WorldWideScience

Sample records for adipocytes relieves adipose

  1. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology

    OpenAIRE

    Arner, Erik; Westermark, Pål O.; Spalding, Kirsty L.; Britton, Tom; Rydén, Mikael; Frisén, Jonas; Bernard, Samuel; Arner, Peter

    2009-01-01

    OBJECTIVE Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology. RESEARCH DESIGN AND METHODS Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with BMI 18–60 kg/m2. A morphology value was defined as the difference between the measured adipocyte volume and the expected volume given by a curved-line fit for a given body fat mass and was related ...

  2. Seeking the source of adipocytes in adult white adipose tissues

    OpenAIRE

    Lee, Yun-Hee; Granneman, James G.

    2012-01-01

    Adipocyte progenitors are thought to play a fundamental role in white adipose tissue (WAT) plasticity, which enables dynamic modulation of WAT metabolic and cellular characteristics in response to various stimuli. In general, two main strategies have been used to identify adipocyte progenitor cells: fluorescence-activated cell sorting (FACS)-based prospective analysis and lineage tracing. Although FACS-isolation is highly useful in defining multipotential stem cell populations for in vitro an...

  3. Adipocyte macrophage colony-stimulating factor is a mediator of adipose tissue growth.

    OpenAIRE

    Levine, J. A.; Jensen, M.D.; Eberhardt, N L; O'Brien, T.

    1998-01-01

    Adipose tissue growth results from de novo adipocyte recruitment (hyperplasia) and increased size of preexisting adipocytes. Adipocyte hyperplasia accounts for the severalfold increase in adipose tissue mass that occurs throughout life, yet the mechanism of adipocyte hyperplasia is unknown. We studied the potential of macrophage colony-stimulating factor (MCSF) to mediate adipocyte hyperplasia because of the profound effects MCSF exerts on pluripotent cell recruitment and differentiation in o...

  4. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Science.gov (United States)

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  5. Quantifying Size and Number of Adipocytes in Adipose Tissue

    OpenAIRE

    Parlee, Sebastian D.; Lentz, Stephen I.; Mori, Hiroyuki; MacDougald, Ormond A.

    2014-01-01

    White adipose tissue (WAT) is a dynamic and modifiable tissue that develops late during gestation in humans and through early postnatal development in rodents. WAT is unique in that it can account for as little as 3% of total body weight in elite athletes or as much as 70% in the morbidly obese. With the development of obesity, WAT undergoes a process of tissue remodeling in which adipocytes increase in both number (hyperplasia) and size (hypertrophy). Metabolic derangements associated with o...

  6. Obesity-associated Inflammation Induces microRNA-155 Expression in Adipocytes and Adipose Tissue: Outcome on Adipocyte Function.

    Science.gov (United States)

    Karkeni, Esma; Astier, Julien; Tourniaire, Franck; El Abed, Mouna; Romier, Béatrice; Gouranton, Erwan; Wan, Lin; Borel, Patrick; Salles, Jérôme; Walrand, Stéphane; Ye, Jianping; Landrier, Jean-François

    2016-04-01

    miR-155 expression is induced in adipocytes and adipose tissue submitted to inflammatory conditions in obesity context in murine and human models and participate to a pro-inflammatory loop by targeting PPARg. PMID:26829440

  7. Relationship of adipocyte size with adiposity and metabolic risk factors in Asian Indians.

    Directory of Open Access Journals (Sweden)

    Ved Prakash Meena

    Full Text Available Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions.We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians.Eighty (40 males and 40 females non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedance, abdominal fat area at L2-3 level (computed tomography and biochemical investigations (fasting blood glucose and insulin, lipids and hsCRP. During surgery, about 5 grams each of omental and subcutaneous adipose tissue was obtained for adipocyte size determination.Females had higher BMI, % body fat, skinfold thickness, total and subcutaneous abdominal fat area as compared to males. Overweight was present in 42.5% and 67.5%, and abdominal obesity in 5% and 52.5% males and females, respectively. Subcutaneous adipocyte size was significantly higher than omental adipocyte size. Omental adipocyte size correlated more strongly than subcutaneous adipocyte size with measures of adiposity (BMI, waist circumference, %BF, total and subcutaneous abdominal fat area and biochemical measures (fasting glucose, total cholesterol, triglycerides and HOMA-IR, the correlations being stronger in females. The correlation of adipocyte size with metabolic parameters was attenuated after adjusting for measures of adiposity.Omental adipocyte size, though smaller than the subcutaneous adipocyte size, was more closely related to measures of adiposity and metabolic parameters. However, the relationship was not independent of measures of adiposity.

  8. Adipocyte telomere length associates negatively with adipocyte size, whereas adipose tissue telomere length associates negatively with the extent of fibrosis in severely obese women.

    Science.gov (United States)

    el Bouazzaoui, F; Henneman, P; Thijssen, P; Visser, A; Koning, F; Lips, M A; Janssen, I; Pijl, H; Willems van Dijk, K; van Harmelen, V

    2014-05-01

    Telomere length can be considered as a biological marker for cell proliferation and aging. Obesity is associated with adipocyte hypertrophy and proliferation as well as with shorter telomeres in adipose tissue. As adipose tissue is a mixture of different cell types and the cellular composition of adipose tissue changes with obesity, it is unclear what determines telomere length of whole adipose tissue. We aimed to investigate telomere length in whole adipose tissue and isolated adipocytes in relation to adiposity, adipocyte hypertrophy and adipose tissue inflammation and fibrosis. Telomere length was measured by real-time PCR in visceral adipose tissue, and isolated adipocytes of 21 obese women with a waist ranging from 110 to 147 cm and age from 31 to 61 years. Telomere length in adipocytes was shorter than in whole adipose tissue. Telomere length of adipocytes but not whole adipose tissue correlated negatively with waist and adipocyte size, which was still significant after correction for age. Telomere length of whole adipose tissue associated negatively with fibrosis as determined by collagen content. Thus, in extremely obese individuals, adipocyte telomere length is a marker of adiposity, whereas whole adipose tissue telomere length reflects the extent of fibrosis and may indicate adipose tissue dysfunction.

  9. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues

    OpenAIRE

    SHAN, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 ...

  10. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    OpenAIRE

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.

    2014-01-01

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for gen...

  11. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    Science.gov (United States)

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  12. Adipose progenitor cells reside among the mature adipocytes: morphological research using an organotypic culture system.

    Science.gov (United States)

    Anayama, Hisashi; Fukuda, Ryo; Yamate, Jyoji

    2015-11-01

    The precise localization and biological characteristics of the adipose progenitor cells are still a focus of debate. In this study, the localization of the adipose progenitor cells was determined using an organotypic culture system of adipose tissue slices. The tissue slices of subcutaneous white adipose tissue from rats were placed on a porous membrane and cultured at the interface between air and the culture medium for up to 5 days with or without adipogenic stimulation. The structure of adipose tissue components was sufficiently preserved during the culture and, following adipogenic stimulation with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine, numerous multilocular adipocytes appeared in the interstitium among the mature adipocytes. Histomorphological 3-D observation using confocal laser microscopy revealed the presence of small mesenchymal cells containing little or no fat residing in the perivascular region and on the mature adipocytes and differentiation from the pre-existing mesenchymal cells to multilocular adipocytes. Immunohistochemistry demonstrated that these cells were initially present within the fibronectin-positive extracellular matrix (ECM). The adipose differentiation of the mesenchymal cells was confirmed by the enhanced expression of C/EBP-β suggesting adipose differentiation and the concurrent advent of CD105-expressing mesenchymal cells within the interstitium of the mature adipocytes. Based on the above, the mesenchymal cells embedded in the ECM around the mature adipocytes were confirmed to be responsible for adipogenesis because the transition of the mesenchymal cells to the stem state contributed to the increase in the number of adipocytes in rat adipose tissue.

  13. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    Science.gov (United States)

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  14. ADIPOSE TRIGLYCERIDE LIPASE REGULATES BASAL LIPOLYSIS AND LIPID DROPLET SIZE IN ADIPOCYTES

    OpenAIRE

    Miyoshi, Hideaki; Perfield, James W.; Obin, Martin S.; Greenberg, Andrew S.

    2008-01-01

    In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A), is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL and HSL) have been demonstrated to regulate lipid s...

  15. Bone marrow–derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice

    Science.gov (United States)

    Koh, Young Jun; Kang, Shinae; Lee, Hyuek Jong; Choi, Tae-Saeng; Lee, Ho Sub; Cho, Chung-Hyun; Koh, Gou Young

    2007-01-01

    Little is known about whether bone marrow–derived circulating progenitor cells (BMDCPCs) can transdifferentiate into adipocytes in adipose tissues or play a role in expanding adipocyte number during adipose tissue growth. Using a mouse bone marrow transplantation model, we addressed whether BMDCPCs can transdifferentiate into adipocytes under standard conditions as well as in the settings of diet-induced obesity, rosiglitazone treatment, and exposure to G-CSF. We also addressed the possibility of transdifferentiation to adipocytes in a murine parabiosis model. In each of these settings, our findings indicated that BMDCPCs did not transdifferentiate into either unilocular or multilocular adipocytes in adipose tissues. Most BMDCPCs became resident and phagocytic macrophages in adipose tissues — which resembled transdifferentiated multilocular adipocytes by appearance, but displayed cell surface markers characteristic for macrophages — in the absence of adipocyte marker expression. When exposed to adipogenic medium in vitro, bone marrow cells differentiated into multilocular, but not unilocular, adipocytes, but transdifferentiation was not observed in vivo, even in the contexts of adipose tissue regrowth or dermal wound healing. Our results suggest that BMDCPCs do not transdifferentiate into adipocytes in vivo and play little, if any, role in expanding the number of adipocytes during the growth of adipose tissues. PMID:18060029

  16. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Directory of Open Access Journals (Sweden)

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  17. Relationship of Adipocyte Size with Adiposity and Metabolic Risk Factors in Asian Indians

    OpenAIRE

    Ved Prakash Meena; V Seenu; Sharma, M. C.; Saumya Ranjan Mallick; Ashu Seith Bhalla; Nandita Gupta; Anant Mohan; Randeep Guleria; Ravindra M. Pandey; Kalpana Luthra; Naval K. Vikram

    2014-01-01

    Background Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions. Objectives We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians. Methodology Eighty (40 males and 40 females) non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedan...

  18. Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis.

    Science.gov (United States)

    Dusseault, Julie; Li, Bing; Haider, Nida; Goyette, Marie-Anne; Côté, Jean-François; Larose, Louise

    2016-09-01

    Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans. PMID:27325288

  19. Differentiation of human adipose-derived stem cells into brite (brown-in-white adipocytes

    Directory of Open Access Journals (Sweden)

    Didier F Pisani

    2011-11-01

    Full Text Available It is well established now that adult humans possess active brown adipose tissue which represents a potential pharmacological target to combat obesity and associated diseases. We had shown previously that human multipotent adipose-derived stem (hMADS cells are able to differentiate into cells which exhibit the key properties of human white adipocytes, and to convert into functional brown adipocytes upon PPARγ activation that could explain UCP1-expressing cells within islets surrounded by white adipocytes. Herein we further characterize hMADS cells differentiation into brown adipocytes that behave like mouse brite adipocytes previously described. We analyzed the expression of gene markers known to be associated with mouse white and brown adipocytes. When shifting from a white to a brown fat cell phenotype, the striking enhancement of uncoupling activity appears mainly due, if not all, to an increase in UCP1 expression whereas induction of UCP2 is weak and UCP3 expression is unchanged. Conversion of white hMADS adipocytes is dependent on PPARγ activation with rosiglitazone as the most potent agonist and is inhibited by a PPARγ antagonist. Furthermore our data show that, in contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is not induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. No primary or clonal precursor cells of human brown adipocytes have been obtained so far that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable cell model to delineate the formation and/or the uncoupling capacity of human brown/brite adipocytes that could help to dissipate caloric excess intake among individuals.

  20. Impaired Preadipocyte Differentiation Into Adipocytes in Subcutaneous Abdominal Adipose of PCOS-Like Female Rhesus Monkeys

    OpenAIRE

    Keller, Erica; Chazenbalk, Gregorio D.; Aguilera, Paul; Madrigal, Vanessa; Grogan, Tristan; Elashoff, David; Daniel A Dumesic; David H Abbott

    2014-01-01

    Metabolic characteristics of polycystic ovary syndrome women and polycystic ovary syndrome-like, prenatally androgenized (PA) female monkeys worsen with age, with altered adipogenesis of sc abdominal adipose potentially contributing to age-related adverse effects on metabolism. This study examines whether adipocyte morphology and gene expression in sc abdominal adipose differ between late reproductive-aged PA female rhesus monkeys compared with age-matched controls (C). Subcutaneous abdominal...

  1. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse

    Science.gov (United States)

    Background: There is a growing interest in exploiting the induction of beige or “brite” (brown in white) adipocytes (beigeing) to combat obesity and its comorbidities. However, there is some uncertainty regarding the best markers to evaluate the occurrence or magnitude of beigeing in white adipose t...

  2. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    Science.gov (United States)

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  3. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering.

    Science.gov (United States)

    Yao, Rui; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-05-01

    Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface-coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co-cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self-assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co-cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4-week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long-term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies.

  4. Adipocyte Hypertrophy, Inflammation and Fibrosis Characterize Subcutaneous Adipose Tissue of Healthy, Non-Obese Subjects Predisposed to Type 2 Diabetes

    OpenAIRE

    A M Josefin Henninger; Björn Eliasson; Jenndahl, Lachmi E.; Ann Hammarstedt

    2014-01-01

    BACKGROUND: The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes. ...

  5. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    Science.gov (United States)

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  6. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice

    OpenAIRE

    Jeong, Sunhyo; Yoon, Michung

    2009-01-01

    Peroxisome proliferator-activated receptor α (PPARα) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a PPARα agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly i...

  7. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen;

    2009-01-01

    In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent...... adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  8. Pmch-Deficiency in Rats Is Associated with Normal Adipocyte Differentiation and Lower Sympathetic Adipose Drive

    OpenAIRE

    Mul, Joram D.; Eoghan O'Duibhir; Shrestha, Yogendra B.; Arjen Koppen; Peter Vargoviç; Toonen, Pim W; Eleen Zarebidaki; Richard Kvetnansky; Eric Kalkhoven; Edwin Cuppen; Bartness, Timothy J.

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. ...

  9. Distinct Roles of Endothelial and Adipocyte Caveolin-1 in Macrophage Infiltration and Adipose Tissue Metabolic Activity

    OpenAIRE

    Briand, N.; Le Lay, S.; Sessa, W. C.; Ferre, P.; Dugail, I.

    2011-01-01

    OBJECTIVE Defective caveolin-1 expression is now recognized as a cause of lipoatrophic diabetes in patients, due to primary caveolin gene mutations or secondary caveolin deficiency caused by PTRF/cavin gene defects. The goal of this study was to establish the relative contribution of endothelial cells and adipocytes, both highly expressing caveolin-1 to the lipoatrophic phenotype of mice with global caveolin-1 gene invalidation (Cav1-KO). RESEARCH DESIGN AND METHODS We compared adipose tissue...

  10. Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue

    International Nuclear Information System (INIS)

    Adipose tissue dysfunction has been associated with diabetogenic effects. The effects of repeated Cd exposure on adipocytes remain largely unknown. We administered Cd at doses of 0, 5, 10, and 20 μmol/kg bw sc for 2 weeks (3.5 times/week) to mice and assessed the possible alteration of epididymal white adipose tissue (WAT), including histological difference, adipocyte differentiation and functional capacity. Whereas hepatic weight did not differ between the control and Cd-exposed groups, WAT weight, as well as adipose cell mass, significantly decreased in a dose-dependent manner in Cd-treated mice. The Cd concentration in WAT significantly increased in Cd-treated groups after 2 weeks of exposure. Next, we examined the effects of Cd on adipocyte differentiation and hypertrophy. Cd exposure significantly decreased the paternally expressed gene 1/Mesoderm-specific transcript mRNA expression levels. Both peroxisome proliferator-activated receptor γ2 and CCAAT/enhancer-binding protein α mRNA expression levels in WAT tended to decrease in the Cd-treated groups. Next, we determined the effects of Cd exposure on the mRNA expression levels of adipose-derived hormones, such as adiponectin and resistin. The adiponectin mRNA expression level in WAT decreased after both 6 h and 2 weeks of exposure to a high dose of Cd, and the reduction in resistin mRNA expression levels was observed after 2 weeks of exposure. These results suggest that Cd exposure causes abnormal adipocyte differentiation, expansion, and function, which might lead to development of insulin resistance, hypertension, and cardiovascular disease.

  11. Aging Leads to a Programmed Loss of Brown Adipocytes in Murine Subcutaneous White Adipose Tissue

    OpenAIRE

    Rogers, Nicole H; Landa, Alejandro; Park, Seongjoon; Smith, Roy G.

    2012-01-01

    Insulin sensitivity deteriorates with age, but mechanisms remain unclear. Age-related changes in the function of subcutaneous white adipose tissue (sWAT) are less characterized than those in visceral WAT. We hypothesized that metabolic alterations in sWAT, which in contrast to epididymal WAT, harbors a sub-population of energy dissipating UCP1+ brown adipocytes, promote age-dependent progression towards insulin resistance. Indeed, we show that a predominant consequence of aging in murine sWAT...

  12. Differential effects of a gelatinase inhibitor on adipocyte differentiation and adipose tissue development.

    Science.gov (United States)

    Van Hul, Matthias; Bauters, Dries; Lijnen, Roger H

    2013-10-01

    (1) A potential role for the gelatinases in adipocyte differentiation in vitro and adipose tissue development in vivo was investigated using the gelatinase inhibitor tolylsam ((R)-3-methyl-2-[4-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-benzenesulphonylamino]-butyric acid). (2) Differentiation of murine 3T3-F442A preadipocytes (12 days after reaching confluence) into mature adipocytes in vitro was promoted in the presence of tolylsam (10-100 μmol/L). (3) De novo development of fat tissue in nude mice injected with preadipocytes and kept on a high-fat diet was significantly impaired following treatment with tolylsam (100 mg/kg per day for 4 weeks). (4) Adipose tissue development in matrix metalloproteinase (MMP)-2 deficient mice, kept on a high-fat diet, was significantly impaired following administration of tolylsam (100 mg/kg per day for 15 weeks). This was associated with markedly enhanced metabolic rate. (5) Treatment of MMP-2-deficient mice with tolylsam (100 mg/kg per day, 15 weeks) was associated with the preservation of collagen and a reduction in blood vessel size in adipose tissues in vivo. (6) Furthermore, plasma levels of triglycerides and free fatty acids were reduced by tolylsam treatment of MMP-2-deficient mice (100 mg/kg per day, 15 weeks), whereas nutrient adsorption in the intestine was not affected. (7) The results of the present study indicate that tolylsam promotes preadipocyte differentiation in vitro, but impairs adipose tissue development in vivo.

  13. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    A M Josefin Henninger

    Full Text Available BACKGROUND: The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes. METHOD: Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement. RESULTS: Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs. CONCLUSION: Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.

  14. Relative shrinkage of adipocytes by paraffin in proportion to plastic embedding in human adipose tissue before and after weight loss.

    Science.gov (United States)

    Verhoef, Sanne P M; van Dijk, Paul; Westerterp, Klaas R

    2013-01-01

    Adipocyte size is a major modulator of endocrine functioning of adipose tissue and methods allowing accurate determination of adipocyte size are important to study energy metabolism. The aim of this study was to assess the relative shrinkage of adipocytes before and after weight loss by comparing adipose tissue from the same subjects embedded in paraffin and plastic. 18 healthy subjects (5 males and 13 females) aged 20-50 y with a BMI of 28-38 kg/m² followed a very low energy diet for 8 weeks. Adipose tissue biopsies were taken prior to and after weight loss and were processed for paraffin and plastic sections. Parameters of adipocyte size were determined with computer image analysis. Mean adipocyte size was smaller in paraffin compared to plastic embedded tissue both before (66 ± 4 vs. 103 ± 5 μm, P paraffin embedded tissue in proportion to plastic embedded tissue was not significantly different before and after weight loss (73 and 69%, respectively). Shrinkage due to the type of embedding of the adipose tissue can be ignored when comparing before and after weight loss. Plastic embedding of adipose tissue provides more accurate and sensitive results.

  15. Fatty acids do not pay the toll: effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi Kumar

    2012-12-01

    Full Text Available Abstract Background On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. Methods Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid - LA and PA and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid - EPA, DHA and OA with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1. In order to determine if TLR2 and TLR4 are activated by fatty acid (FA, we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. Results None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. Conclusions This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity.

  16. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    Science.gov (United States)

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  17. OXIDATIVE STRESS: ITS ROLE IN INSULIN SECRETION, HORMONE RECEPTION BY ADIPOCYTES AND LIPOLYSIS IN ADIPOSE TISSUE

    Directory of Open Access Journals (Sweden)

    V. V. Ivanov

    2014-01-01

    Full Text Available Oxidative stress is one of the pathogenetic components of many diseases during which generation of reactive oxigen species increases and the capacity of the antioxidant protection system diminishes. In the research of the last decades special attention has been given to adipose tissue, production of adipokines by it and their role in development of immunoresistance associated with formation of the metabolic syndrome and diabetes.Search for methods of therapeutic correction of adipokine secretion disorders, their influence on metabolism of separate cells and the organism on the whole as well as development of new approaches to correction of disorders in cell sensitivity to insulin are extremely topical nowadays. Systematization and consolidation of accumulated data allow to determine the strategies of further research more accurately; as a result, we have attempted to summarize and analyze the accumulated data on the role of adipose tissue in oxidative stress development.On the basis of literature data and the results of the personal investigations, the role of adipose tissue in forming oxidative stress in diabetes has been analyzed in the article. Brief description of adipose tissue was given as a secretory organ regulating metabolic processes in adipocytes and influencing functions of various organs and systems of the body. Mechanisms of disorder in insulin secretion as well as development of insulin sesistance in type I diabetes were described along with the contribution of lipolysis in adipose tissue to these processes.

  18. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution.

    Science.gov (United States)

    Yao, Rui; Du, Yanan; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-08-01

    An in vitro model that recapitulates the characteristics of native human adipose tissue would largely benefit pathology studies and therapy development. In this paper, we fabricated a physiological model composed of both human adipocytes and endothelial cells with spatially controlled distribution that biomimics the structure and composition of human adipose tissue. Detailed studies into the cell-cell interactions between the adipocytes and endothelial cells revealed a mutual-enhanced effect which resembles the in vivo routine. Furthermore, comparisons between planar coculture and model coculture demonstrated improved adipocyte function as well as endothelial cell proliferation under the same conditions. This research provided a reliable model for human adipose tissue development studies and potential obesity-related therapy development.

  19. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues

    OpenAIRE

    Erica L. Scheller; Doucette, Casey R.; Learman, Brian S.; Cawthorn, William P; Khandaker, Shaima; Schell, Benjamin; Wu, Brent; Ding, Shi-Ying; Bredella, Miriam A.; Fazeli, Pouneh K.; Khoury, Basma; Jepsen, Karl J.; Pilch, Paul F.; Klibanski, Anne; ROSEN, CLIFFORD J

    2015-01-01

    Marrow adipose tissue (MAT) accumulates in diverse clinical conditions but remains poorly understood. Here we show region-specific variation in MAT adipocyte development, regulation, size, lipid composition, gene expression, and genetic determinants. Early MAT formation in mice is conserved, while later development is strain dependent. Proximal, but not distal, MAT is lost with 21-day cold exposure. Rat MAT adipocytes from distal sites have an increased proportion of monounsaturated fatty aci...

  20. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. PMID:18386066

  1. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  2. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    OpenAIRE

    Oosterveer, Maaike H.; Koolman, Anniek H; de Boer, Pieter T; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and q...

  3. Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes.

    Science.gov (United States)

    Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon

    2010-06-01

    Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.

  4. Comparative expression analysis of isolated human adipocytes and the human adipose cell lines LiSa-2 and PAZ6

    NARCIS (Netherlands)

    Beek, van E.A.; Bakker, A.H.; Kruyt, P.M.; Vink, C.; Saris, W.H.; Keijer, J.

    2008-01-01

    Objective: To obtain insight in the extent to which the human cell lines LiSa-2 and PAZ6 resemble isolated primary human adipocytes. Design: A combination of cDNA subtraction (representative difference analysis; RDA) and cDNA microarray analysis was used to select adipose specific genes to compare i

  5. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase

    NARCIS (Netherlands)

    Schweiger, M.; Paar, M.; Eder, C.; Brandis, J.; Moser, E.; Gorkiewisz, G.; Grond, S.; Radner, F.P.W.; Cerk, I.; Cornaciu, I.; Oberer, M.; Kersten, A.H.; Zechner, R.; Zimmermann, M.B.; Lass, A.

    2012-01-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL)5, which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 sw

  6. Adrenomedullin 2 Improves Early Obesity-Induced Adipose Insulin Resistance by Inhibiting the Class II MHC in Adipocytes.

    Science.gov (United States)

    Zhang, Song-Yang; Lv, Ying; Zhang, Heng; Gao, Song; Wang, Ting; Feng, Juan; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-08-01

    MHC class II (MHCII) antigen presentation in adipocytes was reported to trigger early adipose inflammation and insulin resistance. However, the benefits of MHCII inhibition in adipocytes remain largely unknown. Here, we showed that human plasma polypeptide adrenomedullin 2 (ADM2) levels were negatively correlated with HOMA of insulin resistance in obese human. Adipose-specific human ADM2 transgenic (aADM2-tg) mice were generated. The aADM2-tg mice displayed improvements in high-fat diet-induced early adipose insulin resistance. This was associated with increased insulin signaling and decreased systemic inflammation. ADM2 dose-dependently inhibited CIITA-induced MHCII expression by increasing Blimp1 expression in a CRLR/RAMP1-cAMP-dependent manner in cultured adipocytes. Furthermore, ADM2 treatment restored the high-fat diet-induced early insulin resistance in adipose tissue, mainly via inhibition of adipocyte MHCII antigen presentation and CD4(+) T-cell activation. This study demonstrates that ADM2 is a promising candidate for the treatment of early obesity-induced insulin resistance. PMID:27207558

  7. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  8. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas;

    2010-01-01

    -adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE(2) receptor antagonists implicated EP(4) as a main PGE(2) receptor, and injection of the stable PGE(2) analog (EP(3/4) agonist) 16,16 dm PGE(2) induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity...... attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  9. Dietary Cholesterol Promotes Adipocyte Hypertrophy and Adipose Tissue Inflammation in Visceral, But Not Subcutaneous, Fat in Monkeys

    Science.gov (United States)

    Chung, Soonkyu; Cuffe, Helen; Marshall, Stephanie M.; McDaniel, Allison L.; Ha, Jung-Heun; Kavanagh, Kylie; Hong, Cynthia; Tontonoz, Peter; Temel, Ryan E.; Parks, John S

    2014-01-01

    Objective Excessive caloric intake is associated with obesity and adipose tissue dysfunction. However, the role of dietary cholesterol in this process is unknown. The aim of this study was to determine whether increasing dietary cholesterol intake alters adipose tissue cholesterol content, adipocyte size, and endocrine function in nonhuman primates. Approach and Results Age-matched, male African Green monkeys (n=5 per group) were assigned to one of three diets containing 0.002 (Lo), 0.2 (Med) or 0.4 (Hi) mg cholesterol/Kcal. After 10 weeks of diet feeding, animals were euthanized for adipose tissue, liver, and plasma collection. With increasing dietary cholesterol, free cholesterol (FC) content and adipocyte size increased in a step-wise manner in visceral, but not subcutaneous fat, with a significant association between visceral adipocyte size and FC content (r2=0.298; n=15; p=0.035). In visceral fat, dietary cholesterol intake was associated with: 1) increased pro-inflammatory gene expression and macrophage recruitment, 2) decreased expression of genes involved in cholesterol biosynthesis and lipoprotein uptake, and 3) increased expression of proteins involved in FC efflux. Conclusions Increasing dietary cholesterol selectively increases visceral fat adipocyte size, FC and macrophage content, and proinflammatory gene expression in nonhuman primates. Visceral fat cells appear to compensate for increased dietary cholesterol by limiting cholesterol uptake/synthesis and increasing FC efflux pathways. PMID:24969772

  10. Pref-1 in brown adipose tissue: specific involvement in brown adipocyte differentiation and regulatory role of C/EBPδ.

    Science.gov (United States)

    Armengol, Jordi; Villena, Josep A; Hondares, Elayne; Carmona, María C; Sul, Hei Sook; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2012-05-01

    Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.

  11. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase

    OpenAIRE

    Schweiger, Martina; Paar, Margret; Eder, Christina; Brandis, Janina; Moser, Elena; Gorkiewicz, Gregor; Grond, Susanne; Radner, Franz P. W.; Cerk, Ines; Cornaciu, Irina; Oberer, Monika; Kersten, Sander; Zechner, Rudolf; Zimmermann, Robert; Lass, Achim

    2012-01-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexp...

  12. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  13. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype

    Science.gov (United States)

    Abdul-Rahman, Omar; Kristóf, Endre; Doan-Xuan, Quang-Minh; Vida, András; Nagy, Lilla; Horváth, Ambrus; Simon, József; Maros, Tamás; Szentkirályi, István; Palotás, Lehel; Debreceni, Tamás; Csizmadia, Péter; Szerafin, Tamás; Fodor, Tamás; Szántó, Magdolna; Tóth, Attila; Kiss, Borbála; Bacsó, Zsolt; Bai, Péter

    2016-01-01

    Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ) by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs) from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R)-5-(4-Carbamoyl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR), a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis) when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained the same when

  14. NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.

    Science.gov (United States)

    Stromsdorfer, Kelly L; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C; Franczyk, Michael P; Kelly, Shannon C; Qi, Nathan; Imai, Shin-Ichiro; Yoshino, Jun

    2016-08-16

    Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance. PMID:27498863

  15. NAMPT-mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice

    Science.gov (United States)

    Stromsdorfer, Kelly L.; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C.; Franczyk, Michael P.; Kelly, Shannon C.; Qi, Nathan; Imai, Shin-ichiro; Yoshino, Jun

    2016-01-01

    SUMMARY Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD+ biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle, and adipose tissue dysfunction, manifested by increased plasma free fatty acids concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. Remarkably, these deleterious alterations were normalized by administering rosiglitazone or a key NAD+ intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance. PMID:27498863

  16. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes.

    OpenAIRE

    MacDougald, O A; Hwang, C. S.; Fan, H; Lane, M D

    1995-01-01

    A mutation within the obese gene was recently identified as the genetic basis for obesity in the ob/ob mouse. The obese gene product, leptin, is a 16-kDa protein expressed predominantly in adipose tissue. Consistent with leptin's postulated role as an extracellular signaling protein, human embryonic kidney 293 cells transfected with the obese gene secreted leptin with minimal intracellular accumulation. Upon differentiation of 3T3-L1 preadipocytes into adipocytes, the leptin mRNA was expresse...

  17. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    Science.gov (United States)

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.

  18. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes.

    Science.gov (United States)

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-07-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  19. Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes*

    Science.gov (United States)

    Bezaire, Véronic; Mairal, Aline; Ribet, Carole; Lefort, Corinne; Girousse, Amandine; Jocken, Johan; Laurencikiene, Jurga; Anesia, Rodica; Rodriguez, Anne-Marie; Ryden, Mikael; Stenson, Britta M.; Dani, Christian; Ailhaud, Gérard; Arner, Peter; Langin, Dominique

    2009-01-01

    Lipolysis is the catabolic pathway by which triglycerides are hydrolyzed into fatty acids. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) have the capacity to hydrolyze in vitro the first ester bond of triglycerides, but their respective contributions to whole cell lipolysis in human adipocytes is unclear. Here, we have investigated the roles of HSL, ATGL, and its coactivator CGI-58 in basal and forskolin-stimulated lipolysis in a human white adipocyte model, the hMADS cells. The hMADS adipocytes express the various components of fatty acid metabolism and show lipolytic capacity similar to primary cultured adipocytes. We show that lipolysis and fatty acid esterification are tightly coupled except in conditions of stimulated lipolysis. Immunocytochemistry experiments revealed that acute forskolin treatment promotes HSL translocation from the cytosol to small lipid droplets and redistribution of ATGL from the cytosol and large lipid droplets to small lipid droplets, resulting in enriched colocalization of the two lipases. HSL or ATGL overexpression resulted in increased triglyceride-specific hydrolase capacity, but only ATGL overexpression increased whole cell lipolysis. HSL silencing had no effect on basal lipolysis and only partially reduced forskolin-stimulated lipolysis. Conversely, silencing of ATGL or CGI-58 significantly reduced basal lipolysis and essentially abolished forskolin-stimulated lipolysis. Altogether, these results suggest that ATGL/CGI-58 acts independently of HSL and precedes its action in the sequential hydrolysis of triglycerides in human hMADS adipocytes. PMID:19433586

  20. Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: evidence of cell plasticity.

    Directory of Open Access Journals (Sweden)

    Gregorio Chazenbalk

    Full Text Available INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs, adipose stem cells (ASCs, and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes, CD14 and CD68 (ATMs, CD34 (ASCs, and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+ ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+/CD68(+/DLK (+ cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+/CD68(+/DLK(+ cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and

  1. Macrophages and Adipocytes in Human Obesity Adipose Tissue Gene Expression and Insulin Sensitivity During Calorie Restriction and Weight Stabilization

    DEFF Research Database (Denmark)

    Capel, F.; Klimcakova, E.; Viguerie, N.;

    2009-01-01

    OBJECTIVE-We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS-Twenty-two obese women followed a dietary intervention program composed of an energy restriction...... phase with a 4-week very-low-calorie diet and a weight stabilization period composed of a 2-month low-calorie diet followed by 3-4 months of a weight maintenance diet. At each time point, a euglycemic-hyperinsulinemic clamp and subcutaneous adipose tissue biopsies were performed. Adipose tissue gene...... during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary...

  2. Mitigation of isolation-associated adipocyte interleukin-6 secretion following rapid dissociation of adipose tissue

    OpenAIRE

    Airlia C S Thompson; Nuñez, Martha; Davidson, Ryan; Horm, Teresa; Schnittker, Karina; Hart, Madeline V.; Suarez, Allen M.; Tsao, Tsu-Shuen

    2012-01-01

    Primary adipocyte isolation by collagenase digestion is a widely used technique to study metabolic regulation and insulin action in adipocytes. However, induction of a proinflammatory response characterized by enhanced secretion of interleukin (IL)-6 has been tightly linked to the isolation process itself. To test the hypothesis that the shaking mechanical force exerted on adipocytes stimulates inflammation during isolation, rat primary adipocytes were prepared by collagenase digestion in orb...

  3. Cessation of physical exercise changes metabolism and modifies the adipocyte cellularity of the periepididymal white adipose tissue in rats.

    Science.gov (United States)

    Sertie, Rogerio A L; Andreotti, Sandra; Proença, André R G; Campana, Amanda B; Lima-Salgado, Thais M; Batista, Miguél L; Seelaender, Marilia C L; Curi, Rui; Oliveira, Ariclecio C; Lima, Fabio B

    2013-08-01

    All of the adaptations acquired through physical training are reversible with inactivity. Although significant reductions in maximal oxygen uptake (Vo2max) can be observed within 2 to 4 wk of detraining, the consequences of detraining on the physiology of adipose tissue are poorly known. Our aim was therefore to investigate the effects of discontinuing training (physical detraining) on the metabolism and adipocyte cellularity of rat periepididymal (PE) adipose tissue. Male Wistar rats, aged 6 wk, were divided into three groups and studied for 12 wk under the following conditions: 1) trained (T) throughout the period; 2) detrained (D), trained during the first 8 wk and detrained during the remaining 4 wk; and 3) age-matched sedentary (S). Training consisted of treadmill running sessions (1 h/day, 5 days/wk, 50-60% Vo2max). The PE adipocyte size analysis revealed significant differences between the groups. The adipocyte cross-sectional area (in μm(2)) was significantly larger in D than in the T and S groups (3,474 ± 68.8; 1,945.7 ± 45.6; 2,492.4 ± 49.08, respectively, P rats) showed a 48% increase in the ability to perform lipogenesis (both basal and maximally insulin-stimulated) and isoproterenol-stimulated lipolysis. No changes were observed with respect to unstimulated lipolysis. A 15% reduction in the proportion of apoptotic adipocytes was observed in groups T and D compared with group S. The gene expression levels of adiponectin and PPAR-gamma were upregulated by factors of 3 and 2 in D vs. S, respectively. PREF-1 gene expression was 3-fold higher in T vs. S. From these results, we hypothesize that adipogenesis was stimulated in group D and accompanied by significant adipocyte hypertrophy and an increase in the lipogenic capacity of the adipocytes. The occurrence of apoptotic nuclei in PE fat cells was reduced in the D and T rats; these results raise the possibility that the adipose tissue changes after detraining are obesogenic. PMID:23703117

  4. Study of caveolin-1 gene expression in whole adipose tissue and its subfractions and during differentiation of human adipocytes

    Directory of Open Access Journals (Sweden)

    Rodriguez-Hermosa Jose I

    2010-03-01

    Full Text Available Abstract Context Caveolins are 21-24 kDa integral membrane proteins that serve as scaffolds to recruit numerous signaling molecules. Specific subclasses of caveolae carry out specific functions in cell metabolism. In particular, triglycerides are synthesized at the site of fatty acid entry in one of these caveolae classes. Objective and Methods We studied the expression of caveolin-1 (CAV-1 gene in association with metabolic variables in 90 visceral and 55 subcutaneous adipose tissue samples from subjects with a wide range of fat mass, in the stromovascular fraction (SVC and isolated adipocytes, and during differentiation of human adipocytes. Results CAV-1 gene expression was significantly decreased in visceral adipose tissue (v-CAV-1 of obese subjects. v-CAV-1 was positively associated with several lipogenic genes such as acetyl-coA carboxylase (ACACA, r = 0.34, p = 0.004 and spot-14 (r = 0.33, p = 0.004. In non-obese subjects v-CAV-1 also correlated with fatty acid synthase (FAS, r = 0.60, p c-CAV-1 gene expression was not associated with these lipogenic factors when obese and non-obese subjects were studied together. In obese subjects, however, sc-CAV-1 was associated with fatty acid synthase (FAS, r = 0.36, p = 0.02, sterol regulatory element binding protein-1c (SREBP-1c (r = 0.58, p ACACA (r = 0.33, p = 0.03, spot-14 (r = 0.36, p = 0.02, PPAR-γ co-activator-1 (PGC-1, r = 0.88, n = 19. In these obese subjects, sc-CAV-1 was also associated with fasting triglycerides (r = -0.50, p CAV-1 expression in mature adipocytes was significantly higher than in stromal vascular cells. CAV-1 gene expression in adipocytes from subcutaneous adipose tissue (but not in adipocytes from visceral adipose tissue was significatively associated with fasting triglycerides. CAV-1 gene expression did not change significantly during differentiation of human preadipocytes from lean or obese subjects despite significant increase of FAS gene expression. Conclusion

  5. Oxygen deprivation and the cellular response to hypoxia in adipocytes - perspectives on white and brown adipose tissues in obesity.

    Science.gov (United States)

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells - particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the "browning" of white fat depots through recruitment of UCP1 and the development of brite adipocytes.

  6. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used.

  7. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. PMID:26888598

  8. Pregnancy in obese mice protects selectively against visceral adiposity and is associated with increased adipocyte estrogen signalling.

    Directory of Open Access Journals (Sweden)

    Silvia M A Pedroni

    Full Text Available Maternal obesity is linked with increased adverse pregnancy outcomes for both mother and child. The metabolic impact of excessive fat within the context of pregnancy is not fully understood. We used a mouse model of high fat (HF feeding to induce maternal obesity to identify adipose tissue-mediated mechanisms driving metabolic dysfunction in pregnant and non-pregnant obese mice. As expected, chronic HF-feeding for 12 weeks preceding pregnancy increased peripheral (subcutaneous and visceral (mesenteric fat mass. However, unexpectedly at late gestation (E18.5 HF-fed mice exhibited a remarkable normalization of visceral but not peripheral adiposity, with a 53% reduction in non-pregnant visceral fat mass expressed as a proportion of body weight (P<0.001. In contrast, in control animals, pregnancy had no effect on visceral fat mass proportion. Obesity exaggerated glucose intolerance at mid-pregnancy (E14.5. However by E18.5, there were no differences, in glucose tolerance between obese and control mice. Transcriptomic analysis of visceral fat from HF-fed dams at E18.5 revealed reduced expression of genes involved in de novo lipogenesis (diacylglycerol O-acyltransferase 2--Dgat2 and inflammation (chemokine C-C motif ligand 20--Ccl2 and upregulation of estrogen receptor α (ERα compared to HF non pregnant. Attenuation of adipose inflammation was functionally confirmed by a 45% reduction of CD11b+CD11c+ adipose tissue macrophages (expressed as a proportion of all stromal vascular fraction cells in HF pregnant compared to HF non pregnant animals (P<0.001. An ERα selective agonist suppressed both de novo lipogenesis and expression of lipogenic genes in adipocytes in vitro. These data show that, in a HF model of maternal obesity, late gestation is associated with amelioration of visceral fat hypertrophy, inflammation and glucose intolerance, and suggest that these effects are mediated in part by elevated visceral adipocyte ERα signaling.

  9. THP-1 macrophages and SGBS adipocytes - a new human in vitro model system of inflamed adipose tissue

    Directory of Open Access Journals (Sweden)

    Michaela eKeuper

    2011-12-01

    Full Text Available Obesity is associated with an accumulation of macrophages in adipose tissue. This inflammation of adipose tissue is a key event in the pathogenesis of several obesity-related disorders, particularly insulin resistance.Here, we summarized existing model systems that mimic the situation of inflamed adipose tissue in vitro, most of them being murine. Importantly, we introduce our newly established human model system which combines the THP-1 monocytic cell line and the preadipocyte cell strain SGBS. THP-1 cells, which originate from an acute monocytic leukemia, differentiate easily into macrophages in vitro. The human preadipocyte cell strain SGBS (Simpson-Golabi-Behmel syndrome was recently introduced as a unique to tool to study human fat cell functions. SGBS cells are characterized by a high capacity for adipogenic differentiation. SGBS adipocytes are capable of fat cell-specific metabolic functions such as insulin-stimulated glucose uptake, insulin-stimulated de novo lipogenesis and beta-adrenergic-stimulated lipolysis and they secrete typical adipokines including leptin, adiponectin, and RBP4. Applying either macrophage-conditioned medium or a direct co-culture of macrophages and fat cells, our model system can be used to distinguish between paracrine and cell-contact dependent effects.In conclusion, we propose this model as a useful tool to study adipose inflammation in vitro. It represents an inexpensive, highly reproducible human system. The methods described here can be easily extended for usage of primary human macrophages and fat cells.

  10. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  11. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss.

    Science.gov (United States)

    Giles, Erin D; Steig, Amy J; Jackman, Matthew R; Higgins, Janine A; Johnson, Ginger C; Lindstrom, Rachel C; MacLean, Paul S

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using (14)C palmitate/oleate and (3)H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  12. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    Directory of Open Access Journals (Sweden)

    Christine M. Kusminski

    2015-10-01

    Conclusion: We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  13. Mitigation of isolation-associated adipocyte interleukin-6 secretion following rapid dissociation of adipose tissue.

    Science.gov (United States)

    Thompson, Airlia C S; Nuñez, Martha; Davidson, Ryan; Horm, Teresa; Schnittker, Karina; Hart, Madeline V; Suarez, Allen M; Tsao, Tsu-Shuen

    2012-12-01

    Primary adipocyte isolation by collagenase digestion is a widely used technique to study metabolic regulation and insulin action in adipocytes. However, induction of a proinflammatory response characterized by enhanced secretion of interleukin (IL)-6 has been tightly linked to the isolation process itself. To test the hypothesis that the shaking mechanical force exerted on adipocytes stimulates inflammation during isolation, rat primary adipocytes were prepared by collagenase digestion in orbital shaking incubators maintained at varying speeds. Contrary to expectation, the isolation-induced release of IL-6 was attenuated by increasing the rotational speed of digestion and the concentration of collagenase, both of which resulted in rapid dissociation of adipocytes from the vasculature. In addition, the attenuation of IL-6 secretion was associated with decreased phosphorylation of the stress-related p38 mitogen-activated protein kinase (p38 MAPK) and preserved insulin action. The data suggest that optimization of parameters including, but not limited to, mincing technique, time of digestion, and collagenase concentration will make it possible to isolate primary adipocytes without activation of a proinflammatory response leading to elevated secretion of IL-6. PMID:22911046

  14. Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra J

    2015-11-01

    Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.

  15. Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

    Directory of Open Access Journals (Sweden)

    Lu HuiLing

    2010-01-01

    Full Text Available Abstract Background Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP and Triglyceride (TG (LAT vs High ASP and TG (HAT. Subcutaneous (SC and omental (OM adipose tissues (n = 21 were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined. Methods LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1. ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p Results HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL, lipolysis (HSL, CES1, perilipin, fatty acid binding proteins (FABP1, FABP3 and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ. By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7. HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p Conclusion Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.

  16. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period.

    Science.gov (United States)

    De Koster, J; Van den Broeck, W; Hulpio, L; Claeys, E; Van Eetvelde, M; Hermans, K; Hostens, M; Fievez, V; Opsomer, G

    2016-03-01

    The aim of the present research was to describe characteristics of adipose tissue lipolysis in dairy cows with a variable body condition score (BCS). Ten clinically healthy Holstein Friesian cows were selected based on BCS and euthanized 10 to 13 d before the expected parturition date. Immediately after euthanasia, adipose tissue samples were collected from subcutaneous and omental fat depots. In both depots, we observed an increase in adipocyte size with increasing BCS. Using an in vitro explant culture of subcutaneous and omental adipose tissue, we aimed to determine the influence of adipocyte size and localization of adipose depot on the lipolytic activity in basal conditions and after addition of isoproterenol (nonselective β-agonist) and insulin in different concentrations. Glycerol release in the medium was used as a measure for lipolytic activity. We observed that the basal lipolytic activity of subcutaneous and omental adipose tissue increased with adipocyte volume, meaning that larger fat cells have higher basal lipolytic activity independent of the location of the adipose depot. Dose-response curves were created between the concentration of isoproterenol or insulin and the amount of glycerol released. The shape of the dose-response curves is determined by the concentration of isoproterenol and insulin needed to elicit the half-maximal effect and the maximal amount of stimulated glycerol release or the maximal inhibitory effect of insulin. We observed that larger fat cells released more glycerol upon maximal stimulation with isoproterenol and this was more pronounced in subcutaneous adipose tissue. Additionally, larger fat cells had a higher sensitivity toward lipolytic signals. We observed a trend for larger adipocytes to be more resistant to the maximal antilipolytic effect of insulin. The insulin concentration needed to elicit the half-maximal inhibitory effect of insulin was within the physiological range of insulin and was not influenced by adipocyte

  17. Gene expression profiles in Atlantic salmon adipose-derived stromo-vascular fraction during differentiation into adipocytes

    Directory of Open Access Journals (Sweden)

    Škugor Stanko

    2010-01-01

    Full Text Available Abstract Background Excessive fat deposition is one of the largest problems faced by salmon aquaculture industries, leading to production losses due to high volume of adipose tissue offal. In addition, increased lipid accumulation may impose considerable stress on adipocytes leading to adipocyte activation and production and secretion of inflammatory mediators, as observed in mammals. Results Microarray and qPCR analyses were performed to follow transcriptome changes during adipogenesis in the primary culture of adipose stromo-vascular fraction (aSVF of Atlantic salmon. Cellular heterogeneity decreased by confluence as evidenced by the down-regulation of markers of osteo/chondrogenic, myogenic, immune and vasculature lineages. Transgelin (TAGLN, a marker of the multipotent pericyte, was prominently expressed around confluence while adipogenic PPARγ was up-regulated already in subconfluent cells. Proliferative activity and subsequent cell cycle arrest were reflected in the fluctuations of pro- and anti-mitotic regulators. Marked regulation of genes involved in lipid and glucose metabolism and pathways producing NADPH and glycerol-3-phosphate (G3P was seen during the terminal differentiation, also characterised by diverse stress responses. Activation of the glutathione and thioredoxin antioxidant systems and changes in the iron metabolism suggested the need for protection against oxidative stress. Signs of endoplasmic reticulum (ER stress and unfolded protein response (UPR occured in parallel with the increased lipid droplet (LD formation and production of secretory proteins (adipsin, visfatin. The UPR markers XBP1 and ATF6 were induced together with genes involved in ubiquitin-proteasome and lysosomal proteolysis. Concurrently, translation was suppressed as evidenced by the down-regulation of genes encoding elongation factors and components of the ribosomal machinery. Notably, expression changes of a panel of genes that belong to different

  18. The Secretory Function of Adipocytes in the Physiology of White Adipose Tissue

    NARCIS (Netherlands)

    Wang, P.; Mariman, E.; Renes, J.; Keijer, J.

    2008-01-01

    White adipose tissue, previously regarded as a passive lipid storage site, is now viewed as a dynamic tissue. It has the capacity to actively communicate by sending and receiving different types of signals. An overview of these signals, the external modulators that affect adipose tissue and the secr

  19. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function.

    Science.gov (United States)

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D; Smith, Brennan K; Green, Alex E; Ducommun, Serge; Henriksen, Tora I; Rebalka, Irena A; Razi, Aida; Sakamoto, Kei; Scheele, Camilla; Kemp, Bruce E; Hawke, Thomas J; Ortega, Joaquin; Granneman, James G; Steinberg, Gregory R

    2016-07-12

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance. PMID:27411013

  20. Cellular and molecular basis of adipose tissue development: from stem cells to adipocyte physiology

    OpenAIRE

    Louveau, Isabelle; Perruchot, Marie-Hélène; Gondret, Florence

    2014-01-01

    White adipose tissue plays a key role in the regulation of energy balance in vertebrates. Its primary function is to store and release energy. It is also recognized to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Unlike other tissues, adipose tissue mass has large capacity to expand and can be seen as a dynamic tissue able to adapt to a variety of environmental and genetic factors. The aim of this review...

  1. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells

    OpenAIRE

    Mohammadi, Zahra; Afshari, Jalil Tavakkol; Keramati, Mohammad Reza; Alamdari, Daryoush Hamidi; Ganjibakhsh, Meysam; Zarmehri, Azam Moradi; Jangjoo, Ali; Sadeghian, Mohammad Hadi; Ameri, Masoumeh Arab; Moinzadeh, Leila

    2015-01-01

    Objective(s): Mesenchymal stem cells (MSC) can be isolated from adult tissues such as adipose tissue and other sources. Among these sources, adipose tissue (because of easy access) and placenta (due to its immunomodulatory properties, in addition to other useful properties), have attracted more attention in terms of research. The isolation and comparison of MSC from these two sources provides a proper source for clinical experimentation. The aim of this study was to compare the characteristic...

  2. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice.

    Science.gov (United States)

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Buechler, Christa

    2014-10-01

    Galectin-3 regulates immune cell function and clearance of advanced glycation end products. Galectin-3 is increased in serum of obese humans and mice and most studies suggest that this protein protects from inflammation in metabolic diseases. Current data show that galectin-3 is markedly elevated in the liver, subcutaneous and intra-abdominal fat depots of mice fed a high fat diet and ob/ob mice. Galectin-3 is also increased in brown adipose tissues of these animals and immunohistochemistry confirms higher levels in adipocytes. Raised galectin-3 in obese white adipocytes has been described in the literature and regulation of adipocyte galectin-3 by metabolites with a role in obesity has been analyzed. Galectin-3 is expressed in 3T3-L1 fibroblasts and human preadipocytes and is modestly induced in mature adipocytes. In 3T3-L1 adipocytes galectin-3 is localized in the cytoplasm and is also detected in cell supernatants. Glucose does not alter soluble galectin-3. Lipopolysaccharide has no effect while TNF reduces and IL-6 raises this lectin in cell supernatants. Palmitate and oleate modestly elevate soluble galectin-3. Differentiation of 3T3-L1 cells in the presence of 100 μM and 200 μM linoleate induces soluble galectin-3 and cellular levels are upregulated by the higher concentration. Current data suggest that free fatty acids and IL-6 increase galectin-3 in adipocytes and thereby may contribute to higher levels in obesity.

  3. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion

    Science.gov (United States)

    Senol-Cosar, Ozlem; Flach, Rachel J. Roth; DiStefano, Marina; Chawla, Anil; Nicoloro, Sarah; Straubhaar, Juerg; Hardy, Olga T.; Noh, Hye Lim; Kim, Jason K.; Wabitsch, Martin; Scherer, Philipp E.; Czech, Michael P.

    2016-01-01

    Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. PMID:26880110

  4. Interplay between hormones, nutrients and adipose depots in the regulation of insulin sensitivity : an experimental study in rat and human adipocytes

    OpenAIRE

    Lundgren, Magdalena

    2006-01-01

    Obesity and specifically central obesity is related to insulin resistance, type 2 diabetes and other components of the so-called metabolic syndrome. The aim of this study was to elucidate the interplay between hormones, nutrients and adipose depots in normal and insulin-resistant fat cell metabolism. High levels of free fatty acids (FFAs) induce insulin resistance in muscle and liver in vivo. In the present study, rat adipocytes were treated with high physiological levels of oleic or palmitic...

  5. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar;

    2014-01-01

    Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  6. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation.

    Science.gov (United States)

    García-Martín, Rubén; Alexaki, Vasileia I; Qin, Nan; Rubín de Celis, María F; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin; Chavakis, Triantafyllos

    2016-02-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  7. 脂肪细胞的功能调节与脂肪组织重构%Functional regulation of adipocytes and adipose tissue remodeling

    Institute of Scientific and Technical Information of China (English)

    马度芳; 李晓

    2016-01-01

    Adipocytes are classified into three types, including white, brown, and “beige/brite” adipocytes. There exist differences in origin of adipocytes, gene expressions, morphology, and functions among three kinds of adipocytes. Multiple factors such as physical and chemical factors, neurohormonal and immunological factors, transcriptional factors have been shown to regulate and control the browning process and lipolysis of white adipose tissue. Thus, they may become new targets for anti-obesity intervention. In the process of obesity, chronic inflammation reaction, adipose tissue remodeling and abnormal angiogenesis occurring in the adipose tissue cause pathological fat expansion and reduce lipid storage in adipocytes. Understanding adipocytes biology is important to decipher how the aberrant adipose tissue contributes to obesity and metabolic disorders, and provides guidance for treating obesity.%脂肪细胞分为白色脂肪细胞、棕色脂肪细胞和米色脂肪细胞,三者在细胞来源、基因表达、形态学及功能方面存在差异。机体理化因素、神经内分泌和免疫因素、转录因子等多种因素可调控白色脂肪“棕色化”和脂肪分解。这些因素可能是药物干预的新靶点。肥胖时脂肪组织慢性炎症、纤维化和血管异常可导致脂肪扩充障碍,降低脂肪细胞的储脂能力。了解脂肪组织的这些生物学特性可揭示异常的脂肪组织如何导致肥胖以及肥胖相关的代谢紊乱,而且对于肥胖的治疗具有指导性意义。

  8. mRNA concentrations of MIF in subcutaneous abdominal adipose cells are associated with adipocyte size and insulin action

    OpenAIRE

    Koska, Juraj; Stefan, Norbert; Dubois, Severine; Trinidad, Cathy; Considine, Robert V; Funahashi, Tohru; Bunt, Joy C.; Ravussin, Eric; Permana, Paska A.

    2009-01-01

    Objective To determine whether the mRNA concentrations of inflammation response genes in isolated adipocytes and in cultured preadipocytes are related to adipocyte size and in vivo insulin action in obese individuals. Design Cross-sectional inpatient study. Subjects Obese Pima Indians with normal glucose tolerance. Measurements Adipocyte diameter (by microscope technique; n=29), expression of candidate genes (by quantitative real-time PCR) in freshly isolated adipocytes (monocyte chemoattract...

  9. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats.

    Science.gov (United States)

    Sato, Daisuke; Oda, Kanako; Kusunoki, Masataka; Nishina, Atsuyoshi; Takahashi, Kazuaki; Feng, Zhonggang; Tsutsumi, Kazuhiko; Nakamura, Takao

    2016-02-15

    It was reported that adipocyte size is potentially correlated in part to amount of long chain polyunsaturated fatty acids (PUFAs) and insulin resistance because several long chain PUFAs can be ligands of peroxisome proliferator-activated receptors (PPARs). In our previous study, marked reduction of PUFAs was observed in insulin-resistant high-fat fed rats, which may indicate that PUFAs are consumed to improve insulin resistance. Although PPARγ agonist, well known as an insulin sensitizer, proliferates small adipocytes, the effects of PPARγ agonist on FA composition in adipose tissue have not been clarified yet. In the present study, we administered pioglitazone, a PPARγ agonist, to high-fat fed rats, and measured their FA composition of triglyceride fraction in adipose tissue and adipocyte diameters in pioglitazone-treated (PIO) and non-treated (control) rats. Insulin sensitivity was obtained with hyperinsulinemic euglycemic clamp. Average adipocyte diameter in the PIO group were smaller than that in the control one without change in tissue weight. In monounsaturated FAs (MUFAs), 14:1n-5, 16:1n-7, and 18:1n-9 contents in the PIO group were lower than those, respectively, in the control group. In contrast, 22:6n-3, 20:3n-6, 20:4n-6, and 22:4n-6 contents in the PIO group were higher than those, respectively, in the control group. Insulin sensitivity was higher in the PIO group than in the control one. These findings suggest that PPARγ activation lowered MUFAs whereas suppressed most of C20 or C22 PUFAs reduction, and that the change of fatty acid composition may be relevant with increase in small adipocytes. PMID:26825545

  10. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ana M. Santander

    2015-01-01

    Full Text Available The relationship between obesity and breast cancer (BC has focused on serum factors. However, the mammary gland contains adipose tissue (AT which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations. In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  11. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    International Nuclear Information System (INIS)

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity

  12. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Cleary, Margot P. [Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gonzalez-Perez, Ruben R. [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314 (United States); Torroella-Kouri, Marta, E-mail: mtorroella@med.miami.edu [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 (United States)

    2015-01-15

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  13. Changes of mature adipocytes after incision injury of subcutaneous adipose tissue%皮下脂肪组织创伤后脂肪细胞的变化

    Institute of Scientific and Technical Information of China (English)

    钱雄; 林炜栋; 江万里; 刘伟伟; 原博; 陈向芳

    2012-01-01

    目的 观察脂肪组织创伤愈合的情况,探讨成熟脂肪细胞的变化.方法 以杜洛克母猪为实验动物,用滚轴取皮刀在其背部制作脂肪组织切割伤皮瓣,大体观察伤后1、2、4及12周的愈合情况.并于伤后3、7、14及21 d在皮瓣中央处取材,观察切缘及周围成熟脂肪细胞的形态学改变,用酶联免疫吸附法和免疫组织化学方法检测脂肪组织中瘦素和脂联素的表达情况.结果 脂肪组织切割伤组皮瓣中央与未创伤处皮肤无异,但皮瓣边缘早期有明显炎症反应,后期则呈典型的疤痕生长.组织学观察发现:脂肪组织创伤后,仍以纤维化愈合为主,但愈合过程中,炎症反应的局灶性及小脂肪细胞出现呈现一定的规律性;与未创伤组相比,脂肪组织创伤后其瘦素及脂联素的表达量均呈下降趋势,但两者的比值在愈合的过程中存在差异.结论 脂肪组织创伤后,脂肪细胞表面瘦素及脂联素的表达量下降.早期创缘附近出现大量的小脂肪细胞,可能与脂肪分解有关.%Objective To investigate the changes of mature adipocytes after incision injury in subcutaneous adipose tissue. Methods Wound model was induced by incised flaps on the back of female red Duroc pigs (FRDP) using roller dermatome. The megascopic morphological changes of flaps were observed at week 1,2,4 and 12. The samples in the center of flaps were harvested at day 3,7, 14 and 21; the morphological changes of incisal edge and associated mature adipocytes were observed; the expression of leptin and adiponectin of incised subcutaneous adipose tissue was detected by imrnunohistochemistry and ELISA methods. Results The center of flaps in incised adipose tissue showed no difference compared with the unwounded tissue, but the evident inflammation developed in its edges and resolved in scar formation eventually. Furthermore, histological outcomes of wound areas in adipose tissue revealed the collagen deposition and

  14. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation.

    Science.gov (United States)

    Ambele, Melvin Anyasi; Dessels, Carla; Durandt, Chrisna; Pepper, Michael Sean

    2016-05-01

    We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs) induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers. PMID:27108396

  15. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  16. Heme Oxygenase Gene Targeting to Adipocyte Attenuates Adiposity and Vascular Dysfunction in Mice Fed a High Fat Diet

    OpenAIRE

    Cao, Jian; Peterson, Stephen J; Sodhi, Komal; Vanella, Luca; Barbagallo, Ignazio; Rodella, Luigi F.; Schwartzman, Michal L.; Abraham, Nader G.; Kappas, Attallah

    2012-01-01

    We examined the hypothesis that adipocyte dysfunction in mice fed a high fat (HF) diet can be prevented by lentiviral-mediated and adipocyte specific-targeting delivery of the human heme oxygenase-1 (aP2-HO-1). A bolus intracardial injection of aP2-HO-1 resulted in expression of human HO-1 for up to 9.5 months. Transduction of aP2-HO-1 increased human HO-1 expression in fat tissues without affecting murine HO-1. In mice fed a HF diet, aP2-HO-1 transduction attenuated the increases in body wei...

  17. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat

    Science.gov (United States)

    Suárez, Juan; Rivera, Patricia; Arrabal, Sergio; Crespillo, Ana; Serrano, Antonia; Baixeras, Elena; Pavón, Francisco J.; Cifuentes, Manuel; Nogueiras, Rubén; Ballesteros, Joan; Dieguez, Carlos; Rodríguez de Fonseca, Fernando

    2014-01-01

    β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity. PMID:24159189

  18. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat

    Directory of Open Access Journals (Sweden)

    Juan Suárez

    2014-01-01

    Full Text Available β-adrenergic receptor activation promotes brown adipose tissue (BAT β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα in white adipose tissue (WAT. Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (eWAT was monitored. CL316243 (1 mg/kg and OEA (5 mg/kg co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2. This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs, and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2 and BAT (Fgf21, Prdm16 genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.

  19. In vitro evaluation of different methods of handling human liposuction aspirate and their effect on adipocytes and adipose derived stem cells.

    Science.gov (United States)

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; La Torre, Cristina; Lombardi, Francesca; Zoccali, Giovanni; Orsini, Gino; Leocata, Pietro; Giuliani, Maurizio; Cifone, Maria Grazia

    2015-08-01

    Nowadays, fat tissue transplantation is widely used in regenerative and reconstructive surgery. However, a shared method of lipoaspirate handling for ensuring a good quality fat transplant has not yet been established. The study was to identify a method to recover from the lipoaspirate samples the highest number of human viable adipose tissue-derived stem cells (hADSCs) included in stromal vascular fraction (SVF) cells and of adipocytes suitable for transplantation, avoiding an extreme handling. We compared the lipoaspirate spontaneous stratification (10-20-30 min) with the centrifugation technique at different speeds (90-400-1500 × g). After each procedure, lipoaspirate was separated into top oily lipid layer, liquid fraction, "middle layer", and bottom layer. We assessed the number of both adipocytes in the middle layer and SVF cells in all layers. The histology of middle layer and the surface phenotype of SVF cells by stemness markers (CD105+, CD90+, CD45-) was analyzed as well. The results showed a normal architecture in all conditions except for samples centrifuged at 1500 × g. In both methods, the flow cytometry analysis showed that greater number of ADSCs was in middle layer; in the fluid portion and in bottom layer was not revealed significant expression levels of stemness markers. Our findings indicate that spontaneous stratification at 20 min and centrifugation at 400 × g are efficient approaches to obtain highly viable ADSCs cells and adipocytes, ensuring a good thickness of lipoaspirate for autologous fat transfer. Since an important aspect of surgery practice consists of gain time, the 400 × g centrifugation could be the recommended method when the necessary instrumentation is available.

  20. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induc

  1. Adipocytes Secrete Leukotrienes

    OpenAIRE

    Mothe-Satney, Isabelle; Filloux, Chantal; Amghar, Hind; Pons, Catherine; Bourlier, Virginie; Galitzky, Jean; Paul A. Grimaldi; Féral, Chloé C.; Bouloumié, Anne; Obberghen, Emmanuel Van; Neels, Jaap G.

    2012-01-01

    Leukotrienes (LTs) are potent proinflammatory mediators, and many important aspects of innate and adaptive immune responses are regulated by LTs. Key members of the LT synthesis pathway are overexpressed in adipose tissue (AT) during obesity, resulting in increased LT levels in this tissue. We observed that several mouse adipocyte cell lines and primary adipocytes from mice and humans both can secrete large amounts of LTs. Furthermore, this production increases with a high-fat diet (HFD) and ...

  2. Weighing in on Adipocyte Precursors

    OpenAIRE

    Berry, Ryan; Jeffery, Elise; Rodeheffer, Matthew S.

    2013-01-01

    Obesity, defined as an excessive increase in white adipose tissue (WAT), is a global health epidemic. In obesity, WAT expands by increased adipocyte size (hypertrophy) and number (hyperplasia). The location and cellular mechanisms of WAT expansion greatly affect the pathogenesis of obesity. However, the cellular and molecular mechanisms regulating adipocyte size, number and depot-dependent expansion in vivo remain largely unknown. This perspective summarizes previous work addressing adipocyte...

  3. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function

    DEFF Research Database (Denmark)

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D;

    2016-01-01

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role...

  4. Do very small adipocytes in subcutaneous adipose tissue (a proposed risk factor for insulin insensitivity) have a fetal origin?

    DEFF Research Database (Denmark)

    Nielsen, Mette Olaf; Hou, Lei; Johnsen, Lærke;

    2016-01-01

    Previous studies have shown that fetal life malnutrition affects preferences for fat deposition in the body thereby predisposing for visceral adipocity and associated disorders in glucose-insulin regulation. In this study, we aimed to test the hypotheses that late-gestation undernutrition 1) has ...... long-term differential impacts on development, expandability and metabolic features in subcutaneous as compared to perirenal and mesenteric adipose tissues, which 2) will predispose for visceral obesity upon exposure to an obesogenic diet in early postnatal life....

  5. Tartrate resistant acid phosphatase 5a : a potential regulator of adipocyte cell number and differentiation in white adipose tissue

    OpenAIRE

    Patlaka, Christina

    2015-01-01

    Tartrate- resistant acid phosphatase (TRAP) exists in two isoforms, TRAP 5a which is monomeric and TRAP 5b which is a dimer generated by proteolytic cleavage of TRAP 5a, that exhibit different functions and localizations. TRAP 5a is expressed by adipose tissue macrophages and secreted into the extracellular environment and has been shown to lead to hyperplastic insulin- sensitive obesity when over-expressed in mice. In bone, TRAP is suggested to interact with the heparan sulfat...

  6. Adipocyte differentiation and leptin expression

    DEFF Research Database (Denmark)

    Hwang, C S; Loftus, T M; Mandrup, S;

    1997-01-01

    Adipose tissue has long been known to house the largest energy reserves in the animal body. Recent research indicates that in addition to this role, the adipocyte functions as a global regulator of energy metabolism. Adipose tissue is exquisitely sensitive to a variety of endocrine and paracrine...

  7. Mitochondria in White, Brown, and Beige Adipocytes

    Directory of Open Access Journals (Sweden)

    Miroslava Cedikova

    2016-01-01

    Full Text Available Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT, the brown (BAT, and the beige/brite/brown-like (bAT adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.

  8. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    Science.gov (United States)

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  9. De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development.

    Science.gov (United States)

    Alvarez-Dominguez, Juan R; Bai, Zhiqiang; Xu, Dan; Yuan, Bingbing; Lo, Kinyui Alice; Yoon, Myeong Jin; Lim, Yen Ching; Knoll, Marko; Slavov, Nikolai; Chen, Shuai; Chen, Peng; Lodish, Harvey F; Sun, Lei

    2015-05-01

    Brown adipose tissue (BAT) protects against obesity by promoting energy expenditure via uncoupled respiration. To uncover BAT-specific long non-coding RNAs (lncRNAs), we used RNA-seq to reconstruct de novo transcriptomes of mouse brown, inguinal white, and epididymal white fat and identified ∼1,500 lncRNAs, including 127 BAT-restricted loci induced during differentiation and often targeted by key regulators PPARγ, C/EBPα, and C/EBPβ. One of them, lnc-BATE1, is required for establishment and maintenance of BAT identity and thermogenic capacity. lnc-BATE1 inhibition impairs concurrent activation of brown fat and repression of white fat genes and is partially rescued by exogenous lnc-BATE1 with mutated siRNA-targeting sites, demonstrating a function in trans. We show that lnc-BATE1 binds heterogeneous nuclear ribonucleoprotein U and that both are required for brown adipogenesis. Our work provides an annotated catalog for the study of fat depot-selective lncRNAs and establishes lnc-BATE1 as a regulator of BAT development and physiology.

  10. Regulation of apelin and its receptor expression in adipose tissues of obesity rats with hypertension and cultured 3T3-L1 adipocytes.

    Science.gov (United States)

    Wu, Hongxian; Cheng, Xian Wu; Hao, Changning; Zhang, Zhi; Yao, Huali; Murohara, Toyoaki; Dai, Qiuyan

    2014-01-01

    The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension.

  11. Utility of transplantation in studying adipocyte biogenesis and function

    OpenAIRE

    Zhang, Yiying

    2009-01-01

    Adipose tissue plays important roles in the regulation of energy homeostasis and metabolism. Two features distinguish adipose tissue from other organs - the ability to greatly expand its mass, via increases in cell size and/or number, and the wide anatomical distribution. While adipose tissue function is greatly affected by adipocyte size and anatomic location, regulations of adipocyte size, number, and body fat distribution are poorly understood. Transplantation of either mature adipose tiss...

  12. Rosiglitazone promotes development of a novel adipocyte population from bone marrow–derived circulating progenitor cells

    OpenAIRE

    Crossno, Joseph T.; Majka, Susan M.; Grazia, Todd; Gill, Ronald G.; Klemm, Dwight J.

    2006-01-01

    Obesity and weight gain are characterized by increased adipose tissue mass due to an increase in the size of individual adipocytes and the generation of new adipocytes. New adipocytes are believed to arise from resident adipose tissue preadipocytes and mesenchymal progenitor cells. However, it is possible that progenitor cells from other tissues, in particular BM, could also contribute to development of new adipocytes in adipose tissue. We tested this hypothesis by transplanting whole BM cell...

  13. Estrogen Sulfotransferase Inhibits Adipocyte Differentiation

    OpenAIRE

    Wada, Taira; Ihunnah, Chibueze A.; Gao, Jie; Chai, Xiaojuan; Zeng, Su; Philips, Brian J.; Rubin, J. Peter; Marra, Kacey G.; Xie, Wen

    2011-01-01

    The estrogen sulfotransferase (EST) is a phase II drug-metabolizing enzyme known to catalyze the sulfoconjugation of estrogens. EST is highly expressed in the white adipose tissue of male mice, but the role of EST in the development and function of adipocytes remains largely unknown. In this report, we showed that EST played an important role in adipocyte differentiation. EST was highly expressed in 3T3-L1 preadipocytes and primary mouse preadipocytes. The expression of EST was dramatically r...

  14. 4-Hydroxynonenal Regulates TNF-α Gene Transcription Indirectly via ETS1 and microRNA-29b in Human Adipocytes Induced From Adipose Tissue-Derived Stromal Cells.

    Science.gov (United States)

    Zhang, Xi-Mei; Guo, Lin; Huang, Xiang; Li, Qiu-Ming; Chi, Mei-Hua

    2016-08-01

    Obesity is characterized by an accumulation of excessive body fat and can be diagnosed by a variety of measures, such as BMI. However, in some obese individuals, oxidative stress is also thought to be an important pathogenic mechanism of obesity-associated metabolic syndrome. Oxidative stress increases the lipid peroxidation product, 4-hydroxynonenal (4-HNE), which is one of the most abundant and active lipid peroxides. Within the adipose tissue, adipocytes are derived from adipose tissue-derived stromal cells (ADSCs), which play a key role in the generation and metabolism of adipose tissue. Additionally, obesity is associated with low-grade inflammation. Specific microRNAs (miRNAs) that regulate obesity-associated inflammation are largely dysregulated in metabolic syndrome (MS). In this study, we aim to confirm whether 4-HNE and miRNAs play a role in the regulation of TNF-α gene transcription. We enrolled six obese individuals who were referred to Harbin Medical University (Heilongjiang, China) and six nonobese control participants. Plasma 4-HNE levels of the 12 subjects were determined by ELISA. Using qRT-PCR, we measured ETS1, miR-29b, SP1, and TNF-α levels in subcutaneous white adipose tissue (WAT). Furthermore, we examined the relationship between ETS1 and TNF-α using a luciferase reporter assay and a ChIP assay. Our results suggest that ETS1 promotes TNF-α gene transcription in adipocytes. In addition, we demonstrated that 4-HNE promotes TNF-α gene transcription through the inhibition of the miR-29b → SP1 → TNF-α pathway and promotion of the ETS1 → TNF-α pathway. Anat Rec, 299:1145-1152, 2016. © 2016 Wiley Periodicals, Inc. PMID:27164408

  15. Adiponectin Inhibits Lipolysis in Mouse Adipocytes

    OpenAIRE

    Qiao, Liping; Kinney, Brice; Schaack, Jerome; Shao, Jianhua

    2011-01-01

    OBJECTIVE Adiponectin is an adipocyte-derived hormone that sensitizes insulin and improves energy metabolism in tissues. This study was designed to investigate the direct regulatory effects of adiponectin on lipid metabolism in adipocytes. RESEARCH DESIGN AND METHODS Basal and hormone-stimulated lipolysis were comparatively analyzed using white adipose tissues or primary adipocytes from adiponectin gene knockout and control mice. To further study the underlying mechanisms through which adipon...

  16. Effects of vitamin a status on expression of ucp1 and brown/beige adipocyte-related genes in white adipose tissues of beef cattle.

    Science.gov (United States)

    Kanamori, Yohei; Yamada, Tomoya; Asano, Hiroki; Kida, Ryosuke; Qiao, Yuhang; Abd Eldaim, Mabrouk A; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2014-09-01

    We previously reported the presence of brown/beige adipocytes in the white fat depots of mature cattle. The present study examined the effects of dietary vitamin A on the expression of brown/beige adipocyte-related genes in the white fat depots of fattening cattle. No significant differences were observed in the expression of Ucp1 between vitamin A-deficient cattle and control cattle. However, the expression of the other brown/beige adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin A-deficient cattle. The present results suggest that a vitamin A deficiency does not markedly affect the expression of Ucp1 in white fat depots, but imply that it may stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening cattle.

  17. Adipose tissue fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The increasing prevalence of obesity causes a majorinterest in white adipose tissue biology. Adipose tissuecells are surrounded by extracellular matrix proteinswhose composition and remodeling is of crucial importancefor cell function. The expansion of adipose tissue inobesity is linked to an inappropriate supply with oxygenand hypoxia development. Subsequent activation ofhypoxia inducible factor 1 (HIF-1) inhibits preadipocytedifferentiation and initiates adipose tissue fibrosis. Therebyadipose tissue growth is limited and excess triglyceridesare stored in ectopic tissues. Stressed adipocytes andhypoxia contribute to immune cell immigration andactivation which further aggravates adipose tissuefibrosis. There is substantial evidence that adipose tissuefibrosis is linked to metabolic dysfunction,both in rodentmodels and in the clinical setting. Peroxisome proliferatoractivated receptor gamma agonists and adiponectin bothreduce adipose tissue fibrosis, inflammation and insulinresistance. Current knowledge suggests that antifibroticdrugs, increasing adipose tissue oxygen supply or HIF-1antagonists will improve adipose tissue function andthereby ameliorate metabolic diseases.

  18. The adipose organ at a glance

    Directory of Open Access Journals (Sweden)

    Saverio Cinti

    2012-09-01

    Full Text Available The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ – a feature that I propose is crucial for this organ’s plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that ‘browning’ of the adipose organ curbs these disorders.

  19. Free fatty acids, lipopolysaccharide and IL-1α induce adipocyte manganese superoxide dismutase which is increased in visceral adipose tissues of obese rodents.

    Directory of Open Access Journals (Sweden)

    Sabrina Krautbauer

    Full Text Available Excess fat storage in adipocytes is associated with increased generation of reactive oxygen species (ROS and impaired activity of antioxidant mechanisms. Manganese superoxide dismutase (MnSOD is a mitochondrial enzyme involved in detoxification of ROS, and objective of the current study is to analyze expression and regulation of MnSOD in obesity. MnSOD is increased in visceral but not subcutaneous fat depots of rodents kept on high fat diets (HFD and ob/ob mice. MnSOD is elevated in visceral adipocytes of fat fed mice and exposure of differentiating 3T3-L1 cells to lipopolysaccharide, IL-1α, saturated, monounsaturated and polyunsaturated free fatty acids (FFA upregulates its level. FFA do not alter cytochrome oxidase 4 arguing against overall induction of mitochondrial enzymes. Upregulation of MnSOD in fat loaded cells is not mediated by IL-6, TNF or sterol regulatory element binding protein 2 which are induced in these cells. MnSOD is similarly abundant in perirenal fat of Zucker diabetic rats and non-diabetic animals with similar body weight and glucose has no effect on MnSOD in 3T3-L1 cells. To evaluate whether MnSOD affects adipocyte fat storage, MnSOD was knocked-down in adipocytes for the last three days of differentiation and in mature adipocytes. Knock-down of MnSOD does neither alter lipid storage nor viability of these cells. Heme oxygenase-1 which is induced upon oxidative stress is not altered while antioxidative capacity of the cells is modestly reduced. Current data show that inflammation and excess triglyceride storage raise adipocyte MnSOD which is induced in epididymal adipocytes in obesity.

  20. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes

    OpenAIRE

    Zhang, Yaqin; Shi, Li; Mei, Hongliang; Zhang, Jiexin; Zhu, Yunxia; Han, Xiao; Zhu, Dalong

    2015-01-01

    Background Cytokines secreted by adipose tissue macrophages (ATMs) significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. However, little relevant information is available regarding the role of microvesicles (MVs) derived from ATMs in macrophage-adipocyte crosstalk. Methods MVs were generated by stimulation of M1 or M2 phenotype THP-1 macrophages and incubated with human primary mature adipocytes and differentiated adipocytes. Subsequently,...

  1. Lower Total Adipocyte Number but No Evidence for Small Adipocyte Depletion in Patients With Type 2 Diabetes

    OpenAIRE

    Pasarica, Magdalena; Xie, Hui; Hymel, David; Bray, George; Greenway, Frank; Ravussin, Eric; Smith, Steven R.

    2009-01-01

    OBJECTIVE We hypothesized that, compared with obese subjects, patients with type 2 diabetes have a lower total adipocyte number with fewer small adipocytes. RESEARCH DESIGN AND METHODS Abdominal subcutaneous adipose tissue was obtained from lean and obese subjects with or without type 2 diabetes matched for BMI. Adipocyte size was measured by osmium fixation and sizing/counting in a Coulter counter. Adipocyte size and number subdistributions (small, medium, large, and very large) were determi...

  2. Differential adipogenic and inflammatory properties of small adipocytes in Zucker Obese and Lean rats

    OpenAIRE

    Liu, Alice; Sonmez, Alper; Yee, Gail; Bazuine, Merlijn; Arroyo, Matilde; Sherman, Arthur; McLaughlin, Tracey; Reaven, Gerald; Cushman, Samuel; Tsao, Philip

    2010-01-01

    We recently reported that a preponderance of small adipose cells, decreased expression of cell differentiation markers, and enhanced inflammatory activity in human subcutaneous whole adipose tissue were associated with insulin resistance. To test the hypothesis that small adipocytes exhibited these differential properties, we characterized small adipocytes from epididymal adipose tissue of Zucker Obese (ZO) and Lean (ZL) rats. Rat epididymal fat pads were removed and adipocytes isolated by co...

  3. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Fazliana Mansor

    2013-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARgamma is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT- induced polycystic ovary syndrome (PCOS, a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP and PCOS-control (1 mL of deionised water for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones. LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway.

  4. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes.

    Science.gov (United States)

    Mansor, Fazliana; Gu, Harvest F; Ostenson, Claes-Göran; Mannerås-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100  μ g/mL LP and compared to untreated control and 10  μ M of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

  5. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance

    DEFF Research Database (Denmark)

    Mannerås-Holm, Louise; Leonhardt, Henrik; Kullberg, Joel;

    2011-01-01

    Comprehensive characterization of the adipose tissue in women with polycystic ovary syndrome (PCOS), over a wide range of body mass indices (BMIs), is lacking. Mechanisms behind insulin resistance in PCOS are unclear....

  6. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance

    DEFF Research Database (Denmark)

    Mannerås-Holm, Louise; Leonhardt, Henrik; Kullberg, Joel;

    2011-01-01

    Comprehensive characterization of the adipose tissue in women with polycystic ovary syndrome (PCOS), over a wide range of body mass indices (BMIs), is lacking. Mechanisms behind insulin resistance in PCOS are unclear.......Comprehensive characterization of the adipose tissue in women with polycystic ovary syndrome (PCOS), over a wide range of body mass indices (BMIs), is lacking. Mechanisms behind insulin resistance in PCOS are unclear....

  7. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy

    Directory of Open Access Journals (Sweden)

    Orlando Robert A

    2007-10-01

    Full Text Available Abstract Background A major portion of available fatty acids for adipocyte uptake is derived from lipoprotein lipase (LPL-mediated hydrolysis of circulating lipoprotein particles. In vivo studies aimed at identifying the precise role of adipocyte-derived LPL in fat storage function of adipose tissue have been unable to provide conclusive evidence due to compensatory mechanisms that activate endogenous fatty acid synthesis. To address this gap in knowledge, we have measured the effect of reducing adipocyte LPL expression on intracellular lipid accumulation using a well-established cultured model of adipocyte differentiation. Methods siRNA specific for mouse LPL was transfected into 3T3-L1 adipocytes. Expression of LPL was measured by quantitative real-time PCR and cell surface-associated LPL enzymatic activity was measured by colorimetric detection following substrate (p-nitrophenyl butyrate hydrolysis. Apolipoprotein CII and CIII expression ratios were also measured by qRT-PCR. Intracellular lipid accumulation was quantified by Nile Red staining. Results During differentiation of 3T3-L1 pre-adipocytes, LPL mRNA expression increases 6-fold resulting in a 2-fold increase in cell surface-associated LPL enzymatic activity. Parallel to this increase in LPL expression, we found that intracellular lipids increased ~10-fold demonstrating a direct correlation between adipocyte-derived LPL expression and lipid storage. We next reduced LPL expression in adipocytes using siRNA transfections to directly quantify the contributions of adipocyte-derived LPL to lipid storage, This treatment reduced LPL mRNA expression and cell surface-associated LPL enzymatic activity to ~50% of non-treated controls while intracellular lipid levels were reduced by 80%. Exogenous addition of purified LPL (to restore extracellular lipolytic activity or palmitate (as a source of free fatty acids to siRNA-treated cells restored intracellular lipid levels to those measured for non

  8. Fascia Origin of Adipose Cells.

    Science.gov (United States)

    Su, Xueying; Lyu, Ying; Wang, Weiyi; Zhang, Yanfei; Li, Danhua; Wei, Suning; Du, Congkuo; Geng, Bin; Sztalryd, Carole; Xu, Guoheng

    2016-05-01

    Adipocytes might arise from vascular stromal cells, pericytes and endothelia within adipose tissue or from bone marrow cells resident in nonadipose tissue. Here, we identified adipose precursor cells resident in fascia, an uninterrupted sheet of connective tissue that extends throughout the body. The cells and fragments of superficial fascia from the rat hindlimb were highly capable of spontaneous and induced adipogenic differentiation but not myogenic and osteogenic differentiation. Fascial preadipocytes expressed multiple markers of adipogenic progenitors, similar to subcutaneous adipose-derived stromal cells (ASCs) but discriminative from visceral ASCs. Such preadipocytes resided in fascial vasculature and were physiologically active in vivo. In growing rats, adipocytes dynamically arose from the adventitia to form a thin adipose layer in the fascia. Later, some adipocytes appeared to overlay on top of other adipocytes, an early sign for the formation of three-dimensional adipose tissue in fascia. The primitive adipose lobules extended invariably along blood vessels toward the distal fascia areas. At the lobule front, nascent capillaries wrapped and passed ahead of mature adipocytes to form the distal neovasculature niche, which might replenish the pool of preadipocytes and supply nutrients and hormones necessary for continuous adipogenesis. Our findings suggest a novel model for the origin of adipocytes from the fascia, which explains both neogenesis and expansion of adipose tissue. Fascial preadipocytes generate adipose cells to form primitive adipose lobules in superficial fascia, a subcutaneous nonadipose tissue. With continuous adipogenesis, these primitive adipose lobules newly formed in superficial fascia may be the rudiment of subcutaneous adipose tissue. Stem Cells 2016;34:1407-1419.

  9. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    OpenAIRE

    Fazliana Mansor; Gu, Harvest F.; Claes-Göran Östenson; Louise Mannerås-Holm; Elisabet Stener-Victorin; Wan Nazaimoon Wan Mohamud

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivi...

  10. Defective Differentiation of Adipose Precursor Cells from Lipodystrophic Mice Lacking Perilipin 1

    OpenAIRE

    Ying Lyu; Xueying Su; Jingna Deng; Shangxin Liu; Liangqiang Zou; Xiaojing Zhao; Suning Wei; Bin Geng; Guoheng Xu

    2015-01-01

    Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along...

  11. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    OpenAIRE

    Cecilia Brännmark; Alexandra Paul; Diana Ribeiro; Björn Magnusson; Gabriella Brolén; Annika Enejder; Anna Forslöw

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to c...

  12. Take-over: multiple mechanisms of inter-adipocyte communication

    Institute of Scientific and Technical Information of China (English)

    Günter Müller

    2011-01-01

    Adipose tissue mass in mammals is thought to expand with an increase in both volume and total number of the adipocytes. Recent findings suggest that in normal-weight as well as obese individuals, the adipocyte number is set during adolescence prior to adulthood, whereas the subsequent increase in size predominantly drives obesity. The simultaneous existence of large and small adipocytes and their unsynchronized growth, even within the same adipose tissue depot, argues against simple filling-up of emerging adipocytes with lipids and lipid droplets (LDs). Consequently, it is tempting to speculate about signals sent by large adipocytes to order small adipocytes the take-over of the burden of lipid loading. Currently there is experimental evidence for three distinct types of inter-adipocyte signals, i.e, cell-to-cell contacts, adipokines, and other soluble factors and microvesicles. Very recently,microvesicles have been shown (i) to harbour the glycosylphosphatidylinositol-anchored (c)AMP-degrading phosphodiesterase Gce1 and 5'-nucleotidase CD73, (ii) to be released from large adipocytes, (iii) to interact with small adipocytes, and (iv) to transfer Gce1 and CD73 to plasma membranes and LDs of small adipocytes where they degrade (c)AMP. This sequence of events leads to the up-regulation of lipid storage in small adipocytes in response to the microvesicle-encoded 'take-over' signal from large adipocytes. A model is proposed for the maturation of small adipocytes driven by large ones along a gradient of those inter-adipocyte signals.Pharmacological modulation of inter-adipocyte communication and thereby adipocyte maturation may be useful for the therapy of metabolic diseases.

  13. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuwei Jiang

    2014-11-01

    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  14. Skin aging: are adipocytes the next target?

    Science.gov (United States)

    Kruglikov, Ilja L; Scherer, Philipp E

    2016-07-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  15. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    Science.gov (United States)

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  16. Cross-talk between sympathetic neurons and adipocytes in coculture

    OpenAIRE

    Turtzo, L. Christine; Marx, Ruth; Lane, M. Daniel

    2001-01-01

    White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate mo...

  17. Analysis and Isolation of Adipocytes by Flow Cytometry

    OpenAIRE

    Majka, Susan M.; Miller, Heidi L.; Helm, Karen M.; Acosta, Alistaire S.; Childs, Christine R.; Kong, Raymond; Klemm, Dwight J.

    2014-01-01

    Analysis and isolation of adipocytes via flow cytometry is particularly useful to study their biology. However, the adoption of this technology has often been hampered by the presence of stromal/vascular cells in adipocyte fractions prepared from collagenase-digested adipose tissue. Here, we describe a multistep staining method and gating strategy that effectively excludes stromal contaminants. Initially, we set a gate optimized to the size and internal complexity of adipocytes. Exclusion of ...

  18. Adipocyte Induction of Preadipocyte Differentiation in a Gradient Chamber

    OpenAIRE

    Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum

    2012-01-01

    Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution...

  19. Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice

    Directory of Open Access Journals (Sweden)

    Dionysios V. Chartoumpekis

    2015-07-01

    Conclusions: Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for therapeutic interventions in metabolic disease.

  20. Human Mature Adipocytes Express Albumin and This Expression Is Not Regulated by Inflammation

    OpenAIRE

    Eleonora Riccio; Giovanni Pertosa; Simona Simone; Giuseppe Grandaliano; Maurizio Sodo; Andrea Pota; Alfredo Procino; Bruna Guida; Maria Luisa Sirico; Bruno Memoli

    2012-01-01

    Aims. Our group investigated albumin gene expression in human adipocytes, its regulation by inflammation and the possible contribution of adipose tissue to albumin circulating levels. Methods. Both inflamed and healthy subjects provided adipose tissue samples. RT-PCR, Real-Time PCR, and Western Blot analysis on homogenates of adipocytes and pre-adipocytes were performed. In sixty-three healthy subjects and fifty-four micro-inflamed end stage renal disease (ESRD) patients circulating levels of...

  1. Single-cell analysis of insulin-regulated fatty acid uptake in adipocytes

    OpenAIRE

    Varlamov, Oleg; Somwar, Romel; Cornea, Anda; Kievit, Paul; Grove, Kevin L.; Roberts, Charles T.

    2010-01-01

    Increased body fat correlates with the enlargement of average fat cell size and reduced adipose tissue insulin sensitivity. It is currently unclear whether adipocytes, as they accumulate more triglycerides and grow in size, gradually become less insulin sensitive or whether obesity-related factors independently cause both the enlargement of adipocyte size and reduced adipose tissue insulin sensitivity. In the first instance, large and small adipocytes in the same tissue would exhibit differen...

  2. Visceral Adipocyte Hypertrophy is Associated With Dyslipidemia Independent of Body Composition and Fat Distribution in Women

    OpenAIRE

    Veilleux, Alain; Caron-Jobin, Maude; Noël, Suzanne; Laberge, Philippe Y.; Tchernof, André

    2011-01-01

    OBJECTIVE We assessed whether subcutaneous and omental adipocyte hypertrophy are related to metabolic alterations independent of body composition and fat distribution in women. RESEARCH DESIGN AND METHODS Mean adipocyte diameter of paired subcutaneous and omental adipose tissue samples was obtained in lean to obese women. Linear regression models predicting adipocyte size in both adipose tissue depots were computed using body composition and fat distribution measures (n = 150). In a given dep...

  3. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes.

    OpenAIRE

    Kern, P A; Marshall, S; Eckel, R H

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific 125I-insulin binding. In addition, chloroquine induced an increase in cell-asso...

  4. Tumor Necrosis Factor-α-Mediated Suppression of Adipocyte Apolipoprotein E Gene Transcription: Primary Role for the Nuclear Factor (NF)-κB Pathway and NFκB p50

    OpenAIRE

    Yue, Lili; Christman, John W.; Mazzone, Theodore

    2008-01-01

    The adipose tissue inflammation accompanying obesity has important consequences for adipocyte lipid metabolism, and increased adipose tissue TNFα plays an important role for mediating the effect of inflammation on adipocyte function. Recent studies have shown that apolipoprotein E (apoE) is highly expressed in adipose tissue where it plays an important role in modulating adipocyte triglyceride metabolism, triglyceride mass, and adipocyte size. We have previously reported that TNFα reduces adi...

  5. Immunological contributions to adipose tissue homeostasis.

    Science.gov (United States)

    DiSpirito, Joanna R; Mathis, Diane

    2015-09-01

    Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of "adipocyte" encompasses three primary types - white, brown, and beige - with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.

  6. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  7. Development and differentiation of adipose tissue

    Directory of Open Access Journals (Sweden)

    Ivković-Lazar Tatjana A.

    2003-01-01

    Full Text Available Introduction For years adipose tissue has been considered inert, serving only as a depot of energy surplus. However, there have been recent changes, undoubtedly due to advancement of methods for studying the morphology and metabolic activities of adipose tissue (microdialysis and adipose tissue catheterization. In normal-weight subjects, adipose tissue makes 10-12% with males and 15-20% with females. About 80 % of adipose tissue is located under the skin, and the rest envelops the internal organs. With humans there are white and brown adipose tissues, which is predominant with infants and small children. Histologic characteristics From a histological point of view, it is a special form of reticular connective tissue, which contains adipocytes with netlike structure. Human adipose tissue has four types of adrenergic receptors with different topographic dispositions, which manifest different metabolic activity of adipocytes of particular body organs. Changes in adipose tissue are associated with the process of adipocyte differentiation. Critical moments for this process are last months of pregnancy, the first six months of infancy and then puberty. However, the differentiation process may also begin during maturity. Namely, as size of adipocytes can increase to a certain limit, this process can be activated after reaching a 'critical' adipocyte volume. The differentiation process is affected by a number of hormones (insulin, glucagon, corticosteroids, somatotropin (STH, thyroid gland hormones, prolactin, testosterone, but also by some other substances (fatty acids, prostaglandins, liposoluble vitamins, butyrate, aspirin, indomethacin, metylxanthine, etc..

  8. Obestatin as a regulator of adipocyte metabolism and adipogenesis

    OpenAIRE

    Gurriarán-Rodríguez, Uxía; Al-Massadi, Omar; Roca-Rivada, Arturo; Crujeiras, Ana Belén; Gallego, Rosalía; Pardo, Maria; Seoane, Luisa Maria; Pazos, Yolanda; Felipe F Casanueva; Camiña, Jesús P

    2011-01-01

    Abstract The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male ...

  9. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  10. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    OpenAIRE

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  11. Imaging white adipose tissue with confocal microscopy.

    Science.gov (United States)

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents.

  12. Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors.

    Science.gov (United States)

    Lee, Yun-Hee; Thacker, Robert I; Hall, Brian Eric; Kong, Raymond; Granneman, James G

    2014-01-01

    Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.

  13. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  14. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    International Nuclear Information System (INIS)

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  15. Dietary t10,c12-CLA but not c9,t11 CLA Reduces Adipocyte Size in the Absence of Changes in the Adipose Renin–Angiotensin System in fa/fa Zucker Rats

    OpenAIRE

    DeClercq, Vanessa; Zahradka, Peter; Taylor, Carla G.

    2010-01-01

    In obesity, increased activity of the local renin–angiotensin system (RAS) and enlarged adipocytes with altered adipokine production are linked to the development of obesity-related health problems and cardiovascular disease. Mixtures of conjugated linoleic acid (CLA) isomers have been shown to reduce adipocyte size and alter the production of adipokines. The objective of this study was to investigate the effects of feeding individual CLA isomers on adipocyte size and adipokines associated wi...

  16. Bofutsushosan, an Oriental Herbal Medicine, Attenuates the Weight Gain of White Adipose Tissue and the Increased Size of Adipocytes Associated with the Increase in Their Expression of Uncoupling Protein 1 in High-Fat Diet-Fed Male KK/Ta mice

    OpenAIRE

    Akagiri, Satomi; NAITO, Yuji; Ichikawa, Hiroshi; Mizushima, Katsura; Takagi, Tomohisa; Handa, Osamu; Kokura, Satoshi; Yoshikawa, Toshikazu

    2008-01-01

    Bofutsushosan (BOF), an oriental herbal medicine, has been used as an anti-obesity drug in overweight patients. In the present study, to evaluate the anti-obesity and anti-diabetic effects of BOF, we investigated the effects of BOF on the white adipose tissue (WAT) weight, the size of adipocytes, adiponectin expression, and oral glucose tolerance test results in high-fat diet-fed male KK/Ta mice. In addition, the mRNA expression levels of uncoupling protein 1 (UCP1) and UCP2 mRNA in WAT and b...

  17. Adipose tissues and thyroid hormones

    Directory of Open Access Journals (Sweden)

    Maria-Jesus eObregon

    2014-12-01

    Full Text Available The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases. The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. Brite or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2 and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that activate UCP1 in WAT and

  18. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes.

    Directory of Open Access Journals (Sweden)

    Umberto Laforenza

    Full Text Available BACKGROUND: Glycerol outflow from adipocytes has been considered for a decade to be mediated by aquaporin-7, an aquaglyceroporin highly expressed in the adipose tissue. Its involvement in glycerol metabolism has been widely studied also in humans. Recent studies in different aquaporin-7 KO mice models pose two different questions 1 the exact localization of aquaporin-7 in human white adipose tissue; 2 the existence of other aquaglyceroporins that work with aquaporin-7 to guarantee glycerol efflux and thus a normal adiposity in humans. To this purpose we investigated the expression, the localization and the functioning of aquaglyceroporin-10 in subcutaneous white adipose tissue, in isolated and cultured differentiated adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Aquaporin-7 and -10 were expressed in the white adipose tissue both at mRNA and at protein level. Immunofluorescence revealed aquaporin-7 and -10 labelling in the human adipose tissue both to the plasma membrane and to a thin rim of cytoplasm of adipocytes. Aquaporin-7, but not aquaporin-10, colocalized with the endothelial marker CD34. Human cultured differentiated adipocytes showed an aquaporin-7 and -10 labelling mainly in the cytoplasm and in the lipid droplets with insulin reinforcing the lipid droplets staining and isoproterenol inducing its translocation to the plasma membrane compartment. Water and glycerol permeability measurements using adipocytes and adipose membrane vesicles confirmed the presence of functioning aquaglyceroporins. Aquaporin-10 silencing in human differentiated adipocytes resulted in a 50% decrease of glycerol and osmotic water permeability. CONCLUSIONS/SIGNIFICANCE: The results indicate that aquaporin-7, differently from mice, is present in both adipocyte and capillary plasma membranes of human adipose tissue. Aquaporin-10, on the contrary, is expressed exclusively in the adipocytes. The expression of two aquaglyceroporins in human adipose tissue is

  19. Cadmium modulates adipocyte functions in metallothionein-null mice

    International Nuclear Information System (INIS)

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT−/−) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT+/+) mice. Cd administration more significantly reduced the adipocyte size of MT−/− mice than that of MT+/+ mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT−/− mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines

  20. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  1. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation.

    Science.gov (United States)

    Huang, Zhi H; Reardon, Catherine A; Getz, Godfrey S; Maeda, Nobuyo; Mazzone, Theodore

    2015-02-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state.

  2. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression

    Science.gov (United States)

    Gusky, H. Chkourko; Diedrich, J.; MacDougald, O. A.; Podgorski, I.

    2016-01-01

    Summary A number of clinical studies have linked adiposity with increased cancer incidence, progression and metastasis, and adipose tissue is now being credited with both systemic and local effects on tumour development and survival. Adipocytes, a major component of benign adipose tissue, represent a significant source of lipids, cytokines and adipokines, and their presence in the tumour microenvironment substantially affects cellular trafficking, signalling and metabolism. Cancers that have a high predisposition to metastasize to the adipocyte-rich host organs are likely to be particularly affected by the presence of adipocytes. Although our understanding of how adipocytes influence tumour progression has grown significantly over the last several years, the mechanisms by which adipocytes regulate the meta-static niche are not well-understood. In this review, we focus on the omentum, a visceral white adipose tissue depot, and the bone, a depot for marrow adipose tissue, as two distinct adipocyte-rich organs that share common characteristic: they are both sites of significant metastatic growth. We highlight major differences in origin and function of each of these adipose depots and reveal potential common characteristics that make them environments that are attractive and conducive to secondary tumour growth. Special attention is given to how omental and marrow adipocytes modulate the tumour microenvironment by promoting angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells. PMID:27432523

  3. Brown adipose tissue and its therapeutic potential.

    Science.gov (United States)

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  4. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages.

    Directory of Open Access Journals (Sweden)

    Kees Meijer

    Full Text Available BACKGROUND: Obesity promotes inflammation in adipose tissue (AT and this is implicated in pathophysiological complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Although based on the classical hypothesis, necrotic AT adipocytes (ATA in obese state activate AT macrophages (ATM that then lead to a sustained chronic inflammation in AT, the link between human adipocytes and the source of inflammation in AT has not been in-depth and systematically studied. So we decided as a new hypothesis to investigate human primary adipocytes alone to see whether they are able to prime inflammation in AT. METHODS AND RESULTS: Using mRNA expression, human preadipocytes and adipocytes express the cytokines/chemokines and their receptors, MHC II molecule genes and 14 acute phase reactants including C-reactive protein. Using multiplex ELISA revealed the expression of 50 cytokine/chemokine proteins by human adipocytes. Upon lipopolysaccharide stimulation, most of these adipocyte-associated cytokines/chemokines and immune cell modulating receptors were up-regulated and a few down-regulated such as (ICAM-1, VCAM-1, MCP-1, IP-10, IL-6, IL-8, TNF-α and TNF-β highly up-regulated and IL-2, IL-7, IL-10, IL-13 and VEGF down-regulated. In migration assay, human adipocyte-derived chemokines attracted significantly more CD4+ T cells than controls and the number of migrated CD4+ cells was doubled after treating the adipocytes with LPS. Neutralizing MCP-1 effect produced by adipocytes reduced CD4+ migration by approximately 30%. CONCLUSION: Human adipocytes express many cytokines/chemokines that are biologically functional. They are able to induce inflammation and activate CD4+ cells independent of macrophages. This suggests that the primary event in the sequence leading to chronic inflammation in AT is metabolic dysfunction in adipocytes, followed by production of immunological mediators by these adipocytes, which is then exacerbated by

  5. Adipose tissues as endocrine target organs.

    Science.gov (United States)

    Lanthier, Nicolas; Leclercq, Isabelle A

    2014-08-01

    In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.

  6. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes.

    Science.gov (United States)

    Liu, Longhua; Zheng, Louise D; Zou, Peng; Brooke, Joseph; Smith, Cayleen; Long, Yun Chau; Almeida, Fabio A; Liu, Dongmin; Cheng, Zhiyong

    2016-08-01

    Obesity and related metabolic disorders constitute one of the most pressing heath concerns worldwide. Increased adiposity is linked to autophagy upregulation in adipose tissues. However, it is unknown how autophagy is upregulated and contributes to aberrant adiposity. Here we show a FoxO1-autophagy-FSP27 axis that regulates adipogenesis and lipid droplet (LD) growth in adipocytes. Adipocyte differentiation was associated with upregulation of autophagy and fat specific protein 27 (FSP27), a key regulator of adipocyte maturation and expansion by promoting LD formation and growth. However, FoxO1 specific inhibitor AS1842856 potently suppressed autophagy, FSP27 expression, and adipocyte differentiation. In terminally differentiated adipocytes, AS1842856 significantly reduced FSP27 level and LD size, which was recapitulated by autophagy inhibitors (bafilomycin-A1 and leupeptin, BL). Similarly, AS1842856 and BL dampened autophagy activity and FSP27 expression in explant cultures of white adipose tissue. To our knowledge, this is the first study addressing FoxO1 in the regulation of adipose autophagy, shedding light on the mechanism of increased autophagy and adiposity in obese individuals. Given that adipogenesis and adipocyte expansion contribute to aberrant adiposity, targeting the FoxO1-autophagy-FSP27 axis may lead to new anti-obesity options. PMID:27260854

  7. Optical detection of pores in adipocyte membrane

    Science.gov (United States)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  8. Regional differences in adipocyte lactate production from glucose

    International Nuclear Information System (INIS)

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. [U-14C]glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots

  9. ADD1/SREBP1c activates the PGC1-alpha promoter in brown adipocytes

    DEFF Research Database (Denmark)

    Hao, Qin; Hansen, Jacob B; Petersen, Rasmus K;

    2010-01-01

    regulatory element-binding protein-1c (SREBP1c) and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC1alpha) in brown and inguinal white adipose tissues, but not in epididymal white adipose tissue. Using in vitro models of white and brown adipocytes we demonstrate that beta......Cold adaptation elicits a paradoxical simultaneous induction of fatty acid synthesis and beta-oxidation in brown adipose tissue. We show here that cold exposure coordinately induced liver X receptor alpha (LXRalpha), adipocyte determination and differentiation-dependent factor 1 (ADD1)/sterol...... as a regulator of PGC1alpha expression in brown adipose tissue....

  10. Regulation of human subcutaneous adipocyte differentiation by EID1.

    Science.gov (United States)

    Vargas, Diana; Shimokawa, Noriaki; Kaneko, Ryosuke; Rosales, Wendy; Parra, Adriana; Castellanos, Ángela; Koibuchi, Noriyuki; Lizcano, Fernando

    2016-02-01

    Increasing thermogenesis in white adipose tissues can be used to treat individuals at high risk for obesity and cardiovascular disease. The objective of this study was to determine the function of EP300-interacting inhibitor of differentiation (EID1), an inhibitor of muscle differentiation, in the induction of beige adipocytes from adipose mesenchymal stem cells (ADMSCs). Subcutaneous adipose tissue was obtained from healthy women undergoing abdominoplasty. ADMSCs were isolated in vitro, grown, and transfected with EID1 or EID1 siRNA, and differentiation was induced after 48 h by administering rosiglitazone. The effects of EID1 expression under the control of the aP2 promoter (aP2-EID1) were also evaluated in mature adipocytes that were differentiated from ADMSCs. Transfection of EID1 into ADMSCs reduced triglyceride accumulation while increasing levels of thermogenic proteins, such as PGC1α, TFAM, and mitochondrial uncoupling protein 1 (UCP1), all of which are markers of energy expenditure and mitochondrial activity. Furthermore, increased expression of the beige phenotype markers CITED1 and CD137 was observed. Transfection of aP2-EID1 transfection induced the conversion of mature white adipocytes to beige adipocytes, as evidenced by increased expression of PGC1α, UCP1, TFAM, and CITED1. These results indicate that EID1 can modulate ADMSCs, inducing a brown/beige lineage. EID1 may also activate beiging in white adipocytes obtained from subcutaneous human adipose tissue. PMID:26643909

  11. Adipose tissues differentiated by adipose-derived stemcells harvested from transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LU Feng; GAO Jian-hua; Rei Ogawa; Hiroshi Mizuro; Hiki Hykusoku

    2006-01-01

    Objective: To induce adipocyte differentiation in vitro by adipose-derived stromal cells (ASCs) harvested from transgenic mice with green fluorescent protein (GFP)and assess the possibility of constructing adipose tissues via attachment of ASCs to type Ⅰ collagen scaffolds.Methods: Inguinal fat pads from GFP transgenic mice were digested by enzymes for isolation of ASCs (primary culture). After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks, and the adipocyte differentiation by ASCs in vitro was assessed by morphological observation and Oil Red O staining. Then they were attached to collagen scaffolds and co-cultured for 12 hours, followed by hypodermic implantation to the dorsal skin of nude mice for 2 months. The newly-formed tissues were detected by HE staining.Results: The cultured primary stem cells were fibroblast-like and showed active proliferation. After being incubated in an adipocyte differentiation medium, the lipid droplets in the cytoplasm accumulated gradually and finally developed into mature adipocytes, which showed positive in Oil Red O staining. A 0.5-cm3 new tissue clot was found under the dorsal skin of the nude mice and it was confirmed as mature adipose tissues by fluorescent observation and HE staining.Conclusions: ASCs can successfully differentiate adipose tissues into mature adipocytes, which exhibit an adipocyte-like morphology and express as intracytoplasmic lipid droplets. It is an efficient model of adipose tissues engineered with ASCs and type Ⅰ collagen scaffolds.

  12. Preadipocyte transplantation: an in vivo study of direct leptin signaling on adipocyte morphogenesis and cell size

    OpenAIRE

    Guo, Kaiying; Mogen, Jonathan; Struzzi, Samuel; Zhang, Yiying

    2009-01-01

    Leptin has profound effects on adipose tissue metabolism. However, it remains unclear whether direct leptin signaling in adipocytes is involved. We addressed this question by transplanting inguinal adipose tissue stromal vascular cells (SVCs) from 4- to 5-wk-old wild-type (WT) and leptin receptor-deficient [Leprdb/db (db)] mice to inguinal and sternal subcutaneous sites in Ncr nude mice. Both WT and db SVCs gave rise to mature adipocytes with normal morphologies 3 mo after the transplantation...

  13. Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice

    OpenAIRE

    Monden, Masayo; Koyama, Hidenori; Otsuka, Yoshiko; Morioka, Tomoaki; Mori, Katsuhito; Shoji, Takuhito; Mima, Yohei; Motoyama, Koka; Fukumoto, Shinya; Shioi, Atsushi; Emoto, Masanori; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Nishizawa, Yoshiki; Kurajoh, Masafumi

    2013-01-01

    Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown o...

  14. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations.

    OpenAIRE

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissu...

  15. Role of adipocyte-derived apoE in modulating adipocyte size, lipid metabolism, and gene expression in vivo

    OpenAIRE

    Huang, Zhi Hua; Gu, DeSheng; Mazzone, Theodore

    2009-01-01

    Adipocytes isolated from apolipoprotein E (apoE)-knockout (EKO) mice display alterations in triglyceride (TG) metabolism and gene expression. The present studies were undertaken to evaluate the impact of endogenously produced adipocyte apoE on these adipocyte parameters in vivo, independent of the profoundly disturbed metabolic milieu of EKO mice. Adipose tissue from wild-type (WT) or EKO mice was transplanted into WT recipients, which were then fed chow or high-fat diet for 8–10 wk. After a ...

  16. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  17. Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice

    OpenAIRE

    Yiannikouris, Frederique; Karounos, Michael; Charnigo, Richard; English, Victoria L.; Rateri, Debra L.; Daugherty, Alan; Cassis, Lisa A.

    2011-01-01

    Previous studies demonstrated that overexpression of angiotensinogen (AGT) in adipose tissue increased blood pressure. However, the contribution of endogenous AGT in adipocytes to the systemic renin-angiotensin system (RAS) and blood pressure control is undefined. To define a role of adipocyte-derived AGT, mice with loxP sites flanking exon 2 of the AGT gene (Agtfl/fl) were bred to transgenic mice expressing Cre recombinase under the control of an adipocyte fatty acid-binding protein 4 promot...

  18. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis

    OpenAIRE

    Chatterjee, Tapan K.; Aronow, Bruce J; Tong, Wilson S.; Manka, David; Tang, Yaoliang; Bogdanov, Vladimir Y.; Unruh, Dusten; Blomkalns, Andra L.; Piegore, Mark G.; Weintraub, Daniel S.; Rudich, Steven M.; Kuhel, David G; Hui, David Y.; Weintraub, Neal L.

    2013-01-01

    Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differential...

  19. Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease

    Directory of Open Access Journals (Sweden)

    Peter L. Lee

    2016-06-01

    Conclusions: mTORC1 activity in mature adipocytes is essential for maintaining normal adipose tissue growth and its selective loss in mature adipocytes leads to a progressive lipodystrophy disorder and systemic metabolic disease that shares many of the hallmarks of human congenital generalized lipodystrophy.

  20. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes

    OpenAIRE

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; FORD, CHRISTOPHER; Hunter, Leif; Bing, Chen

    2014-01-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated ...

  1. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  2. Regulatory circuits controlling white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Kristiansen, Karsten

    2006-01-01

    Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP......1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes......, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since...

  3. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity.

    Science.gov (United States)

    Lizcano, Fernando; Vargas, Diana

    2016-01-01

    All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2. PMID:27528872

  4. Physiological determinants and impacts of the adipocyte phenotype

    OpenAIRE

    Tchernof, A; Richard, D.

    2015-01-01

    The properties of adipose tissues accumulating in various compartments and ectopic sites around the body represent critical determinants of the relationship between obesity and metabolic disease. The increasingly recognized plasticity of the adipose cell phenotype led to many articles on the cellular characteristics and origins on brown, white and also of ‘beige' or ‘brite' adipocytes in recent years. This overview is a summary of manuscripts that were prepared by speakers at the 16th Interna...

  5. Regulation of vascular tone by adipocytes

    Directory of Open Access Journals (Sweden)

    Van de Voorde Johan

    2011-03-01

    Full Text Available Abstract Recent studies have shown that adipose tissue is an active endocrine and paracrine organ secreting several mediators called adipokines. Adipokines include hormones, inflammatory cytokines and other proteins. In obesity, adipose tissue becomes dysfunctional, resulting in an overproduction of proinflammatory adipokines and a lower production of anti-inflammatory adipokines. The pathological accumulation of dysfunctional adipose tissue that characterizes obesity is a major risk factor for many other diseases, including type 2 diabetes, cardiovascular disease and hypertension. Multiple physiological roles have been assigned to adipokines, including the regulation of vascular tone. For example, the unidentified adipocyte-derived relaxing factor (ADRF released from adipose tissue has been shown to relax arteries. Besides ADRF, other adipokines such as adiponectin, omentin and visfatin are vasorelaxants. On the other hand, angiotensin II and resistin are vasoconstrictors released by adipocytes. Reactive oxygen species, leptin, tumour necrosis factor α, interleukin-6 and apelin share both vasorelaxing and constricting properties. Dysregulated synthesis of the vasoactive and proinflammatory adipokines may underlie the compromised vascular reactivity in obesity and obesity-related disorders.

  6. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    OpenAIRE

    Toda, Shuji; Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate...

  7. REGULATION OF RETINOL BINDING PROTEIN 4 EXPRESSION AND ITS RELATION TO ADIPOGENESIS IN BOVINE ADIPOCYTES

    Directory of Open Access Journals (Sweden)

    Abd Eldaim Mabrouk Attia

    2012-01-01

    Full Text Available Adipogenesis is of great importance in beef cattle. Recent findings indicate that glucose, a substrate for fatty acid biosynthesis and retinoic acid enhance adipogenesis in bovine intramuscular adipocytes. However, other recent findings indicate that Retinol-Binding Protein 4 (RBP4 interferes with glucose uptake and utilization by rodents’ adipocytes. In this study we examined the regulation of RBP4 expression and its relation to adipogenesis in bovine adipocytes. Stromal vascular cells were prepared by collagenase digestion from subcutaneous and intramuscular adipose tissues of Japanese black steers. RT-PCR revealed that RBP4 mRNA was expressed in bovine adipose tissue. Northern and Western Blot analysis showed that RBP4 was highly expressed and secreted from bovine preadipocytes. However, RBP4 expression and secretion were significantly reduced by induction of the adipogenic differentiation of preadipocytes into mature adipocytes. Glucose and retinoic acid have a suppressive effect on RBP4 expression and secretion from intramuscular adipocytes. Retinoic acid significantly decreased RBP4 expression in Japanese black steer subcutaneous adipocytes. Retinoic acid itself had no effect on lipid accumulation in subcutaneous adipocytes however, retinoic acid enhanced lipid accumulation in these adipocytes after addition of acetate, a substrate for fatty acid biosynthesis in subcutaneous adipocytes. This study indicated a negative correlation between adipogenesis and RBP4 expression in bovine adipocytes and suggests possible inhibitory effect of RBP4 on adipogenesis.

  8. Hypoxia and adipose tissue function and dysfunction in obesity.

    Science.gov (United States)

    Trayhurn, Paul

    2013-01-01

    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.

  9. Between brown and white: novel aspects of adipocyte differentiation.

    Science.gov (United States)

    Cinti, Saverio

    2011-03-01

    In all mammals including humans, most white and brown adipocytes are found together in visceral and subcutaneous depots (adipose organ) despite the well known difference in their function, respectively of storing energy and producing heat. A growing body of evidence suggests that the reason for such anatomical arrangement is their plasticity, which under appropriate stimulation allows direct conversion of one cell type into the other. In conditions of chronic cold exposure white-to-brown conversion meets the need for thermogenesis, whereas an obesogenic diet induces brown-to-white conversion to meet the need for storing energy. White-to-brown transdifferentiation is of medical interest, because the brown phenotype of the adipose organ is associated to obesity resistance, and drugs inducing this phenotype curb murine obesity and related disorders. Type 2 diabetes is the most common disorder associated to visceral obesity. Macrophages infiltrating the adipose organ are responsible for the low-grade chronic inflammation related to the removal of dead adipocytes, which leads to insulin resistance and T2 diabetes. Adipocyte death is closely related to their growth up to the critical death size. The critical death size of visceral adipocytes is smaller than that of subcutaneous adipocytes, likely accounting for the greater morbidity related to visceral fat. PMID:21254898

  10. In vivo dedifferentiation of adult adipose cells.

    Directory of Open Access Journals (Sweden)

    Yunjun Liao

    Full Text Available Adipocytes can dedifferentiate into fibroblast-like cells in vitro and thereby acquire proliferation and multipotent capacities to participate in the repair of various organs and tissues. Whether dedifferentiation occurs under physiological or pathological conditions in vivo is unknown.A tissue expander was placed under the inguinal fat pads of rats and gradually expanded by injection of water. Samples were collected at various time points, and morphological, histological, cytological, ultrastructural, and gene expression analyses were conducted. In a separate experiment, purified green fluorescent protein+ adipocytes were transplanted into C57 mice and collected at various time points. The transplanted adipocytes were assessed by bioluminescence imaging and whole-mount staining.The expanded fat pad was obviously thinner than the untreated fat pad on the opposite side. It was also tougher in texture and with more blood vessels attached. Hematoxylin and eosin staining and transmission electron microscopy indicated there were fewer monolocular adipocytes in the expanded fat pad and the morphology of these cells was altered, most notably their lipid content was discarded. Immunohistochemistry showed that the expanded fat pad contained an increased number of proliferative cells, which may have been derived from adipocytes. Following removal of the tissue expander, many small adipocytes were observed. Bioluminescence imaging suggested that some adipocytes survived when transplanted into an ischemic-hypoxic environment. Whole-mount staining revealed that surviving adipocytes underwent a process similar to adipocyte dedifferentiation in vitro. Monolocular adipocytes became multilocular adipocytes and then fibroblast-like cells.Mature adipocytes may be able to dedifferentiate in vivo, and this may be an adipose tissue self-repair mechanism. The capacity of adipocytes to dedifferentiate into stem cell-like cells may also have a more general role in the

  11. Adipose tissue plasticity from WAT to BAT and in between.

    Science.gov (United States)

    Lee, Yun-Hee; Mottillo, Emilio P; Granneman, James G

    2014-03-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  12. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage

    OpenAIRE

    Huang, Haiyan; Song, Tan-Jing; Li, Xi; Hu, Lingling; He, Qun; Liu, Mei; Lane, M. Daniel; Tang, Qi-Qun

    2009-01-01

    Obesity is accompanied by an increase in both adipocyte number and size. The increase in adipocyte number is the result of recruitment to the adipocyte lineage of pluripotent stem cells present in the vascular stroma of adipose tissue. These pluripotent cells have the potential to undergo commitment and then differentiate into adipocytes, as well as myocytes, osteocytes, and chondrocytes. In this article, we show that both bone morphogenetic protein (BMP)2 and BMP4 can induce commitment of C3...

  13. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    Science.gov (United States)

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (pdevelopment, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  14. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete;

    2015-01-01

    BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...... of ZIP14 in adipose tissue is still unknown. This study investigates ZIP14 gene expression in human adipose tissue before and after weight loss as well as the regulation of ZIP14 during early adipogenesis. METHODS: Fourteen obese individuals were investigated before and after a 10 week weight loss...... intervention and compared to 14 non-obese controls. Gene expressions of ZIP14 and peroxisome proliferator-activated receptor γ (PPARγ) were measured in subcutaneous adipose tissue and correlated with metabolic and inflammatory markers. Further, we investigated gene expression of ZIP14 and PPARγ during early...

  15. The Adipose Tissue in Farm Animals

    DEFF Research Database (Denmark)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura;

    2014-01-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products...... secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well...... as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors...

  16. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.

    Science.gov (United States)

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J; Nguyen, Long N; Chai, Xiaoran; Huang, Cher X; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L; Lodish, Harvey; Sun, Lei

    2014-12-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.

  17. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    Science.gov (United States)

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  18. Albumin induced cytokine expression in porcine adipose tissue explants

    Science.gov (United States)

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  19. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  20. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis

    OpenAIRE

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-you; Huang, Hai-yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-01-01

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces “white adipocytes” with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP...

  1. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    Science.gov (United States)

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  2. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation.

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Oh, Kyoung-Jin; Park, Anna; Lee, Da Som; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-07-01

    Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393].

  3. Female adipocyte androgen synthesis and the effects of insulin

    Directory of Open Access Journals (Sweden)

    David Cadagan

    2014-01-01

    Full Text Available The metabolic syndrome is a cluster of metabolic disorders characterized by insulin resistance and hyperinsulinaemia, and its presence can increase the risk of cardiovascular disease significantly. The metabolic syndrome is associated with increased circulating androgen levels in women, which may originate from the ovaries and adrenal glands. Adipocytes are also able to synthesise steroid hormones, and this output has been hypothesised to increase with elevated insulin plasma concentrations. However, the contribution of the adipocytes to the circulating androgen levels in women with metabolic syndrome is limited and the effects of insulin are not fully understood. The aim of this study was to investigate the presence of steroid precursors and synthetic enzymes in human adipocyte biopsies as markers of possible adipocyte androgen synthesis. We examined pre and mature adipocytes taken from tissue biopsies of abdominal subcutaneous adipose tissue of participating women from the Department of Obstetrics and Gynaecology, of the Royal Derby Hospital. The results showed the potential for localised adipocyte androgen synthesis through the presence of the androgen precursor progesterone, as well as the steroid-converting enzyme 17α-hydroxylase. Furthermore, we found the controlled secretion of androstenedione in vitro and that insulin treatment caused levels to increase. Continued examination of a localised source of androgen production is therefore of clinical relevance due to its influence on adipocyte metabolism, its negative impact on female steroidogenic homeostasis, and the possible aggravation this may have when associated to obesity and obesity related metabolic abnormalities such as hyperinsulinaemia.

  4. File list: ALL.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_stromal_cell hg19 All antigens Adipocyte Adipose stromal c...019496,SRX019511,SRX019518,SRX019504,SRX019497,SRX019503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  5. File list: Pol.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  6. File list: Pol.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: Pol.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: NoD.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue.bed ...

  9. File list: NoD.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue.bed ...

  10. File list: His.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: ALL.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue.bed ...

  12. File list: Unc.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, ...White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: ALL.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue.bed ...

  14. File list: Oth.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: ALL.Adp.10.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue.bed ...

  16. File list: ALL.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, ...X821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: ALL.Adp.50.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue hg19 All antigens Adipocyte Adipose Tissue SRX13473...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue.bed ...

  18. File list: Oth.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue...SRX821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: NoD.Adp.05.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue.bed ...

  1. File list: NoD.Adp.20.AllAg.Adipose_Tissue [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue hg19 No description Adipocyte Adipose Tissue SRX134...732 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue.bed ...

  2. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB

    DEFF Research Database (Denmark)

    Hansen, Merethe; Lund, Michael T.; Gregers, Emilie;

    2015-01-01

    OBJECTIVE: To study adipose tissue mitochondrial respiration and lipolysis following a massive weight loss. METHODS: High resolution respirometry of adipose tissue biopsies and tracer determined whole body lipolysis. Sixteen obese patients with type 2 diabetes (T2DM) and 27 without (OB) were...... Adipose tissue mitochondrial respiratory capacity increases with RYGB. Adipocytes adapt to massive weight...

  3. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: Unc.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  5. File list: DNS.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  6. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: DNS.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  11. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  13. File list: Oth.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: His.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127394,SRX127409,SRX127396,SRX127407,SRX127381,SRX127383 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  16. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: DNS.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  18. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: DNS.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  20. File list: DNS.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_stromal_cell hg19 DNase-seq Adipocyte Adipose stromal cell... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  1. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: His.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_stromal_cell hg19 Histone Adipocyte Adipose stromal cell S...15,SRX019508,SRX019494 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  3. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  4. File list: Pol.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  5. File list: Pol.Adp.20.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_stromal_cell hg19 RNA polymerase Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose_stromal_cell.bed ...

  6. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: Unc.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  9. File list: Unc.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_stromal_cell hg19 Unclassified Adipocyte Adipose stromal c...ell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  10. File list: Pol.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  11. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  12. File list: Unc.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  13. File list: ALL.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821810,SRX821806,SRX821809,SRX821817,SRX821816,SRX821807 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  14. File list: Unc.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  15. File list: Oth.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue, White...SRX821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  16. File list: His.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  17. File list: Unc.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_Tissue,_White hg19 Unclassified Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  18. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  19. File list: Oth.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_Tissue,_White hg19 TFs and others Adipocyte Adipose Tissue, White...SRX821817,SRX821821,SRX821815,SRX821811,SRX821810,SRX821809 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  20. File list: His.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  1. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: ALL.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821821,SRX821815,SRX821811,SRX821817,SRX821809,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: His.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_Tissue,_White hg19 Histone Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: ALL.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Adipose_Tissue,_White hg19 All antigens Adipocyte Adipose Tissue, White...X821815,SRX821821,SRX821816,SRX821809,SRX821817,SRX821810 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: Pol.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_Tissue,_White hg19 RNA polymerase Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  6. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture.

    OpenAIRE

    Djian, P.; Roncari, A K; Hollenberg, C H

    1983-01-01

    Using a propagating cell culture system of adipocyte precursors from 70-400-g rats, we explored the possibility that regional variations in properties of adipose tissue may reflect site-specific characteristics intrinsic to the cells, rather than extracellular influences. Initially, studies were made of the nature of the fibroblastlike cells from perirenal adipose tissue stroma. Using colony-forming techniques, it was shown that these cells were adipocyte precursors; each confluent colony tha...

  7. Resistance to the antilipolytic effect of insulin in adipocytes of African-American compared to Caucasian postmenopausal women

    OpenAIRE

    Fried, Susan K.; Tittelbach, Thomas; Blumenthal, Jacob; Sreenivasan, Urmila; Robey, Linda; Yi, Jamie; Khan, Sumbul; Hollender, Courtney; Ryan, Alice S.; Goldberg, Andrew P.

    2010-01-01

    High fatty acid (FA) flux is associated with systemic insulin resistance, and African-American (AA) women tend to be more insulin resistant. We assessed possible depot and race difference in the antilipolytic effect of insulin in adipocytes isolated from abdominal (Abd) and gluteal (Glt) subcutaneous (sc) adipose tissue of overweight, postmenopausal AA and Caucasian (C) women. Percent body fat, fasting insulin, visceral adiposity, and adipocyte size was higher in AA women. Disinhibited lipoly...

  8. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR

  9. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue

    OpenAIRE

    Fairbridge, Nicholas A; Southall, Thomas M.; Craig Ayre, D.; Yumiko Komatsu; Paula I Raquet; Brown, Robert J.; Edward Randell; Kovacs, Christopher S.; Christian, Sherri L.

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vi...

  10. In preeclampsia, maternal third trimester subcutaneous adipocyte lipolysis is more resistant to suppression by insulin than in healthy pregnancy.

    Science.gov (United States)

    Huda, Shahzya S; Forrest, Rachel; Paterson, Nicole; Jordan, Fiona; Sattar, Naveed; Freeman, Dilys J

    2014-05-01

    Obesity increases preeclampsia risk, and maternal dyslipidemia may result from exaggerated adipocyte lipolysis. We compared adipocyte function in preeclampsia with healthy pregnancy to establish whether there is increased lipolysis. Subcutaneous and visceral adipose tissue biopsies were collected at caesarean section from healthy (n=31) and preeclampsia (n=13) mothers. Lipolysis in response to isoproterenol (200 nmol/L) and insulin (10 nmol/L) was assessed. In healthy pregnancy, subcutaneous adipocytes had higher diameter than visceral adipocytes (PADRB3, LPL, and leptin and higher insulin receptor messenger RNA expression than subcutaneous adipose tissue. There was no difference in subcutaneous adipocyte lipolysis rates between preeclampsia and healthy controls, but subcutaneous adipocytes had lower sensitivity to insulin in preeclampsia, independent of cell diameter (P<0.05). In preeclampsia, visceral adipose tissue had higher LPL messenger RNA expression than subcutaneous. In conclusion, in healthy pregnancy, the larger total mass of subcutaneous adipose tissue may release more fatty acids into the circulation than visceral adipose tissue. Reduced insulin suppression of subcutaneous adipocyte lipolysis may increase the burden of plasma fatty acids that the mother has to process in preeclampsia. PMID:24591340

  11. Influencing Factors of Thermogenic Adipose Tissue Activity.

    Science.gov (United States)

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  12. Effects of parabens on adipocyte differentiation.

    Science.gov (United States)

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  13. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation

    DEFF Research Database (Denmark)

    Barbatelli, G.; Murano, I.; Madsen, Lise;

    2010-01-01

    The origin of brown adipocytes arising in white adipose tissue (WAT) after cold acclimatization is unclear. Here, we demonstrate that several UCP1-immunoreactive brown adipocytes occurring in WAT after cold acclimatization have a mixed morphology (paucilocular adipocytes). These cells also had...... enhanced expression of the thermogenic genes and of genes expressed selectively in brown adipose tissue (iBAT) and in both interscapular BAT and WAT. ß3-adrenoceptor suppression blunted their expression only in WAT. Furthermore, cold acclimatization induced an increased WAT expression of the gene coding...... a mixed mitochondrioma with classic "brown" and "white" mitochondria, suggesting intermediate steps in the process of direct transformation of white into brown adipocytes (transdifferentiation). Quantitative electron microscopy disclosed that cold exposure (6°C for 10 days) did not induce an increase...

  14. Dynamics of human adipose lipid turnover in health and metabolic disease

    OpenAIRE

    Arner, Peter; Bernard, Samuel; Salehpour, Mehran; Possnert, Göran; Liebl, Jakob; Steier, Peter; Buchholz, Bruce A.; Eriksson, Mats; Arner, Erik; Hauner, Hans; Skurk, Thomas; Rydén, Mikael; Frayn, Keith N.; Spalding, Kirsty L.

    2011-01-01

    Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, lipid age was determined by measuring nuclear bomb test-derived 14C in adipocyte lipids. We report that during the average ten year life span of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult age...

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  16. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  17. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    Science.gov (United States)

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  18. Adipose tissue: cell heterogeneity and functional diversity.

    Science.gov (United States)

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  19. Stressed Liver and Muscle Call on Adipocytes with FGF21

    Directory of Open Access Journals (Sweden)

    Yongde eLuo

    2013-12-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an emerging regulator of local and systemic metabolic homeostasis. Treatment with pharmacological levels of FGF21 alleviates obesity and associated metabolic diseases including diabetes. However, beyond antiobesogenic effects, the normal roles and underlying mechanisms of FGF21 as an endocrine hormone remain unclear. A recent wave of studies has revealed that FGF21 is a stress-induced endocrine factor in liver, muscle and other tissues that targets adipose tissue and adipocytes through FGFR1-betaKlotho (KLB complex. Adipose tissues and adipocytes within diverse tissues respond with metabolites and adipokine signals that affect functions of body tissues systemically and cells within local microenvironment adjacent to adipocytes. Normally this is to prevent impaired tissue-specific function and damage to diverse tissues secreting FGF21 in response to chronic stress. Therefore, diverse stressed tissues and the adipose tissue and adipocytes constitute a beneficial endocrine and paracrine communication network through FGF21. Here we attempt to unify these developments with beneficial pharmacological effects of FGF21 on obesity in respect to inter-organ stress communication and mechanisms.

  20. Morphological and inflammatory changes in visceral adipose tissue during obesity.

    Science.gov (United States)

    Revelo, Xavier S; Luck, Helen; Winer, Shawn; Winer, Daniel A

    2014-03-01

    Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called "crown-like structure", a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.

  1. Sustainable Three-Dimensional Tissue Model of Human Adipose Tissue

    OpenAIRE

    Bellas, Evangelia; Marra, Kacey G.; Kaplan, David L

    2013-01-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31...

  2. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  3. Effects of Kurozu concentrated liquid on adipocyte size in rats

    Directory of Open Access Journals (Sweden)

    Nakamura Kumi

    2010-11-01

    Full Text Available Abstract Background Kurozu concentrated liquid (KCL is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. Results In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2 and peroxisome proliferator-activated γ (PPARγ in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. Conclusion Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.

  4. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora.

    Science.gov (United States)

    Okabe, Yui; Shimada, Tsutomu; Horikawa, Takumi; Kinoshita, Kaoru; Koyama, Kiyotaka; Ichinose, Koji; Aburada, Masaki; Takahashi, Kunio

    2014-05-15

    We previously demonstrated that ethyl acetate extracts of Kaempferia parviflora Wall. Ex Baker (KPE) improve insulin resistance in TSOD mice and showed that its components induce differentiation and adipogenesis in 3T3-L1 preadipocytes. The present study was undertaken to examine whether KPE and its isolated twelve components suppress further lipid accumulation in 3T3-L1 mature adipocytes. KPE reduced intracellular triglycerides in mature adipocytes, as did two of its components, 3,5,7,3',4'-pentamethoxyflavone and 5,7,4'-trimethoxyflavone. Shrinkage of lipid droplets in mature adipocytes was observed, and mRNA expression levels of adipose tissue triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were up-regulated by these two polymethoxyflavonoids (PMFs). Furthermore, the protein expression level of ATGL and the release level of glycerol into the cell culture medium increased. In contrast, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, troglitazone, did not decrease intracellular triglycerides in mature adipocytes, and the mRNA expression level of PPARγ was not up-regulated in mature adipocytes treated with the two active PMFs. Therefore, suppression of lipid accumulation in mature adipocytes is unlikely to be enhanced by transcriptional activation of PPARγ. These results suggest that KPE and its active components enhance lipolysis in mature adipocytes by activation of ATGL and HSL independent of PPARγ transcription, thus preventing adipocyte hypertrophy. On the other hand, the full hydroxylated flavonoid quercetin did not show the suppressive effects of lipid accumulation in mature adipocyte in the same conditions. Consequently, methoxy groups in the flavones are important for the activity. PMID:24629599

  5. Pathways commonly dysregulated in mouse and human obese adipose tissue: FAT/CD36 modulates differentiation and lipogenesis

    OpenAIRE

    Berger, E.; Héraud, S; Mojallal, A; Lequeux, C; Weiss-Gayet, M; Damour, O.; Géloën, A.

    2015-01-01

    Obesity is linked to adipose tissue hypertrophy (increased adipocyte cell size) and hyperplasia (increased cell number). Comparative analyses of gene datasets allowed us to identify 1426 genes which may represent common adipose phenotype in humans and mice. Among them we identified several adipocyte-specific genes dysregulated in obese adipose tissue, involved in either fatty acid storage (acyl CoA synthase ACSL1, hormone-sensitive lipase LIPE, aquaporin 7 AQP7, perilipin PLIN) or cell adhesi...

  6. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes.

    Science.gov (United States)

    Corvera, Silvia; Gealekman, Olga

    2014-03-01

    The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  7. Relation of adipose tissue to metabolic flexibility

    OpenAIRE

    Sparks, Lauren M.; Ukropcova, Barbara; Smith, Jana; Pasarica, Magdalena; Hymel, David; Xie, Hui; Bray, George A.; Miles, John M.; Smith, Steven R.

    2008-01-01

    Metabolic flexibility is the capacity for skeletal muscle to shift reliance between lipids and glucose during fasting or in response to insulin. We hypothesized that body fat, adipose tissue characteristics, e.g. larger adipocytes, presence of inflammatory gene markers and impaired suppression of non-esterified fatty acids (NEFAs) during insulin infusion might be related to metabolic flexibility.

  8. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    Directory of Open Access Journals (Sweden)

    Craig Porter

    2013-01-01

    Full Text Available The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.

  9. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues.

  10. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    Science.gov (United States)

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells.

  11. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    Science.gov (United States)

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells. PMID:27386153

  12. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    Science.gov (United States)

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  13. Differentiation of preadipocytes and mature adipocytes requires PSMB8.

    Science.gov (United States)

    Arimochi, Hideki; Sasaki, Yuki; Kitamura, Akiko; Yasutomo, Koji

    2016-01-01

    The differentiation of adipocytes is tightly regulated by a variety of intrinsic molecules and also by extrinsic molecules produced by adjacent cells. Dysfunction of adipocyte differentiation causes lipodystrophy, which impairs glucose and lipid homeostasis. Although dysfunction of immunoproteasomes causes partial lipodystrophy, the detailed molecular mechanisms remain to be determined. Here, we demonstrate that Psmb8, a catalytic subunit for immunoproteasomes, directly regulates the differentiation of preadipocytes and additionally the differentiation of preadipocytes to mature adipocytes. Psmb8(-/-) mice exhibited slower weight gain than wild-type mice, and this was accompanied by reduced adipose tissue volume and smaller size of mature adipocytes compared with controls. Blockade of Psmb8 activity in 3T3-L1 cells disturbed the differentiation to mature adipocytes. Psmb8(-/-) mice had fewer preadipocyte precursors, fewer preadipocytes and a reduced ability to differentiate preadipocytes toward mature adipocytes. Our data demonstrate that Psmb8-mediated immunoproteasome activity is a direct regulator of the differentiation of preadipocytes and their ultimate maturation. PMID:27225296

  14. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction.

    Directory of Open Access Journals (Sweden)

    Huipeng Jiao

    Full Text Available Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2 in inflammation during macrophage-adipocyte interaction.White adipose tissues (WAT from mice either on a high-fat diet (HFD or normal chow (NC were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs. MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.

  15. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  16. Mesenchymal Stromal Cells Differentiating to Adipocytes Accumulate Autophagic Vesicles Instead of Functional Lipid Droplets.

    Science.gov (United States)

    Gruia, Alexandra T; Suciu, Maria; Barbu-Tudoran, Lucian; Azghadi, Seyed Mohammad Reza; Cristea, Mirabela I; Nica, Dragos V; Vaduva, Adrian; Muntean, Danina; Mic, Ani Aurora; Mic, Felix A

    2016-04-01

    Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332160

  17. Endocrine and Metabolic Effects of Adipose Tissue in Children and Adolescents

    OpenAIRE

    Kotnik Primož; Fischer Posovszky Pamela; Wabitsch Martin

    2015-01-01

    Adipose tissue is implicated in many endocrine and metabolic processes. Leptin was among the first identified adipose-secreted factors, which act in an auto-, para- and endocrine manner. Since leptin, many other adipose tissue factors were determined, some primarily secreted from the adipocytes, some from other cells of the adipose tissue. So-called adipokines are not only involved in obesity and its complications, as are insulin resistance, type 2 diabetes and other components of the metabol...

  18. Adipocytes contribute to the growth and progression of multiple myeloma: Unraveling obesity related differences in adipocyte signaling.

    Science.gov (United States)

    Bullwinkle, Erica M; Parker, Melissa D; Bonan, Nicole F; Falkenberg, Lauren G; Davison, Steven P; DeCicco-Skinner, Kathleen L

    2016-09-28

    The prevalence of obesity over the last several decades in the United States has tripled among children and doubled among adults. Obesity increases the incidence and progression of multiple myeloma (MM), yet the molecular mechanisms by which adipocytes contribute to cancer development and patient prognosis have yet to be fully elucidated. Here, we obtained human adipose-derived stem cells (ASCs) from twenty-nine normal (BMI = 20-25 kg/m(2)), overweight (25-30 kg/m(2)), obese (30-35 kg/m(2)), or super obese (35-40 kg/m(2)) patients undergoing elective liposuction. Upon differentiation, adipocytes were co-cultured with RPMI-8226 and NCI-H929 MM cell lines. Adipocytes from overweight, obese and super obese patients displayed increased PPAR-gamma, cytochrome C, interleukin-6, and leptin protein levels, and decreased fatty acid synthase protein. 8226 MM cells proliferated faster and displayed increased pSTAT-3/STAT-3 signaling when cultured in adipocyte conditioned media. Further, adipocyte conditioned media from obese and super obese patients significantly increased MM cell adhesion, and conditioned media from overweight, obese and super obese patients enhanced tube formation and expression of matrix metalloproteinase-2. In summary, our data suggest that adipocytes in the MM microenvironment contribute to MM growth and progression and should be further evaluated as a possible therapeutic target. PMID:27317873

  19. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard;

    2012-01-01

    epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...... how binding patterns of PPARγ differ between brown and white adipocytes and among different types of white adipocytes. Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from...

  20. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    Science.gov (United States)

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  1. Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation

    OpenAIRE

    Karbiener, M; Glantschnig, C; Pisani, D. F.; Laurencikiene, J.; Dahlman, I; Herzig, S; Amri, E-Z; Scheideler, M

    2015-01-01

    Background: A growing body of evidence suggests that many downstream pathologies of obesity are amplified or even initiated by molecular changes within the white adipose tissue (WAT). Such changes are the result of an excessive expansion of individual white adipocytes and could potentially be ameliorated via an increase in de novo adipocyte recruitment (adipogenesis). Mesoderm-specific transcript (MEST) is a protein with a putative yet unidentified enzymatic function and has previously been s...

  2. Distinct Mechanisms Regulate ATGL-Mediated Adipocyte Lipolysis by Lipid Droplet Coat Proteins

    OpenAIRE

    Yang, Xingyuan; Heckmann, Bradlee L; Zhang, Xiaodong; Smas, Cynthia M.; Liu, Jun

    2012-01-01

    Adipose triglyceride lipase (ATGL) is the key triacylglycerol hydrolase in adipocytes. The precise mechanisms by which ATGL action is regulated by lipid droplet (LD) coat proteins and responds to hormonal stimulation are incompletely defined. By combining usage of loss- and gain-of-function approaches, we sought to determine the respective roles of perilipin 1 and fat-specific protein 27 (FSP27) in the control of ATGL-mediated lipolysis in adipocytes. Knockdown of endogenous perilipin 1 expre...

  3. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  4. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    International Nuclear Information System (INIS)

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size

  5. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  6. File list: InP.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  7. File list: InP.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue,... White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: NoD.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  9. File list: NoD.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue..., White http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  10. File list: NoD.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: NoD.Adp.50.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose_stromal_cell.bed ...

  12. File list: NoD.Adp.05.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_stromal_cell.bed ...

  13. File list: NoD.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  14. File list: InP.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: InP.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  16. File list: NoD.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: InP.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_stromal_cell hg19 Input control Adipocyte Adipose stromal ...cell SRX019491,SRX469459,SRX469457 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  18. File list: NoD.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: InP.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127367,SRX127370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: NoD.Adp.10.AllAg.Adipose_stromal_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_stromal_cell hg19 No description Adipocyte Adipose stromal... cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_stromal_cell.bed ...

  1. File list: InP.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  2. File list: InP.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose_Tissue,_White hg19 Input control Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  3. File list: NoD.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  4. File list: NoD.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_Tissue,_White hg19 No description Adipocyte Adipose Tissue, White... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  5. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  6. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association.

    Science.gov (United States)

    Bays, Harold E; Toth, Peter P; Kris-Etherton, Penny M; Abate, Nicola; Aronne, Louis J; Brown, W Virgil; Gonzalez-Campoy, J Michael; Jones, Steven R; Kumar, Rekha; La Forge, Ralph; Samuel, Varman T

    2013-01-01

    The term "fat" may refer to lipids as well as the cells and tissue that store lipid (ie, adipocytes and adipose tissue). "Lipid" is derived from "lipos," which refers to animal fat or vegetable oil. Adiposity refers to body fat and is derived from "adipo," referring to fat. Adipocytes and adipose tissue store the greatest amount of body lipids, including triglycerides and free cholesterol. Adipocytes and adipose tissue are active from an endocrine and immune standpoint. Adipocyte hypertrophy and excessive adipose tissue accumulation can promote pathogenic adipocyte and adipose tissue effects (adiposopathy), resulting in abnormal levels of circulating lipids, with dyslipidemia being a major atherosclerotic coronary heart disease risk factor. It is therefore incumbent upon lipidologists to be among the most knowledgeable in the understanding of the relationship between excessive body fat and dyslipidemia. On September 16, 2012, the National Lipid Association held a Consensus Conference with the goal of better defining the effect of adiposity on lipoproteins, how the pathos of excessive body fat (adiposopathy) contributes to dyslipidemia, and how therapies such as appropriate nutrition, increased physical activity, weight-management drugs, and bariatric surgery might be expected to impact dyslipidemia. It is hoped that the information derived from these proceedings will promote a greater appreciation among clinicians of the impact of excess adiposity and its treatment on dyslipidemia and prompt more research on the effects of interventions for improving dyslipidemia and reducing cardiovascular disease risk in overweight and obese patients.

  7. A novel role for adipose ephrin-B1 in inflammatory response.

    Directory of Open Access Journals (Sweden)

    Takuya Mori

    Full Text Available AIMS: Ephrin-B1 (EfnB1 was selected among genes of unknown function in adipocytes or adipose tissue and subjected to thorough analysis to understand its role in the development of obesity. METHODS AND RESULTS: EfnB1 mRNA and protein levels were significantly decreased in adipose tissues of obese mice and such reduction was mainly observed in mature adipocytes. Exposure of 3T3-L1 adipocytes to tumor necrosis factor-α (TNF-α and their culture with RAW264.7 cells reduced EFNB1 levels. Knockdown of adipose EFNB1 increased monocyte chemoattractant protein-1 (Mcp-1 mRNA level and augmented the TNF-α-mediated THP-1 monocyte adhesion to adipocytes. Adenovirus-mediated adipose EFNB1-overexpression significantly reduced the increase in Mcp-1 mRNA level induced by coculture of 3T3-L1 adipocytes with RAW264.7 cells. Monocyte adherent assay showed that adipose EfnB1-overexpression significantly decreased the increase of monocyte adhesion by coculture with RAW264.7 cells. TNF-α-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2 was reduced by EFNB1-overexpression. CONCLUSIONS: EFNB1 contributes to the suppression of adipose inflammatory response. In obesity, reduction of adipose EFNB1 may accelerate the vicious cycle involved in adipose tissue inflammation.

  8. Differential Chemokine Signature between Human Preadipocytes and Adipocytes

    Science.gov (United States)

    Ignacio, Rosa Mistica C.; Gibbs, Carla R.; Lee, Eun-Sook

    2016-01-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  9. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ângela Moreira

    Full Text Available Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1 and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01. Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01. Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05. Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.

  10. Differential Chemokine Signature between Human Preadipocytes and Adipocytes.

    Science.gov (United States)

    Ignacio, Rosa Mistica C; Gibbs, Carla R; Lee, Eun-Sook; Son, Deok-Soo

    2016-06-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  11. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  12. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  13. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    Science.gov (United States)

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  14. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus Koefoed; Kristiansen, Karsten

    2005-01-01

    A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain...... adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular...

  15. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  16. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion

  17. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    International Nuclear Information System (INIS)

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  18. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Cormac T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland); Ryan, Silke, E-mail: silke.ryan@ucd.ie [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland)

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  19. Prolonged efficiency of siRNA-mediated gene silencing in primary cultures of human preadipocytes and adipocytes

    OpenAIRE

    Lee, Mi-Jeong; Pickering, R. Taylor; Puri, Vishwajeet

    2013-01-01

    Objective Primary human preadipocytes and differentiated adipocytes in culture are valuable cell culture systems to study adipogenesis and adipose function in relation to human adipose biology. To use these systems for mechanistic studies, we studied siRNA-mediated knockdown of genes for its effectiveness. Design and Methods Methods were developed to effectively deliver siRNA to for gene silencing in primary preadipocytes isolated from human subcutaneous adipose tissue and newly-differentiate...

  20. White Adipose Tissue Development in Zebrafish Is Regulated by Both Developmental Time and Fish Size

    OpenAIRE

    Imrie, Dru; Sadler, Kirsten C.

    2010-01-01

    Adipocytes are heterogeneous. Whether their differences are attributed to anatomical location or to different developmental origins is unknown. We investigated whether development of different white adipose tissue (WAT) depots in zebrafish occurs simultaneously or whether adipogenesis is influenced by the metabolic demands of growing fish. Like mammals, zebrafish adipocyte morphology is distinctive and adipocytes express cell-specific markers. All adults contain WAT in pancreatic, subcutaneou...

  1. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target

    OpenAIRE

    Aghamohammadzadeh, Reza; Withers, Sarah; Lynch, Fiona; Greenstein, Adam; Malik, R.; Heagerty, Anthony

    2012-01-01

    Fat cells or adipocytes are distributed ubiquitously throughout the body and are often regarded purely as energy stores. However, recently it has become clear that these adipocytes are engine rooms producing large numbers of metabolically active substances with both endocrine and paracrine actions. White adipocytes surround almost every blood vessel in the human body and are collectively termed perivascular adipose tissue (PVAT). It is now well recognized that PVAT not only provides mechanica...

  2. Altered adipocyte structure and function in nutritionally programmed microswine offspring

    OpenAIRE

    DuPriest, E. A.; Kupfer, P.; Lin, B; Sekiguchi, K.; Morgan, T. K.; Saunders, K. E.; Chatkupt, T. T.; Denisenko, O. N.; Purnell, J. Q.; Bagby, S. P.

    2012-01-01

    Adipose tissue (AT) dysfunction links obesity of any cause with cardiometabolic disease, but whether early-life nutritional deficiency can program adipocyte dysfunction independently of obesity is untested. In 3–5-month-old juvenile microswine offspring exposed to isocaloric perinatal maternal protein restriction (MPR) and exhibiting accelerated prepubertal fat accrual without obesity, we assessed markers of acquired obesity: adiponectin and tumor necrosis factor (TNF)-α messenger ribonucleic...

  3. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    OpenAIRE

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiati...

  4. CD36 is important for adipocyte recruitment and affects lipolysis

    OpenAIRE

    Vroegrijk, I.O.; Klinken, J.B. van; Diepen, J.A. van; Berg, S.A. van den; Febbraio, M.; Steinbusch, L.K.; Glatz, J.F.; Havekes, L M; Voshol, P.J.; Rensen, P. C.; Dijk, K.W. van; Harmelen, V. van

    2013-01-01

    Objective: The scavenger receptor CD36 facilitates the cellular uptake of long-chain fatty acids. As CD36-deficiency attenuates the development of high fat diet (HFD)-induced obesity, the role of CD36-deficiency in preadipocyte recruitment and adipocyte function was set out to characterize. Design and methods: Fat cell size and number were determined in gonadal, visceral, and subcutaneous adipose tissue of CD36(-/-) and WT mice after 6 weeks on HFD. Basal lipolysis and insulin-inhibited lipol...

  5. Novel aspects of metabolic regulation and inflammation in human adipocytes

    OpenAIRE

    Pettersson, Annie

    2015-01-01

    The significance of adipose tissue and obesity has been recognized in numerous pathologies. However, the mechanisms behind this connection are not yet completely understood. The aim of this thesis was to investigate the roles of Liver X Receptor (LXR), V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) and Salt-inducible kinases (SIKs) in primary human adipocytes with focus on metabolic regulation and inflammation. Our overall hypothesis was that these factors may influence metab...

  6. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  7. How Do Pain Relievers Work? (For Kids)

    Science.gov (United States)

    ... Dictionary of Medical Words En Español What Other Kids Are Reading Movie: Digestive System Winter Sports: Sledding, ... Booger? How Do Pain Relievers Work? KidsHealth > For Kids > How Do Pain Relievers Work? Print A A ...

  8. Characteristics of metabolic changes in adipocytes of growing rats.

    Science.gov (United States)

    Gwóźdź, Kinga; Szkudelski, Tomasz; Szkudelska, Katarzyna

    2016-06-01

    Adipocytes, cells of white fat tissue, store energy in the form of lipids and have also endocrine functions. Disturbances in adipocyte metabolism lead to decreased or excessive fat tissue accumulation and are associated with numerous diseases. Pathologic alterations in adipose tissue are known to develop with age, however, changes in young, growing subjects are poorly elucidated. In the present study, glucose transport and metabolism, hyperpolarization of the inner mitochondrial membrane and the lipolytic activity were compared in the epididymal adipocytes of 8-week-old and 16-week-old rats. It was demonstrated that glucose conversion to lipids, glucose transport and oxidation was decreased in the adipocytes of the older animals. These effects were accompanied by increase in lactate release and by decrease in hyperpolarization of the mitochondrial membrane. Lipolytic response to epinephrine was increased (at lower concentrations of the hormone) or reduced (at higher concentration) in the adipocytes of the older rats. However, induction of lipolysis by the direct activation of protein kinase A induced similar response. It was also demonstrated that inhibition of phosphodiesterase 3B or adenosine A1 receptor blocking caused lower lipolysis in the cells of the older rats. Moreover, antilipolytic action of insulin was impaired in the adipocytes of these rats, probably due to changes in the initial steps of the insulin signaling pathway. However, the use of the pharmacologic inhibitor of protein kinase A instead of insulin resulted in similar antilipolysis in both groups of cells. These results show that, in spite of relatively small age difference, substantial changes in adipose tissue metabolism develop in these animals. Decreased response to insulin action seems to be particularly relevant finding. PMID:27060433

  9. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    Science.gov (United States)

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  10. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study

    Directory of Open Access Journals (Sweden)

    Marta D. Van Loan

    2011-01-01

    Full Text Available Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD or ≤4 servings dairy/d (adequate dairy, AD. All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT, subcutaneous adipose tissue (SAT macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P=0.02 in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered.

  11. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes

    DEFF Research Database (Denmark)

    Petrovic, Natasa; Walden, Tomas B; Shabalina, Irina G;

    2009-01-01

    The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain...... physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis...... associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells...

  12. Let-7i-5p represses brite adipocyte function in mice and humans.

    Science.gov (United States)

    Giroud, Maude; Karbiener, Michael; Pisani, Didier F; Ghandour, Rayane A; Beranger, Guillaume E; Niemi, Tarja; Taittonen, Markku; Nuutila, Pirjo; Virtanen, Kirsi A; Langin, Dominique; Scheideler, Marcel; Amri, Ez-Zoubir

    2016-01-01

    In response to cold or β3-adrenoreceptor stimulation brown adipose tissue (BAT) promotes non-shivering thermogenesis, leading to energy dissipation. BAT has long been thought to be absent or scarce in adult humans. The recent discovery of thermogenic brite/beige adipocytes has opened the way to development of novel innovative strategies to combat overweight/obesity and associated diseases. Thus it is of great interest to identify regulatory factors that govern the brite adipogenic program. Here, we carried out global microRNA (miRNA) expression profiling on human adipocytes to identify miRNAs that are regulated upon the conversion from white to brite adipocytes. Among the miRNAs that were differentially expressed, we found that Let-7i-5p was down regulated in brite adipocytes. A detailed analysis of the Let-7i-5p levels showed an inverse expression of UCP1 in murine and human brite adipocytes both in vivo and in vitro. Functional studies with Let-7i-5p mimic in human brite adipocytes in vitro revealed a decrease in the expression of UCP1 and in the oxygen consumption rate. Moreover, the Let-7i-5p mimic when injected into murine sub-cutaneous white adipose tissue inhibited partially β3-adrenergic activation of the browning process. These results suggest that the miRNAs Let-7i-5p participates in the recruitment and the function of brite adipocytes. PMID:27345691

  13. Adipocyte lipases and defect of lipolysis in human obesity.

    Science.gov (United States)

    Langin, Dominique; Dicker, Andrea; Tavernier, Geneviève; Hoffstedt, Johan; Mairal, Aline; Rydén, Mikael; Arner, Erik; Sicard, Audrey; Jenkins, Christopher M; Viguerie, Nathalie; van Harmelen, Vanessa; Gross, Richard W; Holm, Cecilia; Arner, Peter

    2005-11-01

    The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice. In human adipocytes, catecholamine- and natriuretic peptide-induced lipolysis were completely blunted by the HSL inhibitor. When fat cells were not stimulated, glycerol but not fatty acid release was inhibited. HSL and ATGL mRNA levels increased concomitantly during adipocyte differentiation. Abundance of the two transcripts in human adipose tissue was highly correlated in habitual dietary conditions and during a hypocaloric diet, suggesting common regulatory mechanisms for the two genes. Comparison of obese and nonobese subjects showed that obesity was associated with a decrease in catecholamine-induced lipolysis and HSL expression in mature fat cells and in differentiated preadipocytes. In conclusion, HSL is the major lipase for catecholamine- and natriuretic peptide-stimulated lipolysis, whereas ATGL mediates the hydrolysis of triglycerides during basal lipolysis. Decreased catecholamine-induced lipolysis and low HSL expression constitute a possibly primary defect in obesity. PMID:16249444

  14. Laser-induced lipolysis on adipose cells

    Science.gov (United States)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  15. The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans

    OpenAIRE

    Fang, Lingling; Guo, Fangjian; ZHOU, LIHUA; Stahl, Richard; Grams, Jayleen

    2015-01-01

    Aims/hypothesis: Regional deposition of adipose tissue and adipocyte morphology may contribute to increased risk for insulin resistance. The aim of this study was to compare adipocyte cell size and size distribution from multiple fat depots and to determine the association with type 2 diabetes mellitus, anthropomorphic data, and subjects' metabolic profile.

  16. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels

    DEFF Research Database (Denmark)

    Lindgren, Eva M; Nielsen, Ronni; Petrovic, Natasa;

    2004-01-01

    PPAR (peroxisome-proliferator-activated receptor) gamma is expressed in brown and white adipose tissues and is involved in the control of differentiation and proliferation. Noradrenaline stimulates brown pre-adipocyte proliferation and brown adipocyte differentiation. The aim of the present study...

  17. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Science.gov (United States)

    Wojciechowicz, Kamila; Gledhill, Karl; Ambler, Carrie A; Manning, Craig B; Jahoda, Colin A B

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  18. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    Energy Technology Data Exchange (ETDEWEB)

    Walden, Tomas B.; Petrovic, Natasa [The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm (Sweden); Nedergaard, Jan, E-mail: jan@metabol.su.se [The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  19. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow

    Directory of Open Access Journals (Sweden)

    Huang Hai-Yan

    2010-05-01

    Full Text Available Abstract Background Adipocyte hyperplasia is associated with obesity and arises due to adipogenic differentiation of resident multipotent stem cells in the vascular stroma of adipose tissue and remote stem cells of other organs. The mechanistic characterization of adipocyte differentiation has been researched in murine pre-adipocyte models (i.e. 3T3-L1 and 3T3-F442A, revealing that growth-arrest pre-adipocytes undergo mitotic clonal expansion and that regulation of the differentiation process relies on the sequential expression of three key transcription factors (C/EBPβ, C/EBPα and PPARγ. However, the mechanisms underlying adipocyte differentiation from multipotent stem cells, particularly human mesenchymal stem cells (hBMSCs, remain poorly understood. This study investigated cell cycle regulation and the roles of C/EBPβ, C/EBPα and PPARγ during adipocyte differentiation from hBMSCs. Results Utilising a BrdU incorporation assay and manual cell counting it was demonstrated that induction of adipocyte differentiation in culture resulted in 3T3-L1 pre-adipocytes but not hBMSCs undergoing mitotic clonal expansion. Knock-down and over-expression assays revealed that C/EBPβ, C/EBPα and PPARγ were required for adipocyte differentiation from hBMSCs. C/EBPβ and C/EBPα individually induced adipocyte differentiation in the presence of inducers; PPARγ alone initiated adipocyte differentiation but the cells failed to differentiate fully. Therefore, the roles of these transcription factors during human adipocyte differentiation are different from their respective roles in mouse. Conclusions The characteristics of hBMSCs during adipogenic differentiation are different from those of murine cells. These findings could be important in elucidating the mechanisms underlying human obesity further.

  20. Rapid Cellular Turnover in Adipose Tissue

    OpenAIRE

    Alessandra Rigamonti; Kristen Brennand; Frank Lau; Cowan, Chad A.

    2011-01-01

    It was recently shown that cellular turnover occurs within the human adipocyte population. Through three independent experimental approaches — dilution of an inducible histone 2B-green fluorescent protein (H2BGFP), labeling with the cell cycle marker Ki67 and incorporation of BrdU — we characterized the degree of cellular turnover in murine adipose tissue. We observed rapid turnover of the adipocyte population, finding that 4.8% of preadipocytes are replicating at any time and that between 1–...

  1. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Liu, Pin; Ji, Hong; Li, Chao; Tian, Jingjing; Wang, Yifei; Yu, Ping

    2015-08-01

    To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.

  2. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes.

    Science.gov (United States)

    Esser, V; Brown, N F; Cowan, A T; Foster, D W; McGarry, J D

    1996-03-22

    We set out to determine if the cDNA encoding a carnitine palmitoyltransferase (CPT)-like protein recently isolated from rat brown adipose tissue (BAT) by Yamazaki et al. (Yamazaki, N., Shinohara, Y., Shima, A., and Terada, H. (1995) FEBS Lett. 363, 41-45) actually encodes the muscle isoform of mitochondrial CPT I (M-CPT I). To this end, a cDNA essentially identical to the original BAT clone was isolated from a rat heart library. When expressed in COS cells, the novel cDNA and our previously described cDNA for rat liver CPT I (L-CPT I) gave rise to products with the same kinetic characteristics (sensitivity to malonyl-CoA and Km for carnitine) as CPT I in skeletal muscle and liver mitochondria, respectively. When labeled with [3H]etomoxir, recombinant L-CPT I and putative M-CPT I, although having approximately the same predicated masses (88.2 kDa), migrated differently on SDS gels, as did CPT I from liver and muscle mitochondria. The same was true for the products of in vitro transcription and translation of the L-CPT I and putative M-CPT I cDNAs. We conclude that the BAT cDNA does in fact encode M-CPT I. Northern blots using L- and M-CPT I cDNA probes revealed the presence of L-CPT I mRNA in liver and heart and its absence from skeletal muscle and BAT. M-CPT I mRNA, which was absent from liver, was readily detected in skeletal muscle and was particularly strong in heart and BAT. Whereas the signal for L-CPT I was more abundant than that for M-CPT I in RNA isolated from whole epididymal fat pad, this was reversed in purified adipocytes from this source. These findings, coupled with the kinetic properties and migration profiles on SDS gels of CPT I in brown and white adipocytes, indicate that the muscle form of the enzyme is the dominant, if not exclusive, species in both cell types.

  3. Adipose Tissue Immunity and Cancer

    Directory of Open Access Journals (Sweden)

    Victoria eCatalan

    2013-10-01

    Full Text Available Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete proinflammatory adipokines and cytokines providing a microenvironment favourable for tumour growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching towards M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumour growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumour cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumour microenvironment with more sophisticated and selective anti-tumoural drugs.

  4. Polychlorinated Biphenyl-77 Induces Adipocyte Differentiation and Proinflammatory Adipokines and Promotes Obesity and Atherosclerosis

    OpenAIRE

    Arsenescu, Violeta; Arsenescu, Razvan I; King, Victoria; Swanson, Hollie; Cassis, Lisa A.

    2008-01-01

    Background Obesity, an inflammatory condition linked to cardiovascular disease, is associated with expansion of adipose tissue. Highly prevalent coplanar polychlorinated biphenyls (PCBs) such as 3,3′,4,4′-tetrachlorobiphenyl (PCB-77) accumulate in adipose tissue because of their lipophilicity and increase with obesity. However, the effects of PCBs on adipocytes, obesity, and obesity-associated cardiovascular disease are unknown. Objectives In this study we examined in vitro and in vivo effect...

  5. Angiotensinogen gene silencing reduces markers of inflammation and lipid accumulation in adipocytes

    OpenAIRE

    NaimaMoustaid-Moussa; WentingXin; NishanKalupahana

    2013-01-01

    Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system (RAS) to the pathogenesis of obesity, inflammation and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt) plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipo...

  6. Cellular origins of cold-induced brown adipocytes in adult mice

    OpenAIRE

    Lee, Yun-Hee; Petkova, Anelia P.; Konkar, Anish A.; Granneman, James G.

    2014-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not i...

  7. Metabolic fate of fructose in human adipocytes: a targeted 13C tracer fate association study

    OpenAIRE

    Varma, Vijayalakshmi; Boros, László G; Nolen, Greg T.; Chang, Ching-Wei; Wabitsch, Martin; Beger, Richard D.; Kaput, Jim

    2014-01-01

    The development of obesity is becoming an international problem and the role of fructose is unclear. Studies using liver tissue and hepatocytes have contributed to the understanding of fructose metabolism. Excess fructose consumption also affects extra hepatic tissues including adipose tissue. The effects of fructose on human adipocytes are not yet fully characterized, although in vivo studies have noted increased adiposity and weight gain in response to fructose sweetened-beverages. In order...

  8. Derivation of Adipocytes from Human Endometrial Stem Cells (EnSCs)

    OpenAIRE

    Ai, Jafar; Shahverdi, Ahmad Reza; Barough, Somayeh Ebrahimi; Kouchesfehani, Homa Mohseni; Heidari, Saeed; Roozafzoon, Reza; Verdi, Javad; KHOSHZABAN, Ahad

    2012-01-01

    Background Due to increasing clinical demand for adipose tissue, a suitable cell for reconstructive adipose tissue constructs is needed. In this study, we investigated the ability of Human Endometrial-derived stem cells (EnSCs) as a new source of mesenchymal stem cells to differentiate into adipocytes. EnSCs are the abundant and easy available source with no immunological response, for cell replacement therapy. Methods Single-cell suspensions of EnSCs were obtained from endometrial tissues fr...

  9. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  10. Insulin: pancreatic secretion and adipocyte regulation.

    Science.gov (United States)

    Baumgard, L H; Hausman, G J; Sanz Fernandez, M V

    2016-01-01

    Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.

  11. Evidence for two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Dahlqvist Leinhard, Olof; Heglind, Mikael; Elander, Louise; Slawik, Marc; Mussack, Thomas; Nilsson, Daniel; Romu, Thobias; Nuutila, Pirjo; Virtanen, Kirsi A; Beuschlein, Felix; Persson, Anders; Borga, Magnus; Enerbäck, Sven

    2013-05-01

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  12. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Fabiana Ariemma

    Full Text Available Environmental endocrine disruptors (EDCs, including bisphenol-A (BPA, have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01. In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ, Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2 and CCAAT/enhancer binding protein (C/EBPα was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05 and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001. Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6 and interferon-γ (IFNγ were significantly increased (p<0.05. In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.

  13. Engineering of vascularized adipose constructs.

    Science.gov (United States)

    Wiggenhauser, Paul S; Müller, Daniel F; Melchels, Ferry P W; Egaña, José T; Storck, Katharina; Mayer, Helena; Leuthner, Peter; Skodacek, Daniel; Hopfner, Ursula; Machens, Hans G; Staudenmaier, Rainer; Schantz, Jan T

    2012-03-01

    Adipose tissue engineering offers a promising alternative to the current surgical techniques for the treatment of soft tissue defects. It is a challenge to find the appropriate scaffold that not only represents a suitable environment for cells but also allows fabrication of customized tissue constructs, particularly in breast surgery. We investigated two different scaffolds for their potential use in adipose tissue regeneration. Sponge-like polyurethane scaffolds were prepared by mold casting with methylal as foaming agent, whereas polycaprolactone scaffolds with highly regular stacked-fiber architecture were fabricated with fused deposition modeling. Both scaffold types were seeded with human adipose tissue-derived precursor cells, cultured and implanted in nude mice using a femoral arteriovenous flow-through vessel loop for angiogenesis. In vitro, cells attached to both scaffolds and differentiated into adipocytes. In vivo, angiogenesis and adipose tissue formation were observed throughout both constructs after 2 and 4 weeks, with angiogenesis being comparable in seeded and unseeded constructs. Fibrous tissue formation and adipogenesis were more pronounced on polyurethane foam scaffolds than on polycaprolactone prototyped scaffolds. In conclusion, both scaffold designs can be effectively used for adipose tissue engineering. PMID:21850493

  14. The action of D-dopachrome tautomerase as an adipokine in adipocyte lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Takeo Iwata

    Full Text Available Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL and acetyl-CoA carboxylase (ACC, in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT, suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA, which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through

  15. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Science.gov (United States)

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  16. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Directory of Open Access Journals (Sweden)

    Yine Qu

    2016-04-01

    Full Text Available The functions of interleukin-17A (IL-17A in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice or a high-fat diet (n = 6, obese mice for 30 weeks. Subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  17. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Science.gov (United States)

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  18. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    Science.gov (United States)

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  19. Adipose-Specific Disruption of Signal Transducer and Activator of Transcription 3 Increases Body Weight and Adiposity

    OpenAIRE

    Cernkovich, Erin R.; Deng, Jianbei; Bond, Michael C.; Combs, Terry P.; Harp, Joyce B.

    2007-01-01

    To determine the role of STAT3 in adipose tissue, we used Cre-loxP DNA recombination to create mice with an adipocyte-specific disruption of the STAT3 gene (ASKO mice). aP2-Cre-driven disappearance of STAT3 expression occurred on d 6 of adipogenesis, a time point when preadipocytes have already undergone conversion to adipocytes. Thus, this knockout model examined the role of STAT3 in mature but not differentiating adipocytes. Beginning at 9 wk of age, ASKO mice weighed more than their litter...

  20. HIV-associated adipose redistribution syndrome (HARS: etiology and pathophysiological mechanisms

    Directory of Open Access Journals (Sweden)

    Sekhar Rajagopal

    2007-06-01

    Full Text Available Abstract Human immunodeficiency virus (HIV-associated adipose redistribution syndrome (HARS is a fat accumulation disorder characterized by increases in visceral adipose tissue. Patients with HARS may also present with excess truncal fat and accumulation of dorsocervical fat ("buffalo hump". The pathophysiology of HARS appears multifactorial and is not fully understood at present. Key pathophysiological influences include adipocyte dysfunction and an excessive free fatty acid release by adipocyte lipolysis. The contributory roles of free fatty acids, cytokines, hormones including cortisol, insulin and the growth hormone-adipocyte axis are significant. Other potential humoral, paracrine, endocrine, and neural influences are also discussed.

  1. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    OpenAIRE

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  2. Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals.

    Science.gov (United States)

    Zhou, Hongyi; Lei, Xinnuo; Benson, Tyler; Mintz, James; Xu, Xiaojing; Harris, Ruth B; Weintraub, Neal L; Wang, Xiaoling; Chen, Weiqin

    2015-10-01

    Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance. PMID:26269358

  3. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes.

    Science.gov (United States)

    Sun, Wuping; Uchida, Kunitoshi; Takahashi, Nobuyuki; Iwata, Yuko; Wakabayashi, Shigeo; Goto, Tsuyoshi; Kawada, Teruo; Tominaga, Makoto

    2016-09-01

    Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca(2+)-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway. PMID:27318696

  4. The Fractionation of Adipose Tissue (FAT) procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A; Stevens, Hieronymus P; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt

  5. Microparticles release by adipocytes act as "find-me" signals to promote macrophage migration.

    Directory of Open Access Journals (Sweden)

    Akiko Eguchi

    Full Text Available Macrophage infiltration of adipose tissue during weight gain is a central event leading to the metabolic complications of obesity. However, what are the mechanisms attracting professional phagocytes to obese adipose tissue remains poorly understood. Here, we demonstrate that adipocyte-derived microparticles (MPs are critical "find-me" signals for recruitment of monocytes and macrophages. Supernatants from stressed adipocytes stimulated the attraction of monocyte cells and primary macrophages. The activation of caspase 3 was required for release of these signals. Adipocytes exposed to saturated fatty acids showed marked release of MPs into the supernatant while common genetic mouse models of obesity demonstrate high levels of circulating adipocyte-derived MPs. The release of MPs was highly regulated and dependent on caspase 3 and Rho-associated kinase. Further analysis identified these MPs as a central chemoattractant in vitro and in vivo. In addition, intravenously transplanting circulating MPs from the ob/ob mice lead to activation of monocytes in circulation and adipose tissue of the wild type mice. These data identify adipocyte-derived MPs as novel "find me" signals that contributes to macrophage infiltration associated with obesity.

  6. Effect of Adipocyte Secretome in Melanoma Progression and Vasculogenic Mimicry.

    Science.gov (United States)

    Coelho, Pedro; Almeida, Joana; Prudêncio, Cristina; Fernandes, Rúben; Soares, Raquel

    2016-07-01

    Obesity, favored by the modern lifestyle, acquired epidemic proportions nowadays. Obesity has been associated with various major causes of death and morbidity including malignant neoplasms. This increased prevalence has been accompanied by a worldwide increase in cutaneous melanoma incidence rates during the last decades. Obesity involvement in melanoma aetiology has been recognized, but the implicated mechanisms remain unclear. In the present study, we address this relationship and investigate the influence of adipocytes secretome on B16-F10 and MeWo melanoma cell lines. Using the 3T3-L1 adipocyte cell line, as well as ex vivo subcutaneous (SAT) and visceral (VAT) adipose tissue conditioned medium, we were able to show that adipocyte-released factors play a dual role in increasing melanoma cell overall survival, both by enhancing proliferation and decreasing apoptosis. B16-F10 cell migration and cell-cell and cell-matrix adhesion capacity were predominantly enhanced in the presence of SAT and VAT released factors. Melanocytes morphology and melanin content were also altered by exposure to adipocyte conditioned medium disclosing a more dedifferentiated phenotype of melanocytes. In addition, exposure to adipocyte-secreted molecules induced melanocytes to rearrange, on 3D cultures, into vessel-like structures, and generate characteristic vasculogenic mimicry patterns. These findings are corroborated by the released factors profile of 3T3-L1, SAT, and VAT assessed by microarrays, and led us to highlight the mechanisms by which adipose secretome from sub-cutaneous or visceral depots promote melanoma progression. J. Cell. Biochem. 117: 1697-1706, 2016. © 2015 Wiley Periodicals, Inc. PMID:26666522

  7. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  8. White adipose tissue resilience to insulin deprivation and replacement

    OpenAIRE

    Lilas Hadji; Emmanuelle Berger; Hédi Soula; Hubert Vidal; Alain Géloën

    2014-01-01

    Introduction: Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods: Using streptozotocin (STZ)-induced diabetes, we induced rapi...

  9. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes

    DEFF Research Database (Denmark)

    Obsen, Thomas; Faergeman, Nils J; Chung, Soonkyu;

    2012-01-01

    Conjugated linoleic acid (CLA) reduces adiposity in vivo. However, mechanisms mediating these changes are unclear. Therefore, we treated cultures of human adipocytes with trans-10, cis-12 (10,12) CLA, cis-9, trans-11 (9,11) CLA or other trans fatty acids (FA), and measured indices of lipid...

  10. beta-adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus)

    NARCIS (Netherlands)

    Vianen, GJ; Obels, PP; Van Den Thillart, GEEJM; Zaagsma, J

    2002-01-01

    The regulation of triglyceride mobilization by catecholamines was investigated in the teleost fish Oreochromis mossambicus (tilapia) in vivo and in vitro. In vitro experiments were carried out with adipocytes that were isolated for the first time from fish adipose tissue. For the in vivo experiments

  11. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer;

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...

  12. Mitochondrial (dys)function in adipocyte (de)-differentiation and systemic metabolic alterations

    NARCIS (Netherlands)

    Pauw, de A.; Tejerina, S.; Raes, M.; Keijer, J.; Arnould, T.

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmenta

  13. The adipocyte clock controls brown adipogenesis through the TGF-Beta and BMP signaling pathways

    Science.gov (United States)

    The molecular clock is intimately linked to metabolic regulation, and brown adipose tissue plays a key role in energy homeostasis. However, whether the cell-intrinsic clock machinery participates in brown adipocyte development is unknown. Here, we show that Bmal1 (also known as ARNTL), the essential...

  14. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity.

    Science.gov (United States)

    Peinado, Juan R; Pardo, María; de la Rosa, Olga; Malagón, Maria M

    2012-02-01

    The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.

  15. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis

    OpenAIRE

    Birsoy, Kıvanç; Berry, Ryan; Wang, Tim; Ceyhan, Ozge; Tavazoie, Saeed; Friedman, Jeffrey M.; Rodeheffer, Matthew S.

    2011-01-01

    Obesity is characterized by an expansion of white adipose tissue mass that results from an increase in the size and the number of adipocytes. However, the mechanisms responsible for the formation of adipocytes during development and the molecular mechanisms regulating their increase and maintenance in adulthood are poorly understood. Here, we report the use of leptin-luciferase BAC transgenic mice to track white adipose tissue (WAT) development and guide the isolation and molecular characteri...

  16. PPARs and adipocyte function

    OpenAIRE

    Christodoulides, Constantinos; Vidal-Puig, Antonio

    2010-01-01

    Abstract For long viewed as passive lipid storage depots, adipocytes are now recognised as key players in the pathogenesis of insulin resistance and metabolic disease. In parallel, the last two decades of research have seen the emergence of transcription factors of the peroxisome proliferator-activated receptor (PPAR) family as central regulators of lipid and glucose homeostasis and molecular targets for drugs to treat hyper-lipidaemia and type 2 diabetes mellitus. In this review w...

  17. Biophysical Assessment of Human Aquaporin-7 as a Water and Glycerol Channel in 3T3-L1 Adipocytes

    OpenAIRE

    Ana Madeira; Marta Camps; Antonio Zorzano; Moura, Teresa F.; Graça Soveral

    2013-01-01

    The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both...

  18. In preeclampsia, maternal third trimester subcutaneous adipocyte lipolysis is more resistant to suppression by insulin than in healthy pregnancy

    OpenAIRE

    Huda, Shahzya S; Forrest, Rachel; Paterson, Nicole; Jordan, Fiona; Sattar, Naveed; Freeman, Dilys J.

    2014-01-01

    Obesity increases preeclampsia risk, and maternal dyslipidemia may result from exaggerated adipocyte lipolysis. We compared adipocyte function in preeclampsia with healthy pregnancy to establish whether there is increased lipolysis. Subcutaneous and visceral adipose tissue biopsies were collected at caesarean section from healthy (n=31) and preeclampsia (n=13) mothers. Lipolysis in response to isoproterenol (200 nmol/L) and insulin (10 nmol/L) was assessed. In healthy pregnancy, subcutaneous ...

  19. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.

    Science.gov (United States)

    Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth

    2015-11-01

    Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (Padipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors.

  20. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    OpenAIRE

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a lo...

  1. Identification and Functional Characterization of Adipose-specific Phospholipase A2 (AdPLA)*S⃞

    OpenAIRE

    Duncan, Robin E.; Sarkadi-Nagy, Eszter; Jaworski, Kathy; Ahmadian, Maryam; Sul, Hei Sook

    2008-01-01

    Phospholipases A2 (PLA2s) catalyze hydrolysis of fatty acids from the sn-2 position of phospholipids. Here we report the identification and characterization of a membrane-associated intracellular calcium-dependent, adipose-specific PLA2 that we named AdPLA (adipose-specific phospholipase A2). We found that AdPLA was highly expressed specifically in white adipose tissue and was induced during preadipocyte differentiation into adipocytes. Clearance of AdPLA by immuno...

  2. Hypercholesterolemia Induces Adipose Dysfunction in Conditions of Obesity and Nonobesity1

    OpenAIRE

    Aguilar, David; Fernandez, Maria Luz

    2014-01-01

    It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in pread...

  3. Macrophage elastase suppresses white adipose tissue expansion with cigarette smoking.

    Science.gov (United States)

    Tsuji, Takao; Kelly, Neil J; Takahashi, Saeko; Leme, Adriana S; Houghton, A McGarry; Shapiro, Steven D

    2014-12-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots.

  4. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kern, P.A.; Marshall, S.; Eckel, R.H.

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific /sup 125/I-insulin binding. In addition, chloroquine induced an increase in cell-associated /sup 125/I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measured as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology.

  5. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    International Nuclear Information System (INIS)

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific 125I-insulin binding. In addition, chloroquine induced an increase in cell-associated 125I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measured as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology

  6. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  7. Adipocyte-Specific Mineralocorticoid Receptor Overexpression in Mice Is Associated With Metabolic Syndrome and Vascular Dysfunction: Role of Redox-Sensitive PKG-1 and Rho Kinase.

    Science.gov (United States)

    Nguyen Dinh Cat, Aurelie; Antunes, Tayze T; Callera, Glaucia E; Sanchez, Ana; Tsiropoulou, Sofia; Dulak-Lis, Maria G; Anagnostopoulou, Aikaterini; He, Ying; Montezano, Augusto C; Jaisser, Frederic; Touyz, Rhian M

    2016-08-01

    Mineralocorticoid receptor (MR) expression is increased in adipose tissue from obese individuals and animals. We previously demonstrated that adipocyte-MR overexpression (Adipo-MROE) in mice is associated with metabolic changes. Whether adipocyte MR directly influences vascular function in these mice is unknown. We tested this hypothesis in resistant mesenteric arteries from Adipo-MROE mice using myography and in cultured adipocytes. Molecular mechanisms were probed in vessels/vascular smooth muscle cells and adipose tissue/adipocytes and focused on redox-sensitive pathways, Rho kinase activity, and protein kinase G type-1 (PKG-1) signaling. Adipo-MROE versus control-MR mice exhibited reduced vascular contractility, associated with increased generation of adipocyte-derived hydrogen peroxide, activation of vascular redox-sensitive PKG-1, and downregulation of Rho kinase activity. Associated with these vascular changes was increased elastin content in Adipo-MROE. Inhibition of PKG-1 with Rp-8-Br-PET-cGMPS normalized vascular contractility in Adipo-MROE. In the presence of adipocyte-conditioned culture medium, anticontractile effects of the adipose tissue were lost in Adipo-MROE mice but not in control-MR mice. In conclusion, adipocyte-MR upregulation leads to impaired contractility with preserved endothelial function and normal blood pressure. Increased elasticity may contribute to hypocontractility. We also identify functional cross talk between adipocyte MR and arteries and describe novel mechanisms involving redox-sensitive PKG-1 and Rho kinase. Our results suggest that adipose tissue from Adipo-MROE secrete vasoactive factors that preferentially influence vascular smooth muscle cells rather than endothelial cells. Our findings may be important in obesity/adiposity where adipocyte-MR expression/signaling is amplified and vascular risk increased. PMID:27207514

  8. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    Science.gov (United States)

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This

  9. Exercise regulation of adipose tissue.

    Science.gov (United States)

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  10. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    DEFF Research Database (Denmark)

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A;

    2005-01-01

    expression of PGC-1alpha is required for activation of uncoupling protein 1 (UCP1). Wnt10b blocks brown adipose tissue development and expression of UCP1 when expressed from the fatty acid binding protein 4 promoter, even when mice are administered a beta3-agonist. In differentiated brown adipocytes......, activation of Wnt signaling suppresses expression of UCP1 through repression of PGC-1alpha. Consistent with these in vitro observations, UCP1-Wnt10b transgenic mice, which express Wnt10b in interscapular tissue, lack functional brown adipose tissue. While interscapular tissue of UCP1-Wnt10b mice lacks...... expression of PGC-1alpha and UCP1, the presence of unilocular lipid droplets and expression of white adipocyte genes suggest conversion of brown adipose tissue to white. Reciprocal expression of Wnt10b with UCP1 and PGC-1alpha in interscapular tissue from cold-challenged or genetically obese mice provides...

  11. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Jørgensen, Claus; Petersen, Rasmus K;

    2004-01-01

    fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate...... into adipocytes with a gene expression pattern and mitochondria content resembling brown adipose tissue. pRB-deficient MEFs exhibit an increased expression of the Forkhead transcription factor Foxc2 and its target gene cAMP-dependent protein kinase regulatory subunit RIalpha, resulting in increased c...... at a developmental stage where both cell types begin to accumulate lipid and brown adipocytes express UCP-1. Furthermore, pRB rapidly undergoes phosphorylation upon cold-induced neodifferentiation and up-regulation of UCP-1 expression in brown adipose tissue. Finally, down-regulation of pRB expression accompanies...

  12. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  13. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    International Nuclear Information System (INIS)

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  14. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  15. Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2014-08-01

    Full Text Available BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question. CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia. SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences. KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction.

  16. Lipolysis and apoptosis of adipocytes induced by neuropeptide Y—Y5 receptor antisense oligodeoxynucleotides in obese rats

    Institute of Scientific and Technical Information of China (English)

    GONGHai-Xia; GUOXi-Rong; FEILi; GUOMei; LIUQian-Qi; CHENRong-Hua

    2003-01-01

    AIM:To investigate the influence of central administration of neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides(ODN) on the body weight and fat pads of high-energy diet-induced obese rats, and the effects on white adipocyte lipolysis and apoptosis. METHODS: Y5 receptor antisense, sense, mismatched oligodeoxynucleotides (ODN) or vehicle were intracerebroventricularly injected, and average adipocyte area was calculated. DNA ladders were measured to evaluate adipocyte apoptosis, and RT-PCR was used to analyze the expression of bcl-2 and bax gene. RESULTS: (1) Central administration of Y5 receptor antisense ODN significantly decreased body weight, fat pads, and average adipocyte area. (2) DNA fragmentation was presented after electrophoresis at both epididymal and retroperitoneal adipose tissue. (3) The expression of bcl-2 gene was downregulated, while the expression of bax was upregulated. CONCLUSION:Lipolysis and adipocyte apoptosis may be important reasons for Y5 receptor antisense therapy.

  17. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    Science.gov (United States)

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling.

  18. Secretory function of adipose tissue.

    Science.gov (United States)

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  19. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hyoung Joon Park

    Full Text Available This study assessed the effects of Coprinus comatus cap (CCC on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ. Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the

  20. Targeting IκB kinase β in Adipocyte Lineage Cells for Treatment of Obesity and Metabolic Dysfunctions.

    Science.gov (United States)

    Helsley, Robert N; Sui, Yipeng; Park, Se-Hyung; Liu, Zun; Lee, Richard G; Zhu, Beibei; Kern, Philip A; Zhou, Changcheng

    2016-07-01

    IκB kinase β (IKKβ), a central coordinator of inflammation through activation of nuclear factor-κB, has been identified as a potential therapeutic target for the treatment of obesity-associated metabolic dysfunctions. In this study, we evaluated an antisense oligonucleotide (ASO) inhibitor of IKKβ and found that IKKβ ASO ameliorated diet-induced metabolic dysfunctions in mice. Interestingly, IKKβ ASO also inhibited adipocyte differentiation and reduced adiposity in high-fat (HF)-fed mice, indicating an important role of IKKβ signaling in the regulation of adipocyte differentiation. Indeed, CRISPR/Cas9-mediated genomic deletion of IKKβ in 3T3-L1 preadipocytes blocked these cells differentiating into adipocytes. To further elucidate the role of adipose progenitor IKKβ signaling in diet-induced obesity, we generated mice that selectively lack IKKβ in the white adipose lineage and confirmed the essential role of IKKβ in mediating adipocyte differentiation in vivo. Deficiency of IKKβ decreased HF-elicited adipogenesis in addition to reducing inflammation and protected mice from diet-induced obesity and insulin resistance. Further, pharmacological inhibition of IKKβ also blocked human adipose stem cell differentiation. Our findings establish IKKβ as a pivotal regulator of adipogenesis and suggest that overnutrition-mediated IKKβ activation serves as an initial signal that triggers adipose progenitor cell differentiation in response to HF feeding. Inhibition of IKKβ with antisense therapy may represent as a novel therapeutic approach to combat obesity and metabolic dysfunctions. Stem Cells 2016;34:1883-1895. PMID:26991836

  1. Effects of homocysteine on adipocyte differentiation and CD36 gene expression in 3T3-L1 adipocytes.

    Science.gov (United States)

    Mentese, Ahmet; Alver, Ahmet; Sumer, Aysegul; Demir, Selim

    2016-03-01

    The aim of this study was to investigate the effects of homocysteine (Hcy), a risk factor for cardiovascular diseases, hypertension, stroke and obesity, on expression of CD36 that regulates uptake of oxidized low-density lipoprotein (Ox-LDL) by adipocytes and differentiation of 3T3-L1 cells to adipocytes. Cell viability was determined using MTT assay, and density of triglycerides were measured with Oil Red O staining. The expression levels of CD36 were analyzed using SYBR green assay by quantitative RT-PCR. Our results showed that the addition of Hcy inhibited differentiation of 3T3-L1 preadipocytes in a dose-dependent manner without a significant cell toxicity (p  0.05) compared to differentiated adipocytes. Hcy reduced adipocyte differentiation, but had no effect on the expression level of CD36 in vitro conditions. The effect of Hcy on uptake and clearance of Ox-LDL by adipose tissue now needs to be investigated in vivo. PMID:26691520

  2. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    Science.gov (United States)

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (Psize of lipid droplets in 3T3-L1 adipocytes (Padipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (Psize (P>0.05) and remedy the palmitate damage induced cell death (Padipocytes. PMID:27157327

  3. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues.

    Science.gov (United States)

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.

  4. The effect of Spirodelae Herba Pharmacopuncture on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Sung Eon, Cho

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Spirodelae Herba pharmacopuncture(SHP on the adipogenesis in 3T3 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibition of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of SHP ranging from 0.01 to 1.0㎎/㎖. The effect of SHP on adipogenesis was examined by measuring glycerol-3-phosphate ehydrogenase(GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with SHP ranging from 0.01 to 1.0㎎/㎖ for 3 days. The effect of SHP on lipolysis was examined by measuring free glycerol released. Fat tissue from porcine skin was injected with SHP ranging from 0.1 to 10.0㎎/㎖ to examine the effect of SHP onhistological changes under light microscopy. Results : Following results were obtained from the preadipocyte proliferation and lipolysis adipocyte and histologic investigation of fat tissue 1. SHP showed the effect of decreased preadipocyte proliferation on the high dosage(1㎎/㎖. 2. SHP showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase (GPDH on the high dosage(1㎎/㎖. 3. Investigated the changes in lipolysis of differentiated adipocyte after treated SHP, we knew that these pharmacopunct -ure showed increasing the effect of lipolysis in all concentration significantly. 4. Investigated the histological changes in porcine fat tissue after treated SHP, we knew that these pharmacopuncture showed significant activity to the lysis of extensive cell membranes on high dosage(10.0㎎/㎖. Conclusions : These results suggest that SHP efficiently induces diminishing proliferation of preadipocyte and lipolysis in adipose tissue.

  5. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    Science.gov (United States)

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  6. Defective differentiation of adipose precursor cells from lipodystrophic mice lacking perilipin 1.

    Directory of Open Access Journals (Sweden)

    Ying Lyu

    Full Text Available Perilipin 1 (Plin1 localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/- mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along with downregulation of adipogenic pathway. Before initiation of differentiation, adipose stromal-vascular cells (SVCs from Plin1-/- mice already accumulated numerous tiny lipid droplets, which increased in number and size during the first 12-h induction but thereafter became disappeared at day 1 of differentiation. The adipogenic signaling was dysregulated despite protein level of PPARγ was near normal in Plin1-/- SVCs like in Plin1-/- adipose tissue. Heterozygous Plin1+/- SVCs were able to develop lipid droplets, with both the number and size more than in Plin1-/- SVCs but less than in Plin1+/+ SVCs, indicating that Plin1 haploinsufficiency accounts for attenuated adipogenesis. Aberrant lipid droplet growth and differentiation of Plin1-/- SVCs were rescued by adenoviral Plin1 expression and were ameliorated by enhanced or prolonged adipogenic stimulation. Our finding suggests that Plin1 plays an important role in adipocyte differentiation and provides an insight into the pathology of partial lipodystrophy in patients with Plin1 mutation.

  7. The role of JAK-STAT signaling in adipose tissue function.

    Science.gov (United States)

    Richard, Allison J; Stephens, Jacqueline M

    2014-03-01

    Adipocytes play important roles in lipid storage, energy homeostasis and whole body insulin sensitivity. The JAK-STAT (Janus Kinase-Signal Transducer and Activator of Transcription) pathway mediates a variety of physiological processes including development, hematopoiesis, and inflammation. Although the JAK-STAT signaling pathway occurs in all cells, this pathway can mediate cell specific responses. Studies in the last two decades have identified hormones and cytokines that activate the JAK-STAT signaling pathway. These cytokines and hormones have profound effects on adipocytes. The content of this review will introduce the types of adipocytes and immune cells that make up adipose tissue, the impact of obesity on adipose cellular composition and function, and the general constituents of the JAK-STAT pathway and how its activators regulate adipose tissue development and physiology. A summary of the identification of STAT target genes in adipocytes reveals how these transcription factors impact various areas of adipocyte metabolism including insulin action, modulation of lipid stores, and glucose homeostasis. Lastly, we will evaluate exciting new data linking the JAK-STAT pathway and brown adipose tissue and consider the future outlook in this area of investigation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  8. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    Science.gov (United States)

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  9. Physiological and pathological impact of exosomes of adipose tissue.

    Science.gov (United States)

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  10. Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis.

    Science.gov (United States)

    Bi, Sheng

    2013-09-10

    In addition to controlling food intake, the dorsomedial hypothalamus (DMH) plays an important role in thermoregulation. Within the DMH, a number of neuropeptides and receptors have been found and their roles in controlling energy balance are being investigated. We recently found that the orexigenic neuropeptide Y (NPY) in the DMH has specific actions on body adiposity and thermogenesis using a viral-mediated manipulation of NPY in the DMH. Knockdown of NPY in the DMH promotes the development of brown adipocytes in white adipose tissue and increases brown adipocyte activity. DMH NPY knockdown also causes increased thermogenesis and energy expenditure. Finally, DMH NPY knockdown prevents high-fat diet-induced obesity and improves glucose homeostasis. This review focuses on the role of DMH NPY in modulating body adiposity and thermogenesis.

  11. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes.

    Science.gov (United States)

    Bartesaghi, Stefano; Hallen, Stefan; Huang, Li; Svensson, Per-Arne; Momo, Remi A; Wallin, Simonetta; Carlsson, Eva K; Forslöw, Anna; Seale, Patrick; Peng, Xiao-Rong

    2015-01-01

    Heat-producing beige/brite (brown-in-white) adipocytes in white adipose tissue have the potential to suppress metabolic disease in mice and hold great promise for the treatment of obesity and type 2 diabetes in humans. Here, we demonstrate that human adipose-derived stromal/progenitor cells (hASCs) from subcutaneous white adipose tissue can be efficiently converted into beige adipocytes. Upon pharmacological activation of peroxisome proliferator-activated receptor-γ, hASC-derived adipocytes activated beige fat-selective genes and a brown/beige fat-selective electron transport chain gene program. Importantly, hASC-derived beige fat cells displayed the bioenergetic characteristics of genuine brown fat cells, including a capacity for increased respiratory uncoupling in response to β-adrenergic agonists. Furthermore, knock-down experiments reveal that the thermogenic capacity of human beige fat cells was entirely dependent on the presence of Uncoupling protein 1. In summary, this study reveals that hASCs can be readily differentiated into beige adipocytes that, upon activation, undergo uncoupling protein 1-dependent thermogenesis.

  12. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    OpenAIRE

    Morrison, Shona; McGee, Sean L.

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they r...

  13. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes

    OpenAIRE

    Sims, James Kenneth; Rohr, Brian; Miller, Eric; Lee, Kyongbum

    2014-01-01

    Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides) into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the dynamics of LDs. This article describes an image processing method to id...

  14. Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage

    Directory of Open Access Journals (Sweden)

    Smas Cynthia M

    2008-09-01

    Full Text Available Abstract Background White adipose tissue is not only an energy storage organ; it also functions as an endocrine organ. The coordination and integration of numerous gene expression events is required to establish and maintain the adipocyte phenotype. Findings We previously observed a 45-fold upregulation for a transcript encoding a novel predicted transmembrane protein, Tmem182, upon brown preadipocyte to adipocyte conversion. Here we use real-time PCR analysis to further characterize Tmem182 transcript expression in the adipocyte lineage. Analysis across a panel of 10 murine tissues revealed highest Tmem182 transcript expression in white adipose tissues (WAT, with 10-fold to 20-fold higher levels than in brown adipose tissue (BAT. Tmem182 transcript expression is ~3-fold upregulated in BAT of genetically obese (ob/ob mice vs. wild type C57BL/6. Analysis of three in vitro models of white adipogenesis indicates markedly enriched expression of Tmem182 transcript in adipocytes vs. preadipocytes. Compared to 3T3-L1 preadipocytes, a 157-fold higher level of Tmem182 transcript is detected at 3 day post-induction of adipogenesis and an ~2500-fold higher level in mature 3T3-L1 adipocytes. TNFα treatment of 3T3-L1 adipocytes resulted in a ~90% decrease in Tmem182 transcript level. As skeletal muscle and heart were also found to express Tmem182 transcript, we assessed expression in C2C12 myogenesis and observed a ~770-fold upregulation upon conversion of myoblasts to myocytes. Conclusion WAT is the most prominent site of Tmem182 transcript expression and levels of transcript for Tmem182 are altered in adipose tissues of ob/ob mice and upon exposure of 3T3-L1 adipocytes to the proinflammatory cytokine TNFα. The dramatic upregulation of Tmem182 transcript during in vitro adipogenesis and myogenesis suggests Tmem182 may function in intracellular pathways important in these two cell types.

  15. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    Directory of Open Access Journals (Sweden)

    Allison J. Richard

    2013-01-01

    Full Text Available Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.

  16. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    Directory of Open Access Journals (Sweden)

    Mei-Lin Wang

    2015-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD and β-naphthoflavone (BNF, inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF, an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs. Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF (1–5 μM for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL, estrogen receptor (ER, as well as decreased expression of AhR, AhR nuclear translocator (ARNT, cytochrome P4501B1 (CYP1B1, and nuclear factor erythroid-2-related factor (NRF-2 proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and

  17. A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences

    NARCIS (Netherlands)

    Caesar, R.; Manieri, M.; Kelder, T.; Boekschoten, M.; Evelo, C.; Müller, M.; Kooistra, T.; Cinti, S.; Kleemann, R.; Drevon, C.A.

    2010-01-01

    Depot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat

  18. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    Science.gov (United States)

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  19. Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes.

    Science.gov (United States)

    Zovich, D C; Orologa, A; Okuno, M; Kong, L W; Talmage, D A; Piantedosi, R; Goodman, D S; Blaner, W S

    1992-07-15

    Recently, we demonstrated that adipose tissue plays an important role in retinol storage and retinol-binding protein (RBP) synthesis. Our data suggested that RBP expression in adipose tissue is dependent on the state of adipocyte differentiation. To examine this possibility, we explored the differentiation-dependent expression of RBP using BFC-1 beta preadipocytes, which can be stimulated to undergo adipose differentiation. Total RNA was isolated from undifferentiated (preadipocytes) and differentiated (adipocytes) BFC-1 beta cells and analyzed by Northern blotting. RBP mRNA was not detected in the preadipocytes, but considerable RBP mRNA was present in differentiated BFC-1 beta cells. In BFC-1 beta cells, induced to differentiate with insulin and thyroid hormone, RBP mRNA was first detected after 4 days, reached a maximum level by day 10, and remained at this maximum level for at least 2 more days. Cellular retinol-binding protein was expressed at low levels in the BFC-1 beta preadipocytes and the level of expression increased for 6 days after induction to differentiate and slowly declined on later days. Neither the maximum level of RBP expression nor the day on which this level was reached was influenced by the level of retinol provided in the BFC-1 beta culture medium. BFC-1 beta cells secreted newly synthesized RBP into the culture medium at a rate of 43 +/- 14 ng RBP/24 h/10(6) adipocytes. When the BFC-1 beta adipocytes were provided 1.0 microM retinol in the medium, they accumulated the retinol and synthesized retinyl esters. These studies with BFC-1 beta cells confirm that RBP synthesis and secretion and retinol accumulation are intrinsic properties of differentiated adipocytes. Furthermore, they suggest that RBP and cellular retinol-binding protein gene expression are regulated as part of a package of genes which are modulated during adipocyte differentiation.

  20. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats.

    Science.gov (United States)

    Shum, Michaël; Pinard, Sandra; Guimond, Marie-Odile; Labbé, Sébastien M; Roberge, Claude; Baillargeon, Jean-Patrice; Langlois, Marie-France; Alterman, Mathias; Wallinder, Charlotta; Hallberg, Anders; Carpentier, André C; Gallo-Payet, Nicole

    2013-01-15

    This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity. PMID:23149621

  1. Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and is a Minor Regulator of Glucose Homeostasis

    OpenAIRE

    Carl Owen; Alicja Czopek; Abdelali Agouni; Louise Grant; Robert Judson; Lees, Emma K; George D Mcilroy; Olga Göransson; Andy Welch; Bence, Kendra K.; Kahn, Barbara B.; Neel, Benjamin G.; Nimesh Mody; Mirela Delibegović

    2012-01-01

    Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency...

  2. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Science.gov (United States)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  3. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle

    OpenAIRE

    Hyun-Jeong Lee; Mi Jang; Hyeongmin (Christian) Kim; Woori Kwak; Woncheoul Park; Jae Yeon Hwang; Chang-Kyu Lee; Gul Won Jang; Mi Na Park; Hyeong-Cheol Kim; Jin Young Jeong; Kang Seok Seo; Heebal Kim; Seoae Cho; Bo-Young Lee

    2013-01-01

    Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine ...

  4. Long-term Angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARγ.

    OpenAIRE

    Zorad, Stefan; Jing-tao DOU; Benicky, Julius; Hutanu, Daniel; Tybitanclova, Katarina; Zhou, Jin; Saavedra, Juan M

    2006-01-01

    To clarify the mechanism of the effects of angiotensin II AT1 receptor antagonists on adipose tissue, we treated 8 week-old male Wistar Kyoto rats with the angiotensin II AT1 receptor antagonist Candesartan cilexetil (10 mg/kg/day) for 18 weeks. Candesartan cilexetil reduced body weight gain, decreased fat tissue mass due to hypotrophy of epididymal and retroperitoneal adipose tissue and decreased adipocyte size without changing the number of adipocytes. Candesartan cilexetil decreased serum ...

  5. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ.

    Science.gov (United States)

    Dobbs, Jessica L; Shin, Dongsuk; Krishnamurthy, Savitri; Kuerer, Henry; Yang, Wei; Richards-Kortum, Rebecca

    2016-09-01

    Adipose tissue is a dynamic organ that provides endocrine, inflammatory and angiogenic factors, which can assist breast carcinoma cells with invasion and metastasis. Previous studies have shown that adipocytes adjacent to carcinoma, known as cancer-associated adipocytes, undergo extensive changes that correspond to an "activated phenotype," such as reduced size relative to adipocytes in non-neoplastic breast tissue. Optical imaging provides a tool that can be used to characterize adipocyte morphology and other features of the tumor microenvironment. In this study, we used confocal fluorescence microscopy to acquire images of freshly excised breast tissue stained topically with proflavine. We developed a computerized algorithm to identify and quantitatively measure phenotypic properties of adipocytes located adjacent to and far from normal collagen, ductal carcinoma in situ and invasive ductal carcinoma. Adipocytes were measured in confocal fluorescence images of fresh breast tissue collected from 22 patients. Results show that adipocytes adjacent to neoplastic tissue margins have significantly smaller area compared to adipocytes far from the margins of neoplastic lesions and compared to adipocytes adjacent to non-neoplastic collagenous stroma. These findings suggest that confocal microscopic images can be utilized to evaluate phenotypic properties of adipocytes in breast stroma which may be useful in defining alterations in microenvironment that may aid in the development and progression of neoplastic lesions. PMID:27116366

  6. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Lei Cai

    Full Text Available OBJECTIVE: The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death. EXPERIMENTAL APPROACH: Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO mice and wild type (WT mice fed a high fat diet (60% kcal fat for 16 weeks and the inflammatory response was studied in primary adipocytes and macrophages isolated from CD36 KO and WT mice. RESULTS: Compared to WT mice, CD36 KO mice fed a high fat diet exhibited reduced adiposity and adipose tissue inflammation, with decreased adipocyte cell death, pro-inflammatory cytokine expression and macrophage and T-cell accumulation. In primary cell culture, the absence of CD36 expression in macrophages decreased pro-inflammatory cytokine, pro-apoptotic and ER stress gene expression in response to lipopolysaccharide (LPS. Likewise, CD36 deficiency in primary adipocytes reduced pro-inflammatory cytokine and chemokine secretion in response to LPS. Primary macrophage and adipocyte co-culture experiments showed that these cell types act synergistically in their inflammatory response to LPS and that CD36 modulates such synergistic effects. CONCLUSIONS: CD36 enhances adipose tissue inflammation and cell death in diet-induced obesity through its expression in both macrophages and adipocytes.

  7. Increased 4-hydroxynonenal formation contributes to obesity-related lipolytic activation in adipocytes.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Oxidative stress in adipose tissue plays an etiological role in a variety of obesity-related metabolic disorders. We previously reported that increased adipose tissue 4-hydroxynonenal (4-HNE contents contributed to obesity-related plasma adiponectin decline in mice. In the present study, we investigated the effects of intracellular 4-HNE accumulation on lipolytic response in adipocytes/adipose tissues and underlying mechanisms. In both fully-differentiated 3T3-L1 and primary adipocytes, a 5-hour 4-HNE exposure elevated lipolytic reaction in a dose-dependent manner at both basal and isoproterenol-stimulated conditions, evidenced by significantly increased glycerol and fatty acids releases. This conclusion was corroborated by the comparable observations when the minced human visceral adipose tissues were used. Mechanistic investigations revealed that 4-HNE-stimulated lipolytic activation is multifactorial. 4-HNE exposure quickly increased intracellular cyclic AMP (cAMP level, which was concomitant with increased phosphorylations of protein kinase A (PKA and its direct downstream target, hormone sensitive lipase (HSL. Pre-incubation with H89, a potent PKA inhibitor, prevented 4-HNE stimulated glycerol release, suggesting that enhanced lipolytic action in response to 4-HNE increase is mediated mainly by cAMP/PKA signal pathway in adipocytes. In addition to activating cAMP/PKA/HSL pathway, 4-HNE exposure also suppresses AMP-activated protein kinase (AMPK, a suppressive pathway for lipolysis, measured by both Western blotting for phosphorylated form of AMPK and ELISA for enzyme activity. Furthermore, 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR, a pharmacological AMPK activator, alleviated 4-HNE-induced lipolysis, suggesting that AMPK suppression also contributes to 4-HNE elicited lipolytic response. In conclusion, our findings indicate that increased intracellular 4-HNE accumulation in adipocytes/adipose tissues contributes to

  8. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  9. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  10. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  11. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning

    OpenAIRE

    Neinast, Michael D.; Frank, Aaron P.; Zechner, Juliet F.; Quanlin Li; Lavanya Vishvanath; Palmer, Biff F.; Vincent Aguirre; Gupta, Rana K.; Clegg, Deborah J.

    2015-01-01

    Objective: Roux-en-Y gastric bypass (RYGB) is an effective method of weight loss and remediation of type-2 diabetes; however, the mechanisms leading to these improvements are unclear. Additionally, adipocytes within white adipose tissue (WAT) depots can manifest characteristics of brown adipocytes. These ‘BRITE/beige’ adipocytes express uncoupling protein 1 (UCP1) and are associated with improvements in glucose homeostasis and protection from obesity. Interestingly, atrial and B-type natriure...

  12. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  13. [The adipose tissue as a regulatory center of the metabolism].

    Science.gov (United States)

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  14. Augmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements.

    Science.gov (United States)

    Lakeland, Thomas V; Borg, Melissa L; Matzaris, Maria; Abdelkader, Amany; Evans, Roger G; Watt, Matthew J

    2014-06-15

    Impaired coupling of adipose tissue expansion and vascularization is proposed to lead to adipocyte hypoxia and inflammation, which in turn contributes to systemic metabolic derangements. Pigment epithelium-derived factor (PEDF) is a powerful antiangiogenic factor that is secreted by adipocytes, elevated in obesity, and implicated in the development of insulin resistance. We explored the angiogenic and metabolic role of adipose-derived PEDF through in vivo studies of mice with overexpression of PEDF in adipocytes (PEDF-aP2). PEDF expression in white adipocytes and PEDF secretion from adipose tissue was increased in transgenic mice, but circulating levels of PEDF were not increased. Overexpression of PEDF did not alter vascularization, the partial pressure of O2, cellular hypoxia, or gene expression of inflammatory markers in adipose tissue. Energy expenditure and metabolic substrate utilization, body mass, and adiposity were not altered in PEDF-aP2 mice. Whole body glycemic control was normal as assessed by glucose and insulin tolerance tests, and adipocyte-specific glucose uptake was unaffected by PEDF overexpression. Adipocyte lipolysis was increased in PEDF-aP2 mice and associated with increased adipose triglyceride lipase and decreased perilipin 1 expression. Experiments conducted in mice rendered obese by high-fat feeding showed no differences between PEDF-aP2 and wild-type mice for body mass, adiposity, whole body energy expenditure, glucose tolerance, or adipose tissue oxygenation. Together, these data indicate that adipocyte-generated PEDF enhances lipolysis but question the role of PEDF as a major antiangiogenic or proinflammatory mediator in adipose tissue in vivo.

  15. Adipose tissue and its role in organ crosstalk.

    Science.gov (United States)

    Romacho, T; Elsen, M; Röhrborn, D; Eckel, J

    2014-04-01

    The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

  16. Two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  17. Momordica charantia (bitter melon inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-06-01

    Full Text Available Abstract Background Escalating trends of obesity and associated type 2 diabetes (T2D has prompted an increase in the use of alternative and complementary functional foods. Momordica charantia or bitter melon (BM that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes. Methods Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR. Results Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ and sterol regulatory element-binding protein 1c (SREBP-1c and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol. Conclusion Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.

  18. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  19. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    International Nuclear Information System (INIS)

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  20. Nucleotide-binding Oligomerization Domain-1 Ligand Induces Inflammation and Attenuates Glucose Uptake in Human Adipocytes

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Ai Li; Yu-ling Song; Yan Li; Hui Zhou

    2012-01-01

    Objective To investigate the effects of stimulant for nucleotide-binding oligomerization domain 1 (NOD1) on secretion of proinflammatory chemokine/cytokines and insulin-dependent glucose uptake in human differentiated adipocytes.Methods Adipose tissues were obtained from patients undergoing liposuction.Stromal vascular cells were extracted and differentiated into adipocytes.A specific ligand for NOD1,was administered to human adipocytes in culture.Nuclear factor-κB transcriptional activity and proinflammatory chemokine/cytokines production were determined by reporter plasmid assay and enzyme-linked immunosorbent assay,respectively.Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[3H]glucose uptake assay.Furthermore,chemokine/cytokine secretion and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD1 upon stimulation of NOD1 ligand were analyzed.Results Nuclear factor-κB transcriptional activity and monocyte chemoattractant protein-1 (MCP-1),interleukin (IL)-6,and IL-8 secretion in human adipocytes were markedly increased stimulated with NOD1 ligand (all P<0.01).Insulin-induced glucose uptake was decreased upon the activation of NOD1 (P<0.05).NOD1 gene silencing by siRNA reduced NOD1 ligand-induced MCP-1,IL-6,and IL-8 release and increased insulin-induced glucose uptake (all P<0.05).Conclusion NOD1 activation in adipocytes might be implicated in the onset of insulin resistance.

  1. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation.

    Science.gov (United States)

    Haka, Abigail S; Barbosa-Lorenzi, Valéria C; Lee, Hyuek Jong; Falcone, Domenick J; Hudis, Clifford A; Dannenberg, Andrew J; Maxfield, Frederick R

    2016-06-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  2. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity.

    Science.gov (United States)

    Zhang, Wenliang; Mottillo, Emilio P; Zhao, Jiawei; Gartung, Allison; VanHecke, Garrett C; Lee, Jen-Fu; Maddipati, Krishna R; Xu, Haiyan; Ahn, Young-Hoon; Proia, Richard L; Granneman, James G; Lee, Menq-Jer

    2014-11-14

    Adipocyte lipolysis can increase the production of inflammatory cytokines such as interleukin-6 (IL-6) that promote insulin resistance. However, the mechanisms that link lipolysis with inflammation remain elusive. Acute activation of β3-adrenergic receptors (ADRB3) triggers lipolysis and up-regulates production of IL-6 in adipocytes, and both of these effects are blocked by pharmacological inhibition of hormone-sensitive lipase. We report that stimulation of ADRB3 induces expression of sphingosine kinase 1 (SphK1) and increases sphingosine 1-phosphate production in adipocytes in a manner that also depends on hormone-sensitive lipase activity. Mechanistically, we found that adipose lipolysis-induced SphK1 up-regulation is mediated by the c-Jun N-terminal kinase (JNK)/activating protein-1 signaling pathway. Inhibition of SphK1 by sphingosine kinase inhibitor 2 diminished the ADRB3-induced IL-6 production both in vitro and in vivo. Induction of IL-6 by ADRB3 activation was suppressed by siRNA knockdown of Sphk1 in cultured adipocytes and was severely attenuated in Sphk1 null mice. Conversely, ectopic expression of SphK1 increased IL-6 expression in adipocytes. Collectively, these data demonstrate that SphK1 is a critical mediator in lipolysis-triggered inflammation in adipocytes. PMID:25253697

  3. Regulation of fructose 2,6-bisphosphate concentration in white adipose tissue.

    OpenAIRE

    Rider, Mark; Hue, Louis

    1985-01-01

    Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent ri...

  4. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    OpenAIRE

    Sanambar Sadighi; Ahad Khoshzban; Amir Hossein Tavakoli; Ramin Khatib Semnani; Zahra Sobhani; Nayer Dadashpur Majidabad

    2014-01-01

    Background: Currently, autologous and allogeneic adipose tissues represent a ubiqui-tous source of material for fat reconstructive therapies. However, these approaches are limited, and often accompanied by a 40-60% reduction in graft volume following transplantation, limited proliferative capacity of mature adipocytes for ex vivo expansion, and extensive adipocyte damage encountered when harvested with conventional liposuction techniques. Recently, cell-based approaches utilizing adipogenic p...

  5. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick;

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gamma...... (PPARgamma) (NR1C3) is a nuclear receptor controlling adipocyte differentiation and insulin sensitivity. Here we show that Rev-Erbalpha expression is induced by PPARgamma activation with rosiglitazone in rat epididymal and perirenal adipose tissues in vivo as well as in 3T3-L1 adipocytes in vitro...... for this nuclear receptor as a promoter of adipocyte differentiation....

  6. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    Science.gov (United States)

    Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

  7. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  8. Analysis of in vitro secretion profiles from adipose-derived cell populations

    Directory of Open Access Journals (Sweden)

    Blaber Sinead P

    2012-08-01

    Full Text Available Abstract Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs. Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of  Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the

  9. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    OpenAIRE

    Toh, Shen Yon; Gong, Jingyi; Du, Guoli; Li, John Zhong; Yang, Shuqun; Ye, Jing; Yao, Huilan; Zhang, Yinxin; Xue, Bofu; Li, Qing; Yang, Hongyuan; Wen, Zilong; Li, Peng

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27 −/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse st...

  10. Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    OpenAIRE

    Shen Yon Toh; Jingyi Gong; Guoli Du; John Zhong Li; Shuqun Yang; Jing Ye; Huilan Yao; Yinxin Zhang; Bofu Xue; Qing Li; Hongyuan Yang; Zilong Wen; Peng Li

    2008-01-01

    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse s...

  11. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance.

    Science.gov (United States)

    Vazirani, Reema P; Verma, Akanksha; Sadacca, L Amanda; Buckman, Melanie S; Picatoste, Belen; Beg, Muheeb; Torsitano, Christopher; Bruno, Joanne H; Patel, Rajesh T; Simonyte, Kotryna; Camporez, Joao P; Moreira, Gabriela; Falcone, Domenick J; Accili, Domenico; Elemento, Olivier; Shulman, Gerald I; Kahn, Barbara B; McGraw, Timothy E

    2016-06-01

    Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of GLUT4 in the plasma membrane. The effect of insulin is to promote the translocation of intracellular GLUT4 to the plasma membrane. The small Rab GTPase, Rab10, is required for insulin-stimulated GLUT4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout (KO) mice. These data demonstrate that the full effect of insulin on adipose glucose uptake is the integrated effect of Rab10-dependent and Rab10-independent pathways, establishing a divergence in insulin signal transduction to the regulation of GLUT4 trafficking. In adipose-specific Rab10 KO female mice, the partial inhibition of stimulated glucose uptake in adipocytes induces insulin resistance independent of diet challenge. During euglycemic-hyperinsulinemic clamp, there is no suppression of hepatic glucose production despite normal insulin suppression of plasma free fatty acids. The impact of incomplete disruption of stimulated adipocyte GLUT4 translocation on whole-body glucose homeostasis is driven by a near complete failure of insulin to suppress hepatic glucose production rather than a significant inhibition in muscle glucose uptake. These data underscore the physiological significance of the precise control of insulin-regulated trafficking in adipocytes. PMID:27207531

  12. Lats2 modulates adipocyte proliferation and differentiation via hippo signaling.

    Directory of Open Access Journals (Sweden)

    Yang An

    Full Text Available First identified in Drosophila and highly conserved in mammals, the Hippo pathway controls organ size. Lats2 is one of the core kinases of the Hippo pathway and plays major roles in cell proliferation by interacting with the downstream transcriptional cofactors YAP and TAZ. Although the function of the Hippo pathway and Lats2 is relatively well understood in several tissues and organs, less is known about the function of Lats2 and Hippo signaling in adipose development. Here, we show that Lats2 is an important modulator of adipocyte proliferation and differentiation via Hippo signaling. Upon activation, Lats2 phosphorylates YAP and TAZ, leading to their retention in the cytoplasm, preventing them from activating the transcription factor TEAD in the nucleus. Because TAZ remains in the cytoplasm, PPARγ regains its transcriptional activity. Furthermore, cytoplasmic TAZ acts as an inhibitor of Wnt signaling by suppressing DVL2, thereby preventing β-catenin from entering the nucleus to stimulate TCF/LEF transcriptional activity. The above effects contribute to the phenotype of repressed proliferation and accelerated differentiation in adipocytes. Thus, Lats2 regulates the balance between proliferation and differentiation during adipose development. Interestingly, our study provides evidence that Lats2 not only negatively modulates cell proliferation but also positively regulates cell differentiation.

  13. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location.

    Science.gov (United States)

    Hausman, G J; Basu, U; Wei, S; Hausman, D B; Dodson, M V

    2014-02-01

    Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.

  14. Transcriptional regulation of adipocyte hormone-sensitive lipase by glucose.

    Science.gov (United States)

    Smih, Fatima; Rouet, Philippe; Lucas, Stéphanie; Mairal, Aline; Sengenes, Coralie; Lafontan, Max; Vaulont, Sophie; Casado, Marta; Langin, Dominique

    2002-02-01

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL mRNA was positively regulated by glucose in human adipocytes. Pools of stably transfected 3T3-F442A adipocytes were generated with human adipocyte HSL promoter fragments from -2,400/+38 to -31/+38 bp linked to the luciferase gene. A glucose-responsive region was mapped within the proximal promoter (-137 bp). Electromobility shift assays showed that upstream stimulatory factor (USF)-1 and USF2 and Sp1 and Sp3 bound to a consensus E-box and two GC-boxes in the -137-bp region. Cotransfection of the -137/+38 construct with USF1 and USF2 expression vectors produced enhanced luciferase activity. Moreover, HSL mRNA levels were decreased in USF1- and USF2-deficient mice. Site-directed mutagenesis of the HSL promoter showed that the GC-boxes, although contributing to basal promoter activity, were dispensable for glucose responsiveness. Mutation of the E-box led to decreased promoter activity and suppression of the glucose response. Analogs and metabolites were used to determine the signal metabolite of the glucose response. The signal is generated downstream of glucose-6-phosphate in the glycolytic pathway before the triose phosphate step. PMID:11812735

  15. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns

    OpenAIRE

    Campion, J.; Martinez, J. A.; Rodriguez-Sanchez, S. (Sonia); Soria, A. C.; Bañuelos, O. (Oscar); Olivares, M.; Milagro, F. I.; Garza, A.L. (Ana Laura) de la; Iglesia, R. (Rocío) de la; Boque, N. (Noemi)

    2013-01-01

    This study was conducted to determine the mechanisms implicated in the beneficial effects of apple polyphenols (APs) against diet-induced obesity in Wistar rats, described in a previous study from our group. Supplementation of high-fat sucrose diet with AP prevented adiposity increase by inhibition of adipocyte hypertrophy. Rats supplemented with AP exhibited improved glucose tolerance while adipocytes isolated from these rats showed an enhanced lipolytic response to isoproterenol. AP intake ...

  16. Increased Mitochondrial Activity in BMP7-Treated Brown Adipocytes, Due to Increased CPT1- and CD36-Mediated Fatty Acid Uptake

    OpenAIRE

    Townsend, Kristy L.; An, Ding; Lynes, Matthew D.; Huang, Tian Lian; Zhang, Hongbin; Goodyear, Laurie J.; Tseng, Yu-Hua

    2013-01-01

    Aims: Brown adipose tissue dissipates chemical energy in the form of heat and regulates triglyceride and glucose metabolism in the body. Factors that regulate fatty acid uptake and oxidation in brown adipocytes have not yet been fully elucidated. Bone morphogenetic protein 7 (BMP7) is a growth factor capable of inducing brown fat mitochondrial biogenesis during differentiation from adipocyte progenitors. Administration of BMP7 to mice also results in increased energy expenditure. To determine...

  17. Brown adipose tissue development and metabolism in ruminants.

    Science.gov (United States)

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  18. Brown adipose tissue growth and development.

    Science.gov (United States)

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  19. Antiadipogenic properties of retinol in primary cultured differentiating human adipocyte precursor cells.

    Science.gov (United States)

    Garcia, E; Lacasa, D; Agli, B; Giudicelli, Y; Castelli, D

    2000-04-01

    The aim of this study was to investigate the effect of retinol on the human adipose conversion process using primary cultured human adipocyte precursor cells. When these cells were seeded in a medium containing retinol (concentrations ranging from 3.5 nM to 3.5 muM), cell proliferation was slightly inhibited by high concentrations of retinol, as demonstrated by cell counting and [(3)H]-thymidine incorporation. Moreover, the differentiation capacities of these cells were markedly and dose-dependently inhibited by retinol, as shown by the reduced expression of the lipogenic enzyme glycerol-3-phosphate dehydrogenase and by microscopic morphological analysis. These results strongly suggest that retinol, by inhibiting the ability of human preadipocytes to convert into mature adipocytes, could be of potential interest in the prevention of human adipose tissue development in general and of cellulitis in particular. PMID:18503465

  20. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Madsen, Lise;

    2009-01-01

    BACKGROUND: The retinoblastoma protein (pRB) and p53 are crucial members of regulatory networks controlling the cell cycle and apoptosis, and a hallmark of virtually all cancers is dysregulation of expression or function of pRB or p53. Although they are best known for their role in cancer develop...... of energy metabolism and homeostasis. RESULTS/CONCLUSIONS: pRB is required for adipose conversion and also involved in determining its mitochondrial capacity. p53 inhibits adipogenesis and results suggest that it is involved in maintaining function of adipose tissue....... development, it is now evident that both are implicated in metabolism and cellular development. OBJECTIVE/METHODS: To review the role of pRB and p53 in adipocyte differentiation and function emphasizing that pRB and p53, via their effects on adipocyte development and function, play a role in the regulation...

  1. Oxidative Stress and Adipocyte Biology: Focus on the Role of AGEs

    Directory of Open Access Journals (Sweden)

    Florence Boyer

    2015-01-01

    Full Text Available Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE. This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  2. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling

    Directory of Open Access Journals (Sweden)

    Rajan eSingh

    2014-10-01

    Full Text Available Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiological role in adult human physiology has been questioned for years. Recent demonstrations of metabolically active brown fat depots in adult humans have revolutionized current therapeutic approaches for obesity-related diseases. The balance between white adipose tissue (WAT and BAT affects the systemic energy balance and is widely believed to be the key determinant in the development of obesity and related metabolic diseases. Members of the transforming growth factor-beta (TGF-β superfamily play an important role in regulating overall energy homeostasis by modulation of brown adipocyte characteristics. Inactivation of TGF-β/Smad3/myostatin (Mst signaling promotes browning of white adipocytes, increases mitochondrial biogenesis and protects mice from diet-induced obesity, suggesting the need for development of a novel class of TGF-β/Mst antagonists for the treatment of obesity and related metabolic diseases. We recently described an important role of follistatin (Fst, a soluble glycoprotein that is known to bind and antagonize Mst actions, during brown fat differentiation and the regulation of cellular metabolism. Here we highlight various investigations performed using different in vitro and in vivo models to support the contention that targeting TGF-β/Mst signaling enhances brown adipocyte functions and regulates energy balance, reducing insulin resistance and curbing the development of obesity and diabetes.

  3. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Justesen, J; Dokkedahl, Karin Stenderup; Eriksen, E F;

    2002-01-01

    Osteoblasts and adipocytes share a common precursor cell in the bone marrow stroma, termed marrow stromal cell (MSC). As the volume of bone adipose tissue increases in vivo with age, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis (OP) is the...... result of enhanced adipogenesis and decreased osteoblastogenesis from the MSCs. Thus, cultures of MSCs were established from young donors (age 18-42, n = 34), elderly healthy donors (age 66-78, n = 20), and patients with OP (age 58-76, n = 15). Cells were cultured for 2 weeks in an adipogenic medium...... phosphatase (AP+), and adipocytic colonies containing adipocytes (Ad+) were quantitated. In addition, steady state mRNA levels of gene markers of adipocytic and osteoblastic phenotypes were determined using reverse-transcriptase polymerase chain reaction (RT-PCR). The adipogenic and osteogenic media induced...

  4. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    Science.gov (United States)

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.

  5. Mycobacterium tuberculosis persistence in various adipose depots of infected mice and the effect of anti-tubercular therapy.

    Science.gov (United States)

    Agarwal, Pooja; Khan, Shaheb R; Verma, Subash C; Beg, Muheeb; Singh, Kavita; Mitra, Kalyan; Gaikwad, Anil N; Akhtar, Md Sohail; Krishnan, Manju Y

    2014-07-01

    The adipocytes are one of the non-professional phagocytes postulated to be a haven for Mycobacterium tuberculosis during persistence in the human host. The adipocyte - M. tuberculosis interaction data available to date are ex vivo. The present study was primarily aimed to investigate M. tuberculosis infection of adipocytes in course of infection of mouse model. Using primary murine adipocytes, the study first confirmed the infection and immunomodulation of natural adipocytes by M. tuberculosis. The bacilli could be isolated form visceral, subcutaneous, peri renal and mesenteric adipose depots of immunocompetent mice infected with M. tuberculosis intravenously. The bacilli could be isolated from adipocytes and the stromal vascular fraction, even though the numbers were significantly higher in the latter. The bacterial burden in the adipose depots was comparable to those in lungs in the early phase of infection. But with time, the burden in the adipose depots was either decreased or kept under control, despite the increasing burden in the lungs. Infected mice treated with standard anti tubercular drugs, despite effective elimination of bacterial loads in the lungs, continued to harbour M. tuberculosis in adipose depots at loads similar to untreated mice in the late infection phase.

  6. Cellular origins of cold-induced brown adipocytes in adult mice.

    Science.gov (United States)

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment. PMID:25392270

  7. The adipose tissue in farm animals: a proteomic approach.

    Science.gov (United States)

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura; Ceciliani, Fabrizio

    2014-03-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal structure for the mammary gland and on its role in participating in and regulating of energy metabolism and other functions. Moreover, as pig has recently become an important model organism to study human diseases, the knowledge of adipose tissue metabolism in pig is relevant for the study of obesity and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in

  8. Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice.

    Science.gov (United States)

    Vishvanath, Lavanya; MacPherson, Karen A; Hepler, Chelsea; Wang, Qiong A; Shao, Mengle; Spurgin, Stephen B; Wang, Margaret Y; Kusminski, Christine M; Morley, Thomas S; Gupta, Rana K

    2016-02-01

    The expansion of white adipose tissue (WAT) in obesity involves de novo differentiation of new adipocytes; however, the cellular origin of these cells remains unclear. Here, we utilize Zfp423(GFP) reporter mice to characterize adipose mural (Pdgfrβ(+)) cells with varying levels of the preadipocyte commitment factor Zfp423. We find that adipose tissue contains distinct mural populations, with levels of Zfp423 distinguishing adipogenic from inflammatory-like mural cells. Using our "MuralChaser" lineage tracking system, we uncover adipose perivascular cells as developmental precursors of adipocytes formed in obesity, with adipogenesis and precursor abundance regulated in a depot-dependent manner. Interestingly, Pdgfrβ(+) cells do not significantly contribute to the initial cold-induced recruitment of beige adipocytes in WAT; it is only after prolonged cold exposure that these cells differentiate into beige adipocytes. These results provide genetic evidence for a mural cell origin of white adipocytes in obesity and suggest that beige adipogenesis may originate from multiple sources.

  9. Brown adipose tissue in cetacean blubber.

    Science.gov (United States)

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  10. Brown adipose tissue in cetacean blubber.

    Directory of Open Access Journals (Sweden)

    Osamu Hashimoto

    Full Text Available Brown adipose tissue (BAT plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1, within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool

  11. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    OpenAIRE

    Ching Sheng, Chu; Ki Rok, Kwon; Tae Jin, Rhim; Dong Heui, Kim

    2008-01-01

    Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper ...

  12. Angiotensinogen gene silencing reduces markers of inflammation and lipid accumulation in adipocytes

    Directory of Open Access Journals (Sweden)

    Wenting eXin

    2013-03-01

    Full Text Available Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system (RAS to the pathogenesis of obesity, inflammation and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipocytes, stably transfected with Agt-shRNA or scrambled Sc-shRNAcas a control. Transfected preadipocytes were differentiated and used to investigate the role of adipose Agt through microarray and PCR analyses and adipokine profiling. As expected, Agt gene silencing significantly reduced the expression of Agt and its hormone product angiotensin II (Ang II, as well as lipid accumulation in 3T3-L1 adipocytes. Microarray studies identified several genes involved in lipid metabolism and inflammatory pathways which were down-regulated by Agt gene inactivation, such as glycerol-3-phosphate dehydrogenase 1 (Gpd1, serum amyloid A 3 (Saa3, nucleotide-binding oligomerization domain containing 1 (Nod1 and signal transducer and activator of transcription 1 (Stat1. Mouse adipogenesis PCR arrays revealed lower expression levels of adipogenic/lipogenic genes such as peroxisome proliferator activated receptor gamma (Pparg, sterol regulatory element binding transcription factor 1 (Srebf1, adipogenin (Adig, and fatty acid binding protein 4 (Fabp4. Further, silencing of Agt gene significantly lowered expression of pro-inflammatory adipokines including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, and monocyte chemotactic protein-1 (MCP-1. In conclusion, this study directly demonstrates critical effects of Agt in adipocyte metabolism and inflammation and further support a potential role for adipose Agt in the pathogenesis of obesity-associated metabolic alterations.

  13. Effect of hypoxia on metabolic markers and gene expression HIF-1 α in adipocytes

    OpenAIRE

    Younes, Noura B.

    2015-01-01

    Background: Docosahexaenoic acid (DHA; omega-3 fatty acid) has been reported to have potential anti-obesity properties. Hypoxia is a condition that results from the excessive expansion of white adipose tissue resulting in obesity-related conditions including insulin resistance, inflammation and oxidative stress. Methods: The objective of this study was to test the effects of DHA on the hypoxia responses (1.0 % for 24 hours) of 3T3-L1 adipocytes with a focus on oxidative stress, inflammation, ...

  14. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein

    OpenAIRE

    Shen, Wen-Jun; Sridhar, Kunju; Bernlohr, David A.; Fredric B Kraemer

    1999-01-01

    Hormone-sensitive lipase (HSL) is a cytosolic neutral lipase that functions as the rate-limiting enzyme for the mobilization of free fatty acids in adipose tissue. By using the yeast two-hybrid system to examine the potential interaction of HSL with other cellular proteins, evidence is provided to demonstrate a direct interaction of HSL with adipocyte lipid-binding protein (ALBP), a member of the family of intracellular lipid-binding proteins that binds fatty acids, retinoids, and other hydro...

  15. Signaling pathways involved in LPS induced TNFalpha production in human adipocytes

    Directory of Open Access Journals (Sweden)

    Festy Franck

    2010-01-01

    Full Text Available Abstract Background The development of obesity has been linked to an inflammatory process, and the role of adipose tissue in the secretion of pro-inflammatory molecules such as IL-6 or TNFalpha has now been largely confirmed. Although TNFalpha secretion by adipose cells is probably induced, most notably by TLR ligands, the activation and secretion pathways of this cytokine are not yet entirely understood. Moreover, given that macrophagic infiltration is a characteristic of obesity, it is difficult to clearly establish the level of involvement of the different cellular types present within the adipose tissue during inflammation. Methods Primary cultures of human adipocytes and human peripheral blood mononuclear cells were used. Cells were treated with a pathogen-associated molecular pattern: LPS, with and without several kinase inhibitors. Western blot for p38 MAP Kinase was performed on cell lysates. TNFalpha mRNA was detected in cells by RT-PCR and TNFalpha protein was detected in supernatants by ELISA assays. Results We show for the first time that the production of TNFalpha in mature human adipocytes is mainly dependent upon two pathways: NFkappaB and p38 MAP Kinase. Moreover, we demonstrate that the PI3Kinase pathway is clearly involved in the first step of the LPS-pathway. Lastly, we show that adipocytes are able to secrete a large amount of TNFalpha compared to macrophages. Conclusion This study clearly demonstrates that the LPS induced activation pathway is an integral part of the inflammatory process linked to obesity, and that adipocytes are responsible for most of the secreted TNFalpha in inflamed adipose tissue, through TLR4 activation.

  16. Insulin Stimulates Interleukin-6 Expression and Release in LS14 Human Adipocytes through Multiple Signaling Pathways

    OpenAIRE

    LaPensee, Christopher R.; Hugo, Eric R.; Ben-Jonathan, Nira

    2008-01-01

    IL-6 is an important cytokine that regulates both immune and metabolic functions. Within adipose tissue, preadipocytes produce significant amounts of IL-6, but little is known about the factors or mechanisms that regulate IL-6 production in these cells. Using LS14, a newly developed human adipocyte cell line, our objective was to determine the mechanisms by which insulin stimulates IL-6 production and release in preadipocytes. Insulin increased IL-6 gene expression and secretion in a time- an...

  17. Inhibition of mouse brown adipocyte differentiation by second-generation antipsychotics

    OpenAIRE

    Oh, Jee-Eun; Cho, Yoon Mi; Kwak, Su-Nam; Kim, Jae-Hyun; Lee, Kyung Won; Jung, Hyosan; Jeong, Seong-Whan; Kwon, Oh-Joo

    2012-01-01

    Brown adipose tissue is specialized to burn lipids for thermogenesis and energy expenditure. Second-generation antipsychotics (SGA) are the most commonly used drugs for schizophrenia with several advantages over first-line drugs, however, it can cause clinically-significant weight gain. To reveal the involvement of brown adipocytes in SGA-induced weight gain, we compared the effect of clozapine, quetiapine, and ziprasidone, SGA with different propensities to induce weight gain, on the differe...

  18. Positive regulation by GABA(BR1 subunit of leptin expression through gene transactivation in adipocytes.

    Directory of Open Access Journals (Sweden)

    Yukari Nakamura

    Full Text Available BACKGROUND: The view that γ-aminobutyric acid (GABA plays a functional role in non-neuronal tissues, in addition to an inhibitory neurotransmitter role in the mammalian central nervous system, is prevailing, while little attention has been paid to GABAergic signaling machineries expressed by adipocytes to date. In this study, we attempted to demonstrate the possible functional expression of GABAergic signaling machineries by adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: GABA(B receptor 1 (GABA(BR1 subunit was constitutively expressed by mouse embryonic fibroblasts differentiated into adipocytes and adipocytic 3T3-L1 cells in culture, as well as mouse white adipose tissue, with no responsiveness to GABA(BR ligands. However, no prominent expression was seen with mRNA for GABA(BR2 subunit required for heteromeric orchestration of the functional GABA(BR by any adipocytic cells and tissues. Leptin mRNA expression was significantly and selectively decreased in adipose tissue and embryonic fibroblasts, along with drastically reduced plasma leptin levels, in GABA(BR1-null mice than in wild-type mice. Knockdown by siRNA of GABA(BR1 subunit led to significant decreases in leptin promoter activity and leptin mRNA levels in 3T3-L1 cells. CONCLUSIONS/SIGNIFICANCE: Our results indicate that GABA(BR1 subunit is constitutively expressed by adipocytes to primarily regulate leptin expression at the transcriptional level through a mechanism not relevant to the function as a partner of heterodimeric assembly to the functional GABA(BR.

  19. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes.

    Science.gov (United States)

    Olli, K; Lahtinen, S; Rautonen, N; Tiihonen, K

    2013-01-14

    Obesity is characterised by a state of chronic low-grade inflammation and the elevated circulating and tissue levels of inflammatory markers, including inflammation-related adipokines, released from white adipose tissue. The expression and release of these adipokines generally rises as the adipose tissue expands and hypoxic conditions start to develop within the tissue. Here, the effect of betaine, a trimethylglycine having a biological role as an osmolyte and a methyl donor, on the expression of inflammation-related markers was tested in human adipocytes under hypoxia. Differentiated adipocytes were cultivated under low (1 %) oxygen tension for 8-20 h. The expression of different adipokines, including IL-6, leptin, PPARγ, TNF-α and adiponectin, was measured by quantitative PCR by determining the relative mRNA level from the adipocytes. Hypoxia, in general, led to a decrease in the expression of PPARγ mRNA in human adipocytes, whereas the expression levels of leptin and IL-6 mRNA were substantially increased by hypoxia. The cultivation of adipocytes under hypoxia also led to a reduction in the expression of TNF-α mRNA. The results showed that hypoxia increased the relative quantification of leptin gene transcription, and that betaine (250 μmol/l) reduced this effect, caused by low oxygen conditions. Under hypoxia, betaine also reduced the mRNA level of the pro-inflammatory markers IL-6 and TNF-α. These results demonstrate that the extensive changes in the expression of inflammation-related adipokines in human adipocytes caused by hypoxia can be diminished by the presence of physiologically relevant concentrations of betaine. PMID:22424556

  20. Retinyl ester hydrolysis and retinol efflux from BFC-1beta adipocytes.

    Science.gov (United States)

    Wei, S; Lai, K; Patel, S; Piantedosi, R; Shen, H; Colantuoni, V; Kraemer, F B; Blaner, W S

    1997-05-30

    Adipose tissue is an important storage depot for retinol, but there are no data regarding retinol mobilization from adipose stores. To address this, dibutyryl cAMP was provided to murine BFC-1beta adipocytes and its effects on retinol efflux assessed. High performance liquid chromatography analysis of retinol and retinyl esters in adipocytes and media indicated that cAMP stimulated, in a time- and dose-dependent manner, retinol accumulation in the culture media and decreased cellular retinyl ester concentrations. Study of adipocyte retinol-binding protein synthesis and secretion indicated that cAMP-stimulated retinol efflux into the media did not result from increased retinol-retinol-binding protein secretion but was dependent on the presence of fetal bovine serum in the culture media. Since our data suggested that retinyl esters can be hydrolyzed by a cAMP-dependent enzyme like hormone-sensitive lipase (HSL), in separate studies, we purified a HSL-containing fraction from BFC-1beta adipocytes and demonstrated that it catalyzed retinyl palmitate hydrolysis. Homogenates of Chinese hamster ovary cells overexpressing HSL catalyzed retinyl palmitate hydrolysis in a time-, protein-, and substrate-dependent manner, with an apparent Km for retinyl palmitate of 161 microM, whereas homogenates from control Chinese hamster ovary cells did not.