WorldWideScience

Sample records for adipokinetic hormone receptor

  1. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.

    2016-01-01

    the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin...

  2. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana

    DEFF Research Database (Denmark)

    Hansen, Karina K; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta...... americana. This receptor is only activated by various insect AKHs (we tested eight) and not by a library of 29 other insect or invertebrate neuropeptides and nine biogenic amines. Periplaneta has two intrinsic AKHs, Pea-AKH-1, and Pea-AKH-2. The Periplaneta AKH receptor is activated by low concentrations...... of both Pea-AKH-1 (EC50, 5 x 10(-9)M), and Pea-AKH-2 (EC50, 2 x 10(-9)M). Insects can be subdivided into two evolutionary lineages, holometabola (insects with a complete metamorphosis during development) and hemimetabola (incomplete metamorphosis). This paper describes the first AKH receptor from...

  3. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and...

  4. The adipokinetic hormone receptor modulates sexual behavior, pheromone perception and pheromone production in a sex-specific and starvation-dependent manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2016-01-01

    Full Text Available Food availability and nutritional status shape the reproductive activity of many animals. In rodents, hormones such as gonadotropin-releasing hormone (GnRH, restore energy homeostasis not only through regulating e.g. caloric intake and energy housekeeping, but also through modulating sex drive. We investigated whether the insect homologue of the GnRH receptor, the adipokinetic hormone receptor (AKHR modulates sexual behavior of the fruit fly Drosophila melanogaster depending on nutritional status. We found that AKHR regulates male, but not female sexual behavior in a starvation-dependent manner. Males lacking AKHR showed a severe decrease in their courtship activity when starved, as well as an increase in mating duration when fed. AKHR expression is particularly strong in the subesophageal zone (SEZ, Ito et al. 2014. We found axonal projections from AKHR-expressing neurons to higher brain centers including specific glomeruli in the antennal lobe. Among the glomeruli that received projections were those dedicated to detecting the male specific pheromone cis-vaccenyl acetate (cVA. Accordingly, responses to cVA were dependent on the nutritional status of flies. AKHR was also involved in the regulation of the production of cuticular pheromones, 7,11-heptacosadiene and 7-tricosene. This effect was observed only in females and depended on their feeding state. AKHR has therefore a dual role on both pheromone perception and production. For the first time our study shows an effect of AKHR on insect sexual behavior and physiology. Our results support the hypothesis of a conserved role of the GnRH/AKH pathway on a nutritional state-dependent regulation of reproduction in both vertebrates and invertebrates.

  5. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis

    Czech Academy of Sciences Publication Activity Database

    Večeřa, Josef; Krishnan, N.; Mithöfer, A.; Vogel, H.; Kodrík, Dalibor

    2012-01-01

    Roč. 155, č. 2 (2012), s. 389-395 ISSN 1532-0456 R&D Projects: GA ČR GAP501/10/1215 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * antioxidant response * antioxidant enzymes Subject RIV: ED - Physiology Impact factor: 2.707, year: 2012

  6. Adipokinetic hormone functions that are not associated with insect flight

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor

    2008-01-01

    Roč. 33, č. 3 (2008), s. 171-180 ISSN 0307-6962 R&D Projects: GA ČR GA522/07/0788; GA ČR GA522/05/0151 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * anabolic processes * diel changes Subject RIV: ED - Physiology Impact factor: 1.533, year: 2008

  7. Identification, characterisation, and function of adipokinetic hormones and receptor in the African malaria mosquito, "Anopheles Gambiae" (Diptera)

    OpenAIRE

    Kaufmann, Christian; Betschart, Bruno

    2007-01-01

    En utilisant la bioinformatique et la biologie moléculaire, nous avons pu identifier chez le principal vecteur africain de la malaria, le moustique, Anopheles gambiae deux hormones adipokinétiques (AKHs): l'octapeptide, Anoga-AKH-I (pQLTFTPAWa) et le décapeptide, Anoga-AKH-II, (pQVTFSRDWNAa). La fonction principale des AKHs est d’induire une hyperlipémie (effet d’adipokinétique), ainsi qu’une hypertrehalosémie et une hyperprolinémie. En tant que membres de la famille des AKH, les deux neurope...

  8. The effect of insecticide treatment on adipokinetic hormone titre in insect body

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Socha, Radomír

    2005-01-01

    Roč. 61, - (2005), s. 1077-1082 ISSN 1526-498X R&D Projects: GA AV ČR(CZ) IAA6007202; GA ČR(CZ) GA206/03/0016 Institutional research plan: CEZ:AV0Z50070508 Keywords : insecticide * adipokinetic hormone * stress Subject RIV: ED - Physiology Impact factor: 1.175, year: 2005

  9. A quantitative study of adipokinetic hormone of the firebug Pyrrhocoris apterus

    Czech Academy of Sciences Publication Activity Database

    Goldsworthy, G. J.; Kodrík, Dalibor; Comley, R.; Lightfoot, M.

    2002-01-01

    Roč. 48, - (2002), s. 1103-1109 ISSN 0022-1910 R&D Projects: GA AV ČR IAA6007202 Institutional research plan: CEZ:AV0Z5007907 Keywords : Adipokinetic hormone * ELISA * Pyrrhocoris apterus Subject RIV: ED - Physiology Impact factor: 1.789, year: 2002

  10. Lipid mobilization and locomotor stimulation in Gryllus bimaculatus by topically applied adipokinetic hormone

    Czech Academy of Sciences Publication Activity Database

    Lorenz, M. W.; Zemek, Rostislav; Kodrík, Dalibor; Socha, Radomír

    2004-01-01

    Roč. 29, - (2004), s. 146-151 ISSN 0307-6962 R&D Projects: GA AV ČR IAA6007202 Institutional research plan: CEZ:AV0Z5007907 Keywords : Adipokinetic hormone * cricket * Grybi-AKH Subject RIV: ED - Physiology Impact factor: 1.352, year: 2004

  11. The adipokinetic hormones of Heteroptera: a comparative study

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Marco, H. G.; Šimek, Petr; Socha, Radomír; Štys, P.; Gäde, G.

    2010-01-01

    Roč. 35, č. 2 (2010), s. 117-127 ISSN 0307-6962 R&D Projects: GA ČR GA522/07/0788 Grant - others:National Research Foundation(ZA) FA20070213000002; National Research Foundation(ZA) IFR2008071500048 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic peptide * Heteroptera * mass spectrometry Subject RIV: ED - Physiology Impact factor: 1.417, year: 2010

  12. Functional characterization of the adipokinetic hormone in the pea aphid, Acyrthosiphon pisum

    Czech Academy of Sciences Publication Activity Database

    Jedlička, Pavel; Steinbauerová, V.; Šimek, Petr; Zahradníčková, Helena

    2012-01-01

    Roč. 162, č. 1 (2012), s. 51-58 ISSN 1095-6433 R&D Projects: GA ČR GP522/09/P382 Grant - others:European Union FP7(CZ) MOBITAG, GA 229518 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * Acyrthosiphon pisum * neuropeptide Subject RIV: ED - Physiology Impact factor: 2.167, year: 2012 http://www.sciencedirect.com/science/article/pii/S1095643312000256

  13. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera)

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Vinokurov, Konstantin; Tomčala, Aleš; Socha, Radomír

    2012-01-01

    Roč. 58, č. 1 (2012), s. 194-204 ISSN 0022-1910 R&D Project s: GA ČR GAP501/10/1215; GA ČR GAP502/10/1734 Grant - others: project MOBITAG(CZ) GA 229518 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z40550506 Keywords : adipokinetic hormone * AKH * digestion Subject RIV: ED - Physiology Impact factor: 2.379, year: 2012

  14. The effect of adipokinetic hormones on the activity of digestive enzymes

    Czech Academy of Sciences Publication Activity Database

    Bodláková, Karolína; Beňová, Michaela; Kodrík, Dalibor

    2018-01-01

    Roč. 43, č. 2 (2018), s. 140-148 ISSN 0307-6962 R&D Projects: GA ČR(CZ) GA17-03253S Institutional support: RVO:60077344 Keywords : adipokinetic hormone * AKH * amylase Subject RIV: ED - Physiology OBOR OECD: Biochemistry and molecular biology Impact factor: 1.364, year: 2016 https://onlinelibrary.wiley.com/doi/abs/10.1111/phen.12238

  15. Adipokinetic hormones (AKHs) of sphingid Lepidoptera, including the identification of a second M. sexta AKH

    Czech Academy of Sciences Publication Activity Database

    Weaver, R. J.; Marco, H. G.; Šimek, Petr; Audsley, N.; Clark, K. D.; Gäde, G.

    2012-01-01

    Roč. 34, č. 1 (2012), s. 44-50 ISSN 0196-9781 R&D Projects: GA ČR GAP206/10/2401 Grant - others:NRF - Royal Society UK(GB) NRF GUN 63515; National Research Foundation(ZA) FA2007021300002; National Research Foundation(ZA) IFR2008071500048 Institutional research plan: CEZ:AV0Z50070508 Keywords : Insect * Sphingidae * adipokinetic hormone Subject RIV: ED - Physiology Impact factor: 2.522, year: 2012 http://www.sciencedirect.com/science/article/pii/S0196978112000307

  16. Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Večeřa, J.; Krishnan, Natraj; Alquicer, Glenda; Kodrík, Dalibor; Socha, Radomír

    2007-01-01

    Roč. 146, - (2007), s. 336-342 ISSN 1532-0456 R&D Projects: GA ČR GA522/07/0788 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * antioxidant activity * oxidative stress Subject RIV: ED - Physiology Impact factor: 2.345, year: 2007

  17. Stimulatory effects of bioamines norepinephrine and dopamine on locomotion of Pyrrhocoris apterus (L.): Is the adipokinetic hormone involved?

    Czech Academy of Sciences Publication Activity Database

    Socha, Radomír; Kodrík, Dalibor; Zemek, Rostislav

    2008-01-01

    Roč. 151, č. 3 (2008), s. 305-310 ISSN 1096-4959 R&D Projects: GA ČR GA522/07/0788 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * biogenic amine * CNS Subject RIV: ED - Physiology Impact factor: 1.468, year: 2008

  18. Adipokinetic hormone (Pyrap-AKH) enhances the effect of a pyrethroid insecticide against the firebug Pyrrhocoris apterus

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Bártů, Iva; Socha, Radomír

    2010-01-01

    Roč. 66, č. 4 (2010), s. 425-431 ISSN 1526-498X R&D Projects: GA ČR GA522/07/0788 Institutional research plan: CEZ:AV0Z50070508 Keywords : insecticide * adipokinetic hormone * stress Subject RIV: ED - Physiology Impact factor: 2.313, year: 2010

  19. Preparation of a specifically tritiated locust adipokinetic hormone analog with full biological potency

    Energy Technology Data Exchange (ETDEWEB)

    Muramoto, K; Ramachandran, J; Moshitzky, P; Applebaum, S W [Hormone Research Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA and Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel

    1984-01-01

    A synthetic peptide related to locus adipokinetic hormone (AKH) and shrimp red pigment concentrating hormone (RPCH) containing a tyrosine residue in place of phenylalanine was iodinated and the 3,5-diiodotyrosyl derivative was isolated by reverse phase HPLC. Catalytic dehalogenation of the diiodo derivative in the presence of tritium yielded the tritiated AKH analog which was isolated by gel filtration on Sephadex LH-20 and reverse phase HPLC. The tritiated peptide was formed to be identical to AKH in its ability to stimulate lipid release into the hemolymph of locusts in vivo where the diiodotryrosyl derivative was inactive. The specific radioactivity of the tritiated peptide was 57.2 Ci/mmol, or 99% of the theoretical value.

  20. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    Science.gov (United States)

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Adipokinetic hormone activities in insect body infected by entomopathogenic nematode

    Czech Academy of Sciences Publication Activity Database

    Ibrahim, Emad; Hejníková, Markéta; Shaik, Haq Abdul; Doležel, David; Kodrík, Dalibor

    2017-01-01

    Roč. 98, April 01 (2017), s. 347-355 ISSN 0022-1910 R&D Projects: GA ČR(CZ) GA17-03253S Institutional support: RVO:60077344 Keywords : mortality * Akh gene expression * AKH receptor Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.227, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022191017300082

  2. Knockdown of adipokinetic hormone synthesis increases susceptibility to oxidative stress in Drosophila – A role for dFoxO?

    Czech Academy of Sciences Publication Activity Database

    Bednářová, Andrea; Kodrík, Dalibor; Krishnan, N.

    2015-01-01

    Roč. 171, May 01 (2015), s. 8-14 ISSN 1532-0456 R&D Projects: GA ČR GA14-07172S; GA MŠk(CZ) LH14047 Grant - others:GA JU(CZ) 140/2014/P Institutional support: RVO:60077344 Keywords : adipokinetic hormone * Drosophila * hydrogen peroxide Subject RIV: ED - Physiology Impact factor: 2.546, year: 2015 http://www.sciencedirect.com/science/article/pii/S1532045615000265

  3. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study

    Czech Academy of Sciences Publication Activity Database

    Bednářová, Andrea; Krishnan, N.; Cheng, I. C.; Večeřa, Josef; Lee, H.-J.; Kodrík, Dalibor

    2013-01-01

    Roč. 38, č. 1 (2013), s. 54-62 ISSN 0307-6962 R&D Projects: GA ČR GAP501/10/1215 Grant - others:NSF, EPSCOR(US) MSU 012156-014; National Science Council of Taiwan(TW) NSC 95-2313-B-002-084 MY3 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * catalase * ELISA Subject RIV: ED - Physiology Impact factor: 1.434, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/phen.12008/pdf

  4. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems

    DEFF Research Database (Denmark)

    Hansen, Karina Kiilerich; Stafflinger, Elisabeth; Schneider, Martina

    2010-01-01

    receptors, this is a prominent example of receptor/ligand co-evolution, probably originating from receptor and ligand gene duplications followed by mutations and evolutionary selection, thereby yielding three independent hormonal systems. The ACP signaling system occurs in the mosquitoes A. gambiae, Aedes...

  5. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut

    Czech Academy of Sciences Publication Activity Database

    Bodláková, K.; Jedlička, Pavel; Kodrík, Dalibor

    2017-01-01

    Roč. 24, č. 2 (2017), s. 259-269 ISSN 1672-9609 R&D Projects: GA ČR GA14-07172S Institutional support: RVO:61388963 ; RVO:60077344 Keywords : AKH * AKH receptor * amylase * enzyme * gene expression * midgut Subject RIV: ED - Physiology OBOR OECD: Entomology; Biochemistry and molecular biology (BC-A) Impact factor: 2.026, year: 2016

  6. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores

    Czech Academy of Sciences Publication Activity Database

    Bednářová, Andrea; Kodrík, Dalibor; Krishnan, N.

    2013-01-01

    Roč. 158, č. 3 (2013), s. 142-149 ISSN 1532-0456 R&D Projects: GA ČR GAP501/10/1215 Grant - others:Mississippi State Univeristy(US) 062/2011/P; NSF, EPSCOR(US) MSU No. 269110-151250 Institutional support: RVO:60077344 Keywords : adipokinetic hormone * calcium channel * cell signaling Subject RIV: ED - Physiology Impact factor: 2.829, year: 2013

  7. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  8. Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: A case study with beetles and moths

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Marco, H. G.; Šimek, Petr; Audsley, N.; Clark, K. D.; Weaver, R. J.

    2008-01-01

    Roč. 29, č. 7 (2008), s. 1124-1139 ISSN 0196-9781 Grant - others:National Research Foundation, Pretoria(ZA) 2053806; National Research Foundation, Pretoria(ZA) FA2007021300002 Institutional research plan: CEZ:AV0Z50070508 Keywords : insects * neuropeptides * adipokinetic peptides Subject RIV: ED - Physiology Impact factor: 2.565, year: 2008

  9. Molecular characterization, tissue distribution, and ultrastructural localization of adipokinetic hormones in the CNS of the firebug Pyrrhocoris apterus (Heteroptera, Insecta)

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Stašková, Tereza; Jedličková, V.; Weyda, F.; Závodská, Radka; Pflegerová, Jitka

    2015-01-01

    Roč. 210, Jan 1 (2015), s. 1-11 ISSN 0016-6480 R&D Projects: GA ČR GA14-07172S Institutional support: RVO:60077344 Keywords : AKH * pre-pro-hormone * insect brain Subject RIV: ED - Physiology Impact factor: 2.667, year: 2015 http://www.sciencedirect.com/science/article/pii/S0016648014004158

  10. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  11. Selective thyroid hormone receptor modulators

    Directory of Open Access Journals (Sweden)

    Girish Raparti

    2013-01-01

    Full Text Available Thyroid hormone (TH is known to have many beneficial effects on vital organs, but its extrapolation to be used therapeutically has been restricted by the fact that it does have concurrent adverse effects. Recent finding of various thyroid hormone receptors (TR isoforms and their differential pattern of tissue distribution has regained interest in possible use of TH analogues in therapeutics. These findings were followed by search of compounds with isoform-specific or tissue-specific action on TR. Studying the structure-activity relationship of TR led to the development of compounds like GC1 and KB141, which preferentially act on the β1 isoform of TR. More recently, eprotirome was developed and has been studied in humans. It has shown to be effective in dyslipidemia by the lipid-lowering action of TH in the liver and also in obesity. Another compound, 3,5-diiodothyropropionic acid (DITPA, binds to both α- and β-type TRs with relatively low affinity and has been shown to be effective in heart failure (HF. In postinfarction models of HF and in a pilot clinical study, DITPA increased cardiac performance without affecting the heart rate. TR antagonists like NH3 can be used in thyrotoxicosis and cardiac arrhythmias. However, further larger clinical trials on some of these promising compounds and development of newer compounds with increased selectivity is required to achieve higher precision of action and avoid adverse effects seen with TH.

  12. Oxidative stress elicited by insecticides: A role for the adipokinetic hormnone

    Czech Academy of Sciences Publication Activity Database

    Velki, M.; Kodrík, Dalibor; Večeřa, Josef; Hackenberger, B. K.; Socha, Radomír

    2011-01-01

    Roč. 172, č. 1 (2011), s. 77-84 ISSN 0016-6480 R&D Projects: GA ČR GAP501/10/1215 Institutional research plan: CEZ:AV0Z50070508 Keywords : Insect * adipokinetic hormone * oxidative stress Subject RIV: ED - Physiology Impact factor: 3.267, year: 2011

  13. Primary structure of an adipokinetic neuropeptide from the rhinoceros beetle, Oryctes rhinoceros L (Coleoptera: Dynastidae).

    Science.gov (United States)

    Ajay Kumar, A P; Gokuldas, M

    2011-07-01

    Neuropeptides play an important role in cellular communication in vertebrates. This is also true for insects in which many physiological, developmental and behavioral processes are affected by neuropeptides produced in neurosecretory cells of the retrocerebral complex. Small neuropeptides of the adipokinetic hormone/red pigment concentrating hormone family (AKH/RPCH) are one of the important groups of peptides that regulate physiological homeostasis. The present investigation was carried out to elucidate the primary structure of adipokinetic neuropeptides in the rhinoceros beetle, O. rhinoceros. In the present investigation, an adipokinetic neuropeptide from the coconut pest, Oryctes rhinoceros was isolated from corpora cardiaca by HPLC; the chromatographic fractions were tested for adipokinetic activity in the plant bug, Iphita limbata in vivo. Two UV absorbance peaks were found to be significantly active in elevating haemolymph lipid levels. MALDI-MS analysis of the extract indicated that the molecular mass, 1003.70 Da is similar to the already known AKH from another beetle, Melolontha melolontha. MALDI-MS/MS analysis confirmed that its primary structure is exactly similar to the structure reported for the Melme-AKH (pE-L-N-Y-S-P-D-W-NH2). The findings suggest that the distribution of AKH peptides has shown that there exists a taxonomic order or family specificity. This data can be used as additional information to aid in the construction of phylogenetic trees by means of computer programme and protein parsimony algorithms.

  14. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  15. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia

    DEFF Research Database (Denmark)

    Hauser, Frank; Grimmelikhuijzen, Cornelis

    2014-01-01

    In this review we trace the evolutionary connections between GnRH receptors from vertebrates and the receptors for adipokinetic hormone (AKH), AKH/corazonin-related peptide (ACP), and corazonin from arthropods. We conclude that these G protein-coupled receptors (GPCRs) are closely related and hav......QLTFSSDWSGamide), and the penis worm Priapulus caudatus (pQIFFSKGWRGamide). This is the first report, showing that AKH signaling is widespread in molluscs....

  16. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress?

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Krishnan, Natraj; Habuštová, Oxana

    2007-01-01

    Roč. 28, č. 5, (2007), s. 974-980 ISSN 0196-9781 R&D Projects: GA ČR GA522/05/0151; GA ČR(CZ) GA522/06/1591 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * oxidative stress * GMO Subject RIV: ED - Physiology Impact factor: 2.368, year: 2007

  17. Locust adipokinetic hormone mobilizes diacylglycerols selectively

    Czech Academy of Sciences Publication Activity Database

    Tomčala, Aleš; Bártů, Iva; Šimek, Petr; Kodrík, Dalibor

    2010-01-01

    Roč. 156, č. 1 (2010), s. 26-32 ISSN 1096-4959 R&D Projects: GA ČR GA522/07/0788; GA ČR GAP501/10/1215 Grant - others:University of South Bohemia(CZ) 58/2006/P-BF; University of South Bohemia(CZ) 56/2006/P-BF Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z40550506 Keywords : AKH * lipid * diacylglycerol Subject RIV: ED - Physiology Impact factor: 1.989, year: 2010

  18. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  19. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  20. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel)

    2008-01-01

    textabstractThe luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein

  1. Hormone receptor expression in male breast cancers | Akosa ...

    African Journals Online (AJOL)

    Male breast cancers are rare but have been found in higher proportions in Black Africans. Prognostic factors for breast cancers include tumour size, grade and stage, and hormone receptor status. The hormone receptor status is an invaluable guide in the use of adjuvant endocrine therapy, but none of the reports available ...

  2. Radioactive probes for adrenocorticotropic hormone receptors

    International Nuclear Information System (INIS)

    Hofmann, K.; Romovacek, H.; Stehle, C.J.; Finn, F.M.; Bothner-By, A.A.; Mishra, P.K.

    1986-01-01

    Our attempts to develop adrenocorticotropic hormone (ACTH) analogues that can be employed for ACTH receptor identification and isolation began with the synthesis of ACTH fragments containing N epsilon-(dethiobiotinyl)lysine (dethiobiocytin) amide in position 25 to be used for affinity chromatographic purification of hormone-receptor complexes on Sepharose-immobilized avidin resins. Because labeling ACTH or ACTH fragments by conventional iodination techniques destroys biological activity due to oxidation of Met4 and incorporation of iodine into Tyr2, we have prepared [Phe2,Nle4]ACTH1-24, [Phe2,Nle4,biocytin25]ACTH1-25 amide, and [Phe2,Nle4,dethiobiocytin25]ACTH1-25 amide by conventional synthetic techniques. The HPLC profiles and amino acid analyses of the final products indicate that the materials are of a high degree of purity. The amount of tertiary butylation of the Trp residue in the peptides was assessed by NMR and was found to be less than 0.5%. All three peptides are equipotent with the standard ACTH1-24 as concerns their ability to stimulate steroidogenesis and cAMP formation in bovine adrenal cortical cells. Iodination of [Phe2,Nle4]ACTH1-24, with iodogen as the oxidizing agent, has been accomplished without any detectable loss of biological activity. The mono- and diiodo derivatives of [Phe2,Nle4]ACTH1-24 have been prepared, separated by HPLC, and assayed for biological activity. Both peptides have the full capacity to stimulate steroidogenesis and cAMP production in bovine adrenal cortical cells

  3. Thyroid Hormone Receptor Mutations in Cancer and Resistance to Thyroid Hormone: Perspective and Prognosis

    Directory of Open Access Journals (Sweden)

    Meghan D. Rosen

    2011-01-01

    Full Text Available Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.

  4. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Nielsen, Robert

    1999-01-01

    Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+......Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+...

  5. Hmrbase: a database of hormones and their receptors

    Science.gov (United States)

    Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS

    2009-01-01

    Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s) on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online data submission, Drug

  6. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-01-01

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen

  7. Application of hormone receptor assay for clinical chemistry

    International Nuclear Information System (INIS)

    Sato, Seiya

    1978-01-01

    A conception of hormone receptors was explained to understand radioreceptor assay (RRA), and various problems in the operation of this method were described mainly. The principle of RRA is the same as that of RIA and CPBA, and measured values by RRA resembled to those by bioassay more closely than those by RIA. However, the sensitivity of RRA was inferior to that of RIA. It was important in using this method especially for measurement of peptide hormone not to deactivate biological the base by radioactivation. As the significance of this method in clinical chemistry, it was mentioned that this method was one kind of experiment to observe the biological activity of hormones, and that properties analysis of receptors, studies on action mechanism, the structure and function of hormone, the pathological analysis of endocrine abnormalities, and the development of drugs and treatment methods for receptors may become possible by this method. The other usefulness of this method was also mentioned. (Kanao, N.)

  8. Application of hormone receptor assay for clinical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S [Kitasato Univ. Hospital, Sagamihara, Kanagawa (Japan)

    1978-06-01

    A conception of hormone receptors was explained to understand radioreceptor assay (RRA), and various problems in the operation of this method were described mainly. The principle of RRA is the same as that of RIA and CPBA, and measured values by RRA resembled to those by bioassay more closely than those by RIA. However, the sensitivity of RRA was inferior to that of RIA. It was important in using this method especially for measurement of peptide hormone not to deactivate biological the base by radioactivation. As the significance of this method in clinical chemistry, it was mentioned that this method was one kind of experiment to observe the biological activity of hormones, and that properties analysis of receptors, studies on action mechanism, the structure and function of hormone, the pathological analysis of endocrine abnormalities, and the development of drugs and treatment methods for receptors may become possible by this method. The other usefulness of this method was also mentioned.

  9. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  10. Status of sex steroid hormone receptors in large bowel cancer

    NARCIS (Netherlands)

    Meggouh, F.; Lointier, P.; Pezet, D.; Saez, S.

    1991-01-01

    To determine the potential role of sex steroid hormones in the development of colorectal tumors in humans, specific androgen (AR), estrogen (ER), and progesterone (PGR) receptors were investigated in normal mucosa (NM) and in tumor (T) paired biopsy specimens from 94 patients. Androgen receptors

  11. Revisiting available knowledge on teleostean thyroid hormone receptors.

    Science.gov (United States)

    Lazcano, Iván; Orozco, Aurea

    2018-03-21

    Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Use of hormone receptors in scintigraphy of the ovaries

    International Nuclear Information System (INIS)

    Kairento, A.L.; Karonen, S.L.; Adlercreutz, H.

    1981-01-01

    Based on the mechanism of hormone receptors, luteinizing hormone (LH) labelled with 123-iodine was used as tracer in scintigraphy of rabbit ovaries. The ovaries were visualized in static pictures 6-15 min after injection except in the case where the rabbit was pre-injected with 10 μg of cold LH. 3.1% of the injected activity was found in the ovaries 14 h after injection. (orig.) [de

  13. Efficacy of chemotherapy after hormone therapy for hormone receptor-positive metastatic breast cancer.

    Science.gov (United States)

    Mori, Ryutaro; Nagao, Yasuko

    2014-01-01

    According to the guidelines for metastatic breast cancer, hormone therapy for hormone receptor-positive metastatic breast cancer without life-threatening metastasis should be received prior to chemotherapy. Previous trials have investigated the sensitivity of chemotherapy for preoperative breast cancer based on the efficacy of neoadjuvant hormone therapy. In this retrospective study, we investigated the efficacy of chemotherapy for metastatic breast cancer in hormone therapy-effective and hormone therapy-ineffective cases. Patients who received chemotherapy after hormone therapy for metastatic breast cancer between 2006 and 2013 at our institution were investigated. A total of 32 patients received chemotherapy after hormone therapy for metastatic breast cancer. The median patient age was 59 years, and most of the primary tumors exhibited a T2 status. A total of 26 patients had an N(+) status, while 7 patients had human epidermal growth factor receptor 2-positive tumors. A total of 13 patients received clinical benefits from hormone therapy, with a rate of clinical benefit of subsequent chemotherapy of 30.8%, which was not significantly different from that observed in the hormone therapy-ineffective patients (52.6%). A total of 13 patients were able to continue the hormone therapy for more than 1 year, with a rate of clinical benefit of chemotherapy of 38.5%, which was not significantly different from that observed in the short-term hormone therapy patients (47.4%). The luminal A patients were able to continue hormone therapy for a significantly longer period than the non-luminal A patients (median survival time: 17.8 months vs 6.35 months, p = 0.0085). However, there were no significant differences in the response to or duration of chemotherapy. The efficacy of chemotherapy for metastatic breast cancer cannot be predicted based on the efficacy of prior hormone therapy or tumor subtype, and clinicians should administer chemotherapy in all cases of

  14. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone

    International Nuclear Information System (INIS)

    Koenig, R.J.; Brent, G.A.; Warne, R.L.; Larsen, P.R.; Moore, D.D.

    1987-01-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. The authors have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. They show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor

  15. The Hypercoagulable state in Hyperthyroidism is mediated via the Thyroid Hormone β Receptor pathway

    NARCIS (Netherlands)

    Elbers, Laura P. B.; Moran, Carla; Gerdes, Victor E. A.; van Zaane, Bregje; Meijers, Joost C. M.; Endert, Erik; Lyons, Greta; Chatterjee, V. Krishna; Bisschop, Peter H.; Fliers, Eric

    2016-01-01

    Hyperthyroidism is associated with a hypercoagulable state, but the underlying mechanism is unknown. Patients with resistance to thyroid hormone (RTH) due to defective thyroid hormone receptor β (TRβ) exhibit elevated circulating thyroid hormones (TH) with refractoriness to TH action in

  16. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co...

  17. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits.

    Science.gov (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem

    2017-07-01

    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Dietary modification of metabolic pathways via nuclear hormone receptors.

    Science.gov (United States)

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Nuclear hormone receptors in parasitic helminths

    OpenAIRE

    Wu, Wenjie; LoVerde, Philip T

    2010-01-01

    Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in p...

  20. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  1. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    Science.gov (United States)

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  2. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  3. Steroidal Hormone Receptor Expression in Male Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Homaei-Shandiz

    2014-01-01

    Full Text Available Introduction: The etiology of male breast cancer is unclear, but hormonal levels may play a role in development of this disease. It seems that the risk of male breast cancer related to increased lifelong exposure to estrogen or reduced androgen. The aim of this study was to investigate the expression of the steroid hormone receptors including estrogen receptor (ER and progesterone receptor (PR in Iranian cases with male breast cancer. Methods: This is a prospective review of 18 cases of male breast cancer in in Omid Hospital, Mashhad, North East of Iran, between October 2001 and October 2006. ER and PR were measured by immunohistochemistry. Clinicopathologic features and family history were obtained by interview. Data were analyzed with SPSS 13 using descriptive statistics.  Results: The median age was 63.2 year. All the cases were infiltrating ductal carcinoma. A high rate of expression of ER (88.8% and PR (66.6% was found in the studied cases. Conclusion: Cancers of the male breast are significantly more likely than cancers of the female breast to express hormonal receptors.

  4. Evolutionary aspects of growth hormones and prolactins and their receptors

    International Nuclear Information System (INIS)

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of 125 I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of 125 I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum

  5. The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha)

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Marco, H. G.

    2017-01-01

    Roč. 49, č. 10 (2017), s. 1679-1690 ISSN 0939-4451 R&D Projects: GA ČR(CZ) GA17-22276S Institutional support: RVO:60077344 Keywords : ´green´ insecticide * receptor-ligand interaction * insects Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.173, year: 2016 https://link.springer.com/article/10.1007%2Fs00726-017-2461-y

  6. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  7. Growth hormone receptor deficiency (Laron syndrome) in black ...

    African Journals Online (AJOL)

    Non-Caucasians with growth honnone receptor (GHR) deficiency/Lamn syndrome among the .... 4,3 cm (-2,4 SOS for bone age 8,5 years at age 12); the girl's height at age 7 years was 77,5 cm (-8,0 SOS, height ... of serum incubated with '25I-labelled human growth hormone and expressed as relative specific binding ...

  8. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Science.gov (United States)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  9. Intracisternal granules in the adipokinetic cells of locusts are not degraded and apparently function as supplementary stores of secretory material.

    Science.gov (United States)

    Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J

    2000-01-01

    The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.

  10. Desensitization of parathyroid hormone receptors on cultured bone cells

    International Nuclear Information System (INIS)

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D.

    1990-01-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. [Nle8,Nle18,Tyr34]bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with [125I]PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself

  11. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  12. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    Science.gov (United States)

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  13. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  14. The liver taxis of receptor mediated lactosaminated human growth hormone

    International Nuclear Information System (INIS)

    Chen Zelian; Shi Lin; Li Tongling; Pang Qijie; He Juying; Guan Changtian

    2002-01-01

    Radiography imaging is used to assess liver taxis mechanism of anti-dwarfism drug lactosaminated human growth hormone (L-rhGH). Both L-rhGH and rhGH labelled with 131 I are used to study their biodistribution in animals (including rabbits, cocks and rats). The results show that L-rhGH is of specific hepatic targeting property, and the maximum hepatic concentration rate is 76.8%, which is two times of rhGH. Its hepatic binding is receptor mediated

  15. Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the thyroid hormone alpha 1-receptor protein

    NARCIS (Netherlands)

    van Beeren, H. C.; Bakker, O.; Wiersinga, W. M.

    1995-01-01

    Desethylamiodarone (DEA), the major metabolite of the potent antiarrythmic drug amiodarone, is a non-competitive inhibitor of the binding of thyroid hormone (T3) to the beta 1-thyroid hormone receptor (T3R). In the present study, we investigated whether DEA acts in a similar way with respect to the

  16. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Hauser, Frank; Kobberup, Sune

    2003-01-01

    The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also...... part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila...... and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head...

  17. Adipokinetic hormones provide inference for the phylogeny of Odonata

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Fescemyer, H. W.

    2011-01-01

    Roč. 57, č. 1 (2011), s. 174-178 ISSN 0022-1910 R&D Projects: GA ČR GA203/09/2014 Grant - others:University of Cape Town for a Block grant(ZA) IFR 2008071500048; National Research Foundation, Pretoria(ZA) FA 2007021300002; USDA, ARS Specific Cooperative Agreement(US) 58-6402-5-066; US National Science Foundation(US) EF-0412651 Institutional research plan: CEZ:AV0Z50070508 Keywords : phylogeny of Odonata * Libellulidae * Corduliidae Subject RIV: ED - Physiology Impact factor: 2.236, year: 2011

  18. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  19. Do unliganded thyroid hormone receptors have physiological functions?

    Science.gov (United States)

    Chassande, O

    2003-08-01

    Thyroid hormone (TH) is required for the development of vertebrates and exerts numerous homeostatic functions in adults. TH acts through nuclear receptors which control the transcription of target genes. Unliganded and liganded thyroid hormone receptors (TRs) have been shown to exert opposite effects on the transcription of target genes in vitro. However, the occurance of an aporeceptor activity in vivo and its potential physiological significance has not been clearly addressed. Several data generated using experimental hypothyroidism and thyrotoxicosis in wild type and TR knockout mice support the notion that apoTRs have an intrinsic activity in several tIssues. ApoTRs, and in particular TRalpha1, are predominant during the early stages of vertebrate development and must be turned into holoTRs for post-natal development to proceed normally. However, the absence of striking alterations of embryonic and fetal development in mice devoid of TRs indicates that apoTRs do not play a fundamental role. During development, as well as in adults, apoTRs rather appears as a system which increases the range of transcriptional responses to moderate variations of T3.

  20. Nuclear Import and Export of the Thyroid Hormone Receptor.

    Science.gov (United States)

    Zhang, Jibo; Roggero, Vincent R; Allison, Lizabeth A

    2018-01-01

    The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome. © 2018 Elsevier Inc. All rights reserved.

  1. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  2. Hepatic receptors for homologous growth hormone in the eel

    International Nuclear Information System (INIS)

    Hirano, T.

    1991-01-01

    The specific binding of 125I-labeled eel growth hormone (eGH) to liver membranes of the eel was examined. The specific binding to the 10,000g pellet was greater than that to the 600g pellet. The specific binding was linear up to about 100 mg fresh tissue, and was saturable with increasing amounts of membrane. The specific binding was pH-, temperature-, and time-dependent, with the optimum pH at 7.4, and greater specific binding was obtained at 15 and 25 degrees than at 35 degrees. Scatchard analysis of liver binding gave an association constant of 1.1 x 10(9) M-1 and a capacity of 105 fmol/mg protein. The receptor preparation was highly specific for GHs. Natural and recombinant eel GHs as well as recombinant salmon GH competed equally with 125I-eGH for the receptor sites of the 10,000g liver membrane. Ovine GH was more potent in displacing the labeled eGH than the homologous eel hormone. Tilapia GH and ovine prolactin (PRL) were needed in greater amounts (40 times) than eGH to displace the labeled eGH. Salmon and tilapia PRLs were still less potent (500 times) than eGH. There was no displacement with eel PRL. No significant change in the specific binding was seen 1 week after hypophysectomy, whereas injection of eGH into the hypophysectomized eel caused a significant reduction after 24 hr. The binding to the membrane fractions from gills, kidney, muscle, intestine, and brain was low and exclusively nonspecific, indicating the presence of specific GH receptors predominantly in the liver

  3. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  4. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    Energy Technology Data Exchange (ETDEWEB)

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  6. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    International Nuclear Information System (INIS)

    Daughaday, W.H.; Trivedi, B.

    1987-01-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125 I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound 125 I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor

  7. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β

    International Nuclear Information System (INIS)

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J.

    1989-01-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine → cytosine replacement in the codon for amino acid 340 resulted in a glycine → arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule

  8. Resistance to thyroid hormone due to defective thyroid receptor alpha.

    Science.gov (United States)

    Moran, Carla; Chatterjee, Krishna

    2015-08-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  10. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  11. The role of nuclear hormone receptors in cutaneous wound repair.

    Science.gov (United States)

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    Science.gov (United States)

    Bucci, Ines; Giuliani, Cesidio; Napolitano, Giorgio

    2017-01-01

    Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH) receptor (TSHR) antibodies (TRAbs) are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs), blocking (TBAbs), or neutral (N-TRAbs) depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy) occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery) before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism) are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and fetal

  13. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Ines Bucci

    2017-06-01

    Full Text Available Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH receptor (TSHR antibodies (TRAbs are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs, blocking (TBAbs, or neutral (N-TRAbs depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and

  14. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of tyrosine kinase activity with cloned liver GH receptor. The level of phosphorylation of the GH receptor was very low, as compared with the endogenous GH receptor in 3T3-F442A cells, suggesting that tyrosine kinase activity is not intrinsic to the cloned GH receptor but rather resides with a kinase present...... in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific....

  15. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    Science.gov (United States)

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  16. A selective androgen receptor modulator for hormonal male contraception.

    Science.gov (United States)

    Chen, Jiyun; Hwang, Dong Jin; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2005-02-01

    The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies, including hormonal male contraception. The identification of an orally bioavailable SARM with the ability to mimic the central and peripheral androgenic and anabolic effects of testosterone would represent an important step toward the "male pill". We characterized the in vitro and in vivo pharmacologic activity of (S)-3-(4-chloro-3-fluorophenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethylphenyl)propionamide (C-6), a novel SARM developed in our laboratories. C-6 was identified as an androgen receptor (AR) agonist with high AR binding affinity (K(i) = 4.9 nM). C-6 showed tissue-selective pharmacologic activity with higher anabolic activity than androgenic activity in male rats. The doses required to maintain the weight of the prostate, seminal vesicles, and levator ani muscle to half the size of the maximum effects (i.e., ED(50)) were 0.78 +/- 0.06, 0.88 +/- 0.1, and 0.17 +/- 0.04 mg/day, respectively. As opposed to other SARMs, gonadotropin levels in C-6-treated groups were significantly lower than control values. C-6 also significantly decreased serum testosterone concentration in intact rats after 2 weeks of treatment. Marked suppression of spermatogenesis was observed after 10 weeks of treatment with C-6 in intact male rats. Pharmacokinetic studies of C-6 in male rats revealed that C-6 was well absorbed after oral administration (bioavailability 76%), with a long (6.3 h) half-life at a dose of 10 mg/kg. These studies show that C-6 mimicked the in vivo pharmacologic and endocrine effects of testosterone while maintaining the oral bioavailability and tissue-selective actions of nonsteroidal SARMs.

  17. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  18. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  19. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U

    1988-01-01

    mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75......To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone...

  20. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Science.gov (United States)

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  1. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Directory of Open Access Journals (Sweden)

    Shudai Lin

    2018-05-01

    Full Text Available Growth hormone (GH promotes body growth by binding with two GH receptors (GHRs at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin‐like growth factor (IGF synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature, including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development.

  2. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark

    2005-01-01

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  3. A novel adipokinetic peptide from the corpus cardiacum of the primitive caeliferan pygmy grasshopper Tetrix subulata (Caelifera, Tetrigidae).

    Science.gov (United States)

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2015-06-01

    The basal caeliferan family Tetrigidae is investigated to identify neuropeptides belonging to the adipokinetic hormone (AKH) family. The pygmy grasshopper Tetrix subulata contains in its corpus cardiacum two octapeptides as revealed by liquid chromatography coupled to electrospray ionization mass spectrometry. The less abundant peptide is the well-known Schgr-AKH-II (pELNFSTGW amide) which is suggested to be the ancestral AKH of Caelifera and Ensifera. The second peptide, Tetsu-AKH (pEFNFTPGW amide), is novel and quite unusual with its third aromatic residue at position 2. It is thought to be autapomorphic for Caelifera. Tetsu-AKH has hyperlipemic activity in T. subulata and in Schistocerca gregaria. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.

    2012-01-01

    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  5. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  6. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  7. Hormone receptor densities in relation to 10B neutron capture therapy

    International Nuclear Information System (INIS)

    Hechter, O.; Schwartz, I.L.

    1982-01-01

    This presentation is a theoretical discussion of the possibility that appropriate steroid-carborane derivatives might be used to selectively deliver boron-10 ( 10 B) to tumor cells with sex-hormone receptors in sufficient concentration for effective neutron capture theory (NCT) of hormone-dependent mammary and prostatic cancer. The results indicate the concentrations of androgen receptors (AR) and progesterone receptors (PR) in malignant prostatic cells or of estrogen receptors (ER) in malignant mammary cells are two low to achieve nuclear 10 B concentrations of 1 + g per g of tumor by using a steroid ligand coupled to a single carborane cage

  8. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    Science.gov (United States)

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  9. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans.

    Science.gov (United States)

    Miyakawa, Hitoshi; Toyota, Kenji; Hirakawa, Ikumi; Ogino, Yukiko; Miyagawa, Shinichi; Oda, Shigeto; Tatarazako, Norihisa; Miura, Toru; Colbourne, John K; Iguchi, Taisen

    2013-01-01

    Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptor's responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.

  10. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  11. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    Science.gov (United States)

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  12. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    Science.gov (United States)

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  13. Hormone action. Part I. Peptide hormones

    International Nuclear Information System (INIS)

    Birnbaumer, L.; O'Malley, B.W.

    1985-01-01

    The major sections of this book on the hormonal action of peptide hormones cover receptor assays, identification of receptor proteins, methods for identification of internalized hormones and hormone receptors, preparation of hormonally responsive cells and cell hybrids, purification of membrane receptors and related techniques, assays of hormonal effects and related functions, and antibodies in hormone action

  14. THYROID HORMONE RECEPTOR BETA GENE MUTATION (P453A) IN A TURKISH FAMILY PRODUCING RESISTANCE TO THYROID HORMONE

    Science.gov (United States)

    Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel

    2018-01-01

    Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095

  15. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  16. Expression and role of gonadotropin-releasing hormone 2 and its receptor in mammals

    Science.gov (United States)

    Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in some mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, s...

  17. Breast cancer with Her-22 hormone receptor-positive neu: primary systemic treatment, sentinel node biopsy and hormone

    International Nuclear Information System (INIS)

    Lopez C, Nayara; Sanchez M, Jose Ignacio; De Santiago G, Javier

    2013-01-01

    Neoadjuvant chemotherapy is an interesting option in the therapy of some breast cancer cases. Cases in which the timing for sentinel lymph node biopsy is controversial. Co-expression of estrogen receptors and Her2/neu (cc-erbB-2) in breast cancer may imply hormone resistance, especially to tamoxifen. We present a clinic case with co-expression of estrogen receptors and Her2/neu that was treated with neoadjuvant chemotherapy and previous sentinel lymph node biopsy followed by breast tumorectomy with axillar lympha- denectomy, radiotherapy and hormonotherapy with letrozol, geserelina and trastuzumab. A good treatment response as found

  18. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated ...

  19. Flow cytometric measurement of DNA level and steroid hormone receptor assay in breast cancer

    International Nuclear Information System (INIS)

    Zubrikhina, G.N.; Kuz'mina, Eh.V.; Bassalyk, L.S.; Murav'eva, N.I.

    1989-01-01

    DNA level measured by flow cytometry and estrogen and progesteron receptors assayed in tissue samples obtained from 85 malignant and 16 benign lesions of the breast. All the benign tumors revealed 2c DNA content and most of them were receptor-negative, while 74.1% of breast carcinomas displayed aneuploidy. Three patients (3.5%) had two lines of aneuploid cells. Many aneuploid tumors were receptor-negative. Preoperative radiation treatmet (14-20 Gy) did not significantly influence the level of steroid hormone receptors in tumors. Estrogen receptor level was higher in menopausal patients than in premenopausal ones

  20. Structure and proteolysis of the growth hormone receptor on rat hepatocytes

    International Nuclear Information System (INIS)

    Yamada, K.; Lipson, K.E.; Donner, D.B.

    1987-01-01

    125 I-Labeled human growth hormone is isolated in high molecular weight (M/sub r/) (300,000, 220,000, and 130,000) and low molecular weight complexes on rat hepatocytes after affinity labeling. The time-dependent formation of low molecular weight complexes occurred at the expense of the higher molecular weight species and was inhibited by low temperature or inhibitors of serine proteinases. Exposure to reducing conditions induced loss of M/sub r/ 300,000 and 220,000 species and augmented the amount of M/sub r/ 130,000 complexes. The molecular weight of growth hormone (22,000) suggests that binding had occurred with species of M/sub r/ 280,000, 200,000, and 100,000. Two-dimensional gel electrophoresis demonstrated that the 100,000-dalton receptor subunit is contained in both the 280,000- and 200-000-dalton species. Reduction of interchain disulfide bonds in the growth hormone receptor did not alter its elution from gel filtration columns, but intact, high molecular weight receptor constituents were separated from lower molecular weight degradation products. Digestion of affinity-labeled growth hormone-receptor complexes with neuraminidase increased the mobility of receptor constituents on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These observations show that the growth hormone receptor is degraded by hepatic serine proteinases to low molecular weight degradation products which can be separated from intact receptor by gel filtration. Intact hormone-receptor complexes are aggregates of 100,000-dalton sialoglycoprotein subunits held together by interchain disulfide bonds and by noncovalent forces

  1. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  2. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  3. Suppression of Thyroid Hormone Receptor-Mediated Transcription ...

    African Journals Online (AJOL)

    TH)-induced TR-mediated transcription. We further examined the effects of methamidophos on TR-thyroid hormone response element (TRE) binding using the liquid chemiluminescent DNA pull-down assay (LCDPA), and found no dissociation of ...

  4. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    Science.gov (United States)

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  5. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  6. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  7. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  8. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    Science.gov (United States)

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  9. A novel growth hormone receptor gene deletion mutation in a patient with primary growth hormone insensitivity syndrome (Laron syndrome).

    Science.gov (United States)

    Yamamoto, Hiroyasu; Kouhara, Haruhiko; Iida, Keiji; Chihara, Kazuo; Kasayama, Soji

    2008-04-01

    Growth hormone (GH) insensitivity syndrome (Laron syndrome) is known to be caused by genetic disorders of the GH-IGF-1 axis. Although many mutations in the GH receptor have been identified, there have been only a few reports of deletions of the GH receptor gene. A Japanese adult female patient with Laron syndrome was subjected to chromosome analysis with basic G-banding and also with a high accuracy technique. Each exon of the GH receptor gene was amplified by means of PCR. Since this patient was diagnosed with osteoporosis, the effects of alendronate on bone mineral density (BMD) were also examined. The chromosome analysis with the high accuracy technique demonstrated a large deletion of the short arm in one allele of chromosome 5 from p11 to p13.1 [46, XX, del (5) (p11-p13.1)]. PCR amplification of exons of the GH receptor gene showed that only exons 2 and 3 were amplified. Low-dose IGF-1 administration (30microg/kg body weight) failed to increase her BMD, whereas alendronate administration resulted in an increase associated with a decrease in urinary deoxypyridinoline (DPD) and serum osteocalcin concentrations. The GH receptor gene of the patient was shown to lack exons 4-10. To the best of our knowledge, this is the third case report of Laron syndrome with large GH receptor deletion. Alendronate was effective for the enhancement of BMD.

  10. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2012-06-01

    Full Text Available Honey bees (Apis mellifera provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses usually feed the brood and other adult bees inside the nest, while older bees (foragers forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg and juvenile hormone (JH. However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1, the adipokinetic hormone receptor (AKHR, and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor. Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH, and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  11. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Science.gov (United States)

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  12. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  13. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  14. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    International Nuclear Information System (INIS)

    Schvartz, I.; Hazum, E.

    1987-01-01

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, [azidobenzoyl-D-Lys6]GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors

  15. Sex hormone receptors are present in the human suprachiasmatic nucleus

    NARCIS (Netherlands)

    Kruijver, Frank P. M.; Swaab, Dick F.

    2002-01-01

    The suprachiasmatic nucleus (SCN) is the clock of the brain that orchestrates circadian and circannual biological rhythms, such as the rhythms of hormones, body temperature, sleep and mood. These rhythms are frequently disturbed in menopause and even more so in dementia and can be restored in

  16. Expression profile and prognostic role of sex hormone receptors in gastric cancer

    International Nuclear Information System (INIS)

    Gan, Lu; He, Jian; Zhang, Xia; Zhang, Yong-Jie; Yu, Guan-Zhen; Chen, Ying; Pan, Jun; Wang, Jie-Jun; Wang, Xi

    2012-01-01

    Increasing interest has been devoted to the expression and possible role of sex hormone receptors in gastric cancer, but most of these findings are controversial. In the present study, the expression profile of sex hormone receptors in gastric cancer and their clinicopathological and prognostic value were determined in a large Chinese cohort. The mRNA and protein expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), progesterone receptor (PR), and androgen receptor (AR) in primary gastric tumors and corresponding adjacent normal tissues from 60 and 866 Chinese gastric cancer patients was detected by real-time quantitative PCR and immunohistochemistry method, respectively. The expression profile of the four receptors was compared and their associations with clinicopathological characteristics were assessed by using Chi-square test. The prognostic value of the four receptors in gastric cancer was evaluated by using univariate and multivariate Cox regression analysis. The presence of ERα, ERβ, PR, and AR in both gastric tumors and normal tissues was confirmed but their expression levels were extremely low except for the predominance of ERβ. The four receptors were expressed independently and showed a decreased expression pattern in gastric tumors compared to adjacent normal tissues. The positive expression of the four receptors all correlated with high tumor grade and intestinal type, and ERα and AR were also associated with early TNM stage and thereby a favorable outcome. However, ERα and AR were not independent prognostic factors for gastric cancer when multivariate survival analysis was performed. Our findings indicate that the sex hormone receptors may be partly involved in gastric carcinogenesis but their clinicopathological and prognostic significance in gastric cancer appears to be limited

  17. Variations in steroid hormone receptor content throughout age and menopausal periods, and menstrual cycle in breast cancer patients

    International Nuclear Information System (INIS)

    Nikolic-Vukosavljevic, D.; Vasiljevic, N.; Brankovic-Magic, M.; Polic, D.

    1996-01-01

    Variations in steroid hormone receptor contents throughout age and menopausal periods define three breast carcinoma groups: younger pre-menopausal carcinomas (aged up to 45), middle-aged carcinomas (aged up to 45), middle-aged carcinomas (pre-, peri-, and postmenopausal aged 45-59) and older postmenopausal carcinomas (aged over 59). Age-related steroid hormone receptor contents within pre-menopausal and postmenopausal carcinoma groups are characterized by the important increase of both receptor contents, while menopausal-related steroid hormone receptor contents within middle-aged carcinoma group (aged 45-59) are characterized by the important decrease of progesterone receptor content and estrogen receptor functionality. No variations in steroid hormone receptor contents throughout menstrual cycle within the follicular and the luteal phases were obtained. The important cycle within the follicular and the luteal phases were obtained. The important decrease of estrogen receptor content in the mid-cycle phase versus the peri-menstrual phase was found. Variations in steroid hormone receptor contents throughout age and menopausal periods, as well as throughout menstrual cycle could nod be associated with variations in the blood steroid hormone concentrations. However, important association between steroid hormone receptor contents and the blood steroid hormone concentrations was found within the luteal phase carcinoma group and within older postmenopausal carcinoma group. It is interesting that within carcinoma group with the highest concentration of progesterone, progesterone receptor content increases with an increase of the ration of estradiol and progesterone blood concentrations, while within carcinoma group with the lowest steroid hormone concentration and the highest content of estrogen receptor content, estrogen receptor content decreases with an increase of either the blood estradiol concentration or the ratio of the blood estradiol and progesterone blood

  18. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... progestins, as well as lipids, cholesterol metabolites, and. Genome ... Gene structure analysis shows strong conservation of exon structures among orthologoues. ..... earlier subfamily classification of NRs (Nuclear Receptors.

  19. Clinical relevance of hormone receptors in breast cancer diagnosis

    International Nuclear Information System (INIS)

    Knapstein, P.

    1981-01-01

    After an outline of the epidemiology of breast cancer, risk factors such as age, family history, ethnic factors, environmental effects, pregnancy, and hormonal factors are presented. The most efficient methods of early detection are palpation, mammography, and xeroradiography, although repeated mammography involves a risk of tumour induction. Further methods not suited for screeening are puncture cytology and thermography, of which the latter often yields wrong findings. New ways of mass screening may be found in sonography and microwave thermography. (MG) [de

  20. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    Science.gov (United States)

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  2. Machine learning approaches to decipher hormone and HER2 receptor status phenotypes in breast cancer.

    Science.gov (United States)

    Adabor, Emmanuel S; Acquaah-Mensah, George K

    2017-10-16

    Breast cancer prognosis and administration of therapies are aided by knowledge of hormonal and HER2 receptor status. Breast cancer lacking estrogen receptors, progesterone receptors and HER2 receptors are difficult to treat. Regarding large data repositories such as The Cancer Genome Atlas, available wet-lab methods for establishing the presence of these receptors do not always conclusively cover all available samples. To this end, we introduce median-supplement methods to identify hormonal and HER2 receptor status phenotypes of breast cancer patients using gene expression profiles. In these approaches, supplementary instances based on median patient gene expression are introduced to balance a training set from which we build simple models to identify the receptor expression status of patients. In addition, for the purpose of benchmarking, we examine major machine learning approaches that are also applicable to the problem of finding receptor status in breast cancer. We show that our methods are robust and have high sensitivity with extremely low false-positive rates compared with the well-established methods. A successful application of these methods will permit the simultaneous study of large collections of samples of breast cancer patients as well as save time and cost while standardizing interpretation of outcomes of such studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Relationship between the functional exon 3 deleted growth hormone receptor polymorphism and symptomatic osteoarthritis in women

    NARCIS (Netherlands)

    Claessen, K. M. J. A.; Kloppenburg, M.; Kroon, H. M.; Bijsterbosch, J.; Pereira, A. M.; Romijn, J. A.; van der Straaten, T.; Nelissen, R. G. H. H.; Hofman, A.; Uitterlinden, A. G.; Duijnisveld, B. J.; Lakenberg, N.; Beekman, M.; van Meurs, J. B.; Slagboom, P. E.; Biermasz, N. R.; Meulenbelt, I.

    2014-01-01

    Background Several studies suggest a role of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in the pathophysiology of primary osteoarthritis (OA). A common polymorphism of the GH receptor (exon 3 deletion, d3-GHR) is associated with increased GH/IGF-1 activity. Objective To study

  4. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia

    NARCIS (Netherlands)

    Unmehopa, Unga A.; van Heerikhuize, Joop J.; Spijkstra, Wenda; Woods, John W.; Howard, Andrew D.; Zycband, Emanuel; Feighner, Scott D.; Hreniuk, Donna L.; Palyha, Oksana C.; Guan, Xiao-Ming; Macneil, Douglas J.; van der Ploeg, Lex H. T.; Swaab, Dick F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  5. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia.

    NARCIS (Netherlands)

    Unmehopa, U.A.; Heerikhuize, J.J. van; Spijkstra, W.; Woods, J.W.; Howard, A.D.; Zycband, E.; Feighner, S.D.; Hreniuk, D.L.; Palyha, O.C.; Guan, X.-M.; MacNeil, D.J.; Ploeg, L.H.T.; Swaab, D.F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  6. Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction

    DEFF Research Database (Denmark)

    Goujon, L; Allevato, G; Simonin, G

    1994-01-01

    To study structure-function relationships of the growth hormone (GH) receptor (GHR), two functional systems have been developed. CHO cells were transiently cotransfected with the cDNA encoding the full-length rat GHR and with a construct consisting of the 5' flanking region of one of two GH...

  7. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    Science.gov (United States)

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  8. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  9. Trialkyltin rexinoid-X receptor agonists selectively potentiate thyroid hormone induced programs of xenopus laevis metamorphosis

    NARCIS (Netherlands)

    Mengeling, Brenda J.; Murk, Albertinka J.; Furlow, J.D.

    2016-01-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the

  10. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  11. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  12. Triiodothyronine affects the alternative splicing of thyroid hormone receptor alpha mRNA

    NARCIS (Netherlands)

    Timmer, D. C.; Bakker, O.; Wiersinga, W. M.

    2003-01-01

    The c-erbAalpha gene encodes two thyroid hormone receptors, TRalpha1 and TRalpha2, that arise from alternative splicing of the TRalpha pre-mRNA. TRalpha2 is not able to bind triiodothyronine (T-3) and acts as a weak antagonist of TRs. It has been suggested that the balance of TRalpha1 to TRalpha2 is

  13. Increased circulating interleukin-8 in patients with resistance to thyroid hormone receptor alpha

    NARCIS (Netherlands)

    van der Spek, Anne H.; Surovtseva, Olga V.; Aan, Saskia; Tool, Anton T. J.; van de Geer, Annemarie; Demir, Korcan; van Gucht, Anja L. M.; van Trotsenburg, A. S. Paul; van den Berg, Timo K.; Fliers, Eric; Boelen, Anita

    2017-01-01

    Innate immune cells have recently been identified as novel thyroid hormone (TH) target cells in which intracellular TH levels appear to play an important functional role. The possible involvement of TH receptor alpha (TR alpha), which is the predominant TR in these cells, has not been studied to

  14. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor.

    Science.gov (United States)

    Troppmann, Britta; Kleinau, Gunnar; Krause, Gerd; Gromoll, Jörg

    2013-01-01

    BACKGROUND In recent years it became evident that several types of the luteinizing hormone/choriogonadotrophin receptor (LHCGR) exist. In addition to the classical receptor type known in rodents, an LHCGR type containing an additional exon is present in primates and humans. This specific exon 6A introduces a hitherto unknown regulatory pathway of the LHCGR at the transcriptional level which can lead to the expression of an alternative protein covering the extracellular part only. Furthermore, an LHCGR type lacking exon 10 at the mRNA and protein levels has been described in the New World primate lineage, giving rise to an additional receptor type in which amino acids of the extracellular hinge region connecting the leucine-rich repeat domain and transmembrane domain are missing. METHODS Topic-related information was retrieved by systematic searches using Medline/PubMed. Structural homology models were retrieved from a glycoprotein hormone receptors web application and from recent publications. RESULTS In a novel approach, we combine functional aspects with three-dimensional properties of the LHCGR and the different receptor types to deduce causative relationships between these two parameters. On this basis, the physiological impact and patho-physiological consequences of the different LHCGR types are inferred. CONCLUSIONS The complex system of different LHCGR types and two corresponding hormones (LH and CG) represents a major challenge for future studies on selective hormone binding, signal transduction and receptor regulation. The presence of these naturally occurring LHCGR types requires re-examining of our present view on receptor function, experimental set-ups and data interpretation, but also offers new clinical approaches to interfere with LH/CG action in humans.

  15. Hormonal receptors and response to treatment of breast cancer

    International Nuclear Information System (INIS)

    Loven, D.; Rakowsky, E.; Stein, J.A.

    1981-01-01

    Response to several types of endocrine therapy or chemotherapy was evaluated in 60 patients with breast cancer. Estrogen and progesterone receptors were determined by radioimmunoassay. Response to endocrine therapy was significantly higher (P<0.01) among estrogen receptor (ER)-positive cases than among ER-negative cases. The response to chemotherapy did not differ significantly between the two groups. The results of this small series support the conclusion that determination of ER is valuable in planning endocrine treatment of the breast cancer patient, whereas response to chemotherapy does not correlate with ER levels. (author)

  16. Localization of oestrogen hormone receptors in the reproductive ...

    African Journals Online (AJOL)

    Primers sequence used were the forward and reverse β oestrogen primer which was designed to detect the expression of the gene encoding oestrogen receptor in the reproductive tract of the giant African Land Snail (Archachatina marginata) were: Forward: 5'-GCT TCG AGC TCA GCC TG-3' Reverse: 5'-AGG ATC ATG ...

  17. Reconstitution of hormone-responsive detergent-solubilized follicle stimulating hormone receptors into liposomes

    International Nuclear Information System (INIS)

    Grasso, P.; Dattatreyamurty, B.; Reichert, L.E. Jr.

    1988-01-01

    An FSH receptor-enriched fraction that responds to exogenous FSH by activation of adenylate cyclase was prepared by ultrafiltration of sucrose density gradient-purified light membranes derived from bovine calf testes homogenates and solubilized with Triton X-100. To further confirm the functional nature of the detergent-solubilized FSH receptor, the extract was incorporated by lipid hydration into large multilamellar vesicles composed of dioleoyl phosphatidylcholine and cholesterol, 2:1 molar ratio. Receptor incorporation was determined by measurement of specific binding of [125I] human FSH ([125I] hFSH). Substitution of dioleoyl phosphatidylcholine with dipalmitoyl phosphatidylcholine or increasing the cholesterol concentration of the vesicles reduced specific binding of [125I]hFSH. Under conditions favoring optimal incorporation of the receptor, specific binding of [125I]hFSH was time and temperature dependent and saturable when increasing concentrations of radioligand were added to a constant amount of proteoliposomes. Reconstituted proteoliposomes bound 1600 fmol FSH/mg protein with an affinity of 3.54 x 10(9) M-1. Inhibition of [125I] hFSH binding by hFSH was comparable to that seen with the membrane-bound receptor (ED50 = 10 ng). Equilibrium binding studies with [3H]Gpp(NH)p indicated that a single class of high affinity GTP binding sites with an association constant (Ka) of 3.33 x 10(7) m-1 which bound 2.19 fmol [3H]Gpp(NH)p/mg protein had also been incorporated into the proteoliposomes. Addition of FSH induced a 2-fold stimulation of [3H]Gpp(NH)p binding, supporting our earlier studies suggesting that the detergent-solubilized FSH receptor is complexed to the G protein. Of particular significance in the present study was the observation that both NaF and FSH stimulated cAMP production in the reconstituted system

  18. Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-09-01

    We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.

  19. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses.

    Science.gov (United States)

    Kreuchwig, Annika; Kleinau, Gunnar; Krause, Gerd

    2013-08-01

    The first version of a glycoprotein hormone receptor (GPHR) information resource was designed to link functional with structural GPHR information, in order to support sequence-structure-function analysis of the LH, FSH, and TSH receptors (http://ssfa-gphr.de). However, structural information on a binding- and signaling-sensitive extracellular fragment (∼100 residues), the hinge region, had been lacking. A new FSHR crystal structure of the hormone-bound extracellular domain has recently been solved. The structure comprises the leucine-rich repeat domain and most parts of the hinge region. We have not only integrated the new FSHR/FSH structure and the derived homology models of TSHR/TSH, LHCGR/CG, and LHCGR/LH into our web-based information resource, but have additionally provided novel tools to analyze the advanced structural features, with the common characteristics and distinctions between GPHRs, in a more precise manner. The hinge region with its second hormone-binding site allows us to assign functional data to the new structural features between hormone and receptor, such as binding details of a sulfated tyrosine (conserved throughout the GPHRs) extending into a pocket of the hormone. We have also implemented a protein interface analysis tool that enables the identification and visualization of extracellular contact points between interaction partners. This provides a starting point for comparing the binding patterns of GPHRs. Together with the mutagenesis data stored in the database, this will help to decipher the essential residues for ligand recognition and the molecular mechanisms of signal transduction, extending from the extracellular hormone-binding site toward the intracellular G protein-binding sites.

  20. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  1. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  2. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine (...

  3. Estradiol potentiation of gonadotropin-releasing hormone responsiveness in the anterior pituitary is mediated by an increase in gonadotropin-releasing hormone receptors

    International Nuclear Information System (INIS)

    Menon, M.; Peegel, H.; Katta, V.

    1985-01-01

    In order to investigate the mechanism by which 17 beta-estradiol potentiates the action of gonadotropin-releasing hormone on the anterior pituitary in vitro, cultured pituitary cells from immature female rats were used as the model system. Cultures exposed to estradiol at concentrations ranging from 10(-10) to 10(-6) mol/L exhibited a significant augmentation of luteinizing hormone release in response to a 4-hour gonadotropin-releasing hormone (10 mumol/L) challenge at a dose of 10(-9) mol/L compared to that of control cultures. The estradiol augmentation of luteinizing hormone release was also dependent on the duration of estradiol exposure. When these cultures were incubated with tritium-labeled L-leucine, an increase in incorporation of radiolabeled amino acid into total proteins greater than that in controls was observed. A parallel stimulatory effect of estradiol on iodine 125-labeled D-Ala6 gonadotropin-releasing hormone binding was observed. Cultures incubated with estradiol at different concentrations and various lengths of time showed a significant increase in gonadotropin-releasing hormone binding capacity and this increase was abrogated by cycloheximide. Analysis of the binding data showed that the increase in gonadotropin-releasing hormone binding activity was due to a change in the number of gonadotropin-releasing hormone binding sites rather than a change in the affinity. These results suggest that (1) estradiol treatment increases the number of pituitary receptors for gonadotropin-releasing hormone, (2) the augmentary effect of estradiol on luteinizing hormone release at the pituitary level might be mediated, at least in part, by the increase in the number of binding sites of gonadotropin-releasing hormone, and (3) new protein synthesis may be involved in estradiol-mediated gonadotropin-releasing hormone receptor induction

  4. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    International Nuclear Information System (INIS)

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B.

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites

  5. Receptors of Hypothalamic-Pituitary-Ovarian-Axis Hormone in Uterine Myomas

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2014-01-01

    Full Text Available In this study the expression of GnRH, FSH, LH, ER-α, ER-β, and PR receptors was examined in uterine myomas of women in reproductive and perimenopausal age. In cases of GnRH and tropic hormones a membranous and cytoplasmic immunohistochemical reaction was detected, in cases of ER-α and PR the reaction was located in cell nucleus, and in the case of ER-β it manifested also a cytoplasmic location. In some of the examined cases the expression was detected in endometrium, myocytes, and endothelium of blood vessels, in uterine glands and myoma cells. In myometrium the level of GnRH and LH receptors increases with age, whereas the level of progesterone and both estrogen receptors decreases. In myomas of women in reproductive age, independently of their size, expression of GnRH, FSH, and LH receptors was more pronounced than in myometrium. In women of perimenopausal age, independently of myoma size, expression of LH and estrogen α receptors was higher while expression of GnRH receptors was lower than in myometrium. FSH receptor expression was not observed. Expression of estrogen receptor β was not affected by age of the woman or size of myoma. Analysis of obtained results indicates on existing in small myomas local feedback axis between GnRH-LH-progesterone.

  6. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects

    Czech Academy of Sciences Publication Activity Database

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, B. K.; Kodrík, Dalibor

    2015-01-01

    Roč. 170, APR 07 (2015), s. 19-27 ISSN 1532-0456 R&D Projects: GA ČR GA14-07172S Institutional support: RVO:60077344 Keywords : adipokinetic hormone * insecticide * RNA interference Subject RIV: ED - Physiology Impact factor: 2.546, year: 2015 http://www.sciencedirect.com/science/article/pii/S153204561500006X

  7. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation

    DEFF Research Database (Denmark)

    Chhabra, Y.; Wong, H. Y.; Nikolajsen, Louise Fletcher

    2018-01-01

    Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lu......-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.Oncogene advance online publication, 2 October 2017; doi:10.1038/onc.2017.352....

  10. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  11. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  12. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M.; Park, Sang-Youl; Weiner, Joshua J.; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C.; Jensen, Davin R.; Yong, Eu-Leong; Volkman, Brian F.; Cutler, Sean R.; Zhu, Jian-Kang; Xu, H. Eric

    2009-01-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  13. Study of change of sex hormone receptors in diabetic impotent patients

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Weizhen; Zhang Zikang; Hu Xiaoke

    2002-01-01

    To study the relationship between diabetic impotence and sex hormones as well as sex hormone receptors. 32 diabetic impotent patients, 32 diabetic patients with normal sex function, 32 impotent patients without diabetes, and 40 healthy men were enrolled. The plasma sex hormone levels were examined by radioimmunoassay, and sex hormone receptors in white blood cells by radioreceptor assay. Compared with healthy men and impotent patients without diabetes, PRL levels in both diabetic impotent patients and diabetic patients with normal sex function increased markedly, T and AR levels decreased, and the ratio of E 2 /T and ER/AR increased. Compared with diabetic patients with normal sex function, while there was no significant difference in PRL, T and E 2 /T ratio, the AR level of diabetic impotent patients further decreased, and the ER/AR ratio further increased. Negative correlation was found between age and AR as well as T. The decline of AR and the increase of ER/AR ratio might be one main cause of diabetic impotence. And the decline of T and AR might be an important cause of the increase of diabetic impotence incidence with age

  14. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    Science.gov (United States)

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  16. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  17. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    Science.gov (United States)

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-05-01

    With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  18. Shaping policy: the Canadian Cancer Society and the Hormone Receptor Testing Inquiry.

    Science.gov (United States)

    Mathews, M; Newbury, J; Housser, E M

    2011-08-01

    In 2007, the Government of Newfoundland and Labrador established the Commission of Inquiry on Hormone Receptor Testing to examine problems with estrogen and progesterone hormone receptor tests conducted in the province between 1997 and 2005. Using the Inquiry as a case study, we examine the knowledge transfer activities used by the Canadian Cancer Society - Newfoundland and Labrador Division (CCS-NL) to shape policy and improve cancer control in the province. CCS-NL established a panel to advise its legal counsel and asked academic researchers to prepare papers to submit to the Commission. CCS-NL also interviewed patients to better inform its legal arguments, used its province-wide networks to raise awareness of the Inquiry, and provided a toll-free number that people could call. It also provided basic information, resources, and contact information for people who were affected by the flawed hormone receptor tests. The effectiveness of CCS-NL's activities is reflected by the inclusion of its key messages in the Commission's recommendations, and the investment in cancer care following the Inquiry. The success of the CCS-NL knowledge transfer efforts stemmed from its reputation as an advocate for cancer patients and its long-standing relationship with researchers, especially at the local level. The case illustrates real-world application of knowledge transfer practices in the development of public policy, and describes how community-based non-government organizations can identify and draw attention to important issues that otherwise might not have been addressed.

  19. A radioreceptor assay of luteinizing hormone-releasing hormone receptor and characterization of LHRH binding to pituitary receptors in Shao duck

    International Nuclear Information System (INIS)

    Yang Peixin; Wu Meiwen; Chen Ziyuan

    2000-01-01

    The properties of Shao duck pituitary luteinizing hormone-releasing hormone (LHRH) receptors were analyzed in pituitary membrane preparation and isolated pituitary cells prepared by enzymatic dispersion with collagenase and trypsin, by using a super-agonist analog of (D-Lys 6 ) LHRH. High binding of 125 I-(D-Lys 6 ) LHRH to 10 6 cultured cells of Shao duck was observed after a 90 minute incubation at 4 degree C, while binding was significantly reduced after a 24h incubation. Binding of the radioligand was a function of tissue concentration of Shao duck pituitary membrane preparation, with a positive correlation over the range of 1-2 pituitary per-tube. Specific binding for 125 I-(D-Lys 6 ) LHRH increased with the increase in the amount of 125 I-(D-Lys 6 ) LHRH. The Scatchard analysis of data revealed a linear relationship between the amount of specific binding and the ratio of specific binding to free 1 '2 5 I(D-Lys 6 )LHRH, indicating a single class of high affinity sites. Equilibrium dissociation constant (Kd) was 0.34 nM in pituitary membrane preparation and 0.43 nM in isolated pituitary cells. Both Kd values were near and the maximum binding capacity (B max ) was great in isolated cells, suggesting no significant loss of the LHRH receptor population caused by the enzymatic procedure employed for cell dispersion in the present study. Addition of 9D-Lys 6 ) LHRH displaced bound 125 I-(D-Lys 6 ) LHRH. These results demonstrated the presence and provided characterization of LHRH receptors in Shao duck pituitary

  20. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...

  1. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    OpenAIRE

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity...

  2. Seasonal Relationship between Gonadotropin, Growth Hormone, and Estrogen Receptor mRNA Expression in the Pituitary Gland of Largemouth Bass

    OpenAIRE

    Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.

    2009-01-01

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) β subunit and follicle-stimulating hormone (FSH) β subunit mRNA showed significant seasonal variation with levels ...

  3. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  4. Molecular conformation, receptor binding, and hormone action of natural and synthetic estrogens and antiestrogens.

    Science.gov (United States)

    Duax, W L; Griffin, J F; Weeks, C M; Korach, K S

    1985-01-01

    The X-ray crystallographic structural determinations of synthetic estrogens and antiestrogens provide reliable information on the global minimum energy conformation of these molecules or a local minimum energy conformation that is within 1 or 2 kcal/mole of the global minimum. In favorable cases, state-of-the-art molecular mechanics calculations provide quantitative agreement with X-ray results and information on the relative energy of other local minimum energy conformations not observed crystallographically. Because the conformation of diethylstilbestrol (DES) observed in solvated crystals has an overall conformation and dipole moment more similar to estradiol it is the form more likely to bind to the receptor and produce hormone activity. Either phenol ring of DES can successfully mimic the estradiol A-ring in binding to the receptor. Indenestrol A (INDA) and indenestrol B (INDB) have nearly identical fully extended planar conformations. Either the alpha or gamma rings of these compounds may mimic the A ring of estradiol and compete for the estrogen receptor. Although there are eight distinct ways in which molecules of a racemic mixture of INDA or INDB can bind to the receptor, not all of them may be able to elicit a hormonal response. This may account for the reduced biological activity of the compounds despite their successful competition for receptor binding. The minimum energy conformations of Z-pseudodiethylstilbestrol (ZPD) and E-pseudodiethylstilbestrol (EPD) are bent in a fashion similar to that of indanestrol (INDC). These molecules have good binding affinity suggesting that the receptor does not require a flat molecule. Therefore these conformations would appear to be compatible with receptor binding, but only the Z isomer has an energetically allowed extended conformation that accounts for its observed biological activity relative to DES. PMID:3905370

  5. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    Science.gov (United States)

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However

  6. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  7. Social information changes stress hormone receptor expression in the songbird brain.

    Science.gov (United States)

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  9. Putative thyroid hormone receptors in red blood cells of some reptiles.

    Science.gov (United States)

    Wong, C C; Chiu, K W

    1987-06-01

    Putative triiodothyronine (T3) receptors have been detected in the nuclei of red blood cells (RBC) in a number of reptile species. The binding characteristics of T3 receptors in vitro were dissociation constant (Kd) 9.1 to 28.58, 36.8 and 40, and 11.12 and 11.36 pM, and binding capacity (Bmax) 0.12 to 0.37, 0.17 and 0.24, and 0.19 and 0.28 fmol per million cells in the rat snake (Ptyas korros), soft-shelled turtle (Trionyx sinensis), and tokay gecko (Gekko gecko), respectively. These data were obtained in all species using in vitro incubation of whole cell according to current receptor studies on living cells. With modified technique in subsequent experiments, these values of the binding characteristics were seemingly low. The discrepancy was ascribed to the assessment of "free" fraction of hormone which would be used in subsequent calculation.

  10. Defective membrane expression of human growth hormone (GH) receptor causes Laron-type GH insensitivity syndrome.

    Science.gov (United States)

    Duquesnoy, P; Sobrier, M L; Amselem, S; Goossens, M

    1991-01-01

    Mutations in the growth hormone receptor (GHR) gene can cause growth hormone (GH) resistance. Given the sequence homology between the extracellular domain of the GHR and a soluble GH-binding protein (GH-BP), it is remarkable that GH-BP binding activity is absent from the serum of patients with Laron-type GH insensitivity, a hereditary form of severe dwarfism. We have previously identified a mutation within the extracellular domain of this receptor, replacing phenylalanine by serine at position 96 of the mature protein, in a patient with Laron syndrome. We have now investigated the effect of this Phe----Ser substitution on hormone binding activity by expressing the total human GHR cDNA and mutant form in eukaryotic cells. The wild-type protein expressed was able to bind GH but no plasma membrane binding was detectable on cells transfected with the mutant cDNA; this was also the case of cells transfected with a Phe96----Ala mutant cDNA, suggesting that the lack of binding activity is not due to a posttranslational modification of serine. Examination of the variant proteins in subcellular fractions revealed the presence of specific GH binding activity in the lysosomal fraction, whereas immunofluorescence studies located mutant proteins in the cytosol. Our findings suggest that these mutant GHRs fail to follow the correct intracellular transport pathway and underline the potential importance of this phenylalanine residue, which is conserved among the GH, prolactin, and erythropoietin receptors that belong to the same cytokine receptor superfamily. Images PMID:1719554

  11. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  12. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Science.gov (United States)

    Van Gilst, Marc R; Hadjivassiliou, Haralambos; Jolly, Amber; Yamamoto, Keith R

    2005-02-01

    Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  13. Autoradiographic localization of thyrotropin releasing hormone (TRH) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Manaker, S.

    1985-01-01

    Quantitative autoradiography was used to examine the distribution of thyrotropin-releasing hormone (TRH) receptors in the rat and human central nervous system (CNS). The binding of [ 3 H]-3-methyl-histidine 2 -TRH ([ 3 H]-MeTRH) to TRH receptors was saturable, of a high affinity (K/sub d/ = 5 nM), and specific for TRH analogs. Studies with neurotoxins ibotenic acid and 6-hydroxydopamine (6-OHDA) suggest that TRH receptors within the amygdala are predominantly located on cell bodies, and not nerve terminals. Finally, an examination was made of the concentrations of TRH receptors in spinal cords of patients with amyotrophic lateral sclerosis (ALS), a degenerative disease of the motor neurons located in Lamina IX. Large decreases in TRH receptors were noted in ALS spinal cords, when compared to non-neurological controls, probably reflecting the loss of motor neurons. In addition, decreases in the TRH receptor concentration of Lamina II were observed. This finding may reflect the sensitivity of neurons throughout the CNS to the pathophysiologic mechanisms of neuronal degeneration which cause ALS

  14. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    After screening the data base of the BerkeleyDrosophilaGenome Project with a sequence coding for the transmembrane region of a G protein-coupled receptor, we found thatDrosophilamight contain a gene coding for a receptor that is structurally related to the Gonadotropin-Releasing Hormone (GnRH) re...

  15. [Clinical relevance of ESR1 circulating mutations detection in hormone receptor positive metastatic breast cancer].

    Science.gov (United States)

    Clatot, Florian; Perdrix, Anne; Sefrioui, David; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2018-01-01

    If hormone therapy is a key treatment for hormone receptor positive advanced breast cancers, secondary resistance occurs as a rule. Recently, acquired alterations of the ESR1 gene have been identified as a mechanism of resistance on aromatase inhibitor (AI) treatment. The selective pressure by AI exposure during the metastatic setting triggers the emergence of ESR1 activating mutations. In that context, the "liquid biopsy" concept has been used to detect this molecular resistance before progression. Thus, the ESR1 circulating mutation detection will soon be used in daily practice to help monitoring patients on AI treatment and provide an early change for specific therapies that still have to be determined in prospective clinical trials. This review will present the acquired ESR1 mutations, as well as the methods used for their detection in blood and the potential clinical impact of this approach for hormone receptor positive breast cancer management. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  16. [Advanced luminal breast cancer (hormone receptor-positive, HER2 negative): New therapeutic options in 2015].

    Science.gov (United States)

    Vanacker, Hélène; Bally, Olivia; Kassem, Loay; Tredan, Olivier; Heudel, Pierre; Bachelot, Thomas

    2015-06-01

    Despite improvements in early detection, surgery and systemic therapy, metastatic breast cancer remains a major cause of death. Luminal type breast cancers expressing hormone estrogen receptor (ER) or progesterone (PR) and without HER2 overexpression are generally sensitive to endocrine therapy, but raise the issue of the occurrence of resistance to treatment, particularly at metastatic stage. A better understanding of hormone resistance may guide the development of new therapeutics. New strategies aim at enhancing and prolonging of endocrine sensitivity, by optimizing existing schemes, or by combining an endocrine therapy with a targeted therapies specific to hormone resistance pathways: ER signaling, PI3K/AKT/mTOR and Cyclin Dependent Kinase (CDK). Key corners of 2014 include confirmation of benefit of high dose fulvestrant, and commercialization of everolimus as the first mTOR inhibitor in this indication. Other strategies are being tested dealing with new endocrine therapies or new molecular targets such as PI3K inhibitors, insulin-like growth factor receptor (IGF-R) and histone deacetylase (HDAC) inhibitors. Coming years may be fruitful and might radically change our way to treat these patients. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  17. Identification of a novel modulator of thyroid hormone receptor-mediated action.

    Directory of Open Access Journals (Sweden)

    Bernhard G Baumgartner

    Full Text Available BACKGROUND: Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. METHODOLOGY/PRINCIPAL FINDINGS: We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone receptor TR(alpha1. This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR( alpha1 and to T(3-responsive promoters, as shown by ChIP assays. T(3 stimulation also promotes the mobilization of DOR from its localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related. CONCLUSIONS/SIGNIFICANCE: Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle function associated with this disease.

  18. Action of Specific Thyroid Hormone Receptor alpha(1) and beta(1) Antagonists in the Central and Peripheral Regulation of Thyroid Hormone Metabolism in the Rat

    NARCIS (Netherlands)

    van Beeren, Hermina C.; Kwakkel, Joan; Ackermans, Mariëtte T.; Wiersinga, Wilmar M.; Fliers, Eric; Boelen, Anita

    2012-01-01

    Background: The iodine-containing drug amiodarone (Amio) and its noniodine containing analogue dronedarone (Dron) are potent antiarrhythmic drugs. Previous in vivo and in vitro studies have shown that the major metabolite of Amio, desethylamiodarone, acts as a thyroid hormone receptor (TR) alpha(1)

  19. Radioiodinated nondegradable gonadotropin-releasing hormone analogs: new probes for the investigation of pituitary gonadotropin-releasing hormone receptors.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D

    1979-12-01

    Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.

  20. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    Science.gov (United States)

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  2. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    Science.gov (United States)

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  3. The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2012-06-01

    Full Text Available Salicylic acid (SA is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys521 and Cys529 of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations. Binding of SA occurs through Cys521/529 via the transition metal copper. Mechanistically, our results suggest that binding of SA causes a conformational change in NPR1 that is accompanied by the release of the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. While NPR1 is already known as a link between the SA signaling molecule and defense-gene activation, we now show that NPR1 is the receptor for SA.

  4. Immunodetection of Thyroid Hormone Receptor (Alpha1/Alpha2) in the Rat Uterus and Oviduct

    International Nuclear Information System (INIS)

    Öner, Jale; Öner, Hakan

    2007-01-01

    The aim of this study was to investigate the immunolocalization and the existence of thyroid hormone receptors (THR) (alpha1/alpha2) in rat uterus and oviduct. For this purpose 6 female Wistar albino rats found in estrous period were used. Tissue samples fixed in 10% neutral formalin were examined immunohistochemically. Sections were incubated with primary mouse-monoclonal THR (alpha1/alpha2) antibody. In uterus, THR (alpha1/alpha2) immunoreacted strongly with uterine luminal epithelium, endometrial gland epithelium and endometrial stromal cells and, moderately with myometrial smooth muscle. In oviduct, they were observed moderately in the epithelium of the tube and the smooth muscle cells of the muscular layer. In conclusion, the presence of THR in uterus and oviduct suggests that these organs are an active site of thyroid hormones

  5. Melanin-concentrating hormone and its receptor are expressed and functional in human skin.

    Science.gov (United States)

    Hoogduijn, Martin J; Ancans, Janis; Suzuki, Itaru; Estdale, Siân; Thody, Anthony J

    2002-08-23

    In this study, we have demonstrated the presence of melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptor (MCHR1) transcripts in human skin. Sequence analysis confirmed that the transcripts of both genes were identical to those previously found in human brain. In culture, endothelial cells showed pro-MCH expression whereas no signal was found in keratinocytes, melanocytes, and fibroblasts. MCHR1 expression was restricted to melanocytes and melanoma cells. Stimulation of cultured human melanocytes with MCH reduced the alpha-MSH-induced increase in cAMP production. Furthermore, the melanogenic actions of alpha-MSH were inhibited by MCH. We propose that the MCH/MCHR1 signalling system is present in human skin and may have a role with the melanocortins in regulating the melanocyte.

  6. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Derik E.; Noyes, Pamela D.; Waters, Katrina M.; Tanguay, Robert L.

    2018-04-01

    There is a need to develop novel, high-throughput screening and prioritization methods to identify chemicals with adverse estrogen, androgen, and thyroid activity to protect human health and the environment and is of interest to the Endocrine Disruptor Screening Program. The current aim is to explore the utility of zebrafish as a testing paradigm to classify endocrine activity using phenotypically anchored transcriptome profiling. Transcriptome analysis was conducted on embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at a concentration that elicited adverse malformations or mortality at 120 hours post-fertilization in 80% of the animals exposed. Analysis of the top 1000 significant differentially expressed transcripts across all treatments identified a unique transcriptional and phenotypic profile for thyroid hormone receptor agonists, which can be used as a biomarker screen for potential thyroid hormone agonists.

  7. Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.

    Science.gov (United States)

    Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A

    1987-02-01

    Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.

  8. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    Full Text Available Abstract Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB] were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63 showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP, procollagen type 1 amino-terminal propeptides (P1NP, and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and

  9. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  10. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor.

    Science.gov (United States)

    Thompson, P D; Hsieh, J C; Whitfield, G K; Haussler, C A; Jurutka, P W; Galligan, M A; Tillman, J B; Spindler, S R; Haussler, M R

    1999-12-01

    The vitamin D receptor (VDR) is a transcription factor believed to function as a heterodimer with the retinoid X receptor (RXR). However, it was reported [Schräder et al., 1994] that, on putative vitamin D response elements (VDREs) within the rat 9k and mouse 28k calcium binding protein genes (rCaBP 9k and mCaBP 28k), VDR and thyroid hormone receptor (TR) form heterodimers that transactivate in response to both 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and triiodothyronine (T(3)). We, therefore, examined associations of these receptors on the putative rCaBP 9k and mCaBP 28k VDREs, as well as on established VDREs from the rat osteocalcin (rOC) and mouse osteopontin (mOP) genes, plus the thyroid hormone response element (TRE) from the rat myosin heavy chain (rMHC) gene. In gel mobility shift assays, we found no evidence for VDR-TR heterodimer interaction with any tested element. Further, employing these hormone response elements linked to reporter genes in transfected cells, VDR and TR mediated responses to their cognate ligands only from the rOC/mOP and rMHC elements, respectively, while the CaBP elements were unresponsive to any combination of ligand(s). Utilizing the rOC and mOP VDREs, two distinct repressive actions of TR on VDR-mediated signaling were demonstrated: a T(3)-independent action, presumably via direct TR-RXR competition for DNA binding, and a T(3)-dependent repression, likely by diversion of limiting RXR from VDR-RXR toward the formation of TR-RXR heterodimers. The relative importance of these two mechanisms differed in a response element-specific manner. These results may provide a partial explanation for the observed association between hyperthyroidism and bone demineralization/osteoporosis. Copyright 1999 Wiley-Liss, Inc.

  11. Luteinizing hormone receptors in human ovarian follicles and corpora lutea during the menstrual cycle

    International Nuclear Information System (INIS)

    Yamoto, M.; Nakano, R.; Iwasaki, M.; Ikoma, H.; Furukawa, K.

    1986-01-01

    The binding of 125 I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of 125 I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of 125 I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate that the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle

  12. Luteinizing hormone receptors in human ovarian follicles and corpora lutea during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yamoto, M.; Nakano, R.; Iwasaki, M.; Ikoma, H.; Furukawa, K.

    1986-08-01

    The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate that the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.

  13. Effect of thyrotrophin releasing hormone on opiate receptors of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, A.M.; Shchurin, M.R.

    1987-01-01

    It has recently been shown that the hypothalamic thyrotropin releasing hormone (TRH) has the properties of a morphine antagonist, blocking its inhibitory action on respiration and, to a lesser degree, its analgesic action. This suggests that the antagonistic effects of TRH are mediated through its interaction with opiate receptors. The aim of this paper is to study this hypothesis experimentally. Tritium-labelled enkephalins in conjunction with scintillation spectroscopy were used to assess the receptor binding behavior. The results indicate the existence of interconnections between the opiate systems and TRH. Although it is too early to reach definite conclusions on the mechanisms of this mutual influence and its physiological significance it can be tentatively suggested that TRH abolishes the pharmacological effects of morphine by modulating the functional state of opiate reception.

  14. Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Huanzhong Cui

    2016-10-01

    Full Text Available A series of antagonists specifically targeting growth hormone receptors (GHR in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH. Therefore, in this study, we developed and characterized a porcine GHR (pGHR antibody antagonist (denoted by AN98 via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1 secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

  15. Ovarian hormones modify anxiety behavior and glucocorticoid receptors after chronic social isolation stress.

    Science.gov (United States)

    Ramos-Ortolaza, Dinah L; Doreste-Mendez, Raura J; Alvarado-Torres, John K; Torres-Reveron, Annelyn

    2017-06-15

    Chronic social isolation could lead to a disruption in the Hypothalamic-Pituitary-Adrenal (HPA) axis, resulting in anxiety and depressive-like behaviors but cycling estrogens could modify these behaviors. The aim of this study was to determine if changes in ovarian hormones during the normal cycle could interact with social isolation to alter anxiety and depressive-like behaviors. In parallel, we examined the expression of glucocorticoid receptor (GR) and synaptic vesicle protein synaptophysin in the hippocampus and hypothalamus of Sprague Dawley normal cycling female rats. We assigned rats to either isolated or paired housing for 8 weeks. To assess anxiety and depressive-like behaviors, we used the open field test and forced swim test, respectively. Female rats were tested at either diestrus, estrus, or proestrus stage of the estrous cycle. After behaviors, rats were perfused and brains collected. Brain sections containing hippocampus and hypothalamus were analyzed using immunohistochemistry for synaptophysin and glucocorticoid receptor (GR) levels. We found an increase in depressive-like behaviors for isolated animals compared to paired housed rats, regardless of the estrous cycle stage. Interestingly, we found a decrease in anxiety behaviors in females in the estrus stage accompanied by a decrease in GR expression in hippocampal DG and CA3. However, no changes in synaptophysin were observed in any of the areas of studied. Our results support the beneficial effects of circulating ovarian hormones in anxiety, possibly by decreasing GR expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Lateral septum growth hormone secretagogue receptor affects food intake and motivation for sucrose reinforcement.

    Science.gov (United States)

    Terrill, Sarah J; Wall, Kaylee D; Medina, Nelson D; Maske, Calyn B; Williams, Diana L

    2018-03-28

    The hormone ghrelin promotes eating and is widely considered to be a hunger signal. Ghrelin receptors, growth hormone secretagogue receptors (GHSRs), are found in a number of specific regions throughout the brain, including the lateral septum (LS), an area not traditionally associated with the control of feeding. Here we investigated whether GHSRs in the LS play a role in the control of food intake. We examined the feeding effects of ghrelin and the GHSR antagonists ([D-Lys3]-GHRP-6 and JMV 2959), at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS ghrelin significantly increased chow intake during the mid-light phase, suggesting that pharmacologic activation of LS GHSRs promotes feeding. Conversely, GHSR antagonist delivered to the LS shortly before dark onset significantly reduced chow intake. These data support the hypothesis that exogenous and endogenous stimulation of GHSRs in the LS influence feeding. Ghrelin is known to affect motivation for food, and the dorsal subdivision of LS (dLS) has been shown to play a role in motivation. Thus, we investigated the role of dLS GHSRs in motivation for food reward by examining operant responding for sucrose on a progressive ratio (PR) schedule. Intra-dLS ghrelin increased PR responding for sucrose, while blockade of LS GHSRs did not affect responding in either a fed or fasted state. Together these findings for the first time substantiate the LS as a site of action for ghrelin signaling in the control of food intake.

  17. Pegvisomant: a growth hormone receptor antagonist used in the treatment of acromegaly.

    Science.gov (United States)

    Tritos, Nicholas A; Biller, Beverly M K

    2017-02-01

    To review published data on pegvisomant and its therapeutic role in acromegaly. Electronic searches of the published literature were conducted using the keywords: acromegaly, growth hormone (GH) receptor (antagonist), pegvisomant, therapy. Relevant articles (n = 141) were retrieved and considered for inclusion in this manuscript. Pegvisomant is a genetically engineered, recombinant growth hormone receptor antagonist, which is effective in normalizing serum insulin-like growth factor 1 (IGF-1) levels in the majority of patients with acromegaly and ameliorating symptoms and signs associated with GH excess. Pegvisomant does not have direct antiproliferative effects on the underlying somatotroph pituitary adenoma, which is the etiology of GH excess in the vast majority of patients with acromegaly. Therefore, patients receiving pegvisomant monotherapy require regular pituitary imaging in order to monitor for possible increase in tumor size. Adverse events in patients on pegvisomant therapy include skin rashes, lipohypertrophy at injection sites, and idiosyncratic liver toxicity (generally asymptomatic transaminitis that is reversible upon drug discontinuation), thus necessitating regular patient monitoring. Pegvisomant is an effective therapeutic agent in patients with acromegaly who are not in remission after undergoing pituitary surgery. It mitigates excess GH action, as demonstrated by IGF-1 normalization, but has no direct effects on pituitary tumors causing acromegaly. Regular surveillance for possible tumor growth and adverse effects (hepatotoxicity, skin manifestations) is warranted.

  18. Investigational hormone receptor agonists as ongoing female contraception: a focus on selective progesterone receptor modulators in early clinical development.

    Science.gov (United States)

    Nelson, Anita L

    2015-01-01

    As efforts are made to continue to increase the safety of contraceptive methods, those without estrogen have attracted new attention. Progestin-only options are available in many delivery systems, but most cause disturbed bleeding patterns. For gynecologic patients, selective progesterone receptor modulators (SPRMs) have been approved for medical abortion, for ovulation suppression in emergency contraception, and for the treatment of heavy menstrual bleeding due to leiomyoma. This article discusses the role of SPRMs in controlling fertility on an ongoing basis with particular emphasis on mifepristone and ulipristal acetate (UPA), since none of the other compounds has progressed out of early Phase I - II testing. It also discusses important information about the mechanisms of action and safety of these two SPRMs. Of all the investigational hormone agonist/antagonists, SPRMs have demonstrated the greatest potential as ongoing female contraceptives. They have the ability to suppress ovulation after initiation of the luteinizing hormone (LH) surge without affecting ovarian production of estrogen or inducing any significant metabolic changes. SPRMs may well be able to provide longer term contraception as oral agents, vaginal rings, and perhaps even intrauterine devices. UPA has the greatest promise. Current research needs to be expanded.

  19. Characterization of pituitary growth hormone and its receptor in the green iguana (Iguana iguana).

    Science.gov (United States)

    Ávila-Mendoza, José; Carranza, Martha; Pérez-Rueda, Ernesto; Luna, Maricela; Arámburo, Carlos

    2014-07-01

    Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 μm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Tang, Yuan [Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Yanzheng Street, Chongqing 400038 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye; Zhao, Bao-Quan [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  1. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    International Nuclear Information System (INIS)

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang; Yuan, Ye; Zhao, Bao-Quan; Chao, Xi-Juan; Zhu, Ben-Zhan

    2012-01-01

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10 −9 M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  2. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  3. Application of photoshop-based image analysis to quantification of hormone receptor expression in breast cancer.

    Science.gov (United States)

    Lehr, H A; Mankoff, D A; Corwin, D; Santeusanio, G; Gown, A M

    1997-11-01

    The benefit of quantifying estrogen receptor (ER) and progesterone receptor (PR) expression in breast cancer is well established. However, in routine breast cancer diagnosis, receptor expression is often quantified in arbitrary scores with high inter- and intraobserver variability. In this study we tested the validity of an image analysis system employing inexpensive, commercially available computer software on a personal computer. In a series of 28 invasive ductal breast cancers, immunohistochemical determinations of ER and PR were performed, along with biochemical analyses on fresh tumor homogenates, by the dextran-coated charcoal technique (DCC) and by enzyme immunoassay (EIA). From each immunohistochemical slide, three representative tumor fields (x20 objective) were captured and digitized with a Macintosh personal computer. Using the tools of Photoshop software, optical density plots of tumor cell nuclei were generated and, after background subtraction, were used as an index of immunostaining intensity. This immunostaining index showed a strong semilogarithmic correlation with biochemical receptor assessments of ER (DCC, r = 0.70, p < 0.001; EIA, r = 0.76, p < 0.001) and even better of PR (DCC, r = 0.86; p < 0.01; EIA, r = 0.80, p < 0.001). A strong linear correlation of ER and PR quantification was also seen between DCC and EIA techniques (ER, r = 0.62, p < 0.001; PR, r = 0.92, p < 0.001). This study demonstrates that a simple, inexpensive, commercially available software program can be accurately applied to the quantification of immunohistochemical hormone receptor studies.

  4. Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese females Neotomodon alstoni: effect of fasting.

    Science.gov (United States)

    Báez-Ruiz, Adrián; Luna-Moreno, Dalia; Carmona-Castro, Agustín; Cárdenas-Vázquez, René; Díaz-Muñoz, Mauricio; Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Manuel, Miranda-Anaya

    2014-01-01

    Obesity is a world problem that requires a better understanding of its physiological and genetic basis, as well as the mechanisms by which the hypothalamus controls feeding behavior. The volcano mouse Neotomodon alstoni develops obesity in captivity when fed with regular chow diet, providing a novel model for the study of obesity. Females develop obesity more often than males; therefore, in this study, we analysed in females, in proestrous lean and obese, the differences in hypothalamus expression of receptors for leptin, ghrelin (growth hormone secretagogue receptor GHS-R), and VPAC, and correlates for plasma levels of total ghrelin. The main comparisons are between mice fed ad libitum and mice after 24 hours of fasting. Mice above 65 g body weight were considered obese, based on behavioral and physiological parameters such as food intake, plasma free fatty acids, and glucose tolerance. Hypothalamic tissue from obese and lean mice was analysed by western blot. Our results indicate that after ad libitum food access, obese mice show no significant differences in hypothalamic leptin receptors, but a significant increase of 60% in the GHS-R, and a nearly 62% decrease in VPAC2 was noted. After a 24-hour fast, plasma ghrelin increased nearly two fold in both lean and obese mice; increases of hypothalamic leptin receptors and GHS-R were also noted, while VPAC2 did not change significantly; levels of plasma free fatty acids were 50% less after fasting in obese than in lean animals. Our results indicate that in obese N. alstoni mice, the levels of orexigenic receptors in the hypothalamus correlate with overfeeding, and the fact that lean and obese females respond in different ways to a metabolic demand such as a 24-hour fast.

  5. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  6. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    Science.gov (United States)

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  7. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals

    Directory of Open Access Journals (Sweden)

    Amy T. Desaulniers

    2017-12-01

    Full Text Available Gonadotropin-releasing hormone 1 (GnRH1 and its receptor (GnRHR1 drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2 and its receptor (GnRHR2 also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat or inactivated (e.g., cow and sheep in some species but retained in others (e.g., human, horse, and pig. Likewise, many species (e.g., human, chimpanzee, cow, and sheep retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse or most exons entirely (e.g., rat. In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and

  8. Molecular characterization of thyroid hormone receptors from the leopard gecko, and their differential expression in the skin.

    Science.gov (United States)

    Kanaho, Yoh-Ichiro; Endo, Daisuke; Park, Min Kyun

    2006-06-01

    Thyroid hormones (THs) play crucial roles in various developmental and physiological processes in vertebrates, including squamate reptiles. The effect of THs on shedding frequency is interesting in Squamata, since the effects on lizards are quite the reverse of those in snakes: injection of thyroxine increases shedding frequency in lizards, but decreases it in snakes. However, the mechanism underlying this differential effect remains unclear. To facilitate the investigation of the molecular mechanism of the physiological functions of THs in Squamata, their two specific receptor (TRalpha and beta) cDNAs, which are members of the nuclear hormone receptor superfamily, were cloned from a lizard, the leopard gecko, Eublepharis macularius. This is the first molecular cloning of thyroid hormone receptors (TRs) from reptiles. The deduced amino acid sequences showed high identity with those of other species, especially in the C and E/F domains, which are characteristic domains in nuclear hormone receptors. Expression analysis revealed that TRs were widely expressed in many tissues and organs, as in other animals. To analyze their role in the skin, temporal expression analysis was performed by RT-PCR, revealing that the two TRs had opposing expression patterns: TRalpha was expressed more strongly after than before skin shedding, whereas TRbeta was expressed more strongly before than after skin shedding. This provides good evidence that THs play important roles in the skin, and that the roles of their two receptor isoforms are distinct from each other.

  9. Pharmacologic management of bone-related complications and bone metastases in postmenopausal women with hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Yardley DA

    2016-05-01

    Full Text Available Denise A Yardley1,2 1Sarah Cannon Research Institute, Nashville, TN, USA; 2Tennessee Oncology, Nashville, TN, USA Abstract: There is a high risk for bone loss and skeletal-related events, including bone metastases, in postmenopausal women with hormone receptor-positive breast cancer. Both the disease itself and its therapeutic treatments can negatively impact bone, resulting in decreases in bone mineral density and increases in bone loss. These negative effects on the bone can significantly impact morbidity and mortality. Effective management and minimization of bone-related complications in postmenopausal women with hormone receptor-positive breast cancer remain essential. This review discusses the current understanding of molecular and biological mechanisms involved in bone turnover and metastases, increased risk for bone-related complications from breast cancer and breast cancer therapy, and current and emerging treatment strategies for managing bone metastases and bone turnover in postmenopausal women with hormone receptor-positive breast cancer. Keywords: breast cancer, bone metastases, hormone receptor-positive, bone-related complications, interventions, management and management strategies, estrogen receptor-positive

  10. Thyroid hormone and retinoid X receptor function and expression during sea lamprey (Petromyzon marinus) metamorphosis.

    Science.gov (United States)

    Manzon, Lori A; Youson, John H; Holzer, Guillaume; Staiano, Leopoldo; Laudet, Vincent; Manzon, Richard G

    2014-08-01

    Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR

  11. Discrepancy between molecular structure and ligand selectivity of a testicular follicle-stimulating hormone receptor of the African catfish (Clarias gariepinus)

    NARCIS (Netherlands)

    Bogerd, J.; Blomenröhr, M.; Andersson, E.; van der Putten, H.; Tensen, C.P.; Vischer, H F; Granneman, Joke C M; Janssen-Dommerholt, C; Goos, H.J.; Schulz, Rüdiger W

    A putative FSH receptor (FSH-R) cDNA was cloned from African catfish testis. Alignment of the deduced amino acid sequence with other (putative) glycoprotein hormone receptors and analysis of the African catfish gene indicated that the cloned receptor belonged to the FSH receptor subfamily. Catfish

  12. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  13. Determination of luteinizing hormone in bovine blood by radioligand receptor assay and comparison with radioimmunological evaluation

    International Nuclear Information System (INIS)

    Schams, D.; Menzer, C.

    1978-01-01

    A sensitive and specific radioligand receptor assay (RRA) using rat testis homogenate as the receptor source is described for measurement of luteinizing hormone (LH) in bovine blood. Interfering and nonspecific substances in blood were removed by means of ion-exchange chromatography on CM-Sephadex C-50. Criteria of validation such as recovery of added LH to plasma or serum, reproducibility, and specificity gave good results. Inhibition curves obtained with bovine plasma and serum were parallel to those obtained with the bovine standard preparation. The range of the dose-response curve was between 0.5-20 ng of bovine LH. The pattern of LH concentrations in purified serum samples under different physiological conditions such as during the oestrous cycle and after administration of GnRH showed a very close correlattion whether measured by means of radioimmunoassay (RIA) or receptor assay. Values of RRA-LH were consistently higher than those of RIA-LH. Thus the lower the RIA-LH levels, the more pronounced were the discrepancies between results of both assay systems. The mean ratio of RRA-LH/RIA-LH for basal levels (less than 1 ng RIA-LH/ml plasma) was 17.8 as compared to a mean ratio for higher peak values (more than 20 ng RIA-LH/ml plasma) of only 1.2. (author)

  14. Methylation of the thyroid stimulating hormone receptor: diagnostic marker of malignity in thyroid cancer

    International Nuclear Information System (INIS)

    Marrero Rodriguez, Maria Teresa

    2007-01-01

    The methylation state of the gene promoter for the receptor of the thyroid stimulating hormone (TSH) in the diagnosis of thyroid tumors of epithelial origin was analyzed. The study was conducted in thyroid tissue obtained from paraffin blocks of different thyroid pathologies (papillary, follicular and undifferentiated carcinoma and follicular adenomas). The work was done by using the DNA modification technique with sodium bisulfite, and polymerase chain reaction was applied to analyze the gene methylation state. Methylation of the promoter for the gene of the TSH receptor was found in the papillary carcinomas (33 of 40; 82.5 %), in 10 undifferentiated carcinomas (100 %), and in 10 of the 15 follicular carcinomas analyzed (66.6 %). No methylation was observed in the 8 follicular adenomas under study. The methylation of the gene for the TSH receptor was proposed as a new diagnostic marker of malignity and as a basis for using demethylating agents together with radioiodine therapy in patients with thyroid cancer of epithelial origin that do not respond to therapy. (Author)

  15. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    International Nuclear Information System (INIS)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus

  16. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR Alpha 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2001-08-01

    Identification of a new class of steroid hormone receptors. Nature, 331: 91-94, 1988. 4. Vanacker , J. M ., Pettersson, K., Gustafsson, J. A., and...Lippman, M . E., Thompson, E. B., Simon, R., Barlock, A., Green, L., Huff, K. K., Do, H. M ., Aitken, S. C., and Warren, R. Estrogen receptor status: an...important variable in predicting response to endocrine therapy in metastatic breast cancer. Eur J Cancer, 16: 323-331, 1980. 2. Clark, G. M . and

  17. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort.

    Science.gov (United States)

    Emaus, Marleen J; Peeters, Petra H M; Bakker, Marije F; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Romieu, Isabelle; Ferrari, Pietro; Dossus, Laure; Boutron-Ruault, Marie Christine; Baglietto, Laura; Fortner, Renée T; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Polidoro, Silvia; Skeie, Guri; Lund, Eiliv; Weiderpass, Elisabete; Quirós, J Ramón; Travier, Noémie; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Winkvist, Anna; Wennberg, Maria; Bueno-de-Mesquita, H Bas; Khaw, Kay-Tee; Travis, Ruth C; Key, Timothy J; Aune, Dagfinn; Gunter, Marc; Riboli, Elio; van Gils, Carla H

    2016-01-01

    The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk. This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk. A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors. After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk. This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk. © 2016 American Society for Nutrition.

  18. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Mann, Monica; Cortez, Valerie; Vadlamudi, Ratna K.

    2011-01-01

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  19. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  20. Growth Hormone Receptor Antagonist Treatment Reduces Exercise Performance in Young Males

    DEFF Research Database (Denmark)

    Goto, K.; Doessing, S.; Nielsen, R.H.

    2009-01-01

    between the groups in terms of changes in serum free fatty acids, glycerol, (V) over dotO(2), or relative fat oxidation. Conclusion: GH might be an important determinant of exercise capacity during prolonged exercise, but GHR antagonist did not alter fat metabolism during exercise. (J Clin Endocrinol......Context: The effects of GH on exercise performance remain unclear. Objective: The aim of the study was to examine the effects of GH receptor (GHR) antagonist treatment on exercise performance. Design: Subjects were treated with the GHR antagonist pegvisomant or placebo for 16 d. After the treatment...... period, they exercised to determine exercise performance and hormonal and metabolic responses. Participants: Twenty healthy males participated in the study. Intervention: Subjects were treated with the GHR antagonist (n = 10; 10 mg/d) or placebo (n = 10). After the treatment period, they performed...

  1. Size matters: Associations between the androgen receptor CAG repeat length and the intrafollicular hormone milieu

    DEFF Research Database (Denmark)

    Borgbo, T; Macek, M; Chrudimska, J

    2015-01-01

    Granulosa cell (GC) expressed androgen receptors (AR) and intrafollicular androgens are central to fertility. The transactivating domain of the AR contains a polymorphic CAG repeat sequence, which is linked to the transcriptional activity of AR and may influence the GC function. This study aims...... to evaluate the effects of the AR CAG repeat length on the intrafollicular hormone profiles, and the gene expression profiles of GC from human small antral follicles. In total, 190 small antral follicles (3-11 mm in diameter) were collected from 58 women undergoing ovarian cryopreservation for fertility...... expression compared to medium CAG repeat lengths (P = 0.03). In conclusion, long CAG repeat lengths in the AR were associated to significant attenuated levels of androgens and an increased conversion of testosterone into oestradiol, in human small antral follicles....

  2. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  3. A neurokinin 3 receptor-selective agonist accelerates pulsatile luteinizing hormone secretion in lactating cattle.

    Science.gov (United States)

    Nakamura, Sho; Wakabayashi, Yoshihiro; Yamamura, Takashi; Ohkura, Satoshi; Matsuyama, Shuichi

    2017-07-01

    Pulsatile gonadotropin-releasing hormone (GnRH) secretion, which is indispensable for follicular development, is suppressed in lactating dairy and beef cattle. Neurokinin B (NKB) neurons in the arcuate nucleus of the hypothalamus are considered to play an essential role in generating the pulsatile mode of GnRH/luteinizing hormone (LH) secretion. The present study aimed to clarify the role of NKB-neurokinin 3 receptor (NK3R) signaling in the pulsatile pattern of GnRH/gonadotropin secretion in postpartum lactating cattle. We examined the effects of the administration of an NK3R-selective agonist, senktide, on gonadotropin secretion in lactating cattle. The lactating cattle, at approximately 7 days postpartum, were intravenously infused with senktide (30 or 300 nmol/min) or vehicle for 24 h. The administration of 30 or 300 nmol/min senktide significantly increased LH pulse frequency compared to in the control group during 0-4 or 20-24 h after infusion, respectively. Moreover, LH and follicle-stimulating hormone levels were gradually increased by 300 nmol/min administration of senktide during the 0-4-h sampling period. Ultrasonography of the ovaries was performed to identify the first postpartum ovulation in senktide-administered lactating cattle. The interval from calving to first postpartum ovulation was significantly shorter in the 300 nmol/min senktide-administered group than in the control group. Taken together, these findings suggest that senktide infusion elicits an increase in LH pulse frequency that may stimulate follicular development and, in turn, induce the first postpartum ovulation in lactating cattle. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome.

    Science.gov (United States)

    Thathapudi, Sujatha; Kodati, Vijayalakshmi; Erukkambattu, Jayashankar; Addepally, Uma; Qurratulain, Hasan

    2015-03-01

    Polycystic ovaries and irregular menstruation/anovulation are important diagnostic criteria along with hyperandrogenism as per the Androgen Excess Society-2006 criteria for polycystic ovarian syndrome (PCOS). In the etiopathogenesis of PCOS, one of the candidate genes causing ovarian failure is the luteinizing hormone (LH) chorionic gonadotropin hormone receptor (LHCGR). Our aim was to study the association of LHCGR polymorphism (rs2293275) with PCOS in our study population. Genetic case-control study from multiple gynecological centers from Hyderabad, a cosmopolitan city in South India. The study involved 204 women with PCOS and 204 healthy, sex-, and age-matched controls. Anthropometric and biochemical profiles were taken in a well-designed pro forma. Isolation of deoxyribonucleic acid (DNA) and genotype analysis were done for the entire study population using the polymerase chain reaction-restriction fragment length polymorphism method followed by 12% polyacrylamide gel electrophoresis. In this study, we have demonstrated an association between LHCGR (rs2293275) polymorphism and PCOS. The frequency of the G allele was 0.60 in PCOS and 0.49 in controls (odds ratio [OR] 1.531, confidence interval [CI] 1.16-2.01, and p-value=0.0026), which indicates that the G allele is associated with PCOS in our population. The GG genotype conferred a significant risk of developing PCOS (OR 3.36, CI 1.96-5.75, and p-value<0.0001). We found a significant association of the GG allele with body-mass index, waist to hip ratio, insulin resistance, LH, and LH/follicle-stimulating hormone (FSH) ratio in PCOS when compared with controls. The AA allele showed high basal FSH levels. This study suggests that LHCGR (rs2293275) polymorphism is associated with PCOS and could be used as a relevant molecular marker to identify women with the risk of developing PCOS in our population and may provide an understanding about the etiology of PCOS.

  5. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  6. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    Science.gov (United States)

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  7. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    Science.gov (United States)

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  8. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration.

    Science.gov (United States)

    Ma, Hongwei; Yang, Fan; Butler, Michael R; Belcher, Joshua; Redmond, T Michael; Placzek, Andrew T; Scanlan, Thomas S; Ding, Xi-Qin

    2017-08-01

    Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have implicated TH signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we demonstrated that antithyroid drug treatment and targeting iodothyronine deiodinases (DIOs) to suppress cellular tri-iodothyronine (T3) production or increase T3 degradation preserves cones. In this work, we investigated the effectiveness of inhibition of the TH receptor (TR). Two genes, THRA and THRB , encode TRs; THRB 2 has been associated with cone viability. Using TR antagonists and Thrb2 deletion, we examined the effects of TR inhibition. Systemic and ocular treatment with the TR antagonists NH-3 and 1-850 increased cone density by 30-40% in the Rpe65 -/- mouse model of Leber congenital amaurosis and reduced the number of TUNEL + cells. Cone survival was significantly improved in Rpe65 -/- and Cpfl1 (a model of achromatopsia with Pde6c defect) mice with Thrb2 deletion. Ventral cone density in Cpfl1/Thrb2 -/- and Rpe65 -/- / Thrb2 -/- mice was increased by 1- to 4-fold, compared with age-matched controls. Moreover, the expression levels of TR were significantly higher in the cone-degeneration retinas, suggesting locally elevated TR signaling. This work shows that the effects of antithyroid treatment or targeting DIOs were likely mediated by TRs and that suppressing TR protects cones. Our findings support the view that inhibition of TR locally in the retina is a therapeutic strategy for retinal degeneration management.-Ma, H., Yang, F., Butler, M. R., Belcher, J., Redmond, T. M., Placzek, A. T., Scanlan, T. S., Ding, X.-Q. Inhibition of thyroid hormone receptor locally in the retina is a therapeutic strategy for retinal degeneration. © FASEB.

  9. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  10. GAR22: A novel target gene of thyroid hormone receptor causes growth inhibition in human erythroid cells

    Czech Academy of Sciences Publication Activity Database

    Gamper, I.; Koh, K.-R.; Ruau, D.; Ullrich, K.; Bartůňková, Jana; Piroth, D.; Hacker, C.; Bartůněk, Petr; Zenke, M.

    2009-01-01

    Roč. 37, č. 5 (2009), s. 539-548 ISSN 0301-472X R&D Projects: GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520514 Keywords : Thyroid hormone receptor * GAR22 * erythropoiesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.106, year: 2009

  11. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  12. Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris)

    OpenAIRE

    Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki

    2006-01-01

    GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homo-logue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnR...

  13. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice.

    Science.gov (United States)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E; List, Edward O; Kopchick, John J; Berryman, Darlene E

    Although growth hormone (GH) and fibroblast growth factor 21 (FGF21) have a reported relationship, FGF21 and its receptor, fibroblast growth factor receptor 1 (FGFR1) and cofactor β-Klotho (KLB), have not been analyzed in chronic states of altered GH action. The objective of this study was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. Seven-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. As expected, bGH mice had increased body weight (p=3.70E -8 ) but decreased percent fat mass (p=4.87E -4 ). Likewise, GHR-/- mice had decreased body weight (p=1.78E -10 ) but increased percent fat mass (p=1.52E -9 ), due to increased size of the subcutaneous AT depot when normalized to body weight (p=1.60E -10 ). Serum FGF21 levels were significantly elevated in bGH mice (p=0.041) and unchanged in GHR-/- mice (p=0.88). Expression of Fgf21, Fgfr1, and Klb mRNA in white AT and liver were downregulated or unchanged in both bGH and GHR-/- mice. The only exception was Fgf21 expression in brown AT of GHR-/-, which trended toward increased expression (p=0.075). In accordance with our hypothesis, we provide evidence that circulating FGF21 is increased in bGH animals, but remains unchanged in GHR-/- mice. Downregulation or no change in Fgf21, Fgfr1, and Klb expression are seen in white AT, brown AT, and liver of bGH and GHR-/- mice when compared to their

  14. Solubilization and molecular size of atrial natriuretic hormone (ANH) receptors from rabbit aorta, renal cortex and adrenal

    International Nuclear Information System (INIS)

    Budzik, G.P.; Bush, E.N.; Holleman, W.H.

    1986-01-01

    ANH(1-28) is presumed to regulate blood pressure and fluid balance via membrane receptors coupled to particulate guanylate cyclase. ANH receptors were solubilized from rabbit aorta, renal cortex and adrenal, primary ANH targets. Plasma membranes extracted with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate(CHAPS) yield solubilized receptors with high affinity binding of 125 I-Tyr 28 -ANH. Degradation of hormone was minimized with a broad spectrum of protease inhibitors. 125 I-ANH binding reached maximum by 1 hr at 0 0 C and was stable for at least an additional 2 hrs. Bound was separated from free ligand by HPLC gel filtration on TSK-3000SW in PBS/CHAPS. Bound hormone eluted at a MW of ∼ 200KD in each tissue preparation and was displaced by unlabelled ANH. The concentration of solubilized binding sites was proportional to densities in intact plasma membranes, i.e., adrenal > renal > aorta. Following separation of free hormone, 125 I-ANH-receptors complexes were coupled using bifunctional crosslinking reagents. SDS-PAGE analysis and autoradiography indicated a major labelled band at ∼ 150KD in each tissue preparation. The mobility of this labelled band was not sensitive to reduction before SDS-PAGE. Although these results suggest that solubilized ANH receptors from primary target tissues are very similar, microheterogeneity affecting binding affinity or signal transduction cannot as yet be excluded

  15. Obesity is associated with a poorer prognosis in women with hormone receptor positive breast cancer.

    Science.gov (United States)

    Robinson, Penelope J; Bell, Robin J; Davis, Susan R

    2014-11-01

    Whether moderate to severe obesity (body mass index (BMI)≥30 to women, recruited within 12 months of their diagnosis of hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) invasive breast cancer completed an enrolment questionnaire and an annual follow-up questionnaire every 12 months for another 5 years. The impact of obesity on time to either local or distant recurrence or new breast cancer, or death due to breast cancer was determined by Cox regression. Women in the most extreme categories of BMI (women, mean age, 58.4±11.6 years, 53.8% had Stage 1 disease and 88.9% received oral adjuvant endocrine therapy (OAET) within 2 years of diagnosis. The likelihood of an event was significantly associated with moderate to severe obesity (HR=1.71, 95%CI, 1.12-2.62, p=0.014), disease beyond Stage 1 (HR=2.87, 95% CI 1.73-4.75, pobesity (HR 3.23, 95%CI 1.48-7.03, p=0.003) and OAET use (HR 0.41, 95%CI 0.17-0.98, p=0.046) were significantly associated with an event. Moderate to severe obesity is associated with a poorer invasive breast cancer prognosis; this is also true for women with Stage 1 disease, and is independent of age and treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Spinal cord thyrotropin releasing hormone receptors of morphine tolerant-dependent and abstinent rats

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1990-07-01

    The effect of chronic administration of morphine and its withdrawal on the binding of 3H-(3-MeHis2)thyrotropin releasing hormone (3H-MeTRH) to membranes of the spinal cord of the rat was determined. Male Sprague-Dawley rats were implanted with either 6 placebo or 6 morphine pellets (each containing 75-mg morphine base) during a 7-day period. Two sets of animals were used. In one, the pellets were left intact at the time of sacrificing (tolerant-dependent) and in the other, the pellets were removed 16 hours prior to sacrificing (abstinent rats). In placebo-pellet-implanted rats, 3H-MeTRH bound to the spinal cord membranes at a single high affinity binding site with a Bmax of 21.3 +/- 1.6 fmol/mg protein, and an apparent dissociation constant Kd of 4.7 +/- 0.8 nM. In morphine tolerant-dependent or abstinent rats, the binding constants of 3H-MeTRH to spinal cord membranes were unaffected. Previous studies from this laboratory indicate that TRH can inhibit morphine tolerance-dependence and abstinence processes without modifying brain TRH receptors. Together with the present results, it appears that the inhibitory effect of TRH on morphine tolerance-dependence and abstinence is probably not mediated via central TRH receptors but may be due to its interaction with other neurotransmitter systems.

  17. The origin of the p.E180 growth hormone receptor gene mutation.

    Science.gov (United States)

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Increased circulating interleukin-8 in patients with resistance to thyroid hormone receptor α

    Directory of Open Access Journals (Sweden)

    Anne H van der Spek

    2017-11-01

    Full Text Available Innate immune cells have recently been identified as novel thyroid hormone (TH target cells in which intracellular TH levels appear to play an important functional role. The possible involvement of TH receptor alpha (TRα, which is the predominant TR in these cells, has not been studied to date. Studies in TRα0/0 mice suggest a role for this receptor in innate immune function. The aim of this study was to determine whether TRα affects the human innate immune response. We assessed circulating interleukin-8 concentrations in a cohort of 8 patients with resistance to TH due to a mutation of TRα (RTHα and compared these results to healthy controls. In addition, we measured neutrophil and macrophage function in one of these RTHα patients (mutation D211G. Circulating interleukin-8 levels were elevated in 7 out of 8 RTHα patients compared to controls. These patients harbor different mutations, suggesting that this is a general feature of the syndrome of RTHα. Neutrophil spontaneous apoptosis, bacterial killing, NAPDH oxidase activity and chemotaxis were unaltered in cells derived from the RTHαD211G patient. RTHα macrophage phagocytosis and cytokine induction after LPS treatment were similar to results from control cells. The D211G mutation did not result in clinically relevant impairment of neutrophil or pro-inflammatory macrophage function. As elevated circulating IL-8 is also observed in hyperthyroidism, this observation could be due to the high-normal to high levels of circulating T3 found in patients with RTHα.

  19. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  20. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    91-92, AUG 01 (2016), s. 39-47 ISSN 0022-1910 R&D Projects: GA ČR GA14-07172S Institutional support: RVO:60077344 Keywords : stress * AKH * adenosine Subject RIV: ED - Physiology Impact factor: 2.227, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022191016301937

  2. Beneficial effect of adipokinetic hormone on neuromuscular paralysis in insect body elicited by braconid wasp venom

    Czech Academy of Sciences Publication Activity Database

    Shaik, Haq Abdul; Mishra, Archana; Kodrík, Dalibor

    2017-01-01

    Roč. 196, JUN 01 (2017), s. 11-18 ISSN 1532-0456 R&D Projects: GA ČR(CZ) GA17-03253S Institutional support: RVO:60077344 Keywords : AKH * Akh gene expression * Habrobracon hebetor Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.416, year: 2016 http://www.sciencedirect.com/science/article/pii/S1532045617300510

  3. Novel members of the adipokinetic hormone family in beetles of the superfamily Scarabaeoidea

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Marco, H. G.

    2016-01-01

    Roč. 48, č. 12 (2016), s. 2785-2798 ISSN 0939-4451 R&D Projects: GA ČR GA13-18509S Institutional support: RVO:60077344 Keywords : insects * beetles * Scarabaeidae Subject RIV: ED - Physiology Impact factor: 3.173, year: 2016 http://link.springer.com/article/10.1007%2Fs00726-016-2314-0

  4. Targated mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Sajwan, Suresh; Sidorov, Roman; Stašková, Tereza; Žaloudíková, Anna; Takasu, Y.; Kodrík, Dalibor; Žurovec, Michal

    2015-01-01

    Roč. 61, JUN 01 (2015), s. 79-86 ISSN 0965-1748 R&D Projects: GA ČR GA14-07172S; GA ČR GA14-27816S; GA ČR GAP305/10/2406 EU Projects: European Commission(CZ) FP7/2007-2013 Program:FP7 Institutional support: RVO:60077344 Keywords : neuropeptide * carbohydrate metabolism * drome-Akh Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.767, year: 2015 http://www.sciencedirect.com/science/article/pii/S0965174815000181

  5. Novel adipokinetic hormones in the kissing bugs Rhodnius prolixus, Triatoma infestans, Dipetalogaster maxima and Panstrongylus megistrus

    Czech Academy of Sciences Publication Activity Database

    Marco, H. G.; Šimek, Petr; Clark, K. D.; Gäde, G.

    2013-01-01

    Roč. 41, MAR 10 (2013), s. 21-30 ISSN 0196-9781 R&D Projects: GA MZd(CZ) NT11513 Grant - others:National Research Foundation(ZA) IFR 2008071500048; National Research Foundation(ZA) FA 2007021300002 Institutional support: RVO:60077344 Keywords : insects * kissing bugs * reduviidae Subject RIV: ED - Physiology Impact factor: 2.614, year: 2013 http://www.sciencedirect.com/science/article/pii/S0196978112004433

  6. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  7. Investigation of the immunological and receptor activity of human growth hormone in patients with acromegaly

    International Nuclear Information System (INIS)

    Dietz, A.

    1982-01-01

    Human growth hormone (hGH) was measured by means of the radioimmunoassay (RIA) and the radioreceptor assay (RRA). The receptors were liver plasma membranes (LPM) of pregnant rabbits. In the RIA, no cross-reaction was found with hPRL, whereas in the RRA the cross-reaction was 3 p.c. The Scatchard analysis revealed two binding sites for hGH at the receptor. Pre-treatment with hGH and Cortisol brought about an enhanced affinity without change of the specific bonding, whereas pre-treatment with bromocriptin showed no significant effect. Hypophyseal hGH was separated by means of gel chromatography into big-big and big-little hGH and a reduced receptor activity of the higher molecular hGH fraction was shown. The Scatchard analysis indicated a more unspecific bonding characteristic of the big hGH. Stimulation of hGH secretion by insulin hypoglycemia provoked an overproportional increase in big hGH in healthy persons, whereas in patients with acromegaly the secretion of little hGH was enhanced. The suppression of hGH secretion by long-term bromocriptin treatment led to a significant rise of the RIA/RRA quotient in patients with post-operative florid acromegaly. Acute administration of BC was shown to induce a stronger hGH drop in the RRA of responders than in their RIA, as compared to non-responders. By chromatographic separation it was found that in responders the secretion of little hGH is selectively inhibited, but no in non-responders. (orig.) [de

  8. Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases

    International Nuclear Information System (INIS)

    Siraj, Ahsan; Gonin, Julie; Radu, Aurelian; Ghinea, Nicolae; Desestret, Virginie; Antoine, Martine; Fromont, Gaëlle; Huerre, Michel; Sanson, Marc; Camparo, Philippe; Pichon, Christophe; Planeix, François

    2013-01-01

    The Follicle Stimulating Hormone receptor (FSHR) is expressed by the vascular endothelium in a wide range of human tumors. It was not determined however if FSHR is present in metastases which are responsible for the terminal illness. We used immunohistochemistry based on a highly FSHR-specific monoclonal antibody to detect FSHR in cancer metastases from 6 major tumor types (lung, breast, prostate, colon, kidney, and leiomyosarcoma) to 6 frequent locations (bone, liver, lymph node, brain, lung, and pleura) of 209 patients. In 166 patients examined (79%), FSHR was expressed by blood vessels associated with metastatic tissue. FSHR-positive vessels were present in the interior of the tumors and some few millimeters outside, in the normally appearing tissue. In the interior of the metastases, the density of the FSHR-positive vessels was constant up to 7 mm, the maximum depth available in the analyzed sections. No significant differences were noticed between the density of FSHR-positive vessels inside vs. outside tumors for metastases from lung, breast, colon, and kidney cancers. In contrast, for prostate cancer metastases, the density of FSHR-positive vessels was about 3-fold higher at the exterior of the tumor compared to the interior. Among brain metastases, the density of FSHR-positive vessels was highest in lung and kidney cancer, and lowest in prostate and colon cancer. In metastases of breast cancer to the lung pleura, the percentage of blood vessels expressing FSHR was positively correlated with the progesterone receptor level, but not with either HER-2 or estrogen receptors. In normal tissues corresponding to the host organs for the analyzed metastases, obtained from patients not known to have cancer, FSHR staining was absent, with the exception of approx. 1% of the vessels in non tumoral temporal lobe epilepsy samples. FSHR is expressed by the endothelium of blood vessels in the majority of metastatic tumors

  9. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    and a reduction of GH-dependent phosphorylation of the full-length receptor. Consistent with Tyr333 and/or Tyr338 serving as substrates of JAK2, these substitutions resulted in a loss of tyrosyl phosphorylation of truncated receptor in an in vitro kinase assay using substantially purified GH.GHR.JAK2 complexes...

  10. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    Science.gov (United States)

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  11. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  12. Crustacean red pigment-concentrating hormone Panbo-RPCH affects lipid mobilization and walking activity in a flightless bug Pyrrhocoris apterus (Heteroptera) similarly to its own AKH-peptides

    Czech Academy of Sciences Publication Activity Database

    Socha, Radomír; Kodrík, Dalibor; Zemek, Rostislav

    2007-01-01

    Roč. 104, č. 4 (2007), s. 685-691 ISSN 1210-5759 R&D Projects: GA ČR GA522/07/0788 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * Panbo-RPCH * Peram-CAH-II Subject RIV: ED - Physiology Impact factor: 0.734, year: 2007

  13. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Petersen, Elisabeth D.; Nielsen, Jens Høiriis

    1993-01-01

    During pregnancy, marked hyperplasia of the pancreatic islet cells has been observed. This effect may be mediated by the pregnancy-associated peptide hormones, placental lactogen, PRL, and GH, which were previously shown to be mitogenic to beta-cells in vitro. To study whether the responsiveness ...

  14. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon

    Science.gov (United States)

    Lerner, Darren T.; Sheridan, Mark A.; McCormick, Stephen D.

    2012-01-01

    Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μg g−1 17β-estradiol (E2) or 150 μg g−1 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μg g−1 E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30–60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5 mM in FW and increased 10.5 mM in SW. There was no effect of NP or E2 on gill sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na+/K+-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.

  15. Nonpeptide corticotropin-releasing hormone receptor type 1 antagonists and their applications in psychosomatic disorders.

    Science.gov (United States)

    Contoreggi, Carlo; Rice, Kenner C; Chrousos, George

    2004-01-01

    Overproduction of corticotropin-releasing hormone (CRH) and stress system abnormalities are seen in psychiatric diseases such as depression, anxiety, eating disorders, and addiction. Investigations of CRH type 1 receptor (CRHR1) nonpeptide antagonists suggest therapeutic potential for treatment of these and other neuropsychiatric diseases. However, overproduction of CRH in the brain and on its periphery and disruption of the hypothalamic-pituitary-adrenal axis are also found in 'somatic' disorders. Some rare forms of Cushing's disease and related pituitary/adrenal disorders are obvious applications for CRHR1 antagonists. In addition, however, these antagonists may also be effective in treating more common somatic diseases. Patients with obesity and metabolic syndrome who often have subtle, but chronic hypothalamic-pituitary-adrenal hyperactivity, which may reflect central dysregulation of CRH and consequently glucocorticoid hypersecretion, could possibly be treated by administration of CRHR1 antagonists. Hormonal, autonomic, and immune aberrations are also present in chronic inflammatory, autoimmune, and allergic diseases, with considerable evidence linking CRH with the observed abnormalities. Furthermore, autonomic dysregulation is a prominent feature of common gastrointestinal disorders, such as irritable bowel syndrome and peptic ulcer disease. Patients with irritable bowel syndrome and other gastrointestinal disorders frequently develop altered pain perception and affective symptoms. CRH acts peripherally to modulate bowel activity both directly through the autonomic system and centrally by processing viscerosensory and visceromotor neural signals. This review presents clinical and preclinical evidence for the role of CRH in the pathophysiology of these disorders and for potential diagnostic and therapeutic applications of CRHR1 antagonists. Recognition of a dysfunctional stress system in these and other diseases will alter the understanding and treatment of

  16. Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation

    DEFF Research Database (Denmark)

    Allevato, G; Billestrup, N; Goujon, L

    1995-01-01

    The functional significance of growth hormone (GH) receptor (GHR) internalization is unknown; therefore, we have analyzed domains and individual amino acids in the cytoplasmic region of the rat GHR required for ligand-mediated receptor internalization, receptor down-regulation, and transcriptiona...

  17. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Wang, X.; Kopchick, J J

    1996-01-01

    The binding of growth hormone (GH) to its receptor results in its dimerization followed by activation of Jak2 kinase and tyrosine phosphorylation of the GH receptor itself, as well as Jak2 and the transcription factors Stat1, -3, and -5. In order to study the role of GH receptor tyrosine phosphor...

  18. Action of specific thyroid hormone receptor α(1) and β(1) antagonists in the central and peripheral regulation of thyroid hormone metabolism in the rat.

    Science.gov (United States)

    van Beeren, Hermina C; Kwakkel, Joan; Ackermans, Mariëtte T; Wiersinga, Wilmar M; Fliers, Eric; Boelen, Anita

    2012-12-01

    The iodine-containing drug amiodarone (Amio) and its noniodine containing analogue dronedarone (Dron) are potent antiarrhythmic drugs. Previous in vivo and in vitro studies have shown that the major metabolite of Amio, desethylamiodarone, acts as a thyroid hormone receptor (TR) α(1) and β(1) antagonist, whereas the major metabolite of Dron debutyldronedarone acts as a selective TRα(1) antagonist. In the present study, Amio and Dron were used as tools to discriminate between TRα(1) or TRβ(1) regulated genes in central and peripheral thyroid hormone metabolism. Three groups of male rats received either Amio, Dron, or vehicle by daily intragastric administration for 2 weeks. We assessed the effects of treatment on triiodothyronine (T(3)) and thyroxine (T(4)) plasma and tissue concentrations, deiodinase type 1, 2, and 3 mRNA expressions and activities, and thyroid hormone transporters monocarboxylate transporter 8 (MCT8), monocarboxylate transporter 10 (MCT10), and organic anion transporter 1C1 (OATP1C1). Amio treatment decreased serum T(3), while serum T(4) and thyrotropin (TSH) increased compared to Dron-treated and control rats. At the central level of the hypothalamus-pituitary-thyroid axis, Amio treatment decreased hypothalamic thyrotropin releasing hormone (TRH) expression, while increasing pituitary TSHβ and MCT10 mRNA expression. Amio decreased the pituitary D2 activity. By contrast, Dron treatment resulted in decreased hypothalamic TRH mRNA expression only. Upon Amio treatment, liver T(3) concentration decreased substantially compared to Dron and control rats (50%, p<0.01), but liver T(4) concentration was unaffected. In addition, liver D1, mRNA, and activity decreased, while the D3 activity and mRNA increased. Liver MCT8, MCT10, and OATP1C1 mRNA expression were similar between groups. Our results suggest an important role for TRα1 in the regulation of hypothalamic TRH mRNA expression, whereas TRβ plays a dominant role in pituitary and liver thyroid

  19. Growth hormone receptor (GHR) gene polymorphism and scoliosis in Prader-Willi syndrome.

    Science.gov (United States)

    Butler, Merlin G; Hossain, Waheeda; Hassan, Maaz; Manzardo, Ann M

    2018-04-01

    A growth hormone receptor (GHR) gene polymorphism impacts sensitivity to endogenous and exogenous growth hormone (GH) to moderate growth and development. Increased sensitivity may accelerate spinal growth and contribute to scoliosis, particularly in GH-deficient and treated populations such as Prader-Willi syndrome (PWS). Therefore, we examined the relationship between GHR genotype and scoliosis (case and control) in PWS cohorts. We utilized a case-control design in a study of 73 subjects (34M; 39F) with genetically confirmed PWS in 32 individuals previously diagnosed with moderate to severe scoliosis (mean age=16.9±10.2years; age range of 1 to 41years) and 41 adults with no evidence of scoliosis (mean age=30.8±9.7years; age range of 18 to 56years). The GHR gene polymorphism was determined using PCR specific primers to capture the two recognized GHR gene fragment sizes [i.e., full length (fl) or exon 3 deletions (d3)]. Twenty-three (72%) of the 32 case subjects with scoliosis required surgical correction with an approximately equal balance for gender and PWS genetic subtype among cases and 41 control subjects without scoliosis. The GHR d3/d3 genotype was identified in N=2 of 8 (25%) cases with scoliosis and the d3/fl genotype was identified in N=11 of 25 (44%) cases with scoliosis but the distribution difference did not statistically differ. The GHR fl/fl genotype was correlated with a significantly faster rate and heavier weight gain among case subjects. Our examination of demographic and genetic markers associated with scoliosis and surgical repair in PWS found no evidence to support differences in gender, PWS genetic subtype or GHR d3 allele distributions among the case vs control groups. Those with fl/fl alleles were heavier than those with d3/d3 or d3/fl genotypes and warrant further study with a larger sample size and possibly to include other vulnerable populations requiring growth hormone treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Expression of Lymphocyte-derived Growth Hormone (GH) and GH-releasing Hormone Receptors in Aging Rats

    OpenAIRE

    Weigent, Douglas A.

    2013-01-01

    In the present study, we show that higher levels of lymphocyte GH are expressed in spleen cells from aging animals compared to young animals. Further, leukocytes from primary and secondary immune tissues and splenic T and B cells from aging rats all express higher levels of GHRH receptors compared to younger animals. Bone marrow and splenic T cells express the highest levels of GHRH receptor in aging animals. Spleen cells from aging animals showed no significant change in proliferation or GH ...

  1. Bombyx neuropeptide G protein-coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm.

    Science.gov (United States)

    Ma, Qiang; Cao, Zheng; Yu, Yena; Yan, Lili; Zhang, Wenjuan; Shi, Ying; Zhou, Naiming; Huang, Haishan

    2017-12-15

    The short neuropeptide F (sNPF) neuropeptides, closely related to vertebrate neuropeptide Y (NPY), have been suggested to exert pleiotropic effects on many physiological processes in insects. In the silkworm ( Bombyx mori ) two orphan G protein-coupled receptors, Bombyx neuropeptide G protein-coupled receptor (BNGR) A10 and A11, have been identified as cognate receptors for sNPFs, but other sNPF receptors and their signaling mechanisms in B. mori remain unknown. Here, we cloned the full-length cDNA of the orphan receptor BNGR-A7 from the brain of B. mori larvae and identified it as a receptor for Bombyx sNPFs. Further characterization of signaling and internalization indicated that BNGR-A7, -A10, and -A11 are activated by direct interaction with synthetic Bombyx sNPF-1 and -3 peptides. This activation inhibited forskolin or adipokinetic hormone-induced adenylyl cyclase activity and intracellular Ca 2+ mobilization via a G i/o -dependent pathway. Upon activation by sNPFs, BNGR-A7, -A10, and -A11 evoked ERK1/2 phosphorylation and underwent internalization. On the basis of these findings, we designated the receptors BNGR-A7, -A10, and -A11 as Bommo -sNPFR-1, -2, and -3, respectively. Moreover, the results obtained with quantitative RT-PCR analysis revealed that the three Bombyx sNPF receptor subtypes exhibit differential spatial and temporal expression patterns, suggesting possible roles of sNPF signaling in the regulation of a wide range of biological processes. Our findings provide the first in-depth information on sNPF signaling for further elucidation of the roles of the Bombyx sNPF/sNPFR system in the regulation of physiological activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  3. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    International Nuclear Information System (INIS)

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed

  4. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  5. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    International Nuclear Information System (INIS)

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.; Cederlund, E.; Gustafsson, J.A.; Joernvall, H.

    1988-01-01

    Purified rat liver glucocorticoid receptor was covalently charged with [ 3 H]glucocorticoid by photoaffinity labeling (UV irradiation of [ 3 H]triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with [ 3 H]dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with [ 3 H]triamcinolone acetonide and Cys-656 after affinity labeling with [ 3 H]dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A

  6. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  7. Hormonal regulation of response to oxidative stress in insects - an update

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, N.

    2015-01-01

    Roč. 16, č. 10 (2015), s. 25788-25816 E-ISSN 1422-0067 R&D Projects: GA ČR GA14-07172S Institutional support: RVO:60077344 Keywords : adipokinetic hormones (AKH) * AKH gene * anti-oxidative mechanisms Subject RIV: ED - Physiology Impact factor: 3.257, year: 2015 http://www.mdpi.com/1422-0067/16/10/25788

  8. Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues.

    Science.gov (United States)

    Sherwood, Andrew; Holland, Peter C; Adamantidis, Antoine; Johnson, Alexander W

    2015-12-01

    Exposure to environmental cues associated with food can evoke eating behavior in the absence of hunger. This capacity for reward cues to promote feeding behaviors under sated conditions can be examined in the laboratory using cue-potentiated feeding (CPF). The orexigenic neuropeptide Melanin Concentrating Hormone (MCH) is expressed throughout brain circuitry critical for CPF. We examined whether deletion of the MCH receptor, MCH-1R, would in KO mice disrupt overeating in the presence of a Pavlovian CS+ associated with sucrose delivery. While both wild-type controls and KO mice showed comparable food magazine approach responses during the CPF test, MCH-1R deletion significantly impaired the ability of the CS+ to evoke overeating of sucrose under satiety. Through the use of a refined analysis of meal intake, it was revealed that this disruption to overeating behavior in KO mice reflected a reduction in the capacity for the CS+ to initiate and maintain bursts of licking behavior. These findings suggest that overeating during CPF requires intact MCH-1R signaling and may be due to an influence of the CS+ on the palatability of food and on regulatory mechanisms of peripheral control. Thus, disruptions to MCH-1R signaling may be a useful pharmacological tool to inhibit this form of overeating behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Efficacy of palbociclib plus fulvestrant after everolimus in hormone receptor-positive metastatic breast cancer.

    Science.gov (United States)

    du Rusquec, Pauline; Palpacuer, Clément; Campion, Loic; Patsouris, Anne; Augereau, Paule; Gourmelon, Carole; Robert, Marie; Dumas, Laurence; Caroline, Folliard; Campone, Mario; Frenel, Jean-Sébastien

    2018-04-01

    Palbociclib, a CDK4-6 inhibitor, combined with endocrine therapy (ET) is a new standard of treatment for Hormone Receptor-positive Metastatic Breast Cancer. We present the first real-life efficacy and tolerance data of palbociclib plus fulvestrant in this population. From November 2015 to November 2016, patients receiving in our institution palbociclib + fulvestrant according to the Temporary Authorization for Use were prospectively analyzed. 60 patients were treated accordingly; median age was 61 years; 50 patients (83.3%) had visceral metastasis, and 10 (16.7%) had bone-only disease. Patients had previously received a median of 5 (1-14) lines of treatment, including ET (median 3) and chemotherapy (median 2); 28 (46.7%) received previously fulvestrant and all everolimus. With a median follow-up of 10.3 months, median progression-free survival (mPFS) was 5.8 months (95% CI 3.9-7.3). Patients pretreated with fulvestrant had a similar PFS of 6.4 months (HR 1.00; 95% CI 0.55-1.83; P = 1.00). The most common AEs (adverse events) were neutropenia (93%), anemia (65%), and thrombocytopenia (55%). In this heavily pretreated population including everolimus, fulvestrant plus palbociclib provides an mPFS of 5.8 months with the same magnitude of benefit for fulvestrant-pretreated patients.

  10. Hypothyroidism modifies morphometry and thyroid-hormone receptor expression in periurethral muscles of female rabbits.

    Science.gov (United States)

    Sánchez-García, Octavio; Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Cuevas, Estela; Castelán, Francisco

    2016-11-01

    To evaluate the morphometry and thyroid-hormone receptor (TR) expression in pelvic (pubococcygeus, Pcm) and perineal (bulbospongiosus, Bsm) muscles of control and hypothyroid female rabbits. Hypothyroidism was induced administering 0.02% methimazole in the drinking water for one month. Hematoxylin-eosin stained muscle sections were used to evaluate the fiber cross-sectional area (CSA) and the number of peripheral myonuclei per fiber. Immunohistochemistry was used to calculate the proportion of TR immunoreactive nuclei per fiber. Significant differences were considered at a P ≤ 0.05. As compared to control rabbits, hypothyroidism increased the averaged fiber CSA and the myonuclei per fiber in the Bsm. Although the myonuclei number per fiber was also increased in the Pcm, the effect concerning the fiber CSA was only observed in a fraction of the Pcm fibers. Both TRα and TRβ were similarly expressed in the Pcm and Bsm. Hypothyroidism increased the expression of the TRα in the Bsm. Meanwhile, the expression of TR isoforms in the Pcm was not altered. Our findings support that the TR signaling is directly involved in morphometrical changes induced by hypothyroidism in the Pcm and Bsm. The effect of hypothyroidism on the Pcm and Bsm could be related to the different type of fiber and metabolism that these muscles have. Neurourol. Urodynam. 35:895-901, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    Science.gov (United States)

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications.

    Science.gov (United States)

    Kopchick, John J; List, Edward O; Kelder, Bruce; Gosney, Elahu S; Berryman, Darlene E

    2014-04-05

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  14. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...... and RIN-5AH cells, the ability of JAK2 to associate with the mutated GHR was found to correlate with GH-dependent activation of JAK2, tyrosyl phosphorylation of GHR (in the case of GHR1-638 and GHR1-454), and the ability of the GHR to copurify with tyrosine kinase activity. In CHO cells expressing mutated......, and that tyrosines in the N-terminal half of the cytoplasmic domain of the GHR are phosphorylated by JAK2. The finding that a specific interaction with the C-terminal half of GHR appears to be necessary for p97 phosphorylation indicates that while JAK2 activation may be necessary for a full biological response to GH...

  15. The thyroid hormone receptor β induces DNA damage and premature senescence.

    Science.gov (United States)

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  16. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.

    Science.gov (United States)

    Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong

    2017-02-10

    The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Radioanalytical methods for the measurement of melanin concentrating hormone (MCH) and detection its receptor in rat tissues

    International Nuclear Information System (INIS)

    Lelesz, B.; Szilvassy, Z.; Varga, A.; Juhasz, B.; Nemeth, J.; Toth, G.K.; Toth, A.; Enyedi, A.; Felszeghy, E.

    2016-01-01

    In the present paper the development and application of a novel melanin concentrating hormone radioimmunoassay and receptor-binding assay are described. 125 I-labeling of melanin concentrating hormone (MCH) was performed by iodogen and the mono-iodinated peptide was separated by reversed-phase high performance liquid chromatography. Detection limit of the MCH specific assay was 0.2 fmol/ml. As a practical application of the novel radioimmunoassay, we measured the MCH concentration in different rat organs. High MCH concentrations were detected in the small intestine, pancreas, kidney, liver, trachea, hypothalamus and spinal cord. 125 I-MCH was also suitable for RBA to demonstrate the presence of MCH receptors in the rat brain. (author)

  18. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  19. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  20. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome

    OpenAIRE

    Sagami, Y; Shimada, Y; Tayama, J; Nomura, T; Satake, M; Endo, Y; Shoji, T; Karahashi, K; Hongo, M; Fukudo, S

    2004-01-01

    Background and aims: Corticotropin releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with an exaggerated response to stress. We hypothesised that peripheral administration of α-helical CRH (αhCRH), a non-selective CRH receptor antagonist, would improve gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation in IBS patient...

  1. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    Science.gov (United States)

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. CHARACTERIZATION OF THE RECEPTOR FOR GONADOTROPIN-RELEASING HORMONE IN THE PITUITARY OF THE AFRICAN CATFISH, CLARIAS-GARIEPINUS

    NARCIS (Netherlands)

    de Leeuw, R.; Conn, P. M.; van't Veer, C.; Goos, H. J.; van Oordt, P. G.

    1988-01-01

    Receptors for gonadotropin-releasing hormone (GnRH) were characterized using a radioligand prepared from a superactive analog of salmon GnRH (sGnRH), D-Arg(6)-Pro(9)-sGnRH-NEt (sGnRHa). Binding of(125)I-sGnRHa to catfish pituitary membrane fractions reached equilibrium after 2 h incubation at 4°C.

  3. Prostate-Derived Ets Transcription Factor Overexpression is Associated with Nodal Metastasis, Hormone Receptor Positivity in Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Simon Turcotte

    2007-10-01

    Full Text Available Prostate-derived Ets transcription factor (PDEF has recently been associated with invasive breast cancer, but no expression profile has been defined in clinical specimens. We undertook a comprehensive PDEF transcriptional expression study of 86 breast cancer clinical specimens, several cell lines, normal tissues. PDEF expression profile was analyzed according to standard clinicopathologic parameters, compared with hormonal receptor, HER-2/neu status, to the expression of the new tumor biomarker Dikkopf-1 (DKK1. Wide ranging PDEF overexpression was observed in 74% of tested tumors, at higher levels than the average expression found in normal breasts. High PDEF expression was associated with hormone receptor positivity (P < .001, moderate to good differentiation (less than grade III, P = .01, dissemination to axillary lymph nodes (P = .002. PDEF was an independent risk factor for nodal involvement (multivariate analysis, odds ratio 1.250, P = .002. It was expressed in a different subgroup compared to DKK1-expressing tumors (P < .001. Our data imply that PDEF mRNA expression could be useful in breast cancer molecular staging. Further insights into PDEF functions at the protein level, possible links with hormone receptors biology, bear great potential for new therapeutic avenues.

  4. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    Science.gov (United States)

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  5. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti

    Science.gov (United States)

    2013-01-01

    Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545

  6. Removal of reproductive suppression reveals latent sex differences in brain steroid hormone receptors in naked mole-rats, Heterocephalus glaber.

    Science.gov (United States)

    Swift-Gallant, Ashlyn; Mo, Kaiguo; Peragine, Deane E; Monks, D Ashley; Holmes, Melissa M

    2015-01-01

    Naked mole-rats are eusocial mammals, living in large colonies with a single breeding female and 1-3 breeding males. Breeders are socially dominant, and only the breeders exhibit traditional sex differences in circulating gonadal steroid hormones and reproductive behaviors. Non-reproductive subordinates also fail to show sex differences in overall body size, external genital morphology, and non-reproductive behaviors. However, subordinates can transition to breeding status if removed from their colony and housed with an opposite-sex conspecific, suggesting the presence of latent sex differences. Here, we assessed the expression of steroid hormone receptor and aromatase messenger RNA (mRNA) in the brains of males and females as they transitioned in social and reproductive status. We compared in-colony subordinates to opposite-sex subordinate pairs that were removed from their colony for either 1 day, 1 week, 1 month, or until they became breeders (i.e., produced a litter). Diencephalic tissue was collected and mRNA of androgen receptor (Ar), estrogen receptor alpha (Esr1), progesterone receptor (Pgr), and aromatase (Cyp19a1) was measured using qPCR. Testosterone, 17β-estradiol, and progesterone from serum were also measured. As early as 1 week post-removal, males exhibited increased diencephalic Ar mRNA and circulating testosterone, whereas females had increased Cyp19a1 mRNA in the diencephalon. At 1 month post-removal, females exhibited increased 17β-estradiol and progesterone. The largest changes in steroid hormone receptors were observed in breeders. Breeding females had a threefold increase in Cyp19a1 and fivefold increases in Esr1 and Pgr, whereas breeding males had reduced Pgr and increased Ar. These data demonstrate that sex differences in circulating gonadal steroids and hypothalamic gene expression emerge weeks to months after subordinate animals are removed from reproductive suppression in their home colony.

  7. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    Science.gov (United States)

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P growth retarded as shown by a daily longitudinal tibia growth rate below (P growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  8. Characterization of hormonal receptors and human epidermal growth factor receptor-2 in tissues of women with breast cancer at Muhimbili National Hospital, Dar es salaam, Tanzania.

    Science.gov (United States)

    Mwakigonja, Amos Rodger; Lushina, Nyanda Elias; Mwanga, Ally

    2017-01-01

    Breast cancer is a leading cause of morbidity and deaths among women worldwide. In Tanzania there is no published data on human epidermal growth receptor-2 (HER2/neu) expression in breast carcinoma. Hormonal receptors and HER2/neu status reportedly influence post-mastectomy adjuvant therapy and predict treatment outcome and prognosis. Here we evaluate hormonal receptors and HER-2 status in biopsies of women with breast cancer at Muhimbili National Hospital (MNH). A cross-sectional study of female breast post-modified radical mastectomy (MRM)/incisional biopsies confirmed to be carcinoma at the Histopathology Unit (January-December 2013). Tissue blocks having poor morphology, without tumor, secondary tumors, cases outside the study period and male patients were excluded. Routine staining was done followed by immunohistochemistry for estrogen (ER), and progesterone (PgR) receptors and HER2. Data analyzed using Statistical Package for Social Sciences (SPSS). A total of 218 cases were confirmed to be carcinoma including 70 meeting inclusion criteria. Age at diagnosis ranged 18-75 years and mean age was 48.36 years. Majority (64.3%) were in the 36-55 years age-group. Histologically, most (88.6%) women had invasive ductal carcinoma including 43.1% of intermediate grade. A great majority (78%) were stage three. Due to logistical constrains, 75.7% ( n  = 53/70) cases where immunostained for hormones including 43.4% (ER+), 26.4% (PgR+), and 28% (ER+/PgR+). Furthermore, 65.7% ( n  = 46/70) cases were immunostained for HER-2 and 15.2% ( n  = 7/46) were positive, 45.6% were triple negative (ER-,PgR-,HER2-), 23.9% (ER+,PgR+,HER2-) or luminal B, 2.2% (ER+,PgR-,HER2+),13% (ER-,PgR-,HER2+) and 15% (ER+,PgR-,HER2-) with none being triple positive. Hormonal receptors and HER2 expression at MNH appears to be comparable to previous Africans/African Americans reports but not with studies among Caucasians and the current proportion of triple negative breast carcinomas (TNBC) is

  9. Characterization of hormonal receptors and human epidermal growth factor receptor-2 in tissues of women with breast cancer at Muhimbili National Hospital, Dar es salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Amos Rodger Mwakigonja

    2017-11-01

    Full Text Available Abstract Background Breast cancer is a leading cause of morbidity and deaths among women worldwide. In Tanzania there is no published data on human epidermal growth receptor-2 (HER2/neu expression in breast carcinoma. Hormonal receptors and HER2/neu status reportedly influence post-mastectomy adjuvant therapy and predict treatment outcome and prognosis. Here we evaluate hormonal receptors and HER-2 status in biopsies of women with breast cancer at Muhimbili National Hospital (MNH. Methods A cross-sectional study of female breast post-modified radical mastectomy (MRM/incisional biopsies confirmed to be carcinoma at the Histopathology Unit (January–December 2013. Tissue blocks having poor morphology, without tumor, secondary tumors, cases outside the study period and male patients were excluded. Routine staining was done followed by immunohistochemistry for estrogen (ER, and progesterone (PgR receptors and HER2. Data analyzed using Statistical Package for Social Sciences (SPSS. Results A total of 218 cases were confirmed to be carcinoma including 70 meeting inclusion criteria. Age at diagnosis ranged 18–75 years and mean age was 48.36 years. Majority (64.3% were in the 36–55 years age-group. Histologically, most (88.6% women had invasive ductal carcinoma including 43.1% of intermediate grade. A great majority (78% were stage three. Due to logistical constrains, 75.7% (n = 53/70 cases where immunostained for hormones including 43.4% (ER+, 26.4% (PgR+, and 28% (ER+/PgR+. Furthermore, 65.7% (n = 46/70 cases were immunostained for HER-2 and 15.2% (n = 7/46 were positive, 45.6% were triple negative (ER-,PgR-,HER2-, 23.9% (ER+,PgR+,HER2- or luminal B, 2.2% (ER+,PgR-,HER2+,13% (ER-,PgR-,HER2+ and 15% (ER+,PgR-,HER2- with none being triple positive. Conclusions Hormonal receptors and HER2 expression at MNH appears to be comparable to previous Africans/African Americans reports but not with studies among Caucasians and the current proportion

  10. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, V G; Erritzoe, D; Madsen, J

    2009-01-01

    to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.......31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding....... binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated...

  11. Growth hormone secretagogue receptor (GHS-R1a) knockout mice exhibit improved spatial memory and deficits in contextual memory.

    Science.gov (United States)

    Albarran-Zeckler, Rosie G; Brantley, Alicia Faruzzi; Smith, Roy G

    2012-06-15

    Although the hormone ghrelin is best known for its stimulatory effect on appetite and regulation of growth hormone release, it is also reported to have beneficial effects on learning and memory formation in mice. Nevertheless, controversy exists about whether endogenous ghrelin acts on its receptors in extra-hypothalamic areas of the brain. The ghrelin receptor (GHS-R1a) is co-expressed in neurons that express dopamine receptor type-1 (DRD1a) and type-2 (DRD2), and we have shown that a subset of GHS-R1a, which are not occupied by the agonist (apo-GHSR1a), heterodimerize with these two receptors to regulate dopamine signaling in vitro and in vivo. To determine the consequences of ghsr ablation on brain function, congenic ghsr -/- mice on the C57BL6/J background were subjected to a battery of behavioral tests. We show that the ghsr -/- mice exhibit normal balance, movement, coordination, and pain sensation, outperform ghsr +/+ mice in the Morris water maze, but show deficits in contextual fear conditioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Palbociclib: A Novel Cyclin-Dependent Kinase Inhibitor for Hormone Receptor-Positive Advanced Breast Cancer.

    Science.gov (United States)

    Mangini, Neha S; Wesolowski, Robert; Ramaswamy, Bhuvaneswari; Lustberg, Maryam B; Berger, Michael J

    2015-11-01

    To review palbociclib, a novel small-molecule inhibitor of cyclin-dependent kinases 4 and 6, and its current place in therapy for the treatment of hormone receptor (HMR)-positive, human epidermal growth factor receptor 2 (Her2)-negative advanced breast cancer. Four phase I trials, 2 phase II trials, and 1 phase III trial were identified from May 2004 to May 2015 using PubMed, American Society of Clinical Oncology (ASCO) abstracts, and European Society of Medical Oncology (ESMO) abstracts. In the first-line setting, the phase II PALbociclib: Ongoing trials in the Management of breast cAncer (PALOMA)-1 trial randomized patients to receive letrozole alone or letrozole plus palbociclib 125 mg daily for 3 weeks, followed by 1 week off, as initial therapy for advanced breast cancer. The investigator-assessed median progression-free survival (PFS) was 20. 2 months for the combination versus 10.2 months for letrozole alone (hazard ratio [HR] = 0.488; 95% CI = 0.319-0.748; 1-sided P = 0.0004). The ensuing Food and Drug Administration approval of palbociclib was given a "breakthrough therapy" designation, where preliminary evidence suggests substantial improvement over existing therapies for a serious or life-threatening disease. A confirmatory phase III trial, PALOMA-2, is under way. In patients who were previously treated with endocrine therapy for advanced breast cancer, the phase III PALOMA-3 trial randomized patients to fulvestrant plus palbociclib versus fulvestrant plus placebo. The investigator-assessed median PFS at the time of a preplanned analysis was 9.2 months with palbociclib-fulvestrant compared with 3.8 months with placebo-fulvestrant (HR = 0.42; 95% CI = 0.32-0.56; P < 0.001). Palbociclib, the first-in-class CDK4/6 inhibitor, significantly extended PFS in combination with endocrine therapy in the first and subsequent lines of treatment for HMR-positive, Her2-negative advanced breast cancer. © The Author(s) 2015.

  13. Sex-specific hormone receptors in urothelial carcinomas of the human urinary bladder: a comparative analysis of clinicopathological features and survival outcomes according to receptor expression.

    Science.gov (United States)

    Tuygun, Can; Kankaya, Duygu; Imamoglu, Abdurrahim; Sertcelik, Ayse; Zengin, Kursad; Oktay, Murat; Sertcelik, Nurettin

    2011-01-01

    To investigate the expression of sex-specific hormone receptors in normal bladder urothelium and urothelial carcinomas (UCs) of the bladder, and to analyze clinicopathological features and survival outcomes according to receptor expression. We evaluated the clinical data and tumor specimens of 139 patients with bladder cancer (BC). In addition, 72 samples of normal urothelium were included. Immunohistochemistry was performed using streptavidin-biotin peroxidase method, a monoclonal androgen receptor (AR), and an estrogen receptor-β (ERβ) antibody on paraffin-embedded tissue sections. Expression levels of each receptor were assessed by evaluating 500 tumor cells for each case and the percentage of positively-stained nuclei was recorded. None of the 58 male control cases showed any AR and ERβ expression. Five (35, 71%) of the 14 female control cases expressed ERβ. Of the 139 patients with UCs, 71 (51, 07%) expressed AR (62 male vs. 9 female; P = 0.413) and 44 (31, 65%) (39 male vs. 5 female; P = 0.402) showed ERβ expression (P receptors alone cannot be responsible for gender differences in BC rates because they were expressed in similar rates in both sexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The lower expression of gonadotropin-releasing hormone receptor associated with poor prognosis in gastric cancer

    Science.gov (United States)

    Lu, Mingzhu; Zhu, Jing; Ling, Yang; Shi, Wenping; Zhang, Changsong; Wu, Haorong

    2015-01-01

    Aims: Expression of gonadotropin-releasing hormone receptor (GnRHR) has been demonstrated in a number of malignancies. The aim is to investigate the expression of GnRHR and prognosis in gastric cancer. Methods and materials: GnRHR mRNA was examined in tumor and non-tumor tissues from 48 gastric cancer patients by Real-time PCR. The GnRHR protein expression was performed by immunohistochemical analysis. Results: The expression of GnRHR mRNA was higher (mean ± SD, -10.06 ± 1.28) in gastric tumor tissues than matched non-tumor tissues (mean ± SD, -12.43 ± 1.33). GnRHR mRNA expression was associated with lymph node metastasis, distant metastasis, and TNM stage. We found the decreased expression of GnRHR mRNA were significantly correlated with poor overall survival (P = 0.003). Immunocytochemical staining of GnRHR in tumor tissues showed mainly weak staining (43.48%, 10/23) and moderate staining (21.74%, 5/23) in high GnRHR mRNA patients, and mainly negative staining in low GnRHR mRNA patients. And the staining of GnRHR was not detection in tumor tissues for more than half of gastric patients (52.08%, 25/48). These results implied that the loss of GnRHR protein could be a main event in gastric cancer. Conclusion: The GnRHR expression is very low in gastric cancer, and the loss of GnRHR expression could be a poor prognostic factor, which implied that GnRHR could play an important role in the development of gastric cancer. PMID:26550267

  15. Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line.

    Science.gov (United States)

    Reichenbach, Alex; Steyn, Frederik J; Sleeman, Mark W; Andrews, Zane B

    2012-11-01

    Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.

  16. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study

    International Nuclear Information System (INIS)

    Ritte, Rebecca; Grote, Verena; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Berrino, Franco; Mattiello, Amalia; Tumino, Rosario; Tikk, Kaja; Sacerdote, Carlotta; Quirós, José Ramón; Buckland, Genevieve; Molina-Montes, Esther; Chirlaque, María-Dolores; Ardanaz, Eva; Amiano, Pilar; Bueno-de-Mesquita, H Bas; Gils, Carla H van; Peeters, Petra HM; Lukanova, Annekatrin; Wareham, Nick; Khaw, Kay-Tee; Key, Timothy J; Travis, Ruth C; Weiderpass, Elisabete; Dumeaux, Vanessa; Lund, Eliv; Sund, Malin; Andersson, Anne; Romieu, Isabelle; Tjønneland, Anne; Rinaldi, Sabina; Vineis, Paulo; Merritt, Melissa A; Riboli, Elio; Kaaks, Rudolf; Olsen, Anja; Overvad, Kim; Dossus, Laure; Fournier, Agnès; Clavel-Chapelon, Françoise

    2013-01-01

    The association of reproductive factors with hormone receptor (HR)-negative breast tumors remains uncertain. Within the EPIC cohort, Cox proportional hazards models were used to describe the relationships of reproductive factors (menarcheal age, time between menarche and first pregnancy, parity, number of children, age at first and last pregnancies, time since last full-term childbirth, breastfeeding, age at menopause, ever having an abortion and use of oral contraceptives [OC]) with risk of ER-PR- (n = 998) and ER+PR+ (n = 3,567) breast tumors. A later first full-term childbirth was associated with increased risk of ER+PR+ tumors but not with risk of ER-PR- tumors (≥35 vs. ≤19 years HR: 1.47 [95% CI 1.15-1.88] p trend < 0.001 for ER+PR+ tumors; ≥35 vs. ≤19 years HR: 0.93 [95% CI 0.53-1.65] p trend = 0.96 for ER-PR- tumors; P het = 0.03). The risk associations of menarcheal age, and time period between menarche and first full-term childbirth with ER-PR-tumors were in the similar direction with risk of ER+PR+ tumors (p het = 0.50), although weaker in magnitude and statistically only borderline significant. Other parity related factors such as ever a full-term birth, number of births, age- and time since last birth were associated only with ER+PR+ malignancies, however no statistical heterogeneity between breast cancer subtypes was observed. Breastfeeding and OC use were generally not associated with breast cancer subtype risk. Our study provides possible evidence that age at menarche, and time between menarche and first full-term childbirth may be associated with the etiology of both HR-negative and HR-positive malignancies, although the associations with HR-negative breast cancer were only borderline significant

  17. Functional diagnostics for thyrotropin hormone receptor autoantibodies: bioassays prevail over binding assays.

    Science.gov (United States)

    Lytton, Simon David; Schluter, Anke; Banga, Paul J

    2018-06-01

    Autoantibodies to the thyrotropin hormone receptor (TSH-R) are directly responsible for the hyperthyroidism in Graves' disease and mediate orbital manifestations in Graves' orbitopathy (otherwise known as thyroid eye disease). These autoantibodies are heterogeneous in their function and collectively referred to as TRAbs. Measurement of TRAbs is clinically important for diagnosis of a variety of conditions and different commercial assays with high sensitivity and specificity are available for diagnostic purposes. This review provides overwhelming evidence that the TRAbs detected in binding assays by mainly the automated electrochemical luminescence immunoassays (ECLIA) do not distinguish TRAbs that stimulate the TSH-R (called TSIs or TSAbs) and TRAbs that just inhibit the binding of TSH without stimulating the TSH-R (called TBAbs). However, TSAbs and TBAbs have divergent pathogenic roles, and depending which fraction predominates cause different clinical symptoms and engender different therapeutic regimen. Therefore, diagnostic distinction of TSAbs and TBAbs is of paramount clinical importance. To date, only bioassays such as the Mc4 TSH-R bioassay (Thyretain TM , Quidel) and the Bridge assay (Immulite 2000, Siemens) can measure TSAbs, with only the former being able to distinguish between TSAbs and TBAbs. On this note, it is strongly recommended to only use the term TSI or TSAb when reporting the results of bioassays, whereas the results of automated TRAb binding assays should be reported as TRAbs (of undetermined functional significance). This review aims to present a technical and analytical account of leading commercial diagnostic methods of anti-TSH-R antibodies, a metaanalysis of their clinical performance and a perspective for the use of cell based TSH-R bioassays in the clinical diagnostics of Graves' disease.

  18. Palbociclib in hormone receptor positive advanced breast cancer: A cost-utility analysis.

    Science.gov (United States)

    Raphael, J; Helou, J; Pritchard, K I; Naimark, D M

    2017-11-01

    The addition of palbociclib to letrozole improves progression-free survival in the first-line treatment of hormone receptor positive advanced breast cancer (ABC). This study assesses the cost-utility of palbociclib from the Canadian healthcare payer perspective. A probabilistic discrete event simulation (DES) model was developed and parameterised with data from the PALOMA 1 and 2 trials and other sources. The incremental cost per quality-adjusted life-month (QALM) gained for palbociclib was calculated. A time horizon of 15 years was used in the base case with costs and effectiveness discounted at 5% annually. Time-to- progression and time-to-death were derived from a Weibull and exponential distribution. Expected costs were based on Ontario fees and other sources. Probabilistic sensitivity analyses were conducted to account for parameter uncertainty. Compared to letrozole, the addition of palbociclib provided an additional 14.7 QALM at an incremental cost of $161,508. The resulting incremental cost-effectiveness ratio was $10,999/QALM gained. Assuming a willingness-to-pay (WTP) of $4167/QALM, the probability of palbociclib to be cost-effective was 0%. Cost-effectiveness acceptability curves derived from a probabilistic sensitivity analysis showed that at a WTP of $11,000/QALM gained, the probability of palbociclib to be cost-effective was 50%. The addition of palbociclib to letrozole is unlikely to be cost-effective for the treatment of ABC from a Canadian healthcare perspective with its current price. While ABC patients derive a meaningful clinical benefit from palbociclib, considerations should be given to increase the WTP threshold and reduce the drug pricing, to render this strategy more affordable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Constitutive luteinizing hormone receptor signaling causes sexual dysfunction and Leydig cell adenomas in male mice.

    Science.gov (United States)

    Hai, Lan; Hiremath, Deepak S; Paquet, Marilène; Narayan, Prema

    2017-05-01

    The luteinizing hormone receptor (LHCGR) is necessary for fertility, and genetic mutations cause defects in reproductive development and function. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP). We have previously characterized a mouse model (KiLHRD582G) for FMPP that exhibits the same phenotype of precocious puberty, Leydig cell hyperplasia, and elevated testosterone as boys with the disorder. We observed that KiLHRD582G male mice became infertile by 6 months of age, although sperm count and motility were normal. In this study, we sought to determine the reason for the progressive infertility and the long-term consequences of constant LHCGR signaling. Mating with superovulated females showed that infertile KiLHRD582G mice had functional sperm and normal accessory gland function. Sexual behavior studies revealed that KiLHRD582G mice mounted females, but intromission was brief and ejaculation was not achieved. Histological analysis of the reproductive tract showed unique metaplastic changes resulting in pseudostratified columnar epithelial cells with cilia in the ampulla and chondrocytes in the penile body of the KiLHRD582G mice. The infertile KiLHRD582G exhibited enlarged sinusoids and a decrease in smooth muscle content in the corpora cavernosa of the penile body. However, collagen content was unchanged. Leydig cell adenomas and degenerating seminiferous tubules were seen in 1-year-old KiLHRD582G mice. We conclude that progressive infertility in KiLHRD582G mice is due to sexual dysfunction likely due to functional defects in the penis. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  20. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    International Nuclear Information System (INIS)

    Pirih, Flavia Q.; Aghaloo, Tara L.; Bezouglaia, Olga; Nervina, Jeanne M.; Tetradis, Sotirios

    2005-01-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 μg/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 μg/kg i.p. with maximum induction at 40-80 μg/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism

  1. Risk of second breast cancers after lobular carcinoma in situ according to hormone receptor status.

    Directory of Open Access Journals (Sweden)

    Kai Mao

    Full Text Available Although subsequent breast cancer risk after primary lobular carcinoma in situ (LCIS has been studied intensively, whether the risk of second breast cancer after first LCIS varies with hormone receptor (HR status of primary tumor remains unclear.We identified 10,304 women with primary pure unilateral LCIS between 1998 and 2007 from the Surveillance, Epidemiology and End Results (SEER 18 Registries. Kaplan-Meier estimates of 5 or 10-year probabilities of second ipsilateral breast cancers (IBCs and contralateral breast cancers (CBCs were calculated. Multivariable Cox proportional model was performed to identify impact of HR status of primary LCIS, and other demographic, clinicopathologic or treatment characteristics on risk of second IBCs or CBCs.Of the 10,304 women with primary LCIS included in this study, 9949 (96.5% patients had HR+ tumors, and 355 (3.5% had HR- tumors. Multivariable-adjusted analyses showed that although there was no difference in risk of total second IBCs between women with HR+ and HR- LCIS (P = 0.152, patients with HR+ LCIS had a statistically lower risk of second invasive IBCs compared to those with HR- LCIS (hazard ratio 0.356, 95% CI 0.141-0.899, P = 0.029. Women with primary HR+ LCIS had lower risks of both second total and invasive CBCs compared to those with HR- LCIS (total CBCs: hazard ratio 0.340, 95% CI 0.228-0.509, P<0.001; invasive CBCs: hazard ratio 0.172, 95% CI 0.108-0.274, P<0.001. Additionally, black women had a 2-fold risk of developing subsequent total IBCs than white women (P = 0.028.This population-based study demonstrated that the risk of second breast cancers was significantly increased in women with HR- first LCIS compared to those with HR+ LCIS. These findings warrant intensive surveillance for second breast cancers in HR- LCIS survivors.

  2. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    Science.gov (United States)

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  3. A phase II study of preoperative capecitabine in women with operable hormone receptor positive breast cancer

    International Nuclear Information System (INIS)

    Tolaney, Sara M; Jeong, Joon; Guo, Hao; Brock, Jane; Morganstern, Daniel; Come, Steven E; Golshan, Mehra; Bellon, Jennifer; Winer, Eric P; Krop, Ian E

    2014-01-01

    Conventional preoperative chemotherapy regimens have only limited efficacy in hormone receptor positive (HR+) breast cancer and new approaches are needed. We hypothesized that capecitabine, which is effective in metastatic breast cancer, may be an active preoperative treatment for HR+ breast cancer. Women with HR+, HER2-negative operable breast cancer received capecitabine, 2000 mg/m 2 daily in divided doses for 14 days, followed by a 7-day rest period. Treatment was repeated every 21 days for a total of four cycles. The primary endpoint of the study was to determine the rate of pathological complete response (pCR). Because of slow accrual, the study was closed after 24 patients were enrolled. Three patients had a complete clinical response, and eight patients had a partial clinical response, for an overall clinical response rate of 45.8%. There were no cases of pCR. Of the 22 patients who had pathological response assessment by the Miller–Payne grading system, there were six grade 3 responses, and no grade 4 or 5 responses. Toxicity was manageable: the only grade 3 toxicities observed were one case each of diarrhea, palmar plantar erythrodysesthesia, hypokalemia, and mucositis. There was no association between baseline levels, or change in level from baseline to cycle 1, or from baseline to time of surgery, of thymidine phosphorylase (TYMP), thymidylate synthase (TYMS), dihydropyrimidine dehydrogenase (DPYD), or Ki67 and pathological, clinical, or radiographic response. Preoperative capecitabine is a well-tolerated regimen, but appears not lead to pCR when used as monotherapy in HR+ breast cancer

  4. Optimal systemic therapy for premenopausal women with hormone receptor-positive breast cancer.

    Science.gov (United States)

    Jankowitz, Rachel C; McGuire, Kandace P; Davidson, Nancy E

    2013-08-01

    Although systemic therapy is one of the cornerstones of therapy for premenopausal women with early stage breast cancer, there remain many unknowns regarding its optimal use. By accident of clinical trial design, much clinical investigation in premenopausal women has focused on chemotherapy. More recently the value of endocrine therapy (tamoxifen and ovarian suppression/ablation via surgery, LHRH agonists, or chemotherapy-induced menopause) has become apparent, and some form of endocrine therapy is viewed as standard for virtually all premenopausal women with early stage invasive breast cancer that expresses estrogen and/or progesterone receptor. Critical open questions include type and duration of endocrine therapy and the development of prognostic/predictive markers to help identify patients who are likely to benefit from chemotherapy in addition to endocrine therapy. For some years, five years of tamoxifen has been viewed as the standard endocrine therapy for premenopausal hormone-responsive breast cancer, although the ATLAS trial suggests that an additional five years of tamoxifen can be considered. The MA17 trial also suggests that an additional five years of an aromatase inhibitor can be considered for women who become postmenopausal during tamoxifen therapy. Information about the value of ovarian suppression continues to emerge, most recently with the demonstration of excellent outcome with goserelin plus tamoxifen in the ABCSG12 trial. The SOFT and TEXT trials, whose accrual is now complete, should help to define optimal endocrine therapy. In addition, use of the 21-gene recurrence score assay may help to delineate the additional value of chemotherapy for patients with node-negative breast cancer, and its utility in the setting of women with 1-3 positive lymph nodes is under study in the RxPONDER trial. Nonetheless, the need for other predictive biomarkers to select appropriate therapy remains real. Finally, attention to long term benefits and side effects

  5. Intake of whole grain products and risk of breast cancer by hormone receptor status and histology among postmenopausal women

    DEFF Research Database (Denmark)

    Egeberg, Rikke; Olsen, Anja; Loft, Steffen

    2009-01-01

    No clear relationship between whole grain products and risk of breast cancer has been established. In a large prospective cohort study, we investigated the association between intake of whole grain products and risk of breast cancer by tumour receptor status [oestrogen receptor (ER......) and progesterone receptor (PR)] and tumour histology (ductal/lobular). It was further investigated whether the association differed by use of hormone replacement therapy (HRT). The study included 25,278 postmenopausal women participating in the Danish Diet, Cancer and Health cohort study (1993-1997). During a mean...... follow-up time of 9.6 years, 978 breast cancer cases were diagnosed. Associations between intake of whole grain products and the breast cancer rate were analysed using Cox's regression model. A higher intake of whole grain products was not associated with a lower risk of breast cancer. Per an increment...

  6. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    Science.gov (United States)

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  7. The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador.

    Science.gov (United States)

    Rosenbloom, A L; Guevara Aguirre, J; Rosenfeld, R G; Fielder, P J

    1990-11-15

    Laron-type dwarfism, which is characterized by the clinical appearance of isolated growth hormone deficiency with elevated serum levels of growth hormone and decreased serum levels of insulin-like growth factor I (IGF-I), has been described in approximately 50 patients. This condition is caused by a deficiency of the cellular receptor for growth hormone, and it is transmitted as an autosomal recessive trait, as indicated by an equal sex distribution and a high rate of consanguinity in affected families. We studied 20 patients (19 females and 1 male, 2 to 49 years of age), from an inbred Spanish population in southern Ecuador, who had the clinical features of Laron-type dwarfism. Seventeen patients were members of two large pedigrees. Among the 13 affected sibships, there were 19 affected and 24 unaffected female siblings and 1 affected and 21 unaffected male siblings. The patients' heights ranged from 10.0 to 6.7 SD below the normal mean height for age in the United States. In addition to the previously described features, 15 patients had limited elbow extensibility, all had blue scleras, affected adults had relatively short extremities, and all four affected women over 30 years of age had hip degeneration. Basal serum concentrations of growth hormone were elevated in all affected children (30 to 160 micrograms per liter) and normal to moderately elevated in the adults. The serum level of growth hormone-binding protein ranged from 1 to 30 percent of normal; IGF-I concentrations were low--less than or equal to 7 micrograms per liter in the children and less than or equal to 66 micrograms per liter in the adults (normal for Ecuadorean women, 98 to 238). Serum levels of IGF-II and growth hormone-dependent IGF-binding protein-3 were also low. We describe an inbred population with a high incidence of growth hormone-receptor deficiency resulting in a clinical picture resembling Laron-type dwarfism but differing principally in showing a marked predominance of affected

  8. Effect of long-term treatment with steroid hormones or tamoxifen on the progesterone receptor and androgen receptor in the endometrium of ovariectomized cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Cline J Mark

    2003-02-01

    Full Text Available Abstract The progesterone receptor (PR and androgen receptor (AR belong to the nuclear receptor superfamily. Two isoforms of PR (A and B have been identified with different functions. The expression of AR, each isoform of PR and their involvement in long-term effects on the endometrium after hormonal replacement therapy (HRT or tamoxifen (TAM treatment is not known. The aims of this study were to determine PR(A+B, PRB and AR distribution by immunohistochemistry in the macaque (Macaca fascicularis endometrium. Ovariectomized (OVX animals were orally treated continuously for 35 months with either conjugated equine estrogens (CEE; medroxyprogesterone acetate (MPA; the combination of CEE/MPA; or TAM. Treatment with CEE/MPA tended to down-regulate PR in the superficial glands, but increased it in the stroma. TAM treatment increased both the PR and PRB levels in the stroma. Overall, less than 20% of the cells were positive for the PRB isoform and less variation was observed after steroid treatment. AR was found in the stroma, mainly distributed in the basal layer of the endometrium in the OVX and steroid treated groups, but was absent in the TAM treated group. No AR was found in the glandular epithelium. The present data show that long-term hormone treatment affects the PR level, and also the ratio between PRA and PRB in the endometrium.

  9. The polymorphic insertion of the luteinizing hormone receptor "insLQ" show a negative association to LHR gene expression and to the follicular fluid hormonal profile in human small antral follicles

    DEFF Research Database (Denmark)

    Borgbo, T; Chrudimska, J; Macek, M

    2018-01-01

    (AMHR2) and LHCGR, respectively, were observed for insLQ/insLQ compared to -/insLQ and the -/- genotypes. Moreover, LHCGR and CYP19a1 together with oestradiol and inhibin-B were significantly increased in -/insLQ compared to the -/- genotype. The homozygous insLQ genotype showed strong significant......The luteinizing hormone receptor (LHCGR) has a little studied polymorphic 6 bp insertion (rs4539842/insLQ). This study has evaluated the insLQ polymorphism in relation to potential associations with hormonal characteristics of human small antral follicles (hSAFs). In total, 310 hSAFs were collected...... from 86 women undergoing fertility preservation. Analysis included hormonal profile of 297 follicular fluid (FF) samples and 148 corresponding granulosa cells samples were evaluated by qPCR for selected genes. Significantly reduced and non-detectable mRNA levels of anti-Müllerian hormone receptor II...

  10. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  11. Thyroid Hormone Receptor Beta in the Ventromedial Hypothalamus Is Essential for the Physiological Regulation of Food Intake and Body Weight

    Directory of Open Access Journals (Sweden)

    Saira Hameed

    2017-06-01

    Full Text Available The obesity epidemic is a significant global health issue. Improved understanding of the mechanisms that regulate appetite and body weight will provide the rationale for the design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis through their interaction with thyroid hormone receptors (TRs, which function as ligand-inducible transcription factors. The TR-beta isoform (TRβ is expressed in the ventromedial hypothalamus (VMH, a brain area important for control of energy homeostasis. Here, we report that selective knockdown of TRβ in the VMH of adult mice results in severe obesity due to hyperphagia and reduced energy expenditure. The observed increase in body weight is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. These data identify TRβ in the VMH as a major physiological regulator of food intake and energy homeostasis.

  12. Heat shock protein 90 chaperone complex inhibitor enhanced radiosensitivity through modification of response to hormone and degradation of androgen receptor in hormone sensitive prostate cancer cell line

    International Nuclear Information System (INIS)

    Mitsuhashi, N.; Harashima, K.; Akimoto, T.

    2003-01-01

    It is easily speculated that androgen or androgen deprivation affects proliferative activity or radiosensitivity, but there has been enough information how androgen or androgen deprivation influences the response to radiation. In this setting, the effect of dihydrotestosterone (DHT) on cellular growth and radiosensitivity was examined in hormone-responsive human prostate cancer cell line (LnCap). The binding of androgen receptor (AR) with heat shock protein 90 (Hsp90) plays an important role in stability of the function of receptor. It was, therefore, examined how Hsp90 chaperone complex inhibitor modified the effect of DHT on radiosensitivity in addition to the effect of DHT, especially focusing on AR and its downstream signal transduction pathways. Hydroxy-flutamide (OH-flutamide) was also used to confirm the effect of activation of AR on radiosensitivity because AR of LnCap has a point mutation, leading to activation of AR caused by the binding of OH-flutamide. Radicicol was used as a Hsp90 chaperone complex inhibitor, and incubated with cells at a concentration of 500 nM. Radicicol was incubated with cells for 9 h, and cells were irradiated 1 h after the start of incubation. DHT and OH-flutamide were incubated with cells until staining. DHT or OH-flutamide resulted in stimulation of cellular growth in contrast to inhibition of cellular growth caused by higher concentrations, so that we adopted 1 nM as a concentration of DHT and 1μM as a concentration of OH-flutamide. DHT or OH-flutamide in combination with radiation resulted in slight decrease in radiosensitivity compared with radiation alone. Radicicol at a concentration of 500 nM in combination with DHT or OH-flutamide abolished decrease in radiosensitivity caused by DHT or OH-flutamide. In terms of the expression of AR, radicicol in combination with radiation and/or DHT, OH-flutamide induced degradation of AR. In consistent with degradation of AR, the expression of prostate specific antigen (PSA) decreased

  13. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M

    1998-01-01

    organization of this sea anemone receptor. The receptor gene contains eight introns that are all localized within a region coding for the large extracellular N terminus. These introns occur at the same positions and have the same intron phasing as eight introns in the genes coding for the mammalian...

  14. Cytokines and Bone Loss in a 5-Year Longitudinal Study—Hormone Replacement Therapy Suppresses Serum Soluble Interleukin-6 Receptor and Increases Interleukin-1-Receptor Antagonist

    DEFF Research Database (Denmark)

    Abrahamsen, B.; Bonnevie-Nielsen, V.; Ebbesen, E.N.

    2000-01-01

    ) and the soluble IL-6 receptor (sIL-6R) potentially modify cytokine bioactivity. We therefore assessed the impact of menopause and hormone replacement therapy (HRT) on cytokines and activity modifiers in serum within a 5-year longitudinal study. One hundred sixty perimenopausal women (age 50.1 +/- 2.8 years) were.......16; p = 0.17). In conclusion, serum IL-1ra and sIL-6R are influenced by HRT and are associated with the rate of bone loss in perimenopausal women....

  15. Corticotropin-Releasing Hormone Receptor 2 Gene Variants in Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Hazuki Komuro

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in the pathophysiology of irritable bowel syndrome (IBS and regulates the stress response through two CRH receptors (R1 and R2. Previously, we reported that a CRHR1 gene polymorphism (rs110402, rs242924, and rs7209436 and haplotypes were associated with IBS. However, the association between the CRHR2 gene and IBS was not investigated. We tested the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are associated with IBS pathophysiology and negative emotion in IBS patients.A total of 142 IBS patients and 142 healthy controls participated in this study. Seven single nucleotide polymorphisms (SNPs of the CRHR2 gene (rs4722999, rs3779250, rs2240403, rs2267710, rs2190242, rs2284217, and rs2284220 were genotyped. Subjects' psychological states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-Rating Depression Scale.We found that rs4722999 and rs3779250, located in intronic region, were associated with IBS in terms of genotype frequency (rs4722999: P = 0.037; rs3779250: P = 0.017 and that the distribution of the major allele was significantly different between patients and controls. There was a significant group effect (controls vs. IBS, and a CRHR2 genotype effect was observed for three psychological scores, but the interaction was not significant. We found a haplotype of four SNPs (rs4722999, rs3779250, rs2240403, and rs2267710 and two SNPs (rs2284217 and rs2284220 in strong linkage disequilibrium (D' > 0.90. We also found that haplotypes of the CRHR2 gene were significantly different between IBS patients and controls and that they were associated with negative emotion.Our findings support the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are related to IBS. In addition, we found associations between CRHR2 genotypes and haplotypes and negative emotion in IBS patients and controls. Further studies on IBS and the CRH

  16. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2013-01-01

    Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.

  17. Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

    OpenAIRE

    Lewis, R E; Czech, M P

    1987-01-01

    Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for ...

  18. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  19. Prognostic factors of craniopharyngioma with special reference to autocrine/paracrine signaling: underestimated implication of growth hormone receptor.

    Science.gov (United States)

    Ogawa, Yoshikazu; Watanabe, Mika; Tominaga, Teiji

    2015-10-01

    Craniopharyngioma is a slow-growing tumor classified as benign, but tight adhesion and significant local infiltration to the vital structures are common. In spite of improvement of modern microsurgery techniques and precise anatomical understanding not few cases of this tumor recur, and long-term tumor control and maintenance of quality of life are sometimes difficult. However, very little is known about the effects of the molecular characters of craniopharyngioma on the prognosis. Ninety eight cases of craniopharyngioma surgically treated at the Department of Neurosurgery, Tohoku University Hospital and Kohnan Hospital from April 1996 to May 2014, 45 males and 53 females aged from 2 to 80 years (mean, 40.84 years) were retrospectively reviewed, and postoperative outcomes and the possible involvement of the autocrine/paracrine mechanism were investigated. The patients were followed up at intervals of 6 months to assess tumor recurrence, and clinical outcomes were correlated with the findings of immunohistochemical examinations used growth hormone receptor (GHR) and downstream hormones. The follow-up period ranged from 3 to 209 months. Hormone expression was examined in 88 patients, of which 46 specimens (52.3 %) showed high expression of GHR. The GHR high expression group had a significantly shorter duration of postoperative stable disease compared with the low expression group (logrank test, p = 0.007). Simultaneous high expression of growth hormone (GH) and GHR was found in 33 specimens (37.5 %), and the high expression group had a significantly shorter duration of postoperative stable disease compared with the low expression group (logrank test, p = 0.011). No other hormones showed statistically significant differences in outcomes. High expression of GHR is associated with shorter duration of postoperative stable disease in patients with craniopharyngioma. If the surgical specimens were craniopharyngiomas with high GHR expression, GH supplementation

  20. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    OpenAIRE

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigeneti...

  1. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    Science.gov (United States)

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris).

    Science.gov (United States)

    Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki

    2006-04-01

    GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homologue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridization showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17beta-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates.

  3. Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris)

    Science.gov (United States)

    Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki

    2005-01-01

    GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homo-logue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridiz-ation showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17β-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates. PMID:16367741

  4. A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fang-Fang Wang

    2017-12-01

    Full Text Available Summary: Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP. 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3′,5′-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress. : How pathogenic bacteria use receptors to recognize the signals of the host plant is unknown. Wang et al. have identified a bacterial receptor histidine kinase that specifically senses the plant hormone cytokinin. Through a four-step phosphorelay, cytokinin perception triggers degradation of a second messenger, c-di-GMP, to activate the bacterial response to oxidative stress. Keywords: histidine kinase, ligand, cytokinin, autokinase activity, phosphorelay, response regulator, two-component signal transduction system, Xanthomonas campestris pv. campestris, virulence, oxidative stress

  5. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Wu, S-F; Yu, H-Y; Jiang, T-T; Gao, C-F; Shen, J-L

    2015-08-01

    G protein-coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth-and-death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress-tolerance gene, Mth, in P. xylostella. The evolution by the birth-and-death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides. © 2015 The Royal Entomological Society.

  6. Immunolocalization of a tachykinin-receptor-like protein in the central nervous system of Locusta migratoria migratorioides and neobellieria bullata.

    Science.gov (United States)

    Veelaert, D; Oonk, H B; Vanden Eynde, G; Torfs, H; Meloen, R H; Schoofs, L; Parmentier, M; De Loof, A; Vanden Broeck, J

    1999-05-10

    Antisera raised against two distinct peptide regions of the Drosophila neurokinin-like receptor NKD were used to immunolocalize tachykinin-receptor-like proteins in the central nervous system of two insect species: the African migratory locust, Locusta migratoria, and the gray fleshfly, Neobellieria bullata. The resulting immunopositive staining patterns were identical for both antisera. Moreover, a very similar distribution of the immunoreactive material was observed in fleshflies and locusts. Immunoreactivity was found in nerve terminals of the retrocerebral complex, suggesting a presynaptic localization of the receptor in this part of the brain. Cell bodies were stained in the subesophageal ganglion: an anterior group of four larger cells and a posterior group of about 20 cells. These cells have axons projecting into the contralateral nervus corporis allati (NCA) II, bypassing the corpus allatum and projecting through the NCA I into the storage part of the corpus cardiacum. In the glandular part of the corpus cardiacum, the glandular adipokinetic hormone-producing cells did not show any immunopositive staining. In the locust, additional immunopositive staining was observed in internolaterally located neurons of the tritocerebrum and in important integrative parts of the neuropil such as the central body and the mushroom bodies.

  7. Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti.

    Science.gov (United States)

    Oryan, Alireza; Wahedi, Azizia; Paluzzi, Jean-Paul V

    2018-03-04

    To cope with stressful events such as flight, organisms have evolved various regulatory mechanisms, often involving control by endocrine-derived factors. In insects, two stress-related factors include the gonadotropin-releasing hormone-related peptides adipokinetic hormone (AKH) and corazonin (CRZ). AKH is a pleiotropic hormone best known as a substrate liberator of proteins, lipids, and carbohydrates. Although a universal function has not yet been elucidated, CRZ has been shown to have roles in pigmentation, ecdysis or act as a cardiostimulatory factor. While both these neuropeptides and their respective receptors (AKHR and CRZR) have been characterized in several organisms, details on their specific roles within the disease vector, Aedes aegypti, remain largely unexplored. Here, we obtained three A. aegypti AKHR transcript variants and further identified the A. aegypti CRZR receptor. Receptor expression using a heterologous functional assay revealed that these receptors exhibit a highly specific response for their native ligands. Developmental quantitative expression analysis of CRZR revealed enrichment during the pupal and adult stages. In adults, quantitative spatial expression analysis revealed CRZR transcript in a variety of organs including head, thoracic ganglia, primary reproductive organs (ovary and testis), as well as male carcass. This suggest CRZ may play a role in ecdysis, and neuronal expression of CRZR indicates a possible role for CRZ within the nervous system. Quantitative developmental expression analysis of AKHR identified significant transcript enrichment in early adult stages. AKHR transcript was observed in the head, thoracic ganglia, accessory reproductive tissues and the carcass of adult females, while it was detected in the abdominal ganglia and enriched significantly in the carcass of adult males, which supports the known function of AKH in energy metabolism. Collectively, given the enrichment of CRZR and AKHR in the primary and

  8. The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes.

    Science.gov (United States)

    Hainan, Lan; Huilin, Liu; Khan, Mahamad; Xin, Zheng; YuJiang, Yang; Hui, Zhang; Naiquan, Yao

    2018-06-08

    Traditional views suggest that growth hormone and the growth hormone receptor (GH/GHR complex) exert their functions only on the plasma membrane. This paradigm, however, has been challenged by recent new findings that the GH/GHR complex could translocate into cell nuclei where they could still exhibit important physiological functions. We also reported the nuclear localization of porcine GH/GHR and their potential functions in porcine hepatocytes. However, the basic path of pGH/GHR's nuclear translocation remains unclear. Combining previous research results and our current findings, we proposed two basic routes of pGH/GHR's nuclear transportation as follows: 1) after pGH binding to GHR, pGH/GHR enters into the cytoplasm though clathrin- or caveolin-mediated endocytosis, then the pGH/GHR complex enters into early endosomes (Rab5-positive), and the endosome carries the GH/GHR complex to the endoplasmic reticulum (ER). After endosome docking on the ER, the endosome starts fission, and the pGH/GHR complex enters into the ER lumen. Then the pGH/GHR complex transports into the cytoplasm, possibly by the ERAD pathway. Subsequently, the pGH/GHR complex interacts with IMPα/β, which, in turn, mediates GH/GHR nuclear localization; 2) pGH binds with the GHR on the cell membrane and, subsequently, pGH/GHR internalizes into the cell and enters into the endosome (this endosome may belong to a class of endosomes called envelope-associated endosomes (NAE)). Then, the endosome carries the pGH/GHR to the nuclear membrane. After docking on the nuclear membrane, the pGH/GHR complex fuses with the nuclear membrane and then enters into the cell nucleus. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Growth inhibition of tumor cells in vitro by using monoclonal antibodies against gonadotropin-releasing hormone receptor.

    Science.gov (United States)

    Lee, Gregory; Ge, Bixia

    2010-07-01

    As the continuation of a previous study, synthetic peptides corresponding to the extracellular domains of human gonadotropin-releasing hormone (GnRH) receptor were used to generate additional monoclonal antibodies which were further characterized biochemically and immunologically. Among those identified to recognize GnRH receptor, monoclonal antibodies designated as GHR-103, GHR-106 and GHR-114 were found to exhibit high affinity (Kd L37), when cancer cells were incubated with GnRH or GHR-106. The widespread expressions of GnRH receptor in almost all of the studied human cancer cell lines were also demonstrated by RT-PCR and Western blot assay, as well as indirect immunofluorescence assay with either of these monoclonal antibodies as the primary antibody. In view of the longer half life of antibodies as compared to that of GnRH or its analogs, anti-GnRH receptor monoclonal antibodies in humanized forms could function as GnRH analogs and serve as an ideal candidate of anti-cancer drugs for therapeutic treatments of various cancers in humans as well as for fertility regulations.

  10. Amenorrhea secondary to a vismodegib-induced blockade of follicle-stimulating hormone-receptor activation.

    Science.gov (United States)

    Strasswimmer, John; Latimer, Benjamin; Ory, Steven

    2014-08-01

    To report a novel mechanism suggestive of early ovarian failure secondary to the anti-tumor hedgehog-pathway inhibitor vismodegib. Case report and literature review. Academic and private dermatology and fertility practices. A 34-year-old nulliparous woman with locally advanced basal cell carcinomas who became amenorrheic while receiving oral therapy with vismodegib. Physical examination and endocrine evaluation. Elevated follicle-stimulating hormone (FSH) and low estrogen in the setting of a normal anti-Müllerian hormone. FSH was elevated; estrogen was low. Preantral follicles were detected and anti-Müllerian hormone activity was normal. Menses resumed 5 weeks after cessation of therapy. Vismodegib, a first-in-class inhibitor of the hedgehog signaling pathway is indicated for advanced basal cell carcinoma and is associated with amenorrhea. The mechanism is unknown; it has some features of ovarian failure but preserves ovarian potential through blockading of FSH-receptor-dependent signal transduction. This effect appears to be rapidly reversible upon cessation of therapy. Vismodegib and related compounds may have potential for a role in intervention for gynecologic and endocrine disorders and in therapy for other issues involving FSH-dependent function. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  12. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  13. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  14. Investigating the association between polymorphism of follicle-stimulating hormone receptor gene and ovarian response in controlled ovarian hyperstimulation

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Sheikhha

    2011-01-01

    Full Text Available Aim : The aim of the study was to investigate the association between follicle-stimulating hormone receptor (FSHR gene polymorphism at Position 680 and the outcomes of controlled ovarian hyperstimulation for in vitro fertilization and embryo transfer (IVF-ET in infertile women. Materials and Methods : One hundred and eight patients under 35 years of age who underwent IVF-ET procedures were included in this study. The hormonal profile and treatment of all patients were analyzed and FSHR polymorphism was examined by polymerase chain reaction-restriction fragment length polymorphism. Women from all groups were classified based on polymorphisms at Position 680, occupied either by asparagines (Asn or serine (Ser as Asn/Asn, Asn/Ser, and Ser/Ser genotype. Result : Our study showed that all patients in the Asn/Asn group were normal responders and in the Asn/Ser group 64.8% were normal responders and 21.1% and 14.1% were poor and hyper responders respectively. In the Ser/Ser group we did not have normal responders and 46.7% of these patients were poor responders and 53.3% were hyper responders. Conclusion : FSH receptor polymorphism is correlated with response to ovarian stimulation.

  15. Chemotherapy-induced amenorrhea and the resumption of menstruation in premenopausal women with hormone receptor-positive early breast cancer.

    Science.gov (United States)

    Koga, Chinami; Akiyoshi, Sayuri; Ishida, Mayumi; Nakamura, Yoshiaki; Ohno, Shinji; Tokunaga, Eriko

    2017-09-01

    For premenopausal women with breast cancer, information on the effects of chemotherapy and the risk of infertility is important. In this study, the effect of chemotherapy on the ovarian function in premenopausal women with hormone receptor-positive breast cancer was investigated, with an age-stratified analysis of the appearance of amenorrhea and the resumption of menstruation after the use of chemotherapy with anthracyclines or taxanes. Premenopausal women diagnosed with operable Stage I-III hormone receptor-positive breast cancer and underwent neoadjuvant or adjuvant chemotherapy with the standard regimen of anthracyclines and/or taxanes were included. The patients were classified into age groups in 5-year increments, and the rates of chemotherapy-induced amenorrhea (CIA), resumption of menstruation, and duration of CIA after chemotherapy were analyzed. The subjects consisted of 101 patients (median age 45 years). CIA occurred in 97 (96%) patients and 40 patients resumed menstruation. In all patients aged ≤39 years menstruation restarted, whereas in all patients aged ≥50 years, menstruation did not restart. For the patients who resumed menstruation, the younger the patients, the sooner menstruation tended to restart. The resumption of menstruation occurred within 1 year for younger patients aged around 30 years, but for those aged ≥35 years, 60% of cases took around 2-3 years for resumption. The incidence of CIA, the resumption of menstruation and duration of CIA after chemotherapy depend greatly on the patient's age.

  16. A hormone pulse induces transient changes in the subcellular distribution and leads to a lysosomal accumulation of the estradiol receptor alpha in target tissues.

    Science.gov (United States)

    Qualmann, B; Kessels, M M; Thole, H H; Sierralta, W D

    2000-06-01

    An intrauterine pulse-stimulation with estradiol induced changes in the subcellular localization of estrogen receptor alpha in porcine endometrium, as detected with F(ab') fragments of various anti-receptor antibodies covalently linked to nanogold. The low-sterically hindered immunoreagents--recognizing different epitopes within the hormone binding domain--allowed for an efficient immunolabeling of estradiol receptor alpha, detecting it both in the cytoplasm and the nucleus of nonstimulated epithelium cells. In the cytoplasm, the receptor often seemed to be associated with actin filaments and the endoplasmatic reticulum. After the stimulation with estradiol, a predominantly nuclear localization and a labeling of nucleoli was observed. Our immunoelectron microscopy study demonstrates a localization of the receptor in cytoplasmic organelles that increased after the hormone pulse. These organelles exhibited the morphological properties of lysosomes and relocated to the perinuclear area. In analogous cytoplasmic organelles, the presence of cathepsin D was detected via indirect immunogold labeling, justifying their classification as lysosomes. Quantitative examinations revealed that not only the number of lysosomes in the proximity of the nucleus but also their immunostaining for estradiol receptor alpha increased significantly after the hormone pulse. Thus, estradiol induces both the rapid shift of receptor into the nucleus, a slower perinuclear accumulation of lysosomes and an increase of lysosomal ERalpha-immunoreactivity. These results suggest a role for lysosomes in the degradation of receptor shuttling out of the nucleus. This could serve as termination of the estradiol receptor alpha-dependent activation of target cells. This hypothesis is strengthened by the fact that the receptor content in uterine tissue declined drastically few hours after the hormone pulse.

  17. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients

    International Nuclear Information System (INIS)

    Sparks, Rachel; Yuan, Xiaopu; Lin, Ming Gang; McVarish, Lynda; Aiello, Erin J; McTiernan, Anne; Ulrich, Cornelia M; Bigler, Jeannette; Tworoger, Shelley S; Yasui, Yutaka; Rajan, Kumar B; Porter, Peggy; Stanczyk, Frank Z; Ballard-Barbash, Rachel

    2004-01-01

    UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes are involved in removing sex hormones from circulation. Polymorphic variation in five UGT and SULT genes – UGT1A1 ((TA) 6 /(TA) 7 ), UGT2B4 (Asp 458 Glu), UGT2B7 (His 268 Tyr), UGT2B15 (Asp 85 Tyr), and SULT1A1 (Arg 213 His) – may be associated with circulating sex hormone concentrations, or the risk of an estrogen receptor-negative (ER - ) or progesterone receptor-negative (PR - ) tumor. Logistic regression analysis was used to estimate the odds ratios of an ER - or PR - tumor associated with polymorphisms in the genes listed above for 163 breast cancer patients from a population-based cohort study of women in western Washington. Adjusted geometric mean estradiol, estrone, and testosterone concentrations were calculated within each UGT and SULT genotype for a subpopulation of postmenopausal breast cancer patients not on hormone therapy 2–3 years after diagnosis (n = 89). The variant allele of UGT1A1 was associated with reduced risk of an ER - tumor (P for trend = 0.03), and variants of UGT2B15 and SULT1A1 were associated with non-statistically significant risk reductions. There was some indication that plasma estradiol and testosterone concentrations varied by UGT2B15 and SULT1A1 genotypes; women with the UGT2B15 Asp/Tyr and Tyr/Tyr genotypes had higher concentrations of estradiol than women with the Asp/Asp genotype (P = 0.004). Compared with women with the SULT1A1 Arg/Arg and Arg/His genotypes, women with the His/His genotype had elevated concentrations of testosterone (P = 0.003). The risk of ER - breast cancer tumors may vary by UGT or SULT genotype. Further, plasma estradiol and testosterone concentrations in breast cancer patients may differ depending on some UGT and SULT genotypes

  18. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  19. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  20. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    Full Text Available The hormone thyrotropin (TSH and its receptor (TSHR are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR and lutropin/choriogonadotropin (LHR and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD with the transmembrane helix (TMH 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin, super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  1. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor.

    Science.gov (United States)

    Krause, Gerd; Kreuchwig, Annika; Kleinau, Gunnar

    2012-01-01

    The hormone thyrotropin (TSH) and its receptor (TSHR) are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR) and lutropin/choriogonadotropin (LHR) and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD) with the transmembrane helix (TMH) 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin), super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an "intramolecular agonistic unit" close to the transmembrane domain.

  2. Thyroid Hormone Receptor β (TRβ) and Liver X Receptor (LXR) Regulate Carbohydrate-response Element-binding Protein (ChREBP) Expression in a Tissue-selective Manner*

    Science.gov (United States)

    Gauthier, Karine; Billon, Cyrielle; Bissler, Marie; Beylot, Michel; Lobaccaro, Jean-Marc; Vanacker, Jean-Marc; Samarut, Jacques

    2010-01-01

    Thyroid hormone (TR) and liver X (LXR) receptors are transcription factors involved in lipogenesis. Both receptors recognize the same consensus DNA-response element in vitro. It was previously shown that their signaling pathways interact in the control of cholesterol elimination in the liver. In the present study, carbohydrate-response element-binding protein (ChREBP), a major transcription factor controlling the activation of glucose-induced lipogenesis in liver, is characterized as a direct target of thyroid hormones (TH) in liver and white adipose tissue (WAT), the two main lipogenic tissues in mice. Using genetic and molecular approaches, ChREBP is shown to be specifically regulated by TRβ but not by TRα in vivo, even in WAT where both TR isoforms are expressed. However, this isotype specificity is not found in vitro. This TRβ specific regulation correlates with the loss of TH-induced lipogenesis in TRβ−/− mice. Fasting/refeeding experiments show that TRβ is not required for the activation of ChREBP expression particularly marked in WAT following refeeding. However, TH can stimulate ChREBP expression in WAT even under fasting conditions, suggesting completely independent pathways. Because ChREBP has been described as an LXR target, the interaction of LXR and TRβ in ChREBP regulation was assayed both in vitro and in vivo. Each receptor recognizes a different response element on the ChREBP promoter, located only 8 bp apart. There is a cross-talk between LXR and TRβ signaling on the ChREBP promoter in liver but not in WAT where LXR does not regulate ChREBP expression. The molecular basis for this cross-talk has been determined in in vitro systems. PMID:20615868

  3. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity.

    Science.gov (United States)

    Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N

    2012-05-01

    Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.

  4. Joint relative risks for estrogen receptor-positive breast cancer from a clinical model, polygenic risk score, and sex hormones.

    Science.gov (United States)

    Shieh, Yiwey; Hu, Donglei; Ma, Lin; Huntsman, Scott; Gard, Charlotte C; Leung, Jessica W T; Tice, Jeffrey A; Ziv, Elad; Kerlikowske, Karla; Cummings, Steven R

    2017-11-01

    Models that predict the risk of estrogen receptor (ER)-positive breast cancers may improve our ability to target chemoprevention. We investigated the contributions of sex hormones to the discrimination of the Breast Cancer Surveillance Consortium (BCSC) risk model and a polygenic risk score comprised of 83 single nucleotide polymorphisms. We conducted a nested case-control study of 110 women with ER-positive breast cancers and 214 matched controls within a mammography screening cohort. Participants were postmenopausal and not on hormonal therapy. The associations of estradiol, estrone, testosterone, and sex hormone binding globulin with ER-positive breast cancer were evaluated using conditional logistic regression. We assessed the individual and combined discrimination of estradiol, the BCSC risk score, and polygenic risk score using the area under the receiver operating characteristic curve (AUROC). Of the sex hormones assessed, estradiol (OR 3.64, 95% CI 1.64-8.06 for top vs bottom quartile), and to a lesser degree estrone, was most strongly associated with ER-positive breast cancer in unadjusted analysis. The BCSC risk score (OR 1.32, 95% CI 1.00-1.75 per 1% increase) and polygenic risk score (OR 1.58, 95% CI 1.06-2.36 per standard deviation) were also associated with ER-positive cancers. A model containing the BCSC risk score, polygenic risk score, and estradiol levels showed good discrimination for ER-positive cancers (AUROC 0.72, 95% CI 0.65-0.79), representing a significant improvement over the BCSC risk score (AUROC 0.58, 95% CI 0.50-0.65). Adding estradiol and a polygenic risk score to a clinical risk model improves discrimination for postmenopausal ER-positive breast cancers.

  5. Fanconi Anemia a Is a Nucleocytoplasmic Shuttling Molecule Required for Gonadotropin-Releasing Hormone (GnRH) Transduction of the GnRH Receptor

    OpenAIRE

    Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela

    2006-01-01

    GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common α- and hormone-specific β-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LβT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60%...

  6. Tritium-labelled steroids, their preparation and application for the determination and location of steroid tissular hormone receptors

    International Nuclear Information System (INIS)

    Jouquey, Alain; Raynaud, J.P.

    1977-01-01

    A product is prepared by the action of tritiated methanol on 11β-hydroxy-estra-4,9-dien-3,17-dione, the action of an aromatisation agent on the (11β)-11-methoxy- 3 H 3 -estra-4,9-dien-3,17-dione formed and the action of an ethynylation agent on the resulting (11β)-3-hydroxy-11-methoxy- 3 H 3 -estra-1,3,5(10)-trien-17-one giving (11β, 17α)-11-methoxy- 3 H 3 -19-norpregna-1,3,5(10)-trien-20-yne-3,17 diol, the free hydroxyl function or functions of this product may be etherified or esterified as the case may be. The tritiated methanol acts in the presence of perchloric acid. The aromatisation agent is palladium hydroxide and the operation is carried out in methanol. The ethynylation agent is acetylene and the reaction takes place in the presence of sodium t-amylate in toluene. This product allows the study and determination of the estrogen specific receptor present in the tissue cells of target organs for the action of estrogens: uterus, vagina, hypophysis, hypothalamus and tumours, of the breast and prostate for example, in both animals and man. Not being fixed by the plasma proteins binding such hormones as testosterone and estradiol in women the product is an ideal indicator of the tissular estrogen receptor with which it forms a complex of strong affinity and great stability, especially since it interacts with the tissular receptors of no other steroid hormone groups (glucocorticoids, androgen or progestogen mineralocorticosteroids) [fr

  7. Primary and secondary structural determinants in the receptor binding sequence β-(38-57) from human luteinizing hormone

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Charlesworth, M.C.; Kitzmann, K.; Mason, K.A.; Johnson, L.; Ryan, R.J.

    1988-01-01

    The intercysteine loop sequence 38-57 in the β subunit has been shown to be a determinant for expression of biological activity in human lutropin (hLH) and choriogonadotropin (hCG). Together with other sequences, the 38-57 region may contribute to a multicomponent receptor binding domain in hLH/hCG. Because the structural features influencing activity in this important region are not easy to evaluate in the full-length subunit, the authors have used analogues of hLHβ-(38-57) prepared by solid-phase synthesis. The peptides were tested for inhibition of 125 I-labeled hCG binding to rat ovarian membrane receptors. Secondary structure was analyzed by circular dichroism (CD) and by reactivity with antibodies to the native 38-57 peptide. An analogue lacking the 38-57 disulfide linkage retained 20% receptor binding and full immunoreactivity. Far-ultraviolet CD profiles were essentially identical with those of the disulfide-intact peptide; a transition from 10% to 30% α-helix in 90% trifluoroethanol was characteristic of both. The peptide thus appears not to require the disulfide bridge to retain a looped conformation with amphipathic secondary structure. An essential positive charge at position 43 was shown by complete loss of activity upon substitution of Asp or Ala for the Arg found in all known species of LH. These results indicate that the 38-57 sequence is a relatively rigid and structurally autonomous region, not merely a series of residues constrained passively into a loop by a disulfide linkage. It includes segments of ordered structure, probably including both amphipathic helical and turn sequences. Evidence from studies of other hormones suggests that this region may be important to binding and specificity in the glycoprotein hormones as a group

  8. The C'-terminal interaction domain of the thyroid hormone receptor confers the ability of the DNA site to dictate positive or negative transcriptional activity

    International Nuclear Information System (INIS)

    Holloway, J.M.; Glass, C.K.; Adler, S.; Nelson, C.A.; Rosenfeld, M.G.

    1990-01-01

    To investigate mechanisms responsible for positive and negative transcriptional control, the authors have utilized two types of promoters that are diffferentially regulated by thyroid hormone (T 3 ) receptors. Promoters containing the palindromic T 3 response element TCAGGTCA TGACCTGA are positively regulated by the T 3 receptor after the administration of T 3 , whereas otherwise identical promoters containing the estrogen response element TCAGGTCA CTG TGACCTGA can be regulated negatively; converse effects are observed with the estrogen receptor. They describe evidence that the transcriptional inhibitory effects of the T 3 or estrogen receptors on the estrogen or T 3 response elements, respectively, are imposed by amino acid sequences in the C'-terminal region that colocalize with dimerization and hormone-binding domains and that these sequences can transfer inhibitory functions to other classes of transcription factors. Removal of the C'-terminal dimerization and hormone-binding domains of either the αT 3 or estrogen receptors permits each receptor to act constitutively to enhance transcription on both T 3 and estrogen response elements. It is, therefore, suggested that protein-protein interactions between receptor C' termini limit the subset of DNA binding sites on which transcriptional activation occurs

  9. Effects of adrenal hormones on the expression of adiponectin and adiponectin receptors in adipose tissue, muscle and liver.

    Science.gov (United States)

    de Oliveira, Cristiane; Iwanaga-Carvalho, Carla; Mota, João F; Oyama, Lila M; Ribeiro, Eliane B; Oller do Nascimento, Cláudia M

    2011-11-01

    Adiponectin, an insulin-sensitive hormone that is primarily synthesized in adipose tissue, exerts its effects by binding to two receptors, adipoR1 and adipoR2. Little is known regarding the effects of glucocorticoids on the expression of adiponectin receptors. Male Wistar rats were bilaterally adrenalectomized and treated with dexamethasone (0.2 mg/100 g) twice daily for 3 days. To analyze the potential effects of glucocorticoids, rats received two daily injections of the glucocorticoid receptor antagonist (RU-486, 5.0 mg) over the course of 3 days. Additionally, 3T3-L1 adipocytes and C2C12 myotubes were treated with dexamethasone, adrenaline or RU-486. The gene expression of adiponectin, adipoR1 and adipoR2 was determined by real-time PCR, and protein secretion was examined by Western blotting using lysates from retroperitoneal, epididymal and subcutaneous adipose tissue depots, liver and muscle. In rats, excess glucocorticoids increased the levels of insulin in serum and decreased serum adiponectin concentrations, whereas adrenalectomy decreased the mRNA expression of adiponectin (3-fold) and adipoR2 (7-fold) in epididymal adipose tissue and increased adipoR2 gene expression in muscle (3-fold) compared to control group sham-operated. Dexamethasone treatment did not reverse the effects of adrenalectomy, and glucocorticoid receptor blockade did not reproduce the effects of adrenalectomy. In 3T3-L1 adipocytes, dexamethasone and adrenaline both increased adipoR2 mRNA levels, but RU-486 reduced adipoR2 gene expression in vitro. Dexamethasone treatment induces a state of insulin resistance but does not affect adiponectin receptor expression in adipose tissue. However, the effects of catecholamines on insulin resistance may be due to their effects on adipoR2. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR. Crystal structures of a number of Class B GPCR extracellular domains (ECD bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  11. Receptor localization of steroid hormones and drugs: discoveries through the use of thaw-mount and dry-mount autoradiography

    Directory of Open Access Journals (Sweden)

    Stumpf W.E.

    1998-01-01

    Full Text Available The history of receptor autoradiography, its development and applications, testify to the utility of this histochemical technique for localizing radiolabeled hormones and drugs at cellular and subcellular sites of action in intact tissues. Localization of diffusible compounds has been a challenge that was met through the introduction of the "thaw-mount" and "dry-mount" autoradiographic techniques thirty years ago. With this cellular receptor autoradiography, used alone or combined with other histochemical techniques, sites of specific binding and deposition in vivo and in vitro have been characterized. Numerous discoveries, some reviewed in this article, provided information that led to new concepts and opened new areas of research. As an example, in recent years more than fifty target tissues for vitamin D have been specified, challenging the conventional view about the main biological role of vitamin D. The functions of most of these vitamin D target tissues are unrelated to the regulation of systemic calcium homeostasis, but pertain to the (seasonal regulation of endo- and exocrine secretion, cell proliferation, reproduction, neural, immune and cardiovascular responses, and adaptation to stress. Receptor autoradiography with cellular resolution has become an indispensable tool in drug research and development, since information can be obtained that is difficult or impossible to gain otherwise

  12. Nuclear thyroid hormone receptors in rabbit heart: reduced triiodothyronine binding in atrium compared with ventricle

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Ulrich, J.M.; Kaldor, G.J.

    1988-01-01

    Radiolabeled triiodothyronine (T3) binding to isolated nuclei was measured to compare the binding characteristics of the nuclear receptors in rabbit ventricular and atrial muscle cells. Scatchard analysis of the binding data yielded a maximum binding capacity of 170 +/- 20 fmol per mg DNA and apparent dissociation constant of 525 +/- 100 pM for ventricular nuclei. The binding capacity and the dissociation constant for the atrial muscle cell nuclei were 55 +/- 10 fmol per mg DNA and 500 +/- 75 pM, respectively. The results suggest that the binding capacity for T3 receptor in the atrium is considerably lower than that found in the ventricle. The reduced binding capacity of the T3 receptor in the atrium might reflect differences in the nuclear T3 receptors between ventricle and atrium

  13. Isolation, Expression Analysis, and Functional Characterization of the First Antidiuretic Hormone Receptor in Insects

    Science.gov (United States)

    2010-06-01

    fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19. 28. Larkin MA, et al. (2007) Clustal W and Clustal X version...capa-r2; however, the latter encodes an atypical G protein - coupled receptor lacking a region ranging between the first and second transmembrane domain...this medically important insect- disease vector. CAPA | Chagas’ | G protein -coupled receptor | neurohormone | neuropeptide A major physiological

  14. A Macrocyclic Agouti-Related Protein/[Nle4, DPhe7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Sub-nanomolar Melanocortin Receptor Ligands

    OpenAIRE

    Ericson, Mark D.; Freeman, Katie T.; Schnell, Sathya M.; Haskell-Luevano, Carrie

    2017-01-01

    The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4, DPhe7]α-Melanocyte Stimulating Hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp repl...

  15. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis.

    Science.gov (United States)

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-08-01

    -effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine.

  16. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis.

    Directory of Open Access Journals (Sweden)

    William Leung

    2016-08-01

    treatment-effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work.This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity and the principles of personalised medicine.

  17. Relationship of oestrus synchronization method, circulating hormones, luteinizing hormone and prostaglandin F-2 alpha receptors and luteal progesterone concentration to premature luteal regression in superovulated sheep.

    Science.gov (United States)

    Schiewe, M C; Fitz, T A; Brown, J L; Stuart, L D; Wildt, D E

    1991-09-01

    Ewes were treated with exogenous follicle-stimulating hormone (FSH) and oestrus was synchronized using either a dual prostaglandin F-2 alpha (PGF-2 alpha) injection regimen or pessaries impregnated with medroxy progesterone acetate (MAP). Natural cycling ewes served as controls. After oestrus or AI (Day 0), corpora lutea (CL) were enucleated surgically from the left and right ovaries on Days 3 and 6, respectively. The incidence of premature luteolysis was related (P less than 0.05) to PGF-2 alpha treatment and occurred in 7 of 8 ewes compared with 0 of 4 controls and 1 of 8 MAP-exposed females. Sheep with regressing CL had lower circulating and intraluteal progesterone concentrations and fewer total and small dissociated luteal cells on Day 3 than gonadotrophin-treated counterparts with normal CL. Progesterone concentration in the serum and luteal tissue was higher (P less than 0.05) in gonadotrophin-treated ewes with normal CL than in the controls; but luteinizing hormone (LH) receptors/cell were not different on Days 3 and 6. There were no apparent differences in the temporal patterns of circulating oestradiol-17 beta, FSH and LH. High progesterone in gonadotrophin-treated ewes with normal CL coincided with an increase in total luteal mass and numbers of cells, which were primarily reflected in more small luteal cells than in control ewes. Gonadotrophin-treated ewes with regressing CL on Day 3 tended (P less than 0.10) to have fewer small luteal cells and fewer (P less than 0.05) low-affinity PGF-2 alpha binding sites than sheep with normal CL. By Day 6, luteal integrity and cell viability was absent in ewes with prematurely regressed CL. These data demonstrate that (i) the incidence of premature luteal regression is highly correlated with the use of PGF-2 alpha; (ii) this abnormal luteal tissue is functionally competent for 2-3 days after ovulation, but deteriorates rapidly thereafter and (iii) luteal-dysfunctioning ewes experience a reduction in numbers of

  18. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  19. Analysis of thyroid hormone receptor βA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    International Nuclear Information System (INIS)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-01-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors α (TRα) and βA (TRβA) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TRα gene expression whereas a marked up-regulation of TRβA mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TRβA mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TRβA mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TRβA gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TRβA expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TRβA mRNA up-regulation. Results of this study suggest that TRβA mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in

  20. Disease management patterns for postmenopausal women in Europe with hormone-receptor-positive, human epidermal growth factor receptor-2 negative advanced breast cancer.

    Science.gov (United States)

    André, Fabrice; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Baladi, Jean-Francois; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Jerusalem, Guy

    2014-06-01

    International guidelines for hormone-receptor-positive (HR(+)), human epidermal growth factor receptor-2 negative (HER2(-)) advanced breast cancer (BC) recommend sequential lines of hormonal therapy (HT), and only recommend chemotherapy for patients with extensive visceral involvement or rapidly progressive disease. This study evaluated actual physician-reported treatments for advanced BC in Europe. We conducted a retrospective chart review of 355 postmenopausal women with HR(+), HER2(-) advanced BC who progressed on ≥1 line of HT (adjuvant or advanced) and completed ≥1 line of chemotherapy (advanced). Treatment choice was evaluated for each line of therapy. Of 355 patients, 111 (31%) received first-line chemotherapy, whereas 218 (61%) and 26 (7%) switched from HT to chemotherapy in second and third line, respectively. More patients receiving first-line HT had bone metastases (73% vs 27% chemotherapy). Patients treated with first-line chemotherapy had more brain (12% vs 3% HT) or extensive liver (13% vs 6% HT) metastases. Subgroup analysis of 188 patients who received first-line HT and had de novo advanced BC or relapsed/recurrent disease more than 1 year after adjuvant therapy found that the majority (89%; n = 167) of these patients switched to chemotherapy in second line. However, among these 167 patients, 27% had no significant changes in metastases between first and second line. Among the 73% of patients who had significant changes in metastases, 20% had no brain metastases or extensive visceral disease. Our study suggests that the guideline-recommended use of multiple HT lines is open to interpretation and that optimal treatment for European postmenopausal women with HR(+), HER2(-) advanced BC who responded to HT may not be achieved.

  1. Novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene associated with 46,XY primary amenorrhea.

    Science.gov (United States)

    Ben Hadj Hmida, Imen; Mougou-Zerelli, Soumaya; Hadded, Anis; Dimassi, Sarra; Kammoun, Molka; Bignon-Topalovic, Joelle; Bibi, Mohamed; Saad, Ali; Bashamboo, Anu; McElreavey, Ken

    2016-07-01

    To determine the genetic cause of 46,XY primary amenorrhea in three 46,XY girls. Whole exome sequencing. University cytogenetics center. Three patients with unexplained 46,XY primary amenorrhea were included in the study. Potentially pathogenic variants were confirmed by Sanger sequencing, and familial segregation was determined where parents' DNA was available. Exome sequencing was performed in the three patients, and the data were analyzed for potentially pathogenic mutations. The functional consequences of mutations were predicted. Three novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene were identified:c.1573 C→T, p.Gln525Ter, c.1435 C→T p.Arg479Ter, and c.508 C→T, p.Gln170Ter. Inactivating mutations of the LHCGR gene may be a more common cause of 46,XY primary amenorrhea than previously considered. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Aspectos histopatológicos y receptores hormonales en mucosa endometrial de mujeres posmenopáusicas con terapia hormonal

    Directory of Open Access Journals (Sweden)

    Victoria Valer

    2005-03-01

    Full Text Available Objetivos: Determinar si existe correlación directa entre la terapéutica hormonal administrada en mujeres posmenopaúsicas, el comportamiento de los receptores estrogénicos y progesterónicos en la mucosa endometrial y los cuadros histológicos más frecuentes de patologías endometriales secundarias al tratamiento. Material y Métodos: Estudio prospectivo, longitudinal de 40 mujeres posmenopaúsicas entre los 43 y 60 años con síndrome climatérico, administrándoles 2 mg de 17 beta estradiol y 1 mg de acetato de noretisterona por día, en forma continua y por vía oral. Se realizó una biopsia endometrial basal y otra postratamiento al octavo mes. Las muestras fueron procesadas para estudio histopatológico e inmunohistoquímico para receptores estrogénicos y progesterónicos. Resultados: La menarquia se presentó a una edad promedio de 13,2 años y la menopausia fisiológica entre 42 y 52 años, con una edad promedio de 46,4 años. La sintomatología climatérica mejoró notablemente con la terapia hormonal. El estudio histopatológico de mucosa endometrial basal mostró 10% de hiperplasia simple y 90% de atrofia; postratamiento, todos los casos presentaron atrofia. Los receptores se expresaron en la mucosa endometrial basal: RE (+ 12,5%, RP (++ 12,5%; postratamiento RE (+ 2,5%, RE (+++ 2,5% y RP(+ 2,5%. Conclusiones: La terapia en dosis diarias vía oral de 2 mg de 17 beta estradiol y 1 mg de acetato de noretisterona disminuye la sintomatología climatérica y produce atrofia endometrial en las pacientes con hiperplasia previa. Existe disminución estadísticamente significativa entre la primera muestra basal y la del octavo mes de la expresión de receptores estrogénicos y progesterona.

  3. Follicle-Stimulating Hormone Receptor Is Expressed by Most Ovarian Cancer Subtypes and Is a Safe and Effective Immunotherapeutic Target.

    Science.gov (United States)

    Perales-Puchalt, Alfredo; Svoronos, Nikolaos; Rutkowski, Melanie R; Allegrezza, Michael J; Tesone, Amelia J; Payne, Kyle K; Wickramasinghe, Jayamanna; Nguyen, Jenny M; O'Brien, Shane W; Gumireddy, Kiranmai; Huang, Qihong; Cadungog, Mark G; Connolly, Denise C; Tchou, Julia; Curiel, Tyler J; Conejo-Garcia, Jose R

    2017-01-15

    To define the safety and effectiveness of T cells redirected against follicle-stimulating hormone receptor (FSHR)-expressing ovarian cancer cells. FSHR expression was determined by Western blotting, immunohistochemistry, and qPCR in 77 human ovarian cancer specimens from 6 different histologic subtypes and 20 human healthy tissues. The effectiveness of human T cells targeted with full-length FSH in vivo was determined against a panel of patient-derived xenografts. Safety and effectiveness were confirmed in immunocompetent tumor-bearing mice, using constructs targeting murine FSHR and syngeneic T cells. FSHR is expressed in gynecologic malignancies of different histologic types but not in nonovarian healthy tissues. Accordingly, T cells expressing full-length FSHR-redirected chimeric receptors mediate significant therapeutic effects (including tumor rejection) against a panel of patient-derived tumors in vivo In immunocompetent mice growing syngeneic, orthotopic, and aggressive ovarian tumors, fully murine FSHR-targeted T cells also increased survival without any measurable toxicity. Notably, chimeric receptors enhanced the ability of endogenous tumor-reactive T cells to abrogate malignant progression upon adoptive transfer into naïve recipients subsequently challenged with the same tumor. Interestingly, FSHR-targeted T cells persisted as memory lymphocytes without noticeable PD-1-dependent exhaustion during end-stage disease, in the absence of tumor cell immunoediting. However, exosomes in advanced tumor ascites diverted the effector activity of this and other chimeric receptor-transduced T cells away from targeted tumor cells. T cells redirected against FSHR + tumor cells with full-length FSH represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate targets in tumor-free ovaries. Clin Cancer Res; 23(2); 441-53. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2013-10-15

    . - Highlights: • Currently used pesticides possess endocrine-disrupting (ED) potential in vitro. • ED effects can be mediated via sex hormone receptors and/or the aromatase enzyme. • Additive mixture effects on androgen receptor transactivity were observed.

  5. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids.

    Science.gov (United States)

    Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R

    2008-09-01

    Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.

  6. Clinical features and growth hormone receptor gene mutations of patients with Laron syndrome from a Chinese family.

    Science.gov (United States)

    Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping

    2007-08-01

    Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.

  7. Effect of neonatal hypothyroidism on prepubertal mouse testis in relation to thyroid hormone receptor alpha 1 (THRα1).

    Science.gov (United States)

    Sarkar, Debarshi; Singh, Shio Kumar

    2017-09-15

    Thyroid hormones (THs) are important for growth and development of many tissues, and altered thyroid status affects various organs and systems. Testis also is considered as a thyroid hormone responsive organ. Though THs play an important role in regulation of testicular steroidogenesis and spermatogenesis, the exact mechanism of this regulation remains poorly understood. The present study, therefore, is designed to examine the effect of neonatal hypothyroidism on prepubertal Parkes (P) strain mice testis in relation to thyroid hormone receptor alpha 1 (THRα1). Hypothyroidism was induced by administration of 6-propyl-2-thiouracil (PTU) in mother's drinking water from birth to day 28; on postnatal day (PND) 21 only pups, and on PND 28, both pups and lactating dams were euthanized. Serum T 3 and T 4 were markedly reduced in pups at PND 28 and in lactating mothers, while serum and intra-testicular testosterone levels were considerably decreased in pups of both age groups. Further, serum and intra-testicular levels of estrogen were significantly increased in hypothyroid mice at PND 28 with concomitant increase in CYP19 expression. Histologically, marked changes were noticed in testes of PTU-treated mice; immunohistochemical and western blot analyses of testes in treated mice also revealed marked decrease in the expression of THRα1 at both age groups. Semiquantitative RT-PCR and western blot analyses also showed reductions in both testicular mRNA and protein levels of SF-1, StAR, CYP11A1 and 3β-HSD in these mice. In conclusion, our results suggest that neonatal hypothyroidism alters localization and expression of THRα1 and impairs testicular steroidogenesis by down-regulating the expression SF-1, thereby affecting spermatogenesis in prepubertal mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modeling Canadian Quality Control Test Program for Steroid Hormone Receptors in Breast Cancer: Diagnostic Accuracy Study.

    Science.gov (United States)

    Pérez, Teresa; Makrestsov, Nikita; Garatt, John; Torlakovic, Emina; Gilks, C Blake; Mallett, Susan

    The Canadian Immunohistochemistry Quality Control program monitors clinical laboratory performance for estrogen receptor and progesterone receptor tests used in breast cancer treatment management in Canada. Current methods assess sensitivity and specificity at each time point, compared with a reference standard. We investigate alternative performance analysis methods to enhance the quality assessment. We used 3 methods of analysis: meta-analysis of sensitivity and specificity of each laboratory across all time points; sensitivity and specificity at each time point for each laboratory; and fitting models for repeated measurements to examine differences between laboratories adjusted by test and time point. Results show 88 laboratories participated in quality control at up to 13 time points using typically 37 to 54 histology samples. In meta-analysis across all time points no laboratories have sensitivity or specificity below 80%. Current methods, presenting sensitivity and specificity separately for each run, result in wide 95% confidence intervals, typically spanning 15% to 30%. Models of a single diagnostic outcome demonstrated that 82% to 100% of laboratories had no difference to reference standard for estrogen receptor and 75% to 100% for progesterone receptor, with the exception of 1 progesterone receptor run. Laboratories with significant differences to reference standard identified with Generalized Estimating Equation modeling also have reduced performance by meta-analysis across all time points. The Canadian Immunohistochemistry Quality Control program has a good design, and with this modeling approach has sufficient precision to measure performance at each time point and allow laboratories with a significantly lower performance to be targeted for advice.

  9. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yao, K.; Niu, P.D.; Le Gac, F.; Le Bail, P.Y. (Laboratoire de Physiologie des Poissons, INRA, Rennes, (France))

    1991-01-01

    The present work outlines the presence of specific binding for chinook salmon growth hormone (sGH) in different tissue preparations of rainbow trout. Optimal incubation conditions (pH, Tris, MgCl{sub 2}) were determined. Specific binding was very sensitive to salt concentration during incubation. The specific binding reached a plateau after 15 and 25 hr of incubation at 12 and 4 {degree}. At 20 {degree}, specific and nonspecific binding were not stable. Specific binding dissociation was slower than association and was only partial. The binding was saturable (Bmax = 187 +/- 167 pmol), of high affinity (Ka = 2.4 +/- 0.8 10(9) M-1), and very specific for GH, properties which are in agreement with the characteristics of hormonal receptors. Sea bream and mammalian GH appeared 2- and 30-fold, respectively, less potent than cold sGH2 for displacing {sup 125}I-sGH2. Tissue preparations from ovary, testis, fat, skin, cartilage, gill, blood pellet, brain, spleen, kidney, and muscle showed significant saturable binding.

  10. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor

    International Nuclear Information System (INIS)

    Yao, K.; Niu, P.D.; Le Gac, F.; Le Bail, P.Y.

    1991-01-01

    The present work outlines the presence of specific binding for chinook salmon growth hormone (sGH) in different tissue preparations of rainbow trout. Optimal incubation conditions (pH, Tris, MgCl 2 ) were determined. Specific binding was very sensitive to salt concentration during incubation. The specific binding reached a plateau after 15 and 25 hr of incubation at 12 and 4 degree. At 20 degree, specific and nonspecific binding were not stable. Specific binding dissociation was slower than association and was only partial. The binding was saturable (Bmax = 187 +/- 167 pmol), of high affinity (Ka = 2.4 +/- 0.8 10(9) M-1), and very specific for GH, properties which are in agreement with the characteristics of hormonal receptors. Sea bream and mammalian GH appeared 2- and 30-fold, respectively, less potent than cold sGH2 for displacing 125 I-sGH2. Tissue preparations from ovary, testis, fat, skin, cartilage, gill, blood pellet, brain, spleen, kidney, and muscle showed significant saturable binding

  11. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β.

    Science.gov (United States)

    Alamino, Vanina A; Mascanfroni, Iván D; Montesinos, María M; Gigena, Nicolás; Donadio, Ana C; Blidner, Ada G; Milotich, Sonia I; Cheng, Sheue-Yann; Masini-Repiso, Ana M; Rabinovich, Gabriel A; Pellizas, Claudia G

    2015-04-01

    Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  12. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    Science.gov (United States)

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  13. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K; Lin, Y; McPhie, P [Chang-Gung College of Medicine and Technology, Graduate Institute of Clinical Medicine, Taoyuan (Taiwan, Province of China); Cheng, S [National Cancer Inst., Bethesda, MD (United States)

    1994-12-31

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TR{beta}1 and TR{alpha} genes was evaluated at both the mRNA and protein levels. The expression of TR{beta}1 and TR{alpha}1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRaplha1 protein is low in all cell lines examined. However, TR{Beta}1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TR{beta}1 is overexpressed is stimulated by the thyroid hormone, 3,3`,5- triiodo-L-thyronine. These results suggest that TR{beta}1, not TR{alpha}1, is probably involved in the prolifaration of hepatoma cells.

  14. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    International Nuclear Information System (INIS)

    Lin, K.; Lin, Y.; McPhie, P.; Cheng S.

    1994-01-01

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TRβ and TRα genes was evaluated at both the mRNA and protein levels. The expression of TRβ1 and TRα1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRα1 protein is low in all cell lines examined. However, TRβ1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low in HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TRβ1 is overexpressed is stimulated by the thyroid hormone, 3,3',5-triiodo-L-thyronine. These results suggest that TRβ1 not TRα1, is probably involved in the proliferation of hepatoma cells

  15. Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin.

    Science.gov (United States)

    Furigo, Isadora C; Kim, Ki Woo; Nagaishi, Vanessa S; Ramos-Lobo, Angela M; de Alencar, Amanda; Pedroso, João A B; Metzger, Martin; Donato, Jose

    2014-05-30

    Estrogens and prolactin share important target tissues, including the gonads, brain, liver, kidneys and some types of cancer cells. Herein, we sought anatomical and functional evidence of possible crosstalk between prolactin and estrogens in the mouse brain. First, we determined the distribution of prolactin-responsive neurons that express the estrogen receptor α (ERα). A large number of prolactin-induced pSTAT5-immunoreactive neurons expressing ERα mRNA were observed in several brain areas, including the anteroventral periventricular nucleus, medial preoptic nucleus, arcuate nucleus of the hypothalamus, ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), medial nucleus of the amygdala and nucleus of the solitary tract. However, although the medial preoptic area, periventricular nucleus of the hypothalamus, paraventricular nucleus of the hypothalamus, retrochiasmatic area, dorsomedial subdivision of the VMH, lateral hypothalamic area, dorsomedial nucleus of the hypothalamus and ventral premammillary nucleus contained significant numbers of prolactin-responsive neurons, these areas showed very few pSTAT5-immunoreactive cells expressing ERα mRNA. Second, we evaluated prolactin sensitivity in ovariectomized mice and observed that sex hormones are required for a normal responsiveness to prolactin as ovariectomized mice showed a lower number of prolactin-induced pSTAT5 immunoreactive neurons in all analyzed brain nuclei compared to gonad-intact females. In addition, we performed hypothalamic gene expression analyses to determine possible post-ovariectomy changes in components of prolactin signaling. We observed no significant changes in the mRNA expression of prolactin receptor, STAT5a or STAT5b. In summary, sex hormones exert a permissive role in maintaining the brain's prolactin sensitivity, most likely through post-transcriptional mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Directory of Open Access Journals (Sweden)

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  17. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  18. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat.

    Science.gov (United States)

    Li, S Y; Li, X F; Hu, M H; Shao, B; Poston, L; Lightman, S L; O'Byrne, K T

    2014-08-01

    The neural mechanisms controlling puberty onset remain enigmatic. Humans with loss of function mutations in TAC3 or TACR3, the genes encoding neurokinin B (NKB) or its receptor, neurokinin-3 receptor (NK3R), respectively, present with severe congenital gonadotrophin deficiency and pubertal failure. Animal studies have shown ambiguous actions of NKB-NK3R signalling with respect to controlling puberty onset. The present study aimed to determine the role of endogenous NKB-NK3R signalling in the control of pulsatile luteinising hormone (LH) secretion and the timing of puberty onset, and also whether precocious pubertal onset as a result of an obesogenic diet is similarly regulated by this neuropeptide system. Prepubertal female rats, chronically implanted with i.c.v. cannulae, were administered SB222200, a NK3R antagonist, or artificial cerebrospinal fluid via an osmotic mini-pump for 14 days. SB222200 significantly delayed the onset of vaginal opening and first oestrus (as markers of puberty) compared to controls in both normal and high-fat diet fed animals. Additionally, serial blood sampling, via chronic indwelling cardiac catheters, revealed that the increase in LH pulse frequency was delayed and that the LH pulse amplitude was reduced in response to NK3R antagonism, regardless of dietary status. These data suggest that endogenous NKB-NK3R signalling plays a role in controlling the timing of puberty and the associated acceleration of gonadotrophin-releasing hormone pulse generator frequency in the female rat. © 2014 British Society for Neuroendocrinology.

  19. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  20. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study.

    Science.gov (United States)

    Ritte, Rebecca; Lukanova, Annekatrin; Tjønneland, Anne; Olsen, Anja; Overvad, Kim; Mesrine, Sylvie; Fagherazzi, Guy; Dossus, Laure; Teucher, Birgit; Steindorf, Karen; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Quirós, José Ramón; Buckland, Genevieve; Molina-Montes, Esther; Chirlaque, María-Dolores; Ardanaz, Eva; Amiano, Pilar; Bueno-de-Mesquita, Bas; van Duijnhoven, Franzel; van Gils, Carla H; Peeters, Petra Hm; Wareham, Nick; Khaw, Kay-Tee; Key, Timothy J; Travis, Ruth C; Krum-Hansen, Sanda; Gram, Inger Torhild; Lund, Eiliv; Sund, Malin; Andersson, Anne; Romieu, Isabelle; Rinaldi, Sabina; McCormack, Valerie; Riboli, Elio; Kaaks, Rudolf

    2013-06-01

    Associations of breast cancer overall with indicators of exposures during puberty are reasonably well characterized; however, uncertainty remains regarding the associations of height, leg length, sitting height and menarcheal age with hormone receptor-defined malignancies. Within the European Prospective Investigation into Cancer and Nutrition cohort, Cox proportional hazards models were used to describe the relationships of adult height, leg length and sitting height and age at menarche with risk of estrogen and progesterone receptor negative (ER-PR-) (n = 990) and ER+PR+ (n = 3,524) breast tumors. Height as a single risk factor was compared to a model combining leg length and sitting height. The possible interactions of height, leg length and sitting height with menarche were also analyzed. Risk of both ER-PR- and ER+PR+ malignancies was positively associated with standing height, leg length and sitting height and inversely associated with increasing age at menarche. For ER+PR+ disease, sitting height (hazard ratios: 1.14[95% confidence interval: 1.08-1.20]) had a stronger risk association than leg length (1.05[1.00-1.11]). In comparison, for ER-PR- disease, no distinct differences were observed between leg length and sitting height. Women who were tall and had an early menarche (≤13 years) showed an almost twofold increase in risk of ER+PR+ tumors but no such increase in risk was observed for ER-PR- disease. Indicators of exposures during rapid growth periods were associated with risks of both HR-defined breast cancers. Exposures during childhood promoting faster development may establish risk associations for both HR-positive and -negative malignancies. The stronger associations of the components of height with ER+PR+ tumors among older women suggest possible hormonal links that could be specific for postmenopausal women. Copyright © 2012 UICC.

  1. Colocalization of corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders

    NARCIS (Netherlands)

    Bao, Ai-Min; Hestiantoro, Andon; van Someren, Eus J. W.; Swaab, Dick F.; Zhou, Jiang-Ning

    2005-01-01

    Oestrogens may modulate the activity of the hypothalamic-pituitary-adrenal (HPA) axis. The present study was to investigate whether the activity of the HPA axis in mood disorders might be directly modulated by oestrogens via oestrogen receptors (ORs) in the corticotropin-releasing hormone (CRH)

  2. The ability of PAM50 risk of recurrence score to predict 10-year distant recurrence in hormone receptor-positive postmenopausal women with special histological subtypes

    DEFF Research Database (Denmark)

    Laenkholm, Anne-Vibeke; Jensen, Maj-Britt; Eriksen, Jens Ole

    2018-01-01

    INTRODUCTION: The Prosigna-PAM50 risk of recurrence (ROR) score has been validated in randomized clinical trials to predict 10-year distant recurrence (DR) in hormone receptor-positive breast cancer. Here, we examine the ability of Prosigna for predicting DR at 10 years in a subgroup of postmenop...

  3. Adrenocorticotrophic hormone (ACTH) stimulation of sheep fetal adrenal cortex can occur without increased expression of ACTH receptor (ACTH-R) mRNA

    DEFF Research Database (Denmark)

    Carter, A M; Petersen, Y M; Towstoless, M

    2002-01-01

    In the present study, it was hypothesized that the adrenocorticotrophin hormone receptor (ACTH-R) would be up-regulated in the adrenal gland of the sheep fetus following infusion of physiological amounts of ACTH, as shown for adrenal cortical cells in culture. In chronically catheterized sheep...

  4. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.

    Science.gov (United States)

    Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M

    1994-12-01

    We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.

  5. CYP19A1 polymorphisms and clinical outcomes in postmenopausal women with hormone receptor-positive breast cancer in the BIG 1-98 trial

    DEFF Research Database (Denmark)

    Leyland-Jones, Brian; Gray, Kathryn P; Abramovitz, Mark

    2015-01-01

    To determine whether CYP19A1 polymorphisms are associated with abnormal activity of aromatase and with musculoskeletal and bone side effects of aromatase inhibitors. DNA was isolated from tumor specimens of 4861 postmenopausal women with hormone receptor-positive breast cancer enrolled in the BIG 1...

  6. Hyper and hypothyroidism change the expression and diurnal variation of thyroid hormone receptor isoforms in rat liver without major changes in their zonal distribution

    NARCIS (Netherlands)

    Zandieh-Doulabi, B.; Platvoet-ter Schiphorst, M.; Kalsbeek, A.; Wiersinga, W. M.; Bakker, O.

    2004-01-01

    We investigated the effect of hypothyroidism or hyperthyroidism on mRNA and protein expression, diurnal variation and zonal distribution of thyroid hormone receptor (TR) isoforms TRalpha1 TRalpha2 and TRbeta1 in rat liver. Hypothyroidism results in increased isoform mRNA and protein expression

  7. Dronerarone acts as a selective inhibitor of 3,5,3'-triiodothyronine binding to thyroid hormone receptor-alpha1: in vitro and in vivo evidence

    NARCIS (Netherlands)

    van Beeren, H. C.; Jong, W. M. C.; Kaptein, E.; Visser, T. J.; Bakker, O.; Wiersinga, W. M.

    2003-01-01

    Dronedarone (Dron), without iodine, was developed as an alternative to the iodine-containing antiarrhythmic drug amiodarone (AM). AM acts, via its major metabolite desethylamiodarone, in vitro and in vivo as a thyroid hormone receptor alpha(1) (TRalpha(1)) and TRbeta(1) antagonist. Here we

  8. The gene encoding the melanin-concentrating hormone receptor 1 is associated with schizophrenia in a Danish case-control sample

    DEFF Research Database (Denmark)

    Demontis, Ditte; Nyegaard, Mette; Christensen, Jane H

    2012-01-01

    OBJECTIVE: The MCHR1 gene encoding the melanin-concentrating hormone receptor 1 is located on chromosome 22q13.2 and has previously been associated with schizophrenia in a study of cases and controls from the Faroe Islands and Scotland. Herein we report an association between variations in the MCHR...

  9. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Il Yong Chung

    Full Text Available The aim of this study was to determine the relationship between the body mass index (BMI at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS and breast-cancer-specific survival (BCSS outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029, and BCSS (P = 0.013 in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48 and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99. In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19 and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44. Being underweight (BMI < 18.50 kg/m2 with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00-3.95 and BCSS (HR = 2.24, 95% CI = 1.12-4.47. There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer.

  10. Circulating sex hormones and gene expression of subcutaneous adipose tissue oestrogen and alpha-adrenergic receptors in HIV-lipodystrophy: implications for fat distribution

    DEFF Research Database (Denmark)

    Andersen, Ove; Pedersen, Steen B; Svenstrup, Birgit

    2007-01-01

    of alpha2A-adrenergic-receptor correlated positively with expression of oestrogen-receptor-alpha. CONCLUSIONS: The results fit the hypothesis that sex hormones play a role in altered fat distribution and insulin sensitivity of male patients with HIV-lipodystrophy. The effect of oestradiol...... patients, correlated positively with both plasma oestradiol and testosterone (n = 31). Glycerol concentration during clamp (a marker of lipolysis) correlated inversely with expression of alpha2A-adrenergic-receptor, ratio of subcutaneous to total abdominal fat mass, and limb fat, respectively. Expression...

  11. The exon-3 deleted growth hormone receptor polymorphism predisposes to long-term complications of acromegaly

    NARCIS (Netherlands)

    Wassenaar, M. J. E.; Biermasz, N. R.; Pereira, A. M.; van der Klaauw, A. A.; Smit, J. W. A.; Roelfsema, F.; van der Straaten, T.; Cazemier, M.; Hommes, D. W.; Kroon, H. M.; Kloppenburg, M.; Guchelaar, H.-J.; Romijn, J. A.

    2009-01-01

    The aim of the study was to evaluate the impact of the genomic deletion of exon 3 of the GH receptor (d3GHR) on long-term clinical outcome of acromegaly in a well-characterized cohort of patients with long-term remission of acromegaly. We conducted a cross-sectional study. The presence of the d3GHR

  12. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins

    DEFF Research Database (Denmark)

    Hansen, J A; Lindberg, K; Hilton, D J

    1999-01-01

    In this study we have investigated the role of suppressor of cytokine signaling (SOCS) proteins in GH receptor-mediated signaling. GH-induced transcription was inhibited by SOCS-1 and SOCS-3, while SOCS-2 and cytokine inducible SH2-containing protein (CIS) had no effect By using chimeric SOCS pro...

  13. Studies on luteinizing hormone receptors of human corpora lutea during menstrual cycle and pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yasushi (Keio Univ., Tokyo (Japan). School of Medicine)

    1982-10-01

    With the purpose of explicating the lifespan of human corpora lutea, using human corpora lutea of the menstrual cycle and pregnancy, binding of /sup 125/I-LH to the 20,000g cell membrane fraction was examined. 1) Specific bindings of /sup 125/I-LH, /sup 125/I-HCG were demonstrated in the 20,000g cell membrane fraction. Although LH and HCG were parallel in inhibiting /sup 125/I-LH binding, HCG was found to be more effective. FSH did not inhibit binding. 2) Binding of /sup 125/I-LH was dependent on time, temperature, /sup 125/I-LH concentration, amount of the cell membrane fraction protein and pH. The highest binding was seen at pH 6.0 while incubating for 60 min at 37/sup 0/C. 3) The number of LH receptors in human corpora lutea of the menstrual cycle increased towards midluteal phase, especially on 5th day from ovulation, and decreased towards late luteal phase. LH receptor was not found in corpus albicans. The apparent dissociation constant of each corpus luteum did not change throughout the menstrual cycle. 4) Corpora lutea of pregnancy contained a few or no receptors which bound /sup 125/I-LH specifically. These data suggest that LH receptor is an important factor regulating the lifespan of corpus luteum and exogenous HCG has effect on luteal insufficiency, but the effect of HCG on threatened abortion is uncertain.

  14. Studies on luteinizing hormone receptors of human corpora lutea during menstrual cycle and pregnancy

    International Nuclear Information System (INIS)

    Izumi, Yasushi

    1982-01-01

    With the purpose of explicating the lifespan of human corpora lutea, using human corpora lutea of the menstrual cycle and pregnancy, binding of 125 I-LH to the 20,000g cell membrane fraction was examined. 1) Specific bindings of 125 I-LH, 125 I-HCG were demonstrated in the 20,000g cell membrane fraction. Although LH and HCG were parallel in inhibiting 125 I-LH binding, HCG was found to be more effective. FSH did not inhibit binding. 2) Binding of 125 I-LH was dependent on time, temperature, 125 I-LH concentration, amount of the cell membrane fraction protein and pH. The highest binding was seen at pH 6.0 while incubating for 60 min at 37 0 C. 3) The number of LH receptors in human corpora lutea of the menstrual cycle increased towards midluteal phase, especiallt on 5th day from ovulation, and decreased towards late luteal phase. LH receptor was not found in corpus albicans. The apparent dissociation constant of each corpus luteum did not change throughout the menstrual cycle. 4) Corpora lutea of pregnancy contained a few or no receptors which bound 125 I-LH specifically. These data suggest that LH receptor is an important factor regulating the lifespan of corpus luteum and exogenous HCG has effect on luteal insufficiency, but the effect of HCG on threatened abortion is uncertain. (author)

  15. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  16. Utility of the CPS+EG staging system in hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer treated with neoadjuvant chemotherapy.

    Science.gov (United States)

    Marmé, Frederik; Lederer, Bianca; Blohmer, Jens-Uwe; Costa, Serban Dan; Denkert, Carsten; Eidtmann, Holger; Gerber, Bernd; Hanusch, Claus; Hilfrich, Jörn; Huober, Jens; Jackisch, Christian; Kümmel, Sherko; Loibl, Sibylle; Paepke, Stefan; Untch, Michael; von Minckwitz, Gunter; Schneeweiss, Andreas

    2016-01-01

    Pathologic complete response after neoadjuvant chemotherapy (NACT) correlates with overall survival (OS) in primary breast cancer. A recently described staging system based on pre-treatment clinical stage (CS), final pathological stage (PS), estrogen receptor (ER) status and nuclear grade (NG) leads to a refined estimation of prognosis in unselected patients. Its performance in luminal type breast cancers has not been determined. This study investigates the clinical utility of this CPS+EG score when restricted to hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) patients and compares the results to a cohort of unselected patients. The CPS+EG score was calculated for 6637 unselected patients and 2454 patients with HR+/HER2- tumours who received anthracycline/taxane-based NACT within 8 prospective German trials. Five-year disease-free survival (DFS) and OS were 75.6% and 84.1% for the unselected cohort and 80.6% and 87.8% for the HR+/HER2- subgroup, respectively. The CPS+EG system distinguished different prognostic groups with 5-year DFS ranging from 0% to 91%. The CPS+EG system leads to an improved categorisation of patients by outcome compared to CS, PS, ER or NG alone. When applying the CPS+EG score to the HR+/HER2- subgroup, a shift to lower scores was observed compared to the overall population, but 5-year DFS and OS for the individual scores were identical to that observed in the overall population. In HR+/HER2- patients, the CPS+EG staging system retains its ability to facilitate a refined stratification of patients according to outcome. It can help to select candidates for post-neoadjuvant clinical trials in luminal breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  18. The expression of gonadotropin releasing hormone receptor gene in ovaries and uterus cells of Iraqi and Damascus goat breed

    Directory of Open Access Journals (Sweden)

    Alaa kamil Abdulla

    2017-07-01

    Full Text Available Iraqi goats have a major economic role in production of meat, milk and leather as well as it considered a financial source for owners as reproduce twice a year, yet the Damascus goats have great importance than Iraqi goats owing to the number of twin births. The gonadotropin releasing hormone (GnRH and its receptors have great importance in the reproduction and eugenics. To make a comparison between the Iraqi and Damascus goats in terms of this receptor gene expression in the ovaries and uterus tissue cells, the study was performed, in which used the (∆Ct Using a Reference Gene method by quintitive -real time PCR technique. Results were found a significant difference (p<0.05, as the gene expression of (GnRH-R higher in the ovaries and uterus tissue cells in Damascus goats compared with the Iraqi goats. In conclusion; the multiple pregnancies of twins in Damascus goats may be due to an increase gene expression of (GnRH-R in the ovaries and uterus tissue

  19. Induction of ovulation by a potent, orally active, low molecular weight agonist (Org 43553) of the luteinizing hormone receptor.

    Science.gov (United States)

    van de Lagemaat, R; Timmers, C M; Kelder, J; van Koppen, C; Mosselman, S; Hanssen, R G J M

    2009-03-01

    In assisted reproductive technology, human chorionic gonadotrophin (hCG) is administered subcutaneously for the induction of oocyte maturation and ovulation. Our efforts to develop orally bioavailable luteinizing hormone (LH) receptor agonists have led to the discovery of Org 43553, a low molecular weight (LMW) LH receptor (LH-R) agonist. Org 43553 was tested in vitro and in vivo in pre-clinical pharmacological models to demonstrate efficacy and oral availability. Org 43553 is a potent stimulator of the human LH-R in vitro (EC(50) 3.7 nM). In primary mouse Leydig cells, Org 43553 stimulated testosterone production. Pharmacokinetic analyses showed high oral bioavailability in rats (79%) and dogs (44%) with a shorter half-life compared with hCG (3.4 versus 5.6 h in the rat). Ovulation induction by Org 43553 was demonstrated in immature mice as well as in cyclic rats after single-dose oral administration (50 mg/kg). The ovulated oocytes were of good quality as demonstrated by successful fertilization and implantation of normal embryos. In male rats, testosterone production was substantially induced after oral administration. Org 43553 is the first LMW LH-R mimetic with demonstrated in vivo efficacy upon oral administration and could therefore replace subcutaneously administered hCG. The elimination half-life of Org 43553 is substantially shorter than hCG, which could potentially represent a clinical benefit in reducing the risk of ovarian hyperstimulation syndrome (OHSS).

  20. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain.

    Science.gov (United States)

    Kerver, H N; Wade, J

    2015-03-01

    Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone. © 2014 British Society for Neuroendocrinology.

  1. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor regulating C. elegans development and lifespan

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C.; Wollam, Joshua; Dumas, Kathleen J.; Zimmerman, Anna M.; Campbell, Sydney L.; Hu, Patrick J.; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    SUMMARY Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin-D and liver-X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase, HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs. PMID:24411940

  2. The effect of the intracervical application of follicle-stimulating hormone or luteinizing hormone on the pattern of expression of gonadotrophin receptors in the cervix of non-pregnant ewes.

    Science.gov (United States)

    Leethongdee, S; Khalid, M; Scaramuzzi, R J

    2014-08-01

    During the periovulatory period, the cervix relaxes in response to changes in circulating concentrations of reproductive hormones. The present study investigated the role of gonadotrophins in cervical function by examining the expression of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) and their mRNAs following intracervical treatment with either FSH or LH. Eighteen ewes were assigned to four groups, and they were then treated with progestagen sponges and PMSG to synchronize their oestrous cycles. Intracervical treatments were given 24 h after sponge removal as follows: Group 1: FSH 2 mg; Group 2: LH 2 mg; Group 3: Vehicle and Group 4: Control. Cervices were collected 54 h after sponge removal and then divided into three regions. The expression of FSHR and LHR was determined by immunohistochemistry and FSHR mRNA and LH mRNA by in situ hybridization. The expression of LHR, FSHR and their respective mRNAs was compared in six tissue layers (luminal epithelium, subepithelial stroma, circular, longitudinal and transverse muscle and serosa) and in three cervical regions (vaginal, mid and uterine). The results showed that FSH increased transcription of the FSHR gene and the levels of its receptor, but only in subepithelial stroma of the cervix. FSH also increased the levels of LHR in the cervix, but only in the muscle layers. LH had no effect on the levels of FSHR despite the fact that it did increase the level of transcription of the FSHR gene and LH also increased the levels of its own receptor in the cervix, but only in the muscle layers, and this action was independent of increased levels of transcription of the LHR gene. These findings suggest multiple levels of regulation of cervical LH and FSH receptors and that the gonadotrophins may have a role in relaxation of the cervix during oestrus by regulating their own receptors. © 2014 Blackwell Verlag GmbH.

  3. Crystal structure of an affinity-matured prolactin complexed to its dimerized receptor reveals the topology of hormone binding site 2

    DEFF Research Database (Denmark)

    Broutin, Isabelle; Jomain, Jean-Baptiste; Tallet, Estelle

    2010-01-01

    We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely relate...... and prostate cancer.......We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely related...... PRL receptor (PRLR) ligand. This structure allows one to draw up an exhaustive inventory of the residues involved at the PRL.PRLR site 2 interface, consistent with all previously reported site-directed mutagenesis data. We propose, with this description, an interaction model involving three structural...

  4. Current applications of PET imaging of sex hormone receptors with a fluorinated analogue of estradiol or of testosterone

    International Nuclear Information System (INIS)

    Talbot, J-N.; Montravers, F.; Huchet, V.; Michaud, L.; Ohnona, J.; Balogova, S.; Kerrou, K.; Gligorov, V.; Lotz, P.; Nataf, V.; Cussenot, O.; Darai, E.

    2015-01-01

    Currently, the most frequent approach in the oncologic applications of positron emission tomography (PET) is detecting the hypermetabolic activity of the cancer tissue. A more specific approach, which may be complementary, is detecting the overexpression of receptors. In this review article, we aim to evaluate the results that are currently available for PET imaging of the sex hormone receptors in clinical oncology. The indication of PET and now PET/CT has been more disputed in breast carcinoma than in many other primary cancers (e.g., lung, head and neck, colorectal, lymphoma). 18 F-fluorodeoxyglucose (FDG), the glucose analogue for PET imaging, has a limited sensitivity to detect the primary breast tumors in case of lobular or in situ forms or small sized tumors localised on systematic mammography, and to identify minimal node invasion in the axilla. Using 16α-( 18 F]fluoro-17β-estradiol (FES), a fluorinated estradiol analogue, PET is able to detect the over-expression of the oestrogen receptor (ER) in lesions, at a whole-body level. FES and FDG appear complementary for a better diagnostic performance in staging locally advanced breast cancer or restaging recurrent or metastatic breast cancer. Another potential indication is predicting the response to starting or resuming hormone therapy in patients with metastatic breast cancer, in relation with the ER status of all lesions revealed by FES PET. In two retrospective studies, FDG PET was also able to predict the response to hormone therapy, on basis of a metabolic flare, observed either after 7-10 days of treatment or during an estradiol challenge. A prospective comparison of those approaches is warranted. One study reported predicting response to neoadjuvant chemotherapy thanks to a low value of FES SUV m ax or FES/FDG SUV max ratio. The presence of ER in uterine tumors, including the benign ones, in ovarian cancers or even in meningiomas, may have therapeutic consequences and FES PET could have a clinical

  5. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination.

    Science.gov (United States)

    Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR by mutating Ile691 in the cytoplasmic tail segment.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available BACKGROUND: Autosomal dominant non-autoimmune hyperthyroidism (ADNAH is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the G(αs/cAMP or G(αq/11/inositol phosphate (IP pathways, which stimulate thyroid hormone production and thyroid proliferation. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile(691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for G(αs/cAMP or G(αq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the G(αq/11/IP signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Ile(691 not only contributes to keeping TSHR inactive in the G(αs/cAMP pathways but also in the G(αq/11/IP cascade.

  7. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  8. Defective postnatal endochondral bone development by chondrocyte-specific targeted expression of parathyroid hormone type 2 receptor.

    Science.gov (United States)

    Panda, Dibyendu Kumar; Goltzman, David; Karaplis, Andrew C

    2012-12-15

    The human parathyroid hormone type 2 receptor (PTH2R) is activated by PTH and by tuberoinfundibular peptide of 39 residues (TIP39), the latter likely acting as its natural ligand. Although the receptor is expressed at highest levels in the nervous system, we have observed that both PTH2R and TIP39 are expressed in the newborn mouse growth plate, with the receptor localizing in the resting zone and the ligand TIP39 localizing exclusively in prehypertrophic and hypertrophic chondrocytes. To address the role of PTH2R in postnatal skeletal growth and development, Col2a1-hPTH2R (PTH2R-Tg) transgenic mice were generated. The mice were viable and of nearly normal size at birth. Expression of the transgene in the growth plate was limited to chondrocytes. We found that chondrocyte proliferation was decreased, as determined by in vivo BrdU labeling of proliferating chondrocytes and CDK4 and p21 expression in the growth plate of Col2a1-hPTH2R transgenic mice. Similarly, the differentiation and maturation of chondrocytes was delayed, as characterized by decreased Sox9 expression and weaker immunostaining for the chondrocyte differentiation markers collagen type II and type X and proteoglycans. As well, there was altered expression of Gdf5, Wdr5, and β-catenin, factors implicated in chondrocyte maturation, proliferation, and differentiation.These effects impacted on the process of endochondral ossification, resulting in delayed formation of the secondary ossification center, and diminished trabecular bone volume. The findings substantiate a role for PTH2R signaling in postnatal growth plate development and subsequent bone mass acquisition.

  9. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity

    Czech Academy of Sciences Publication Activity Database

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, A. M.; Jiráček, Jiří; Žáková, Lenka

    2016-01-01

    Roč. 55, č. 21 (2016), s. 2903-2913 ISSN 0006-2960 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : alanine scanning mutagenesis * high-affinity binding * type 1 IGF receptor Subject RIV: CE - Biochemistry Impact factor: 2.938, year: 2016 http://pubs.acs.org/doi/pdf/10.1021/acs.biochem.6b00140

  10. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    Science.gov (United States)

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  11. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  12. Resistance to thyroid hormone associated with a novel mutation of the thyroid β receptor gene in a four-year-old female

    Directory of Open Access Journals (Sweden)

    Breuer Christopher K

    2011-06-01

    Full Text Available Abstract Resistance to thyroid hormone (RTH is a rare syndrome of reduced responsiveness of target tissues to thyroid hormone and is caused mutation in the thyroid β receptor gene. We report a novel mutation, E445X, causing RTH in a 4-year old girl. The patient exhibited extreme signs and symptoms of RTH at an early age, and had a large compressive goiter. Following total extracapsular thyroidectomy, upper airway compression was relieved and symptoms of hyperthyroidism improved. This case appears to be the youngest child recorded to have undergone total thyroidectomy for RTH. Post-operative TSH elevations were managed with every-other-day triiodothyronine therapy.

  13. Na+,K+-ATPase is the putative membrane receptor of hormone ouabain

    Science.gov (United States)

    Larre, Isabel

    2010-01-01

    At 10 nM, ouabain elicits changes in cell contacts, which are independent and usually in opposite direction to effects occurring at µM levels, suggesting that these depend on entirely different mechanisms.1 However, this does not discard the possibility that in both instances ouabain would act on the same receptor. We demonstrate that such is the case by comparing the response of wild and ouabain-resistant MDCK cells on a very special type of cell contact, the tight junction (TJ). PMID:21331260

  14. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome.

    Science.gov (United States)

    Sagami, Y; Shimada, Y; Tayama, J; Nomura, T; Satake, M; Endo, Y; Shoji, T; Karahashi, K; Hongo, M; Fukudo, S

    2004-07-01

    Corticotropin releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with an exaggerated response to stress. We hypothesised that peripheral administration of alpha-helical CRH (alphahCRH), a non-selective CRH receptor antagonist, would improve gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation in IBS patients. Ten normal healthy subjects and 10 IBS patients, diagnosed according to the Rome II criteria, were studied. The tone of the descending colon and intraluminal pressure of the sigmoid colon were measured at baseline, during rectal electrical stimulation (ES), and at recovery after administration of saline. Visceral perception after colonic distension or rectal ES was evaluated as threshold values on an ordinate scale. The same measurements were repeated after administration of alphahCRH (10 micro g/kg). ES induced significantly higher motility indices of the colon in IBS patients compared with controls. This response was significantly suppressed in IBS patients but not in controls after administration of alphahCRH. Administration of alphahCRH induced a significant increase in the barostat bag volume of controls but not in that of IBS patients. alphahCRH significantly reduced the ordinate scale of abdominal pain and anxiety evoked by ES in IBS patients. Plasma adrenocorticotropic hormone and serum cortisol levels were generally not suppressed by alphahCRH. Peripheral administration of alphahCRH improves gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation, without affecting the hypothalamo-pituitary-adrenal axis in IBS patients.

  15. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    Science.gov (United States)

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  16. Water scorpions (Heteroptera, Nepidae) and giant water bugs (Heteroptera, Belostomatidae): Sources of new members of the adipokinetic hormone/red pigment-concentrating hormone family

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Marco, H. G.

    2007-01-01

    Roč. 28, č. 7 (2007), s. 1359-1367 ISSN 0196-9781 Grant - others:Natioanl Research Foundation(ZA) 2053396 Institutional research plan: CEZ:AV0Z50070508 Keywords : Insects * Heteroptera * Water bugs Subject RIV: ED - Physiology Impact factor: 2.368, year: 2007

  17. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    Science.gov (United States)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital

    International Nuclear Information System (INIS)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P.

    2015-01-01

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR

  19. Growth hormone receptor deficiency in Ecuador: clinical and biochemical phenotype in two populations.

    Science.gov (United States)

    Guevara-Aguirre, J; Rosenbloom, A L; Fielder, P J; Diamond, F B; Rosenfeld, R G

    1993-02-01

    We have identified 56 patients with GH receptor deficiency (Laron syndrome) from two provinces in southern Ecuador, one group of 26 (Loja province) with a 4:1 female predominance and 30 patients from neighboring El Oro province with a normal sex ratio. There were no significant differences between the Loja and El Oro populations in stature (-5.3 to -11.5 standard deviation score), other auxologic measures, or in biochemical measures. GH binding protein, the circulating extracellular domain of the GH receptor, was measured by ligand immunofunction assay and found to be comparably low in children and adults. Levels of insulin-like growth factor (IGF)-I and -II and the GH-dependent IGF binding protein-3 (measured by RIA) were significantly greater, and GH and IGF binding protein-2 levels significantly lower in adults than children. Levels of IGF-I (adults) and IGF binding protein-3 (children and adults) correlated inversely with statural deviation from normal (P < 0.01). School performance was at an exceptionally high level, 41 out of 47 who had attended school being in the top 3 in classes of 15-50 persons.

  20. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements.

    Science.gov (United States)

    Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R

    1992-04-01

    Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common

  1. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    Science.gov (United States)

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  2. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  3. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  4. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease

    DEFF Research Database (Denmark)

    Brand, Oliver J; Barrett, Jeffrey C; Simmonds, Matthew J

    2009-01-01

    hormone, causing the characteristic clinical phenotype. Although early studies investigating the TSHR and GD proved inconclusive, more recently we provided convincing evidence for association of the TSHR region with disease. In the current study, we investigated a combined panel of 98 SNPs, including 70...... tag SNPs, across an extended 800 kb region of the TSHR to refine association in a cohort of 768 GD subjects and 768 matched controls. In total, 28 SNPs revealed association with GD (P associations at rs179247 (chi(2) = 32.45, P = 8.90 x 10(-8), OR = 1.53, 95% CI = 1.......32-1.78) and rs12101255 (chi(2) = 30.91, P = 1.95 x 10(-7), OR = 1.55, 95% CI = 1.33-1.81), both located in intron 1 of the TSHR. Association of the most associated SNP, rs179247, was replicated in 303 GD families (P = 7.8 x 10(-4)). In addition, we provide preliminary evidence that the disease-associated...

  5. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes.

    Science.gov (United States)

    Ciechanowska, Magdalena; Łapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2011-01-01

    There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo-pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo-anterior pituitary unit. © CSIRO 2011 Open Access

  6. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    Science.gov (United States)

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  7. [Effect of thyroid hormones on the histotopography of lectin receptors in the rat salivary gland].

    Science.gov (United States)

    Lutsik, A D; Iashchenko, A M; Detiuk, E S

    1987-04-01

    Using lectin-peroxidase technique, the influence of hypo- and hyperthyroidism on histotopography of glycoconjugates has been investigated in rat submandibular gland. The following lectins were used: peanut agglutinin (PNA), wheat germ agglutinin (WGA), Laburnum anagyroides lectin (LAL) and concanavalin A (con A). It has been demonstrated that hyperthyroidism is accompanied by the loss of con A, WGA and LAL receptor sites. Hypothyrodism enhanced con A binding to granular duct cells with a parallel reduction in WGA and LAL binding to these or other duct cells. Hypothyroidism as well as hyperthyroidism markedly enhanced PNA binding to duct epitheliocytes with redistribution of these lectin binding sites from the luminal surface of salivary ducts into the cytoplasm of duct cells. Possible interpretations of the observed phenomena are discussed.

  8. Evidence that diclofenac and celecoxib are thyroid hormone receptor beta antagonists.

    Science.gov (United States)

    Zloh, Mire; Perez-Diaz, Noelia; Tang, Leslie; Patel, Pryank; Mackenzie, Louise S

    2016-02-01

    Long term use of NSAIDs is linked to side effects such as gastric bleeding and myocardial infarction. Use of in silico methods and pharmacology to investigate the potential for NSAIDs diclofenac, celecoxib and naproxen to bind to nuclear receptors. In silico screening predicted that both diclofenac and celecoxib has the potential to bind to a number of different nuclear receptors; docking analysis confirmed a theoretical ability for diclofenac and celecoxib but not naproxen to bind to TRβ. Results from TRβ luciferase reporter assays confirmed that both diclofenac and celecoxib display TRβ antagonistic properties; celecoxib, IC50 3.6 × 10(-6)M, and diclofenac IC50 5.3 × 10(-6)M, comparable to the TRβ antagonist MLS (IC50 3.1 × 10(-6)M). In contrast naproxen, a cardio-sparing NSAID, lacked TRβ antagonist effects. In order to determine the effects of NSAIDs in whole organ in vitro, we used isometric wire myography to measure the changes to Triiodothyronine (T3) induced vasodilation of rat mesenteric arteries. Incubation of arteries in the presence of the TRβ antagonist MLS000389544 (10(-5)M), as well as diclofenac (10(-5)M) and celecoxib (10(-5)M) but not naproxen significantly inhibited T3 induced vasodilation compared to controls. These results highlight the benefits of computational chemistry methods used to retrospectively analyse well known drugs for side effects. Using in silico and in vitro methods we have shown that both celecoxib and diclofenac but not naproxen exhibit off-target TRβ antagonist behaviour, which may be linked to their detrimental side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Vasorelaxant potencies and receptor binding affinities of atrial natriuretic hormone (ANH) analogues

    International Nuclear Information System (INIS)

    Bush, E.N.; Green, E.M.; Artman, L.D.; Devine, E.M.; Sarin, V.; Rockway, T.W.; Connolly, P.J.; Kiso, Y.; Holleman, W.H.

    1986-01-01

    ANH (1-28) (α-rat ANP) produces hypotensive effects in vivo, presumably via interaction with specific receptors. Vasorelaxant potencies (pD 2 ) and intrinsic activities of ANH analogues were measured in histamine constricted rabbit aorta rings. Binding affinities (K/sub I/) of the compounds were studied in rabbit aorta renal cortex and adrenal, using the radio-ligand 125 I-Tyr 28 -ANH (1-28). Significant correlations (r 2 s in aorta, and the log D/sub I/s in each of the three tissues were observed for the following cyclic compounds, listed in order of potency: ANH (1-28) greater than or equal to ANH (6-28) greater than or equal to Met 12 -ANH (1-28) (α-human ANP) greater than or equal to cyclohexyl-Ala (Cha) 8 -ANH (5-28) > Lys 11 -ANH (5-28) = ANH (5-28) (atriopeptin III) = ANH (5-27) (atriopeptin II) = Cha 21 -ANH (5-28) greater than or equal to ANH (7-28) > Cha 15 -ANH (5-28) = Pro 10 -ANH (5-28) = ANH (5-25) (atriopeptin I) = Asn 13 -ANH (5-28) = Tyr 9 -ANH (5-28) > des-Gly 9 -ANH (5-28) > ANH (7-23) = Pro 10 -ANH (7-23) greater than or equal to (D)Ala 9 -ANH (7-23) > Pro 9 -ANH (7-13). In summary, the affinities of several ANH analogues for both vascular and nonvascular receptors agree with their vasorelaxant potencies

  10. Growth hormone receptor exon 3 isoforms may have no importance in the clinical setting of multiethnic Brazilian acromegaly patients.

    Science.gov (United States)

    de Oliveira Machado, Evelyn; Lima, Carlos Henrique Azeredo; Ogino, Liana Lumi; Kasuki, Leandro; Gadelha, Mônica R

    2016-08-01

    Acromegaly is associated with significant morbidity and increased mortality, but has a variable severity phenotype. The presence of the exon 3-deleted isoform of the growth hormone receptor (d3-GHR) may influence the disease phenotype and treatment outcomes, including the frequency of biochemical discordance after medical treatment. The objective of this study was to analyze the influence of the d3-GHR isoform on clinical and biochemical characteristics and in the treatment outcomes of Brazilian multiethnic acromegaly patients. We retrospectively analyzed our acromegaly outpatient clinic databank and collected demographic, clinical, biochemical and treatment outcome data from those patients who agreed to participate in the study. A blood sample was collected from all patients, the DNA was extracted and the GHR isoforms were evaluated by PCR, with the full length (fl)-GHR represented by a 935-bp fragment and the d3-GHR represented by a 532-bp fragment. A total of 121 patients were included. Fifty-six patients (46.3 %) were full-length homozygous (fl/fl), 48 (39.7 %) were heterozygous (fl/d3) and 17 (14.0 %) were d3-GHR homozygous (d3/d3). There was no difference between patients homozygous for the fl isoform and those harboring at least one d3-GHR allele in the demographic, clinical and biochemical data or in the treatment outcomes, including somatostatin receptor ligands (SRL) monotherapy, combination therapy with SRL and cabergoline and pegvisomant treatment. There was also no difference between the groups for the frequency of GH and IGF-I discordance after medical treatment. GHR exon 3 genotyping appears to have no clinical significance, at least in Brazilian acromegaly patients.

  11. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    Science.gov (United States)

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  12. The newly discovered insect order mantophasmatodea contains a novel member of the adipokinetic hormone family of peptides

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Marco, H. G.; Šimek, Petr; Marais, E.

    2005-01-01

    Roč. 330, č. 2 (2005), s. 598-603 ISSN 0006-291X Grant - others:National Research Foundation(ZA) 2053806 Institutional research plan: CEZ:AV0Z50070508 Keywords : insects * mantophasmatodea * AKH/RPCH Subject RIV: ED - Physiology Impact factor: 3.000, year: 2005

  13. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    Science.gov (United States)

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-08-01

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  14. Clinical implications of recent studies using mTOR inhibitors to treat advanced hormone receptor-positive breast cancer

    International Nuclear Information System (INIS)

    Arena, Francis

    2014-01-01

    Breast cancer is a leading cause of cancer-related death worldwide. Approximately 75% of breast cancer is hormone receptor-positive (HR + ) and is managed with endocrine therapies. However, relapse or disease progression caused by primary or acquired endocrine resistance is frequent. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)-mediated signaling is one of the molecular mechanisms leading to endocrine resistance. mTOR inhibitors that target the PI3K/Akt/mTOR pathway are the first of the targeted therapies to be evaluated in clinical trials to overcome endocrine resistance. Although the clinical trial with temsirolimus, an mTOR inhibitor, did not show any benefit when compared with endocrine therapy alone, a Phase II clinical trial with sirolimus has been promising. Recently, everolimus was approved in combination with exemestane by the US Food and Drug Administration for treating postmenopausal women with advanced HR + breast cancer, based on the results of a Phase III trial. Therefore, everolimus represents the first and only targeted agent approved for combating endocrine resistance

  15. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    SUMMARY The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet. The IF diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction we postulate that GHR-KO mice would be resistant to any manner of DR; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan-extending potential of an intervention. PMID:19747233

  16. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    Science.gov (United States)

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.

  17. Strategies for Imaging Androgen Receptor Signaling Pathway in Prostate Cancer: Implications for Hormonal Manipulation and Radiation Treatment

    Directory of Open Access Journals (Sweden)

    Gravina Giovanni Luca

    2013-01-01

    Full Text Available Prostate cancer (Pca is a heterogeneous disease; its etiology appears to be related to genetic and epigenetic factors. Radiotherapy and hormone manipulation are effective treatments, but many tumors will progress despite these treatments. Molecular imaging provides novel opportunities for image-guided optimization and management of these treatment modalities. Here we reviewed the advances in targeted imaging of key biomarkers of androgen receptor signaling pathways. A computerized search was performed to identify all relevant studies in Medline up to 2013. There are well-known limitations and inaccuracies of current imaging approaches for monitoring biological changes governing tumor progression. The close integration of molecular biology and clinical imaging could ease the development of new molecular imaging agents providing novel tools to monitor a number of biological events that, until a few years ago, were studied by conventional molecular assays. Advances in translational research may represent the next step in improving the oncological outcome of men with Pca who remain at high risk for systemic failure. This aim may be obtained by combining the anatomical properties of conventional imaging modalities with biological information to better predict tumor response to conventional treatments.

  18. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    Science.gov (United States)

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  19. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    Science.gov (United States)

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features.

    Science.gov (United States)

    Goldstein, Lori J; Gray, Robert; Badve, Sunil; Childs, Barrett H; Yoshizawa, Carl; Rowley, Steve; Shak, Steven; Baehner, Frederick L; Ravdin, Peter M; Davidson, Nancy E; Sledge, George W; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Sparano, Joseph A

    2008-09-01

    Adjuvant! is a standardized validated decision aid that projects outcomes in operable breast cancer based on classical clinicopathologic features and therapy. Genomic classifiers offer the potential to more accurately identify individuals who benefit from chemotherapy than clinicopathologic features. A sample of 465 patients with hormone receptor (HR) -positive breast cancer with zero to three positive axillary nodes who did (n = 99) or did not have recurrence after chemohormonal therapy had tumor tissue evaluated using a 21-gene assay. Histologic grade and HR expression were evaluated locally and in a central laboratory. Recurrence Score (RS) was a highly significant predictor of recurrence, including node-negative and node-positive disease (P < .001 for both) and when adjusted for other clinical variables. RS also predicted recurrence more accurately than clinical variables when integrated by an algorithm modeled after Adjuvant! that was adjusted to 5-year outcomes. The 5-year recurrence rate was only 5% or less for the estimated 46% of patients who have a low RS (< 18). The 21-gene assay was a more accurate predictor of relapse than standard clinical features for individual patients with HR-positive operable breast cancer treated with chemohormonal therapy and provides information that is complementary to features typically used in anatomic staging, such as tumor size and lymph node involvement. The 21-gene assay may be used to select low-risk patients for abbreviated chemotherapy regimens similar to those used in our study or high-risk patients for more aggressive regimens or clinical trials evaluating novel treatments.

  1. Detection of thyroid stimulating hormone receptor antibodies (TRAb) by radioreceptor assay (RRA) and enzyme-linked immunosorbent assay (ELISA)

    International Nuclear Information System (INIS)

    Dumrongpisutikul, S.; Tuchinda, S.

    1990-01-01

    Thyroid stimulating hormone receptor antibodies (TRAb) were determined in 100 patients using radioreceptor assay (RRA) and enzyme-linked immunosorbent assay (ELISA). The sensitivity of RRA and ELISA were found to be 70.6% and 88.2% respectively (n=51). The specificity of both assays were 100% (n=16). With RRA as the standard test the sensitivity and specificity of ELISA were 75.8% and 86.8%. In the untreated hyperthyroid the RRA result which expressed as % specific 125 I-TSH inhibition was 33.6% (n=51), decline to 26.9% in the treated hyperthyroid (n=33) and 14.1% in the euthyroid (n=16). The mean 0.D 492nm of TRAb-ELISA were 0.861 in untreated hyperthyroid, 0.437 in treated hyperthyroid and 0.135 in euthyroid Phi coefficient analysis show that the RRA was 60.4% correlated to hyperthyroidism where as TRAb-ELISA was 80.1%

  2. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    Science.gov (United States)

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  3. Central dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males.

    Science.gov (United States)

    Noaín, Daniela; Pérez-Millán, M Inés; Bello, Estefanía P; Luque, Guillermina M; Casas Cordero, Rodrigo; Gelman, Diego M; Peper, Marcela; Tornadu, Isabel García; Low, Malcolm J; Becú-Villalobos, Damasia; Rubinstein, Marcelo

    2013-03-27

    Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.

  4. Surgery Should Complement Endocrine Therapy for Elderly Postmenopausal Women with Hormone Receptor-Positive Early-Stage Breast Cancer

    Directory of Open Access Journals (Sweden)

    Olivier Nguyen

    2012-01-01

    Full Text Available Introduction. Endocrine therapy (ET is an integral part of breast cancer (BC treatment with surgical resection remaining the cornerstone of curative treatment. The objective of this study is to compare the survival of elderly postmenopausal women with hormone receptor-positive early-stage BC treated with ET alone, without radiation or chemotherapy, versus ET plus surgery. Materials and Methods. This is a retrospective study based on a prospective database. The medical records of postmenopausal BC patients referred to the surgical oncology service of two hospitals during an 8-year period were reviewed. All patients were to receive ET for a minimum of four months before undergoing any surgery. Results. Fifty-one patients were included and divided in two groups, ET alone and ET plus surgery. At last follow-up in exclusive ET patients (n=28, 39% had stable disease or complete response, 22% had progressive disease, of which 18% died of breast cancer, and 39% died of other causes. In surgical patients (n=23, 78% were disease-free, 9% died of recurrent breast cancer, and 13% died of other causes. Conclusions. These results suggest that surgical resection is beneficial in this group and should be considered, even for patients previously deemed ineligible for surgery.

  5. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis.

    Science.gov (United States)

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-06-02

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.

  6. Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active.

    Science.gov (United States)

    Kanamarlapudi, Venkateswarlu; Gordon, Uma D; López Bernal, Andrés

    2016-06-01

    Polycystic ovarian syndrome (PCOS) is associated with anovulatory infertility. Luteinizing hormone/chorionic gonadotrophin receptor (LHCGR), which is critical for ovulation, has been suggested to be expressed prematurely in the ovarian follicles of women with PCOS. This study aimed to analyse the expression and activity of LHCGR in ovarian granulosa cells from PCOS patients and the involvement of ARF6 small GTPase in LHCGR internalization. Granulosa cells (GC) isolated from follicular fluid collected during oocyte retrieval from normal women (n = 19) and women with PCOS (n = 17) were used to study differences in LHCGR protein expression and activity between normal and PCOS patients. LHCGR expression is up-regulated in GC from PCOS women. LHCGR in PCOS GC is functionally active, as shown by increased cAMP production upon human gonadotrophin (HCG)-stimulation. Moreover, ARF6 is highly expressed in GC from PCOS patients and HCG-stimulation increases the concentrations of active ARF6. The inhibition of ARF6 activation attenuates HCG-induced LHCGR internalization in both normal and PCOS GC, indicating that there are no alterations in LHCGR internalisation in GC from PCOS. In conclusion, the expression and activation of LHCGR and ARF6 are up-regulated in GC from PCOS women but the mechanism of agonist-induced LHCGR internalization is unaltered. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate.

    Science.gov (United States)

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-02-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. Copyright © 2015 by the Genetics Society of America.

  8. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  9. In Situ Hybridization Method Reveals (Pro)renin Receptor Expressing Cells in the Pituitary Gland of Rats: Correlation with Anterior Pituitary Hormones.

    Science.gov (United States)

    Takahashi, Kazuhiro; Yatabe, Megumi; Fujiwara, Ken; Hirose, Takuo; Totsune, Kazuhito; Yashiro, Takashi

    2013-02-28

    Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion.

  10. In Situ Hybridization Method Reveals (Pro)renin Receptor Expressing Cells in the Pituitary Gland of Rats: Correlation with Anterior Pituitary Hormones

    International Nuclear Information System (INIS)

    Takahashi, Kazuhiro; Yatabe, Megumi; Fujiwara, Ken; Hirose, Takuo; Totsune, Kazuhito; Yashiro, Takashi

    2013-01-01

    Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion

  11. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of [125I]iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    International Nuclear Information System (INIS)

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-01-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, [ 125 I]iodoglucagon internalization was increased, while at the same time [ 125 I]iodoinsulin internalization was decreased. The defect in [ 125 I]iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of [ 125 I]iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion

  12. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

    Directory of Open Access Journals (Sweden)

    Sergey Yegorov

    Full Text Available Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL and relaxin family peptide receptors (RXFP. Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of

  13. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  14. Influence of Dexamethasone on Some Reproductive Hormones and Uterine Progesterone Receptor Localization in Pregnant Yankasa Sheep in Semiarid Zones of Nigeria

    OpenAIRE

    Yahi, Dauda; Ojo, Nicholas Adetayo; Mshelia, Gideon Dauda

    2017-01-01

    Dexamethasone is widely used in both veterinary and human medical practices. However, it seems to cause some deleterious effects on pregnancy probably by causing changes in the reproductive hormone levels and their corresponding receptor concentrations. This study investigated the effects of dexamethasone on these parameters. Twenty healthy adult Yankasa sheep comprising 18 ewes and 2 rams were used for this study. Pregnancies were achieved by natural mating after estrus synchronization. Dexa...

  15. Growth hormone receptor deficiency in mice results in reduced systolic blood pressure and plasma renin, increased aortic eNOS expression, and altered cardiovascular structure and function

    DEFF Research Database (Denmark)

    Egecioglu, E; Andersson, I J; Bollano, E

    2007-01-01

    To study the role of the growth hormone receptor (GHR) in the development of cardiovascular structure and function, female GHR gene-disrupted or knockout (KO) and wild-type (WT) mice at age 18 wk were used. GHR KO mice had lower plasma renin levels (12 +/- 2 vs. 20 +/- 4 mGU/ml, P < 0.05) and inc....... These data suggest an important role for an intact GH/IGF-I axis in the maintenance of a normal cardiovascular system....

  16. Evaluation of Therapy Management and Patient Compliance in Postmenopausal Patients with Hormone Receptor-positive Breast Cancer Receiving Letrozole Treatment: The EvaluateTM Study

    Science.gov (United States)

    Fasching, P. A.; Fehm, T.; Kellner, S.; de Waal, J.; Rezai, M.; Baier, B.; Baake, G.; Kolberg, H.-C.; Guggenberger, M.; Warm, M.; Harbeck, N.; Würstlein, R.; Deuker, J.-U.; Dall, P.; Richter, B.; Wachsmann, G.; Brucker, C.; Siebers, J. W.; Fersis, N.; Kuhn, T.; Wolf, C.; Vollert, H.-W.; Breitbach, G.-P.; Janni, W.; Landthaler, R.; Kohls, A.; Rezek, D.; Noesslet, T.; Fischer, G.; Henschen, S.; Praetz, T.; Heyl, V.; Kühn, T.; Krauß, T.; Thomssen, C.; Kümmel, S.; Hohn, A.; Tesch, H.; Mundhenke, C.; Hein, A.; Rauh, C.; Bayer, C. M.; Jacob, A.; Schmidt, K.; Belleville, E.; Hadji, P.; Wallwiener, D.; Grischke, E.-M.; Beckmann, M. W.; Brucker, S. Y.

    2014-01-01

    Introduction: The EvaluateTM study (Evaluation of therapy management and patient compliance in postmenopausal hormone receptor-positive breast cancer patients receiving letrozole treatment) is a prospective, non-interventional study for the assessment of therapy management and compliance in the routine care of postmenopausal women with invasive hormone receptor-positive breast cancer receiving letrozole. The parameters for inclusion in the study are presented and discussed here. Material and Methods: Between January 2008 and December 2009 a total of 5045 patients in 310 study centers were recruited to the EvaluateTM study. Inclusion criteria were hormone receptor-positive breast cancer and adjuvant treatment or metastasis. 373 patients were excluded from the analysis for various reasons. Results: A total of 4420 patients receiving adjuvant treatment and 252 patients with metastasis receiving palliative treatment were included in the study. For 4181 patients receiving adjuvant treatment, treatment with the aromatase inhibitor letrozole commenced immediately after surgery (upfront). Two hundred patients had initially received tamoxifen and started aromatase inhibitor treatment with letrozole at 1–5 years after diagnosis (switch), und 39 patients only commenced letrozole treatment 5–10 years after diagnosis (extended endocrine therapy). Patient and tumor characteristics were within expected ranges, as were comorbidities and concurrent medication. Conclusion: The data from the EvaluateTM study will offer a good overview of therapy management in the routine care of postmenopausal women with hormone receptor-positive breast cancer. Planned analyses will look at therapy compliance and patient satisfaction with how information is conveyed and the contents of the conveyed information. PMID:25568468

  17. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    OpenAIRE

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/...

  18. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  19. Treatment of pituitary gigantism with the growth hormone receptor antagonist pegvisomant.

    Science.gov (United States)

    Goldenberg, Naila; Racine, Michael S; Thomas, Pamela; Degnan, Bernard; Chandler, William; Barkan, Ariel

    2008-08-01

    Treatment of pituitary gigantism is complex and the results are usually unsatisfactory. The objective of the study was to describe the results of therapy of three children with pituitary gigantism by a GH receptor antagonist, pegvisomant. This was a descriptive case series of up to 3.5 yr duration. The study was conducted at a university hospital. Patients included three children (one female, two males) with pituitary gigantism whose GH hypersecretion was incompletely controlled by surgery, somatostatin analog, and dopamine agonist. The intervention was administration of pegvisomant. Plasma IGF-I and growth velocity were measured. In all three children, pegvisomant rapidly decreased plasma IGF-I concentrations. Growth velocity declined to subnormal or normal values. Statural growth fell into lower growth percentiles and acromegalic features resolved. Pituitary tumor size did not change in two children but increased in one boy despite concomitant therapy with a somatostatin analog. Pegvisomant may be an effective modality for the therapy of pituitary gigantism in children. Titration of the dose is necessary for optimal efficacy, and regular surveillance of tumor size is mandatory.

  20. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    Directory of Open Access Journals (Sweden)

    Annika Mohr

    Full Text Available Immunohistochemistry (IHC is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1, progesterone receptor (PGR, prolactin receptor (PRLR and growth hormone receptor (GHR gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  1. Association of Exon 10A and 10B inactivating mutation of follicle stimulating hormone receptor gene (FSHR) and Polycystic Ovarian Syndrome in Vellore cohort

    Science.gov (United States)

    Sekar, Nishu; Kulkarni, Rucha; Ozalkar, Sharvari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic ovarian syndrome is the most common heterogenous endocrine disorder in women. Follicle stimulating hormone receptor is associated with normal development as well as maturation of follicles and triggers estrogen production in granulosa cells of the ovary. Inactivating mutation in FSHR gene correlated with reduction of ovarian function in women is due to damage to receptor function. This study aims to investigate whether inactivating mutations, in follicle stimulating hormone receptor gene is related to polycystic ovarian morphology in women with PCOS. Genomic DNA isolated from 15 subjects from Sandhya Hospital, Vellore (10 patients with PCOS and 5 healthy controls) was taken for this study. Patient data included a clinical report, hormonal levels, and ovarian morphological details. DNA isolation was followed by DNA amplification by polymerase chain reaction using Exon 10 A and Exon 10 B primers. The PCR-RFLP analysis was performed using Dde1 restriction enzyme. Here we discuss inactivating mutation found in Exon 10 of FSHR gene in patients with PCOS.The absence of inactivating mutation was observed through PCR-RFLP study on Exon 10A and Exon 10B.

  2. Levels of central oxytocin and glucocorticoid receptor and serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability.

    Science.gov (United States)

    Qiao, Xufeng; Yan, Yating; Tai, Fadao; Wu, Ruiyong; Hao, Ping; Fang, Qianqian; Zhang, Shuwei

    2014-11-01

    Sociability is the prerequisite to social living. Oxytocin and the hypothalamo-pituitary-adrenocortical axis mediate various social behaviors across different social contexts in different rodents. We hypothesized that they also mediate levels of non-reproductive social behavior. Here we explored naturally occurring variation in sociability through a social preference test and compared central oxytocin, glucocorticoid receptors, serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability. We found that low-social voles showed higher levels of anxiety-like behavior in open field tests, and had more serum adrenocorticotropic hormone and corticosterone than high-social voles. High-social individuals had more glucocorticoid receptor positive neurons in the hippocampus and more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than low-social individuals. Within the same level of sociability, females had more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than males. These results indicate that naturally occurring social preferences are associated with higher levels of central oxytocin and hippocampus glucocorticoid receptor and lower levels of anxiety and serum adrenocorticotropic hormone and corticosterone. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Risk of Breast Cancer in Relation to Combined Effects of Hormone Therapy, Body Mass Index, and Alcohol Use, by Hormone-receptor Status

    DEFF Research Database (Denmark)

    Hvidtfeldt, Ulla Arthur; Tjonneland, Anne; Keiding, Niels

    2015-01-01

    BACKGROUND: Alcohol consumption, increased body mass index (BMI), and hormone therapy are risk factors for postmenopausal breast cancer, but their combined effects are not well understood. Because hormone therapy is effective for the relief of menopausal symptoms, the identification of "high......,789 women ages 50+ years (study period 1981 to 2009). Information on risk factors was obtained in baseline questionnaires. We performed analyses using the Aalen additive hazards model. Serum estradiol and testosterone measurements were obtained in a subsample of approximately 1000 women. RESULTS: During 392...

  4. The Common Follicle-Stimulating Hormone Receptor (FSHR Promoter Polymorphism FSHR −29G > A Affects Androgen Production in Normal Human Small Antral Follicles

    Directory of Open Access Journals (Sweden)

    Tanni Borgbo

    2017-06-01

    Full Text Available Follicle-stimulating hormone receptors (FSHRs are almost exclusively expressed on granulosa cells, and FSH action is probably most clearly reflected in intrafollicular hormone milieu of antral follicles. Little is known about the possible effects of the common single nucleotide polymorphism (SNP FSHR −29G > A (rs1394205 on hormonal conditions in humsan small antral follicles (hSAFs obtained from women in the natural menstrual cycle. This study investigated the follicle fluid (FF concentrations of anti-Müllerian hormone, estradiol, progesterone, androstenedione, and testosterone in hSAF in relation to the different genotypes of FSHR −29G > A. FF from 362 follicles was collected in 95 women undergoing fertility preservation, who did not suffer from a disease that directly affected ovarian function. The testosterone levels of the minor A/A genotype were significantly increased compared to the A/G and the G/G genotype. Furthermore, significantly reduced androstenedione levels were observed for the G/G genotype, as compared to the A/G genotype, while the other hormones did not show statistical significant differences. In conclusion, the androgen levels of hSAF were significantly elevated in the minor SNP genotype in the FSHR promoter polymorphism FSHR −29G > A.

  5. The chicken c-erbA alpha-product induces expression of thyroid hormone-responsive genes in 3,5,3'-triiodothyronine receptor-deficient rat hepatoma cells

    DEFF Research Database (Denmark)

    Muñoz, A; Höppner, W; Sap, J

    1990-01-01

    To determine the capacity of the chicken c-erbA (cTR-alpha) gene product in regulating expression of known thyroid hormone-responsive genes, both the cTR-alpha and the viral v-erbA genes were expressed in FAO cells, a rat hepatoma cell line defective for functional thyroid hormone receptors. Upon...

  6. Patterns of resource utilization and cost for postmenopausal women with hormone-receptor–positive, human epidermal growth factor receptor-2–negative advanced breast cancer in Europe

    International Nuclear Information System (INIS)

    Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice

    2015-01-01

    Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor–positive (HR+), human epidermal growth factor receptor-2–negative (HER2–) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10 000 to €14 000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2– advanced breast cancer. The online version of this article (doi:10.1186/s12885-015-1762-3) contains supplementary material, which is available to authorized users

  7. Association between lifetime exposure to passive smoking and risk of breast cancer subtypes defined by hormone receptor status among non-smoking Caucasian women.

    Directory of Open Access Journals (Sweden)

    Loreta Strumylaite

    Full Text Available Tobacco smoking is inconsistently associated with breast cancer. Although some studies suggest that breast cancer risk is related to passive smoking, little is known about the association with breast cancer by tumor hormone receptor status. We aimed to explore the association between lifetime passive smoking and risk of breast cancer subtypes defined by estrogen receptor and progesterone receptor status among non-smoking Caucasian women. A hospital-based case-control study was performed in 585 cases and 1170 controls aged 28-90 years. Information on lifetime passive smoking and other factors was collected via a self-administered questionnaire. Logistic regression was used for analyses restricted to the 449 cases and 930 controls who had never smoked actively. All statistical tests were two-sided. Adjusted odds ratio of breast cancer was 1.01 (95% confidence interval (CI: 0.72-1.41 in women who experienced exposure to passive smoking at work, 1.88 (95% CI: 1.38-2.55 in women who had exposure at home, and 2.80 (95% CI: 1.84-4.25 in women who were exposed at home and at work, all compared with never exposed regularly. Increased risk was associated with longer exposure: women exposed ≤ 20 years and > 20 years had 1.27 (95% CI: 0.97-1.66 and 2.64 (95% CI: 1.87-3.74 times higher risk of breast cancer compared with never exposed (Ptrend 0.05. There was evidence of interaction between passive smoking intensity and menopausal status in both overall group (P = 0.02 and hormone receptor-positive breast cancer group (P < 0.05. In Caucasian women, lifetime exposure to passive smoking is associated with the risk of breast cancer independent of tumor hormone receptor status with the strongest association in postmenopausal women.

  8. Comparative Functional Alanine Positional Scanning of the α-Melanocyte Stimulating Hormone and NDP-Melanocyte Stimulating Hormone Demonstrates Differential Structure-Activity Relationships at the Mouse Melanocortin Receptors.

    Science.gov (United States)

    Todorovic, Aleksandar; Ericson, Mark D; Palusak, Ryan D; Sorensen, Nicholas B; Wood, Michael S; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-07-20

    The melanocortin system has been implicated in the regulation of various physiological functions including melanogenesis, steroidogenesis, energy homeostasis, and feeding behavior. Five melanocortin receptors have been identified to date and belong to the family of G protein-coupled receptors (GPCR). Post-translational modification of the proopiomelanocortin (POMC) prohormone leads to the biosynthesis of the endogenous melanocortin agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, γ-MSH, and adrenocorticotropic hormone (ACTH). All the melanocortin agonists derived from the POMC prohormone contain a His-Phe-Arg-Trp tetrapeptide sequence that has been implicated in eliciting the pharmacological responses at the melanocortin receptors. Herein, an alanine (Ala) positional scan is reported for the endogenous α-MSH ligand and the synthetic, more potent, NDP-MSH peptide (Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH2) at the cloned mouse melanocortin receptors to test the assumption that the structure-activity relationships of one ligand would apply to the other. Several residues outside of the postulated pharmacophore altered potency at the melanocortin receptors, most notably the 1560-, 37-, and 15-fold potency loss when the Glu(5) position of α-MSH was substituted with Ala at the mMC1R, mMC3R, and mMC4R, respectively. Importantly, the altered potencies due to Ala substitutions in α-MSH did not necessarily correlate with equivalent Ala substitutions in NDP-MSH, indicating that structural modifications and corresponding biological activities in one of these melanocortin ligands may not be predictive for the other agonist.

  9. Disruption of Zebrafish Follicle-Stimulating Hormone Receptor (fshr) But Not Luteinizing Hormone Receptor (lhcgr) Gene by TALEN Leads to Failed Follicle Activation in Females Followed by Sexual Reversal to Males.

    Science.gov (United States)

    Zhang, Zhiwei; Lau, Shuk-Wa; Zhang, Lingling; Ge, Wei

    2015-10-01

    Gonadotropins are primary hormones that control vertebrate reproduction. In a recent study, we analyzed the impacts of FSH and LH on zebrafish reproduction by disrupting FSH and LH-β genes (fshb and lhb) using transcription activator-like effector nuclease (TALEN) technology. Using the same approach, we successfully deleted FSH and LH receptor genes (fshr and lhcgr) in the present study. In contrast to the deficiency of its cognate ligand FSH, the fshr-deficient females showed a complete failure of follicle activation with all ovarian follicles arrested at the primary growth-previtellogenic transition, which is the marker for puberty onset in females. Interestingly, after blockade at the primary growth stage for varying times, all females reversed to males, and all these males were fertile. In fshr-deficient males, spermatogenesis was normal in adults, but the initiation of spermatogenesis in juveniles was retarded. In contrast to fshr, the deletion of the lhcgr gene alone caused no obvious phenotypes in both males and females; however, double mutation of fshr and lhcgr resulted in infertile males. In summary, our results in the present study showed that Fshr was indispensable to folliculogenesis and the disruption of the fshr gene resulted in a complete failure of follicle activation followed by masculinization into males. In contrast, lhcgr does not seem to be essential to zebrafish reproduction in both males and females. Neither Fshr nor Lhcgr deficiency could phenocopy the deficiency of their cognate ligands FSH and LH, which is likely due to the fact that Fshr can be activated by both FSH and LH in the zebrafish.

  10. 125I-luteinizing hormone (LH) binding to soluble receptors from the primate (Macaca mulatta) corpus luteum: effects of ethanol exposure

    International Nuclear Information System (INIS)

    Danforth, D.R.; Stouffer, R.L.

    1988-01-01

    In the current study, we compared the effects of ethanol on gonadotropin receptors solubilized from macaque luteal membranes to those on receptors associated with the lipid bilayer. Treatment with 1% Triton X-100 for 30 min at 4C, followed by precipitation with polyethylene glycol, resulted in recovery of 50% more binding sites for 125 I-human luteinizing hormone (hLH) than were available in particulate preparations. However, the soluble receptors displayed a 3-fold lower affinity for 125 I-hLH. Conditions which enhanced LH binding to particulates, i.e., 1-8% ethanol at 25C, decreased specific 125 I-hLH binding to soluble receptors. Steady-state LH binding to soluble receptors during incubation at 4C was half of that observed at 25C. The presence of 8% ethanol at 4C restored LH binding to levels observed in the absence of ethanol at 25C. Thus, LH binding sites in the primate corpus luteum can be effectively solubilized with Triton X-100. The different binding characteristics of particulate and soluble receptors, including the response to ethanol exposure, suggest that the lipid environment in the luteal membrane modulates the availability and affinity of gonadotropin receptors

  11. [The influence of hormonal replacement therapy on bone density in postmenopausal women depending on polymorphism of vitamin D receptor (VDR) and estrogen receptor (ER) genes].

    Science.gov (United States)

    Brodowska, Agnieszka

    2003-01-01

    Osteoporosis is still an important health problem in modern societies. The densitometric criterion for the diagnosis of this condition established by WHO in 1994 is bone mass density (BMD) lower than 2.5 standard deviation (SD) from the mean value for young healthy individuals of the same sex. B