 years old (pRR = 0.71; 95% CI: 0.59-0.83). There was a significant difference in OS between the groups receiving chemotherapy (pRR = 0.73; 95% CI: 0.58-0.89) or for patients less than 40 years old (pRR = 0.52; 95% CI: 0.18-0.87). The use of OFS also produces statistical differences in the occurrence of the side-effects; severe hot flashes (pRR = 2.32; 95% CI: 1.36-3.97), and hypertension (pRR = 1.54; 95% CI: 1.12-2.12). In general, OFS should be considered as one treatment for hormone receptor positive premenopausal early breast cancer patients who have received chemotherapy and are less than 40 years old. We also should pay attention to the side-effects and weigh the advantages and disadvantages before deciding on using OFS.

  17. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  18. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  19. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Directory of Open Access Journals (Sweden)

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  20. Dietary fiber intake and risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition study1,2

    NARCIS (Netherlands)

    Ferrari, P.; Rinaldi, S.; Jenab, M.; Lukanova, A.; Olsen, A.; Tjonneland, A.; Overvad, K.; Clavel-Chapelon, F.; Fagherazzi, G.; Touillaud, M.; Kaaks, R.; Rusten, A. von; Boeing, H.; Trichopoulou, A.; Lagiou, P.; Benetou, V.; Grioni, S.; Panico, S.; Masala, G.; Tumino, R.; Polidoro, S.; Bakker, M.F.; Gils, C.H. van; Ros, M.M.; Bueno-De-Mesquita, H.B.; Krum-Hansen, S.; Engeset, D.; Skeie, G.; Pilar, A.; Sanchez, M.J.; Buckland, G.; Ardanaz, E.; Chirlaque, D.; Rodriguez, L.; Travis, R.; Key, T.; Khaw, K.T.; Wareham, N.J.; Sund, M.; Lenner, P.; Slimani, N.; Norat, T.; Aune, D.; Riboli, E.; Romieu, I.

    2013-01-01

    BACKGROUND: Limited scientific evidence has characterized the association between dietary fiber intake and risk of breast cancer (BC) by menopausal status and hormone receptor expression in tumors. OBJECTIVE: We investigated the relation between total dietary fiber and its main food sources (vegetab

  1. Adrenocorticotrophic hormone (ACTH) stimulation of sheep fetal adrenal cortex can occur without increased expression of ACTH receptor (ACTH-R) mRNA

    DEFF Research Database (Denmark)

    Carter, A M; Petersen, Y M; Towstoless, M;

    2002-01-01

    In the present study, it was hypothesized that the adrenocorticotrophin hormone receptor (ACTH-R) would be up-regulated in the adrenal gland of the sheep fetus following infusion of physiological amounts of ACTH, as shown for adrenal cortical cells in culture. In chronically catheterized sheep, a...

  2. CYP19A1 polymorphisms and clinical outcomes in postmenopausal women with hormone receptor-positive breast cancer in the BIG 1-98 trial

    DEFF Research Database (Denmark)

    Leyland-Jones, Brian; Gray, Kathryn P; Abramovitz, Mark;

    2015-01-01

    To determine whether CYP19A1 polymorphisms are associated with abnormal activity of aromatase and with musculoskeletal and bone side effects of aromatase inhibitors. DNA was isolated from tumor specimens of 4861 postmenopausal women with hormone receptor-positive breast cancer enrolled in the BIG...

  3. Crystal structure of an affinity-matured prolactin complexed to its dimerized receptor reveals the topology of hormone binding site 2

    DEFF Research Database (Denmark)

    Broutin, Isabelle; Jomain, Jean-Baptiste; Tallet, Estelle;

    2010-01-01

    We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely relate...

  4. Activation of a cryptic splice site in the growth hormone receptor associated with growth hormone insensitivity syndrome in a genetic isolate of Laron Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Schiavi, A.; Bartlett, R. [Univ. of Miami, FL (United States); Brown, M. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    Laron syndrome (LS) is a rare, autosomal recessive disease found worldwide. Despite various ethnic differences, all patients with LS described display classic dysmorphic features and extreme short stature due to defects in the growth hormone receptor (GHR). The vast majority of these patients are sporadic occurrences resulting from consanguineous matings; however, an Ecuadorian genetic isolate of LS has been reported. Our investigations have identified a genetic isolate of LS of Anglo Saxon origin. Seven individuals, by all clinical and biochemical criteria, have LS. As a result of extensive review of family and medical histories we have constructed a pedigree tracing the lineage of our affected patients through the 17th century. No GHR gross deletions were detected using an exon-specific PCR assay developed in our laboratory. Previous molecular analyses have identified mutations in exons 2-7 in numerous patients with classical LS. Single strand conformational polymorphism (SSCP) analysis was performed on GHR exons 2-7, and a marked conformational shift was noted in exon 7. Cycle sequencing of exon 7 from three affected individuals, and from four first-degree relatives, revealed a C{r_arrow}T transition at position 766 of the cDNA, and a heterozygous C{r_arrow}T transition at the identical position in the obligate carriers studied. This mutation is predicted to activate a cryptic donor splice site 63 base pairs upstream from the 3{prime} end of exon 7, effectively truncating the GHR cDNA without changing the reading frame. The resultant GHR protein is shortened by a proposed 21 amino acids. The identification and conformation of this mutation not only identifies a novel mutation in the GHR, and the first to be described in LS patients of English descent, but also allows for comparisons between genotypes and phenotypes in an inbred population.

  5. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2013-10-15

    . - Highlights: • Currently used pesticides possess endocrine-disrupting (ED) potential in vitro. • ED effects can be mediated via sex hormone receptors and/or the aromatase enzyme. • Additive mixture effects on androgen receptor transactivity were observed.

  6. Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family

    Institute of Scientific and Technical Information of China (English)

    Lee Chae; Sylvia Sudat; Sandrine Dudoit; Tong Zhu; Sheng Luan

    2009-01-01

    The genome of Arabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs are predicted to be major components of the signaling pathways that allow plants to respond to environmental and developmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the transcriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants,including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which the members of the RLK gene family may be involved, where such information has remained elusive for so many

  7. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer

    Science.gov (United States)

    Chung, Il Yong; Park, Yu Rang; Min, Yul Ha; Lee, Yura; Yoon, Tae In; Sohn, Guiyun; Lee, Sae Byul; Kim, Jisun; Kim, Hee Jeong; Ko, Beom Seok; Son, Byung Ho; Ahn, Sei Hyun

    2017-01-01

    The aim of this study was to determine the relationship between the body mass index (BMI) at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS) and breast-cancer-specific survival (BCSS) outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029), and BCSS (P = 0.013) in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48) and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99). In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19) and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44). Being underweight (BMI < 18.50 kg/m2) with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00–3.95) and BCSS (HR = 2.24, 95% CI = 1.12–4.47). There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer. PMID:28248981

  8. Effects of plasticizers and their mixtures on estrogen Receptor and thyroid hormone functions

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie

    2009-01-01

    Plasticizers are additives used to increase the flexibility or plasticity of the material to which they are added, normally rigid plastic and as additives in paint and adhesives. They are suspected to interfere with the endocrine system, including the estrogen and the thyroid hormone (TH) systems...... was lower than predicted, suggesting a potential antagonizing effect of the mixture. In conclusion, the tested plasticizers and phenols elicited endocrine-disrupting potential that can be mediated via interference with the estrogen and TH systems. Moreover, the observed mixture effect stresses...

  9. Data for stable formulation of steroid hormone receptor-targeted liposomes for cancer therapeutics

    Science.gov (United States)

    Sharma, Priyanka; Banerjee, Rajkumar; Narayan, Kumar Pranav

    2016-01-01

    A detailed description of steroid hormone ligand containing liposomes and their stability has been given. Liposomes were complexed with β-gal DNA and used to transfect cancer and non-cancer cells. The stability of the liposomes and lipoplexes were analysed using dynamic light scattering and DNA-binding gel images. The formulations were used to assess the delivery of anticancer gene, p53 in cancer cells. The dataset consists of DNA-binding gel images, transfection, cytotoxicity and reverse transcriptase PCR images. PMID:27006974

  10. An overview of nomegestrol acetate selective receptor binding and lack of estrogenic action on hormone-dependent cancer cells.

    Science.gov (United States)

    Shields-Botella, J; Duc, I; Duranti, E; Puccio, F; Bonnet, P; Delansorne, R; Paris, J

    2003-11-01

    The specific pharmacological profile of the 19-norprogestin nomegestrol acetate (NOMAC) is, at least in part, defined by its pattern of binding affinities to the different steroid hormone receptors. In the present study, its affinity to the progesterone receptor (PgR), the androgen receptor (AR) and the estrogen receptor (ER) was re-evaluated and compared to those obtained for progesterone (P) and several progestins. The characteristics of binding to the PgR in rat uterus were determined and Ki were found to be roughly similar with 22.8 and 34.3 nM for NOMAC and P, respectively. The binding characteristics of 3H-NOMAC were also determined and compared to that of 3H-ORG2058 with Kd of 5 and 0.6 nM, respectively for rat uterus and 4 and 3 nM, respectively for human T47-D cells. Structure-affinity and -activity relationships were studied on a variety of compounds related to NOMAC in order to assess its specificity as a progestin. The effects of NOMAC on the binding of androgen to the AR were investigated, using rat ventral prostate as target model. Contrary to what was observed for MPA, the RBA of NOMAC was found to decline with time, showing anti-androgenic rather than androgenic potential, a result that was confirmed in vivo. Regarding the ER, since none of the progestins were able to compete with estrogen for binding in rat uterus as well as in Ishikawa cells, the induction of alkaline phosphatase activity (APase) was used as an estrogen-specific response. It confirmed the intrinsic estrogenicity of progestins derived from 19-nor-testosterone (19NT), norethisterone acetate (NETA), levonorgestrel (LNG) or norgestimate (NGM) and others. In contrast, all P and 19-norP derivatives remained inactive. Finally, to complete this overview of NOMAC at the sex steroid receptor levels, the lack of estrogenic or estrogenic-like activity was checked out in different in vitro models. Data from this study have demonstrated that NOMAC is a progestin that has greater steroid

  11. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor

    Science.gov (United States)

    Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation.We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcri...

  12. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  13. Impact of Growth Hormone Receptor Blockade on Substrate Metabolism during Fasting in Healthy Subjects

    OpenAIRE

    Moller, Louise; Norrelund, Helene; Jessen, Niels; Flyvbjerg, Allan; Steen B Pedersen; Bruce D Gaylinn; Liu, Jianhua; Thorner, Michael O.; Moller, Niels; Lunde Jorgensen, Jens Otto

    2009-01-01

    Context: Experimental studies in GH-deficient patients and in healthy subjects receiving somatostatin-infusion suggest that GH is an important regulator of substrate metabolism during fasting. These models may not adequately reflect the selective effects of GH, and GH receptor (GHR) blockade offers a new model to define the metabolic role of GH.

  14. Steroid hormone 20-hydroxyecdysone regulation of the very-high-density lipoprotein (VHDL) receptor phosphorylation for VHDL uptake.

    Science.gov (United States)

    Dong, Du-Juan; Liu, Wen; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2013-04-01

    During the metamorphic stage of holometabolous insects, the biosynthetic precursors needed for the synthesis of a large number of adult proteins are acquired from the selective absorption of storage proteins. The very-high-density lipoprotein (VHDL), a non-hexameric storage protein, is consumed by the fat body from the hemolymph through VHDL receptor (VHDL-R)-mediated endocytosis. However, the mechanism of the uptake of VHDL by a VHDL-R remains unclear. In this study, a VHDL-R from Helicoverpa armigera was found to be involved in 20E-regulated VHDL uptake through the regulation of steroid hormone 20-hydroxyecdysone (20E). The transcripts of VHDL-R were detected mainly in the fat body and integument during the wandering stage. The transcription of VHDL-R was upregulated by 20E through the ecdysteroid receptor (EcRB1) and Ultraspiracle (USP1). In addition, 20E stimulates the phosphorylation of VHDL-R through protein kinase C for ligand binding. VHDL-R knockdown in larvae results the inhibition of development to adulthood. These data imply that 20E regulates VHDL-R on both transcriptional and posttranslational levels for VHDL absorption.

  15. Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R

    OpenAIRE

    Haruhiko Kanasaki; Aki Oride; Tomomi Hara; Tselmeg Mijiddorj; Unurjargal Sukhbaatar; Satoru Kyo

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothal...

  16. [Adiposity percentage relationship with hormone receptors immunoreactive score in breast cancer mexican women].

    Science.gov (United States)

    Balderas-Peña, Luz-Ma-Adriana; Sat-Muñoz, Daniel; Castro Cervantes, Juan Manuel; Ramírez-Orozco, Ricardo-Ernesto; Ángeles-Bueno, Wenceslao-Guillermo; Flores-Márquez, María-Rosa; Macías-López, Griselda-Guadalupe; Ruiz-Quezada, Sandra-Luz; Salcedo-Rocha, Ana-Leticia; García de Alba-García, Javier-Eduardo; Solano-Murillo, Pedro

    2013-01-01

    Introducción: El tejido adiposo es una importante fuente de estrógenos, los cuales se encuentran implicados en el desarrollo de cáncer de mama. Objetivo: Establecer la relación entre el porcentaje de adiposidad y el índice de inmunorreactividad de los receptores a estrógenos y a progesterona en mujeres mexicanas con cáncer de mama. Métodos: Estudio transversal analítico en pacientes con cáncer de mama confirmado con estudio histopatológico. Se estimó el % de adiposidad, y el índice de inmunorreactividad. Se realizó el análisis de correlación entre el porcentaje de adiposidad, el IMC, la presencia de DM2 e hipertensión arterial con la expresión de receptores a estrógeno y progesterona y regresión logística con cálculo de Odds Ratio. Resultados: Se estudiaron 43 pacientes con cáncer de mama y se observó asociación entre el porcentaje de adiposidad y el índice de inmunoreactividad para los RE y RP (rP 0,470; p 0,003 y rP 0,328; p 0,042 respectivamente). El factor de riesgo más importante en cáncer positivo a receptores estrogénicos fue la obesidad (OR 19,1, IC 95% 2,1 a 169,1, p 0,008) y obesidad previa en cáncer positivo a receptores a progesterona (OR 20,7, IC 95% 2,3 a 185,9, p 0,007). Conclusión: El porcentaje de adiposidad es un factor de riesgo importante para desarrollar cáncer de mama positivo a receptores hormonales.

  17. Mutation analysis underlying the downregulation of the thyroid hormone receptor β1 gene in the Chinese breast cancer population

    Directory of Open Access Journals (Sweden)

    Ling YQ

    2015-10-01

    Full Text Available Yaqin Ling,1 Xiaoling Ling,2 Lu Fan,1 Yong Wang,3,* Qing Li1,* 1Department of Pathophysiology, College of Basic Medical, Lanzhou University, 2Medical Oncology, Lanzhou University First Hospital, 3Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command of PLA, Lanzhou, Gansu Province, People’s Republic of China *These authors contributed equally to this work Purpose: There are a growing number of reports suggesting that the aberrant expression and mutation of the thyroid hormone receptor β1 (TRβ1 gene is associated with the development of human neoplasms. However, its exact role in the pathogenesis of breast cancer remains elusive. In the present study, we analyzed the mRNA expression and mutations of the TRβ1 gene in the Chinese breast cancer population.Methods: The expression of TRβ1 mRNA was examined by real-time quantitative reverse transcription polymerase chain reaction, and mutations in the TRβ1 gene in the hotspot region that spans exons 7–10 were analyzed by polymerase chain reaction single-strand conformation polymorphism and automated DNA sequencing.Results: TRβ1 mRNA expression was significantly reduced in all 105 breast cancer specimens examined. A total of 20 samples showed truncating mutations within the exons 7–10 of the TRβ1 gene, where eight cases harbored a frame shift mutation (five cases of c.850insA in exon 7 and three cases c.1028delA in exon 8, whereas missense mutations were observed in 12 breast cancer cases. The 20 cases with mutation in the TRβ1 gene showed a reduction in TRβ1 mRNA expression compared with that observed in matched normal tissues. The mutation was also correlated with menopausal stage and estrogen receptor status.Conclusion: The findings of the present study suggest that the aberrant expression and mutations of the TRβ1 gene are associated with the development of breast cancer and that the ­mutations in the TRβ1 gene partly serve as the underlying

  18. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle.

    Science.gov (United States)

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J

    2014-11-25

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.

  19. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR by mutating Ile691 in the cytoplasmic tail segment.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available BACKGROUND: Autosomal dominant non-autoimmune hyperthyroidism (ADNAH is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the G(αs/cAMP or G(αq/11/inositol phosphate (IP pathways, which stimulate thyroid hormone production and thyroid proliferation. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile(691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for G(αs/cAMP or G(αq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the G(αq/11/IP signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Ile(691 not only contributes to keeping TSHR inactive in the G(αs/cAMP pathways but also in the G(αq/11/IP cascade.

  20. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle

    Science.gov (United States)

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J.

    2014-01-01

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb−/− mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb−/− oocytes to produce essential oocyte-secreted factors or of Fshb−/− cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb+/− females, these increases fail to occur in Fshb−/− females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb−/− females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility. PMID:25385589

  1. Interaction between thyrotropin-releasing hormone (TRH) and NMDA-receptor-mediated responses in hypoglossal motoneurones

    DEFF Research Database (Denmark)

    Rekling, J C

    1992-01-01

    -50 microM TRH markedly potentiated the response to iontophoretically applied NMDA, whereas no potentiation of the response to glutamate, aspartate or quisqualic acid was seen. Voltage clamp experiments showed that TRH did not increase the current flowing through NMDA channels, thus a direct modulatory role......The effect of thyrotropin-releasing hormone (TRH) on the responses to excitatory amino acids was investigated in hypoglossal motoneurones in an in vitro preparation of the brainstem from guinea pigs using current clamp and discontinuous single electrode voltage clamp (dSEVC). Bath application of 20...... of TRH on NMDA channels was not a likely explanation of the potentiation. Voltage clamp studies of the current-voltage relationship showed that the potentiation of the response to NMDA and lack of potentiation of the response to quisqualic acid was a result of an interaction between the actions of TRH...

  2. 11q13 is a Susceptibility Locus for Hormone Receptor Positive Breast Cancer

    DEFF Research Database (Denmark)

    Lambrechts, Diether; Truong, Therese; Justenhoven, Christina

    2012-01-01

    A recent two-stage genome-wide association study (GWAS) identified five novel breast cancer susceptibility loci on chromosomes 9, 10 and 11. To provide more reliable estimates of the relative risk associated with these loci and investigate possible heterogeneity by subtype of breast cancer, we...... genotyped the variants rs2380205, rs1011970, rs704010, rs614367, rs10995190 in 39 studies from the Breast Cancer Association Consortium (BCAC), involving 49,608 cases and 48,772 controls of predominantly European ancestry. Four of the variants showed clear evidence of association (P = 3 × 10-9) and weak...... evidence was observed for rs2380205 (P = 0.06). The strongest evidence was obtained for rs614367, located on 11q13 (per-allele odds ratio 1.21, P = 4 × 10-39). The association for rs614367 was specific to estrogen receptor (ER)-positive disease and strongest for ER plus progesterone receptor (PR...

  3. Isolation, Expression Analysis, and Functional Characterization of the First Antidiuretic Hormone Receptor in Insects

    Science.gov (United States)

    2010-06-01

    review March 21, 2010) Diuresis following blood-gorging in Rhodnius prolixus is the major process leading to the transmission of Chagas’ disease. We...have cloned the cDNA of the first receptor known to be involved in an antidiuretic strategy in insects, a strategy that prevents diuresis . This...useful target for development of agonists or antago- nists that could help influence the transmission of Chagas’ disease that occurs during diuresis in

  4. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    Science.gov (United States)

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  5. Diagnosis and discrimination of autoimmune Graves' disease and Hashimoto's disease using thyroid-stimulating hormone receptor-containing recombinant proteoliposomes.

    Science.gov (United States)

    Fukushima, Hidetaka; Matsuo, Hideaki; Imamura, Koji; Morino, Kazuhiko; Okumura, Katsuzumi; Tsumoto, Kanta; Yoshimura, Tetsuro

    2009-12-01

    Graves' disease (GD) is an autoimmune disease of the thyroid gland caused by autoantibodies against thyroid-stimulating hormone receptor (TSHR). Currently, the diagnostic test for TSHR autoantibodies is based on an indirect competitive binding assay that measures the ability of TSHR autoantibodies to inhibit the binding of thyroid-stimulating hormone (TSH) to TSHR. Here, we have developed a specific and direct diagnostic method for autoantibodies in GD that incorporates immobilized TSHR-containing recombinant proteoliposomes into an enzyme-linked immunosorbent assay (ELISA). To reduce non-specific binding of autoantibodies to recombinant proteoliposomes, we investigated the effect of polyethylene glycol (PEG)-lipid on the binding of commercially available anti-TSHR antibodies (aTSHRAb). The incorporation of PEG-lipids into liposomes decreased non-specific binding, as compared to liposomes that did not contain PEG-lipids, and the addition of blocking reagents further decreased non-specific reactivity. aTSHRAb exhibited higher reactivity towards PEG-modified TSHR recombinant proteoliposomes than PEG-modified liposomes without TSHR (bare liposomes). Importantly, serum autoantibodies from patients with GD, which is associated with hyperthyroidism, exhibited remarkably specific binding to TSHR recombinant proteoliposomes. Serum autoantibodies from patients with Hashimoto's disease (HD), which is associated with hypothyroidism, also reacted specifically with proteoliposomal TSHR. These results suggest that immobilized TSHR recombinant proteoliposomes can serve as a direct diagnostic test for GD and HD. Furthermore, given that there is no competition test currently available for detecting autoantibodies in HD, the combination of TSHR recombinant proteoliposome ELISA and indirect competitive TSHR binding assay might be an effective way to discriminate between GD and HD.

  6. Seasonal variation in the gonadotropin-releasing hormone response to kisspeptin in sheep: possible kisspeptin regulation of the kisspeptin receptor.

    Science.gov (United States)

    Li, Qun; Roa, Alexandra; Clarke, Iain J; Smith, Jeremy T

    2012-01-01

    Kisspeptin signaling in the hypothalamus appears critical for the onset of puberty and driving the reproductive axis. In sheep, reproduction is seasonal, being activated by short days and inhibited by long days. During the non-breeding (anestrous) season, gonadotropin-releasing hormone (GnRH) and gonadotropin secretion is reduced, as is the expression of Kiss1 mRNA in the brain. Conversely, the luteinizing hormone response to kisspeptin during this time is greater. To determine whether the GnRH response to kisspeptin is increased during anestrus, we utilized hypophysial portal blood sampling. In anestrus ewes, the GnRH and LH responses to kisspeptin were greater compared to the breeding season (luteal phase). To ascertain whether this difference reflects a change in Kiss1r, we measured its expression on GnRH neurons using in situ hybridization. The level of Kiss1r was greater during the non-breeding season compared to the breeding season. To further examine the mechanism underlying this change in Kiss1r, we examined Kiss1r/GnRH expression in ovariectomized ewes (controlling for sex steroids) during the breeding and non-breeding seasons, and also ovariectomized non-breeding season ewes with or without estradiol replacement. In both experiments, Kiss1r expression on GnRH neurons was unchanged. Finally, we examined the effect of kisspeptin treatment on Kiss1r. Kiss1r expression on GnRH neurons was reduced by kisspeptin infusion. These studies indicate the kisspeptin response is indeed greater during the non-breeding season and this may be due in part to increased Kiss1r expression on GnRH neurons. We also show that kisspeptin may regulate the expression of its own receptor.

  7. Association between lifetime exposure to passive smoking and risk of breast cancer subtypes defined by hormone receptor status among non-smoking Caucasian women

    Science.gov (United States)

    Strumylaite, Loreta; Kregzdyte, Rima; Poskiene, Lina; Bogusevicius, Algirdas; Pranys, Darius; Norkute, Roberta

    2017-01-01

    Tobacco smoking is inconsistently associated with breast cancer. Although some studies suggest that breast cancer risk is related to passive smoking, little is known about the association with breast cancer by tumor hormone receptor status. We aimed to explore the association between lifetime passive smoking and risk of breast cancer subtypes defined by estrogen receptor and progesterone receptor status among non-smoking Caucasian women. A hospital-based case-control study was performed in 585 cases and 1170 controls aged 28–90 years. Information on lifetime passive smoking and other factors was collected via a self-administered questionnaire. Logistic regression was used for analyses restricted to the 449 cases and 930 controls who had never smoked actively. All statistical tests were two-sided. Adjusted odds ratio of breast cancer was 1.01 (95% confidence interval (CI): 0.72–1.41) in women who experienced exposure to passive smoking at work, 1.88 (95% CI: 1.38–2.55) in women who had exposure at home, and 2.80 (95% CI: 1.84–4.25) in women who were exposed at home and at work, all compared with never exposed regularly. Increased risk was associated with longer exposure: women exposed ≤ 20 years and > 20 years had 1.27 (95% CI: 0.97–1.66) and 2.64 (95% CI: 1.87–3.74) times higher risk of breast cancer compared with never exposed (Ptrend receptor-positive breast cancer did not differ from that with hormone receptor-negative breast cancer (Pheterogeneity > 0.05). There was evidence of interaction between passive smoking intensity and menopausal status in both overall group (P = 0.02) and hormone receptor-positive breast cancer group (P receptor status with the strongest association in postmenopausal women. PMID:28151962

  8. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities

    Science.gov (United States)

    Furuya, Fumihiko; Ishii, Toshihisa; Tamura, Shogo; Takahashi, Kazuya; Kobayashi, Hidetoshi; Ichijo, Masashi; Takizawa, Soichi; Kaneshige, Masahiro; Suzuki-Inoue, Katsue; Kitamura, Kenichiro

    2017-01-01

    In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD. PMID:28272516

  9. Anti-Muellerian hormone, inhibin A, gonadotropins, and gonadotropin receptors in bull calves after partial scrotal resection, orchidectomy, and Burdizzo castration.

    Science.gov (United States)

    Scarlet, Dragos; Aurich, Christine; Ille, Natascha; Walter, Ingrid; Weber, Corinna; Pieler, Dagmar; Peinhopf, Walter; Wohlsein, Peter; Aurich, Jörg

    2017-01-01

    Eight-week-old calves were either castrated by partial scrotal resection (SR) without removing the testes (n = 10), Burdizzo (BZ) clamp (n = 10), orchidectomy (OR; n = 10), or were left gonad intact as controls (CO; n = 10). Concentrations of anti-Muellerian hormone (AMH), inhibin A, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in plasma were determined from 16 to 48 weeks of age. At 18 months, testes of SR, BZ, and CO bulls were obtained and the immunolocalization of LH and FSH receptors and AMH analyzed. Concentration of AMH in plasma of CO and SR bulls decreased with increasing age (P BZ, AMH was undetectable. Plasma inhibin concentration was higher in groups CO and SR than BZ and OR (P BZ and OR than SR and CO (P BZ bulls. FSH receptors were localized in Sertoli cells, Leydig cells, spermatocytes, and the epididymis of CO and SR animals, whereas LH receptors were restricted to Leydig cells. In BZ animals, FSH and LH receptors and AMH were absent, indicating complete testicular degeneration. In conclusion, AMH is a more reliable marker for the presence of testicular tissue in bulls than inhibin. Scrotal resection did not induce a true inguinal cryptorchid state but affected testicular responsiveness to gonadotropic stimulation.

  10. 3,5-Diiodothyronine-mediated transrepression of the thyroid hormone receptor beta gene in tilapia. Insights on cross-talk between the thyroid hormone and cortisol signaling pathways.

    Science.gov (United States)

    Hernández-Puga, Gabriela; Navarrete-Ramírez, Pamela; Mendoza, Arturo; Olvera, Aurora; Villalobos, Patricia; Orozco, Aurea

    2016-04-15

    T3 and cortisol activate or repress gene expression in virtually every vertebrate cell mainly by interacting with their nuclear hormone receptors. In contrast to the mechanisms for hormone gene activation, the mechanisms involved in gene repression remain elusive. In teleosts, the thyroid hormone receptor beta gene or thrb produces two isoforms of TRβ1 that differ by nine amino acids in the ligand-binding domain of the long-TRβ1, whereas the short-TRβ1 lacks the insert. Previous reports have shown that the genomic effects exerted by 3,5-T2, a product of T3 outer-ring deiodination, are mediated by the long-TRβ1. Furthermore, 3,5-T2 and T3 down-regulate the expression of long-TRβ1 and short-TRβ1, respectively. In contrast, cortisol has been shown to up-regulate the expression of thrb. To understand the molecular mechanisms for thrb modulation by thyroid hormones and cortisol, we used an in silico approach to identify thyroid- and cortisol-response elements within the proximal promoter of thrb from tilapia. We then characterized the identified response elements by EMSA and correlated our observations with the effects of THs and cortisol upon expression of thrb in tilapia. Our data show that 3,5-T2 represses thrb expression and impairs its up-regulation by cortisol possibly through a transrepression mechanism. We propose that for thrb down-regulation, ligands other than T3 are required to orchestrate the pleiotropic effects of thyroid hormones in vertebrates.

  11. Hormonal regulation of vasotocin receptor mRNA in a seasonally breeding songbird.

    Science.gov (United States)

    Grozhik, Anya V; Horoszko, Christopher P; Horton, Brent M; Hu, Yuchen; Voisin, Dene A; Maney, Donna L

    2014-03-01

    Behaviors associated with breeding are seasonally modulated in a variety of species. These changes in behavior are mediated by sex steroids, levels of which likewise vary with season. The effects of androgens on behaviors associated with breeding may in turn be partly mediated by the nonapeptides vasopressin (VP) and oxytocin (OT) in mammals, and vasotocin (VT) in birds. The effects of testosterone (T) on production of these neuropeptides have been well-studied; however, the regulation of VT receptors by T is not well understood. In this study, we investigated steroid-dependent regulation of VT receptor (VTR) mRNA in a seasonally breeding songbird, the white-throated sparrow (Zonotrichia albicollis). We focused on VTR subtypes that have been most strongly implicated in social behavior: V1a and oxytocin-like receptor (OTR). Using in situ hybridization, we show that T-treatment of non-breeding males altered V1a and OTR mRNA expression in several regions associated with seasonal reproductive behaviors. For example, T-treatment increased V1a mRNA expression in the medial preoptic area, bed nucleus of the stria terminalis, and ventromedial hypothalamus. T-treatment also affected both V1a and OTR mRNA expression in nuclei of the song system; some of these effects depended on the presence or absence of a chromosomal rearrangement that affects singing behavior, plasma T, and VT immunolabeling in this species. Overall, our results strengthen evidence that VT helps mediate the behavioral effects of T in songbirds, and suggest that the chromosomal rearrangement in this species may affect the sensitivity of the VT system to seasonal changes in T.

  12. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    Science.gov (United States)

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation.

  13. Electrophoretic purification of radioiodinated follicle-stimulating hormone for radioligand receptor assay and radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Schneyer, A.L.; Sluss, P.M.; Bosukonda, D.; Reichert, L.E. Jr.

    1986-10-01

    A method is described for electrophoretic purification of (/sup 125/I)human (h) FSH after radioiodination that improves radioligand binding to FSH membrane receptors. Lactoperoxidase-iodinated hFSH was separated from reaction products by electrophoresis on 7.5% polyacrylamide tube gels (PAGE). Material eluted from 3-mm gel slices was analyzed for incorporation of /sup 125/I and binding to antibody (RIA) or receptor (RRA), and by sodium dodecyl sulfate-PAGE for protein composition. Sodium dodecyl sulfate-PAGE analysis of individual PAGE fractions demonstrated that iodinated proteins, both higher and lower in apparent mol wt than intact FSH, were separated by PAGE, but not by gel filtration chromatography (Sephadex G-25). PAGE purification of radioligand resulted in significantly greater (compared to gel filtration) RRA sensitivity and specificity. Maximum binding of PAGE-purified (/sup 125/I)hFSH to excess calf tests membrane receptors was 45%, with a specific activity of approximately 26 microCi/micrograms, as determined by the method of self-displacement. Maximum binding to excess hFSH antisera (NIH anti-hFSH 4) was 80-85%. This allowed a useful final dilution of 1:120,000, thereby facilitating development of a sensitive and specific RIA with this antiserum. These data indicate that PAGE separation of intact (/sup 125/I)hFSH from other iodinated proteins results in improved radioligand binding, assay sensitivity, and assay specificity. In addition, PAGE-purified lactoperoxidase-iodinated hFSH is suitable for use in both RIA and RRA.

  14. Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1 rescues Nr2e3 associated retinal disease.

    Directory of Open Access Journals (Sweden)

    Nelly M Cruz

    Full Text Available Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.

  15. [18F]-fluorodeoxyglucose positron emission tomography can contribute to discriminate patients with poor prognosis in hormone receptor-positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Sung Gwe Ahn

    Full Text Available Patients with hormone receptor-positive breast cancer typically show favorable survival. However, identifying individuals at high risk of recurrence among these patients is a crucial issue. We tested the hypothesis that [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET scans can help predict prognosis in patients with hormone receptor-positive breast cancer.Between April 2004 and December 2008, 305 patients with hormone receptor-positive breast cancer who underwent FGD-PET were enrolled. Patients with luminal B subtype were identified by positivity for human epidermal growth factor receptor-2 (HER2 or high Ki67 (≥14% according to criteria recently recommended by the St. Gallen panelists. The cut-off value of SUVmax was defined using the time-dependent receiver operator characteristic curve for recurrence-free survival (RFS.At a median follow up of 6.23 years, continuous SUVmax was a significant prognostic factor with a hazard ratio (HR of 1.21 (p = 0.021. The cut-off value of SUVmax was defined as 4. Patients with luminal B subtype (n = 82 or high SUVmax (n = 107 showed a reduced RFS (p = 0.031 and 0.002, respectively. In multivariate analysis for RFS, SUVmax carried independent prognostic significance (p = 0.012 whereas classification with immunohistochemical markers did not (p = 0.274. The Harell c-index was 0.729. High SUVmax was significantly associated with larger tumor size, positive nodes, HER2 positivity, high Ki67 (≥14%, high tumor grade, and luminal B subtype.Among patients with hormone receptor-positive breast cancer, FDG-PET can help discriminate patients at high risk of tumor relapse.

  16. Prenatal development of gonadotropin-releasing hormone receptors in the rat anterior pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Jennes, L. (Wright State Univ. School of Medicine, Dayton, OH (USA))

    1990-02-01

    The development of pituitary GnRH receptors was studied in the rat with in vitro and in vivo autoradiography. GnRH receptors were first seen in pituitary primordia of 13-day-old fetuses. The binding was specific and saturable and was abolished in the presence of 10 microM synthetic GnRH. To examine whether GnRH was available to the fetus, amnionic fluid was collected on days E 12-18. RIA analyses showed that GnRH levels in the amnionic fluid were low on days 12 and 13 (0-20 pM/ml) and rose to 225 pM/ml on day E 16 before they declined to 110 pM/ml on fetal day E 18. The highest levels of GnRH in the amnionic fluid on day E 16 coincided with the first appearance of immunoreactive LH cells, as determined by immunohistochemistry. Intravenous injection of 500 microliters amnionic fluid into pentobarbital-anesthetized adult rats caused a transient 40-60% increase in circulating serum LH in the recipient animal. To show that GnRH from the amnionic fluid has access to the developing pituitary, the 125I-labeled GnRH agonist Buserelin was injected into the amnionic fluid of 13-, 14-, and 15-day-old fetuses in the presence or absence of 10 microM unlabeled GnRH. Autoradiographic analysis of the fetal tissue indicated that the labeled GnRH agonist bound to specific receptors in the primordial pituitaries. The results suggest that the pituitary gonadotropes are differentiated before day E 13 because the expression of GnRH receptors is already an indication of cell determination. Since GnRH is present in the amnionic fluid in a biologically active form and can reach the fetal pituitary, it is concluded that GnRH may be an important factor determining the onset LH synthesis, but not the differentiation, of primordial pituitary cells.

  17. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  18. Using the human melanocortin-2 receptor as a model for analyzing hormone/receptor interactions between a mammalian MC2 receptor and ACTH(1-24).

    Science.gov (United States)

    Liang, Liang; Angleson, Joseph K; Dores, Robert M

    2013-01-15

    When considering the interactions between the melanocortin peptides (i.e., ACTH, α-MSH, β-MSH, γ-MSH) and the melanocortin receptors (i.e., MC1R, MC2R, MC3R, MC4R, MC5R), it appears that the structure/function relationship between ACTH and MC2R is the most complicated. Human ACTH(1-24) and the human melanocortin-2 receptor provide a useful model system for understanding how ACTH emerged as the sole ligand for the melanocortin-2 receptor of bony vertebrates. This review will discuss how studies utilizing analogs of hACTH(1-24) have revealed two critical amino acid motifs in this ligand (HFRW and KKRRP) which are required for activation of the melanocortin-2 receptor. In addition, observations on the unique activation features of the melanocortin-2 receptor, as revealed from studies on Familial Glucocorticoid Deficiency, will be considered. Finally, the evolutionary implications of the relationship between MC2R and MRAP1 will be discussed.

  19. Soy product and isoflavone intake and breast cancer risk defined by hormone receptor status.

    Science.gov (United States)

    Zhang, Caixia; Ho, Suzanne C; Lin, Fangyu; Cheng, Shouzhen; Fu, Jianhua; Chen, Yuming

    2010-02-01

    The association between soy food consumption and breast cancer risk has been inconsistent. A hospital-based case-control study was conducted to assess the relationship between soy food intake and breast cancer risk according to the estrogen receptor (ER) and/or progesterone receptor (PR) status of breast cancer in Chinese women residing in Guangdong province from June 2007 to August 2008. A total of 438 consecutively recruited cases with primary breast cancer were frequency matched to 438 controls by age (5-year interval) and residence (rural/urban). Dietary intake was assessed by face-to-face interviews using a validated food frequency questionnaire. Odds ratios (OR) and 95% confidence intervals (CI) were obtained by using multiple unconditional logistic regression adjusted for the potential confounders. We observed a statistically significant inverse association between soy isoflavone and soy protein intake with breast cancer risk. The multivariate ORs (95% CIs) of breast cancer risk for the highest quartile compared with the lowest quartile were 0.54 (0.34-0.84) for soy isoflavone and 0.62 (0.40-0.96) for soy protein, respectively. A preventive effect of soy food was found for all subtypes of ER and/or PR status of breast cancer. The inverse association was more evident among premenopausal women. This study suggests that consumption of soy food, soy isoflavone, is inversely associated with the risk of breast cancer. The protective effects of soy did not seem to differ by ER and PR breast cancer status.

  20. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  1. Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Donha Park

    Full Text Available Transforming growth factor β (TGF-β signaling acts through Smad proteins to play fundamental roles in cell proliferation, differentiation, apoptosis, and metabolism. The Receptor associated Smads (R-Smads interact with DNA and other nuclear proteins to regulate target gene transcription. Here, we demonstrate that the Caenorhabditis elegans R-Smad DAF-8 partners with the nuclear hormone receptor NHR-69, a C. elegans ortholog of mammalian hepatocyte nuclear factor 4α HNF4α, to repress the exp-2 potassium channel gene and increase insulin secretion. We find that NHR-69 associates with DAF-8 both in vivo and in vitro. Functionally, daf-8 nhr-69 double mutants show defects in neuropeptide secretion and phenotypes consistent with reduced insulin signaling such as increased expression of the sod-3 and gst-10 genes and a longer life span. Expression of the exp-2 gene, encoding a voltage-gated potassium channel, is synergistically increased in daf-8 nhr-69 mutants compared to single mutants and wild-type worms. In turn, exp-2 acts selectively in the ASI neurons to repress the secretion of the insulin-like peptide DAF-28. Importantly, exp-2 mutation shortens the long life span of daf-8 nhr-69 double mutants, demonstrating that exp-2 is required downstream of DAF-8 and NHR-69. Finally, animals over-expressing NHR-69 specifically in DAF-28-secreting ASI neurons exhibit a lethargic, hypoglycemic phenotype that is rescued by exogenous glucose. We propose a model whereby DAF-8/R-Smad and NHR-69 negatively regulate the transcription of exp-2 to promote neuronal DAF-28 secretion, thus demonstrating a physiological crosstalk between TGF-β and HNF4α-like signaling in C. elegans. NHR-69 and DAF-8 dependent regulation of exp-2 and DAF-28 also provides a novel molecular mechanism that contributes to the previously recognized link between insulin and TGF-β signaling in C. elegans.

  2. Breast cancer and leptomeningeal disease (LMD): hormone receptor status influences time to development of LMD and survival from LMD diagnosis.

    Science.gov (United States)

    Yust-Katz, S; Garciarena, P; Liu, D; Yuan, Y; Ibrahim, N; Yerushalmi, R; Penas-Prado, M; Groves, M D

    2013-09-01

    Leptomeningeal disease (LMD) occurs in 5 % of breast cancer patients. The aim of this study was to identify risk factors related to survival and time to development of LMD in breast cancer patients. A retrospective analysis of breast cancer patients with LMD, evaluated in MDACC between 1995 and 2011. 103 patients with diagnosis of breast cancer and LMD were identified (one male). The median age at LMD diagnosis was 49.2 years. 78.2 % had invasive ductal carcinoma. Hormone receptors (HRs) were positive in 55.3 % of patients, 47.4 % were human epidermal growth factor receptor 2-positive and 22.8 % were triple negative. 52 % of the patients were treated with WBRT, 19 % with spinal radiation, 36 % with systemic chemotherapy and 55 % with intrathecal chemotherapy. Estimated median overall survival from time of breast cancer diagnosis was 3.66 years. Median survival from time of LMD diagnosis was 4.2 months. Time from breast cancer diagnosis to LMD was 2.48 years. In multivariate analysis, HR status and stage at diagnosis were significantly associated with time to LMD diagnosis (p < 0.05). In triple negative patients, time to LMD was shorter. In patients who were HR positive, time to LMD was longer. Survival from LMD diagnosis was significantly associated with both treatment, as well as positive HR status (multivariate analysis p < 0.05). In conclusion LMD has dismal prognosis in breast cancer patients. HR status contributes to time to LMD diagnosis and survival from LMD diagnosis. The impact of treatment aimed at LMD cannot be ascertained in our retrospective study due to the inherent bias associated with the decision to treat.

  3. Vitamin D receptor and enzyme expression in dorsal root ganglia of adult female rats: modulation by ovarian hormones.

    Science.gov (United States)

    Tague, Sarah E; Smith, Peter G

    2011-01-01

    Vitamin D insufficiency impacts sensory processes including pain and proprioception, but little is known regarding vitamin D signaling in adult sensory neurons. We analyzed female rat dorsal root ganglia (DRG) for vitamin receptor (VDR) and the vitamin D metabolizing enzymes CYP27B1 and CYP24. Western blots and immunofluorescence revealed the presence of these proteins in sensory neurons. Nuclear VDR immunoreactivity was present within nearly all neurons, while cytoplasmic VDR was found preferentially in unmyelinated calcitonin gene-related peptide (CGRP)-positive neurons, colocalizing with CYP27B1 and CYP24. These data suggest that 1,25(OH)(2)D3 may affect sensory neurons through nuclear or extranuclear signaling pathways. In addition, local vitamin D metabolite concentrations in unmyelinated sensory neurons may be controlled through expression of CYP27B1 and CYP24. Because vitamin D deficiency appears to exacerbate some peri-menopausal pain syndromes, we assessed the effect of ovariectomy on vitamin D-related proteins. Two weeks following ovariectomy, total VDR expression in DRG dropped significantly, owing to a slight decrease in the percentage of total neurons expressing nuclear VDR and a large drop in unmyelinated CGRP-positive neurons expressing cytoplasmic VDR. Total CYP27B1 expression dropped significantly, predominantly due to decreased expression within unmyelinated CGRP-positive neurons. CYP24 expression remained unchanged. Therefore, unmyelinated CGRP-positive neurons appear to have a distinct vitamin D phenotype with hormonally-regulated ligand and receptor levels. These findings imply that vitamin D signaling may play a specialized role in a neural cell population that is primarily nociceptive.

  4. Clinical significance of serum levels of thyroid stimulating hormone receptor antibody in pregnant women with Graves′disease

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhi-ying; Tian Jian; Zhu Li

    2010-01-01

    Objective: To investigate the clinical significance of serum thyroid stimulating hormone (TSH) receptor antibody (TRAb) levels and the antithyroid drug (ATDs) use in pregnant women with Graves′ disease in their neonatal thyroid function. Methods: The serum TRAb and T3, T4, FT3, FT4, TSH levels in 68 pregnant women with Graves′ disease and their newborns were detected by radio receptor assay (RRA) and electrical chemiluminescence immunoassay (ECLIA), respectively. Based on the maternal serum TRAb levels and the use of antithyroid drugs during pregancy, the newborns were divided into different groups. The incidence of neonatal thyroid dysfunction and its risk factors were analyzed.Results: The results showed the incidence of abnormal thyroid function of newborns was 29.4% (20/68). The proportion of neonatal thyroid dysfunction in women with high TRAb levels in the third trimester of pregnancy were significantly higher than these with normal TRAb (P<0.01). In 23 newborns whose mothers were normal in serum TRAb levels and took no ATDs during pregnancy, only one case had thyroid dysfunction within two weeks after birth, while in other 45 newborns whose mothers had a high level of serum TRAb and/or took ATDs during pregnancy, 19 developed thyroid dysfunction within two weeks after birth.Conclusion: Neonatal thyroid function depends on the balance between the transplacental TRAb and ATDs. TRAb measurement in pregnant women with Graves′ disease is of significance in evaluation of neonatal thyroid function. Elevated level of serum TRAb in the third trimester of pregnancy is a risk factor for neonatal thyroid dysfunction.

  5. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolin [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Ye, Li [Suzhou NeuPharma Co.,Ltd, Suzhou 215123 (China); Wang, Xiaoxiang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Wang, Xinzhou [Suzhou NeuPharma Co.,Ltd, Suzhou 215123 (China); Liu, Hongling [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Zhu, Yongliang [Suzhou NeuPharma Co.,Ltd, Suzhou 215123 (China); Yu, Hongxia, E-mail: hongxiayu01@yahoo.com.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 and non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.

  6. Prognosis of breast cancer with low-positive hormonal receptors using epidermal growth factor receptor and cytokeratin 5/6 as indi-cators

    Institute of Scientific and Technical Information of China (English)

    Li Jianyi; Xue Jinqi; Zhang Wenhai; Zhang Yang; Jia Shi; Qian Songying

    2016-01-01

    Objective Less than a decade ago, ER-positive and PgR-positive diagnostic criteria decrease from 10%to 1%. Up to 20%of current immunohistochemical determinations of ER and PgR worldwide may be inaccu-rate. It is necessary to study patients whose tumors are between luminal A (LABC) and triple-negative (TNBC) breast cancer. Methods Survival analysis grouping by the level of positive hormone receptor, CK5/6 and EGFR, and en-docrine therapy was carried out in 206 patients whose tumors were junction zone between LABC and TNBC. Re-sults There were no significant differences between the low-positive (1%-9%) HR group and positive HR (10%-19%) group in overall survival (OS) and disease-free survival (DFS). There was an apparent difference between the nor-mal-like group and basal-like group in OS and DFS, and between the patients with and without endocrine therapy. There were significant differences between death and tumor progression for EGFR and CK5/6, chemotherapy, and endocrine therapy. Conclusions We conclude that EGFR and CK5/6 are better prognostic indicators than the lev-el of positive HR in patients whose tumors are junction zone at the junction zone between LABC and TNBC. En-docrine therapy can be highly beneficial to these patients regardless of the positive HR level.

  7. Local duplication of gonadotropin-releasing hormone (GnRH receptor before two rounds of whole genome duplication and origin of the mammalian GnRH receptor.

    Directory of Open Access Journals (Sweden)

    Fatemeh Ameri Sefideh

    Full Text Available Gonadotropin-releasing hormone (GnRH and the GnRH receptor (GnRHR play an important role in vertebrate reproduction. Although many GnRHR genes have been identified in a large variety of vertebrate species, the evolutionary history of GnRHR in vertebrates is unclear. To trace the evolutionary origin of GnRHR we examined the conserved synteny of chromosomes harboring GnRHR genes and matched the genes to linkage groups of reconstructed vertebrate ancestor chromosomes. Consistent with the phylogenetic tree, three pairs of GnRHR subtypes were identified in three paralogous linkage groups, indicating that an ancestral pair emerged through local duplication before two rounds of whole genome duplication (2R. The 2R then led to the generation of six subtypes of GnRHR. Some subtypes were lost during vertebrate evolution after the divergence of teleosts and tetrapods. One subtype includes mammalian GnRHR and a coelacanth GnRHR that showed the greatest response to GnRH1 among the three types of GnRH. This study provides new insight into the evolutionary relationship of vertebrate GnRHRs.

  8. Clinical implication of the antidiuretic hormone (ADH) receptor antagonist mozavaptan hydrochloride in patients with ectopic ADH syndrome.

    Science.gov (United States)

    Yamaguchi, Ken; Shijubo, Noriharu; Kodama, Tetsuro; Mori, Kiyoshi; Sugiura, Takahiko; Kuriyama, Takayuki; Kawahara, Masaaki; Shinkai, Tetsu; Iguchi, Haruo; Sakurai, Masanori

    2011-01-01

    Ectopic antidiuretic hormone syndrome is a medical emergency characterized by dilutional hyponatremia. Clinical effectiveness of the vasopressin V2 receptor antagonist mozavaptan was evaluated in 16 patients. In short-term (7-day) treatment with the drug, serum sodium concentration (mean ± standard deviation) significantly (P = 0.002) increased from 122.8 ± 6.7 to 133.3 ± 8.3 mEq/l, and symptoms due to hyponatremia were improved. On the basis of these results, mozavaptan (Physuline(®)) was approved as an orphan drug for the treatment of the syndrome in 2006 in Japan. During the 43 months following its launch, 100 patients have been treated with the drug; overall clinical effects of the drug were found similar to those of this clinical trial. Clinically, mozavaptan may allow hyponatremic patients to be treated by aggressive cancer chemotherapy with platinum-containing drugs. Moreover, the drug may free patients from strict fluid-intake restrictions and thereby improve their quality of life.

  9. Strategies for Imaging Androgen Receptor Signaling Pathway in Prostate Cancer: Implications for Hormonal Manipulation and Radiation Treatment

    Directory of Open Access Journals (Sweden)

    Gravina Giovanni Luca

    2013-01-01

    Full Text Available Prostate cancer (Pca is a heterogeneous disease; its etiology appears to be related to genetic and epigenetic factors. Radiotherapy and hormone manipulation are effective treatments, but many tumors will progress despite these treatments. Molecular imaging provides novel opportunities for image-guided optimization and management of these treatment modalities. Here we reviewed the advances in targeted imaging of key biomarkers of androgen receptor signaling pathways. A computerized search was performed to identify all relevant studies in Medline up to 2013. There are well-known limitations and inaccuracies of current imaging approaches for monitoring biological changes governing tumor progression. The close integration of molecular biology and clinical imaging could ease the development of new molecular imaging agents providing novel tools to monitor a number of biological events that, until a few years ago, were studied by conventional molecular assays. Advances in translational research may represent the next step in improving the oncological outcome of men with Pca who remain at high risk for systemic failure. This aim may be obtained by combining the anatomical properties of conventional imaging modalities with biological information to better predict tumor response to conventional treatments.

  10. Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers.

    Directory of Open Access Journals (Sweden)

    Yao-Tseng Chen

    Full Text Available BACKGROUND: Cancer/testis (CT antigens are protein antigens normally expressed only in germ cells of testis, and yet are expressed in a proportion of a wide variety of human cancers. CT antigens can elicit spontaneous immune responses in cancer patients with CT-positive cancers, and CT antigen-based therapeutic cancer vaccine trials are ongoing for "CT-rich" tumors. Although some previous studies found breast cancer to be "CT-poor", our recent analysis identified increased CT mRNA transcripts in the ER-negative subset of breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive immunohistochemical study to investigate the protein expression of eight CT genes in 454 invasive ductal carcinomas, including 225 ER/PR/HER2-negative (triple-negative carcinomas. We found significantly more frequent expression of all eight CT antigens in ER-negative cancers, and five of them--MAGEA, CT7, NY-ESO-1, CT10 and CT45, were expressed in 12-24% of ER-negative cancers, versus 2-6% of ER-positive cancers (p2 cm. CONCLUSIONS/SIGNIFICANCE: CT antigens are preferentially expressed in hormone receptor-negative and high-grade breast cancer. Considering the limited treatment options for ER/PR/HER2 triple-negative breast cancer, the potential of CT-based immunotherapy should be explored.

  11. Effect of mammogenic hormones on the expression of FGF7, FGF10 and their receptor in mouse mammary gland

    Institute of Scientific and Technical Information of China (English)

    CUI Yingdun; LI QingZhang

    2008-01-01

    To investigate the regulation of estrogen, progesterone and prolactin stimulating the development of mammary gland, the Kunming mice were used as experimental animals in this study. Through the ex-periment in vitro, the effect of mammogenic hormones were systematically investigated on expression of FGF7 and FGF10 and their receptor in different periods. The results are as follows: in mammary glands of mice, 17 beta-estradiol increased the expression of FGF7; progesterone did not affect the expression of FGF7; prolactin up-regulated the expression of FGF7 significantly in pregnancy and lac-tation. 17 beta-estradiol increased the expression of FGF10; progesterone and prolactin reduced the expression of FGF10 significantly in virgin; prolactin significantly increased the expression of FGF10 in pregnancy. When 17 beta-estradiol in the body was in relatively high proportion, it would lower the ex-pression of KGFR; while 17 beta-estradiol in the body was in relatively low proportion, it would increase the expression of KGFR. Low concentration of progesterone increased the expression of KGFR and high progesterone did not affect the expression of KGFR. Prolactin increased the expression of KGFR significantly in pregnancy and lactation.

  12. Central dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males.

    Science.gov (United States)

    Noaín, Daniela; Pérez-Millán, M Inés; Bello, Estefanía P; Luque, Guillermina M; Casas Cordero, Rodrigo; Gelman, Diego M; Peper, Marcela; Tornadu, Isabel García; Low, Malcolm J; Becú-Villalobos, Damasia; Rubinstein, Marcelo

    2013-03-27

    Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.

  13. Surgery Should Complement Endocrine Therapy for Elderly Postmenopausal Women with Hormone Receptor-Positive Early-Stage Breast Cancer

    Directory of Open Access Journals (Sweden)

    Olivier Nguyen

    2012-01-01

    Full Text Available Introduction. Endocrine therapy (ET is an integral part of breast cancer (BC treatment with surgical resection remaining the cornerstone of curative treatment. The objective of this study is to compare the survival of elderly postmenopausal women with hormone receptor-positive early-stage BC treated with ET alone, without radiation or chemotherapy, versus ET plus surgery. Materials and Methods. This is a retrospective study based on a prospective database. The medical records of postmenopausal BC patients referred to the surgical oncology service of two hospitals during an 8-year period were reviewed. All patients were to receive ET for a minimum of four months before undergoing any surgery. Results. Fifty-one patients were included and divided in two groups, ET alone and ET plus surgery. At last follow-up in exclusive ET patients (n=28, 39% had stable disease or complete response, 22% had progressive disease, of which 18% died of breast cancer, and 39% died of other causes. In surgical patients (n=23, 78% were disease-free, 9% died of recurrent breast cancer, and 13% died of other causes. Conclusions. These results suggest that surgical resection is beneficial in this group and should be considered, even for patients previously deemed ineligible for surgery.

  14. Challenges in the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer with brain metastases.

    Science.gov (United States)

    Liu, Minetta C; Cortés, Javier; O'Shaughnessy, Joyce

    2016-06-01

    Brain metastases are a major cause of morbidity and mortality for women with hormone receptor (HR)-positive breast cancer, yet little is known about the optimal treatment of brain disease in this group of patients. Although these patients are at lower risk for brain metastases relative to those with HER2-positive and triple-negative disease, they comprise the majority of women diagnosed with breast cancer. Surgery and radiation continue to have a role in the treatment of brain metastases, but there is a dearth of effective systemic therapies due to the poor penetrability of many systemic drugs across the blood-brain barrier (BBB). Additionally, patients with brain metastases have long been excluded from clinical trials, and few studies have been conducted to evaluate the safety and effectiveness of systemic therapies specifically for the treatment of HER2-negative breast cancer brain metastases. New approaches are on the horizon, such as nanoparticle-based cytotoxic drugs that have the potential to cross the BBB and provide clinically meaningful benefits to patients with this life-threatening consequence of HR-positive breast cancer.

  15. Regulation of Murine Ovarian Epithelial Carcinoma by Vaccination against the Cytoplasmic Domain of Anti-Müllerian Hormone Receptor II

    Directory of Open Access Journals (Sweden)

    Cagri Sakalar

    2015-01-01

    Full Text Available Anti-Müllerian hormone receptor, type II (AMHR2, is a differentiation protein expressed in 90% of primary epithelial ovarian carcinomas (EOCs, the most deadly gynecologic malignancy. We propose that AMHR2 may serve as a useful target for vaccination against EOC. To this end, we generated the recombinant 399-amino acid cytoplasmic domain of mouse AMHR2 (AMHR2-CD and tested its efficacy as a vaccine target in inhibiting growth of the ID8 transplantable EOC cell line in C57BL/6 mice and in preventing growth of autochthonous EOCs that occur spontaneously in transgenic mice. We found that AMHR2-CD immunization of C57BL/6 females induced a prominent antigen-specific proinflammatory CD4+ T cell response that resulted in a mild transient autoimmune oophoritis that resolved rapidly with no detectable lingering adverse effects on ovarian function. AMHR2-CD vaccination significantly inhibited ID8 tumor growth when administered either prophylactically or therapeutically, and protection against EOC growth was passively transferred into naive recipients with AMHR2-CD-primed CD4+ T cells but not with primed B cells. In addition, prophylactic AMHR2-CD vaccination of TgMISIIR-TAg transgenic mice significantly inhibited growth of autochthonous EOCs and provided a 41.7% increase in mean overall survival. We conclude that AMHR2-CD vaccination provides effective immunotherapy of EOC with relatively benign autoimmune complications.

  16. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    Science.gov (United States)

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  17. Study of serum level of sex hormones and expression of their receptors in patients with bronchogenic carcinoma

    Institute of Scientific and Technical Information of China (English)

    陈明伟; 张玉健; 李忠民

    2004-01-01

    Objective: To study the serum level of estradiol, progesterone and testosterone (SEL, SPL and STL) and the expression of the receptors of estradiol and progesterone (ER and PR) in 53 cases of bronchogenic carcinoma. Methods:ER and PR in the tissue of the carcinoma were determined with enzyme-linked affinity histochemical method. SEL, SPL and STL were measured with double antibody radioimmunoassay. Results: Most of ER and PR were present in the cytoplasm of the malignant cells (58.2 % ) and the positive rates of ER and PR were 49.1% and 54.7 % respectively. SEL and SPL were significantly higher in the patients with lung cancer than in the subjects of the control groups ( P < 0.05), no matter whether ER and PR were positive or negative. SEL and SPL were lower in the ER positive, PR positive and both ER and PR positive groups than in the ER negative, PR negative and both ER and PR negative groups. Conclusion: The existence of ER and PR in the patients with bronchogenic carcinoma indicates that the pathogenesis of bronchogenic carcinoma is sex hormone dependent to some extent. ER and SEL are negatively correlated with a correlative coefficient of - 1.

  18. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  19. Biochemical and pharmacological characterization of the thyrotropin releasing hormone (TRH) receptor from clonal GH sub 4 C sub 1 pituitary cells

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.J.

    1987-01-01

    The effect of drugs with anesthetic properties on the activity of the pituitary thyrotropin-releasing hormone (TRH) receptor was determined in the clonal GH{sub 4}C{sub 1} somatomammotropic cell line. Classic local anesthetics and other drugs with anesthetic activity inhibited binding of ({sup 3}H)methyl-TRH to cell receptors at concentrations known to produce anesthetic effects on the membrane. The inhibition of TRH receptor binding by tetracaine was competitive and temperature and pH dependent. Verapamil and tetracaine inhibited TRH-stimulated prolactin secretion at concentrations that inhibited peptide binding. TRH-stimulated prolactin secretion was equivalent with or without Ca{sup 2+} channel activity. Verapamil and tetracaine also inhibited basal prolactin and secretion stimulated by drugs that bypass membrane receptors, db-cAMP and TPA. These results indicate that inhibition of TRH binding and responses by diverse drugs results from an anesthetic effect on the cell membrane.

  20. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    OpenAIRE

    Fukuda, Takashi; Tanaka, Tomoko; Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH...

  1. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  2. The influence of hormones on the lipid profile in the fat body of insects

    Directory of Open Access Journals (Sweden)

    M Cerkowniak

    2015-08-01

    Full Text Available Peptide hormones play a special role in the neuroendocrine systems of insects and affect a number of physiological processes related to their development, reproduction and behavior. The lipid content in the fat body of insects is closely correlated with the work of the endocrine glands. The lipid profile of the fat body of the Zophobas atratus beetle reveals a predominant proportion of triacylglycerols when compared to free fatty acids and other lipid compounds, such as fatty acid esters, fatty alcohols and sterols. Although it may depend on the stage of the insects’ development, the disparate impacts of the adipokinetic hormone (AKH on the lipid content in the fat bodies of the feeding larvae and the non-feeding pupae of Z. atratus, may signify the different roles this hormone plays in the indirect control of the insects’ metabolism.

  3. Growth-related changes in histology and immunolocalization of steroid hormone receptors in gonads of the immature male green turtle (Chelonia mydas).

    Science.gov (United States)

    Otsuka, Saori; Suzuki, Masatsugu; Kamezaki, Naoki; Shima, Tatsuya; Wakatsuki, Motoki; Kon, Yasuhiro; Ohtaishi, Noriyuki

    2008-03-01

    Studies on the population dynamics of sea turtles require histological evaluation of the ontogenetic development and the activity of the gonads for reproduction. To investigate the growth-related changes of gonads in the immature male green turtle (Chelonia mydas), the histological changes of testes and epididymides and the localization of the androgen receptor, estrogen receptor alpha, estrogen receptor beta, and progesterone receptor were examined. The testes were categorized histologically into six developmental stages, and a scarce relationship between straight carapace length and gonadal development was confirmed based on the histological analysis. Several kinds of steroid hormone receptors were examined to show distributions in both testes and epididymides, for which their immunoreactivities were enhanced according to the developmental stage of the testes. These results suggest that straight carapace length is not an adequate indicator of maturity determination, whereas histological and immunohistochemical evaluations are useful in identifying the growth stages of green turtles, owing to the higher sensitivity to steroid hormones that appear during growth.

  4. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity.

    Science.gov (United States)

    Martinez, E; Wahli, W

    1989-12-01

    The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.

  5. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

    Directory of Open Access Journals (Sweden)

    Sergey Yegorov

    Full Text Available Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL and relaxin family peptide receptors (RXFP. Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of

  6. Assessment of ghrelin and leptin receptor levels in postmenopausal women who received oral or transdermal menopausal hormonal therapy

    Institute of Scientific and Technical Information of China (English)

    Barbara RUSZKOWSKA; Alina SOKUP; Arleta KULWAS; Maciej W.SOCHA; Krzysztof GˊORALCZYK; Barbara GˊORALCZYK; Danuta ROˊSˊC

    2012-01-01

    Objective:In postmenopausal women,an increased leptin concentration and reduced levels ofghrelin and adiponectin were observed.The aim of this study was to evaluate the concentrations of the active form of ghrelin,total ghrelin,leptin receptor,lipoprotein(a) (Lp(a)),and plasminogen activator inhibitor type 1 (PAI-1) in postmenopausal women who received oral or transdermal menopausal hormonal therapy (MHT).Methods:The study involved 76 healthy women:46 women aged from 44 to 58 years who received oral (26) or transdermal (20) MHT; the control group consisted of 30 women aged from 44 to 54 years who did not receive MHT.The plasma concentrations of total ghrelin,the active form of ghrelin,Lp(a),and PAI-1:Ag were measured by enzyme-linked immunosorbent assay (ELISA).The concentration of the leptin receptor was measured by enzyme immunometric assay (EIA).Results:We observed a significantly higher concentration of total ghrelin and the active form of ghrelin in women who received transdermal MHT in comparison with those who took oral MHT.We also found a significantly lower concentration of total ghrelin in women who received oral MHT compared with the control group.A higher concentration of PAI-1:Ag was found in the group of women who took transdermal MHT in comparison with those who took oral MHT and with the control group.The differences were statistically significant.Additionally,we found a significant negative correlation between the concentrations of total ghrelin and PAI-1:Ag and a positive correlation between the concentrations of total ghrelin and leptin receptor in women who received transdermal MHT.Conclusions:The study showed that women who used transdermal MHT had higher levels of total ghrelin than women who took oral MHT.This indicates a beneficial effect of the transdermal route of MHT.However,transdermal therapy was associated with adverse effects with regard to the observed higher levels of PAI-1:Ag,which in turn,can lead to a reduction in fibrinolytic

  7. Interaction of the growth hormone receptor cytoplasmic domain with the JAK2 tyrosine kinase.

    Science.gov (United States)

    Frank, S J; Gilliland, G; Kraft, A S; Arnold, C S

    1994-11-01

    An early step in GH action involves tyrosine phosphorylation of various cellular proteins. Recently, it has been shown in murine preadipocytes that GH promotes the association of its receptor (the GHR) with and the activation of the JAK2 tyrosine kinase. In this study, we confirmed the human (h) GH-induced association of JAK2 with hGHR in IM-9 cells by coimmunoprecipitation experiments using anti-hGHR serum. We further examined the interaction of JAK2 with the GHR cytoplasmic domain by two lines of investigation. For in vitro studies, we assayed by immunoblotting the ability of cell-derived JAK2 to interact with glutathione S-transferase fusion proteins containing elements of the hGHR cytoplasmic domain. A fusion protein containing the entire hGHR cytoplasmic domain (residues 271-620) specifically associated with JAK2 independent of prior stimulation of cells with hGH. This interaction was not dependent on tyrosine phosphorylation of either partner. Mutational analysis of the hGHR cytoplasmic domain component of the fusions indicated that a membrane-proximal 20-residue region that includes the proline-rich box 1 was necessary for the interaction. This region appeared to cooperate with another region(s), largely in the N-terminal one third of the cytoplasmic domain, to promote full interaction with JAK2. For in vivo reconstitution experiments, wild-type (WT) and mutant rabbit GHRs (rGHRs) along with murine JAK2 were expressed by transient transfection in COS-7 cells. rGHR mutations were confined to the cytoplasmic domain and included C-terminal truncations as well as internal deletions of residues 297-406 and 278-292 (the latter contains box 1). All mutant rGHRs were expressed at the cell surface and bound hGH to a degree similar to the WT rGHR. Receptors were tested for their ability to mediate the hGH-induced immunoprecipitability of JAK2 with phosphotyrosine (APT) antibodies. A rGHR truncated to residue 275 [rGHR-(1-275)], which contains only five cytoplasmic

  8. Pre-translational regulation of luteinizing hormone receptor in follicular somatic cells of cattle

    Science.gov (United States)

    Marsters, P.; Kendall, N.R.; Campbell, B.K.

    2015-01-01

    Differential regulation of LHR in theca cells (TC) and granulosa cells (GC) is important for normal follicular development. Unlike TC, GC only acquire LH-responsiveness during the later stages of antral follicle development. This study tested the hypothesis that differential LH-responsiveness in these two cell types may be due, in part, to shifts in cellular patterns of alternatively spliced LHR mRNA transcripts which may not be obvious from analysis of total LHR gene expression. It also further explored the role of translation inhibition by an LHR binding protein (LHBP), normally associated with the production of endogenous cholesterol. LHR mRNA variation arises as a result of the alternative splicing of two variable deletion sites (VDS) designated 5′ VDS and 3′ VDS, and it was proposed that differences in cell sensitivity to LH may be due in part to variations in the pattern of the mRNA expression of the receptor variants. The outcomes of the present study support a dynamic multi-facetted regulation of LHR during pre-translation. Not only did the ratio between variants change during antral follicle growth and in vitro cell differentiation but also between TC and GC. Regulation could also be linked to LH concentration feedback mechanisms as the absence of LH caused cultured TC to markedly up-regulate amounts of LHR mRNA. In both TC and GC, LHR mRNA was greatly reduced after treatment to block mevalonate production in the de novo cholesterol pathway, adding further support for a regulatory mechanism linked to enriched cellular amounts of mevalonate kinase. PMID:26507944

  9. Mixture effects of levonorgestrel and ethinylestradiol: estrogenic biomarkers and hormone receptor mRNA expression during sexual programming.

    Science.gov (United States)

    Säfholm, Moa; Jansson, Erika; Fick, Jerker; Berg, Cecilia

    2015-04-01

    Synthetic progesterone (progestins) and estrogens are widely used pharmaceuticals. Given that their simultaneous unintentional exposure occurs in wildlife and also in human infants, data on mixture effects of combined exposures to these hormones during development is needed. Using the Xenopus (Silurana) tropicalis test system we investigated mixture effects of levonorgestrel (LNG) and ethinylestradiol (EE2) on hormone sensitive endpoints. After larval exposure to LNG (0.1nM), or EE2 (0.1nM) singly, or in combination with LNG (0.01, 0.1, 1.0nM), the gonadal sex ratio was determined histologically and hepatic mRNA levels of genes encoding vitellogenin (vtg beta1) and the estrogen (esr1, esr2), progesterone (ipgr) and androgen (ar) receptors were quantified using quantitative PCR. All EE2-exposed groups showed female-biased sex ratios and increased vtg beta1 mRNA levels compared with the controls. Compared with the EE2-alone group (positive control) there were no significant alterations in vtg beta1 levels or in sex ratios in the co-exposure groups. Exposure to LNG-alone caused an increase in ar mRNA levels in females, but not in males, compared to the controls and the co-exposed groups, indicating that co-exposure to EE2 counteracted the LNG-induced ar levels. No treatment related impacts on the mRNA expression of esr1, esr2, and ipgr in female tadpoles were found, suggesting that these endpoints are insensitive to long-term exposure to estrogen or progestin. Due to the EE2-induced female-biased sex ratios, the mRNA expression data for the low number of males in the EE2-exposed groups were not statistically analyzed. In conclusion, our results suggest that induced vtg expression is a robust biomarker for estrogenic activity in exposure scenarios involving both estrogens and progestins. Developmental exposure to LNG caused an induction of hepatic ar mRNA expression that was antagonized by combined exposure to EE2 and LNG. To our knowledge this is the first study to

  10. Ontogeny of growth hormone receptor gene expression in tissue of growth-selected strains of broiler chickens.

    Science.gov (United States)

    Mao, J N; Burnside, J; Postel-Vinay, M C; Pesek, J D; Chambers, J R; Cogburn, L A

    1998-01-01

    The purpose of this study was to determine the relationship between genetic selection for growth traits and tissue expression of the chicken growth hormone receptor (cGHR) gene. Two different populations of broiler chickens were studied. One population consisted of strain (S) 80, selected for 14 generations for high 9-week body weight (BW), and its progenitor, S90 (a 1950's strain). The second population consisted of S21, selected for 10 generations for high 4-week BW and low abdominal fat, and its progenitor S20 (a 1970's strain). Tissue (liver, fat, breast and leg muscle) and blood samples were collected from six birds/strain at 2-week intervals between 1 and 11 weeks of age. An RNase protection assay was developed to measure mRNA levels of full-length cGHR (3.2 and 4.3 kb) transcripts and chicken glyceraldehyde 3-phosphate dehydrogenase (for normalization) in total RNA prepared from tissue. Analysis of the area-under-curve (AUC) was used for strain comparisons of certain developmental profiles (BW, plasma hormones and tissue cGHR mRNA). The BW AUC showed that the growth rates are different (P S20 > S80 > S90). Both slow-growing strains (S90 and S80) had a higher (P growing strains (S20 and S21). The plasma T3 AUC was highest (P S20 > S80 > S90). However, the developmental increase in cGHR mRNA in liver and fat was similar among these different populations of growth-selected broiler chickens. Steady-state levels of cGHR mRNA increased in a developmental manner in the liver (5-fold at 9 weeks of age) and abdominal fat (4.5-fold at 11 weeks of age) of all strains. In contrast, there was no developmental increase or strain difference in cGHR mRNA levels in breast and leg muscle. There is a discrepancy between GH-binding activity in liver and plasma, which is different among strains, and steady-state levels of tissue cGHR mRNA which are similar among strains. These observations suggest that the cGHR is under translational or post-translational regulation which would

  11. Actions of NPY, and its Y1 and Y2 receptors on pulsatile growth hormone secretion during the fed and fasted state.

    Science.gov (United States)

    Huang, Lili; Tan, Hwee Y; Fogarty, Matthew J; Andrews, Zane B; Veldhuis, Johannes D; Herzog, Herbert; Steyn, Frederik J; Chen, Chen

    2014-12-01

    The hypothalamic NPY system plays an important role in regulating food intake and energy expenditure. Different biological actions of NPY are assigned to NPY receptor subtypes. Recent studies demonstrated a close relationship between food intake and growth hormone (GH) secretion; however, the mechanism through which endogenous NPY modulates GH release remains unknown. Moreover, conclusive evidence demonstrating a role for NPY and Y-receptors in regulating the endogenous pulsatile release of GH does not exist. We used genetically modified mice (germline Npy, Y1, and Y2 receptor knock-out mice) to assess pulsatile GH secretion under both fed and fasting conditions. Deletion of NPY did not impact fed GH release; however, it reversed the fasting-induced suppression of pulsatile GH secretion. The recovery of GH secretion was associated with a reduction in hypothalamic somatotropin release inhibiting factor (Srif; somatostatin) mRNA expression. Moreover, observations revealed a differential role for Y1 and Y2 receptors, wherein the postsynaptic Y1 receptor suppresses GH secretion in fasting. In contrast, the presynaptic Y2 receptor maintains normal GH output under long-term ad libitum-fed conditions. These data demonstrate an integrated neural circuit that modulates GH release relative to food intake, and provide essential information to address the differential roles of Y1 and Y2 receptors in regulating the release of GH under fed and fasting states.

  12. Effects of endocannabinoid 1 and 2 (CB1; CB2) receptor agonists on luteal weight, circulating progesterone, luteal mRNA for luteinizing hormone (LH) receptors, and luteal unoccupied and occupied receptors for LH in vivo in ewes.

    Science.gov (United States)

    Tsutahara, Nicole M; Weems, Yoshie S; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; LaPorte, Magen E; Uchida, Janelle; Pang, Janelle; McBride, Tonya; Randel, Ronald D; Weems, Charles W

    2011-02-01

    Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and

  13. Ghrelin: much more than a hunger hormone

    Science.gov (United States)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  14. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A-like inhibitor of differentiation 1 (EID1

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2008-01-01

    Full Text Available Transcriptional activation (TA mediated by the effect of thyroid hormones on target genes requires co-activator proteins such as the early region 1A (E1A associated 300 kDa binding protein (p300 and the cAMP response element binding protein (CREB binding protein (CBP, known as the p300/CBP complex, which acetylate histones 3 and 4 to allow transcriptional machinery access to the target gene promoter. Little is known on the role of p300 in thyroid hormone receptor (TR mediated TA but the E1A-like inhibitor of differentiation 1 (EID1, an inhibitor of p300 histone acetyltransferase (HAT, is a functional homolog of E1A and may inhibit myogenic differentiation factor D (MyoD transcriptional activity and reduces muscle cell differentiation. We evaluated the influence of EID1 on TR-mediated transcriptional activity using transfection and mammalian two-hybrid studies to show that EID1 may partially reduces TA activity of the TR receptor, probably due to p300 blockage since EID1 mutants cannot reduce TR-mediated TA. The EID1 does not affect the function of p160 co-activator proteins (160 kDa proteins of steroid receptor co-activators and is functionally independent of co-repressor proteins or TR binding. Summarizing, EID1 reduces TR-mediated transcriptional activity by blocking p300 and may play an important role in thyroid receptor activity in muscle and other tissues.

  15. Further studies on the role of cholecystokinin-A and B receptors in secretion of anterior pituitary hormones in male rats.

    Science.gov (United States)

    Peuranen, E; Vasar, E; Koks, S; Volke, V; Lang, A; Rauhala, P; Männistö, P T

    1995-01-01

    We compared the effects of unselective cholecystokinin (CCK) agonists (caerulein and CCK-8s) and a CCKB agonist CCK-4 on the secretion of thyrotropin (TSH), growth hormone (GH) and prolactin (PRL) in male rats. The subcutaneous (s.c.) administration of caerulein and CCK-8s suppressed dose-dependently TSH and GH levels. In contrast, when given into the 3rd brain ventricle (i.c.v.) caerulein dose-dependently elevated the GH levels. Next the importance of the afferent vagal nerves was studied in the action of caerulein and CCK-4. Subdiaphragmatic vagotomy itself decreased cold-stimulated TSH levels but abolished the suppressing effect of intraperitoneal (i.p.), and apparently also that of the i.c.v. caerulein. GH and PRL levels were altered neither by vagotomy nor caerulein. CCK-4 did not affect hormone levels. Atropine and butylscopolamine (i.p.) themselves did not alter TSH, PRL or GH secretion in intact rats. Neither did they reverse the effect of caerulein on TSH. In conclusion, CCKA receptors dominate in TSH and CCKB receptors in GH regulation. CCKA receptors in the gastrointestinal tract, related to the nervus vagus are mediating the inhibitory effect of caerulein upon TSH secretion but inhibition of GH secretion does not depend on the nervus vagus. CCKB receptors in the brain stem or near the 3rd brain ventricle are responsible for stimulation of GH secretion.

  16. Attribution to Heterogeneous Risk Factors for Breast Cancer Subtypes Based on Hormone Receptor and Human Epidermal Growth Factor 2 Receptor Expression in Korea.

    Science.gov (United States)

    Park, Boyoung; Choi, Ji-Yeob; Sung, Ho Kyung; Ahn, Choonghyun; Hwang, Yunji; Jang, Jieun; Lee, Juyeon; Kim, Heewon; Shin, Hai-Rim; Park, Sohee; Han, Wonshik; Noh, Dong-Young; Yoo, Keun-Young; Kang, Daehee; Park, Sue K

    2016-04-01

    We conducted a heterogeneous risk assessment of breast cancer based on the hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) calculating the risks and population-based attributable fractions (PAFs) for modifiable and nonmodifiable factors.Using matched case-control study design from the Seoul Breast Cancer Study and the national prevalence of exposure, the risks and PAFs for modifiable and nonmodifiable factors were estimated for total breast cancers and subtypes.The attribution to modifiable factors was different for each subtype (luminal A, PAF = 61.4% [95% confidence interval, CI = 54.3%-69.8%]; luminal B, 21.4% [95% CI = 18.6-24.9%]; HER2-overexpression, 59.4% [95% CI = 47.8%-74.3%], and triple negative tumors [TNs], 27.1% [95% CI = 22.9%-32.4%)], and the attribution to the modifiable factors for the luminal A and HER2-overexpression subtypes was higher than that of the luminal B and TN subtypes (P heterogeneity  ≤  0.001). The contribution of modifiable reproductive factors to luminal A type in premenopausal women was higher than that of the other subtypes (18.2% for luminal A; 3.1%, 8.1%, and -3.1% for luminal B, HER2-overexpression, and TN subtypes, respectively; P heterogeneity  ≤  0.001). Physical activity had the highest impact preventing 32.6% of luminal A, 14.5% of luminal B, 38.0% of HER2-overexpression, and 26.9% of TN subtypes (P heterogeneity = 0.014). Total reproductive factors were also heterogeneously attributed to each breast cancer subtype (luminal A, 65.4%; luminal B, 24.1%; HER2-overexpression, 57.9%, and TN subtypes, -3.1%; P heterogeneity  ≤  0.001).Each pathological subtype of breast cancer by HRs and HER2 status may be associated with heterogeneous risk factors and their attributable risk, suggesting a different etiology. The luminal B and TN subtypes seemed to be less preventable despite intervention for alleged risk factors, even though physical activity had a high

  17. A novel mutation of thyroid hormone receptor β in exon 10 in a case of thyroid hormone-resistant non-Hodgkin’s lymphoma of the thyroid

    OpenAIRE

    Chen, Ke; Xie, Yanhong; Zhao, Liling; ZHAO, SHAOLI; He, Honghui; Mo, Zhaohui

    2014-01-01

    Only a few previous studies have demonstrated an association between resistance to thyroid hormone (RTH) and thyroid cancer. The current study presents the case of a 67-year-old female who was referred to the Third Xiangya Hospital of Central South University with an enlargement of the neck that had grown gradually over two years and subsequently, rapidly enlarged over the two months prior to admission, alongside a slight sensation of shortness of breath. Laboratory data revealed a significan...

  18. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Regina [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States); Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  19. Reliability of the thyroid stimulating hormone receptor antibodies level determination in diagnosing and prognosing of immunogenic hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Aleksić Aleksandar Z.

    2009-01-01

    Full Text Available Background/Aim. Graves disease (GD is defined as hyperthyroidism with diffuse goiter caused by immunogenic disturbances. Antibodies to the thyroid stimulating hormone (TSH receptors of thyroid gland (TRAb have crucial pathogenetic importance in the development and maintenance of autoimmune hyperthyroidism. The aim of this study was to identify sensitivity, specificity, positive an negative predictive value of TRAb level in sera of patients with GD as well as to estimate significance of TRAb level for remission and GD relapses occurrence. Methods. We studied prospectively and partly retrospectively 149 patients, 109 female and 40 male patients, 5-78 years old, in the period 1982-2007. There were 96 patients with GD. The control group consisted of 53 patients, 21 with hyperthyroidism of second etiology and 32 patients on amiodarone therapy, with or without thyroid dysfunction TRAb was measured by radioreceptor assay (TRAK Assay and DYNO Test TRAK Human Brahms Diagnostica GMBH. Results. According to the results the sensitivity (Sn of TRAb test was 80%, specificity (Sp 100%, positive predictive value (PP 100% and negative predictive value (NP 83%. Also, the Sn of hTRAb test was 94%, Sp 100%, PP 100% and NP 94%. Our results show that an increased level of TRAb/hTRAb at the beginning of the disease and the level at the end of medical therapy is associated with an increased number of GD relapses and a shorter remission duration. Conclusion. Detection and measurement of TRAb in serum is a very sensitive method for diagnosing GD and very highly specific in vitro method for differential diagnosis of various forms of hyperthyroidism. Clinical significance of differentiating various forms of hyperthyroidism, using this in vitro assay, lays in adequate therapeutic choice for these entities.

  20. Thyroid stimulating hormone receptor (TSHR intron 1 variants are major risk factors for Graves' disease in three European Caucasian cohorts.

    Directory of Open Access Journals (Sweden)

    Rafał Płoski

    Full Text Available BACKGROUND: The thyroid stimulating hormone receptor (TSHR gene is an established susceptibility locus for Graves' disease (GD, with recent studies refining association to two single nucleotide polymorphisms (SNPs, rs179247 and rs12101255, within TSHR intron 1. METHODOLOGY AND PRINCIPAL FINDINGS: We aimed to validate association of rs179247 and rs12101255 in Polish and UK Caucasian GD case-control subjects, determine the mode of inheritance and to see if association correlates with specific GD clinical manifestations. We investigated three case-control populations; 558 GD patients and 520 controls from Warsaw, Poland, 196 GD patients and 198 controls from Gliwice, Poland and 2504 GD patients from the UK National collection and 2784 controls from the 1958 British Birth cohort. Both rs179247 (P = 1.2×10(-2-6.2×10(-15, OR = 1.38-1.45 and rs12101255 (P = 1.0×10(-4-3.68×10(-21, OR = 1.47-1.87 exhibited strong association with GD in all three cohorts. Logistic regression suggested association of rs179247 is secondary to rs12101255 in all cohorts. Inheritance modeling suggested a co-dominant mode of inheritance in all cohorts. Genotype-phenotype correlations provided no clear evidence of association with any specific clinical characteristics. CONCLUSIONS: We have validated association of TSHR intron 1 SNPs with GD in three independent European cohorts and have demonstrated that the aetiological variant within the TSHR is likely to be in strong linkage disequilibrium with rs12101255. Fine mapping is now required to determine the exact location of the aetiological DNA variants within the TSHR.

  1. Maternal behavior in transgenic mice with reduced fibroblast growth factor receptor function in gonadotropin-releasing hormone neurons

    Directory of Open Access Journals (Sweden)

    Brooks Leah R

    2012-09-01

    Full Text Available Abstract Background Fibroblast growth factors (FGFs and their receptors (FGFRs are necessary for the proper development of gonadotropin-releasing hormone (GnRH neurons, which are key activators of the hypothalamo-pituitary-gonadal axis. Transgenic mice that have the targeted expression of a dominant negative FGFR (dnFGFR in GnRH neurons (dnFGFR mice have a 30% decrease of GnRH neurons. Additionally, only 30–40% of the pups born to the transgenic dams survive to weaning age. These data raised the possibility that FGFR defects in GnRH neurons could adversely affect maternal behavior via novel mechanisms. Methods We first determined if defective maternal behavior in dnFGFR mothers may contribute to poor pup survival by measuring pup retrieval and a battery of maternal behaviors in primiparous control (n = 10–12 and dnFGFR (n = 13–14 mothers. Other endocrine correlates of maternal behaviors, including plasma estradiol levels and hypothalamic pro-oxyphysin and GnRH transcript levels were also determined using enzyme-linked immunoassay and quantitative reverse transcription polymerase chain reaction, respectively. Results Maternal behaviors (% time crouching with pups, time off pups but not feeding, time feeding, and total number of nesting bouts were not significantly different in dnFGFR mice. However, dnFGFR dams were more likely to leave their pups scattered and took significantly longer to retrieve each pup compared to control dams. Further, dnFGFR mothers had significantly lower GnRH transcripts and circulating E2, but normal pro-oxyphysin transcript levels. Conclusions Overall, this study suggests a complex scenario in which a GnRH system compromised by reduced FGF signaling leads to not only suboptimal reproductive physiology, but also suboptimal maternal behavior.

  2. Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning.

    Science.gov (United States)

    Bogdan, Ryan; Santesso, Diane L; Fagerness, Jesen; Perlis, Roy H; Pizzagalli, Diego A

    2011-09-14

    Stress is a general risk factor for psychopathology, but the mechanisms underlying this relationship remain largely unknown. Animal studies and limited human research suggest that stress can induce anhedonic behavior. Moreover, emerging data indicate that genetic variation within the corticotropin-releasing hormone type 1 receptor gene (CRHR1) at rs12938031 may promote psychopathology, particularly in the context of stress. Using an intermediate phenotypic neurogenetics approach, we assessed how stress and CRHR1 genetic variation (rs12938031) influence reward learning, an important component of anhedonia. Psychiatrically healthy female participants (n = 75) completed a probabilistic reward learning task during stress and no-stress conditions while 128-channel event-related potentials were recorded. Fifty-six participants were also genotyped across CRHR1. Response bias, an individual's ability to modulate behavior as a function of reward, was the primary behavioral variable of interest. The feedback-related positivity (FRP) in response to reward feedback was used as a neural index of reward learning. Relative to the no-stress condition, acute stress was associated with blunted response bias as well as a smaller and delayed FRP (indicative of disrupted reward learning) and reduced anterior cingulate and orbitofrontal cortex activation to reward. Critically, rs12938031 interacted with stress to influence reward learning: both behaviorally and neurally, A homozygotes showed stress-induced reward learning abnormalities. These findings indicate that acute, uncontrollable stressors reduce participants' ability to modulate behavior as a function of reward, and that such effects are modulated by CRHR1 genotype. Homozygosity for the A allele at rs12938031 may increase risk for psychopathology via stress-induced reward learning deficits.

  3. A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens.

    Science.gov (United States)

    Karlsson, Anna-Carin; Fallahshahroudi, Amir; Johnsen, Hanna; Hagenblad, Jenny; Wright, Dominic; Andersson, Leif; Jensen, Per

    2016-03-01

    The thyroid stimulating hormone receptor gene (TSHR) has been suggested to be a "domestication locus" in the chicken. A strong selective sweep over TSHR in domestic breeds together with significant effects of a mutation in the gene on several domestication related traits, indicate that the gene has been important for chicken domestication. TSHR plays a key role in the signal transduction of seasonal reproduction, which is characteristically less strict in domestic animals. We used birds from an advanced intercross line between ancestral Red Junglefowl (RJF) and domesticated White Leghorn (WL) to investigate effects of the mutation on reproductive traits as well as on TSHB, TSHR, DIO2 and DIO3 gene expression during altered day length (photoperiod). We bred chickens homozygous for either the mutation (d/d) or wild type allele (w/w), allowing assessment of the effect of genotype at this locus while also controlling for background variation in the rest of the genome. TSHR gene expression in brain was significantly lower in both d/d females and males and d/d females showed a faster onset of egg laying at sexual maturity than w/w. Furthermore, d/d males showed a reduced testicular size response to decreased day length, and lower levels of TSHB and DIO3 expression. Additionally, purebred White Leghorn females kept under natural short day length in Sweden during December had active ovaries and lower levels of TSHR and DIO3 expression compared to Red Junglefowl females kept under similar conditions. Our study indicates that the TSHR mutation affects photoperiodic response in chicken by reducing dependence of seasonal reproduction, a typical domestication feature, and may therefore have been important for chicken domestication.

  4. Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma

    Science.gov (United States)

    Poon, Audrey H.; Tantisira, Kelan G.; Litonjua, Augusto A.; Lazarus, Ross; Xu, Jingsong; Lasky-Su, Jessica; Lima, John J.; Irvin, Charles G.; Hanrahan, John P.; Lange, Christoph; Weiss, Scott T.

    2011-01-01

    Objective Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma. Methods We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers. Results Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts. Conclusion We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak. PMID:18408560

  5. Luteinizing hormone receptor (lhcgr) as a marker gene for characterizing estrogenic endocrine-disrupting chemicals in zebrafish ovarian follicle cells.

    Science.gov (United States)

    Liu, Ka-Cheuk; Wu, Rudolf S S; Ge, Wei

    2013-10-01

    The adverse effects of endocrine-disrupting chemicals (EDCs) have been well documented; however, the action mechanisms of many EDCs remain elusive and controversial. Furthermore, the highly diversified chemical structures and low environmental concentrations of EDCs present a major challenge to their chemical detection. Clearly, there is an urgent need for simple and reliable bioassays to detect EDCs in the environment and unravel their action mechanisms. We have recently identified luteinizing hormone receptor (lhcgr) as a robust estradiol (E2)-responsive gene in cultured zebrafish ovarian follicle cells. The expression of lhcgr exhibited a distinct biphasic response to E2 over a 24-h time-course treatment, making this a unique system for characterizing estrogenic EDCs. This study was undertaken to validate this platform by testing a wide range of EDCs, including 17α-ethinylestradiol (EE2), diethylstilbestrol (DES), bisphenol A (BPA), genistein (GEN), 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane (o,p'-DDT), vinclozolin (VIN), bis(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Diethylstilbestrol (DES), EE2 and o,p'-DDT mimicked E2 and induced a biphasic expression of lhcgr while BPA and GEN stimulated a monophasic expression in the 24-h time-course. In contrast, BDE-47, DEHP and VIN had no effect, whereas TCDD decreased lhcgr expression. Dose-response experiment showed that E2, EE2 and DES had the highest potency, which was followed by GEN, BPA and o,p'-DDT. The effects of estrogenic EDCs were further confirmed by their potentiation of hCG-induced activin βA2 subunit (inhbab) expression. In conclusion, the present study showed that the expression of lhcgr in cultured zebrafish follicle cells and its biphasic response to estrogens provide a unique in vitro platform for screening and categorizing estrogenic substances and deciphering their action mechanisms.

  6. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Raquel López-Fontal

    Full Text Available BACKGROUND: The role of thyroid hormones and their receptors (TR during liver regeneration after partial hepatectomy (PH was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs. METHODOLOGY/PRINCIPAL FINDINGS: Mice lacking TRalpha1/TRbeta or TRbeta alone fully regenerated liver mass after PH, but showed delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH, affecting approximately 30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric oxide synthase (NOS 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA, a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of dimethylarginineaminohydrolase-1 (DDAH-1 in the regenerating liver of animals lacking TRalpha1/TRbeta or TRbeta. DDAH-1 expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-regulated in the absence of TR. CONCLUSIONS/SIGNIFICANCE: We report that TRs are not required for liver regeneration; however, hypothyroid mice and TRbeta- or TRalpha1/TRbeta-deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRbeta in liver regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the occurrence of liver apoptosis in the absence of activated TRbeta that can be prevented by administration of NOS inhibitors. Taken together, these results indicate that TRbeta contributes significantly to the rapid initial round of

  7. Circulating sex hormones and gene expression of subcutaneous adipose tissue oestrogen and alpha-adrenergic receptors in HIV-lipodystrophy: implications for fat distribution

    DEFF Research Database (Denmark)

    Andersen, Ove; Pedersen, Steen B; Svenstrup, Birgit

    2007-01-01

    OBJECTIVE: Circulating oestradiol and testosterone, which have been shown to increase in human immunodeficiency virus (HIV)-infected patients following highly active antiretroviral therapy (HAART), may influence fat distribution and insulin sensitivity. Oestradiol increases subcutaneous adipose...... tissue in humans possibly through binding to oestrogen-receptor-alpha, which in turn activates anti-lipolytic alpha2A-adrenergic-receptor. DESIGN AND METHODS: To address these issues circulating pituitary-gonadal-axis hormones and gene expression of receptors in subcutaneous adipose tissue were...... determined in 31 nondiabetic HIV-infected male patients receiving HAART (16 with lipodystrophy), in whom measures of fat distribution (CT and DEXA-scans) and insulin sensitivity (hyperinsulinaemic euglycaemic clamp) were available. RESULTS: Total and free oestradiol and testosterone were decreased...

  8. Changes in gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor gene expression after an increase in carbon monoxide concentration in the cavernous sinus of male wild boar and pig crossbread.

    Science.gov (United States)

    Romerowicz-Misielak, M; Tabecka-Lonczynska, A; Koziol, K; Gilun, P; Stefanczyk-Krzymowska, S; Och, W; Koziorowski, M

    2016-06-01

    Previous studies indicate that there are at least a few regulatory systems involved in photoperiodic synchronisation of reproductive activity, which starts with the retina and ends at the gonadotropin-releasing hormone (GnRH) pulse generator. Recently we have shown indicated that the amount of carbon monoxide (CO) released from the eye into the ophthalmic venous blood depends on the intensity of sunlight. The aim of this study was to test whether changes in the concentration of carbon monoxide in the ophthalmic venous blood may modulate reproductive activity, as measured by changes in GnRH and GnRH receptor gene expression. The animal model used was mature male swine crossbred from wild boars and domestic sows (n = 48). We conducted in vivo experiments to determine the effect of increased CO concentrations in the cavernous sinus of the mammalian perihypophyseal vascular complex on gene expression of GnRH and GnRH receptors as well as serum luteinizing hormone (LH) levels. The experiments were performed during long photoperiod days near the summer solstice (second half of June) and short photoperiod days near the winter solstice (second half of December). These crossbred swine demonstrated a seasonally-dependent marked variation in GnRH and GnRH receptor gene expression and systemic LH levels in response to changes in CO concentration in ophthalmic venous blood. These results seem to confirm the hypothesis of humoral phototransduction as a mechanism for some of bright light's effects in animal chronobiology and the effect of CO on GnRH and GnRH receptor gene expression.

  9. Wild-type and specific mutant androgen receptor mediates transcription via 17β-estradiol in sex hormone-sensitive cancer cells.

    Science.gov (United States)

    Susa, Takao; Ikaga, Reina; Kajitani, Takashi; Iizuka, Masayoshi; Okinaga, Hiroko; Tamamori-Adachi, Mimi; Okazaki, Tomoki

    2015-07-01

    We previously encountered regulatory processes wherein dihydrotestosterone (DHT) exerted its inhibitory effect on parathyroid hormone-related protein (PTHrP) gene repression through the estrogen receptor (ER)α, but not the androgen receptor (AR), in breast cancer MCF-7 cells. Here, we investigated whether such aberrant ligand-nuclear receptor (NR) interaction is present in prostate cancer LNCaP cells. First, we confirmed that LNCaP cells expressed large amounts of AR at negligible levels of ERα/β or progesterone receptor. Both suppression of PTHrP and activation of prostate-specific antigen genes were observed after independent administration of 17β-estradiol (E2), DHT, or R5020. Consistent with the notion that the LNCaP AR lost its ligand specificity due to a mutation (Thr-Ala877), experiments with siRNA targeting the respective NR revealed that the AR monopolized the role of the mediator of shared hormone-dependent regulation, which was invariably associated with nuclear translocation of this mutant AR. Microarray analysis of gene regulation by DHT, E2, or R5020 disclosed that more than half of the genes downstream of the AR (Thr-Ala877) overlapped in the LNCaP cells. Of particular interest, we realized that the AR (wild-type [wt]) and AR (Thr-Ala877) were equally responsible for the E2-AR interactions. Fluorescence microscopy experiments demonstrated that both EGFP-AR (wt) and EGFP-AR (Thr-Ala877) were exclusively localized within the nucleus after E2 or DHT treatment. Furthermore, reporter assays revealed that some other cancer cells exhibited aberrant E2-AR (wt) signaling similar to that in the LNCaP cells. We herein postulate the presence of entangled interactions between wt AR and E2 in certain hormone-sensitive cancer cells.

  10. Neuronal histamine and expression of corticotropin-releasing hormone, vasopressin and oxytocin in the hypothalamus: relative importance of H1 and H2 receptors.

    Science.gov (United States)

    Kjaer, A; Larsen, P J; Knigge, U; Jørgensen, H; Warberg, J

    1998-08-01

    Centrally administered histamine (HA) stimulates the secretion of the pro-opiomelanocortin-derived peptides ACTH and beta-endorphin as well as prolactin. The effect of HA on secretion of these adenohypophysial hormones is indirect and may involve activation of hypothalamic neurons containing corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP) or oxytocin (OT). We studied the effect of activating central HA receptors by central infusion of HA, HA agonists or antagonists on expression of CRH, AVP and OT mRNA in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Intracerebroventricular infusion of HA (270 nmol), the H1-receptor agonist 2-thiazolylethylamine or the H2-receptor agonist 4-methylhistamine increased the level of CRH mRNA in the PVN, and OT mRNA in the SON. In contrast, none of these compounds had any effect on expression of AVP mRNA in the PVN or SON. Administration of the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine had no effect on basal expression of CRH, AVP or OT mRNA in the PVN and/or SON except for a slight inhibitory effect of cimetidine on CRH mRNA expression in the PVN. Pretreatment with mepyramine or cimetidine before HA administration inhibited the HA-induced increase in OT mRNA levels but had no effect on the HA-induced increase in CRH mRNA levels in the PVN. We conclude that HA stimulates hypothalamic CRH and OT neurons by increasing mRNA levels, and this effect seems to be mediated via activation of both HA H1 and H2 receptors.

  11. Effect of Compound Recipe Gengniankang (更年康) on Senile Sexual Hormone and Expression of Estrogen Receptor in Bone of Climacteric Female Rats

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To compare the therapeutic effect of Compound Recipe Gengniankang (更年康,GNK) with that of hormone replacement treatment (HRT) on climacteric female rats with osteoporosis, and to investigate the roles of estrogen and estrogen receptors in the mechanism of osteoporosis. Methods: Climac-teric female rats with osteoporosis were chosen and divided into three groups (GNK group, HRT group and control group). Apoptosis of ovarian granulose cells was measured by terminal-deoxynucleotidyl transferae mediated nick end labeling (TUNEL) assay. Serum level of estrdiol (E2), follicle stimulating hormone (FSH), luteinizing hormone (LH) were determined by the method of radioimmunoassay (RIA). Reverse transcriptase polymerase chain reaction (RT-PCT) technology was used to evaluate the expression of estrogen receptor (ER) in bone. Bone mineral density (BMD) was measured by double energy X-ray absorption (DEXA). Results: In the climacteric rats, BMD, serum E2, ER mRNA expression in bone decreased remarkably, and serum FSH, LH and apoptosis of ovarian granulose cells increased obviously. After treating with GNK, all the indexes were reversed except serum E2. The increase of E2 was not significant. Conclusion:GNK is effective on climacteric osteoporosis female rats. Its role is performed not by increasing serum E2 but by enhancing ER in the bone and inhibiting apoptosis of ovarian granulose cells. GNK can deter further exhaustion of ovarian function.

  12. Relationship between Growth Hormone Receptor with Its Isoform and Diabetes Mellitus with Its Complications%生长激素受体及其亚型与糖尿病及其并发症的关系

    Institute of Scientific and Technical Information of China (English)

    胡其娴

    2011-01-01

    在糖尿病患者及糖尿病动物模型中均存在生长激素受体的异常.作为哺乳动物体内生长激素的主要受体,可活化信号转导、促前脂肪细胞分化等,生长激素受体活性和(或)数量的变化对生长激素的功能产生明显的影响.现对生长激素受体的分子结构、组织分布和功能,以及生长激素受体及其亚型与糖尿病及其并发症之间的相互影响进行综述.%Studies suggest that there is some kind of dysfunction of growth hormone receptor in patients and animal models with diahetes mellitus. As the main receptor of growth hormone in mammal, the activity and/or number of growth hormone receptor can affect the function of growth hormone obviously. Here is to review the molecular structure, tissue distribution and physiological function of growth hormone receptor , as well as the relationship between growth hormone receptor with its isoform and diabetes mellitus with its complications .

  13. A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models.

    Science.gov (United States)

    Kawata, Yayoi; Okuda, Shoki; Hotta, Natsu; Igawa, Hideyuki; Takahashi, Masashi; Ikoma, Minoru; Kasai, Shizuo; Ando, Ayumi; Satomi, Yoshinori; Nishida, Mayumi; Nakayama, Masaharu; Yamamoto, Syunsuke; Nagisa, Yasutaka; Takekawa, Shiro

    2017-02-05

    Melanin-concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet-induced obesity (DIO) and MCH1 receptor antagonists show potent anti-obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti-obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non-alcoholic fatty liver disease (NAFLD). In the present study, we show the anti-obesity and anti-hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose-dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair-feeding. Compound A also reduced lipid content and the expression level of lipogenesis-, inflammation-, and fibrosis-related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high-fat diet-fed wild type mice, but not MCH1 receptor knockout mice. The pair-feeding study revealed the MCH-MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism-related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH-MCH1 receptor pathway.

  14. Estrogen receptor immunoreactivity is present in the majority of central histaminergic neurons: evidence for a new neuroendocrine pathway associated with luteinizing hormone-releasing hormone-synthesizing neurons in rats and humans.

    Science.gov (United States)

    Fekete, C S; Strutton, P H; Cagampang, F R; Hrabovszky, E; Kalló, I; Shughrue, P J; Dobó, E; Mihály, E; Baranyi, L; Okada, H; Panula, P; Merchenthaler, I; Coen, C W; Liposits, Z S

    1999-09-01

    The central regulation of the preovulatory LH surge requires a complex sequence of interactions between neuronal systems that impinge on LH-releasing hormone (LHRH)-synthesizing neurons. The reported absence of estrogen receptors (ERs) in LHRH neurons indicates that estrogen-receptive neurons that are afferent to LHRH neurons are involved in mediating the effects of this steroid. We now present evidence indicating that central histaminergic neurons, exclusively located in the tuberomammillary complex of the caudal diencephalon, serve as an important relay in this system. Evaluation of this system revealed that 76% of histamine-synthesising neurons display ERalpha-immunoreactivity in their nucleus; furthermore histaminergic axons exhibit axo-dendritic and axo-somatic appositions onto LHRH neurons in both the rodent and the human brain. Our in vivo studies show that the intracerebroventricular administration of the histamine-1 (H1) receptor antagonist, mepyramine, but not the H2 receptor antagonist, ranitidine, can block the LH surge in ovariectomized estrogen-treated rats. These data are consistent with the hypothesis that the positive feedback effect of estrogen in the induction of the LH surge involves estrogen-receptive histamine-containing neurons in the tuberomammillary nucleus that relay the steroid signal to LHRH neurons via H1 receptors.

  15. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status.

    Science.gov (United States)

    Baglia, Michelle L; Zheng, Wei; Li, Honglan; Yang, Gong; Gao, Jing; Gao, Yu-Tang; Shu, Xiao-Ou

    2016-08-15

    Soy food intake has previously been associated with reduced breast cancer risk. Epidemiological evidence for subgroups of breast cancer, particularly by menopausal and hormone receptor status, is less consistent. To evaluate the role of hormone receptor and menopausal status on the association between soy food intake and breast cancer risk, we measured usual soy food intake in adolescence and adulthood via food frequency questionnaire in 70,578 Chinese women, aged 40-70 years, recruited to the Shanghai Women's Health Study (1996-2000). After a median follow-up of 13.2 years (range: 0.01-15.0), 1,034 incident breast cancer cases were identified. Using Cox models, we found that adult soy intake was inversely associated with breast cancer risk [hazard ratio (HR) for fifth versus first quintile soy protein intake = 0.78; 95% confidence interval (CI):0.63-0.97]. The association was predominantly seen in premenopausal women (HR = 0.46; 95% CI:0.29-0.74). Analyses further stratified by hormone receptor status showed that adult soy intake was associated with significantly decreased risk of estrogen receptor (ER)+/progesterone receptor (PR)+ breast cancer in postmenopausal women (HR = 0.72; 95% CI:0.53-0.96) and decreased risk of ER-/PR- breast cancer in premenopausal women (HR = 0.46; 95% CI:0.22-0.97). The soy association did not vary by human epidermal growth factor-2 (HER2) status. Furthermore, we found that high soy intake during adulthood and adolescence was associated with reduced premenopausal breast cancer risk (HR = 0.53; 95% CI: 0.32-0.88; comparing third vs. first tertile) while high adulthood soy intake was associated with postmenopausal breast cancer only when adolescent intake was low (HR = 0.63; 95% CI: 0.43-0.91). Our study suggests that hormonal status, menopausal status and time window of exposure are important factors influencing the soy-breast cancer association.

  16. Genetic variation in estrogen receptor, C-reactive protein and fibrinogen does not predict the plasma levels of inflammation markers after longterm hormone replacement therapy

    DEFF Research Database (Denmark)

    de Maat, Moniek P M; Madsen, Jonna Skov; Langdahl, Bente Lomholt;

    2007-01-01

    Markers of inflammation, such as C-reactive protein (CRP) and fibrinogen, are associated with the risk of atherothrombosis. Plasma levels of these markers of inflammation are affected by hormone replacement therapy (HRT) and modulated by smoking. We studied whether genetic variation in the estrogen...... receptor- 1 (ESR1), CRP and fibrinogen-beta genes influences the plasma levels of inflammation markers after HRT. Plasma CRP and fibrinogen were measured after five years follow-up in healthy postmenopausal women (per-protocol group) who were randomised to hormone therapy (n=187) or no treatment (n=249......). The effect of HRT, smoking and genetic variations in ESR1 (PvuII and XbaI), CRP (1444C/T) and fibrinogen-beta (FGB, -455G/A) were determined. The plasma concentration of CRP was higher in the HRT group than in the control group (2.03 mg/l and 1.41 mg/l, respectively; p

  17. An intronic SNP in the thyroid hormone receptor β gene is associated with pituitary cell-specific over-expression of a mutant thyroid hormone receptor β2 (R338W in the index case of pituitary-selective resistance to thyroid hormone

    Directory of Open Access Journals (Sweden)

    Cochran Craig

    2011-08-01

    Full Text Available Abstract Background The syndrome of resistance to thyroid hormone (RTH is caused by mutations in the thyroid hormone receptor β gene (THRB. The syndrome varies from asymptomatic to diffuse hypothyroidism, to pituitary-selective resistance with predominance of hyperthyroid signs and symptoms. The wide spectrum of clinical presentation is not completely attributable to specific THRB mutations. The THRB gene encodes two main isoforms, TR β1 which is widely distributed, and TR β2, whose expression is limited to the cochlea, retina, hypothalamus, and pituitary. Recent data demonstrated that in mice an intron enhancer region plays a critical role in the pituitary expression of the β2 isoform of the receptor. We thus hypothesized that polymorphisms in the human homologous region could modulate the pituitary expression of the mutated gene contributing to the clinical presentation of RTH. Methods Screening and in vitro characterization of polymorphisms of the intron enhancer region of the THRB gene in the index case of pituitary-selective RTH. Results The index case of pituitary-selective resistance is characterized by the missense R338W exon 9 mutation in cis with two common SNPs, rs2596623T and rs2596622C, located in the intron enhancer region of the THRB gene. Reporter gene assay experiments in GH3 pituitary-derived cells indicate that rs2596623T generates an increased pituitary cell-specific activity of the TR β2 promoter suggesting that rs2596623T leads to pituitary over-expression of the mutant allele. Conclusions The combined coding mutation and non-coding SNP therefore generate a tissue-specific dominant-negative condition recapitulating the patient's peculiar phenotype. This case illustrates the role of regulatory regions in modifying the clinical presentation of genetic diseases.

  18. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Directory of Open Access Journals (Sweden)

    Maria Consolata Miletta

    Full Text Available Butyrate is a short-chain fatty acid (SCFA closely related to the ketone body ß-hydroxybutyrate (BHB, which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR, GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  19. Butyrate increases intracellular calcium levels and enhances growth hormone release from rat anterior pituitary cells via the G-protein-coupled receptors GPR41 and 43.

    Science.gov (United States)

    Miletta, Maria Consolata; Petkovic, Vibor; Eblé, Andrée; Ammann, Roland A; Flück, Christa E; Mullis, Primus-E

    2014-01-01

    Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

  20. Effect of acute exposure to cadmium on the expression of heat-shock and hormone-nuclear receptor genes in the aquatic midge Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R.; Martinez-Guitarte, J.L. [Grupo de Biologia y Toxicologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, UNED, Senda del Rey 9, 28040 Madrid (Spain); Morcillo, G., E-mail: gmorcillo@ccia.uned.es [Grupo de Biologia y Toxicologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-03-01

    Cadmium is a widespread and highly toxic pollutant of particular ecotoxicological relevance for aquatic ecosystems where it accumulates. To identify biomarkers for ecotoxicity monitoring, the effect of cadmium on the expression of different genes related to the stress response as well as to the ecdysone hormone-signalling pathway was studied in the aquatic larvae of Chironomus riparius (Diptera, Chironomidae), a standard test organism in aquatic toxicology testing. Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to evaluate the effects of acute and short-term cadmium exposures (10 mM CdCl{sub 2}, 12 h and 24 h) on the expression of hsp70, hsc70, hsp90 and hsp40 genes, as well as on that of the ecdysone hormonal-receptor genes (EcR and usp). A significant 3-fold increase in the level of hsp70 gene transcripts was induced by the treatment, whereas neither the other stress genes tested (hsp90 and hsp40) nor the constitutive form of hsp70, hsc70, was affected in the larvae exposed to cadmium. These results show that hsp70 is differentially activated to other environmentally regulated heat-shock genes, and constitutes a biomarker of exposure to this toxic metal. In addition, we also found that cadmium is able to alter the expression of the ecdysone receptor gene (EcR), whose mRNA level is significantly increased whereas usp levels remained unaltered. This finding, evidenced for the first time in invertebrates, supports the view that cadmium has the ability to mimic the effect of the hormone by the activation of the ecdysone nuclear receptor, which may partly explain the endocrine disruption capability that has been previously suggested for this toxic metal. Our research adds to the growing evidence implicating heavy metals, and cadmium in particular, as potential endocrine disruptive agents and may have significant implications for ecological risk assessment of endocrine-disrupting compounds in invertebrates.

  1. Progesterone Receptor and Prostaglandins Mediate Luteinizing Hormone-Induced Changes in Messenger RNAs for ADAMTS Proteases in Theca Cells of Bovine Periovulatory Follicles

    Science.gov (United States)

    WILLIS, ERIN L.; BRIDGES, PHILLIP J.; FORTUNE, JOANNE E.

    2017-01-01

    SUMMARY Little is known about the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of extracellular proteases in ovarian follicles of non-rodent species, particularly in theca cells. In the present study, temporal changes in the abundance of mRNA encoding four ADAMTS subtypes and hormonal regulation of mRNA encoding two subtypes were investigated in theca interna cells during the periovulatory period in cattle. Gonadotropin-releasing hormone (GnRH) was injected into animals to induce a luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surge, and follicles were obtained at 0 hr post-GnRH (preovulatory) or at 6, 12, 18, or 24 hr (periovulatory). ADAMTS1, -2, -7, and -9 transcript abundance was then determined in the isolated theca interna. ADAMTS1 and -9 mRNA levels were up-regulated at 24 hr post-GnRH, whereas ADAMTS2 mRNA was higher at r12–24 hr post-GnRH and ADAMTS7 mRNA increased transiently at 12 hr post-GnRH compared to other time points. Subsequent in vitro experiments using preovulatory theca interna (0 hr post-GnRH) showed that application of LH in vitro can mimic the effects of the gonadotropin surge on mRNAs encoding ADAMTS1 and -9 and that progesterone/progesterone receptor and/or prostaglandins may regulate the levels of mRNA encoding ADAMTS1 and -9 in theca interna, downstream of the LH surge. Time- and subtype-specific changes in ADAMTS mRNA abundance in vivo, and their regulation in vitro by hormones, indicate that ADAMTS family members produced by theca cells may play important roles in follicle rupture and the accompanying tissue remodeling in cattle. PMID:27879029

  2. The effects of in ovo rhIGF-I administration on expression of the growth hormone secretagogue receptor (GHSR) during chicken embryonic development.

    Science.gov (United States)

    Gahr, Scott A; Kocamis, Hakan; Richter, Jennifer J; Killefer, John

    2004-01-01

    Growth hormone secretion is under the control of a pair of hypothalamic factors, growth hormone releasing hormone and somatostatin. The growth hormone secretagogue receptor (GHSR) and its endogenous ligand represent a novel third method regulating the release of growth hormone. Early chicken embryonic development has been proposed to be independent of GH. However, recent evidence shows that peripheral GH secretion has paracrine/autocrine functions during embryonic development. In the current study, we used the reverse-transcriptase polymerase chain reaction to determine the expression pattern of the GHSR during embryonic development and the effects of in ovo recombinant human (rh) IGF-I administration on its expression pattern. Eggs were injected once with 100 ng rhIGF-I in 10 mM acetic acid, and 0.1% BSA per embryo on embryonic day 3. Total RNA was isolated from whole embryos on embryonic day (E) 0-6 (n=6 per day), thoracic/abdominal halves of the embryos on E7- E8 (n= 6 per day) and Pectoralis muscle on E9-E20 (n= 4 per day). We found that GHSR expression was low during E0-E4, followed by an increase on E5 and remained constant through E17. GHSR expression then increased on E18 before reducing on E20. A similar pattern was found in the rhIGF-I treated embryos with the exception of a significant increase in GHSR expression on E8. These data indicate that the GHSR may be active in regulating GH secretion during early embryonic development, and upregulation of the GHSR gene following IGF-I administration may have an important role in the determination of postnatal muscle growth.

  3. Interest in Integrative Medicine Among Postmenopausal Hormone Receptor-Positive Breast Cancer Patients in the EvAluate-TM Study.

    Science.gov (United States)

    Hack, Carolin C; Fasching, Peter A; Fehm, Tanja; de Waal, Johann; Rezai, Mahdi; Baier, Bernd; Baake, Gerold; Kolberg, Hans-Christian; Guggenberger, Martin; Warm, Mathias; Harbeck, Nadia; Wuerstlein, Rachel; Deuker, Jörg-Uwe; Dall, Peter; Richter, Barbara; Wachsmann, Grischa; Brucker, Cosima; Siebers, Jan W; Fersis, Nikos; Kuhn, Thomas; Wolf, Christopher; Vollert, Hans-Walter; Breitbach, Georg-Peter; Janni, Wolfgang; Landthaler, Robert; Kohls, Andreas; Rezek, Daniela; Noesslet, Thomas; Fischer, Gunnar; Henschen, Stefan; Praetz, Thomas; Heyl, Volker; Kühn, Thorsten; Krauss, Thomas; Thomssen, Christoph; Hohn, Andre; Tesch, Hans; Mundhenke, Christoph; Hein, Alexander; Rauh, Claudia; Bayer, Christian M; Jacob, Adib; Schmidt, Katja; Belleville, Erik; Hadji, Peyman; Brucker, Sara Y; Wallwiener, Diethelm; Kümmel, Sherko; Beckmann, Matthias W; Paepke, Daniela

    2016-09-14

    Background Breast cancer patients often use complementary and alternative medicine, but few prospectively collected data on the topic are available specifically for postmenopausal breast cancer patients. A large prospective study was therefore conducted within a noninterventional study in order to identify the characteristics of patients interested in integrative medicine. Methods The EvAluate-TM study is a prospective, multicenter noninterventional study in which treatment with the aromatase inhibitor letrozole was evaluated in postmenopausal women with hormone receptor-positive primary breast cancer. Between 2008 and 2009, 5045 postmenopausal patients were enrolled at 339 certified breast centers in Germany. As part of the data collection process, patients were asked at the baseline about their interest in and information needs relating to integrative medicine. Results Of the 5045 patients recruited, 3411 responded to the questionnaire on integrative medicine and took part in the analysis, 1583 patients expressed an interest in integrative medicine, and 1828 patients declared no interest. Relevant predictors of interest in integrative medicine were age, body mass index, tumor size, previous chemotherapy, and use of concomitant medications for other medical conditions. Interest in integrative medicine declined highly significantly (P 65 years, 38.0%). Patients in favor of integrative medicine were significantly less satisfied with the information received about individual treatments and antihormonal therapy. Patients with interest in integrative medicine were more often interested in rehabilitation and fitness, nutritional counseling, and additional support from self-help organizations. These women were mostly interested in receiving information about their disease and integrative medicine from a physician, rather than from other sources. Conclusions This study shows that a considerable proportion of postmenopausal breast cancer patients are interested in

  4. Hormonal-receptor positive breast cancer: IL-6 augments invasion and lymph node metastasis via stimulating cathepsin B expression

    Directory of Open Access Journals (Sweden)

    Sherif A. Ibrahim

    2016-09-01

    Full Text Available Hormonal-receptor positive (HRP breast cancer patients with positive metastatic axillary lymph nodes are characterized by poor prognosis and increased mortality rate. The mechanisms by which cancer cells invade lymph nodes have not yet been fully explored. Several studies have shown that expression of IL-6 and the proteolytic enzyme cathepsin B (CTSB was associated with breast cancer poor prognosis. In the present study, the effect of different concentrations of recombinant human IL-6 on the invasiveness capacity of HRP breast cancer cell line MCF-7 was tested using an in vitro invasion chamber assay. The impact of IL-6 on expression and activity of CTSB was also investigated. IL-6 treatment promoted the invasiveness potential of MCF-7 cells in a dose-dependent manner. Furthermore, MCF-7 cells displayed elevated CTSB expression and activity associated with loss of E-cadherin and upregulation of vimentin protein levels upon IL-6 stimulation. To validate these results in vivo, the level of expression of IL-6 and CTSB in the carcinoma tissues of HRP-breast cancer patients with positive and negative axillary metastatic lymph nodes (pLNs and nLNs was assessed. Western blot and immunohistochemical staining data showed that expression of IL-6 and CTSB was higher in carcinoma tissues in HRP-breast cancer with pLNs than those with nLNs patients. ELISA results showed carcinoma tissues of HRP-breast cancer with pLNs exhibited significantly elevated IL-6 protein levels by approximately 2.8-fold compared with those with nLNs patients (P < 0.05. Interestingly, a significantly positive correlation between IL-6 and CTSB expression was detected in clinical samples of HRP-breast cancer patients with pLNs (r = 0.78, P < 0.01. Collectively, this study suggests that IL-6-induced CTSB may play a role in lymph node metastasis, and that may possess future therapeutic implications for HRP-breast cancer patients with pLNs. Further studies are necessary to fully

  5. Epigenetic reactivation of estrogen receptor-α (ERα by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2013-02-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα-negative breast cancer is clinically aggressive and normally does not respond to conventional estrogen target-directed therapies. The soybean isoflavone, genistein (GE, has been shown to prevent and inhibit breast cancer and recent studies have suggested that GE can enhance the anticancer capacity of an estrogen antagonist, tamoxifen (TAM, especially in ERα-positive breast cancer cells. However, the role of GE in ERα-negative breast cancer remains unknown. Methods We have evaluated the in vitro and in vivo epigenetic effects of GE on ERα reactivation by using MTT assay, real-time reverse transcription-polymerase chain reaction (RT-PCR assay, western-blot assay, immunoprecipitation (ChIP assay, immunohistochemistry and epigenetic enzymatic activity analysis. Preclinical mouse models including xenograft and spontaneous breast cancer mouse models were used to test the efficacy of GE in vivo. Results We found that GE can reactivate ERα expression and this effect was synergistically enhanced when combined with a histone deacetylase (HDAC inhibitor, trichostatin A (TSA, in ERα-negative MDA-MB-231 breast cancer cells. GE treatment also re-sensitized ERα-dependent cellular responses to activator 17β-estradiol (E2 and antagonist TAM. Further studies revealed that GE can lead to remodeling of the chromatin structure in the ERα promoter thereby contributing to ERα reactivation. Consistently, dietary GE significantly prevented cancer development and reduced the growth of ERα-negative mouse breast tumors. Dietary GE further enhanced TAM-induced anti-cancer efficacy due at least in part to epigenetic ERα reactivation. Conclusions Our studies suggest that soybean genistein can epigenetically restore ERα expression, which in turn increases TAM-dependent anti-estrogen therapeutic sensitivity in vitro and in vivo. The results from our studies reveal a novel therapeutic combination approach using bioactive

  6. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens

    Directory of Open Access Journals (Sweden)

    Lin Shumao

    2012-07-01

    Full Text Available Abstract Background A deletion mutation in the growth hormone receptor (GHR gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. Results At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128. At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3′ untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3 gene was found to be involved in the signaling pathway of

  7. Growth hormone receptor deficiency in mice results in reduced systolic blood pressure and plasma renin, increased aortic eNOS expression, and altered cardiovascular structure and function

    DEFF Research Database (Denmark)

    Egecioglu, E; Andersson, I J; Bollano, E;

    2007-01-01

    To study the role of the growth hormone receptor (GHR) in the development of cardiovascular structure and function, female GHR gene-disrupted or knockout (KO) and wild-type (WT) mice at age 18 wk were used. GHR KO mice had lower plasma renin levels (12 +/- 2 vs. 20 +/- 4 mGU/ml, P ....05) in GHR KO. Relative left ventricular weight was 14% lower in GHR KO mice (P ... thickness was decreased in GHR KO (P KO mice, whereas the aorta of GHR KO mice showed an increased sensitivity...

  8. Relationships among androgen receptor CAG repeat polymorphism, sex hormones and penile length in Han adult men from China: a cross-sectional study

    OpenAIRE

    Yan-Min Ma; Kai-Jie Wu; Liang Ning; Jin Zeng; Bo Kou; Hong-Jun Xie; Zhen-Kun Ma; Xin-Yang Wang; Yong-Guang Gong; Da-Lin He

    2014-01-01

    This study aimed to investigate the correlations among androgen receptor (AR) CAG repeat polymorphism, sex hormones and penile length in healthy Chinese young adult men. Two hundred and fifty-three healthy men (aged 22.8 ± 3.1 years) were enrolled. The individuals were grouped as CAG short (CAG S ) if they harbored repeat length of ≤20 or as CAG long (CAG L ) if their CAG repeat length was >20. Body height/weight, penile length and other parameters were examined and recorded by the specified ...

  9. HIV gp120 inhibits the somatotropic axis: A possible GH-releasing hormone receptor mechanism for the pathogenesis of AIDS wasting

    OpenAIRE

    Mulroney, Susan E.; McDonnell, Kevin J.; Pert, Candace B.; Ruff, Michael R.; Resch, Zachary; Samson, Willis K.; Lumpkin, Michael D.

    1998-01-01

    AIDS is often associated with growth retardation in children and wasting in adults. The dissociated envelope protein of the HIV (HIV-1), gp120, can be found in significant concentrations in the parenchyma and cerebrospinal fluid of brains in infected individuals, even in the earliest stages of HIV-1 disease. On the basis of this and the fact that we observed pentapeptide sequence homology between GH-releasing hormone (GHRH) and the V2 receptor-binding region of gp120, we initiated experiments...

  10. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    RH) receptors from vertebrates. Using the polymerase chain reaction, withDrosophilacDNA as a template, and oligonucleotide probes coding for the presumed exons of this gene, we were able to clone the cDNA coding for this receptor. The transmembrane region of the receptor shows 36% amino acid residue identity...

  11. Clinical utility of the combination of lapatinib and letrozole in the management of hormone receptor-positive and HER2-positive advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Merriam PA

    2011-10-01

    Full Text Available Priscilla Merriam, William M Sikov Department of Medicine, Division of Hematology-Oncology, Warren Alpert Medical School of Brown University, Providence, RI, USA Abstract: Breast cancers that overexpress human epidermal growth factor receptor-2 (HER2-positive [HER2+] tend to be biologically aggressive and associated with a poor prognosis, even those that coexpress receptors for estrogen and/or progesterone (hormone receptor-positive [HR+]. Optimal therapy for patients with “double-positive” (HR+/HER2+ breast cancers is still being defined. In this subset of patients, the efficacy of targeted endocrine therapies appears to be diminished by cross-activation or “crosstalk” between estrogen receptor-mediated gene transcription and pathways activated by other growth factor receptors, including HER2. Lapatinib is a tyrosine kinase inhibitor which binds reversibly to the intracellular domains of the epidermal growth factor receptor and HER2, interfering with their ability to initiate signal transduction cascades that promote cancer cell proliferation, survival, and metastasis. In a recently published randomized, placebo-controlled Phase III study in postmenopausal HR+ metastatic breast cancer, the addition of lapatinib to the aromatase inhibitor letrozole significantly improved progression-free survival solely in women who were also HER2+. This article reviews the biology of “double-positive” breast cancers and the rationale underlying combining endocrine and HER2-targeted therapies, including the lapatinib/letrozole combination, for these tumors. Results from the Phase III trial are examined, as well as available data on other combinations of HR and HER2-targeted therapies. Ongoing trials and potential future applications of these combinations in both HR+/HER2+ and other subgroups of breast cancer patients are also discussed. Keywords: breast neoplasm, erbB2, estrogen receptor, letrozole, lapatinib

  12. Sequence-specific binding of a hormonally regulated mRNA binding protein to cytidine-rich sequences in the lutropin receptor open reading frame.

    Science.gov (United States)

    Kash, J C; Menon, K M

    1999-12-21

    In previous studies, a lutropin receptor mRNA binding protein implicated in the hormonal regulation of lutropin receptor mRNA stability was identified. This protein, termed LRBP-1, was shown by RNA gel electrophoretic mobility shift assay to specifically interact with lutropin receptor RNA sequences. The present studies have examined the specificity of lutropin receptor mRNA recognition by LRBP-1 and mapped the contact site by RNA footprinting and by site-directed mutagenesis. LRBP-1 was partially purified by cation-exchange chromatography, and the mRNA binding properties of the partially purified LRBP-1 were examined by RNA gel electrophoretic mobility shift assay and hydroxyl-radical RNA footprinting. These data showed that the LRBP-1 binding site is located between nucleotides 203 and 220 of the receptor open reading frame, and consists of the bipartite polypyrimidine sequence 5'-UCUC-X(7)-UCUCCCU-3'. Competition RNA gel electrophoretic mobility shift assays demonstrated that homoribopolymers of poly(rC) were effective RNA binding competitors, while poly(rA), poly(rG), and poly(rU) showed no effect. Mutagenesis of the cytidine residues contained within the LRBP-1 binding site demonstrated that all the cytidines in the bipartite sequence contribute to LRBP-1 binding specificity. Additionally, RNA gel electrophoretic mobility supershift analysis showed that LRBP-1 was not recognized by antibodies against two well-characterized poly(rC) RNA binding proteins, alphaCP-1 and alphaCP-2, implicated in the regulation of RNA stability of alpha-globin and tyrosine hydroxylase mRNAs. In summary, we show that partially purified LRBP-1 binds to a polypyrimidine sequence within nucleotides 203 and 220 of lutropin receptor mRNA with a high degree of specificity which is indicative of its role in posttranscriptional control of lutropin receptor expression.

  13. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A;

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  14. Hormonal Control of Fetal Growth.

    Science.gov (United States)

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  15. Expression of the androgen receptor in the testes and the concentrations of gonadotropins and sex steroid hormones in male turkeys (Meleagris gallopavo) during growth and development.

    Science.gov (United States)

    Kiezun, J; Leska, A; Kaminska, B; Jankowski, J; Dusza, L

    2015-04-01

    Androgens, including testosterone (T) and androstenedione (A4), are essential for puberty, fertility and sexual functions. The biological activity of those hormones is mediated via the androgen receptor (AR). The regulation of androgen action in birds is poorly understood. Therefore, the present study analysed mRNA and protein expression of AR in the testes, plasma concentrations of the luteinizing hormone (LH), follicle-stimulating hormone (FSH), T, A4 and oestradiol (E2), as well as the levels of T, A4 and E2 in testicular homogenates of male turkeys (Meleagris gallopavo) at the age of 4, 8, 12, 16, 20, 24 and 28weeks. Plasma concentrations of LH and FSH, as well as plasma and testicular levels of T and A4 began to increase at 20weeks of age. The lowest plasma levels of E2 were noted at 20weeks relative to other growth stages. The 20th week of life seems to be the key phase in the development of the reproductive system of turkeys. The AR protein was found in the nuclei of testicular cells in all examined growth stages. Higher expression of AR protein in the testes beginning at 20weeks of age was accompanied by high plasma concentrations of LH and high plasma and testicular levels of androgens. This relationship seems to be necessary to regulate male sexual function.

  16. Relationships among androgen receptor CAG repeat polymorphism, sex hormones and penile length in Han adult men from China: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Yan-Min Ma

    2014-06-01

    Full Text Available This study aimed to investigate the correlations among androgen receptor (AR CAG repeat polymorphism, sex hormones and penile length in healthy Chinese young adult men. Two hundred and fifty-three healthy men (aged 22.8 ± 3.1 years were enrolled. The individuals were grouped as CAG short (CAG S if they harbored repeat length of ≤20 or as CAG long (CAG L if their CAG repeat length was >20. Body height/weight, penile length and other parameters were examined and recorded by the specified physicians; CAG repeat polymorphism was determined by the polymerase chain reaction (PCR method; and the serum levels of the sex hormones were detected by radioimmunoassay. Student's t-test or linear regression analysis was used to assess the associations among AR CAG repeat polymorphism, sex hormones and penile length. This investigation showed that the serum total testosterone (T level was positively associated with the AR CAG repeat length (P = 0.01; whereas, no significant correlation of T or AR CAG repeat polymorphism with the penile length was found (P = 0.593. Interestingly, an inverse association was observed between serum prolactin (PRL levels and penile length by linear regression analyses (β= −0.024, P = 0.039, 95% confidence interval (CI: −0.047, 0. Collectively, this study provides the first evidence that serum PRL, but not T or AR CAG repeat polymorphism, is correlated with penile length in the Han adult population from northwestern China.

  17. Relationships among androgen receptor CAG repeat polymorphism, sex hormones and penile length in Han adult men from China: a cross-sectional study.

    Science.gov (United States)

    Ma, Yan-Min; Wu, Kai-Jie; Ning, Liang; Zeng, Jin; Kou, Bo; Xie, Hong-Jun; Ma, Zhen-Kun; Wang, Xin-Yang; Gong, Yong-Guang; He, Da-Lin

    2014-01-01

    This study aimed to investigate the correlations among androgen receptor (AR) CAG repeat polymorphism, sex hormones and penile length in healthy Chinese young adult men. Two hundred and fifty-three healthy men (aged 22.8 ± 3.1 years) were enrolled. The individuals were grouped as CAG short (CAG S ) if they harbored repeat length of ≤ 20 or as CAG long (CAG L ) if their CAG repeat length was >20. Body height/weight, penile length and other parameters were examined and recorded by the specified physicians; CAG repeat polymorphism was determined by the polymerase chain reaction (PCR) method; and the serum levels of the sex hormones were detected by radioimmunoassay. Student's t-test or linear regression analysis was used to assess the associations among AR CAG repeat polymorphism, sex hormones and penile length. This investigation showed that the serum total testosterone (T) level was positively associated with the AR CAG repeat length (P = 0.01); whereas, no significant correlation of T or AR CAG repeat polymorphism with the penile length was found (P = 0.593). Interestingly, an inverse association was observed between serum prolactin (PRL) levels and penile length by linear regression analyses (β= -0.024, P = 0.039, 95% confidence interval (CI): -0.047, 0). Collectively, this study provides the first evidence that serum PRL, but not T or AR CAG repeat polymorphism, is correlated with penile length in the Han adult population from northwestern China.

  18. Relationships among androgen receptor CAG repeat polymorphism, sex hormones and penile length in Han adult men from China:a cross-sectional study

    Institute of Scientific and Technical Information of China (English)

    YanMin Ma; DaLin He; KaiJie Wu; Liang Ning; Jin Zeng; Bo Kou; HongJun Xie; ZhenKun Ma; XinYang Wang; YongGuang Gong

    2014-01-01

    This study aimed to investigate the correlations among androgen receptor (AR) CAG repeat polymorphism, sex hormones and penile length in healthy Chinese young adult men. Two hundred and iffty-three healthy men (aged 22.8 ± 3.1 years) were enrolled. The individuals were grouped as CAG short (CAGS) if they harbored repeat length of≤20 or as CAG long (CAGL) if their CAG repeat length was>20. Body height/weight, penile length and other parameters were examined and recorded by the speciifed physicians;CAG repeat polymorphism was determined by the polymerase chain reaction (PCR) method;and the serum levels of the sex hormones were detected by radioimmunoassay. Student’s t-test or linear regression analysis was used to assess the associations among AR CAG repeat polymorphism, sex hormones and penile length. This investigation showed that the serum total testosterone (T) level was positively associated with the AR CAG repeat length (P= 0.01); whereas, no signiifcant correlation of T or AR CAG repeat polymorphism with the penile length was found (P= 0.593). Interestingly, an inverse association was observed between serum prolactin (PRL) levels and penile length by linear regression analyses (b=-0.024, P= 0.039, 95%conifdence interval (CI):-0.047, 0). Collectively, this study provides the ifrst evidence that serum PRL, but not T or AR CAG repeat polymorphism, is correlated with penile length in the Han adult population from northwestern China.

  19. Effects of MboII and BspMI polymorphisms in the gonadotropin releasing hormone receptor (GnRHR) gene on sperm quality in Holstein bulls.

    Science.gov (United States)

    Yang, Wu-Cai; Tang, Ke-Qiong; Yu, Jun-Na; Zhang, Chun-Yan; Zhang, Xiao-Xia; Yang, Li-Guo

    2011-06-01

    The hypothalamic gonadotropin-releasing hormone receptor (GnRHR) plays an essential physiological role in reproductive function, which triggers the synthesis and release of luteinizing hormone and follicle stimulating hormone in the pituitary. The objective of this study was to investigate the effects of polymorphisms of GnRHR gene on the quality of fresh and frozen semen in Holstein bulls. The PCR-RFLP method was applied to detect G286A and T340C transitions determining MboII and BspMI polymorphisms, respectively, in the exon I of bovine GnRHR gene and evaluated its associations with sperm quality traits in 131 Holstein bulls. In polymorphic locus 286, bulls with the GA genotype had significantly higher sperm motility in frozen semen (FMOT) than GG genotype (P bulls with heterozygote CT genotype had significantly higher sperm motility (MOT), semen volume per ejaculate (VOL), and lower abnormal spermatozoa rate (ASR) than homozygote TT genotype (P Bulls contained one A allele or C allele had a favorable, positive effect on sperm quality traits. These results indicate that GnRHR gene can be a potential marker for improving sperm quality traits, and imply that bulls with GA or CT genotype should be selected in breeding program.

  20. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development.

    Science.gov (United States)

    Kiezun, J; Kaminska, B; Jankowski, J; Dusza, L

    2015-01-01

    Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity.

  1. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: Chromosomal assignment of the gene in the human, mouse, and rat genomes

    Energy Technology Data Exchange (ETDEWEB)

    Pausova, Z.; Bourdon, J.; Clayton, D.; Janicic, N.; Goltzman, D.; Hendy, G.N. (McGill Univ. and Royal Victoria Hospital, Montreal Quebec (Canada)); Mattei, M.G. (INSERM, Marseille (France)); Seldin, M.F. (Duke Univ. Medical Center, Durham, NC (United States)); Riviere, M.; Szpirer, J. (Universite Libre de Bruxelles, Rhode-St-Genese (Belgium)) (and others)

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acelpeptide hydrolase gene (APEH). These results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes. 34 refs., 7 figs. 1 tab.

  2. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1.

    Science.gov (United States)

    Roggero, Vincent R; Zhang, Jibo; Parente, Laura E; Doshi, Yazdi; Dziedzic, Rose C; McGregor, Emma L; Varjabedian, Arev D; Schad, Sara E; Bondzi, Cornelius; Allison, Lizabeth A

    2016-01-01

    The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin β1 and importin α1 by RNA interference, or treatment with an importin β1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin β1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.

  3. The interaction between menstrual cycle, Tumour Necrosis Factor alpha receptors and sex hormones in healthy non-obese women – results from an observational study

    Directory of Open Access Journals (Sweden)

    Paweł Rzymski

    2014-09-01

    Full Text Available There is growing evidence that TNF-alpha and its two receptors play an important role in hormonal regulation, metabolism, inflammation and cancer. The biological effects of TNF-alpha are mediated by two receptors, p55 and p75. The aim of this study was to analyze serum concentrations of p55 and p75 and hormonal status in healthy women during the normal menstrual cycle. Eight women aged 20–22 with regular menstrual cycles were scheduled for examination on 3[sup]rd[/sup] , 8[sup]th[/sup] , 14[sup]th[/sup] and 25[sup]th [/sup] day of their menstrual cycle. We only observed a positive correlation of p75 subunit with prolactin level (correlation coefficient 0.417; p=0.0116 and negative correlation with insulin level (correlation coefficient -0.35; p=0.032 and HOMA[sub]IR[/sub] insulin resistance index correlation coefficient 0.39; p=0.0185. Furthermore, a negative correlation of p55/p75 ratio with prolactin (correlation coefficient -0.42; p=0.0101 and a positive correlations of p55/p75 ratio with insulin level (correlation coefficient 0.43; p=0.008 and HOMA[sub]IR[/sub] insulin resistance factor correlation coefficient 0.45; p=0.0065 were found.

  4. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator

    Science.gov (United States)

    Moore, Brandon C.; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L.; Hamlin, Heather J.; Guillette, Louis J.

    2011-01-01

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses. PMID:22154572

  5. Calciotrophic hormones and hyperglycemia modulate vitamin D receptor and 25 hydroxyy vitamin D 1-α hydroxylase mRNA expression in human vascular smooth muscle cells.

    Science.gov (United States)

    Somjen, D; Knoll, E; Sharon, O; Many, A; Stern, N

    2015-04-01

    Estrogen receptors (ERα and ERβ), the vitamin D receptor (VDR) and 25 hydroxyy vitamin D 1-α hydroxylase (1OHase) mRNA are expressed in vascular smooth muscle cells (VSMC). In these cells estrogenic hormones modulate cell proliferation as measured by DNA synthesis (DNA). In the present study we determined whether or not the calciotrophic hormones PTH 1-34 (PTH) and less- calcemic vitamin D analog QW as well as hyperglycemia can regulate DNA synthesis and CK. E2 had a bimodal effect on VSMC DNA synthesis, such that proliferation was inhibited at 30nM but stimulated at 0.3nM. PTH at 50nM increased, whereas QW at 10nM inhibited DNA synthesis. Hyperglycemia inhibited the effects on high E2, QW and PTH on DNA only. Both QW and PTH increased ERα mRNA expression, but only PTH increased ERβ expression. Likewise, both PTH and QW stimulated VDR and 1OHase expression and activity. ERβ, VDR and 1OHase expression and activity were inhibited by hyperglycemia, but ERα expression was unaffected by hyperglycemia. In conclusion, calcitrophic hormones modify VSMC growth and concomitantly affect ER expression in these cells as well as the endogenous VSMC vitamin D system elements, including VDR and 1OHase. Some of the later changes may likely participate in growth effects. Of importance in the observation is that several regulatory effects are deranged in the presence of hyperglycemia, particularly the PTH- and vitamin D-dependent up regulation of VDR and 1OHase in these cells. The implications of these effects require further studies. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  6. The effects of ryanodine receptor (RYR1) mutation on natural killer cell cytotoxicity, plasma cytokines and stress hormones during acute intermittent exercise in pigs.

    Science.gov (United States)

    Ciepielewski, Z M; Stojek, W; Borman, A; Myślińska, D; Pałczyńska, P; Kamyczek, M

    2016-04-01

    Stress susceptibility has been mapped to a single recessive gene, the ryanodine receptor 1 (RYR1) gene or halothane (Hal) gene. Homozygous (Hal(nn)), mutated pigs are sensitive to halothane and susceptible to Porcine Stress Syndrome (PSS). Previous studies have shown that stress-susceptible RYR1 gene mutated homozygotes in response to restraint stress showed an increase in natural killer cell cytotoxicity (NKCC) accompanied by more pronounced stress-related hormone and anti-inflammatory cytokine changes. In order to determine the relationship of a RYR1 gene mutation with NKCC, plasma cytokines and stress-related hormones following a different stress model - exercise - 36 male pigs (representing different genotypes according to RYR1 gene mutation: NN, homozygous dominant; Nn, heterozygous; nn, homozygous recessive) were submitted to an intermittent treadmill walking. During the entire experiment the greatest level of NKCC and the greatest concentrations of interleukin (IL-) 6, IL-10, IL-12, interferon (IFN-)γ and tumor necrosis factor-α and stress-related hormones (adrenaline, prolactin, beta-endorphin) were observed in nn pigs, and the greatest concentration of IL-1 and growth hormone in NN pigs. Immunostimulatory effects of intermittent exercise on NKCC in nn pigs were concomitant with increases in IL-2, IL-12 and IFN-γ, the potent NKCC activators. Our findings suggest that stress-susceptible pigs RYR1 gene mutated pigs develop a greater level of NKCC and cytokine production in response to exercise stress. These results suggest that the heterogeneity of immunological and neuroendocrine response to exercise stress in pigs could be influenced by RYR1 gene mutation.

  7. Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study.

    Science.gov (United States)

    Zamora-Ros, Raul; Ferrari, Pietro; González, Carlos A; Tjønneland, Anne; Olsen, Anja; Bredsdorff, Lea; Overvad, Kim; Touillaud, Marina; Perquier, Florence; Fagherazzi, Guy; Lukanova, Annekatrin; Tikk, Kaja; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Dilis, Vardis; Masala, Giovanna; Sieri, Sabina; Mattiello, Amalia; Tumino, Rosario; Ricceri, Fulvio; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Weiderpass, Elisabete; Skeie, Guri; Engeset, Dagrun; Menéndez, Virginia; Travier, Noémie; Molina-Montes, Esther; Amiano, Pilar; Chirlaque, Maria-Dolores; Barricarte, Aurelio; Wallström, Peter; Sonestedt, Emily; Sund, Malin; Landberg, Rikard; Khaw, Kay-Thee; Wareham, Nicholas J; Travis, Ruth C; Scalbert, Augustin; Ward, Heather A; Riboli, Elio; Romieu, Isabelle

    2013-05-01

    Evidence on the association between dietary flavonoids and lignans and breast cancer (BC) risk is inconclusive, with the possible exception of isoflavones in Asian countries. Therefore, we investigated prospectively dietary total and subclasses of flavonoid and lignan intake and BC risk according to menopause and hormonal receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The study included 334,850 women, mostly aged between 35 and 70 years from ten European countries. At baseline, country-specific validated dietary questionnaires were used. A flavonoid and lignan food composition database was developed from the US Department of Agriculture, the Phenol-Explorer and the UK Food Standards Agency databases. Cox regression models were used to analyse the association between dietary flavonoid/lignan intake and the risk of developing BC. During an average 11.5-year follow-up, 11,576 incident BC cases were identified. No association was observed between the intake of total flavonoids [hazard ratio comparing fifth to first quintile (HRQ5-Q1) 0.97, 95 % confidence interval (CI): 0.90-1.04; P trend = 0.591], isoflavones (HRQ5-Q1 1.00, 95 % CI: 0.91-1.10; P trend = 0.734), or total lignans (HRQ5-Q1 1.02, 95 % CI: 0.93-1.11; P trend = 0.469) and overall BC risk. The stratification of the results by menopausal status at recruitment or the differentiation of BC cases according to oestrogen and progesterone receptors did not affect the results. This study shows no associations between flavonoid and lignan intake and BC risk, overall or after taking into account menopausal status and BC hormone receptors.

  8. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR Alpha 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2001-08-01

    breast tumor biopsies: relationship to steroid receptor status and regulation by progestins . Cancer Res, 59: 529-532, 1999. 16 17. Speirs, V., Parkes, A... aromatase expression in the breast tissue by ERR alpha-1 orphan receptor. Cancer Res, 58: 5695-5700, 1998. 42. Yang, C. and Chen, S. Two organochlorine

  9. EFFECTS OF GONADOTROPIN RELEASING HORMONE (GnRH) ANGONIST ON OVARIAN GnRH RECEPTORS OF RATS

    Institute of Scientific and Technical Information of China (English)

    SUFang-Ming; LUXiang-Yun; GONGYue-Ting

    1989-01-01

    A potent D-Trp6-GnRH iodinated by the lactoperoxidase glucose oxidase method was used as a ligand to bind specifically to the rat ovarian membrane, The ovariu GnRH receptor has a binding affinity with the agonist similar to that of the pituiary receptor, Ka

  10. Cloning of growth hormone, somatolactin, and their receptor mRNAs, their expression in organs, during development, and on salinity stress in the hermaphroditic fish, Kryptolebias marmoratus.

    Science.gov (United States)

    Rhee, Jae-Sung; Kim, Bo-Mi; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2012-04-01

    Salinity is an important parameter that affects survival and metabolism in fish. In fish, pituitary growth hormone (GH) regulates physiological functions including adaptation to different salinity as well as somatic growth. GH is stimulated by growth hormone-releasing hormone (GHRH) and exerts its function via binding to growth hormone receptor (GHR). As Kryptolebias marmoratus is a euryhaline fish, this species would be a useful model species for studying the adaptation to osmotic stress conditions. Here, we cloned GH, -GHR, somatolactin (SL), and somatolactin receptor (SLR) genes, and analyzed their expression patterns in different tissues and during early developmental stages by using real-time RT-PCR. We also further examined expression of them after acclimation to different salinity. Tissue distribution studies revealed that Km-GH and -SL mRNAs were remarkably expressed in brain and pituitary, whereas Km-GHR and -SLR mRNAs were predominantly expressed in liver, followed by gonad, muscle, pituitary, and brain. During embryonic developmental stages, the expression of their mRNA was increased at stage 3 (9 dpf). The Km-GH and -SL mRNA transcripts were constantly elevated until stage 5 (5h post hatch), whereas Km-GHR and -SLR mRNA levels decreased at this stage. After we transferred K. marmoratus from control (12 psu) to hyper-osmotic condition (hyperseawater, HSW; 33 psu), Km-GH, -SL, and GHR mRNA levels were enhanced. In hypo-osmotic conditions like freshwater (FW), Km-GH and -SL expressions were modulated 24 h after exposure, and Km-SLR transcripts were significantly upregulated. This finding suggests that Km-GH and -SL may be involved in the osmoregulatory mechanism under hyper-osmotic as well as hypo-osmotic stress. This is the first report on transcriptional modulation and relationship of GH, GHR, SL, and SLR during early development and after salinity stress. This study will be helpful to a better understanding on molecular mechanisms of adaptation response

  11. Infertility in Female Mice with a Gain-of-Function Mutation in the Luteinizing Hormone Receptor Is Due to Irregular Estrous Cyclicity, Anovulation, Hormonal Alterations, and Polycystic Ovaries1

    Science.gov (United States)

    Hai, Lan; McGee, Stacey R.; Rabideau, Amanda C.; Paquet, Marilène; Narayan, Prema

    2015-01-01

    The luteinizing hormone receptor, LHCGR, is essential for fertility in males and females, and genetic mutations in the receptor have been identified that result in developmental and reproductive defects. We have previously generated and characterized a mouse model (KiLHRD582G) for familial male-limited precocious puberty caused by an activating mutation in the receptor. We demonstrated that the phenotype of the KiLHRD582G male mice is an accurate phenocopy of male patients with activating LHCGR mutations. In this study, we observed that unlike women with activating LHCGR mutations who are normal, female KiLHRD582G mice are infertile. Mice exhibit irregular estrous cyclicity, anovulation, and precocious puberty. A temporal study from 2–24 wk of age indicated elevated levels of progesterone, androstenedione, testosterone, and estradiol and upregulation of several steroidogenic enzyme genes. Ovaries of KiLHRD582G mice exhibited significant pathology with the development of large hemorrhagic cysts as early as 3 wk of age, extensive stromal cell hyperplasia and hypertrophy with luteinization, numerous atretic follicles, and granulosa cell tumors. Ovulation could not be rescued by the addition of exogenous gonadotropins. The body weights of the KiLHRD582G mice were higher than wild-type counterparts, but there was no increase in the body fat composition or metabolic abnormalities such as impaired glucose tolerance and insulin resistance. These studies demonstrate that activating LHCGR mutations do not produce the same phenotype in female mice as in humans and clearly illustrate species differences in the expression and regulation of LHCGR in the ovary, but not in the testis. PMID:26040673

  12. γ-Aminobutyric Acid B Receptor Mediated Inhibition of Gonadotropin-Releasing Hormone Neurons Is Suppressed by Kisspeptin-G Protein-Coupled Receptor 54 Signaling

    Science.gov (United States)

    Zhang, Chunguang; Bosch, Martha A.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2009-01-01

    γ-Aminobutyric acid (GABA) is one of the most important neurotransmitters that regulate the excitability of GnRH neurons. Numerous studies have shown that GABA activates Cl− currents in GnRH neurons, and these effects are antagonized by GABAA receptor antagonists. The GABAB receptor is a heterodimer composed of GABAB R1 and R2, and although both subunits have been localized in GnRH neurons, nothing is known about the cellular signaling of this Gαi,o-coupled receptor in GnRH neurons. Using whole-cell recordings from mouse enhanced green fluorescent protein-GnRH neurons, we found that the GABAB receptor agonist baclofen hyperpolarized GnRH neurons through activation of an inwardly rectifying K+ current in a concentration-dependent manner. The effects of baclofen were antagonized by the selective GABAB receptor antagonist CGP 52432 with a Ki (inhibitory constant) of 85 nm. Furthermore, in the presence of the GABAA receptor antagonist picrotoxin, GABA hyperpolarized GnRH neurons in a similar manner. Treatment with 17β-estradiol as compared with oil vehicle did not significantly alter either the EC50 for the baclofen-induced response (0.8 ± 0.1 vs. 1.0 ± 0.1 μm, respectively) or the maximal outward current (10.8 ± 1.7 pA vs. 11.4 ± 0.6 pA, respectively) in GnRH neurons. However, the outward current (and membrane hyperpolarization) was abrogated by submaximal concentrations of the G protein-coupled receptor 54 (GPR54) agonist kisspeptin-10 in both groups, indicating that Gαq-coupled (GPR54) can desensitize the GABAB receptor-mediated response. Therefore, the activation of GABAB receptors in GnRH neurons may provide increased inhibitory tone during estrogen-negative feedback states that is attenuated by kisspeptin during positive feedback. PMID:19164470

  13. CYP19 Genetic Polymorphism Haplotype AASA Is Associated with a Poor Prognosis in Premenopausal Women with Lymph Node-Negative, Hormone Receptor-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sung-Hsin Kuo

    2013-01-01

    Full Text Available Given the critical role of CYP19 in estrogen synthesis, we investigated the influence of CYP19 gene polymorphisms on the clinical outcome of lymph node- (LN- negative, hormone receptor- (HR- positive early breast cancers. Genotyping for the CYP19 polymorphisms rs4646 (A/C, rs1065779 (A/C, CYP19 (TTTAn (short allele/long (S/L allele using the 7 TTTA repeat polymorphism as the cut-off, and rs1870050 (A/C was performed on 296 patients with LN-negative, HR-positive breast cancers. All patients received adjuvant hormonal therapy. Associations were examined between these 4 genotypes and 6 common haplotypes of CYP19 and distant disease-free survival (DDFS, disease-free survival (DFS, and overall survival (OS. Patients were divided into the 6 subhaplotypes of CCLA (41.1%, AASA (17.1%, CASA (11.9%, CCLC (8.9%, CCSA (7.5%, AASC (8.9%, and others (4.6%. In premenopausal patients, haplotype AASA was significantly associated with a poor DDFS (adjusted hazard ratio (aHR, 3.3; P=0.001, DFS (aHR, 2.5; P=0.0008, and OS (aHR, 2.9; P=0.0004 after adjusting for age, tumor size, tumor grade, estrogen receptor status, progesterone receptor status, chemotherapy, pathology, adjuvant hormone therapy, menopausal status, and radiotherapy. Furthermore, haplotype AASA remained a negative prognostic factor for premenopausal patients receiving adjuvant chemotherapy in terms of DDFS (aHR, 4.5; P=0.0005, DFS (HR, 3.2; P=0.003, and OS (HR, 6.4; P=0.0009. However, in postmenopausal patients, haplotype AASA was not associated with a poor prognosis, whereas the AASC haplotype was significantly associated with a poor DFS (aHR, 3.1; P=0.03 and OS (aHR, 4.4; P=0.01. Our results indicate that, in patients with LN-negative, HR-positive breast cancers, genetic polymorphism haplotype AASA is associated with poor survival of premenopausal women but does not affect survival of postmenopausal women.

  14. Effects of cysteamine on mRNA levels of growth hormone and its receptors and growth in orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Li, Yun; Liu, Xiaochun; Zhang, Yong; Ma, Xilan; Lin, Haoran

    2013-06-01

    Effects of cysteamine (CS) on growth hormone (GH) mRNA, two types of growth hormone receptor (GHR) mRNAs and growth rate in orange-spotted grouper (Epinephelus coioides) were investigated. CS could cause a modification in the structure of somatostatin, which is the most important neuroendocrine inhibitor of basal and stimulated growth hormone synthesis and release, and renders it nonimmunoreactive probably through interaction with the disulfide bonds. In the present study, cysteamine hydrochloride (CSH) enhanced the level of pituitary GH mRNA in a dose-dependent manner through attenuating or deleting the inhibiting action of somatostatin on GH mRNA expression. CSH at relatively low doses (from 1 to 3 mg/g diet) enhanced the levels of two types of GHR mRNAs in dose-dependent manner, whereas the stimulation induced by CSH declined from the peak at higher dose of CSH (4 mg/g diet). It might be attributed to the variation in GH-induced up-regulation of GHRs at different doses of GH. Feeding of CSH could induce remarkable enhancement of growth rate in orange-spotted grouper. In addition, the stimulatory effect of CSH could be potentiated by the additive effect of luteinizing hormone-releasing hormone analog (LHRH-A). Compared with individual treatments, combined feeding of CSH and LHRH-A caused more efficient elevation of growth rate after 8 weeks of feeding. CSH and LHRH-A individually and in combination remarkably increased the levels of GH and GHR mRNAs compared with the control. The combined administration of CSH and LHRH-A in diet was most effective to enhance the level of GH and GHR1 mRNA. The morphological characteristics of the experimental fish were evaluated. Compared with control, the ratios of muscle RNA/DNA, condition factors (CF) and feed conversion efficiency (FCE) were significantly enhanced in the treated groups, while the highest values were observed in the combined treatment. All the results suggested that CSH (1-3 mg/g diet) is an effective

  15. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues.

    Science.gov (United States)

    Conde-Frieboes, Kilian; Thøgersen, Henning; Lau, Jesper F; Sensfuss, Ulrich; Hansen, Thomas K; Christensen, Leif; Spetzler, Jane; Olsen, Helle B; Nilsson, Cecilia; Raun, Kirsten; Dahl, Kirsten; Hansen, Birgit S; Wulff, Birgitte S

    2012-03-08

    We report in vitro and in vivo data of new α-melanocyte-stimulating hormone (α-MSH) analogues which are N-terminal modified with a long chain fatty acid derivative. While keeping the pharmacophoric motif (d-Phe-Arg-Trp) fixed, we tried to improve selectivity and physicochemical parameters like solubility and stability of these analogues by replacing amino acids further away from the motif. Receptor specific changes in binding affinity to the melanocortin receptors were observed between the acetyl derivatives and the fatty acid analogues. Furthermore, amino acids at the N-terminal of α-MSH (Ser-Tyr-Ser) not considered to be part of the pharmacophore were found to have an influence on the MC4/MC1 receptor selectivity. While the acetyl analogues have an in vivo effect for around 7 h, the long chain fatty acid analogues have an effect up to 48 h in an acute feeding study in male Sprague-Dawley rats after a single subcutaneous administration.

  16. Role of alpha 1- and alpha 2-adrenergic receptors in the growth hormone and prolactin response to insulin-induced hypoglycemia in man.

    Science.gov (United States)

    Tatár, P; Vigas, M

    1984-09-01

    The effects of intravenous infusion of the nonselective alpha-adrenergic antagonist phentolamine or of the selective alpha 2-adrenergic antagonist yohimbine on growth hormone (GH), prolactin (PRL) and cortisol secretion during insulin-induced hypoglycemia were studied in 11 healthy young men. The GH response was blunted following each antagonist used, PRL secretion was higher after yohimbine and diminished after phentolamine when compared to controls. The plasma cortisol response was not influenced by either compound. In another series of experiments no effect of an oral administration of prazosin, a selective alpha 1-adrenergic antagonist, on the secretion of GH, PRL and cortisol was found in any of 7 subjects. Prazosin inhibited blood pressure increase during hypoglycemia and induced slight drowsiness and fatigue in the subjects. It is concluded that in man alpha-adrenergic stimulation of GH secretion during hypoglycemia is transmitted via alpha 2-receptors, PRL secretion is mediated via alpha 1-receptors, whereas inhibition of PRL release is mediated via alpha 2-receptors. In this experiment no effect of alpha 1- or alpha 2-blockade on cortisol response to hypoglycemia was seen.

  17. Meningiomas and hormonal receptors: immunohistochemical study in typical and non-typical tumors Meningiomas e receptores hormonais: estudo imuno-histoquímico em tumores típicos e não típicos

    Directory of Open Access Journals (Sweden)

    ARLETE HILBIG

    1998-06-01

    Full Text Available The authors assessed 116 cases of meningiomas classified as typical, atypical and anaplastic and they used an immunohistochemical technique for estrogen and progesterone receptors attempting to determine if there is any difference between typical and non-typical tumors in relation to hormone receptors. The immunohistochemical technique to estrogen receptors was negative in all meningiomas studied. Progesterone receptors were detected in 58.3% of typical, and in 48.2% of non-typical meningiomas. This difference was not statistically significant. However, individually considering the criteria used for selection of non-typical tumours, those that concurrently displayed brain invasion and increased mitotic activity or necrosis, as well as the summation of those three features, were predominantly negative for progesterone receptors (respectively p=0.038; p=0.001; and p=0.044. The authors conclude that estrogen receptors were not present in meningiomas; that progesterone receptors in isolation are not enough to predict a higher tumoral malignancy but can be useful associated with other histological features.Os autores avaliam 116 meningiomas classificados em típicos, atípicos ou anaplásicos usando técnica imuno-histoquímica para receptores de estrógeno (ER e progesterona (PR com o objetivo de determinar se existe diferença entre tumores típicos e não típicos em relação aos receptores hormonais. Todos os tumores estudados foram negativos para ER. Os receptores de progesterona foram detectados em 58,3% dos meningiomas típicos e em 48,2% dos tumores não-típicos. Essa diferença não foi estatisticamente significativa. Entretanto, considerando os critérios utilizados para seleção dos não-típicos, os tumores que apresentavam, de forma concomitante, invasão do sistema nervoso central e aumento da taxa mitótica ou necrose, bem como a soma das três características, foram predominantemente negativos para PR (p=0,038; 0,01 e 0

  18. Radiation inactivation (target size analysis) of the gonadotropin-releasing hormone receptor: evidence for a high molecular weight complex

    Energy Technology Data Exchange (ETDEWEB)

    Conn, P.M.; Venter, J.C.

    1985-04-01

    In the present study we used radiation inactivation (target size analysis) to measure the functional mol wt of the GnRH receptor while it is still a component of the plasma membrane. This technique is based on the observation that an inverse relationship exists between the dose-dependent inactivation of a macromolecule by ionizing radiation and the size of that macromolecule. This method demonstrates a mol wt of 136,346 +/- 8120 for the GnRH receptor. This estimate is approximately twice that obtained (60,000) by photoaffinity labeling with a radioactive GnRH analog followed by electrophoresis under denaturing conditions and, accordingly, presents the possibility that the functional receptor consists of a high mol wt complex in its native state. The present studies indicate that the GnRH receptor is either a single weight class of protein or several closely related weight classes, such as might occur due to protein glycosylation.

  19. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2000-08-01

    Coutts, A., and Watson , P. The pathophysiological role of estrogen receptor variants in human breast cancer, J Steroid Biochem Mol Biol. 65: 175-80, 1998...breast cancer, Clin Cancer Res. 6: 512-8, 2000. 37. Leygue, E., Dotzlaw, H., Watson , P. H., and Murphy, L. C. Altered estrogen receptor alpha and beta...amphiregulin and CRIPTO in human normal and malignant breast tissues, Int J Cancer. 65: 51-6, 1996. 124. Depowski, P. L., Brien, T. P., Sheehan, C. E

  20. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2014-08-01

    Full Text Available Follicle-stimulating hormone receptor (FSHR, which is expressed only on Sertoli cells and plays a key role in spermatogenesis, has been paid attention for its potential in male contraception vaccine research and development. This study introduces a method for the preparation and purification of human FSHR 57-amino acid protein (FSHR-57aa as well as determination of its immunogenicity and antifertility effect. A recombinant pET-28a(+-FSHR-57aa plasmid was constructed and expressed in Escherichia coli strain BL21 Star TM (DE3 and the FSHR-57aa protein was separated and collected by cutting the gel and recovering activity by efficient refolding dialysis. The protein was identified by Western blot and high-performance liquid chromatography analysis with a band of nearly 7 kDa and a purity of 97.4%. Male monkeys were immunized with rhFSHR-57aa protein and a gradual rising of specific serum IgG antibody was found which reached a plateau on day 112 (16 weeks after the first immunization. After mating of one male with three female monkeys, the pregnancy rate of those mated with males immunized against FSHR-57aa was significantly decreased while the serum hormone levels of testosterone and estradiol were not disturbed in the control or the FSHR-57aa groups. By evaluating pathological changes in testicular histology, we found that the blood-testis barrier remained intact, in spite of some small damage to Sertoli cells. In conclusion, our study demonstrates that the rhFSHR-57aa protein might be a feasible male contraceptive which could affect sperm production without disturbing hormone levels.

  1. Opposing roles of peroxisome proliferator-activated receptor alpha and growth hormone in the regulation of CYP4A11 expression in a transgenic mouse model.

    Science.gov (United States)

    Savas, Uzen; Machemer, Daniel E W; Hsu, Mei-Hui; Gaynor, Pryce; Lasker, Jerome M; Tukey, Robert H; Johnson, Eric F

    2009-06-12

    CYP4A11 transgenic mice (CYP4A11 Tg) were generated to examine in vivo regulation of the human CYP4A11 gene. Expression of CYP4A11 in mice yields liver and kidney P450 4A11 levels similar to those found in the corresponding human tissues and leads to an increased microsomal capacity for omega-hydroxylation of lauric acid. Fasted CYP4A11 Tg mice exhibit 2-3-fold increases in hepatic CYP4A11 mRNA and protein, and this response is absent in peroxisome proliferator-activated receptor alpha (PPARalpha) null mice. Dietary administration of either of the PPARalpha agonists, fenofibrate or clofibric acid, increases hepatic and renal CYP4A11 levels by 2-3-fold, and these responses were also abrogated in PPARalpha null mice. Basal liver CYP4A11 levels are reduced differentially in PPARalpha-/- females (>95%) and males (<50%) compared with PPARalpha-/+ mice. Quantitative and temporal differences in growth hormone secretion are known to alter hepatic lipid metabolism and to underlie sexually dimorphic gene expression, respectively. Continuous infusion of low levels of growth hormone reduced CYP4A11 expression by 50% in PPARalpha-proficient male and female transgenic mice. A larger decrease was observed for the expression of CYP4A11 in PPARalpha-/- CYP4A11 Tg male mice to levels similar to that of female PPARalpha-deficient mice. These results suggest that PPARalpha contributes to the maintenance of basal CYP4A11 expression and mediates CYP4A11 induction in response to fibrates or fasting. In contrast, increased exposure to growth hormone down-regulates CYP4A11 expression in liver.

  2. Human epidermal growth factor receptor type 2 protein expression in Chinese metastatic prostate cancer patients correlates with cancer specific survival and increases after exposure to hormonal therapy

    Institute of Scientific and Technical Information of China (English)

    Bo Dai; Yun-Yi Kong; Ding-Wei Ye; Chun-Guang Ma; Xiao-Yan Zhou; Xu-Dong Yao

    2008-01-01

    Aim: To investigate human epidermal growth factor receptor type 2 (HER2) protein expression and gene amplification in Chinese metastatic prostate cancer patients and their potential value as prognostic factors. Methods: Immuno-histochemistry (IHC) was performed to investigate HER2 protein expression in prostate biopsy specimens from 104 Chinese metastatic prostate cancer patients. After 3-11 months of hormonal therapy, 12 patients underwent transure- thral resection of the prostate (TURP). HER2 protein expression of TURP specimens was compared with that of the original biopsy specimens. Of these, 10 biopsy and 4 TURP specimens with HER2 IHC staining scores ≥ 2+ were investigated for HER2 gene amplification status by fluorescent in situ hybridization (FISH). Results: Of the 104 prostate biopsy specimens, HER2 protein expression was 0, 1+, 2+ and 3+ in 49 (47.1%), 45 (43.3%), 8 (7.7%) and 2 (1.9%) cases, respectively. There was a significant association between HER2 expression and Gleason score (P = 0.026). HER2 protein expression of prostate cancer tissues increased in 33.3% of patients after hormonal therapy. None of the 14 specimens with HER2 IHC scores > 2+ showed HER2 gene amplification. Patients with HER2 scores ≥ 2+ had a significantly higher chance of dying from prostate cancer than those with HER2 scores of 0 (P = 0.004) and 1+ (P = 0.034). Multivariate Cox regression analysis showed that HER2 protein expression intensity was an independent predictor of cancer-related death (P = 0.039). Conclusion: An HER2 IHC score ≥ 2+ should be defined as HER2 protein overexpression in prostate cancer. Overexpression of HER2 protein in cancer tissue might suggest an increased risk of dying from prostate cancer. HER2 protein expression increases in some individual patients after hormonal therapy.

  3. Ovarian hormone modulates 5-hydroxytryptamine 3 receptors mRNA expression in rat colon with restraint stress-induced bowel dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tian-Jin Li; Bao-Ping Yu; Wei-Guo Dong; He-Sheng Luo; Long Xu; Mu-Qi Li

    2004-01-01

    AIM: To examine the effects of ovarian hormone on the expression of 5-hydroxytryptamine 3 receptors (5-HT3R)in rat colon of restraint stress-induced bowel dysfunction.METHODS: Twenty-four female Sprague-Dawley rats were randomly dMded into three groups of 8 each: sham operation,ovariectomy (OVX) and ovariectomy with estrogen (E2) andprogesterone (P) replacement therapy (OVX+E2+P). The rats were subjected to 1-h restraint stress 4 wk after operation. The changes of defecation were monitored by collection of fecal pellets. The gonadal steroids were measured in duplicate by radioimmunoassay (RTA). The expression of 5-HT3R mRNA in the colon was studied by RT-PCR. RESULTS: Compared with sham group and OVX+E2+P group, OVX group showed increase in fecal pellets and decrease in the time of vitreous pellets excretion (P<0.01).Serum levels of E2 and P were suppressed in OVX group and restored following treatment with ovarian steroids (P<0.01), and the levels of 5-HT3R mRNA in the colon of ovariectomized rats were significantly increased, the expression of 5-HT3R mRNA was significantly decreased in hormone replacement therapy group (P<0.01).CONCLUSION: Ovarian hormone plays a role in the regulation of 5-HT3R expressions in restraint stress-induced bowel dysfunction of rats. The interactions between ovarian steroids and gastrointestinal tract may have major pathophysiologicalimplications in 5-HT-related disorders, such as irritable bowel syndrome (IBS).

  4. Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations.

    Science.gov (United States)

    Kadokawa, Hiroya; Pandey, Kiran; Nahar, Asrafun; Nakamura, Urara; Rudolf, Faidiban O

    2014-11-30

    The presence of gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) on gonadotrophs in the anterior pituitary (AP) is an important factor for reproduction control. However, little is known regarding GnRHR gene expression in gonadotrophs of cattle owing to the lack of an appropriate anti-GnRHR antibody. Therefore, an anti-GnRHR antibody for immunohistochemistry, flow cytometry, and immunocytochemistry assays was developed to characterize GnRHR gene expression in gonadotrophs. The anti-GnRHR antibody could suppress GnRH-induced LH secretion from cultured AP cells of cattle. The GnRHR, luteinizing hormone (LH), and follicle stimulating hormone (FSH) in the AP tissue was analyzed by fluorescence immunohistochemistry. The GnRHRs were aggregated on a limited area of the cell surface of gonadotrophs, possibly localized to lipid rafts. The LH secretion was stimulated with increasing amounts of GnRH; however, excessive concentrations (> 1 nM) resulted in a decrease in LH secretion. A novel method to purify gonadotrophs was developed using the anti-GnRHR antibody and fluorescence-activated cell sorting. Flow cytometric analysis using the anti-GnRHR antibody for cultured bovine AP cells, however, failed to support the hypothesis that GnRH induces GnRHR internalization and decreases GnRHR on the surface of GnRHR-positive AP cells. In contrast, immunocytochemistry using primary antibodies for cultured bovine AP cells showed that 10 nM (P < 0.05) and 100 nM (P < 0.01) GnRH, but not 0.01-1 nM GnRH, increased GnRHR in the cytoplasm of LH-positive cells. In conclusion, these data suggested that GnRHRs were aggregated on the surface of gonadotrophs and GnRHR inside gonadotrophs increased with elevated concentrations of GnRH.

  5. Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists

    Science.gov (United States)

    Te, Jerez A.; Dong, Maoqing; Miller, Laurence J.; Bordner, Andrew J.

    2012-07-01

    Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and

  6. The gene encoding the melanin-concentrating hormone receptor 1 is associated with schizophrenia in a Danish case-control sample

    DEFF Research Database (Denmark)

    Demontis, Ditte; Nyegaard, Mette; Christensen, Jane H;

    2012-01-01

    OBJECTIVE: The MCHR1 gene encoding the melanin-concentrating hormone receptor 1 is located on chromosome 22q13.2 and has previously been associated with schizophrenia in a study of cases and controls from the Faroe Islands and Scotland. Herein we report an association between variations in the MCHR......1 gene and schizophrenia, based on analyses of a larger sample and an increased number of single nucleotide polymorphisms (SNPs) than used in the previous study. METHODS: Eighteen SNPs in the MCHR1 gene region were genotyped in a Caucasian case-control sample from Denmark consisting of 390......, predominantly seen in men where one SNP (rs133073) remained significant (P=0.003) after correction for multiple testing. When combining the P values in the proximal region of MCHR1, the region-wise P value was low (P=0.009) supporting that variations in this part of the gene is associated with schizophrenia...

  7. Detection of Messenger RNA for Gonadotropin-Releasing Hormone (GnRH) but not for GnRH Receptors in Rat Pancreas

    Institute of Scientific and Technical Information of China (English)

    王雷; 谢莉萍; 黄威权; 张荣庆

    2001-01-01

    Although gonadotropin-releasing hormone (GnRH), GnRH-like molecule, and GnRH receptor (GnRH-R) have been reported to exist in several tissues other than brain or anterior pituitary, there are no reports concerning GnRH or GnRH-R gene expression in a normal pancreatic gland. In order to define the production of GnRH as well as GnRH-R in the pancreatic gland, we examined their gene expression in various developmental stages of rat pancreas using the reverse transcriptase-polymerase chain reaction (RT-PCR).GnRH mRNA transcripts were found in pancreas of male and female rats at different ages, expressing at about the same level, whereas GnRH-R mRNA transcripts could not be detected in any rat pancreatic gland samples. These results suggest a possible biological role of GnRH in rodent pancreas.

  8. Effect of acute and regular exercise on growth hormone secretagogue receptor-1a expression in human lymphocytes, T cell subpopulation and monocytes.

    Science.gov (United States)

    Bishop, Nicolette C; Hayashida, Harumi; Clark, Megan; Coombs, Charlotte; Miller, Sean; Stensel, David J

    2014-07-01

    The orexigenic peptide hormone ghrelin exerts potent inhibitory effects on pro-inflammatory cytokine release via the growth hormone secretagogue receptor-1a (GHS-R1a) on T cells and monocytes. As such, ghrelin is a promising therapeutic agent for the treatment of inflammatory conditions, but these effects depend on the availability of GHS-R1a. The aim of this study was to determine the effect of acute exercise on GHS-R1a expression on circulating CD14+ monocytes, total lymphocytes and CD3+ T cells. Nine male club-standard cyclists cycled for 1h at 75% V̇O2peak (EX) or rested (REST) in a randomised cross-over design. Compared with the equivalent times in REST, the concentration of circulating GHS-R1a+ lymphocytes and monocytes was higher in EX at immediately and 1 and 2h post-exercise (all pexercise only (258 (203)cellsμl(-1) vs. 62 (42)cellsμl(-1), pexercise. Given that the anti-inflammatory effects of ghrelin depend on the availability of GHS-R1a, the preferential recruitment of subpopulations with high anti-inflammatory potential found here add a novel aspect to the potential mechanisms by which exercise acts to reduce pro-inflammatory cytokine levels.

  9. Multiple ING1 and ING2 genes in Xenopus laevis and evidence for differential association of thyroid hormone receptors and ING proteins to their promoters.

    Science.gov (United States)

    Wagner, Mary J; Helbing, Caren C

    2008-03-01

    ING (INhibitor of Growth) tumor suppressor proteins are epigenetic factors involved in numerous cellular processes including apoptosis in species ranging from yeast to humans. We recently isolated ING1 and ING2 transcript variants in Xenopus laevi