WorldWideScience

Sample records for adipocyte differentiation requires

  1. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    Science.gov (United States)

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  2. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.

    Science.gov (United States)

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J; Nguyen, Long N; Chai, Xiaoran; Huang, Cher X; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L; Lodish, Harvey; Sun, Lei

    2014-12-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.

  3. Adipocyte differentiation and leptin expression

    DEFF Research Database (Denmark)

    Hwang, C S; Loftus, T M; Mandrup, S

    1997-01-01

    , most notably those of the C/EBP and PPAR families, which combine to regulate each other and to control the expression of adipocyte-specific genes. One such gene, i.e. the obese gene, was recently identified and found to encode a hormone, referred to as leptin, that plays a major role in the regulation...... of energy intake and expenditure. The hormonal and transcriptional control of adipocyte differentiation is discussed, as is the role of leptin and other factors secreted by the adipocyte that participate in the regulation of adipose homeostasis....

  4. Transcriptional networks controlling adipocyte differentiation

    DEFF Research Database (Denmark)

    Siersbæk, R; Mandrup, Susanne

    2011-01-01

    Adipocyte differentiation is regulated by a complex cascade of signals that drive the transcriptional reprogramming of the fibroblastic precursors. Genome-wide analyses of chromatin accessibility and binding of adipogenic transcription factors make it possible to generate "snapshots" of the trans...

  5. Modulation of chromatin access during adipocyte differentiation

    DEFF Research Database (Denmark)

    Mandrup, Susanne; Hager, Gordon L

    2012-01-01

    Cellular development requires reprogramming of the genome to modulate the gene program of the undifferentiated cell and allow expression of the gene program unique to differentiated cells. A number of key transcription factors involved in this reprogramming of preadipocytes to adipocytes have bee...

  6. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes

    DEFF Research Database (Denmark)

    Petersen, Rasmus Koefoed; Madsen, Lise; Pedersen, Lone Møller;

    2008-01-01

    Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for cAMP-dependent ......Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for c......AMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho...

  7. PPARgamma in adipocyte differentiation and metabolism

    DEFF Research Database (Denmark)

    Siersbaek, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2010-01-01

    Adipocyte differentiation is controlled by a tightly regulated transcriptional cascade in which PPARgamma and members of the C/EBP family are key players. Here we review the roles of PPARgamma and C/EBPs in adipocyte differentiation with emphasis on the recently published genome-wide binding prof...

  8. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Indian Academy of Sciences (India)

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  9. The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation

    DEFF Research Database (Denmark)

    Brier, Ann-Sofie B; Loft, Anne; Madsen, Jesper G S;

    2016-01-01

    The KDM5 family of histone demethylases removes the H3K4 tri-methylation (H3K4me3) mark frequently found at promoter regions of actively transcribed genes and is therefore generally considered to contribute to corepression. In this study, we show that knockdown (KD) of all expressed members...... of the KDM5 family in white and brown preadipocytes leads to deregulated gene expression and blocks differentiation to mature adipocytes. KDM5 KD leads to a considerable increase in H3K4me3 at promoter regions; however, these changes in H3K4me3 have a limited effect on gene expression per se. By contrast......, genome-wide analyses demonstrate that KDM5A is strongly enriched at KDM5-activated promoters, which generally have high levels of H3K4me3 and are associated with highly expressed genes. We show that KDM5-activated genes include a large set of cell cycle regulators and that the KDM5s are necessary...

  10. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    Directory of Open Access Journals (Sweden)

    Aileen Balkow

    2015-08-01

    Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

  11. Effects of parabens on adipocyte differentiation.

    Science.gov (United States)

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  12. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow

    Directory of Open Access Journals (Sweden)

    Huang Hai-Yan

    2010-05-01

    Full Text Available Abstract Background Adipocyte hyperplasia is associated with obesity and arises due to adipogenic differentiation of resident multipotent stem cells in the vascular stroma of adipose tissue and remote stem cells of other organs. The mechanistic characterization of adipocyte differentiation has been researched in murine pre-adipocyte models (i.e. 3T3-L1 and 3T3-F442A, revealing that growth-arrest pre-adipocytes undergo mitotic clonal expansion and that regulation of the differentiation process relies on the sequential expression of three key transcription factors (C/EBPβ, C/EBPα and PPARγ. However, the mechanisms underlying adipocyte differentiation from multipotent stem cells, particularly human mesenchymal stem cells (hBMSCs, remain poorly understood. This study investigated cell cycle regulation and the roles of C/EBPβ, C/EBPα and PPARγ during adipocyte differentiation from hBMSCs. Results Utilising a BrdU incorporation assay and manual cell counting it was demonstrated that induction of adipocyte differentiation in culture resulted in 3T3-L1 pre-adipocytes but not hBMSCs undergoing mitotic clonal expansion. Knock-down and over-expression assays revealed that C/EBPβ, C/EBPα and PPARγ were required for adipocyte differentiation from hBMSCs. C/EBPβ and C/EBPα individually induced adipocyte differentiation in the presence of inducers; PPARγ alone initiated adipocyte differentiation but the cells failed to differentiate fully. Therefore, the roles of these transcription factors during human adipocyte differentiation are different from their respective roles in mouse. Conclusions The characteristics of hBMSCs during adipogenic differentiation are different from those of murine cells. These findings could be important in elucidating the mechanisms underlying human obesity further.

  13. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  14. Genistein inhibits differentiation of primary human adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Della-Fera, Mary Anne; Hausman, Dorothy B; Rayalam, Srujana; Ambati, Suresh; Baile, Clifton A

    2009-02-01

    Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.

  15. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation.

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Oh, Kyoung-Jin; Park, Anna; Lee, Da Som; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-07-01

    Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393].

  16. Dietary relevant mixtures of phytoestrogens inhibit adipocyte differentiation in vitro

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Specht, Ina Olmer; Boberg, Julie

    2013-01-01

    Phytoestrogens (PEs) are naturally occurring plant components, with the ability to induce biological responses in vertebrates by mimicking or modulating the action of endogenous hormones.Single isoflavones have been shown to affect adipocyte differentiation, but knowledge on the effect of dietary...... as tested for their PPARγ activating abilities. The results showed that mixtures of isoflavonoid parent compounds and metabolites, respectively, a mixture of lignan metabolites, as well as coumestrol concentration-dependently inhibited adipocyte differentiation. Furthermore, a mixture of isoflavonoid parent...

  17. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells.

    Science.gov (United States)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARgamma agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARgamma-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  18. 10e12z CLA alters adipocyte differentiation and adipocyte cytokine expression and induces macrophage proliferation.

    Science.gov (United States)

    Belda, Benjamin J; Thompson, Jerry T; Eser, Pinar O; Vanden Heuvel, John P

    2012-05-01

    The trans-10, cis-12 (10e12z) conjugated linoleic acid (CLA) isomer of CLA is responsible for loss of lipid storage or adipose tissue in vitro or in vivo. This isomer also induces inflammatory signaling in both mouse and human adipocytes in vitro. However, when these events occur and whether they are significant enough to affect other cell types are unclear. In these experiments, the 3T3-L1 cell line has been used to examine the interaction between inflammatory signaling and decreased differentiation or lipid storage induced by 10e12z CLA. In assays measuring both lipid accumulation and gene expression, differentiating 3T3-L1 cells exhibit concurrent induction of inflammatory signaling, as measured by cyclooxygenase-2 expression, and a decrease in adipocyte marker gene expression. Furthermore, in fully differentiated adipocytes, as identified in microarray assays and confirmed with real-time polymerase chain reaction, 10e12z CLA also significantly affected expression of both matrix metalloprotein-3 (MMP-3), collagen VI α 3 ColVI alpha 3 (VIα3) and the cytokine epiregulin, demonstrating that the effects of 10e12z broadly impact adipocyte function. In agreement with other experimental systems, 10e12z CLA inhibited RAW 264.7 cell proliferation; however, in response to adipocyte-conditioned media, 10e12z-CLA-treated adipocytes induced proliferation of this cell line, suggesting that the effect of 10e12z CLA is context dependent. These results are largely consistent with the known activation of the inflammatory mediator nuclear factor-κB in adipocytes in vitro and in vivo by 10e12z CLA treatment and demonstrate that adipose is an important target tissue of this isomer that impacts other cell types.

  19. Differentiation of Pre-Adipocytes in Modelled Microgravity

    Science.gov (United States)

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  20. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  1. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells.

    Science.gov (United States)

    Lansley, Sally M; Searles, Richelle G; Hoi, Aina; Thomas, Carla; Moneta, Helena; Herrick, Sarah E; Thompson, Philip J; Newman, Mark; Sterrett, Gregory F; Prêle, Cecilia M; Mutsaers, Steven E

    2011-10-01

    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm including osteoblasts and adipocytes. To examine this, a functional assay of bone formation and an adipogenic assay were performed in vitro with primary rat and human mesothelial cells maintained in osteogenic or adipogenic medium (AM) for 0-26 days. Mesothelial cells expressed increasing levels of alkaline phosphatase, an early marker of the osteoblast phenotype, and formed mineralized bone-like nodules. Mesothelial cells also accumulated lipid indicative of a mature adipocyte phenotype when cultured in AM. All cells expressed several key osteoblast and adipocyte markers, including osteoblast-specific runt-related transcription factor 2, and demonstrated changes in mRNA expression consistent with epithelial-to-mesenchymal transition. In conclusion, these studies confirm that mesothelial cells have the capacity to differentiate into osteoblast- and adipocyte-like cells, providing definitive evidence of their multipotential nature. These data strongly support mesothelial cell differentiation as the potential source of different tissue types in MM tumours and other serosal pathologies, and add support for the use of mesothelial cells in regenerative therapies.

  2. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-pil [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Chung, Sung Woon [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Hong, Ki Whan; Kim, Chi Dae [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Bae, Sun Sik, E-mail: sunsik@pusan.ac.kr [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  3. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged......, the presence of the PPARgamma agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin...... sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARgamma-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein...

  4. Regulatory circuits controlling white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Kristiansen, Karsten

    2006-01-01

    Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP......1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes......, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since...

  5. Control of Adipocyte Differentiation in Different Fat Depots; Implications for Pathophysiology or Therapy

    Directory of Open Access Journals (Sweden)

    Xiuquan eMa

    2015-01-01

    Full Text Available Adipocyte differentiation and its impact on restriction or expansion of particular adipose tissue depots has physiological and pathophysiological significance in view of the different functions of these depots. Brown or beige fat [BAT] expansion can enhance thermogenesis, lipid oxidation, insulin sensitivity and glucose tolerance; conversely expanded visceral fat [VAT] is associated with insulin resistance, low grade inflammation, dyslipidaemia and cardiometabolic risk. The largest depot, subcutaneous white fat [WAT], has important beneficial characteristics including storage of lipid out of harms way and secretion of adipokines, especially leptin and adiponectin, with positive metabolic effects including lipid oxidation, energy utilisation, enhanced insulin action and an anti-inflammatory role. The absence of these functions in lipodystrophies leads to major metabolic disturbances. An ability to expand WAT adipocyte differentiation would seem an important defence mechanism against the detrimental effects of energy excess and limit harmful accumulation of lipid in ectopic sites, such as liver and muscle.Adipocyte differentiation involves a transcriptional cascade with PPARg being most important in WAT but less so in VAT, with increased angiogenesis also critical. The transcription factor, Islet1, is fairly specific to VAT and in vitro inhibits adipocyte differentiation. The physiological importance of Islet1 requires further study. Basic control of differentiation is similar in BAT but important differences include the effect of PGC-1a on mitochondrial biosynthesis and upregulation of UCP1; also PRDM16 plays a pivotal role in expression of the BAT phenotype.Modulation of the capacity or function of these different adipose tissue depots, by altering adipocyte differentiation or other means, holds promise for interventions that can be helpful in human disease, particularly cardiometabolic disorders associated with the world wide explosion of

  6. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  7. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Directory of Open Access Journals (Sweden)

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  8. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels.

    Science.gov (United States)

    Palmieri, Erika Mariana; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Iacobazzi, Vito; Castegna, Alessandra

    2014-12-20

    The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued following GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipocytes to differentially respond to LPS during differentiation negatively correlates to GS expression and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism through which mature adipocytes control the inflammatory response.

  9. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2012-01-01

    Full Text Available Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2 and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2 and CCAAT/enhancer-binding protein (C/EBP α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.

  10. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus;

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity....../Akt are significantly increased in pRB-deficient MEFs both before and after the addition of adipogenic inducers. Consistently, we detected higher levels of activated Ras in MEFs lacking pRB. Suppression of ERK1/2 activation by the MEK inhibitor UO126 restored the ability of pRB-deficient MEFs to undergo adipocyte...... differentiation, as manifested by expression of adipocyte marker genes and lipid accumulation. Furthermore and reflecting the elevated levels of activated PKB/Akt in the pRB-deficient MEFs, differentiation proceeded in an insulin-independent manner. In conclusion, we suggest that pRB plays a pivotal role...

  11. Annexin A3 as a negative regulator of adipocyte differentiation.

    Science.gov (United States)

    Watanabe, Takenori; Ito, Yoshimasa; Sato, Asuka; Hosono, Takashi; Niimi, Shingo; Ariga, Toyohiko; Seki, Taiichiro

    2012-10-01

    Annexin A3 is a protein belonging to the annexin family, and it is mainly present in cellular membranes as a phospholipid-binding protein that binds via the calcium ion. However, its physiological function remains to be clarified. We examined the expression of annexin A3 in mouse tissues and found for the first time that annexin A3 mRNA and its protein were expressed more strongly in adipose tissues than in other tissues. In adipose tissues, annexin A3-expressing cells were present in the stromal vascular fraction, and precisely identical to Pref-1-positive preadipocytes, Pref-1 being an epidermal growth factor repeat-containing transmembrane protein that inhibits adipogenesis. In 3T3-L1 cells, used as a model of adipogenesis, annexin A3 was down-regulated at an early phase of adipocyte differentiation, and this pattern paralleled that of Pref-1. Suppression of annexin A3 in these cells with siRNA caused elevation of the PPARγ2 mRNA level and lipid droplet accumulation. In conclusion, our data suggest that annexin A3 is a negative regulator of adipocyte differentiation.

  12. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus Koefoed; Kristiansen, Karsten

    2005-01-01

    A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain...... to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription...... factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease...

  13. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Madsen, Lise;

    2009-01-01

    BACKGROUND: The retinoblastoma protein (pRB) and p53 are crucial members of regulatory networks controlling the cell cycle and apoptosis, and a hallmark of virtually all cancers is dysregulation of expression or function of pRB or p53. Although they are best known for their role in cancer...... development, it is now evident that both are implicated in metabolism and cellular development. OBJECTIVE/METHODS: To review the role of pRB and p53 in adipocyte differentiation and function emphasizing that pRB and p53, via their effects on adipocyte development and function, play a role in the regulation...... of energy metabolism and homeostasis. RESULTS/CONCLUSIONS: pRB is required for adipose conversion and also involved in determining its mitochondrial capacity. p53 inhibits adipogenesis and results suggest that it is involved in maintaining function of adipose tissue....

  14. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Kwak, Minjeong; Oh, Kyoung-Jin; Chang, Won Seok; Min, Jeong-Ki; Lee, Sang Chul; Song, Nam Woong; Bae, Kwang-Hee

    2015-10-01

    Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.

  15. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Jørgensen, Claus; Petersen, Rasmus K;

    2004-01-01

    AMP sensitivity. Suppression of cAMP-dependent protein kinase activity in Rb(-/-)MEFs blocked the brown adipocyte-like gene expression pattern without affecting differentiation per se. Immunohistochemical studies revealed that pRB is present in the nuclei of white but not brown adipocyte precursor cells......Adipocyte precursor cells give raise to two major cell populations with different physiological roles: white and brown adipocytes. Here we demonstrate that the retinoblastoma protein (pRB) regulates white vs. brown adipocyte differentiation. Functional inactivation of pRB in wild-type mouse embryo...... fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate...

  16. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Sara Palacios-Ortega

    2015-07-01

    Full Text Available Background/Aims: Tumor necrosis factor-α (TNF-α-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1 is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. Methods: 3T3-L1 cells were differentiated (21 days in the presence TNF-α (10 ng/mL and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. Results: TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Conclusion: Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake.

  17. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes

    Science.gov (United States)

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    Background While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Methodology/Principal Findings Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Conclusion and Significance Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity. PMID:28036348

  18. Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid.

    Science.gov (United States)

    Garcia-Diaz, Diego F; Campion, Javier; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria J; Martinez, J Alfredo

    2012-04-01

    Antioxidant-based treatments have emerged as novel and interesting approaches to counteract fat accumulation in obesity and associated metabolic disturbances. Adipocytes from rats that were fed on chow or high-fat diet (HFD) for 50 d were isolated (primary adipocytes) and incubated (72 h) on low (LG; 5.6 mmol/L) or high (HG; 25 mmol/L) glucose levels, in the presence or absence of 1.6 nmol/L insulin and 200 μmol/L vitamin C (VC). Adipocytes from HFD-fed animals presented lower insulin-induced glucose uptake, lower lactate and glycerol release, and lower insulin-induced secretion of some adipokines as compared with controls. HG treatment restored the blunted response to insulin regarding apelin secretion in adipocytes from HFD-fed rats. VC treatment inhibited the levels of nearly all variables, irrespective of the adipocytes' dietary origin. The HG treatment reduced adipocyte viability, and VC protected from this toxic effect, although more drastically in control adipocytes. Summing up, in vivo chow or HFD intake determines a differential response to insulin and glucose treatments that appears to be dependent on the insulin-resistance status of the adipocytes, while VC modifies some responses from adipocytes independently of the previous dietary intake of the animals.

  19. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Science.gov (United States)

    Mul, Joram D; O'Duibhir, Eoghan; Shrestha, Yogendra B; Koppen, Arjen; Vargoviç, Peter; Toonen, Pim W; Zarebidaki, Eleen; Kvetnansky, Richard; Kalkhoven, Eric; Cuppen, Edwin; Bartness, Timothy J

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  20. Differentiation of human adipose-derived stem cells into brite (brown-in-white adipocytes

    Directory of Open Access Journals (Sweden)

    Didier F Pisani

    2011-11-01

    Full Text Available It is well established now that adult humans possess active brown adipose tissue which represents a potential pharmacological target to combat obesity and associated diseases. We had shown previously that human multipotent adipose-derived stem (hMADS cells are able to differentiate into cells which exhibit the key properties of human white adipocytes, and to convert into functional brown adipocytes upon PPARγ activation that could explain UCP1-expressing cells within islets surrounded by white adipocytes. Herein we further characterize hMADS cells differentiation into brown adipocytes that behave like mouse brite adipocytes previously described. We analyzed the expression of gene markers known to be associated with mouse white and brown adipocytes. When shifting from a white to a brown fat cell phenotype, the striking enhancement of uncoupling activity appears mainly due, if not all, to an increase in UCP1 expression whereas induction of UCP2 is weak and UCP3 expression is unchanged. Conversion of white hMADS adipocytes is dependent on PPARγ activation with rosiglitazone as the most potent agonist and is inhibited by a PPARγ antagonist. Furthermore our data show that, in contrast to mouse cellular models, hMADS cells conversion into brown adipocytes is not induced by BMP7 treatment and not modulated by activation of the Hedgehog pathway. No primary or clonal precursor cells of human brown adipocytes have been obtained so far that can be used as a tool to develop therapeutic drugs and to gain further insights into the molecular mechanisms of brown adipogenesis in humans. Thus hMADS cells represent a suitable cell model to delineate the formation and/or the uncoupling capacity of human brown/brite adipocytes that could help to dissipate caloric excess intake among individuals.

  1. Berberine increases expression of GATA-2 and GATA-3 during inhibition of adipocyte differentiation.

    Science.gov (United States)

    Hu, Y; Davies, G E

    2009-09-01

    It is known that a number of transcription factors are key regulators in the complex process of adipocyte differentiation including peroxisome proliferator activated receptor gamma (PPARgamma) and the CCAAT enhancer binding protein alpha (C/EBPalpha). Studies have demonstrated that in pre-adipocyte 3T3-L1 cells constitutive expression of the DNA binding proteins GATA-2 and GATA-3 results in protein/protein interactions with C/EBPalpha resulting in down regulation of PPARgamma and subsequent suppressed adipocyte differentiation with cells trapped at the pre-adipocyte stage. Thus it appears that GATA-2 and GATA-3 are of critical importance in regulating adipocyte differentiation through molecular interactions with PPARgamma and C/EBPalpha. Recent reports suggest that berberine, an isoquinoline derivative alkaloid isolated from many medicinal herbs prevents differentiation of 3T3-L1 cells via a down regulation of PPARgamma and C/EBPalpha expression. The aim of this study was to determine the effect of berberine on GATA-2 and 3 gene and protein expression levels during differentiation of 3T3-L1 cells. MTT (Methylthiazolyldiphenyl-tetrazolium bromide) was used to detect the cytotoxic effects of berberine on the viability of 3T3-L1 cells during proliferation and differentiation. Differentiation of 3T3-L1 cells was monitored by Oil Red O staining and RT-PCR of PPARgamma and C/EBPalpha and the expression of GATA-2 and 3 was determined by RT-PCR and Western Blot. Results show that following treatment with 8microM berberine the mRNA and protein expression levels of GATA-2 and 3 were elevated and accompanied by inhibited adipocyte differentiation. These results may lead to the use of berberine to target the induction of specific genes such as GATA-2 and GATA-3 which affect adipocyte differentiation.

  2. Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated β-catenin stabilization.

    Science.gov (United States)

    Kim, Won Kon; Choi, Hye-Ryung; Park, Sung Goo; Ko, Yong; Bae, Kwang-Hee; Lee, Sang Chul

    2012-02-01

    Brown adipocytes play an important role in regulating energy balance, and there is a good correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism of white adipocyte differentiation has been well characterized, brown adipogenesis has not been studied extensively. Moreover, extracellular factors that regulate brown adipogenic differentiation are not fully understood. Here, we assessed the mechanism of the regulatory action of myostatin in brown adipogenic differentiation using primary brown preadipocytes. Our results clearly showed that differentiation of brown adipocytes was significantly inhibited by myostatin treatment. In addition, myostatin-induced suppression of brown adipogenesis was observed during the early phase of differentiation. Myostatin induced the phosphorylation of Smad3, which led to increased β-catenin stabilization. These effects were blocked by treatment with a Smad3 inhibitor. Expression of brown adipocyte-related genes, such as PPAR-γ, UCP-1, PGC-1α, and PRDM16, were dramatically down-regulated by treatment with myostatin, and further down-regulated by co-treatment with a β-catenin activator. Taken together, the present study demonstrated that myostatin is a potent negative regulator of brown adipogenic differentiation by modulation of Smad3-induced β-catenin stabilization. Our findings suggest that myostatin could be used as an extracellular factor in the control of brown adipocyte differentiation.

  3. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Francoz, S.

    2012-01-01

    The role of the E3 ubiquitin ligase murine double minute 2 (Mdm2) in regulating the stability of the p53 tumor suppressor is well documented. By contrast, relatively little is known about p53-independent activities of Mdm2 and the role of Mdm2 in cellular differentiation. Here we report a novel...... role for Mdm2 in the initiation of adipocyte differentiation that is independent of its ability to regulate p53. We show that Mdm2 is required for cAMP-mediated induction of CCAAT/enhancer-binding protein delta (C/EBP delta) expression by facilitating recruitment of the cAMP regulatory element......-binding protein (CREB) coactivator, CREB-regulated transcription coactivator (Crtc2)/TORC2, to the c/ebp delta promoter. Our findings reveal an unexpected role for Mdm2 in the regulation of CREB-dependent transactivation during the initiation of adipogenesis. As Mdm2 is able to promote adipogenesis...

  4. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    Science.gov (United States)

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  5. Expression of Caveolin 1 is enhanced by DNA demethylation during adipocyte differentiation. status of insulin signaling.

    Science.gov (United States)

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Milagro, Fermín Ignacio; Martínez, José Alfredo; de Miguel, Carlos

    2014-01-01

    Caveolin 1 (Cav-1) is an essential constituent of adipocyte caveolae which binds the beta subunit of the insulin receptor (IR) and is implicated in the regulation of insulin signaling. We have found that, during adipocyte differentiation of 3T3-L1 cells the promoter, exon 1 and first intron of the Cav-1 gene undergo a demethylation process that is accompanied by a strong induction of Cav-1 expression, indicating that epigenetic mechanisms must have a pivotal role in this differentiation process. Furthermore, IR, PKB-Akt and Glut-4 expression are also increased during the differentiation process suggesting a coordinated regulation with Cav-1. Activation of Cav-1 protein by phosphorylation arises during the differentiation process, yet in fully mature adipocytes insulin is no longer able to significantly increase Cav-1 phosphorylation. However, these long-term differentiated cells are still able to respond adequately to insulin, increasing IR and PKB-Akt phosphorylation and glucose uptake. The activation of Cav-1 during the adipocyte differentiation process could facilitate the maintenance of insulin sensitivity by these fully mature adipocytes isolated from additional external stimuli. However, under the influence of physiological conditions associated to obesity, such as chronic inflammation and hypoxia, insulin sensitivity would finally be compromised.

  6. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation.

  7. Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes.

    Science.gov (United States)

    Zovich, D C; Orologa, A; Okuno, M; Kong, L W; Talmage, D A; Piantedosi, R; Goodman, D S; Blaner, W S

    1992-07-15

    Recently, we demonstrated that adipose tissue plays an important role in retinol storage and retinol-binding protein (RBP) synthesis. Our data suggested that RBP expression in adipose tissue is dependent on the state of adipocyte differentiation. To examine this possibility, we explored the differentiation-dependent expression of RBP using BFC-1 beta preadipocytes, which can be stimulated to undergo adipose differentiation. Total RNA was isolated from undifferentiated (preadipocytes) and differentiated (adipocytes) BFC-1 beta cells and analyzed by Northern blotting. RBP mRNA was not detected in the preadipocytes, but considerable RBP mRNA was present in differentiated BFC-1 beta cells. In BFC-1 beta cells, induced to differentiate with insulin and thyroid hormone, RBP mRNA was first detected after 4 days, reached a maximum level by day 10, and remained at this maximum level for at least 2 more days. Cellular retinol-binding protein was expressed at low levels in the BFC-1 beta preadipocytes and the level of expression increased for 6 days after induction to differentiate and slowly declined on later days. Neither the maximum level of RBP expression nor the day on which this level was reached was influenced by the level of retinol provided in the BFC-1 beta culture medium. BFC-1 beta cells secreted newly synthesized RBP into the culture medium at a rate of 43 +/- 14 ng RBP/24 h/10(6) adipocytes. When the BFC-1 beta adipocytes were provided 1.0 microM retinol in the medium, they accumulated the retinol and synthesized retinyl esters. These studies with BFC-1 beta cells confirm that RBP synthesis and secretion and retinol accumulation are intrinsic properties of differentiated adipocytes. Furthermore, they suggest that RBP and cellular retinol-binding protein gene expression are regulated as part of a package of genes which are modulated during adipocyte differentiation.

  8. Insulin like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Nøhr, Jane; Jensen, Charlotte Harken;

    2003-01-01

    of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44......, and adipocyte differentiation in a dose-dependent manner. Udgivelsesdato: 2003-Jun-6......Pref-1 is a highly glycosylated Delta-like transmembrane protein containing six epidermal growth factor-like repeats in the extracellular domain. Pref-1 is abundantly expressed in preadipocytes, but expression is down-regulated during adipocyte differentiation. Forced expression of Pref-1 in 3T3-L1...

  9. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    The differentiation of white and brown fat cells is controlled by a similar set of transcription factors, including PPARgamma and C/EBPalpha. However, despite many similarities between the two types of fat cells, they carry out essentially opposite functions in vivo, with white adipocytes being...... the major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation...... of adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein...

  10. Differential effects of a gelatinase inhibitor on adipocyte differentiation and adipose tissue development.

    Science.gov (United States)

    Van Hul, Matthias; Bauters, Dries; Lijnen, Roger H

    2013-10-01

    (1) A potential role for the gelatinases in adipocyte differentiation in vitro and adipose tissue development in vivo was investigated using the gelatinase inhibitor tolylsam ((R)-3-methyl-2-[4-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-benzenesulphonylamino]-butyric acid). (2) Differentiation of murine 3T3-F442A preadipocytes (12 days after reaching confluence) into mature adipocytes in vitro was promoted in the presence of tolylsam (10-100 μmol/L). (3) De novo development of fat tissue in nude mice injected with preadipocytes and kept on a high-fat diet was significantly impaired following treatment with tolylsam (100 mg/kg per day for 4 weeks). (4) Adipose tissue development in matrix metalloproteinase (MMP)-2 deficient mice, kept on a high-fat diet, was significantly impaired following administration of tolylsam (100 mg/kg per day for 15 weeks). This was associated with markedly enhanced metabolic rate. (5) Treatment of MMP-2-deficient mice with tolylsam (100 mg/kg per day, 15 weeks) was associated with the preservation of collagen and a reduction in blood vessel size in adipose tissues in vivo. (6) Furthermore, plasma levels of triglycerides and free fatty acids were reduced by tolylsam treatment of MMP-2-deficient mice (100 mg/kg per day, 15 weeks), whereas nutrient adsorption in the intestine was not affected. (7) The results of the present study indicate that tolylsam promotes preadipocyte differentiation in vitro, but impairs adipose tissue development in vivo.

  11. Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes

    Directory of Open Access Journals (Sweden)

    Peraldi Pascal

    2008-02-01

    Full Text Available Abstract Background Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. Results Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. Conclusion These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.

  12. Classical and alternative NF-κB signaling cooperate in regulating adipocyte differentiation and function

    DEFF Research Database (Denmark)

    Weidemann, A.; Lovas, A.; Rauch, A.

    2016-01-01

    Background and objective:Inflammation of adipose tissue (AT) is a central mediator of insulin resistance. However, the molecular mechanisms triggered by inflammatory cells are not fully understood. The aim of this study was to analyze the metabolic functions of lymphotoxin-β-receptor (LTβ...... to adipocytes. The molecular mechanism was elucidated by chromatin immunoprecipitation and combinatorial treatment with α-LTβR and tumor necrosis factor (TNF).Results:RelB FatKO mice showed improved insulin sensitivity despite increased adiposity and adipocyte hypertrophy. LTβR-induced activation of p52-Rel.......Conclusions:Our data describe an anti-adipogenic action of LTβR signaling and a novel synergism of alternative and classical NF-κB signaling in the regulation of adipocytes. In conclusion, this strong synergism between the two NF-κB pathways shows a method to inhibit adipocyte differentiation and to improve insulin...

  13. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Directory of Open Access Journals (Sweden)

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  14. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    Science.gov (United States)

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome.

  15. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARγ.

    Directory of Open Access Journals (Sweden)

    Byoung Hee Park

    Full Text Available The mammalian ste20 kinase (MST signaling pathway plays an important role in the regulation of apoptosis and cell cycle control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1, a scaffolding protein that functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome proliferator-activated receptor γ (PPARγ, a transcription factor that plays a key role in adipogenesis. The interaction of endogenous SAV1 and PPARγ was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARγ. Overexpression of MST2 and SAV1 increased PPARγ levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARγ protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to increase at 2 days when PPARγ expression also begins to increase. MST2 and SAV1 significantly increased PPARγ transactivation, and SAV1 was shown to be required for the activation of PPARγ by rosiglitazone. Finally, differentiation of 3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results suggest that PPARγ activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis.

  16. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei, E-mail: hongfeixia@yahoo.com.cn; Ma, Xu

    2012-08-15

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  17. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    DEFF Research Database (Denmark)

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A;

    2005-01-01

    expression of PGC-1alpha is required for activation of uncoupling protein 1 (UCP1). Wnt10b blocks brown adipose tissue development and expression of UCP1 when expressed from the fatty acid binding protein 4 promoter, even when mice are administered a beta3-agonist. In differentiated brown adipocytes......Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARgamma and C/EBPalpha. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional......, activation of Wnt signaling suppresses expression of UCP1 through repression of PGC-1alpha. Consistent with these in vitro observations, UCP1-Wnt10b transgenic mice, which express Wnt10b in interscapular tissue, lack functional brown adipose tissue. While interscapular tissue of UCP1-Wnt10b mice lacks...

  18. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  19. Characterization of actions of octanoate on porcine preadipocytes and adipocytes differentiated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shunichi, E-mail: shunsuzu@affrc.go.jp [Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901 (Japan); Suzuki, Misae; Sembon, Shoichiro; Fuchimoto, Daiichiro; Onishi, Akira [Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901 (Japan)

    2013-03-01

    Highlights: ► Octanoate regulated gene expressions in a way distinct from rosiglitasone. ► Octanoate upregulatedPPRE and LXRE reporter activities. ► Octanoate may act on some PPARγ-target genes competitively with other ligands. - Abstract: Octanoate is used to induce adipogenic differentiation and/or lipid accumulation in preadipocytes of domestic animals. However, information on detailed actions of octanoate and the characteristics of octanoate-induced adipocytes is limited. The aim of this study was to examine these issues by comparing the outcomes of the effects of octanoate with those of rosiglitazone, which is a well-defined activator of peroxisome proliferator-activated receptor (PPAR)-γ. The adipocytes that were differentiated with 5 mM of octanoate had dispersed and diversely sized lipid droplets compared to those that were differentiated with 1 μM of rosiglitazone. The gene expression levels of adiponectin, glycerol-3-phosphate dehydrogenase, perilipin 1, and perilipin 4 were much higher in the adipocytes that were differentiated with rosiglitazone than in those differentiated with octanoate, while the gene expression levels of lipoprotein lipase and perilipin 2 were decreased in rosiglitazone-differentiated adipocytes compared to octanoate-differentiated adipocytes. However, the expressions of aP2 and CD36 genes were comparably induced. Luciferase reporter assays revealed that PPAR and liver-X-receptor activities were upregulated by octanoate more effectively than by rosiglitazone. Overall, these results suggested that the action of octanoate was complicated and may be dependent on the targeted genes and cellular status.

  20. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Jørgensen, Claus; Petersen, Rasmus K;

    2010-01-01

    The nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) is essential for adipogenesis. Although several fatty acids and their derivatives are known to bind and activate PPAR gamma, the nature of the endogenous ligand(s) promoting the early stages of adipocyte differenti...

  1. The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation

    DEFF Research Database (Denmark)

    Fajas, Lluis; Egler, Viviane; Reiter, Raphael

    2002-01-01

    The retinoblastoma protein (RB) has previously been shown to facilitate adipocyte differentiation by inducing cell cycle arrest and enhancing the transactivation by the adipogenic CCAAT/enhancer binding proteins (C/EBP). We show here that the peroxisome proliferator-activated receptor gamma...

  2. The brown adipocyte differentiation pathway in birds: An evolutionary road not taken

    Directory of Open Access Journals (Sweden)

    Kumaratilake Jaliya S

    2008-04-01

    Full Text Available Abstract Background Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis. Results We have identified in vitro inductive conditions in which mesenchymal cells isolated from the embryonic chicken limb bud differentiate into avian brown adipocyte-like cells (ABALCs with the morphological and many of the biochemical properties of terminally differentiated brown adipocytes. Avian, and as we show here, lizard species lack the gene for UCP1, although it is present in amphibian and fish species. While ABALCs are therefore not functional brown adipocytes, they are generated by a developmental pathway virtually identical to brown fat differentiation in mammals: both the common adipogenic transcription factor peroxisome proliferator-activated receptor-γ (PPARγ, and a coactivator of that factor specific to brown fat differentiation in mammals, PGC1α, are elevated in expression, as are mitochondrial volume and DNA. Furthermore, ABALCs induction resulted in strong transcription from a transfected mouse UCP1 promoter. Conclusion These findings strongly suggest that the brown fat differentiation pathway evolved in a common ancestor of birds and mammals and its thermogenicity was lost in the avian lineage, with the degradation of UCP1, after it separated from the mammalian lineage. Since this event occurred no later than the saurian ancestor of birds and lizards, an implication of this is that dinosaurs had neither UCP1 nor canonically thermogenic brown fat.

  3. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    Science.gov (United States)

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  4. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Alessi Marie-Christine

    2008-02-01

    Full Text Available Abstract Background It is well established that adipose tissue plays a key role in energy storage and release but is also a secretory organ and a source of stem cells. Among different lineages, stem cells are able to differentiate into adipocytes and osteoblasts. As secreted proteins could regulate the balance between both lineages, we aimed at characterizing the secretome of human multipotent adipose-derived stem cell (hMADS at an early step of commitment to adipocytes and osteoblasts. Results A proteomic approach, using mono-dimensional electrophoresis and tandem mass spectrometry, allowed us to identify a total of 73 proteins at day 0 and day 3 of adipocyte and osteoblast differentiation. Analysis of identified proteins showed that 52 % corresponded to classical secreted proteins characterized by a signal peptide, that 37 % previously described in the extracellular compartment were devoid of signal peptide and that 11 % neither exhibited a signal peptide nor had been previously described extracellularly. These proteins were classified into 8 clusters according to their function. Quantitative analysis has been performed for 8 candidates: PAI-1, PEDF, BIGH3, PTX3, SPARC, ENO1, GRP78 and MMP2. Among them, PAI-1 was detected at day 0 and day 3 of osteoblast differentiation but never in adipocyte secretome. Furthermore we showed that PAI-1 mRNA was down-regulated in the bone of ovariectomized mice. Conclusion Given its regulation during the early events of hMADS cell differentiation and its status in ovariectomized mice, PAI-1 could play a role in the adipocyte/osteoblast balance and thus in bone diseases such as osteoporosis.

  5. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation

    Science.gov (United States)

    Chiellini, Chiara; Cochet, Olivia; Negroni, Luc; Samson, Michel; Poggi, Marjorie; Ailhaud, Gérard; Alessi, Marie-Christine; Dani, Christian; Amri, Ez-Zoubir

    2008-01-01

    Background It is well established that adipose tissue plays a key role in energy storage and release but is also a secretory organ and a source of stem cells. Among different lineages, stem cells are able to differentiate into adipocytes and osteoblasts. As secreted proteins could regulate the balance between both lineages, we aimed at characterizing the secretome of human multipotent adipose-derived stem cell (hMADS) at an early step of commitment to adipocytes and osteoblasts. Results A proteomic approach, using mono-dimensional electrophoresis and tandem mass spectrometry, allowed us to identify a total of 73 proteins at day 0 and day 3 of adipocyte and osteoblast differentiation. Analysis of identified proteins showed that 52 % corresponded to classical secreted proteins characterized by a signal peptide, that 37 % previously described in the extracellular compartment were devoid of signal peptide and that 11 % neither exhibited a signal peptide nor had been previously described extracellularly. These proteins were classified into 8 clusters according to their function. Quantitative analysis has been performed for 8 candidates: PAI-1, PEDF, BIGH3, PTX3, SPARC, ENO1, GRP78 and MMP2. Among them, PAI-1 was detected at day 0 and day 3 of osteoblast differentiation but never in adipocyte secretome. Furthermore we showed that PAI-1 mRNA was down-regulated in the bone of ovariectomized mice. Conclusion Given its regulation during the early events of hMADS cell differentiation and its status in ovariectomized mice, PAI-1 could play a role in the adipocyte/osteoblast balance and thus in bone diseases such as osteoporosis. PMID:18302751

  6. Fat accumulation in differentiated brown adipocytes is linked with expression of Hox genes.

    Science.gov (United States)

    Singh, Smita; Rajput, Yudhishthir S; Barui, Amit K; Sharma, Rajan; Datta, Tirtha K

    2016-03-01

    Homeobox (Hox) genes are involved in body plan of embryo along the anterior-posterior axis. Presence of several Hox genes in white adipose tissue (WAT) and brown adipose tissue (BAT) is indicative of involvement of Hox genes in adipogenesis. We propose that differentiation inducing agents viz. isobutyl-methyl-xanthine (IBMX), indomethacin, dexamethasone (DEX), triiodothyronine (T3) and insulin may regulate differentiation in brown adipose tissue through Hox genes. In vitro culture of brown fat stromalvascular fraction (SVF) in presence or absence of differentiation inducing agents was used for establishing relationship between fat accumulation in differentiated adipocytes and expression of Hox genes. Relative expression of Pref1, UCP1 and Hox genes was determined in different stages of adipogenesis. Presence or absence of IBMX, indomethacin and DEX during differentiation of proliferated pre-adipocytes resulted in marked differences in expression of Hox genes and lipid accumulation. In presence of these inducing agents, lipid accumulation as well as expression of HoxA1, HoxA5, HoxC4 &HoxC8 markedly enhanced. Irrespective of presence or absence of T3, insulin down regulates HoxA10. T3 results in over expression of HoxA5, HoxC4 and HoxC8 genes, whereas insulin up regulates expression of only HoxC8. Findings suggest that accumulation of fat in differentiated adipocytes is linked with expression of Hox genes.

  7. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells

    OpenAIRE

    Sally M Lansley; Searles, Richelle G.; Hoi, Aina; Thomas, Carla; Moneta, Helena; Herrick, Sarah E; Thompson, Philip J; Mark, Newman; Sterrett, Gregory F; Prêle, Cecilia M; Mutsaers, Steven E.

    2011-01-01

    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm i...

  8. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of); Rhee, Sang Dal, E-mail: sdrhee@krict.re.kr [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of)

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  9. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy

    DEFF Research Database (Denmark)

    Molina, Henrik; Yang, Yi; Ruch, Travis;

    2009-01-01

    adipocyte differentiation has not been documented previously. For example, THO complex 4, a context-dependent transcriptional activator in the T-cell receptor alpha enhancer complex, showed highest expression at middle stage of adipogenesis, while SNF2 alpha, a chromatin remodeling protein......The adipose tissue has important secretory and endocrine functions in humans. The regulation of adipocyte differentiation has been actively pursued using transcriptomic methods over the last several years. Quantitative proteomics has emerged as a promising approach to obtain temporal profiles...... of biological processes such as differentiation. Stable isotope labeling with amino acids in cell culture (SILAC) is a simple and robust method for labeling proteins in vivo. Here, we describe the development and application of a five-plex SILAC experiment using four different heavy stable isotopic forms...

  10. 7-Chloroarctinone-b as a new selective PPARγ antagonist potently blocks adipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Yong-tao LI; Li LI; Jing CHEN; Tian-cen HU; Jin HUANG; Yue-wei GUO; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim: Peroxisome proliferator-activated receptor gamma (PPARy) is a therapeutic target for obesity, cancer and diabetes mellitus. In order to develop potent lead compounds for obesity treatment, we screened a natural product library for novel PPARy antagonists with inhibitory effects on adipocyte differentiation. Methods: Surface plasmon resonance (SPR) technology and cell-based transactivation assay were used to screen for PPARy antago-nists. To investigate the antagonistic mechanism of the active compound, we measured its effect on PPARy/RXRα heterodimerization and PPARy co-activator recruitment using yeast two-hybrid assay, Gal4/UAS cell-based assay and SPR based assay. The 3T3-L1 cell differentiation assay was used to evaluate the effect of the active compound on adipocyte differentiation. Results: A new thiophene-acetylene type of natural product, 7-chloroarctinone-b (CAB), isolated from the roots of Rhaponticum uniflo-rum, was discovered as a novel PPARγ antagonist capable of inhibiting rosiglitazone-induced PPARγ transcriptional activity. SPR analy-sis suggested that CAB bound tightly to PPARγ and considerably antagonized the potent PPARy agonist rosigtitazone-stimulated PPARγ-LBD/RXRα-LBD binding. Gal4/UAS and yeast two-hybrid assays were used to evaluate the antagonistic activity of CAB on rosiglitazone-induced recruitment of the coactivator for PPARy. CAB could efficiently antagonize both hormone and rosiglitazone-induced adipocyte differentiation in cell culture. Conclusion: CAB shows antagonistic activity to PPARγ and can block the adipocyte differentiation, indicating it may be of potential use as a lead therapeutic compound for obesity.

  11. Ethanol Extract of Alismatis rhizome Inhibits Adipocyte Differentiation of OP9 Cells

    Directory of Open Access Journals (Sweden)

    Yeon-Ju Park

    2014-01-01

    Full Text Available The rhizome of Alisma orientale (Alismatis rhizome has been used in Asia for promoting diuresis to eliminate dampness from the lower-jiao and to expel heat. In this study, an ethanol extract of the rhizome of Alisma orientale (AOE was prepared and its effects on adipocyte differentiation of OP9 cells were investigated. Treatment with AOE in a differentiation medium for 5 days resulted in dose-dependent inhibition of lipid droplet formation in OP9 cells. Furthermore, AOE significantly inhibited adipocyte differentiation by downregulating the expression of the master transcription factor of adipogenesis, peroxisome proliferation-activity receptor γ (PPARγ, and related genes, including CCAAT/enhancer binding protein β (C/EBPβ, fatty acid-binding protein (aP2, and fatty acid synthase (FAS. AOE exerted its inhibitory effects primarily during the early adipogenesis stage (days 1-2, at which time it also exerted dose-dependent inhibition of the expression of C/EBPβ, a protein related to the inhibition of mitotic clonal expansion. Additionally, AOE decreased the expression of autophagy-related proteins, including beclin 1, and the autophagy-related genes, (Atg 7 and Atg12. Our results indicate that AOE’s inhibitory effects on adipocyte differentiation of OP9 cells are mediated by reduced C/EBPβ expression, causing inhibition of mitotic clonal expansion and autophagy.

  12. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2016-02-01

    Full Text Available The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05. Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ and glucose transporter type 4 (GLUT4 expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  13. Pref-1 in brown adipose tissue: specific involvement in brown adipocyte differentiation and regulatory role of C/EBPδ.

    Science.gov (United States)

    Armengol, Jordi; Villena, Josep A; Hondares, Elayne; Carmona, María C; Sul, Hei Sook; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2012-05-01

    Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.

  14. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy;

    2002-01-01

    We have undertaken a systematic proteomic approach to purify and identify secreted factors that are differentially expressed in preadipocytes versus adipocytes. Using one-dimensional gel electrophoresis combined with nanoelectrospray tandem mass spectrometry, proteins that were specifically secre...

  15. Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes.

    Science.gov (United States)

    Guloglu, M Oktar; Larsen, Anna

    2016-01-01

    Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes. Coculturing hESCs with PA6-derived adipocytes markedly reduces the variable outcomes among experiments. Moreover, the colony differentiation step of this method can also be used for the dopaminergic induction of mouse embryonic stem cells and NTERA2 cells as well.

  16. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  17. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity

    Directory of Open Access Journals (Sweden)

    Lu Sumei

    2012-01-01

    Full Text Available Abstract Background Obesity is known to be associated with higher risks of cardiovascular disease, metabolic syndrome, and diabetes mellitus. Thyroid-stimulating hormone (TSHR is the receptor for thyroid-stimulating hormone (TSH, or thyrotropin, the key regulator of thyroid functions. The expression of TSHR, once considered to be limited to thyrocytes, has been so far detected in many extrathyroidal tissues including liver and fat. Previous studies have shown that TSHR expression is upregulated when preadipocytes differentiate into mature adipocytes, suggestive of a possible role of TSHR in adipogenesis. However, it remains unclear whether TSHR expression in adipocytes is implicated in the pathogenesis of obesity. Methods In the present study, TSHR expression in adipose tissues from both mice and human was analyzed, and its association with obesity was evaluated. Results We here showed that TSHR expression was increased at both mRNA and protein levels when 3T3-L1 preadipocytes were induced to differentiate. Knockdown of TSHR blocked the adipocyte differentiation of 3T3-L1 preadipocytes as evaluated by Oil-red-O staining for lipid accumulation and by RT-PCR analyses of PPAR-γ and ALBP mRNA expression. We generated obesity mice (C57/BL6 by high-fat diet feeding and found that the TSHR protein expression in visceral adipose tissues from obesity mice was significantly higher in comparison with the non-obesity control mice (P Conclusion Taken together, these results suggested that TSHR is an important regulator of adipocyte differentiation. Dysregulated expression of TSHR in adipose tissues is associated with obesity, which may involve a mechanism of excess adipogenesis.

  18. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    OpenAIRE

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazo...

  19. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes.

    Science.gov (United States)

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D; Jordan, Maria C; Roos, Kenneth P; Yao, Yucheng; Boström, Kristina I

    2012-12-01

    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.

  20. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation

    Directory of Open Access Journals (Sweden)

    Floriana Forzati

    2014-09-01

    Full Text Available We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation.

  1. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells

    DEFF Research Database (Denmark)

    Hamam, D; Ali, D; Vishnubalaji, R

    2014-01-01

    MSC, and utilized bioinformatics as well as functional and biochemical assays, and identified several novel miRNAs differentially expressed during adipogenesis. Among these, miR-320 family (miR-320a, 320b, 320c, 320d and 320e) were ~2.2-3.0-fold upregulated. Overexpression of miR-320c in hMSC enhanced adipocytic......, MIB1 (mindbomb E3 ubiquitin protein ligase 1), PAX6 (paired box 6), YWHAH and ZWILCH. siRNA-mediated silencing of those genes enhanced adipocytic differentiation of hMSC, thus corroborating an important role for those genes in miR-320c-mediated adipogenesis. Concordant with that, lentiviral......-mediated stable expression of miR-320c at physiological levels (~1.5-fold) promoted adipocytic and suppressed osteogenic differentiation of hMSC. Luciferase assay validated RUNX2 (Runt-related transcription factor 2) as a bona fide target for miR-320 family. Therefore, our data suggest miR-320 family as possible...

  2. The Possible Potentiating Role of Endoplasmic Reticulum Stress Response Inhibitors in Trans-Differentiation of white to Brown Adipocytes

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Sharifi

    2012-01-01

    Full Text Available The brown adipose tissue (BAT is an organ with the specialised function of intracellular fat oxidation; in other words, brown fat points to a potential natural tool by which energy expenditure is being stimulated. Obesity is a serious illness which can lead to many medical complications such as cardiovascular disorders. The BAT production, therefore, could be a promising therapeutic strategy for managing obesity. While different approaches have been examined to generate brown adipocytes from various precursor cells, no study has proposed an efficient procedure for direct trans-differentiation of white to brown adipocytes. Bone morphogenic protein (BMP-7 is a possible potential agent by which most of the main factors involved in induction of brown adipocytogenesis such as early regulators of brown fat fate, positive regulatory domain containing 16 (PRDM16 and peroxisome proliferator-activated receptor gamma (PPARγ coactivator-1 alpha (PGC-1α are stimulated, but the rate of success was not so promising. It has been documented that mature white adipocytes exert endoplasmic reticulum stress response (ESR and consequently unfolded protein response (UPR becomes activated for the purpose of ESR recovery since the ESR exceeds the capacity of UPR to overcome the imposed stress, and in turn disables the cell to manage the protein synthesis cascade including those required for BMP-7 induction of brown adipogenesis. This was performed using three main ESR sensors: PKR-like endoplasmic reticulum kinase (PERK, inositol requiring enzyme-1 (IRE-1 and activating transcription factor 6 alpha (ATF-6α resulting in attenuation of protein translation by blocking the activation of transcriptional machinery of UPR genes and the cell behaviour would also be changed towards apoptosis.It may suggest and propose the hypothesis that pretreatment of the white adipocyte with an ESR inhibitor such as salubrinal by reducing ESR and turning on the protein synthesis machinery

  3. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    Science.gov (United States)

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  4. Characterization and Differentiation into Adipocytes and Myocytes of Porcine Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    DU Min-qing; WANG Song-bo; JIANG Qing-yan; HUANG Yue-qin; LU Nai-Sheng; SHU Gang; ZHU Xiao-tong; WANG Li-na; GAO Ping; XI Qian-yun; ZHANG Yong-liang

    2014-01-01

    Bone marrow mesenchymal stem cells (BMSCs) could differentiate into various cell types including adipocytes and myocytes, which had important scientiifc signiifcance not only in the ifeld of tissue regeneration, but also in the ifeld of agricultural science. In an attempt to exhibit the characterization and differentiation into adipocytes and myocytes of porcine BMSCs, we isolated and puriifed porcine BMSCs by red blood cell lysis method and percoll gradient centrifugation. The puriifed cells presented a stretched ifbroblast-like phenotype when adhered to the culture plate. The results of lfow cytometry analysis and immunofluorescence staining demonstrated that the isolated cells were positive for mesenchymal surface markers CD29, CD44 and negative for hematopoietic markers CD45 and the adhesion molecules CD31. Cells were induced to differentiate into adipocytes with adipogenic medium containing insulin, dexamethasone, oleate and octanoate. Oil Red O staining demonstrated that the porcine BMSCs successfully differentiated to adipocytes. Moreover, the ifndings of real-time PCR and Western blotting indicated that the induced cells expressed adipogenic marker genes (PPAR-γ, C/EBP-α, perilipin, aP2) mRNA or proteins (PPAR-γ, perilipin, aP2). On the other hand, porcine BMSCs were induced into myoctyes with myogenic medium supplemented with 5-azacytidine, basic ifbroblast growth factor, chick embryo extract and horse serum. Morphological observation by hochest 33342 staining showed that the induced cells presented as multi-nucleus muscular tube structure. And myogenic marker genes (Myf5, desmin) mRNA or proteins (Myf5, MyoD, myogenin, desmin) were found in the induced cells. In addition, the results of immunolfuorescence staining revealed that myogenic marker (Myf5, MyoD, myogenin, desmin, S-MyHC) proteins was positive in the induced cells. Above all, these results suggested that the isolated porcine BMSCs were not only consistent with the characterization of

  5. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes

    DEFF Research Database (Denmark)

    Elabd, Christian; Chiellini, Chiara; Carmona, Mamen

    2009-01-01

    adipose-derived stem (hMADS) cells exhibit a normal karyotype and high self-renewal ability; they are known to differentiate into cells that exhibit the key properties of human white adipocytes, that is, uncoupling protein two expression, insulin-stimulated glucose uptake, lipolysis in response to beta......In contrast to the earlier contention, adult humans have been shown recently to possess active brown adipose tissue with a potential of being of metabolic significance. Up to now, brown fat precursor cells have not been available for human studies. We have shown previously that human multipotent......-agonists and atrial natriuretic peptide, and release of adiponectin and leptin. Herein, we show that, upon chronic exposure to a specific PPARgamma but not to a PPARbeta/delta or a PPARalpha agonist, hMADS cell-derived white adipocytes are able to switch to a brown phenotype by expressing both uncoupling protein one...

  6. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBPα, peroxisome proliferators-activated receptor γ2 (PPARγ2, and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  7. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Science.gov (United States)

    Zhang, Juan; Tang, Hongju; Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  8. Induction of adipocyte differentiation by polybrominated diphenyl ethers (PBDEs) in 3T3-L1 cells.

    Science.gov (United States)

    Tung, Emily W Y; Boudreau, Adèle; Wade, Michael G; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis.

  9. Induction of adipocyte differentiation by polybrominated diphenyl ethers (PBDEs in 3T3-L1 cells.

    Directory of Open Access Journals (Sweden)

    Emily W Y Tung

    Full Text Available Polybrominated diphenyl ethers (PBDEs are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX. A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2 and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis.

  10. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan); Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan)

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  11. Myristic Acid (MA) Promotes Adipogenic Gene Expression and the Differentiation of Porcine Intramuscular Adipocyte Precursor Cells

    Institute of Scientific and Technical Information of China (English)

    LU Nai-sheng; ZHANG Yong-liang; JIANG Qing-yan; SHU Gang; XIE Qiu-ping; ZHU Xiao-tong; GAO Ping; ZHOU Gui-xuan; WANG Song-bo; WANG Li-na; XI Qian-yun

    2014-01-01

    Intramuscular fat (IMF) content is considered to be a key factor that affects the marbling, tenderness, juiciness and lfavor of pork. To investigate the effects of myristic acid (MA) on the differentiation of porcine intramuscular adipocytes, cells were isolated from longissimus dorsi muscle (LDM) and treated with 0, 10, 50 or 100μmol L-1 MA. The results showed that MA signiifcantly promotes the differentiation of intramuscular adipocytes in a dose-dependent manner. MA also led to a parallel increase in the expression of peroxisome proliferator activated receptor-γ(PPARγ) and adipose-related genes, such as glucose transporter 1 (GLUT1), lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4/aP2), fatty acid translocase (FAT), acetyl-CoA carboxylaseα(ACCα), adipose triglyceride lipase (ATGL) and fatty acid synthase (FASN). However, no signiifcant effects of MA were observed on the expression of CAAT enhancer binding protein-α(C/EBPα) or hormone sensitive lipase (HSL). The expression of pyruvate dehydrogenase kinase 4 (PDK4) was increased by MA during the early stages of differentiation (day 1-3). In addition, MA also increased the absolute content of C14 (P<0.001) and saturated fatty acids (SFA) (P<0.05) to varying degrees, but no effects were observed on other fatty acids. These results suggest that MA might be able to enhance the IMF content of pork and increase the accumulation of myristic and myristoleic acid in muscle, which might have beneifcial implications for human health.

  12. Role of epidermis-type lipoxygenases for skin barrier function and adipocyte differentiation

    DEFF Research Database (Denmark)

    Fürstenberger, Gerhard; Epp, Nikolas; Eckl, Katja-Martina;

    2007-01-01

    12R-lipoxygenase (12R-LOX) and epidermis-type LOX-3 (eLOX-3) are novel members of the multigene family of mammalian LOX. A considerable gap exists between the identification of these enzymes and their biologic function. Here, we present evidence that 12R-LOX and eLOX-3, acting in sequence, and eL...... evidence indicates that this ligand is an eLOX-3-derived product. In accordance with this data is the observation that forced expression of eLOX-3 enhances adipocyte differentiation.......LOX-3 in combination with another, not yet identified LOX are critically involved in terminal differentiation of keratinocytes and adipocytes, respectively. Mutational inactivation of 12R-LOX and/or eLOX-3 has been found to be associated with development of an inherited ichthyosiform skin disorder...... in humans and genetic ablation of 12R-LOX causes a severe impairment of the epidermal lipid barrier in mice leading to post-natal death of the animals. In preadipocytes, a LOX-dependent PPARgamma activating ligand is released into the cell supernatant early upon induction of differentiation and available...

  13. Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Petersen, R K; Larsen, B M;

    1999-01-01

    The retinoblastoma protein (pRB) is an important regulator of development, proliferation, and cellular differentiation. pRB was recently shown to play a pivotal role in adipocyte differentiation, to interact physically with adipogenic CCAAT/enhancer-binding proteins (C/EBPs), and to positively...

  14. Effect of the Cannabinoid Receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi

    2011-11-01

    Full Text Available Abstract Background Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1 antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. Methods Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA and expression analysis (qPCR. Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. Results In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor. Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. Conclusion We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

  15. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali; Hamam; Alfayez;

    2016-01-01

    The epigenetic mechanisms promoting lineage-specific commitment of human skeletal (mesenchymal or stromal) stem cells (hMSCs) into adipocytes or osteoblasts are still not fully understood. Herein, we performed an epigenetic library functional screen and identified several novel compounds, including...... abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell...... or stromal) stem cells (hMSCs). These data provide new insight into the understanding of the relationship between the epigenetic effect of histone deacetylase inhibitors, transcription factors, and differentiation pathways controlling adipocyte and osteoblast differentiation of hMSCs. Manipulating...

  16. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway.

    Science.gov (United States)

    Huang, Cheng; Zhang, Yuebo; Gong, Zhenwei; Sheng, Xiaoyan; Li, Zongmeng; Zhang, Wei; Qin, Ying

    2006-09-22

    Berberine (BBR), a compound purified from Cortidis rhizoma, reduces serum cholesterol, triglycerides, and LDL-cholesterol of hypercholesterolemic patients and high fat diet fed animals, and increases hepatic LDLR mRNA and protein levels through a post-transcriptional mechanism. BBR also enhances the hypoglycemic action of insulin in diabetic animal models. Here, we show that BBR inhibits the differentiation of 3T3-L1 preadipocytes induced by DM and suppresses the mitotic clonal expansion of 3T3-L1 preadipocytes in a time- and dose-dependent manner. Gene expression analysis and Western blot analysis reveal that the BBR inhibits the mRNA and protein levels of adipogenesis related transcription factors PPARgamma and C/EBPalpha and their upstream regulator, C/EBPbeta. Reporter gene assays demonstrate that the full-length PPARgamma and alpha transcription activities are inhibited by BBR. Using real-time PCR, we have also found that the PPAR target genes that are involved in adipocyte differentiation, such as aP2, CD36, ACO, LPL, and other adipocyte markers, are suppressed by BBR. These studies suggest that BBR works on multiple molecular targets as an inhibitor of PPARgamma and alpha, and is a potential weight reducing, hypolipidemic, and hypoglycemic drug.

  17. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  18. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy

    Directory of Open Access Journals (Sweden)

    Orlando Robert A

    2007-10-01

    Full Text Available Abstract Background A major portion of available fatty acids for adipocyte uptake is derived from lipoprotein lipase (LPL-mediated hydrolysis of circulating lipoprotein particles. In vivo studies aimed at identifying the precise role of adipocyte-derived LPL in fat storage function of adipose tissue have been unable to provide conclusive evidence due to compensatory mechanisms that activate endogenous fatty acid synthesis. To address this gap in knowledge, we have measured the effect of reducing adipocyte LPL expression on intracellular lipid accumulation using a well-established cultured model of adipocyte differentiation. Methods siRNA specific for mouse LPL was transfected into 3T3-L1 adipocytes. Expression of LPL was measured by quantitative real-time PCR and cell surface-associated LPL enzymatic activity was measured by colorimetric detection following substrate (p-nitrophenyl butyrate hydrolysis. Apolipoprotein CII and CIII expression ratios were also measured by qRT-PCR. Intracellular lipid accumulation was quantified by Nile Red staining. Results During differentiation of 3T3-L1 pre-adipocytes, LPL mRNA expression increases 6-fold resulting in a 2-fold increase in cell surface-associated LPL enzymatic activity. Parallel to this increase in LPL expression, we found that intracellular lipids increased ~10-fold demonstrating a direct correlation between adipocyte-derived LPL expression and lipid storage. We next reduced LPL expression in adipocytes using siRNA transfections to directly quantify the contributions of adipocyte-derived LPL to lipid storage, This treatment reduced LPL mRNA expression and cell surface-associated LPL enzymatic activity to ~50% of non-treated controls while intracellular lipid levels were reduced by 80%. Exogenous addition of purified LPL (to restore extracellular lipolytic activity or palmitate (as a source of free fatty acids to siRNA-treated cells restored intracellular lipid levels to those measured for non

  19. Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Tatjana Arsenijevic

    Full Text Available BACKGROUND: Analysis of gene expression at the mRNA level, using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR, mandatorily requires reference genes (RGs as internal controls. However, increasing evidences have shown that RG expression may vary considerably under experimental conditions. We sought for an appropriate panel of RGs to be used in the 3T3-L1 cell line model during their terminal differentiation into adipocytes. To this end, the expression levels of a panel of seven widely used RG mRNAs were measured by qRT-PCR. The 7 RGs evaluated were ß-actin (ACTB, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl-transferase I (HPRT, ATP synthase H+ transporting mitochondrial F1 complex beta subunit (ATP-5b, tyrosine 3-monooxygenase/tryptophan 5- monooxygenase activation protein, zeta polypeptide (Ywhaz, Non-POU-domain containing octamer binding protein (NoNo, and large ribosomal protein L13a (RPL. METHODOLOGY/PRINCIPAL FINDINGS: Using three Excel applications, GeNorm, NormFinder and BestKeeper, we observed that the number and the stability of potential RGs vary significantly during differentiation of 3T3-L1 cells into adipocytes. mRNA expression analyses using qRT-PCR revealed that during the entire differentiation program, only NoNo expression is relatively stable. Moreover, the RG sets that were acceptably stable were different depending on the phase of the overall differentiation process (i.e. mitotic clonal expansion versus the terminal differentiation phase. RPL, ACTB, and Ywhaz, are suitable for terminal differentiation, whereas ATP-5b and HPRT, are suitable during mitotic clonal expansion. CONCLUSION: Our results demonstrate that special attention must be given to the choice of suitable RGs during the various well defined phases of adipogenesis to ensure accurate data analysis and that the use of several RGs is absolutely required. Consequently, our data show for the first time

  20. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47

    DEFF Research Database (Denmark)

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce;

    2014-01-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mech......Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model...

  1. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    Science.gov (United States)

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P acid synthase increased upon treatments with phytic acid and myo-inositol (P phytic acid and myo-inositol treatments (P phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis.

  2. The MBD4 Gene Plays an Important Role in Porcine Adipocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Lian-Jiang Zhang

    2014-09-01

    Full Text Available Background: MBD4 (methyl-CpG binding domain protein 4 is an important G: T glycosylase that can identify T-G mismatches. It plays a role in active demethylation through base excision repair. Overexpression of MBD4 gene can cause the demethylation of numerous genes, and the remethylation of MBD4-associated genes can occur when the MBD4 gene is knocked out. To date, the functions and regulatory mechanisms of the MBD4 gene in the differentiation of porcine preadipocytes have not been clearly established. Methods: Subcutaneous fat cells from 1- to 7-day-old Junmu-1 piglets were cultured in vitro, induced to differentiate, and then identified. A real-time fluorescence-based quantitative polymerase chain reaction (PCR analysis was conducted to detect MBD4 messenger RNA (mRNA expression. Cells were treated with MBD4-siRNA (small interfering RNA and induced to differentiate. Changes in the lipid droplets were observed by oil red O staining. Changes in the mRNA and protein expression levels of MBD4 and the adipose differentiation-associated genes C/EBPα (CCAAT-enhancer-binding protein alpha, PPARγ (peroxisome proliferator-activated receptor gamma, and aP2 (adipocyte protein 2 were detected. In addition, the bisulfite sequencing method was used to detect changes in methylation in the promoters of certain genes associated with adipose differentiation. Results: Levels of MBD4 mRNA and protein expression varied with time over the course of the porcine adipocyte differentiation, with the highest levels of this expression observed on day two of the differentiation process. After silencing MBD4 and inducing differentiation, the production of lipid droplets decreased, the mRNA expression levels of C/EBPα, PPARγ, and aP2 were significantly reduced, and DNA methylation modification levels were significantly elevated in the examined promoter regions. Conclusion: The silencing of the MBD4 gene can influence the DNA methylation levels of preadipocyte

  3. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3

    DEFF Research Database (Denmark)

    Hallenborg, P.; Siersbæk, M.; Barrio-Hernandez, I.

    2016-01-01

    The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies...... on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each...

  4. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Pham, Tho X; Lee, Ji-Young

    2016-06-01

    We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.

  5. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells.

    Science.gov (United States)

    Zych, J; Stimamiglio, M A; Senegaglia, A C; Brofman, P R S; Dallagiovanna, B; Goldenberg, S; Correa, A

    2013-05-01

    Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.

  6. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2015-11-01

    Full Text Available Spermatogonial stem cells (SSCs renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19. Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes.

  7. Redox Mechanisms in Regulation of Adipocyte Differentiation: Beyond a General Stress Response

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2012-11-01

    Full Text Available In this review, we summarize advances in our understanding of redox-sensitive mechanisms that regulate adipogenesis. Current evidence indicates that reactive oxygen species may act to promote both the initiation of adipocyte lineage commitment of precursor or stem cells, and the terminal differentiation of preadipocytes to mature adipose cells. These can involve redox regulation of pathways mediated by receptor tyrosine kinases, peroxisome proliferator-activated receptor γ (PPARγ, PPARγ coactivator 1α (PGC-1α, AMP-activated protein kinase (AMPK, and CCAAT/enhancer binding protein β (C/EBPβ. However, the precise roles of ROS in adipogenesis in vivo remain controversial. More studies are needed to delineate the roles of reactive oxygen species and redox signaling mechanisms, which could be either positive or negative, in the pathogenesis of obesity and related metabolic disorders.

  8. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    Science.gov (United States)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  9. St. John's wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells.

    Science.gov (United States)

    Hatano, Tomoko; Sameshima, Yuka; Kawabata, Mami; Yamada, Shizuo; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu; Mizuno, Hideya

    2014-01-01

    St. John's wort (SJW), or Hypericum perforatum, is a perennial herb that has been used in the treatment of depression in several countries. Though its therapeutic effect on depression has been extensively studied, its influence on metabolic syndrome is yet to be fully characterized. Therefore, we investigated the effect of SJW extract on adipocyte differentiation and its anti-inflammatory effects by using 3T3-L1 preadipocytes. Oil Red O staining indicated that SJW promotes adipocyte differentiation, while immunoblots indicated that SJW increases the expression of peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation, and adiponectin, an anti-inflammatory adipokine. Furthermore, the anti-inflammatory activity of SJW was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the NF-κB inhibitor IκBα, and increased its phosphorylation. Treatment with SJW further decreased the TNF-α-induced perturbation in IκBα expression and phosphorylation, which indicated that SJW mediated the inhibition of NF-κB activation. In addition, SJW decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Collectively, our results indicate that SJW treatment could promote adipocyte differentiation probably through its anti-inflammatory activity, which in turn suggests that SJW has the potential to minimize the risk factors of metabolic syndrome.

  10. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Kodani, Sean D; Overby, Haley B; Morisseau, Christophe; Chen, Jiangang; Zhao, Ling; Hammock, Bruce D

    2016-11-16

    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB1)-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB1 by endocannabinoids.

  11. Development of an OP9 derived cell line as a robust model to rapidly study adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Lane

    Full Text Available One hallmark of obesity is adipocyte hypertrophy and hyperplasia. To gain novel insights into adipose biology and therapeutics, there is a pressing need for a robust, rapid, and informative cell model of adipocyte differentiation for potential RNAi and drug screens. Current models are prohibitive for drug and RNAi screens due to a slow differentiation time course and resistance to transfection. We asked if we could create a rapid, robust model of adipogenesis to potentially enable rapid functional and obesity therapeutic screens. We generated the clonal population OP9-K, which differentiates rapidly and reproducibly, and displays classic adipocyte morphology: rounded cell shape, lipid accumulation, and coalescence of lipids into a large droplet. We further validate the OP9-K cells as an adipocyte model system by microarray analysis of the differentiating transcriptome. OP9-K differentiates via known adipogenic pathways, involving the transcriptional activation and repression of common adipose markers Plin1, Gata2, C/Ebpα and C/Ebpβ and biological pathways, such as lipid metabolism, PPARγ signaling, and osteogenesis. We implemented a method to quantify lipid accumulation using automated microscopy and tested the ability of our model to detect alterations in lipid accumulation by reducing levels of the known master adipogenic regulator Pparγ. We further utilized our model to query the effects of a novel obesity therapeutic target, the transcription factor SPI1. We determine that reduction in levels of Spi1 leads to an increase in lipid accumulation. We demonstrate rapid, robust differentiation and efficient transfectability of the OP9-K cell model of adipogenesis. Together with our microscopy based lipid accumulation assay, adipogenesis assays can be achieved in just four days' time. The results of this study can contribute to the development of rapid screens with the potential to deepen our understanding of adipose biology and efficiently

  12. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    J. Zych

    2013-05-01

    Full Text Available Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs derived from bone marrow (BM-MSCs and adipose tissue (ADSCs using the chromatin-modifying agents trichostatin A (TSA, a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC, a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.

  13. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong-Il [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Ko, Hee-Chul [Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Lee, Nam-Ho [Department of Chemistry, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Kim, Se-Jae, E-mail: sjkim@jejunu.ac.kr [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  14. Regulation of Autophagy-Related Protein and Cell Differentiation by High Mobility Group Box 1 Protein in Adipocytes

    Directory of Open Access Journals (Sweden)

    Huanhuan Feng

    2016-01-01

    Full Text Available High mobility group box 1 protein (HMGB1 is a molecule related to the development of inflammation. Autophagy is vital to maintain cellular homeostasis and protect against inflammation of adipocyte injury. Our recent work focused on the relationship of HMGB1 and autophagy in 3T3-L1 cells. In vivo experimental results showed that, compared with the normal-diet group, the high-fat diet mice displayed an increase in adipocyte size in the epididymal adipose tissues. The expression levels of HMGB1 and LC3II also increased in epididymal adipose tissues in high-fat diet group compared to the normal-diet mice. The in vitro results indicated that HMGB1 protein treatment increased LC3II formation in 3T3-L1 preadipocytes in contrast to that in the control group. Furthermore, LC3II formation was inhibited through HMGB1 knockdown by siRNA. Treatment with the HMGB1 protein enhanced LC3II expression after 2 and 4 days but decreased the expression after 8 and 10 days among various differentiation stages of adipocytes. By contrast, FABP4 expression decreased on the fourth day and increased on the eighth day. Hence, the HMGB1 protein modulated autophagy-related proteins and lipid-metabolism-related genes in adipocytes and could be a new target for treatment of obesity and related metabolic diseases.

  15. Inhibition of mouse brown adipocyte differentiation by second-generation antipsychotics.

    Science.gov (United States)

    Oh, Jee-Eun; Cho, Yoon Mi; Kwak, Su-Nam; Kim, Jae-Hyun; Lee, Kyung Won; Jung, Hyosan; Jeong, Seong-Whan; Kwon, Oh-Joo

    2012-09-30

    Brown adipose tissue is specialized to burn lipids for thermogenesis and energy expenditure. Second-generation antipsychotics (SGA) are the most commonly used drugs for schizophrenia with several advantages over first-line drugs, however, it can cause clinically-significant weight gain. To reveal the involvement of brown adipocytes in SGA-induced weight gain, we compared the effect of clozapine, quetiapine, and ziprasidone, SGA with different propensities to induce weight gain, on the differentiation and the expression of brown fat-specific markers, lipogenic genes and adipokines in a mouse brown preadipocyte cell line. On Oil Red-O staining, the differentiation was inhibited almost completely by clozapine (40 μM) and partially by quetiapine (30 μM). Clozapine significantly down-regulated the brown adipogenesis markers PRDM16, C/EBPβ, PPARγ2, UCP-1, PGC-1α, and Cidea in dose- and time-dependent manners, whereas quetiapine suppressed PRDM16, PPARγ 2, and UCP-1 much weakly than clozapine. Clozapine also significantly inhibited the mRNA expressions of lipogenic genes ACC, SCD1, GLUT4, aP2, and CD36 as well as adipokines such as resistin, leptin, and adiponectin. In contrast, quetiapine suppressed only resistin and leptin but not those of lipogenic genes and adiponectin. Ziprasidone (10 μM) did not alter the differentiation as well as the gene expression patterns. Our results suggest for the first time that the inhibition of brown adipogenesis may be a possible mechanism to explain weight gain induced by clozapine and quetiapine.

  16. Metallomics approach to changes in element concentration during differentiation from fibroblasts into adipocytes by element array analysis.

    Science.gov (United States)

    Ogra, Yasumitsu; Nagasaki, Shu; Yawata, Ayako; Anan, Yasumi; Hamada, Koichi; Mizutani, Akihiro

    2016-04-01

    We aimed to establish an element array analysis that involves the simultaneous detection of all elements in cells and the display of changes in element concentration before and after a cellular event. In this study, we demonstrated changes in element concentration during the differentiation of 3T3-L1 mouse fibroblasts into adipocytes. This metallomics approach yielded unique information of cellular response to physiological and toxicological events.

  17. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy); Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  18. TNF-alpha inhibits 3T3-L1 adipocyte differentiation without downregulating the expression of C/EBPbeta and delta.

    Science.gov (United States)

    Kurebayashi, S; Sumitani, S; Kasayama, S; Jetten, A M; Hirose, T

    2001-04-01

    Tumor necrosis factor-alpha (TNF-alpha) has been reported to inhibit adipocyte differentiation in which multiple transcription factors including CCAAT enhancer binding proteins (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) gamma play an important role. Induction of C/EBPalpha and PPARgamma, which regulate the expression of many adipocyte-related genes, is dependent on the expression of C/EBPbeta and C/EBPdelta at the early phase of adipocyte differentiation. To elucidate the mechanism by which TNF-alpha inhibits adipocyte differentiation, we examined the effect of TNF-alpha on the expression of these transcription factors in mouse 3T3-L1 preadipocytes. TNF-alpha did not abrogate the induction of C/EBPbeta and C/EBPdelta in response to differentiation stimuli. In fully differentiated adipocytes, TNF-alpha rapidly induced C/EBPbeta and C/EBPdelta, whereas it downregulated the expression of C/EBPalpha and PPARgamma. Our results suggest that TNF-alpha inhibits adipocyte differentiation independently of the downregulation of C/EBPbeta and C/EBPdelta.

  19. Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Yasuyuki [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan); Kuroda, Masayuki, E-mail: kurodam@faculty.chiba-u.jp [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan); Asada, Sakiyo [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan); Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki [CellGenTech, Inc., Chiba (Japan); Okamoto, Yoshitaka [Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba (Japan); Nakayama, Toshinori [Department of Immunology, Graduate School of Medicine, Chiba University, Chiba (Japan); Saito, Yasushi [Chiba University, Chiba (Japan); Bujo, Hideaki [Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba (Japan)

    2012-01-01

    Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.

  20. Role of P2 × 7 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes.

    Science.gov (United States)

    Li, Wenkai; Li, Guizhen; Zhang, Yingchi; Wei, Sheng; Song, Mingyu; Wang, Wei; Yuan, Xuefeng; Wu, Hua; Yang, Yong

    2015-12-10

    Imbalance in osteogenesis and adipogenesis of bone marrow stromal cells is a crucial pathological process of osteoporosis. P2 × 7-deficient mice were previously shown to exhibit an osteopenic phenotype and abnormal fat distribution, leading us to hypothesize that P2 × 7R activation was involved in the differentiation of BMSCs. Consequently, we investigated the effect of P2 × 7R activation on osteogenic and adipogenic differentiation of BMSCs in vitro, and established an ovariectomized (OVX) osteoporosis model to test P2 × 7R activation on adipocytes formation, trabecular and cortical bone parameters in vivo. Our results showed that activation of P2 × 7R by BzATP resulted in increase in the gene expression of osteoblastic markers, the activity of alkaline phosphatase and bone mineralization, and decrease in the gene expression of adipogenic markers and the number of adipocytes generated by BMSCs. MicroCT analysis showed that BzATP treatment ameliorated the micro-architecture of trabecular bones in OVX mice, while cortical bone parameters were unaffected. H&E staining analysis showed that was increase in the volume of trabecular bone and number of trabecular bone, and decrease in bone marrow adipocytes in BzATP-treated OVX mice compared with OVX mice. Also, activation of P2 × 7R transduced to ERK1/2 and JNK signaling pathways. This transduction was prevented by BBG, U0126, and SP600125. U0126 and SP600125 prevented BzATP-induced up-regulation of osteogenic-related genes expression and down-regulation of adipogenic-related genes expression. These data suggest that BzATP activates the differentiation of BMSCs into osteoblasts but not adipocytes by stimulating ERK1/2 and JNK signaling pathways in a P2 × 7R-dependent way.

  1. An Model to Probe the Regulation of Adipocyte Differentiation under Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Kusampudi Shilpa

    2013-06-01

    Full Text Available BackgroundThe aim of this study was an in vitro investigation of the effect of high glucose concentration on adipogenesis, as prolonged hyperglycemia alters adipocyte differentiation.Methods3T3-L1 preadipocytes differentiated in the presence of varying concentrations of glucose (25, 45, 65, 85, and 105 mM were assessed for adipogenesis using AdipoRed (Lonza assay. Cell viability and proliferation were measured using MTT reduction and [3H] thymidine incorporation assay. The extent of glucose uptake and glycogen synthesis were measured using radiolabelled 2-deoxy-D-[1-3H] glucose and [14C]-UDP-glucose. The gene level expression was evaluated using reverse transcription-polymerase chain reaction and protein expression was studied using Western blot analysis.ResultsGlucose at 105 mM concentration was observed to inhibit adipogenesis through inhibition of CCAAT-enhancer-binding proteins, sterol regulatory element-binding protein, peroxisome proliferator-activated receptor and adiponectin. High concentration of glucose induced stress by increasing levels of toll-like receptor 4, nuclear factor κB and tumor necrosis factor α thereby generating activated preadipocytes. These cells entered the state of hyperplasia through inhibition of p27 and proliferation was found to increase through activation of protein kinase B via phosphoinositide 3 kinase dependent pathway. This condition inhibited insulin signaling through decrease in insulin receptor β. Although the glucose transporter 4 (GLUT4 protein remained unaltered with the glycogen synthesis inhibited, the cells were found to exhibit an increase in glucose uptake via GLUT1.ConclusionAdipogenesis in the presence of 105 mM glucose leads to an uncontrolled proliferation of activated preadipocytes providing an insight towards understanding obesity.

  2. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick;

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gamma...... (PPARgamma) (NR1C3) is a nuclear receptor controlling adipocyte differentiation and insulin sensitivity. Here we show that Rev-Erbalpha expression is induced by PPARgamma activation with rosiglitazone in rat epididymal and perirenal adipose tissues in vivo as well as in 3T3-L1 adipocytes in vitro...... for this nuclear receptor as a promoter of adipocyte differentiation....

  3. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers

    DEFF Research Database (Denmark)

    Loft, Anne; Forss, Isabel; Siersbæk, Majken Storm

    2015-01-01

    Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone-in...

  4. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali, D.; Hamam, R.; Alfayez, M.;

    2016-01-01

    abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell...... proliferation and differentiation that were targeted by abexinostat. Concordantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic mark on the promoter region of AdipoQ, FABP4, PPARγ, KLF15, CEBPA, SP7, and ALPL in abexinostat-treated hMSCs. Pharmacological inhibition...

  5. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3.

    Science.gov (United States)

    Hallenborg, P; Siersbæk, M; Barrio-Hernandez, I; Nielsen, R; Kristiansen, K; Mandrup, S; Grøntved, L; Blagoev, B

    2016-06-30

    The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last but not least, the binding of CRTC2 to a transcriptional enhancer that interacts with the Cebpd promoter was dramatically decreased upon JAK inhibition. Our data reveal the existence of an unusual functional interplay between STATs and CREB at the onset of adipogenesis through shared CRTC cofactors.

  6. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ

    OpenAIRE

    Watanabe, Masashi; Takahashi, Hidehisa; Saeki, Yasushi; Ozaki, Takashi; Itoh, Shihori; Suzuki, Masanobu; Mizushima, Wataru; Tanaka, Keiji; Hatakeyama, Shigetsugu

    2015-01-01

    eLife digest The world is facing a global epidemic of obesity, which also increases the risk for diabetes and heart disease. Obesity is caused when excess fat is stored in fat cells, and overweight individuals have larger fat cells compared to healthy weight people. Therefore understanding how fat cells are created in the body can provide new ways to combat obesity. Fat cells, also known as adipocytes, arise from precursor cells via a process called adipogenesis. This requires the activity of...

  7. The mixed-lineage kinase DLK is a key regulator of 3T3-L1 adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Couture

    Full Text Available BACKGROUND: The mixed-lineage kinase (MLK family member DLK has been proposed to serve as a regulator of differentiation in various cell types; however, its role in adipogenesis has not been investigated. In this study, we used the 3T3-L1 preadipocyte cell line as a model to examine the function of DLK in adipocyte differentiation. METHODS AND FINDINGS: Immunoblot analyses and kinase assays performed on 3T3-L1 cells showed that the expression and activity of DLK substantially increase as differentiation occurs. Interestingly, DLK appears crucial for differentiation since its depletion by RNA interference impairs lipid accumulation as well as expression of the master regulators of adipogenesis C/EBPalpha and PPARgamma2 at both the mRNA and protein levels. In contrast, neither the expression nor the DNA binding activity of C/EBPbeta, an activator for C/EBPalpha and PPARgamma, is affected by DLK loss. CONCLUSIONS: Taken together, these results suggest that DLK is important for expression of mature adipocyte markers and that its action most likely takes place via regulation of C/EBPbeta transcriptional activity and/or initiation of C/EBPalpha and PPARgamma2 gene transcription.

  8. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Bingbing Jia

    Full Text Available Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA and exchange protein directly activated by cAMP (Epac in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS. We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence of the strong adipogenic inducers insulin, dexamethasone, and rosiglitazone, thereby clearly distinguishing the hMADS cells from murine preadipocytes cell lines, where rosiglitazone together with dexamethasone and insulin strongly promotes adipocyte differentiation. We further show that prostaglandin I(2 (PGI(2 may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX. Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK was inhibited. Unlike the case for murine preadipocytes cell lines, long-chain fatty acids, like arachidonic acid, did not promote adipocyte differentiation of hMADS cells in the absence of a PPARγ agonist. However, prolonged treatment with the synthetic PPARδ agonist L165041 promoted adipocyte differentiation of hMADS cells in the presence of IBMX. Taken together our results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells.

  9. Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes

    DEFF Research Database (Denmark)

    Eduardsen, Kathrine; Larsen, Susanne; Novak, Ivana;

    2011-01-01

    for either RVD or RVI in pre-adipocytes. The insulin receptor (InsR) localizes to caveolae and its expression dramatically increases upon adipocyte differentiation. In pre-adipocytes, InsR and its effectors focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2) localized to focal...... adhesions and were activated by a 5 min exposure to insulin (100 nM). Osmotic shrinkage transiently inhibited InsR Y(146)-phosphorylation, followed by an increase at t=15 min; a similar pattern was seen for ERK1/2 and FAK, in a manner unaffected by cholesterol depletion. In contrast, cell swelling had...... is not required for volume regulation. Given the relationship between hyperosmotic stress and insulin signaling, the finding that cell volume regulation is dramatically altered upon adipocyte differentiation may be relevant for the understanding of insulin resistance and metabolic syndrome....

  10. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Zhang, Juan; Tang, Hongju; Zhang, Yuqing; Deng, Ruyuan; Shao, Li; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2014-05-01

    Quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important in the effort to gain insight into the molecular mechanisms underlying adipogenesis. However, the expression profile of a target gene may be misinterpreted due to the unstable expression of the reference genes under different experimental conditions. Therefore, in this study, we investigated the expression stability of 10 commonly used reference genes during 3T3-L1 adipocyte differentiation. The mRNA expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and transferrin receptor (TFRC) significantly increased during the course of 3T3-L1 adipocyte differentiation, which was decreased by berberine, an inhibitor of adipogenesis. Three popular algorithms, GeNorm, NormFinder and BestKeeper, identified 18 ribosomal RNA and hydroxymethylbilane synthase (HMBS) as the most stable reference genes, while GAPDH and TFRC were the least stable ones. Peptidylprolyl isomerase A [PIPA (cyclophilin A)], ribosomal protein, large, P0 (36-B4), beta-2-microglobulin (B2M), α1-tubulin, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and β-actin showed relatively stable expression levels. The choice of reference genes with various expression stabilities exerted a profound influence on the expression profiles of 2 target genes, peroxisome proliferator-activated receptor (PPAR)γ2 and C/EBPα. In addition, western blot analysis revealed that the increased protein expression of GAPDH was markedly inhibited by berberine during adipocyte differentiation. This study highlights the importance of selecting suitable reference genes for qRT-PCR studies of gene expression during the process of adipogenesis.

  11. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    DEFF Research Database (Denmark)

    Hakim-Weber, Robab; Krogsdam, Anne-M; Jørgensen, Claus

    2011-01-01

    Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate...... of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. CONCLUSION: In this study a number of commonly modulated genes...

  12. RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Salehzada, T; Lambert, K

    2012-01-01

    of an endoribonuclease, endoribonuclease L (RNase L), using wild-type and RNase L-knockout mouse embryonic fibroblasts (RNase L(-/-)-MEFs). Here, we identify C/EBP homologous protein 10 (CHOP10), a dominant negative member of the CCAAT/enhancer-binding protein family, as a specific RNase L target. We show that RNase L...... RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present...

  13. Mitochondrial (dys)function in adipocyte (de)-differentiation and systemic metabolic alterations

    NARCIS (Netherlands)

    Pauw, de A.; Tejerina, S.; Raes, M.; Keijer, J.; Arnould, T.

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmenta

  14. Effects of a fatty acid synthase inhibitor on adipocyte differentiation of mouse 3T3-L1 cells

    Institute of Scientific and Technical Information of China (English)

    Li-hong LIU; Xiao-kui WANG; Yuan-dong HU; Jian-lei KANG; Li-li WANG; Song LI

    2004-01-01

    AIM: To investigate the influence of C75, a fatty acid synthase inhibitor, on adipocyte differentiation. METHODS:Mouse 3T3-L1 preadipocytes were induced to differentiation by insulin, isobutylmethylxanthine, and dexamethasone.Oil red O staining was performed and activity of glycerol-3-phosphate dehydrogenase (GPDH) was measured. The level of peroxisome proliferators-activated receptor γ (PPARγ) mRNA was assayed by semi-quantitative reverse transcription PCR. RESULTS: C75 blocked the adipogenic conversion in a dose-dependent manner and the inhibitory effects occurred both in the early phases (48 h) and in the latter phases (8 d) of the process. Treatment with C75 for 8 d induced more decrease in lipid content than 48 h (P<0.01). Treatment with C75 50 mg/L for 48 h or 8 d decreased GPDH activity by 52.8 % and 31.2 % of Vehicle, respectively. Treatment with C75 10-50 mg/L for 48 h or 8 d down-regulated PPARγ mRNA expression compared with control (P<0.01). CONCLUSION: C75 blocked the adipocyte differentiation, which was related with down-regulation of PPARγ mRNA.

  15. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    Science.gov (United States)

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  16. Differential genes in adipocytes induced from polycystic and non-polycystic ovary syndrome-derived human embryonic stem cells.

    Science.gov (United States)

    Wang, Fang; Liu, Wei-Wei; Chen, Xue-Mei; Kong, Hui-Juan; Li, Jing; Sun, Ying-Pu

    2014-06-01

    We explored the molecular mechanisms of obesity and insulin resistance in patients with polycystic ovary syndrome (PCOS) using a human embryonic stem cell model (hESCs). Three PCOS-derived and one non-PCOS-derived hESC lines were induced into adipocytes, and then total RNA was extracted. The differentially expressed PCOS-derived and non-PCOS-derived adipocytes genes were identified using the Boao Biological human V 2.0 whole genome oligonucleotide microarray. Signals of interest were then validated by real-time PCR. A total of 153 differential genes were expressed of which 91 genes were up-regulated and 62 down-regulated. Nuclear receptor subfamily 0, group B, member 2 (NR0B2) was an up-regulated gene, and the GeneChip CapitalBio® Molecule Annotation System V4.0 indicated that it was associated with obesity and diabetes (Ratio ≥ 2.0X). Multiple genes are involved in PCOS. Nuclear receptor subfamily 0, group B, member 2 may play a role in obesity and insulin resistance in patients with PCOS.

  17. Effect of Dy3+ on osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and adipocytic trans-differentiation of mouse primary osteoblasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG dinChao; LIU DanDan; SUN ding; ZHANG DaWei; SHEN ShiGang; YANG MengSu

    2009-01-01

    A series of experimental methods including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bro-mide (MTT) test,alkaline phosphatase (ALP) activity measurement,mineralized function,Oil Red O stain and measurement were employed to assess the effect of Dy3+ on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipogenic trans-differ-entiation of mouse primary osteoblasts (Obs).The results showed that Dy3+ had no effect on BMSC proliferation at concentrations of 1×10-8 and 1×10-5 mol/L,but inhibited BMSC proliferation at other concentrations.Dy3+ had no effect on OB proliferation at concentrations of 1×10-10 and 1×10-9 mol/L,but inhibited OB proliferation at other concentrations.Dy3+ had no effect on the osteogenic differentia-tion of BMSCs at concentrations of 1×10-9 and 1×10-7 mol/L,and promoted osteogenic differentiation of BMSCs at other concentrations at the 7th day.The osteogenic differentiation of BMSCs was inhibited by Dy3+ at concentration of 1×10-5 mol/L at the 14th day,but promoted osteogenic differentiation of BMSCs at concentrations of 1×10-9,1×10-8,1×10-7 and 1×10-6 mol/L with the maximal effect at concen-tration of 10-6 mol/L.Dy3+ promoted mineralized function of BMSCs at any concentration.Dy3+ had no effect on adipogenic differentiation of BMSCs at concentration of 1×10-7 mol/L,but inhibited adipogenic differentiation of BMSCs at other concentrations.Dy3+ inhibited adipocytic trans-differentiation of Obs at any concentration,suggesting that Dy3+ had protective effect on bone and the protective effect on bone may be mediated by modulating differentiation of BMSCs away from the adipocyte and inhibiting adipocytic trans-differentiation of Obs which may promote differentiation and mineralization of Obs.These results may be valuable for better understanding the mechanism of the effect of Dy3+ on pathogenesis of osteoporosis.

  18. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  19. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Hansen Jacob B

    2011-05-01

    Full Text Available Abstract Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs, and retinoblastoma gene-deficient MEFs (Rb-/- MEFs. Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte

  20. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease.

    Science.gov (United States)

    Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia

    2014-10-01

    S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.

  1. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Jia, Bingbing; Madsen, Lise; Petersen, Rasmus Koefoed;

    2012-01-01

    Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA......) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence......(2)) may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX). Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK) was inhibited. Unlike the case for murine preadipocytes cell lines, long...

  2. Reactive oxygen species facilitate translocation of hormone sensitive lipase to the lipid droplet during lipolysis in human differentiated adipocytes.

    Directory of Open Access Journals (Sweden)

    Sarah A Krawczyk

    Full Text Available In obesity, there is an increase in reactive oxygen species (ROS within adipose tissue caused by increases in inflammation and overnutrition. Hormone sensitive lipase (HSL is part of the canonical lipolytic pathway and critical for complete lipolysis. This study hypothesizes that ROS is a signal that integrates regulation of lipolysis by targeting HSL. Experiments were performed with human differentiated adipocytes from the subcutaneous depot. Antioxidants were employed as a tool to decrease ROS, and it was found that scavenging ROS with diphenyliodonium, N-acetyl cysteine, or resveratrol decreased lipolysis in adipocytes. HSL phosphorylation of a key serine residue, Ser552, as well as translocation of this enzyme from the cytosol to the lipid droplet upon lipolytic stimulation were both abrogated by scavenging ROS. The phosphorylation status of other serine residues on HSL were not affected. These findings are significant because they document that ROS contributes to the physiological regulation of lipolysis via an effect on translocation. Such regulation could be useful in developing new obesity therapies.

  3. 3,4-Oxo-isopropylidene-shikimic acid promotes adiopkine expression during murine 3T3-L1 fibroblast differentiation into adipocytes

    Directory of Open Access Journals (Sweden)

    Shifen Dong

    2014-10-01

    Conclusions: These findings demonstrated that ISA promoted adipogenesis by up-regulating expressions of C/EBP β, PPAR γ, C/EBP α, aP2 and FAS, and also stimulated adipokines during adipocyte differentiation. Further study should clarify the relationship between stimulation of adipokines and cognitive enhancing effect of ISA.

  4. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  5. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  6. Hesperetin inhibit adipocyte differentiation and enhance Bax- and p21-mediated adipolysis in human mesenchymal stem cell adipogenesis.

    Science.gov (United States)

    Subash-Babu, Pandurangan; Alshatwi, Ali A

    2015-03-01

    We aimed to explore the antiadipogenic and adipolysis effect of hesperetin in human mesenchymal stem cells (hMSCs)-induced adipogenesis. IC50 value of hesperetin was higher for hMSCs such as 149.2 ± 13.2 μmol for 24 h and 89.4 ± 11.4 μmol in 48 h, whereas in preadipocytes was 87.6 ± 9.5 μmol and 72.4 ± 5.6 μmol in 24 h and 48 h, respectively. Hesperetin treatment (5, 10, and 20 μmol) to adipogenesis-induced hMSCs (Group 1) and preadipocytes (Group 2) resulted in a significantly (p p21 expression in Group 2 compared to untreated preadipocytes. hMSCs cultured in adipogenic medium along with hesperetin significantly inhibited adipocyte differentiation and increased the proapoptotic gene expression levels in preadipocyte. Our result indicates the antiadipogenic and adipolysis effects of hesperetin.

  7. PCB-153 shows different dynamics of mobilisation from differentiated rat adipocytes during lipolysis in comparison with PCB-28 and PCB-118.

    Directory of Open Access Journals (Sweden)

    Caroline Louis

    Full Text Available BACKGROUND: Polychlorinated biphenyls (PCBs are persistent organic pollutants. Due to their lipophilic character, they are preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro experiment studied the impact of (i the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii the presence of other PCB congeners on the mobilisation rate of such molecules. METHODOLOGY/PRINCIPAL FINDINGS: Differentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually, did not seem to be influenced by the presence of other congeners within adipocytes. CONCLUSION/SIGNIFICANCE: These results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis, in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release

  8. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

    Science.gov (United States)

    Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli

    2017-01-25

    Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

  9. Inhibition of adipocyte differentiation by resistin-like molecule alpha. Biochemical characterization of its oligomeric nature

    DEFF Research Database (Denmark)

    Blagoev, Blagoy; Kratchmarova, Irina; Nielsen, Mogens M;

    2002-01-01

    of thiazolidinediones. The prototypical member of this family was originally identified from bronchoalveolar lavage fluid of inflamed lungs and designated FIZZ1 ("found in inflammatory zone"). This molecule was also found to be highly expressed in adipose tissue and was named resistin-like molecule alpha (RELMalpha...... as well as by mass spectrometry. In addition, RELMalpha is able to form heterooligomers with resistin but not RELMbeta. Since RELMalpha is expressed by adipose tissue and it is a secreted factor, our findings suggest that RELMalpha may be involved in the control of the adipogenesis as well......A novel family of cysteine-rich secreted proteins with unique tissue distribution has recently been identified. One of the members, resistin (for "resistance to insulin"), also called FIZZ3, was identified in a screen for molecules that are down-regulated in mature adipocytes upon administration...

  10. Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid.

    Science.gov (United States)

    Oki, Yoshinao; Watanabe, Saiko; Endo, Tuyoshi; Kano, Koichiro

    2008-01-01

    We investigated whether de-differentiated fat (DFAT) cells, a mature adipocyte-derived preadipocyte cell line, can be induced to trans-differentiate into osteoblasts in vitro and in vivo. All-trans retinoic acid (RA) induced expression of osteoblast-specific mRNAs encoding Cbfa1/Runx2, osterix, alkaline phosphatase, osteopontin, parathyroid hormone receptor, and osteocalcin in the DFAT cells, but did not induce the expression of adipocyte-specific mRNAs encoding PPARgamma2, C/EBPalpha, and GLUT4. Moreover, alkaline phosphatase activity was expressed in DFAT cells and the cells underwent mineralization of the bone matrix in vitro. Furthermore, when DFAT cells were transplanted subcutaneously into C57BL/6N mice in diffusion chambers, these cells formed ectopic osteoid tissue without any host cell-invasion of the chambers. These results indicate that DFAT cells derived from mature adipocytes can be converted into fully differentiated osteoblasts in vitro and in vivo using RA. DFAT cells provide a unique model for studying the lineage commitment of the adipocytes and osteoblasts derived from mesenchymal stem cells. Identification of the pathways that regulate these processes could lead to the development of new therapeutic strategies for control of unwarranted growth of bone and adipose tissue.

  11. Attainment of brown adipocyte features in white adipocytes of hormone-sensitive lipase null mice.

    Directory of Open Access Journals (Sweden)

    Kristoffer Ström

    Full Text Available BACKGROUND: Hormone-sensitive lipase (HSL is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: Following a high-fat diet (HFD regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARgamma, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1, the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. CONCLUSIONS: These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown

  12. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells.

  13. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222.

    Science.gov (United States)

    Skårn, Magne; Namløs, Heidi M; Noordhuis, Paul; Wang, Meng-Yu; Meza-Zepeda, Leonardo A; Myklebost, Ola

    2012-04-10

    Human mesenchymal stromal cells (hMSCs) are capable of limited self-renewal and multilineage differentiation in vitro. Several studies have demonstrated that microRNAs (miRNAs, miRs), post-transcriptional modifiers of mRNA stability and protein translation, play crucial roles in the regulation of these complex processes. To gain knowledge regarding the role of miRNAs in human adipocyte differentiation, we examined the miRNA expression profile of the immortalized human bone marrow-derived stromal cell line hMSC-Tert20. Such a model system has the advantage of a reproducible and consistent phenotype while maintaining important properties of the primary donor cells, including the potential to differentiate to adipocytes, osteoblasts, and chondrocytes. We identified 12 miRNAs that were differentially expressed during adipogenesis, of which several have been previously shown to play important roles in adipocyte biology. Among these, the expression of miRNA-155, miRNA-221, and miRNA-222 decreased during the adipogenic program of both immortalized and primary hMSCs, suggesting that they act as negative regulators of differentiation. Interestingly, ectopic expression of the miRNAs significantly inhibited adipogenesis and repressed induction of the master regulators PPARγ and CCAAT/enhancer-binding protein alpha. Our study provides the first experimental evidence that miRNA-155, miRNA-221, and miRNA-222 have an important function in human adipocyte differentiation, and that their downregulation is necessary to relieve the repression of genes crucial for this process.

  14. Borrelidin Isolated from Streptomyces sp. Inhibited Adipocyte Differentiation in 3T3-L1 Cells via Several Factors Including GATA-Binding Protein 3.

    Science.gov (United States)

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Tokuyama, Shinji; Imamura, Nobutaka

    2015-01-01

    An inhibitor of 3T3-L1 adipocyte differentiation was isolated from Streptomyces sp. TK08330 and identified by spectroscopy as the 18-membered macrolide borrelidin. Treatment with 1.0 μM borrelidin suppressed intracellular lipid accumulation by 80% and inhibited the expression of adipocyte-specific genes. Borrelidin suppressed the mRNA expression of two master regulators of adipocyte differentiation, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein (C/EBPα). Studies on well-known upstream regulators of PPARγ revealed that borrelidin down-regulated C/EBPδ mRNA expression but did not affect expression of C/EBPβ. Borrelidin increased mRNA expression of negative regulators of differentiation such as GATA-binding protein (GATA) 3, Krüppel-like factor (KLF) 3 and KLF7, as well as positive regulators, KLF4, KLF6 and KLF15, at early stages of differentiation. To elucidate a primary mediator of borrelidin differentiation inhibitory activity, small interfering RNA (siRNA) transfection experiments were performed. The mRNA expression of PPARγ, which was down-regulated by borrelidin, was not changed by KLF3 and KLF7 siRNA treatment. In contrast, expression of PPARγ in GATA-3 siRNA-treated cells was not significantly different from that of control siRNA-treated cells. Borrelidin significantly inhibited lipid accumulation in control siRNA-treated cells, and treatment with GATA-3 siRNA slightly reduced the inhibitory effect of borrelidin. These results indicate that borrelidin inhibited adipocyte differentiation partially via GATA-3.

  15. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    Science.gov (United States)

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  16. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  17. TLR-3 is present in human adipocytes, but its signalling is not required for obesity-induced inflammation in adipose tissue in vivo.

    Directory of Open Access Journals (Sweden)

    Dov B Ballak

    Full Text Available Innate immunity plays a pivotal role in obesity-induced low-grade inflammation originating from adipose tissue. Key receptors of the innate immune system including Toll-like receptors-2 and -4 (TLRs are triggered by nutrient excess to promote inflammation. The role of other TLRs in this process is largely unknown. In addition to double-stranded viral mRNA, TLR-3 can also recognize mRNA from dying endogenous cells, a process that is frequently observed within obese adipose tissue. Here, we identified profound expression of TLR-3 in adipocytes and investigated its role during diet-induced obesity. Human adipose tissue biopsies (n=80 and an adipocyte cell-line were used to study TLR-3 expression and function. TLR-3-/- and WT animals were exposed to a high-fat diet (HFD for 16 weeks to induce obesity. Expression of TLR-3 was significantly higher in human adipocytes compared to the non-adipocyte cells part of the adipose tissue. In vitro, TLR-3 expression was induced during differentiation of adipocytes and stimulation of the receptor led to elevated expression of pro-inflammatory cytokines. In vivo, TLR-3 deficiency did not significantly influence HFD-induced obesity, insulin sensitivity or inflammation. In humans, TLR-3 expression in adipose tissue did not correlate with BMI or insulin sensitivity (HOMA-IR. Together, our results demonstrate that TLR-3 is highly expressed in adipocytes and functionally active. However, TLR-3 appears to play a redundant role in obesity-induced inflammation and insulin resistance.

  18. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling.

    Science.gov (United States)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L; Piroli, Gerardo G; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J; Koh, Ho-Jin

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function.

  19. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Koefoed Petersen, Rasmus; Feddersen, Søren;

    2014-01-01

    of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin...

  20. Differential roles of CIDEA and CIDEC in insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes.

    Science.gov (United States)

    Ito, Minoru; Nagasawa, Michiaki; Hara, Tomoko; Ide, Tomohiro; Murakami, Koji

    2010-07-01

    Both insulin and the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. However, regulation of the CIDE family by insulin and the contribution of the CIDE family to insulin actions remain unclear. Here, we investigated whether insulin regulates expression of the CIDE family and which subtypes contribute to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. Insulin decreased CIDEA and increased CIDEC but not CIDEB mRNA expression. Starvation-induced apoptosis in adipocytes was significantly inhibited when insulin decreased the CIDEA mRNA level. Small interfering RNA-mediated depletion of CIDEA inhibited starvation-induced apoptosis similarly to insulin and restored insulin deprivation-reduced adipocyte number, whereas CIDEC depletion did not. Lipid droplet size of adipocytes was increased when insulin increased the CIDEC mRNA level. In contrast, insulin-induced enlargement of lipid droplets was markedly abrogated by depletion of CIDEC but not CIDEA. Furthermore, depletion of CIDEC, but not CIDEA, significantly increased glycerol release from adipocytes. These results suggest that CIDEA and CIDEC are novel genes regulated by insulin in human adipocytes and may play key roles in the effects of insulin, such as anti-apoptosis and lipid droplet formation.

  1. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Xiang-hui LI; Jin-chao ZHANG; Sen-fang SUI; Meng-su YANG

    2005-01-01

    Aim: To examine the effect of daidzin, genistin, and glycitin on the osteogenic and adipogenic differentiation of bone marrow stromal cells (MSC) and the adipogenic transdifferentiation of osteoblasts. Methods: MTT test, alkaline phosphatase (ALP) activity measurement, Oil Red O stain and measurement were employed.Results: Daidzin, genistin, and glycitin 1× 10-8, 5× 10-7, 1× 10-6, 5× 10-6, and 1× 10-5mol/L all promoted the proliferation of primary mouse bone MSC and osteoblasts.Daidzin 5× 10-7 mol/L and genistin 1 × 10-6 mol/L promoted the osteogenesis of MSC. Genistin 1×10-8, 5×10-7, 1×10-6, 5×10-6, and 1×10-5 mol/L and glycitin 1×10-8,1× 10-6, and 1× 10-5 mol/L inhibited the adipogenesis of MSC. Daidzin, genistin,and glycitin 1×10-8,5×10-7, 1× 10-6, 5× 10-6, and 1× 10-5 mol/L all inhibited the adipocytic transdifferentiation of osteoblasts. Conclusions: Daidzin, genistin, and glycitin may modulate differentiation of MSC to cause a lineage shift toward the osteoblast and away from the adipocytes, and could inhibit adipocytic transdifferentiation of osteoblasts. They could also be helpful in preventing the development of osteonecrosis.

  2. Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes.

    Science.gov (United States)

    Rong, James X; Klein, Jean-Louis D; Qiu, Yang; Xie, Mi; Johnson, Jennifer H; Waters, K Michelle; Zhang, Vivian; Kashatus, Jennifer A; Remlinger, Katja S; Bing, Nan; Crosby, Renae M; Jackson, Tymissha K; Witherspoon, Sam M; Moore, John T; Ryan, Terence E; Neill, Sue D; Strum, Jay C

    2011-01-01

    Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O(2) consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.

  3. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  4. Signal transducer and activator of transcription 5B (STAT5B) modulates adipocyte differentiation via MOF.

    Science.gov (United States)

    Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong

    2015-12-01

    The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression.

  5. Glycine suppresses TNF-α-induced activation of NF-κB in differentiated 3T3-L1 adipocytes.

    Science.gov (United States)

    Blancas-Flores, Gerardo; Alarcón-Aguilar, Francisco J; García-Macedo, Rebeca; Almanza-Pérez, Julio C; Flores-Sáenz, José L; Román-Ramos, Rubén; Ventura-Gallegos, José L; Kumate, Jesús; Zentella-Dehesa, Alejandro; Cruz, Miguel

    2012-08-15

    Glycine strongly reduces the serum levels of pro-inflammatory cytokines and increases the levels of anti-inflammatory cytokines. Recently, glycine has been shown to decrease the expression and secretion of pro-inflammatory adipokines in monosodium glutamate-induced obese (MSG/Ob) mice. It has been postulated that these effects may be explained by a reduction in nuclear factor kappa B (NF-κB) activation. NF-κB is a transcription factor, which is crucial to the inflammatory response. Hasegawa et al. (2011 and 2012) recently reported a glycine-dependent reduction in NF-κB levels. Here, we have investigated the role of glycine in the regulation of NF-κB in differentiated 3T3-L1 adipocytes. The results revealed that pretreatment with glycine interfered with the activation of NF-κB, which has been shown to be stimulated by tumor necrosis factor-alpha (TNF-α). Glycine alone stimulated NF-κB activation in an unusual way such that the inhibitor κB-β (IκB-β) degradation was more significant than that of the inhibitor κB-α (IκB-α) and led to NF-κB complexes comprised of p50 and p65 subunits; IκB-ε degradation did not affect by glycine. These findings suggest that glycine could be used as an alternative treatment for chronic inflammation, which is a hallmark of obesity and other comorbidities, and is characterized by an elevated production of pro-inflammatory cytokines.

  6. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  7. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  8. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Justesen, J; Dokkedahl, Karin Stenderup; Eriksen, E F

    2002-01-01

    Osteoblasts and adipocytes share a common precursor cell in the bone marrow stroma, termed marrow stromal cell (MSC). As the volume of bone adipose tissue increases in vivo with age, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis (OP) is the ......Osteoblasts and adipocytes share a common precursor cell in the bone marrow stroma, termed marrow stromal cell (MSC). As the volume of bone adipose tissue increases in vivo with age, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis (OP...

  9. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes.

    Science.gov (United States)

    Bruno, Joanne; Brumfield, Alexandria; Chaudhary, Natasha; Iaea, David; McGraw, Timothy E

    2016-07-04

    RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10-SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.

  10. CD1d-mediated Presentation of Endogenous Lipid Antigens by Adipocytes Requires Microsomal Triglyceride Transfer Protein*

    Science.gov (United States)

    Rakhshandehroo, Maryam; Gijzel, Sanne M. W.; Siersbæk, Rasmus; Broekema, Marjoleine F.; de Haar, Colin; Schipper, Henk S.; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric

    2014-01-01

    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and –δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis. PMID:24966328

  11. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein.

    Science.gov (United States)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus; Broekema, Marjoleine F; de Haar, Colin; Schipper, Henk S; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric

    2014-08-08

    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.

  12. Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus K; Sørensen, Morten B

    2003-01-01

    Adipocytes play a central role in whole-body energy homoeostasis. Complex regulatory transcriptional networks control adipogensis, with ligand-dependent activation of PPARgamma (peroxisome proliferator-activated receptor gamma) being a decisive factor. Yet the identity of endogenous ligands...

  13. MicroRNA调控动物脂肪细胞分化研究进展%MicroRNA regulates animal adipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    张进威; 罗毅; 王宇豪; 何刘军; 李明洲; 王讯

    2015-01-01

    脂肪组织不仅在维持机体能量代谢和稳态上发挥重要作用,同时也是重要的内分泌器官。脂肪细胞分化是由间充质干细胞(Mesenchymal stem cells, MSC)向成熟脂肪细胞分化的复杂生理过程,该过程由大量转录因子、激素、信号通路分子协同调控。miRNA作为内源性非编码RNA,主要通过抑制转录后翻译等机制来调控基因表达。近年来越来越多的证据表明 miRNA通过调控脂肪细胞分化相关的转录因子和重要信号分子进而影响动物脂肪细胞的分化和脂肪形成。本文对 miRNA影响动物白色、棕色和米色脂肪细胞分化的作用机制及其相关调控通路和关键因子进行了归纳总结,以期为肥胖等代谢性疾病的治疗提供一定的理论指导和新的治疗思路。%Adipose tissues play a critical role in the regulation of energy metabolism and homeostasis, and is also an important endocrine organ. Adipocyte differentiation is a complicated physiological process during which mesenchymal stem cells differentiate into adipocytes. This process is synergistically regulated by a large number of transcription factors, hormones and signaling pathway molecules. As a class of endogenous non-coding RNA (ncRNA), microRNAs (miRNAs) regulate gene expression mainly through post-transcriptional translational repression. In recent years, numerous studies have demonstrated that miRNA could have an impact on adipocyte differentiation and adipogenesis by modulating the ex-pression levels of several adipogenic transcription factors and key signaling molecules. In this review, we summarize the mechanism of miRNA in regulating the differentiation of white/brown/beige adipocytes and the relevant signaling pathways and key factors, in the hope of providing theoretical guidance and new thoughts for treating obesity and other metabolic diseases.

  14. Effects of Black Adzuki Bean (Vigna angularis Extract on Proliferation and Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-01-01

    Full Text Available The aim of this work was to investigate the effects of black adzuki bean (BAB extract on adipocytes, and to elucidate the cellular mechanisms. In order to examine the proliferation of preadipocytes and differentiating adipocytes, cell viability and DNA content were measured over a period of time. Lipid accumulation during cell differentiation and the molecular mechanisms underlying the effects of BAB on the transcriptional factors involved, with their anti-adipogenic effects, were also identified. We observed that BAB exhibits anti-adipogenic effects through the inhibition of proliferation, thereby lowering mRNA expression of C/EBPβ and suppressing adipogenesis during the early stage of differentiation. This, in turn, resulted in a reduction of TG accumulation in a dose- and time-dependent manner. Treating the cells with BAB not only suppressed the adipogenesis-associated key transcription factors PPARγ and C/EBPα but also significantly decreased the mRNA expression of GLUT4, FABP4, LPL and adiponectin. The expression of lipolytic genes like ATGL and HSL were higher in the treatment group than in the control. Overall, the black adzuki bean extract demonstrated an anti-adipogenic property, which makes it a potential dietary supplement for attenuation of obesity.

  15. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available INTRODUCTION: Brown adipose tissue (BAT is a potential therapeutic target to reverse obesity. The purpose of this study was to determine whether primary precursor cells isolated from human adult subcutaneous white adipose tissue (WAT can be induced to differentiate in-vitro into adipocytes that express key markers of brown or beige adipose, and whether the expression level of such markers differs between lean and obese young adult males. METHODS: Adipogenic precursor cells were isolated from lean and obese individuals from subcutaneous abdominal WAT biopsies. Cells were grown to confluence, differentiated for 2.5 weeks then harvested for measurement of gene expression and UCP1 protein. RESULTS: There was no difference between groups with respect to differentiation into adipocytes, as indicated by oil red-O staining, rates of lipolysis, and expression of adipogenic genes (FABP4, PPARG. WAT genes (HOXC9, RB1 were expressed equally in the two groups. Post differentiation, the beige adipose specific genes CITED1 and CD137 were significantly increased in both groups, but classic BAT markers ZIC1 and LHX8 decreased significantly. Cell lines from both groups also equally increased post-differentiation expression of the thermogenic-responsive gene PPARGC1A (PGC-1α. UCP1 gene expression was undetectable prior to differentiation, however after differentiation both gene expression and protein content were increased in both groups and were significantly greater in cultures from lean compared with obese individuals (p<0.05. CONCLUSION: Human subcutaneous WAT cells can be induced to attain BAT characteristics, but this capacity is reduced in WAT cells from obese individuals.

  16. Impact of 3-Amino-1,2,4-Triazole (3-AT)-Derived Increase in Hydrogen Peroxide Levels on Inflammation and Metabolism in Human Differentiated Adipocytes

    Science.gov (United States)

    Ruiz-Ojeda, Francisco Javier; Gomez-Llorente, Carolina; Aguilera, Concepción María; Gil, Angel; Rupérez, Azahara Iris

    2016-01-01

    Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT), the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT) for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX) activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5) were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2) and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes. PMID:27023799

  17. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus

    2014-01-01

    , CD1d-restricted invariant (i)Natural Killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d...... presenting cells (APCs), which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.......-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are upregulated in early adipogenesis, and are transcriptionally...

  18. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Neal X., E-mail: xuechen@iupui.edu [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); O’Neill, Kalisha; Akl, Nader Kassis [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); Moe, Sharon M. [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); Roudebush VA Medical Center, Indianapolis, IN (United States)

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  19. A commercial formulation of glyphosate inhibits proliferation and differentiation to adipocytes and induces apoptosis in 3T3-L1 fibroblasts.

    Science.gov (United States)

    Martini, Claudia N; Gabrielli, Matías; Vila, María del C

    2012-09-01

    Glyphosate-based herbicides are extensively used for weed control all over the world. Therefore, it is important to investigate the putative toxic effects of these formulations which include not only glyphosate itself but also surfactants that may also be toxic. 3T3-L1 fibroblasts are a useful tool to study adipocyte differentiation, this cell line can be induced to differentiate by addition of a differentiation mixture containing insulin, dexamethasone and 3-isobutyl-1-methylxanthine. We used this cell line to investigate the effect of a commercial formulation of glyphosate (GF) on proliferation, survival and differentiation. It was found that treatment of exponentially growing cells with GF for 48h inhibited proliferation in a dose-dependent manner. In addition, treatment with GF dilution 1:2000 during 24 or 48h inhibited proliferation and increased cell death, as evaluated by trypan blue-exclusion, in a time-dependent manner. We showed that treatment of 3T3-L1 fibroblasts with GF increased caspase-3 like activity and annexin-V positive cells as evaluated by flow cytometric analysis, which are both indicative of induction of apoptosis. It was also found that after the removal of GF, remaining cells were able to restore proliferation. On the other hand, GF treatment severely inhibited the differentiation of 3T3-L1 fibroblasts to adipocytes. According to our results, a glyphosate-based herbicide inhibits proliferation and differentiation in this mammalian cell line and induces apoptosis suggesting GF-mediated cellular damage. Thus, GF is a potential risk factor for human health and the environment.

  20. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    Science.gov (United States)

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  1. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    Directory of Open Access Journals (Sweden)

    Chia-Hua Liang

    2013-01-01

    Full Text Available Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ, the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25 by brazilein is greater than that of human skin malignant melanoma (A375 cells, mouse leukemic monocyte macrophage (RAW 264.7 cells, and noncancerous cells (HaCaT and BNLCL2 cells. The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex.

  2. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex.

    Science.gov (United States)

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu; Lin, Rong-Jyh

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH(•) and ABTS(•+) free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPAR γ ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex.

  3. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes.

    Science.gov (United States)

    Kanzaki, M; Watson, R T; Khan, A H; Pessin, J E

    2001-12-28

    Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.

  4. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages.

    Directory of Open Access Journals (Sweden)

    Rubén Cereijo

    Full Text Available Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area ("buffalo hump" has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from "buffalo hump" and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1 and, specifically, of "classical" brown adipocytes (e.g. ZIC1 but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-"classical brown adipocyte" phenotype

  5. Notch pathway is dispensable for adipocyte specification.

    Science.gov (United States)

    Nichols, Amy M; Pan, Yonghua; Herreman, An; Hadland, Brandon K; De Strooper, Bart; Kopan, Raphael; Huppert, Stacey S

    2004-09-01

    In the past decade we have witnessed an epidemic of obesity in developed countries. Therefore, understanding the mechanisms involved in regulation of body weight is becoming an increasingly important goal shared by the public and the scientific community. The key to fat deposition is the adipocyte, a specialized cell that plays a critical role in energy balance and appetite regulation. Much of our knowledge of adipogenesis comes from studies using preadipocytic cell lines that have provided important information regarding molecular control of adipocyte differentiation. However, they fall short of revealing how naive cells acquire competence for adipogenesis. Studies in preadipocytes indicate that the Notch pathway plays a role in regulating adipogenesis (Garces et al.: J Biol Chem 272:29729-29734, 1997). Given the known biological functions of Notch in mediating cell fate decisions (Artavanis-Tsakonas et al.: Science 284:770-776, 1999), we wished to test the hypothesis that the Notch pathway is required for this cellular program by examining adipogenesis in several genetic loss-of-function models that encompass the entire pathway. We conclude that the "canonical" Notch signaling pathway is dispensable for adipocyte specification and differentiation from either mesenchymal or epithelial progenitors.

  6. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells.

    Science.gov (United States)

    Rickard, David J; Wang, Fei-Lan; Rodriguez-Rojas, Ana-Maria; Wu, Zining; Trice, Wen J; Hoffman, Sandra J; Votta, Bartholomew; Stroup, George B; Kumar, Sanjay; Nuttall, Mark E

    2006-12-01

    Whereas continuous PTH infusion increases bone resorption and bone loss, intermittent PTH treatment stimulates bone formation, in part, via reactivation of quiescent bone surfaces and reducing osteoblast apoptosis. We investigated the possibility that intermittent and continuous PTH treatment also differentially regulates osteogenic and adipocytic lineage commitment of bone marrow stromal progenitor/mesenchymal stem cells (MSC). The MSC were cultured under mildly adipogenic conditions in medium supplemented with dexamethasone, insulin, isobutyl-methylxanthine and troglitazone (DIIT), and treated with 50 nM human PTH(1-34) for either 1 h/day or continuously (PTH replenished every 48 h). After 6 days, cells treated with PTH for 1 h/day retained their normal fibroblastic appearance whereas those treated continuously adopted a polygonal, irregular morphology. After 12-18 days numerous lipid vacuole and oil red O-positive adipocytes had developed in cultures treated with DIIT alone, or with DIIT and continuous PTH. In contrast, adipocyte number was reduced and alkaline phosphatase staining increased in the cultures treated with DIIT and 1 h/day PTH, indicating suppression of adipogenesis and possible promotion of early osteoblastic differentiation. Furthermore, intermittent but not continuous PTH treatment suppressed markers of differentiated adipocytes such as mRNA expression of lipoprotein lipase and PPARgamma as well as glycerol 3-phosphate dehydrogenase activity. All of these effects of intermittent PTH were also produced by a 1 h/day treatment with AH3960 (30 microM), a small molecule, non-peptide agonist of the PTH1 receptor. AH3960, like PTH, activates both the cAMP and calcium signaling pathways. Treatment with the adenylyl cyclase activator forskolin for 1 h/day, mimicked the anti-adipogenic effect of intermittent PTH, whereas pretreatment with the protein kinase-A inhibitor H89 prior to intermittent PTH resulted in almost complete conversion to adipocytes. In

  7. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  8. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    Directory of Open Access Journals (Sweden)

    A. V. Ramachandran

    2011-07-01

    Full Text Available Sida rhomboidea. Roxb leaf extract (SRLE is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i in vivo modulation of genes controlling high fat diet (HFD induced obesity and (ii in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  9. Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways

    DEFF Research Database (Denmark)

    Cypess, Aaron M; Zhang, Hongbin; Schulz, Tim J

    2011-01-01

    Brown adipose tissue plays an important role in obesity, insulin resistance, and diabetes. We have previously shown that the transition from brown preadipocytes to mature adipocytes is mediated in part by insulin receptor substrate (IRS)-1 and the cell cycle regulator protein necdin. In this study...... is regulated by the phosphoinositide 3 kinase-Akt pathway, increased necdin promoter activity. Based on reporter gene assays using truncations of the necdin promoter and chromatin immunoprecipitation studies, we demonstrated that CREB and FoxO1 are recruited to the necdin promoter, likely interacting...

  10. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2016-12-01

    Full Text Available Insulin activation of phosphatidylinositol 3-kinase (PI3K regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin’s effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.

  11. 利培酮抑制3T3-L1前脂肪细胞的分化%Risperidone inhibits 3T3-L1 pre-adipocytes differentiation

    Institute of Scientific and Technical Information of China (English)

    张高丽; 张弋; 于海川; 张新雅

    2016-01-01

    Objective To investigate the influence of risperidone on differentiation of 3T3‐L1 pre‐adipocytes .Methods 3T3‐L1 pre‐adipocytes were induced to differentiate into mature adipocytes by adopting the classic hormone cocktail method and observed by the oil red O staining .Meanwhile ,the inducing medium was added with risperidone for studying its influence on 3T3‐L1 pre‐adi‐pocytes differentiation .Results 3T3‐L1 pre‐adipocytes were successfully differentiated into the mature adipocytes ,0 .1 ,1 ,10μmol/L risperidone all could inhibit the differentiation of 3T3‐L1 pre‐adipocytes .Conclusion Risperidone can inhibit the differentiation of 3T3‐L1 pre‐adipocytes .%目的:研究利培酮对3T3‐L1前脂肪细胞分化的影响。方法采用经典的激素鸡尾酒法诱导3T3‐L1前脂肪细胞分化为成熟的脂肪细胞,油红O染色观察。向诱导培养基中加入利培酮研究其对3T3‐L1前脂肪细胞分化的影响。结果用激素鸡尾酒法成功地将3T3‐L1前脂肪细胞诱导为成熟的脂肪细胞。0.1、1、10μmol/L的利培酮均能够抑制3T3‐L1前脂肪细胞的分化。结论利培酮能够抑制3T3‐L1前脂肪细胞的分化。

  12. Inhibition of Adipocyte Differentiation by Phytoestrogen Genistein Through a Potential Downregulation of Extracellular Signal-Regulated Kinases 1/2 Activity

    Science.gov (United States)

    Liao, Qing-Chuan; Li, Ya-Lin; Qin, Yan-Fang; Quarles, L. Darryl; Xu, Kang-Kang; Li, Rong; Zhou, Hong-Hao; Xiao, Zhou-Sheng

    2016-01-01

    In the current study, we investigated the effects of genistein on adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cell (BMSC) cultures and its potential signaling pathway. The terminal adipogenic differentiation was assessed by western-blotting analysis of adipogenic-specific proteins such as PPARγ, C/EBPα, and aP2 and the formation of adipocytes. Treatment of mouse BMSC cultures with adipogenic cocktail resulted in sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family, at the early phase of adipogenesis (from days 3 to 9). Inhibition of ERK1/2 activation by PD98059, a specific MEK inhibitor, reversed the induced adipogenic differentiation. Genistein dose-dependently decreased the phosphorylation of ERK1/2 in mouse BMSC cultures. Genistein incubation for the entire culture period, as well as that applied during the early phase of the culture period, significantly inhibited the adipogenic differentiation of mouse BMSC cultures. While genistein was incubated at the late stage (after day 9), no inhibitory effect on adipogenic differentiation was observed. BMSC cultures treated with genistein in the presence of fibroblast growth factor-2 (FGF-2), an activator of the ERK1/2 signaling pathway, expressed normal levels of ERK1/2 activity, and, in so doing, are capable of undergoing adipogenesis. Our results suggest that activation of the ERK1/2 signaling pathway during the early phase of adipogenesis (from days 3 to 9) is essential to adipogenic differentiation of BMSC cultures, and that genistein inhibits the adipogenic differentiation through a potential downregulation of ERK1/2 activity at this early phase of adipogenesis. PMID:18384126

  13. Peroxisome Proliferator-Activated Receptor γ Activity is Required for Appropriate Cardiomyocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Maryam Peymani

    2016-07-01

    Full Text Available Objective Peroxisome proliferator-activated receptor γ (PPARγ is a member of the PPAR nuclear receptor superfamily. Although PPARγ acts as a master transcription factor in adipocyte differentiation, it is also associated with a variety of cell functions including carbohydrate and lipid metabolism, glucose homeostasis, cell proliferation and cell differentiation. This study aimed to assess the expression level of PPARγ in order to address its role in cardiac cell differentiation of mouse embryonic stem cells (mESCs. Materials and Methods In this an intervening study, mESCs were subjected to cardiac differentiation. Total RNA was extracted from the cells and quantitative real time polymerase chain reaction (qPCR was carried out to estimate level of gene expression. Furthermore, the requirement of PPARγ in cardiac differentiation of mESCs, during cardiac progenitor cells (CPCs formation, was examined by applying the respective agonist and antagonist. Results The obtained data revealed an elevation in the expression level of PPARγ during spontaneous formation of CPCs and cardiomyocytes. Our results indicated that during CPC formation, PPARγ inactivation via treatment with GW9662 (GW reduced expression of CPC and cardiac markers. Conclusion We conclude that PPARγ modulation has an effective role on cardiac differentiation of mESCs at the early stage of cardiomyogenesis.

  14. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. potential mechanism for the lipogenic effect of progesterone in adipose tissue.

    Science.gov (United States)

    Lacasa, D; Le Liepvre, X; Ferre, P; Dugail, I

    2001-04-13

    Fatty acid synthase (FAS), a nutritionally regulated lipogenic enzyme, is transcriptionally controlled by ADD1/SREBP1c (adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c), through insulin-mediated stimulation of ADD1/SREBP1c expression. Progesterone exerts lipogenic effects on adipocytes, and FAS is highly induced in breast tumor cell lines upon progesterone treatment. We show here that progesterone up-regulates ADD1/SREBP1c expression in the MCF7 breast cancer cell line and the primary cultured preadipocyte from rat parametrial adipose tissue. In MCF7, progesterone induced ADD1/SREBP1c and Metallothionein II (a well known progesterone-regulated gene) mRNAs, with comparable potency. In preadipocytes, progesterone increased ADD1/SREBP1c mRNA dose-dependently, but not SREBP1a or SREBP2. Run-on experiments demonstrated that progesterone action on ADD1/SREBP1c was primarily at the transcriptional level. The membrane-bound and mature nuclear forms of ADD1/SREBP1 protein accumulated in preadipocytes cultured with progesterone, and FAS induction could be abolished by adenovirus-mediated overexpression of a dominant negative form of ADD1/SREBP1 in these cells. Finally, in the presence of insulin, progesterone was unable to up-regulate ADD1/SREBP1c mRNA in preadipocytes, whereas its effect was restored after 24 h of insulin deprivation. Together these results demonstrate that ADD1/SREBP1c is controlled by progesterone, which, like insulin, acts by increasing ADD1/SREBP1c gene transcription. This provides a potential mechanism for the lipogenic actions of progesterone on adipose tissue.

  15. Mitochondria in White, Brown, and Beige Adipocytes

    Directory of Open Access Journals (Sweden)

    Miroslava Cedikova

    2016-01-01

    Full Text Available Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT, the brown (BAT, and the beige/brite/brown-like (bAT adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.

  16. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    Science.gov (United States)

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  17. Separate Developmental Programs for HLA-A and -B Cell Surface Expression during Differentiation from Embryonic Stem Cells to Lymphocytes, Adipocytes and Osteoblasts

    DEFF Research Database (Denmark)

    Sabir, Hardee J; Nehlin, Jan O; Qanie, Diyako;

    2013-01-01

    -A, but not -B) is seen on some multipotent stem cells, and this raises the question how this is in other stem cells and how it changes during differentiation. In this study, we have used flow cytometry to investigate the cell surface expression of HLA-A and -B on human embryonic stem cells (hESC), human......A major problem of allogeneic stem cell therapy is immunologically mediated graft rejection. HLA class I A, B, and Cw antigens are crucial factors, but little is known of their respective expression on stem cells and their progenies. We have recently shown that locus-specific expression (HLA...... hematopoietic stem cells (hHSC), human mesenchymal stem cells (hMSC) and their fully-differentiated progenies such as lymphocytes, adipocytes and osteoblasts. hESC showed extremely low levels of HLA-A and no -B. In contrast, multipotent hMSC and hHSC generally expressed higher levels of HLA-A and clearly HLA...

  18. Berberine attenuates autophagy in adipocytes by targeting BECN1

    OpenAIRE

    Deng, Yujie; Xu, Jun; Zhang, Xiaoyan; Yang, Jian; Zhang, Di; Huang, Jian; Lv, Pengfei; Shen, Weili; Yang, Ying

    2014-01-01

    The lysosomal degradation pathway, autophagy, is essential for the maintenance of cellular homeostasis. Recently, autophagy has been demonstrated to be required in the process of adipocyte conversion. However, its role in mature adipocytes under physiological and pathological conditions remains unclear. Here, we report a major function of BECN1 in the regulation of basal autophagy in mature adipocytes. We also show that berberine, a natural plant alkaloid, inhibits basal autophagy in adipocyt...

  19. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    Science.gov (United States)

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  20. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  1. Dedifferentiated adipocyte-derived progeny cells (DFAT cells)

    OpenAIRE

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J.; Rasmussen, Theodore P; Bergen, Werner G.; Dodson, Michael V.

    2013-01-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, ...

  2. MicroRNAs in the regulation of brown adipocyte differentiation%调控褐色脂肪细胞分化的microRNAs

    Institute of Scientific and Technical Information of China (English)

    郭云涛; 苗向阳

    2015-01-01

    MicroRNAs (miRNAs), a class of endogenous non-coding RNA about 22 nucleotide long, regulate gene expression at the post-transcription level by inhibiting the translation or inducing the degradation of their target mRNAs in organisms. There are two types of adipose tissues:brown and white. White adipose tissues store energy in the form of tri-glycerides (TGs), while brown adipose tissues catabolize TGs to generate energy. Brown adipose tissues are of great im-portance to the research of obesity and related metabolic diseases due to their function of preventing people from obesity. A lot of studies have revealed that miRNAs play crucial roles in regulating brown adipocyte differentiation and are modulat-ed by lots of transcription factors and environmental factors, which form a complex regulatory network maintaining the homeostasis of adipose tissues. In this review, we summarize the latest studies of miRNAs in brown adipocyte differentia-tion, which might provide new strategies for the treatment of obesity and other related diseases.%MicroRNA(miRNA)是近年来在真核生物中发现的一类长约22nt的内源性非编码RNA,在动物中主要通过抑制靶 mRNA 翻译,在转录后水平调控基因表达。动物体内有两种类型的脂肪组织:褐色和白色脂肪,白色脂肪以甘油三脂形式贮存能量,而褐色脂肪利用甘油三酯产生能量。褐色脂肪因其对肥胖的拮抗作用而对研究肥胖等代谢疾病具有重要意义,大量研究表明 miRNA在褐色脂肪细胞分化中扮演着重要角色,其自身也受到多种转录因子和环境因子调控,这个复杂的调控网络维持了体内脂肪组织稳态。文章主要综述了 miRNA在褐色脂肪细胞分化中的最新研究进展,以期为利用 miRNA进行肥胖、糖尿病等相关疾病及其并发症的治疗提供新思路。

  3. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    DEFF Research Database (Denmark)

    Hakim-Weber, Robab; Krogsdam, Anne-M; Jørgensen, Claus;

    2011-01-01

    this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs...... of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1.To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis......Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate...

  4. Berberine Activates AMPK and Inhibits 3T3-L1 Adipocyte Differentiation%小檗碱激活AMPK抑制3T3-L1脂肪细胞分化

    Institute of Scientific and Technical Information of China (English)

    王宁; 张娟; 建方方; 邓儒元; 唐红菊; 刘赟; 李凤英; 王晓; 周丽斌

    2012-01-01

    目的 探讨小檗碱对3T3-L1脂肪分化的作用是否与激活腺苷酸活化蛋白激酶(AMPK)有关.方法 在3T3-L脂肪细胞分化全程加入小檗碱,以油红O染色检测3T3-L1脂肪细胞胞浆中脂肪的堆积,实时定量PCR检测过氧化物酶体增殖物激活受体γ2(PPARγ2)、CCAAT增强子结合蛋白α(CEBPα)和AMPK的mRNA表达,以Western印迹法检测AMPK和乙酰辅酶A羧化酶(ACC)的磷酸化水平.结果 小檗碱剂量依赖性地抑制3T3-L1脂肪细胞分化,10 μmol/L小檗碱几乎完全抑制胞浆中脂肪的堆积.5 μmol/L小檗碱在脂肪细胞诱导分化1、3、5、7d后均显著降低CEBPα mRNA表达(P<0.05或P<0.01),诱导分化3、5、7d时显著降低PPARγ2的mRNA表达(P<0.05或P<0.01).AMPK的mRNA水平在分化过程中未受小檗碱的明显影响,而小檗碱明显增加其蛋白磷酸化水平,其下游靶基因ACC磷酸化水平也明显增加.结论 小檗碱抑制3T3-L1脂肪细胞的分化可能与其激活AMPK有关.%Objective To investigate whether the effect of berberine ( BBR) on 3T3-L1 adipocyte differentiation is related to AMP activated protein (AMPK) activation. Methods The accumulation of lipid in the cytoplasm of differentiated 3T3-L1 adipocytes was observed by oil red 0 staining. Realtime-PCR was used to detect the mRNA ezpiesBions of PPARγ2, CEBPα, and AMPK. The phosphorylation levels of AMPK and acetyl CoA carboxylase (ACC) were detected by Western blot. Result Berberine inhibited 3T3-L1 adipocyte differentiation in a dose-dependent manner. At the concentration of 10μmol/L berberine, the accumulation of lipid in the cytoplasm of adipocytes was almost inhibited. CEBPa mRNA expression was inhibited by 5μmol/L berberine after 1,3,5, and 7day induction differentiation (P<0.05 or P<0.01) and PPARry2 mRNA expression was decreased by berberine after induction differentiation of 3,5, and 7 day (P<0.05 or P< 0.01). There were no changes of AMPK mRNA level after 3T3-IA cells were incubated with

  5. Function of MicroRNAs During the Differentiation Process of Brown Adipocytes%MicroRNAs在棕色脂肪细胞分化过程中的作用

    Institute of Scientific and Technical Information of China (English)

    郝美林; 黄英; 黄丽梅; 杨明华; 李琦华; 贾俊静; 赵素梅

    2014-01-01

    MicroRNAs(miRNAs)are small, non-coding regulatory RNAs, which negatively regulate post-transcriptionally gene expression. miRNA plays the role in many biological functions including controlling the developmental timing, regulation of cell differentiation and apoptosis, organ development, fat metabolism. Recent studies indicated that the expression levels of transcriptional factors related genes which were important for the development of brown adipocyte tissue was affected by miRNAs directly or indirectly. This article reviewed the recent progress on the function of miRNA during the differentiation process of brown adipocytes.%MicroRNA(miRNA)是一种非编码的小分子RNA,负性调控转录后基因表达。miRNA在个体时序性发育、细胞增殖分化和凋亡、器官发育、脂肪代谢等许多生物发育过程中起着重要作用。近年来对miRNA的研究证实,miRNA直接或间接影响棕色脂肪组织发育过程中重要转录因子的表达。综述了miRNA调节棕色脂肪细胞分化的最新研究进展。

  6. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  7. Comparison of the adipogenesis in intramuscular and subcutaneous adipocytes from Bamei and Landrace pigs.

    Science.gov (United States)

    Zhang, Guo Hua; Lu, Jian Xiong; Chen, Yan; Zhao, Yong Qing; Guo, Peng Hui; Yang, Ju Tian; Zang, Rong Xin

    2014-08-01

    Fat deposition is a complex process involving proliferation, differentiation, and lipogenesis of adipocytes. Bamei and Landrace are considered to represent fat- and lean-type pig breeds. Subcutaneous (SC) and intramuscular (IM) pre-adipocytes were cultured to compare the proliferation and lipogenesis in these breeds. The differentiated adipocytes were exposed to glucose or insulin to evaluate their effects on lipogenesis and lipogenic gene expression. Pre-adipocytes proliferated dramatically faster in SC vs. IM cells, and in Bamei vs. Landrace breeds. Lipogenesis and lipogenic gene expression had a greater increase in Bamei than in Landrace, and in SC vs. IM in the process of differentiation. Glucose markedly promoted lipogenesis and lipogenic gene expression in differentiated adipocytes. The stimulation of high-glucose levels on lipogenesis and ChREBP and lipogenic gene expression was higher in SC than IM adipocytes, and in Bamei vs. Landrace. Insulin largely increased SREBP-1c expression, however it modestly stimulated lipogenesis and lipogenic gene expression, and there was no difference between cell populationsor between breeds. These data demonstrated that regional and varietal differences obviously existed in the development of porcine adipocytes. The proliferation and differentiation capacity of pre-adipocytes, and the adipocyte lipogenesis stimulated by glucose, are stronger in Bamei than Landrace, and in SC vs. IM adipocytes independent of breed.

  8. Milk-derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells.

    Directory of Open Access Journals (Sweden)

    Subhadeep Chakrabarti

    Full Text Available Milk derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE. Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease.

  9. Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines.

    Directory of Open Access Journals (Sweden)

    Bao G Vu

    Full Text Available BACKGROUND: Human adipocytes may have significant functions in wound healing and the development of diabetes through production of pro-inflammatory cytokines after stimulation by gram-negative bacterial endotoxin. Diabetic foot ulcers are most often associated with staphylococcal infections. Adipocyte responses in the area of the wound may play a role in persistence and pathology. We studied the effect of staphylococcal superantigens (SAgs on immortalized human adipocytes, alone and in the presence of bacterial endotoxin or staphylococcal α-toxin. METHODOLOGY/PRINCIPAL FINDINGS: Primary non-diabetic and diabetic human preadipocytes were immortalized by the reverse transcriptase component of telomerase (TERT and the E6/E7 genes of human papillomavirus. The immortal cells were demonstrated to have properties of non-immortalized pre-adipocytes and could be differentiated into mature and functional adipocytes. Differentiated adipocytes exposed to staphylococcal SAgs produced robust levels of cytokines IL-6 and IL-8, but there were no significant differences in levels between the non-diabetic and diabetic cells. Cytokine production was increased by co-incubation of adipocytes with SAgs and endotoxin together. In contrast, α-toxin alone was cytotoxic at high concentrations, but, at sub-cytotoxic doses, did not stimulate production of IL-6 and IL-8. CONCLUSIONS/SIGNIFICANCE: Endotoxin has been proposed to contribute to diabetes through enhanced insulin resistance after chronic exposure and stimulation of adipocytes to produce cytokines. Our data indicate staphylococcal SAgs TSST-1 and SEB alone and in combination with bacterial endotoxin also stimulate adipocytes to produce cytokines and thus may contribute to the inflammatory response found in chronic diabetic ulcers and in the systemic inflammation that is associated with the development and persistence of diabetes. The immortal human pre-adipocytes reported here will be useful for studies to

  10. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  11. Berberine attenuates autophagy in adipocytes by targeting BECN1.

    Science.gov (United States)

    Deng, Yujie; Xu, Jun; Zhang, Xiaoyan; Yang, Jian; Zhang, Di; Huang, Jian; Lv, Pengfei; Shen, Weili; Yang, Ying

    2014-10-01

    The lysosomal degradation pathway, autophagy, is essential for the maintenance of cellular homeostasis. Recently, autophagy has been demonstrated to be required in the process of adipocyte conversion. However, its role in mature adipocytes under physiological and pathological conditions remains unclear. Here, we report a major function of BECN1 in the regulation of basal autophagy in mature adipocytes. We also show that berberine, a natural plant alkaloid, inhibits basal autophagy in adipocytes and adipose tissue of mice fed a high-fat diet via downregulation of BECN1 expression. We further demonstrate that berberine has a pronounced effect on the stability of Becn 1 mRNA through the Mir30 family. These findings explore the potential of BECN1 as a key molecule and a drug target for regulating autophagy in mature adipocytes.

  12. Metabolic programming of a beige adipocyte phenotype by genistein

    Science.gov (United States)

    Aziz, Sadat A.; Wakeling, Luisa A.; Miwa, Satomi; Alberdi, Goiuri; Hesketh, John E.

    2016-01-01

    Scope Promoting the development of brown or beige adipose tissue may protect against obesity and related metabolic features, and potentially underlies protective effects of genistein in mice. Methods and results We observed that application of genistein to 3T3‐L1 adipocytes changed the lipid distribution from large droplets to a multilocular distribution, reduced mRNAs indicative of white adipocytes (ACC, Fasn, Fabp4, HSL, chemerin, and resistin) and increased mRNAs that are a characteristic feature of brown/beige adipocytes (CD‐137 and UCP1). Transcripts with a role in adipocyte differentiation (Cebpβ, Pgc1α, Sirt1) peaked at different times after application of genistein. These responses were not affected by the estrogen receptor (ER) antagonist fulvestrant, revealing that this action of genistein is not through the classical ER pathway. The Sirt1 inhibitor Ex‐527 curtailed the genistein‐mediated increase in UCP1 and Cebpβ mRNA, revealing a role for Sirt1 in mediating the effect. Baseline oxygen consumption and the proportional contribution of proton leak to maximal respiratory capacity was greater for cells exposed to genistein, demonstrating greater mitochondrial uncoupling. Conclusions We conclude that genistein acts directly on adipocytes or on adipocyte progenitor cells to programme the cells metabolically to adopt features of beige adipocytes. Thus, this natural dietary agent may protect against obesity and related metabolic disease. PMID:27670404

  13. Enhancement of insulin sensitivity in adipocytes by ginger.

    Science.gov (United States)

    Sekiya, Keizo; Ohtani, Atsuko; Kusano, Shuichi

    2004-01-01

    Antidiabetic and hypoglycemic drugs have been reported to enhance adipocyte differentiation of 3T3-L1 preadipocytes. We previously reported that ginseng (active constituents: ginsenosides) enhanced the differentiation [1]. In this experiment, effect of some ginger group food extracts on the adipocyte differentiation was investigated using cultured mouse 3T3-L1 preadipocytes. 3T3-L1 cells were grown as monolayer cultures at 37 degrees C in DMEM supplemented by 10% FBS under the atmosphere of 5% CO(2)-95% air. Ginger extracts were found to enhance the adipocyte differentiation. Active constituent was purified and identified as gingerol. In the gingerol-treated cells, insulin-sensitive glucose uptake was increased. It is expected that ginger enhance the insulin-sensitivity, and improve chronic disease, such as diabetes.

  14. Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Madsen, B; Teisner, Børge

    1998-01-01

    . A possible role for Pref-1/FA1 in mediating the antiadipogenic effect of GH was indicated by the observation that FA1 inhibited differentiation as effectively as GH. These data suggest that GH exerts its inhibitory activity in adipocyte differentiation at a step after the induction of ADD1 but before...... the induction of genes required for terminal differentiation....

  15. Human induced pluripotent stem cells: A new source for brown and white adipocytes

    Institute of Scientific and Technical Information of China (English)

    Anne-Laure; Hafner; Christian; Dani

    2014-01-01

    Mesenchymal stem cells(MSCs) derived from human induced pluripotent stem cells(hiPSCs) provide a novel source for generating adipocytes, thus opening new avenues for fundamental research and clinical medicine. We present the adipogenic potential of hiPSCs and the various methods to derive hiPSC-MSCs. We discuss the main characteristic of hiPSC-MSCs, which is their low adipogenic capacity as compared to adult-MSCs. Finally, we propose several hypotheses to explanation this feature, underlying a potential critical role of the micro-environment. We favour the hypothesis that the range of factors or culture conditions required to induce adipocyte differentiation of MSCs derived from adult tissues and from embryonic-like cells could differ.

  16. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Sinclair Andrew J

    2010-06-01

    Full Text Available Abstract Background Lipid droplet (LD formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3 in comparison to SFA (STA; stearic acid, C18:0 and MUFA (OLA; oleic acid, C18:1n-9 on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation. Results EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions. Conclusions This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

  17. Dedifferentiated adipocyte-derived progeny cells (DFAT cells)

    Science.gov (United States)

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J; Rasmussen, Theodore P; Bergen, Werner G; Dodson, Michael V

    2013-01-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review. PMID:23991357

  18. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells.

    Science.gov (United States)

    Lee, Soung-Hoon; Kim, Bora; Oh, Myoung Jin; Yoon, Juyong; Kim, Hyun Yi; Lee, Kye Jong; Lee, Joo Dong; Choi, Kang-Yell

    2011-11-01

    Obesity, which is related to metabolic syndrome and is associated with liver disease, represents an epidemic problem demanding effective therapeutic strategies. Evidence shows that the Wnt/β-catenin pathway is closely associated with obesity and that small molecules regulating the Wnt/β-catenin pathway can potentially control adipogenesis related to obesity. Eleven plant extracts activating the Wnt/β-catenin pathway were screened by using HEK 293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. An extract of Persicaria hydropiper (L.) Spach was found to activate Wnt/β-catenin signaling. P. hydropiper is grown worldwide in temperate climates and is found widely in Southeast Asia. The P. hydropiper extract inhibited the differentiation of adipocyte 3T3-L1 cells. Isoquercitrin and isorhamnetin, constituents of P. hydropiper, also activated Wnt/β-catenin signaling and suppressed the differentiation of 3T3-L1 cells. These results indicate that isoquercitrin in P. hydropiper suppresses the adipogenesis of 3T3-L1 cells via the inhibition of Wnt/β-catenin signaling. P. hydropiper and isoquercitrin may therefore be potential therapeutic agents for obesity and its associated disorders.

  19. Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle

    Science.gov (United States)

    Arrighi, N; Moratal, C; Clément, N; Giorgetti-Peraldi, S; Peraldi, P; Loubat, A; Kurzenne, J-Y; Dani, C; Chopard, A; Dechesne, C A

    2015-01-01

    A population of fibro/adipogenic but non-myogenic progenitors located between skeletal muscle fibers was recently discovered. The aim of this study was to determine the extent to which these progenitors differentiate into fully functional adipocytes. The characterization of muscle progenitor-derived adipocytes is a central issue in understanding muscle homeostasis. They are considered as being the cellular origin of intermuscular adipose tissue that develops in several pathophysiological situations. Here fibro/adipogenic progenitors were isolated from a panel of 15 human muscle biopsies on the basis of the specific cell-surface immunophenotype CD15+/PDGFRα+CD56−. This allowed investigations of their differentiation into adipocytes and the cellular functions of terminally differentiated adipocytes. Adipogenic differentiation was found to be regulated by the same effectors as those regulating differentiation of progenitors derived from white subcutaneous adipose tissue. Similarly, basic adipocyte functions, such as triglyceride synthesis and lipolysis occurred at levels similar to those observed with subcutaneous adipose tissue progenitor-derived adipocytes. However, muscle progenitor-derived adipocytes were found to be insensitive to insulin-induced glucose uptake, in association with the impairment of phosphorylation of key insulin-signaling effectors. Our findings indicate that muscle adipogenic progenitors give rise to bona fide white adipocytes that have the unexpected feature of being insulin-resistant. PMID:25906156

  20. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping, E-mail: lping@sdu.edu.cn [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Kong, Feng; Wang, Jue [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Lu, Qinghua [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Xu, Haijia [Department of Cardiology, Wendeng Central Hospital of Weihai City, Shandong, Weihai 264400 (China); Qi, Tonggang [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Meng, Juan [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China)

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  1. CCAR1 is required for Ngn3-mediated endocrine differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chung-Kuang [Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC (China); Lai, Yi-Chyi [Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC (China); Lin, Yung-Fu; Chen, Hau-Ren [Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC (China); Chiang, Ming-Ko, E-mail: biomkc@ccu.edu.tw [Department of Life Science, National Chung Cheng University, Chia-Yi, Taiwan, ROC (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer We identify CCAR1 to directly interact with Ngn3. Black-Right-Pointing-Pointer CCAR1 is co-localized with Ngn3 in the nucleus. Black-Right-Pointing-Pointer CCAR1 cooperates with Ngn3 in activating NeuroD expression. Black-Right-Pointing-Pointer CCAR1 is required for Ngn3-mediated PANC-1 transdifferentiation. -- Abstract: Neurogenin3 (Ngn3) is a basic helix-loop-helix transcription factor that specifies pancreatic endocrine cell fates during pancreas development. It can also initiate a transdifferentiation program when expressed in pancreatic exocrine and ductal cells. However, how Ngn3 initiates a transcriptional cascade to achieve endocrine differentiation is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which is a transcriptional coactivator for nuclear receptors, also interacts with Ngn3. The association between Ngn3 and CCAR1 was verified by pull-down assays and co-immunoprecipitation analyses. Using gene reporter assays, we found that CCAR1 is essential for Ngn3 to activate the expression of the reporter genes containing the NeuroD promoter. Moreover, down-regulation of endogenous CCAR1 in the PANC-1 pancreatic ductal cell line inhibits the transdifferentiation program initiated by Ngn3. CCAR1 is, therefore, a novel partner of Ngn3 in mediating endocrine differentiation.

  2. Dedifferentiated adipocyte-derived progeny cells (DFAT cells): Potential stem cells of adipose tissue.

    Science.gov (United States)

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J; Rasmussen, Theodore P; Bergen, Werner G; Dodson, Michael V

    2013-07-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.

  3. 猪TCTP基因的表达规律及其对脂肪细胞分化的影响%Expression of Porcine TCTP and Its Effect on Differentiation of Adipocytes

    Institute of Scientific and Technical Information of China (English)

    李新建; 杨浩; 程佳; 宋子仪; 杨公社

    2011-01-01

    The translationally controlled tumor protein (TCTP) expressed abundantly in a wide range of organisms from both the animal and plant kingdom, which was initially described as a growth-related protein. However, the studies showed that TCTP has a lot of biological functions. The expression of TCTP in fat tissues of different genotype pigs and in different growth periods were explored by high-throughout sequencing (Solexa) and real-time quantity PCR (RT-qPCR), and its effect on differentiation of adipocytes was explored by siRNA. The results showed that expression level of TCTP was higher in the fat tissues of lean-type pig than that of obese-type. Expression level of TCTP in the porcine fat tissue and adipocyte was influenced by ages, and showed a higher expression in heart, liver, kidney, muscle and fat, but lower in spleen and lung. Silencing TCTP by siRNA promoted the adipocytes to differentiate and significantly increased expression levels of PPARγ, C/EBPα and SREBP-1c. TCTP may inhibit adipogenesis by this study which will provide new theoretical reference for fat deposition control.%翻译控制肿瘤蛋白(TCTP,translationally controlled tumor protein)是一类广泛存在各种生物、序列高度保守的蛋白,最初认为TCTP是一类生长相关蛋白,近年研究发现TCTP可能具有非常重要的生物学功能.本研究通过高通量测序(Solexa)技术、实时定量PCR(RT-qPCR)对瘦肉型和脂肪型猪不同生长阶段脂肪组织、脂肪细胞中TCTP的表达规律进行了研究,采用siRNA技术,沉默TCTP,研究了其对脂肪细胞分化的影响.结果表明:TCTP在瘦肉型猪脂肪组织中的mRNA表达量显著高于脂肪型猪(P<0.01);在不同日龄猪脂肪组织中,TCTP的mRNA表达量随着日龄增长而降低;在不同组织中的检测结果发现.TCTP在心、肝、肾、肌肉和脂肪中有较高的表达,肺和脾中表达量较低;TCTP的mRNA表达量在猪前体脂肪细胞增殖过程中逐渐增高,在分化阶段

  4. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition.

    Science.gov (United States)

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M; Pasquier, Jennifer; Bonkowski, Michael S; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A; Graumann, Johannes; Mazloum, Nayef A

    2016-01-29

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity.

  5. 小檗碱对大鼠骨髓间质干细胞成脂分化的抑制作用%Inhibitory effect of berberine on differentiation of rat bone marrow mesenchymal stem cells to adipocytes

    Institute of Scientific and Technical Information of China (English)

    徐道华; 杨玮; 周晨慧; 刘钰瑜; 许碧连

    2011-01-01

    OBJECTIVE To investigate the effect of berberine on differentiation of rat bone marrow mesenchymal stem cells (MSCs) to adipocytes and its mechanism. METHODS Rat MSCs were isolated and cultured, adipocytic differentiation was induced with adipogenesis-inducing medium (AIM). Cells were assigned into 6 groups:normal control, AIM group, AIM+berberine 0.1, 0.3, 1 and 3 μmol·L-1 groups, respectively. Morphology characteristics of mesenchymal stem cells were observed under an inverted microscope and adipocyte levels were analyzed by oil O staining. Alkaline phosphatase (ALP) activity was detected using p-nitrophenyl phosphate as a substrate. The cell survival was determined by MTT assay. Expressions of peroxisome proliferator activated receptor γ (PPARγ), fatty acid binding protein (aP2) and CCAAT enhancer-binding protein α (C/EBPα) mRNA were detected by semiquantitative RT-PCR. RESULTS Compared with normal control group, MSCs adipogenic differentiation, PPARγ, aP2 and C/EBPα mRNA expression significantly increased in AIM group (P<0.01), ALP activity in AIM group significantly decreased (P<0.01). Compared with AIM group, berberine inhibited MSCs adipogenic differentiation (P<0.01) and berberine 0.1, 0.3, 1 and 3 μmol·L-1 increased ALP activity by 26%, 54%, 81% and 122%, respectively. Berberine 3 μmol·L-1 significantly downregulated PPARγ expression (0.91±0.10 vs 1.34±0.06) (P<0.01), aP2 (1.05±0.10 vs 1.53±0.09) (P<0.01) and C/EBPα mRNA (1.24±0.06 vs 1.54±0.09) (P<0.01). Berberine had no effect on proliferation of MSCs. CONCLUSION Berberine inhibits differentiation of MSCs into adipocytes, which might be closely related to the downregulation of PPARγ, aP2 and C/EBPα mRNA.%目的 探讨小檗碱对大鼠骨髓间质干细胞成脂分化的影响及其机制.方法 经分离纯化的大鼠骨髓间质干细胞,分为正常对照组,成脂分化诱导液(AIM)模型组及AIM+小檗碱0.1,0.3,1和3 μmol·L-1组.倒置显微镜下观察细胞的形态特

  6. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ.

    Science.gov (United States)

    Giordano, Antonio; Smorlesi, Arianna; Frontini, Andrea; Barbatelli, Giorgio; Cinti, Saverio

    2014-05-01

    In mammals, adipocytes are lipid-laden cells making up the parenchyma of the multi-depot adipose organ. White adipocytes store lipids for release as free fatty acids during fasting periods; brown adipocytes burn glucose and lipids to maintain thermal homeostasis. A third type of adipocyte, the pink adipocyte, has recently been characterised in mouse subcutaneous fat depots during pregnancy and lactation. Pink adipocytes are mammary gland alveolar epithelial cells whose role is to produce and secrete milk. Emerging evidence suggests that they derive from the transdifferentiation of subcutaneous white adipocytes. The functional response of the adipose organ to a range of metabolic and environmental challenges highlights its extraordinary plasticity. Cold exposure induces an increase in the 'brown' component of the organ to meet the increased thermal demand; in states of positive energy balance, the 'white' component expands to store excess nutrients; finally, the 'pink' component develops in subcutaneous depots during pregnancy to ensure litter feeding. At the cell level, plasticity is provided not only by stem cell proliferation and differentiation but also, distinctively, by direct transdifferentiation of fully differentiated adipocytes by the stimuli that induce genetic expression reprogramming and through it a change in phenotype and, consequently function. A greater understanding of adipocyte transdifferentiation mechanisms would have the potential to shed light on their biology as well as inspire novel therapeutic strategies against metabolic syndrome (browning) and breast cancer (pinking).

  7. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data

    Directory of Open Access Journals (Sweden)

    Katharina Stoecker

    2017-03-01

    Full Text Available The process of adipogenesis is controlled in a highly orchestrated manner, including transcriptional and post-transcriptional events. In developing 3T3-L1 pre-adipocytes, this program can be interrupted by all-trans retinoic acid (ATRA. To examine this inhibiting impact by ATRA, we generated large-scale transcriptomic data on the microRNA and mRNA level. Non-coding RNAs such as microRNAs represent a field in RNA turnover, which is very important for understanding the regulation of mRNA gene expression. High throughput mRNA and microRNA expression profiling was performed using mRNA hybridisation microarray technology and multiplexed expression assay for microRNA quantification. After quantitative measurements we merged expression data sets, integrated the results and analysed the molecular regulation of in vitro adipogenesis. For this purpose, we applied local enrichment analysis on the integrative microRNA-mRNA network determined by a linear regression approach. This approach includes the target predictions of TargetScan Mouse 5.2 and 23 pre-selected, significantly regulated microRNAs as well as Affymetrix microarray mRNA data. We found that the cellular lipid metabolism is negatively affected by ATRA. Furthermore, we were able to show that microRNA 27a and/or microRNA 96 are important regulators of gap junction signalling, the rearrangement of the actin cytoskeleton as well as the citric acid cycle, which represent the most affected pathways with regard to inhibitory effects of ATRA in 3T3-L1 preadipocytes. In conclusion, the experimental workflow and the integrative microRNA–mRNA data analysis shown in this study represent a possibility for illustrating interactions in highly orchestrated biological processes. Further the applied global microRNA–mRNA interaction network may also be used for the pre-selection of potential new biomarkers with regard to obesity or for the identification of new pharmaceutical targets.

  8. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  9. Impact of metabolic regulators on the expression of the obesity associated genes FTO and NAMPT in human preadipocytes and adipocytes.

    Directory of Open Access Journals (Sweden)

    Daniela Friebe

    Full Text Available BACKGROUND: FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. METHODOLOGY AND PRINCIPAL FINDINGS: We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. CONCLUSION: FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes.

  10. Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    Science.gov (United States)

    Schönberg, Maria; Bernhard, Falk; Büttner, Petra; Landgraf, Kathrin; Kiess, Wieland; Körner, Antje

    2011-01-01

    Background FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. Methodology and Principal Findings We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. Conclusion FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes. PMID:21687707

  11. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Soo; Kim, Yoon-Jin [Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Cho, Si Young [R and D Center, Amore Pacific Corporation, Yongin-si, Gyeonggi-do 446-729 (Korea, Republic of); Lee, Tae Ryong, E-mail: trlee@amorepacific.com [R and D Center, Amore Pacific Corporation, Yongin-si, Gyeonggi-do 446-729 (Korea, Republic of); Kim, Sang Hoon, E-mail: shkim@khu.ac.kr [Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-09-27

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.

  12. Capsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress.

    Science.gov (United States)

    Ibrahim, Muhammed; Jang, Mi; Park, Mina; Gobianand, Kuppannan; You, Seungkwon; Yeon, Sung-Heom; Park, Sungkwon; Kim, Min Ji; Lee, Hyun-Jeong

    2015-07-01

    Obesity is a global health problem that requires the utmost attention. Apart from other factors the trans-differentiation of mesenchymal stem cells (MSCs) into adipocytes is an added detrimental factor causing the intensification of obesity. The main objective of this present study is to analyse whether capsaicin is capable of inhibiting the differentiation of BMSCs to adipocytes. Bone marrow mesenchymal stem cells (BMSCs) were obtained and exposed to different concentrations of capsaicin for a period of 6 days following 2 days of adipogenic induction. The capsaicin exposed cells were collected at three different time points (2, 4 and 6 days) and subjected to various analyses. BMSCs after exposure to capsaicin showed dose and time dependent reduction in cell viability and proliferation. Interestingly, capsaicin induced cell cycle arrest at G0-G1 and increased apoptosis by increasing reactive oxygen species (ROS) and reactive nitrogen species (RNS) production. Capsaicin significantly inhibited the early adipogenic differentiation, lipogenesis and maturation of adipocytes with concomitant repression of PPARγ, C/EBPα, FABP4 and SCD-1. Taken together, the results of the present study have clearly emphasized that capsaicin potentially inhibits the adipogenic differentiation of mesenchymal stem cells via many different pathways (anti-proliferative, apoptotic and cell cycle arrest) through the stimulation of ROS and RNS production. Thus, capsaicin not only suppresses the maturation of pre-adipocytes into adipocytes but also inhibits the differentiation of mesenchymal stem cells into adipocytes.

  13. Translocator protein (18 kDa) as a pharmacological target in adipocytes to regulate glucose homeostasis.

    Science.gov (United States)

    Li, Jiehan; Papadopoulos, Vassilios

    2015-09-01

    As a major regulator in obesity and its associated metabolic complications, the proper functioning of adipocytes is crucial for health maintenance, thus serving as an important target for the development of anti-obese and anti-diabetic therapies. There is increasing evidence that mitochondrial malfunction is a pivotal event in disturbing adipocyte cell homeostasis. Among major mitochondrial structure components, the high-affinity drug- and cholesterol-binding outer mitochondrial membrane translocator protein (18 kDa; TSPO) has shown importance across a broad spectrum of mitochondrial functions. Recent studies demonstrated the presence of TSPO in white adipocyte mitochondria of mice, and administration of TSPO drug ligands to obese mice reduced weight gain and lowered glucose level. Therefore, it is of great interest to assess whether TSPO in adipocytes could serve as a drug target to regulate adipocyte activities with potential influence on weight control and glucose metabolism. Two structurally distinct TSPO drug ligands, PK 11195 and FGIN-1-27, improved the intracellular dynamics of 3T3-L1 adipocytes, such as the production and release of adipokines, glucose uptake, and adipogenesis. TSPO knockdown in either differentiated adipocytes or preadipocytes impaired these functions. Findings from 3T3-L1 cells were related to human primary cells, where TSPO expression was tightly associated with the metabolic state of primary adipocytes and the differentiation of primary preadipocytes. These results suggest that TSPO expression is essential to safeguard healthy adipocyte functions, and that TSPO activation in adipocytes improves their metabolic status in regulating glucose homeostasis. Adipocyte TSPO may serve as a pharmacologic target for the treatment of obesity and diabetes.

  14. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential.

    Science.gov (United States)

    Matsumoto, Taro; Kano, Koichiro; Kondo, Daisuke; Fukuda, Noboru; Iribe, Yuji; Tanaka, Nobuaki; Matsubara, Yoshiyuki; Sakuma, Takahiro; Satomi, Aya; Otaki, Munenori; Ryu, Jyunnosuke; Mugishima, Hideo

    2008-04-01

    When mature adipocytes are subjected to an in vitro dedifferentiation strategy referred to as ceiling culture, these mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability. We refer to these cells as dedifferentiated fat (DFAT) cells. In the present study, we examined the multilineage differentiation potential of DFAT cells. DFAT cells obtained from adipose tissues of 18 donors exhibited a fibroblast-like morphology and sustained high proliferative activity. Flow cytometric analysis revealed that DFAT cells comprised a highly homogeneous cell population compared with that of adipose-derived stem/stromal cells (ASCs), although the cell-surface antigen profile of DFAT cells was very similar to that of ASCs. DFAT cells lost expression of mature adipocytes marker genes but retained or gained expression of mesenchymal lineage-committed marker genes such as peroxisome proliferator-activated receptor gamma (PPARgamma), RUNX2, and SOX9. In vitro differentiation analysis revealed that DFAT cells could differentiate into adipocytes, chondrocytes, and osteoblasts under appropriate culture conditions. DFAT cells also formed osteoid matrix when implanted subcutaneously into nude mice. In addition, clonally expanded porcine DFAT cells showed the ability to differentiate into multiple mesenchymal cell lineages. These results indicate that DFAT cells represent a type of multipotent progenitor cell. The accessibility and ease of culture of DFAT cells support their potential application for cell-based therapies.

  15. Postaggregative Differentiation Induction by Cyclic AMP in Dictyostelium : Intracellular Transduction Pathway and Requirement for Additional Stimuli

    NARCIS (Netherlands)

    Schaap, Pauline; Lookeren Campagne, Michiel M. van; Driel, Roel van; Spek, Wouter; Haastert, Peter J.M. van; Pinas, Johan

    1986-01-01

    Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal indu

  16. Glut4 Is Sorted from a Rab10 GTPase-independent Constitutive Recycling Pathway into a Highly Insulin-responsive Rab10 GTPase-dependent Sequestration Pathway after Adipocyte Differentiation.

    Science.gov (United States)

    Brewer, Paul Duffield; Habtemichael, Estifanos N; Romenskaia, Irina; Mastick, Cynthia Corley; Coster, Adelle C F

    2016-01-08

    The RabGAP AS160/TBC1D4 controls exocytosis of the insulin-sensitive glucose transporter Glut4 in adipocytes. Glut4 is internalized and recycled through a highly regulated secretory pathway in these cells. Glut4 also cycles through a slow constitutive endosomal pathway distinct from the fast transferrin (Tf) receptor recycling pathway. This slow constitutive pathway is the only Glut4 cycling pathway in undifferentiated fibroblasts. The α2-macroglobulin receptor LRP1 cycles with Glut4 and the Tf receptor through all three exocytic pathways. To further characterize these pathways, the effects of knockdown of AS160 substrates on the trafficking kinetics of Glut4, LRP1, and the Tf receptor were measured in adipocytes and fibroblasts. Rab10 knockdown decreased cell surface Glut4 in insulin-stimulated adipocytes by 65%, but not in basal adipocytes or in fibroblasts. This decrease was due primarily to a 62% decrease in the rate constant of Glut4 exocytosis (kex), although Rab10 knockdown also caused a 1.4-fold increase in the rate constant of Glut4 endocytosis (ken). Rab10 knockdown in adipocytes also decreased cell surface LRP1 by 30% by decreasing kex 30-40%. There was no effect on LRP1 trafficking in fibroblasts or on Tf receptor trafficking in either cell type. These data confirm that Rab10 is an AS160 substrate that limits exocytosis through the highly insulin-responsive specialized secretory pathway in adipocytes. They further show that the slow constitutive endosomal (fibroblast) recycling pathway is Rab10-independent. Thus, Rab10 is a marker for the specialized pathway in adipocytes. Interestingly, mathematical modeling shows that Glut4 traffics predominantly through the specialized Rab10-dependent pathway both before and after insulin stimulation.

  17. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    Science.gov (United States)

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  18. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  19. EFFECTS OF SIMVASTATIN ON THE OSTEOBLAST AND ADIPOCYTE DIFFERENTIATIONS OF HUMAN BONE MARROW STROMAL CELLS, AND THE RELATED MECHANISMS%辛伐他汀对人骨髓基质细胞成骨、成脂分化的作用及其机制

    Institute of Scientific and Technical Information of China (English)

    吕志伟; 张柳; 郑桓; 白宇

    2011-01-01

    [目的]研究辛伐他汀对体外培养的成人骨髓基质细胞成骨分化和成脂分化的影响,并探讨其作用机制.[方法]分离健康成人骨髓基质细胞进行培养,传代后骨分化诱导组和脂肪分化诱导组分别添加10mol/L的辛伐他汀,同时进行空白对照.实时荧光定量PCR检测转录因子Cbfa1在成骨细胞中的分化,PPAR-γ2和LPL在脂肪细胞分化过程中的表达;碱性磷酸酶(ALP)检测试剂盒检测成骨细胞ALP比活性;流武细胞仪、油红O(oil red O)染色检测细胞成脂分化能力.[结果]骨分化诱导组Cbfa1表达(Pmol/L辛伐他汀能促进Cbfa1的表达,增强成骨细胞ALP比活性和细胞外基质矿化;抑制PPARγ2、LPL的表达及脂肪细胞分化.%[Objective] To study the effects of simvastatin (SIM) on osteoblastic and adipocytic differentiations of human bone marrow stromal cells (hBMSC), and the related mechanism. [Methods] Human BMSC derived from patients with femur fracture were cultured in vitro. After subculturing, the medium of treatment group were added 10"7 M simvastatin. Real-time PCR was performed for evaluating the expressions of Cbfal, PPARγ2 and LPL mRNA. Cellular alkaline activity was examined by ALP measurement kit. Adipocytes and lipid droplets in adipocytes were examined by fluorescence activated cell sorting (FACS) and Oil red 0 staining respectively. [Results] The expression of Cbfal mRNA and ALP activity in treatment group were higher than those of the control group at 3, 6, 12 days; Oil red O staining, FACS and decreased expression level of PPARγ2 and LPL mRNA showed that simvastatin significantly inhibits adipocytic differentiation compared to controls that did not receive simvastatin. [Conclusion] Simvastatin (10-7M) can increase expression of Cbfal mRNA and ALP activity, and can inhibit adipocyte differentiation and decrease the expression of PPARγ2 and LPL mRNA in vitro.

  20. Effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in adipocytes.

    Science.gov (United States)

    Kim, Hye-Kyeong; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2010-09-01

    Clenbuterol, a beta(2)-adrenergic receptor (beta(2)-AR) selective agonist, has been shown to decrease body fat in animals and can induce apoptosis in adipose tissue in mice. We hypothesized that direct actions of a beta-adrenergic receptor agonist on adipocytes could trigger the observed apoptotic effect. The hypothesis was inspected by investigating the direct effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in vitro using the 3T3-L1 cell line and rat primary adipocytes. Cells were treated with 10(-9) to 10(-5) M clenbuterol depending on the experiments. There was no apoptotic effect of clenbuterol both in 3T3-L1 cells and rat primary adipocytes. Adipogenesis monitored by Oil Red O staining and AdipoRed assay was modestly decreased by clenbuterol treatment (p < 0.05). In fully differentiated primary adipocytes, clenbuterol increased basal lipolysis compared with the control (p < 0.01). In summary, direct stimulation of beta(2)-AR by clenbuterol does not cause apoptosis in adipocytes, despite a direct lipolytic stimulation and attenuation of adipogenesis.

  1. 内参基因GAPDH在3T3-L1脂肪细胞分化中的表达变化%Change of reference gene glyceraldehyde-3-phosphate dehydrogenase expression during 3T3-L1 adipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    张娟; 唐红菊; 王晓; 王宁; 邓儒元; 建方方; 刘赟; 李凤英; 周丽斌

    2012-01-01

    目的 观察甘油醛-3-磷酸脱氢酶(GAPDH)在3T3-L1脂肪细胞分化过程中表达水平是否存在变化,并与其他常用的内参基因相比较.方法 以实时定量PCR检测3T3-L1脂肪细胞分化0、1、3、5、7d几种不同常见内参基因的表达是否存在变化,并以Western印迹方法进行证实.结果 (1)内参基因GAPDH和转铁蛋白受体(TFRC)在脂肪细胞分化过程中基因表达水平逐渐明显升高,其中GAPDH mRNA 在脂肪细胞分化1、3、5、7d分别增加5.7、7.6、22.0和24.5倍(均P<0.01),β-actin、α-微管蛋白(α-tubulin)、肽酰脯氨酰异构酶(PIPA)和18S mRNA表达水平未见明显改变;采用实时定量PCR检测脂肪细胞分化的关键转录因子PPARγ2、CCAAT/增强结合蛋白(C/EBP)α和C/EBPβ的表达时,以GAPDH作内参明显低估他们的表达变化;GAPDH蛋白表达也随着脂肪细胞分化逐渐增加,β-actin、α-tubulin蛋白表达未见明显变化;(2)小檗碱明显抑制脂肪细胞分化过程中GAPDH mRNA和蛋白的表达,在脂肪细胞分化5、7d时GAPDH mRNA表达水平分别降低68.1%和66.3%(P<0.05或P<0.01),但小檗碱对其他内参基因的表达无明显改变.结论 GAPDH在3T3-L1脂肪细胞分化过程中表达增加,不适合作为内参.%Objective To observe the change of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression during 3T3-L1 adipocyte differentiation as well as other reference gene expressions.Methods The mRNA expressions of several common reference genes were detected by real time-PCR on day 0,1,3,5,and 7 of 3T3-L1 adipocyte differentiation.Western blot was used to confirm the protein expressions of three common reference genes.Results (1) GAPDH and transferrin receptor(TFRC) mRNA expressions were significantly increased during adipocyte differentiation.GAPDH mRNA level was increased by 5.7,7.6,22.0,and 24.5 folds on day 1,3,5,and 7 after induction of adipocyte differentiation,but no apparent changes of

  2. Adipose progenitor cells reside among the mature adipocytes: morphological research using an organotypic culture system.

    Science.gov (United States)

    Anayama, Hisashi; Fukuda, Ryo; Yamate, Jyoji

    2015-11-01

    The precise localization and biological characteristics of the adipose progenitor cells are still a focus of debate. In this study, the localization of the adipose progenitor cells was determined using an organotypic culture system of adipose tissue slices. The tissue slices of subcutaneous white adipose tissue from rats were placed on a porous membrane and cultured at the interface between air and the culture medium for up to 5 days with or without adipogenic stimulation. The structure of adipose tissue components was sufficiently preserved during the culture and, following adipogenic stimulation with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine, numerous multilocular adipocytes appeared in the interstitium among the mature adipocytes. Histomorphological 3-D observation using confocal laser microscopy revealed the presence of small mesenchymal cells containing little or no fat residing in the perivascular region and on the mature adipocytes and differentiation from the pre-existing mesenchymal cells to multilocular adipocytes. Immunohistochemistry demonstrated that these cells were initially present within the fibronectin-positive extracellular matrix (ECM). The adipose differentiation of the mesenchymal cells was confirmed by the enhanced expression of C/EBP-β suggesting adipose differentiation and the concurrent advent of CD105-expressing mesenchymal cells within the interstitium of the mature adipocytes. Based on the above, the mesenchymal cells embedded in the ECM around the mature adipocytes were confirmed to be responsible for adipogenesis because the transition of the mesenchymal cells to the stem state contributed to the increase in the number of adipocytes in rat adipose tissue.

  3. Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots.

    Science.gov (United States)

    Fischer, M; Timper, K; Radimerski, T; Dembinski, K; Frey, D M; Zulewski, H; Keller, U; Müller, B; Christ-Crain, M; Grisouard, J

    2010-04-01

    To evaluate the effect of metformin on basal and insulin-induced glucose uptake in subcutaneous and visceral preadipocyte-derived adipocytes from obese and non-obese patients, preadipocytes were obtained from subcutaneous and visceral fat depots during abdominal surgery. Differentiation efficiency was evaluated by measurement of intracellular triglyceride accumulation. Preadipocyte-derived adipocytes were treated with metformin (1 mM) for 24 h with or without the addition of insulin (100 nM) for 20 min and glucose uptake was measured. In cells from each donor, intracellular triglyceride accumulation was more abundant in subcutaneous preadipocyte-derived adipocytes than in visceral preadipocyte-derived adipocytes (p < 0.001). Insulin stimulated glucose uptake in subcutaneous preadipocyte-derived adipocytes from both non-obese and obese patients (p < 0.001 vs. basal). In visceral preadipocyte-derived adipocytes, insulin did not increase basal glucose uptake. In subcutaneous preadipocyte-derived adipocytes from non-obese and obese patients, metformin alone increased glucose uptake to 2.7 +/- 0.2 (p < 0.001) and 2.1 +/- 0.1 fold (p < 0.001) respectively. Metformin increased glucose uptake in visceral preadipocyte-derived adipocytes from non-obese (1.7 +/- 0.1 fold vs. basal, p < 0.001) and obese (2.0 +/- 0.2 fold vs. basal, p < 0.001) patients. Combined treatment with metformin and insulin increased glucose uptake in subcutaneous preadipocyte-derived adipocytes from both non-obese and obese patients (p < 0.001 vs. insulin alone). In preadipocyte-derived adipocytes glucose uptake is induced by metformin independent of the fat depot origin of the preadipocytes (subcutaneous or visceral) and the obesity state of the patients (non-obese or obese). In adipocytes, metformin seems to induce glucose uptake independent of insulin suggesting an alternative mechanism of action of this drug.

  4. Disabled-2 Determines Commitment of a Pre-adipocyte Population in Juvenile Mice

    Science.gov (United States)

    Tao, Wensi; Moore, Robert; Meng, Yue; Yeasky, Toni M.; Smith, Elizabeth R.; Xu, Xiang-Xi

    2016-01-01

    Disabled-2 (Dab2) is a widely expressed clathrin binding endocytic adaptor protein and known for the endocytosis of the low-density lipoprotein (LDL) family receptors. Dab2 also modulates endosomal Ras/MAPK (Erk1/2) activity by regulating the disassembly of Grb2/Sos1 complexes associated with clathrin-coated vesicles. We found that the most prominent phenotype of Dab2 knockout mice was their striking lean body composition under a high fat and high caloric diet, although the weight of the mutant mice was indistinguishable from wild-type littermates on a regular chow. The remarkable difference in resistance to high caloric diet-induced weight gain of the dab2-deleted mice was presented only in juvenile but not in mature mice. Investigation using Dab2-deficient embryonic fibroblasts and mesenchymal stromal cells indicated that Dab2 promoted adipogenic differentiation by modulation of MAPK (Erk1/2) activity, which otherwise suppresses adipogenesis through the phosphorylation of PPARγ. The results suggest that Dab2 is required for the excessive calorie-induced differentiation of an adipocyte progenitor cell population that is present in juvenile but depleted in mature animals. The finding provides evidence for a limited pre-adipocyte population in juvenile mammals and the requirement of Dab2 in the regulation of Ras/MAPK signal in the commitment of the precursor cells to adipose tissues. PMID:27779214

  5. Bone marrow–derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice

    Science.gov (United States)

    Koh, Young Jun; Kang, Shinae; Lee, Hyuek Jong; Choi, Tae-Saeng; Lee, Ho Sub; Cho, Chung-Hyun; Koh, Gou Young

    2007-01-01

    Little is known about whether bone marrow–derived circulating progenitor cells (BMDCPCs) can transdifferentiate into adipocytes in adipose tissues or play a role in expanding adipocyte number during adipose tissue growth. Using a mouse bone marrow transplantation model, we addressed whether BMDCPCs can transdifferentiate into adipocytes under standard conditions as well as in the settings of diet-induced obesity, rosiglitazone treatment, and exposure to G-CSF. We also addressed the possibility of transdifferentiation to adipocytes in a murine parabiosis model. In each of these settings, our findings indicated that BMDCPCs did not transdifferentiate into either unilocular or multilocular adipocytes in adipose tissues. Most BMDCPCs became resident and phagocytic macrophages in adipose tissues — which resembled transdifferentiated multilocular adipocytes by appearance, but displayed cell surface markers characteristic for macrophages — in the absence of adipocyte marker expression. When exposed to adipogenic medium in vitro, bone marrow cells differentiated into multilocular, but not unilocular, adipocytes, but transdifferentiation was not observed in vivo, even in the contexts of adipose tissue regrowth or dermal wound healing. Our results suggest that BMDCPCs do not transdifferentiate into adipocytes in vivo and play little, if any, role in expanding the number of adipocytes during the growth of adipose tissues. PMID:18060029

  6. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

    Science.gov (United States)

    Malandrino, Maria Ida; Fucho, Raquel; Weber, Minéia; Calderon-Dominguez, María; Mir, Joan Francesc; Valcarcel, Lorea; Escoté, Xavier; Gómez-Serrano, María; Peral, Belén; Salvadó, Laia; Fernández-Veledo, Sonia; Casals, Núria; Vázquez-Carrera, Manuel; Villarroya, Francesc; Vendrell, Joan J; Serra, Dolors; Herrero, Laura

    2015-05-01

    Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

  7. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp [Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Miyamoto, Yuki [Juntendo University Faculty of Health Care and Nursing, Takasu 2-5-1, Urayasu-shi, Chiba 279-0023 (Japan); Itoh, Seigo; Daida, Hiroyuki [Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Nakazato, Yuji [Center for Environmental Research, Department of Cardiology, Juntendo University Faculty of Medicine Urayasu Hospital, Tomioka 2-1-1, Urayasu-shi, Chiba 279-0022 (Japan); Okada, Takao [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  8. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes.

    Directory of Open Access Journals (Sweden)

    Umberto Laforenza

    Full Text Available BACKGROUND: Glycerol outflow from adipocytes has been considered for a decade to be mediated by aquaporin-7, an aquaglyceroporin highly expressed in the adipose tissue. Its involvement in glycerol metabolism has been widely studied also in humans. Recent studies in different aquaporin-7 KO mice models pose two different questions 1 the exact localization of aquaporin-7 in human white adipose tissue; 2 the existence of other aquaglyceroporins that work with aquaporin-7 to guarantee glycerol efflux and thus a normal adiposity in humans. To this purpose we investigated the expression, the localization and the functioning of aquaglyceroporin-10 in subcutaneous white adipose tissue, in isolated and cultured differentiated adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Aquaporin-7 and -10 were expressed in the white adipose tissue both at mRNA and at protein level. Immunofluorescence revealed aquaporin-7 and -10 labelling in the human adipose tissue both to the plasma membrane and to a thin rim of cytoplasm of adipocytes. Aquaporin-7, but not aquaporin-10, colocalized with the endothelial marker CD34. Human cultured differentiated adipocytes showed an aquaporin-7 and -10 labelling mainly in the cytoplasm and in the lipid droplets with insulin reinforcing the lipid droplets staining and isoproterenol inducing its translocation to the plasma membrane compartment. Water and glycerol permeability measurements using adipocytes and adipose membrane vesicles confirmed the presence of functioning aquaglyceroporins. Aquaporin-10 silencing in human differentiated adipocytes resulted in a 50% decrease of glycerol and osmotic water permeability. CONCLUSIONS/SIGNIFICANCE: The results indicate that aquaporin-7, differently from mice, is present in both adipocyte and capillary plasma membranes of human adipose tissue. Aquaporin-10, on the contrary, is expressed exclusively in the adipocytes. The expression of two aquaglyceroporins in human adipose tissue is

  9. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    Directory of Open Access Journals (Sweden)

    Mei-Lin Wang

    2015-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD and β-naphthoflavone (BNF, inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF, an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs. Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF (1–5 μM for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL, estrogen receptor (ER, as well as decreased expression of AhR, AhR nuclear translocator (ARNT, cytochrome P4501B1 (CYP1B1, and nuclear factor erythroid-2-related factor (NRF-2 proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and

  10. On the origin of human adipocytes and the contribution of bone marrow-derived cells.

    Science.gov (United States)

    Rydén, Mikael

    2016-01-01

    In the last decade, results in both animal models and humans have demonstrated that white adipocytes are generated over the entire life-span. This adds to the plasticity of adipose tissue and alterations in adipocyte turnover are linked to metabolic dysfunction. Adipocytes are derived from precursors present primarily in the perivascular areas of adipose tissue but their precise origin remains unclear. The multipotent differentiation capacity of bone marrow-derived cells (BMDC) has prompted the suggestion that BMDC may contribute to different cell tissue pools, including adipocytes. However, data in murine transplantation models have been conflicting and it has been a matter of debate whether BMDC actually differentiate into adipocytes or just fuse with resident fat cells. To resolve this controversy in humans, we recently performed a study in 65 subjects that had undergone bone marrow transplantation. Using a set of newly developed assays including single cell genome-wide analyses of mature adipocytes, we demonstrated that bone marrow contributes with approximately 10 % to the adipocyte pool. This proportion was more than doubled in obesity, suggesting that BMDC may constitute a reserve pool for adipogenesis, particularly upon weight gain. This commentary discusses the possible relevance of these and other recent findings for human pathophysiology.

  11. 脂肪细胞分化相关基因在大鼠再生肝中表达变化%EXPRESSION PROFILES OF THE GENES RELATED TO ADIPOCYTE DIFFERENTIATION IN THE RAT REGENERATING LIVER

    Institute of Scientific and Technical Information of China (English)

    赵利峰; 邵恒熠; 徐存拴

    2007-01-01

    To investigate the action of adipocyte differentiation-related genes during rat liver regeneration at transcriptional level,these genes were obtained by means of collection of the database data and retrieval of the related theses.The Rat Genome 230 2.0 array was used to inspect the expression changes of them in rat regenerating livers. Identification of the liver regeneration-associated genes was through performing three independent chip analyses,showing a greater than double change in gene expression at least at one time point during liver regeneration,and comparing differences in gene expression between partial hepatectomy (PH) and sham operation (SO).75 of the above genes were found to be liver regeneration-related.In initiation phase of liver regeneration(0.5-4 h after PH),G0/G1 (4-6 h after PH),cell proliferation(6-66 h after PH),cell differentiation and liver tissue structure-function reconstruction(72-168 h after PH),the number of the initially expressed genes was 44,13,30 and 1 respectively,and the total expression times of the genes were in a sequence of 88.58.302 and 90.illustrating that the initially expressed genes were advantaged in initial phase (0.5-4 h), and yielded function in each phases.The genes were totally up-regulated 313 times and down-regulated 167 times.43 expression patterns of them conferred multiformity and complication on the cellular physiological and biochem-ical activities liver regeneration involving.The results indicated that the above genes not only can regulate the adipocyte differentiation,but also can participate in the physiological and biochemical activities during liver regeneration.%肝脏由多种细胞构成,肝再生与细胞分化密切相关,细胞分化受基因转录水平调控.为在基因转录水平了解脂肪细胞分化基因在大鼠肝再生中作用,本文用搜集网站资料和查阅相关论文等方法获得上述基因,用Rat Genome 230 2.0芯片检测它们在大鼠肝再生(liver regeneration,LR)

  12. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes

    OpenAIRE

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-hui

    2015-01-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake...

  13. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels

    DEFF Research Database (Denmark)

    Lindgren, Eva M; Nielsen, Ronni; Petrovic, Natasa;

    2004-01-01

    PPAR (peroxisome-proliferator-activated receptor) gamma is expressed in brown and white adipose tissues and is involved in the control of differentiation and proliferation. Noradrenaline stimulates brown pre-adipocyte proliferation and brown adipocyte differentiation. The aim of the present study...

  14. Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors.

    Science.gov (United States)

    Lee, Yun-Hee; Thacker, Robert I; Hall, Brian Eric; Kong, Raymond; Granneman, James G

    2014-01-01

    Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.

  15. Effects of the Monoclonal Antibody against Porcine 40 kDa Adipocyte-specific Plasma Membrane Protein on Adipocytes and Carcass Composition

    Institute of Scientific and Technical Information of China (English)

    Shizheng GAO; Changrong GE; Xi ZHANG; Yonggang LIU

    2007-01-01

    The effects of the mouse monoclonal antibody against 40 kDa adipocyte-specific plasma membrane protein on porcine adipocytes and carcass composition were investigated in vitro and in vivo.Results revealed that the in vitro complement-mediated cytotoxicity of this monoclonal antibody can lead to adipocyte lysis, remarkable reduction of adipocyte lipid accumulation (P<0.01), and significant decrease of well-differentiated fat cells (P<0.01). Treatment of adipocytes with this antibody alone in vitro did not induce cell lysis, but could lead to noticeable reduction of well-differentiated cells and lipid accumulation (P<0.05) at the pre-adipocyte stage. In vivo, pigs injected with 0.5 mg/kg or 1.0 mg/kg of antibody showed smaller adipocyte sizes (P<0.01) and reduced lipid accumulation of adipocytes (P<0.01). Our results also indicated that pigs intraperitoneally or subcutaneously immunized with 0.5 mg/kg of monoclonal antibody at 15 kg or 1.0 mg/kg antibody at 60 kg had a higher lean meat percentage (P<0.05), larger loin eye area (P<0.05), lower fat meat percentage (P<0.05), less backfat thickness (P<0.05) and smaller leaf fat weight (P<0.05) than the control pigs, but other carcass traits such as caul fat weight, heart weight, liver weight, spleen weight,kidney weight, lung weight, and dressing percentage were not significantly affected. These results suggested that this monoclonal antibody could be applied to restrain excessive fat deposition in porcine production.

  16. St. John's Wort Has Metabolically Favorable Effects on Adipocytes In Vivo

    OpenAIRE

    Scott Fuller; Richard, Allison J.; Ribnicky, David M; Robbie Beyl; Randall Mynatt; Stephens, Jacqueline M.

    2014-01-01

    In addition to serving as a storage site for reserve energy, adipocytes play a critical role in whole-body insulin sensitivity and glucose metabolism. St. John's Wort (SJW) is a botanical supplement widely used as an over-the-counter treatment of depression and a variety of other conditions associated with anxiety and nerve pain. Previous studies in our laboratory demonstrated that SJW inhibits insulin-stimulated glucose uptake and adipocyte differentiation in cultured murine and mature human...

  17. High-dose Resveratrol Inhibits Insulin Signaling Pathway in 3T3-L1 Adipocytes

    OpenAIRE

    Lee, Haemi; Kim, Jae-Woo

    2013-01-01

    Background Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes. Methods: We treated differentiated 3T3-L1 adipocytes with resveratrol to obs...

  18. Pluripotent stem cells derived from mouse and human white mature adipocytes.

    Science.gov (United States)

    Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert; Cubberly, Mark R; Shahmirian, Laurine J; Heydarkhan-Hagvall, Sepideh; Dumesic, Daniel A; Yao, Yucheng; Boström, Kristina I

    2014-02-01

    White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5-7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies.

  19. 47 CFR 87.151 - Special requirements for differential GPS receivers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... differential GPS receivers. (a) The receiver shall achieve a message failure rate less than or equal to...

  20. GLP-1受体激动剂对小鼠棕色脂肪细胞基因表达和细胞分化的研究%Research on glucagon-like peptide-1 receptor agonist on the function and differentiation of brown adipocytes in mice

    Institute of Scientific and Technical Information of China (English)

    沈山梅; 石欢; 毕艳; 冯文焕; 王维敏; 金玺; 韩小娟; 胡明玥; 朱大龙

    2013-01-01

    Objective To investigate the effects of glucagon-like peptide-1 (GLP-1) receptor agonist on the function and differentiation of brown adipocytes in mice.Methods Primary brown adipocytes in mice were cultivated in vitro.Before the induction,brown adipocytes were assigned to four groups:GLP-1 10-8mol/L group,GLP-1 10-9mol/L group,L-NAME 10-3 mol/L group,and control group.Finally,adipocytes were put under morphological observation.The expression levels of genes of brown adipocytes in different groups were detected by RT-PCR.The single factor analysis was used for data analysis.Results The lipid droplets of brown adipocytes in GLP-1 group increased significantly compared with the control group under morphological observation.The expressions of specific genes [uncoupling protein 1 (UCP1),cell death-inducing DFFA (DNA fragmentation factor a)-like effector a (Cidea),peroxisome proliferator-activated receptor γcoactive 1α (PGC1-α)],differentiation genes [PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16),peroxisome proliferators-activated receptor-γ(PPAR-γ)],nitric oxide pathway genes [endothelial nitric oxide synthase (eNOS),inducible nitric oxide synthase (iNOS)] in brown adipocytes in GLP-1 group were significantly increased as compared with the control group,F values were 17.36,29.57,66.76,13.78,4.14,105.47,346.57 respectively(all P<0.05).Conclusions GLP-1 receptor agonist may improve the differentiation and function of brown adipocytes in mice,thereby enhance the function and induce the differentiation of brown adipocytes,the effect is more evident in high concentration of GLP-1.%目的 研究胰升糖素样肽1(GLP-1)受体激动剂对小鼠棕色脂肪细胞功能基因表达和分化的作用.方法 体外培养小鼠棕色脂肪前体细胞,诱导分化前分4组:GLP-1(10-8 mol/L)组、GLP-1(10-9moL/L)组、L-NAME(一氧化氮合酶抑制剂,10-3mol/L)组和对照组.干预结束后对细胞进行形态学观察研究,应用荧光定量PCR检测棕色

  1. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    Science.gov (United States)

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling.

  2. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential.

    Science.gov (United States)

    Tsurumachi, Niina; Akita, Daisuke; Kano, Koichiro; Matsumoto, Taro; Toriumi, Taku; Kazama, Tomohiko; Oki, Yoshinao; Tamura, Yoko; Tonogi, Morio; Isokawa, Keitaro; Shimizu, Noriyoshi; Honda, Masaki

    2016-03-01

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have mesenchymal stem cells' (MSCs) characteristics. Generally, mature adipocytes are 60-110 μm in diameter; however, association between adipocyte size and dedifferentiation efficiency is still unknown. This study, therefore, investigated the dedifferentiation efficiency of adipocytes based on cell diameter. Buccal fat pad was harvested from five human donors and dissociated by collagenase digestion. After exclusion of unwanted stromal cells by centrifugation, floating adipocytes were collected and their size distribution was analyzed. The floating adipocytes were then separated into two groups depending on cell size using 40- and 100-μm nylon mesh filters: cell diameters less than 40 μm (small adipocytes: S-adipocytes) and cell diameters of 40-100 μm (large adipocytes: L-adipocytes). Finally, we evaluated the efficiency of adipocyte dedifferentiation and then characterized the resultant DFAT cells. The S-adipocytes showed a higher capacity to dedifferentiate into DFAT cells (S-DFAT cells) compared to the L-adipocytes (L-DFAT cells). The S-DFAT cells also showed a relatively higher proportion of CD146-positive cells than L-DFAT cells, and exhibited more osteogenic differentiation ability based on the alkaline phosphatase activity and amount of calcium deposition. These results suggested that the S- and L-DFAT cells had distinct characteristics, and that the higher dedifferentiation potential of S-adipocytes compared to L-adipocytes gives the former group an advantage in yielding DFAT cells.

  3. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Sørensen, Karin Dreisig; Boberg, Julie;

    2012-01-01

    differentiation although PPARγ activation is neither a requirement nor a guarantee for stimulation. Four out of the eleven chemicals (bisphenol A, mono-ethylhexyl phthalate, butylparaben, PCB 153) caused increased adipogenesis. The release of adipocyte-secreted hormones was sometimes but not always correlated...

  4. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  5. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARgamma Expression and Activation in Differentiating Mesenchymal Stem Cells.

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARgamma2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARgamma, and SREBP-1 were determined by western blot. Finally, DNA binding PPARgamma activity was determined using an ELISA-based PPARgamma activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARgamma expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARgamma activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARgamma expression and activity.

  6. The polycomb group protein Suz12 is required for embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Hansen, Jacob Bo Højberg;

    2007-01-01

    results in early lethality of mouse embryos. Here, we demonstrate that Suz12(-/-) mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12(-/-) ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation......-specific genes. Moreover, Suz12(-/-) ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which...... despite an increase in H3K27me3 levels is not always sufficient to prevent transcriptional activation. In summary, we demonstrate that Suz12 is required for the establishment of specific expression programs required for ES cell differentiation. Furthermore, we provide evidence that PcGs have different...

  7. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis

    Directory of Open Access Journals (Sweden)

    Katherine D. Connolly

    2015-11-01

    Full Text Available Extracellular vesicles (EVs are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA. EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ.

  8. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available BACKGROUND: HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes. CONCLUSION AND SIGNIFICANCE: Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  9. Effects of Kurozu concentrated liquid on adipocyte size in rats

    Directory of Open Access Journals (Sweden)

    Nakamura Kumi

    2010-11-01

    Full Text Available Abstract Background Kurozu concentrated liquid (KCL is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. Results In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2 and peroxisome proliferator-activated γ (PPARγ in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. Conclusion Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.

  10. Suppressive Role of PPARγ-Regulated Endothelial Nitric Oxide Synthase in Adipocyte Lipolysis.

    Directory of Open Access Journals (Sweden)

    Yoko Yamada

    Full Text Available Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/- mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD was able to induce non-alcoholic steatohepatitis (NASH in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.

  11. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer.

    Science.gov (United States)

    Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Sarigiannis, Kalli; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-07-15

    Omental adipocytes promote ovarian cancer by secretion of adipokines, cytokines and growth factors, and acting as fuel depots. We investigated if metformin modulates the ovarian cancer promoting effects of adipocytes. Effect of conditioned media obtained from differentiated mouse 3T3L1 preadipoctes on the proliferation and migration of a mouse ovarian surface epithelium cancer cell line (ID8) was estimated. Conditioned media from differentiated adipocytes increased the proliferation and migration of ID8 cells, which was attenuated by metformin. Metformin inhibited adipogenesis by inhibition of key adipogenesis regulating transcription factors (CEBPα, CEBPß, and SREBP1), and induced AMPK. A targeted Cancer Pathway Finder RT-PCR (real-time polymerase chain reaction) based gene array revealed 20 up-regulated and 2 down-regulated genes in ID8 cells exposed to adipocyte conditioned media, which were altered by metformin. Adipocyte conditioned media also induced bio-energetic changes in the ID8 cells by pushing them into a highly metabolically active state; these effects were reversed by metformin. Collectively, metformin treatment inhibited the adipocyte mediated ovarian cancer cell proliferation, migration, expression of cancer associated genes and bio-energetic changes. Suggesting, that metformin could be a therapeutic option for ovarian cancer at an early stage, as it not only targets ovarian cancer, but also modulates the environmental milieu.

  12. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    Science.gov (United States)

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.

  13. The action of D-dopachrome tautomerase as an adipokine in adipocyte lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Takeo Iwata

    Full Text Available Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL and acetyl-CoA carboxylase (ACC, in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT, suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA, which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through

  14. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  15. Adeno-Associated Viral Vectors Transduce Mature Human Adipocytes in Three-Dimensional Slice Cultures.

    Science.gov (United States)

    Kallendrusch, Sonja; Schopow, Nikolas; Stadler, Sonja C; Büning, Hildegard; Hacker, Ulrich T

    2016-10-01

    Adipose tissue plays a pivotal role, both in the regulation of energy homeostasis and as an endocrine organ. Consequently, adipose tissue dysfunction is closely related to insulin resistance, morbid obesity, and metabolic syndrome. To study molecular mechanisms and to develop novel therapeutic strategies, techniques are required to genetically modify mature adipocytes. Here, we report on adeno-associated viral (AAV) vectors as a versatile tool to transduce human mature adipocytes in organotypic three-dimensional tissue cultures.

  16. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity

    DEFF Research Database (Denmark)

    Permana, Paska A; Nair, Saraswathy; Lee, Yong-Ho;

    2004-01-01

    Expansion of adipose tissue mass results from increased number and size of adipocyte cells. We hypothesized that subcutaneous abdominal preadipocytes in obese individuals might have an intrinsically higher propensity to differentiate into adipocytes. Thus we investigated the relationship between ...

  17. Modulation of brown adipocyte activity by milk by-products: Stimulation of brown adipogenesis by buttermilk.

    Science.gov (United States)

    Asano, Hiroki; Kida, Ryosuke; Muto, Kengo; Nara, Takayuki Y; Kato, Ken; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-12-01

    Brown adipocytes dissipate chemical energy in the form of heat through the expression of mitochondrial uncoupling protein 1 (Ucp1); Ucp1 expression is further upregulated by the stimulation of β-adrenergic receptors in brown adipocytes. An increase in energy expenditure by activated brown adipocytes potentially contributes to the prevention of or therapeutics for obesity. The present study examined the effects of milk by-products, buttermilk and butter oil, on brown adipogenesis and the function of brown adipocytes. The treatment with buttermilk modulated brown adipogenesis, depending on the product tested; during brown adipogenesis, buttermilk 1 inhibited the differentiation of HB2 brown preadipocytes. In contrast, buttermilk 3 and 5 increased the expression of Ucp1 in the absence of isoproterenol (Iso), a β-adrenergic receptor agonist, suggesting the stimulation of brown adipogenesis. In addition, the Iso-induced expression of Ucp1 was enhanced by buttermilk 2 and 3. The treatment with buttermilk did not affect the basal or induced expression of Ucp1 by Iso in HB2 brown adipocytes, except for buttermilk 5, which increased the basal expression of Ucp1. Conversely, butter oil did not significantly affect the expression of Ucp1, irrespective of the cell phase of HB2 cells, ie, treatment during brown adipogenesis or of brown adipocytes. The results of the present study indicate that buttermilk is a regulator of brown adipogenesis and suggest its usefulness as a potential food material for antiobesity.

  18. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes

    Science.gov (United States)

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  19. Quantitative analysis of secretome from adipocytes regulated by insulin

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  20. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: kkano@brs.nihon-u.ac.jp [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  1. Histamine is required during neural stem cell proliferation to increase neuron differentiation.

    Science.gov (United States)

    Rodríguez-Martínez, G; Velasco, I; García-López, G; Solís, K H; Flores-Herrera, H; Díaz, N F; Molina-Hernández, A

    2012-08-02

    Histamine in the adult central nervous system (CNS) acts as a neurotransmitter. This amine is one of the first neurotransmitters to appear during development reaching its maximum concentration simultaneously with neuron differentiation peak. This suggests that HA plays an important role in neurogenesis. We have previously shown that HA is able to increase neuronal differentiation of neural stem cells (NSCs) in vitro, by activating the histamine type 1 receptor. However the mechanism(s) by which HA has a neurogenic effect on NSCs has not been explored. Here we explore how HA is able to increase neuron phenotype. Cortex neuroepithelium progenitors were cultured and at passage two treatments with 100 μM HA were given during cell proliferation and differentiation or only during differentiation. Immunocytochemistry was performed on differentiated cultures to detect mature neurons. To explore the expression of certain important transcriptional factors involved on asymmetric cell division and commitment, RT-PCR and qRT-PCR were performed. Results indicate that HA is required during cell proliferation in order to increase neuron differentiation and suggest that this amine increases neuron commitment during the proliferative phase probably by rising prospero1 and neurogenin1 expression.

  2. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    Science.gov (United States)

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  3. Changes in expression levels of brown adipocyte differentiation associated with key genes and reference controls during adipogenesis%棕色脂肪细胞分化过程中关键基因及常用内参表达水平变化

    Institute of Scientific and Technical Information of China (English)

    孙亚洲; 封在李; 张艳艳; 王星云; 周亚慧; 李沄; 崔县伟; 郭学鹏; 王家勤

    2016-01-01

    目的 探究棕色脂肪细胞分化过程中关键基因以及参照基因随分化进程的表达变化趋势.方法 根据随机数字表法随机选取20只4周龄雄性C57BL/6J小鼠,提取肩胛间区棕色脂肪组织.以高糖DMEM培养原代棕色前体脂肪细胞,以“鸡尾酒法”诱导培养基(含0.5 mmol/L异丁基甲基黄嘌呤、5 mmol/L地塞米松、320 nmol/L胰岛素、1 nmol/L三碘甲状腺原氨酸和0.125 mmol/L吲哚美辛)诱导分化.Trizol裂解法提取分化过程中(0、2、4、6d)棕色脂肪细胞总RNA,琼脂糖凝胶电泳验证总RNA质量.油红O染色,检测棕色脂肪细胞成熟情况,免疫荧光鉴定棕色脂肪细胞成熟标志物UCP1表达水平.实时荧光定量聚合酶链反应(RT-qPCR)法比较在棕色脂肪细胞中参照基因(GAPDH、β-actin、18S和PPIA)表达水平的恒定性,并检测棕色脂肪分化关键基因(UCPI、PRDM16、PGC-1α、EBF2、PPARγ和Cidea)的表达水平.结果 1.诱导第6天可见棕色脂肪细胞内密布细小脂滴,UCP1表达水平较高.2.琼脂糖凝胶电泳检测RNA质量,可见3条明亮带,提示RNA质量合格.3.在小鼠棕色脂肪分化过程中PPIA的表达水平相对恒定,可作为小鼠棕色脂肪分化合适的内参.4.棕色脂肪能量代谢相关基因UCP1、PRDM16、PGC-1α、EBF2、PPARγ和Cidea随着分化天数(0、2、4、6d)的增加表达量显著增加,差异有统计学意义(P均<0.05).结论 原代棕色脂肪细胞分化过程中,内参基因PPIA表达恒定,是合适的内参基因.原代棕色分化关键基因UCP1、PRDM16、PGC-1α、EBF2、PPARγ和Cidea可作为合适的棕色脂肪细胞成熟标志基因.%Objective To investigate the expression changes in the key differentiation-associated genes and reference genes during the progress of primary brown phagocyte adipocytes.Methods Twenty 4-week-old male C57BL/6J mice were selected randomly and brown adipose tissues were extracted from interscapular area.These brown preadipocytes

  4. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  5. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    Directory of Open Access Journals (Sweden)

    Allison J. Richard

    2013-01-01

    Full Text Available Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.

  6. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow.

    Science.gov (United States)

    Lin, Hsing-Yi; Fujita, Naoki; Endo, Kentaro; Morita, Maresuke; Takeda, Tae; Nakagawa, Takayuki; Nishimura, Ryohei

    2017-03-15

    The ceiling culture method has been used to isolate mature adipocytes from adipose tissue that can be dedifferentiated into fibroblastic cells, also known as dedifferentiated fat (DFAT) cells that self-renew and are multipotent, with much higher homogeneity and colony-forming efficiency than those of adipose tissue-derived mesenchymal stem cells. We cultured adipocytes from canine bone marrow using this technique, with the expectation of obtaining DFAT cells. However, contrary to our expectations, continuous monitoring of ceiling cultures by time-lapse microscopy revealed many small cells adhering to adipocytes that proliferated rapidly into cells with a fibroblastic morphology and without any dedifferentiation from adipocytes. We named these cells bone marrow peri-adipocyte cells (BM-PACs) and demonstrated the multipotent properties of BM-PACs compared to that of conventionally cultured canine bone marrow mesenchymal stem cells (BMMSCs). BM-PACs showed significantly greater clonogenicity and proliferation ability than BMMSCs. An in vitro trilineage differentiation assay revealed that BM-PACs possess adipogenic, osteogenic, and chondrogenic capacities superior to those of BMMSCs. Flow cytometric analysis revealed that the expression of CD73, which plays an important role in cell growth and differentiation, was significantly higher in BM-PACs than in BMMSCs. These results indicate that canine BM-PACs have stem cell characteristics that are superior to those of BMMSCs, and that these mesenchymal stem cells (MSCs) appear to be a feasible source for cell-based therapies in dogs.

  7. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species.

    Science.gov (United States)

    Rebiger, Lars; Lenzen, Sigurd; Mehmeti, Ilir

    2016-01-21

    Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress.

  8. 替米沙坦对代谢综合征大鼠脂肪分化相关蛋白及肿瘤坏死因子-α表达影响%Effects of telmisartan on the expressions of adipocyte differentiation-related protein and tumor necrosis factor-α in rats with metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    杨大春; 马双陶; 李强; 李秀川; 张继红; 李德; 杨永健

    2012-01-01

    目的 探讨替米沙坦对代谢综合征( metabolic syndrome,MS)大鼠脂肪分化相关蛋白(adipocyte differentiation-related protein,ADRP)及肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)表达的影响.方法 45只2月龄雄性Wistar大鼠随机分为普食对照组、MS组和MS+替米沙坦组(MS-Telm组)各15只,喂养6个月后测定3组空腹血糖、血脂、血清胰岛素水平,并计算胰岛素抵抗指数;评估睾周脂肪组织细胞形态的变化;应用蛋白免疫印迹法检测ADRP,TNF-α的表达.结果 与普食对照组比较,MS组及MS+ Telm组大鼠睾周脂肪组织质量、ADRP、TNF-α表达增加(P均<0.05),空腹血糖、血脂、血清空腹胰岛素及胰岛素抵抗指数水平增高(P<0.01);MS+Telm组大鼠血清空腹胰岛素水平、胰岛素抵抗指数、睾周脂肪组织质量、脂肪细胞面积、ADRP、TNF-α蛋白表达均较MS组降低(P<0.05).结论 替米沙坦可抑制MS大鼠脂肪组织TNF-α及ADRP的表达,减轻胰岛素抵抗.%Objective To observe the effects of telmisartan on the expressions of adipocyte differentiation-related protein (ADRP) and tumor necrosis factor-a (TNF-a) in adipose tissue from rats with metabolic syndrome (MS). Methods Forty-five 2-month-old male Wistar rats were divided into control group, MS group and MS plus telmisartan (MS+Telm) group, with 15 rats in each group. After 6 months of diet intervention, the levels of fasting lipids, glucose and insulin were measured. Insulin resistance index was calculated. The morphology of epididymal adipocytes was evaluated. The protein expressions of ADRP and TNF-a were detected with Western blot immunoassay. Results Compared with control group, the levels of epididymal fat mass, ADRP and TNF-a increased in MS group and MS+Telm group (P<0. 05), and the levels of fasting lipids, glucose, insulin and insulin resistance index increased significantly (P<0. 01). The plasma level of insulin, calculated insulin resistance index

  9. MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Lynn Roy

    2015-01-01

    Full Text Available Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs. Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm.

  10. Development of a new model system to dissect isoform specific Akt signalling in adipocytes

    Science.gov (United States)

    Kajno, Esi; McGraw, Timothy E.; Gonzalez, Eva

    2015-01-01

    Protein kinase B (Akt) kinases are critical signal transducers mediating insulin action. Genetic studies revealed that Akt1 and Akt2 signalling differentially contribute to sustain lipid and glucose homoeostasis; however Akt isoform-specific effectors remain elusive due to the lack of a suitable model system to mechanistically interrogate Akt isoform-specific signalling. To overcome those technical limitations we developed a novel model system that provides acute and specific control of signalling by Akt isoforms. We generated mutants of Akt1 and Akt2 resistant to the allosteric Akt inhibitor MK-2206. We then developed adipocyte cell lines, in which endogenous Akt1 or Akt2 has been replaced by their corresponding drug-resistant Akt mutant. Treatment of those cells with MK-2206 allowed for acute and specific control of either Akt1 or Akt2 function. Our data showed that Akt1W80A and Akt2W80A mutants are resistant to MK-2206, dynamically regulated by insulin and able to signal to Akt downstream effectors. Analyses of insulin action in this cellular system showed that Akt1 and Akt2 are both able to mediate insulin regulation of the transcription factor forkhead box O1 (FoxO1) and the glucose transporter 4 (GLUT4), revealing a redundant role for these Akt kinases in the control of glucose transport into fat cells. In contrast, Akt1 signalling is uniquely required for adipogenesis, by controlling the mitotic clonal expansion (MCE) of pre-adipocytes that precedes white adipose cell differentiation. Our data provide new insights into the role of Akt kinases in glucose transport and adipogenesis and support our model system as a valuable tool for the biochemical characterization of signalling by specific Akt isoforms. PMID:25856301

  11. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro.

  12. Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Lu, Juu-Chin; Chiang, Yu-Ting; Lin, Yu-Chun; Chang, Yu-Tzu; Lu, Chia-Yun; Chen, Tzu-Yu; Yeh, Chia-Shan

    2016-01-01

    The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipocyte stores a significant amount of cholesterol. Moreover, obese adipocytes are characterized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane, suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this perturbation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that is elevated in obesity and is linked to obesity-associated chronic diseases. Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and protein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibition revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug, filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interestingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdomains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory signaling and MCP-1 secretion in adipocytes.

  13. Modulating the Genomic Programming of Adipocytes

    DEFF Research Database (Denmark)

    Loft, Anne; Schmidt, Søren Fisker; Mandrup, Susanne

    2015-01-01

    transcriptional plasticity when exposed to physiological and metabolic stimuli. In our work, we have focused on understanding the processes responsible for modulating the genomic programming in response to different external signals. Thus, we have shown that browning of human adipocytes with rosiglitazone......, such as Krüppel-like factor 11 (KLF11) that are essential for modulating the genomic program in white adipocytes to induce browning. Furthermore, we have shown that acute suppression of adipocyte genes by the proinflammatory cytokine, tumor necrosis factor (TNF), involves redistribution of cofactors to enhancers...

  14. Adipocyte biology in polycystic ovary syndrome.

    Science.gov (United States)

    Barber, T M; Franks, S

    2013-07-05

    Polycystic Ovary Syndrome (PCOS) is a common endocrinopathy that is associated with an adverse metabolic profile including insulin resistance. There is a clear association between obesity, the development of PCOS and the severity of its phenotypic, biochemical and metabolic features. Evidence to support this link includes data from epidemiological, pathophysiological and genetic studies. Given the importance of obesity in the development and manifestation of PCOS, ongoing research into the many facets of adipocyte biology in women with the condition is important and should continue to be a priority. In this review article, we discuss the existing literature on fat distribution, adipokines, adipocyte hypertrophy and adipocyte steroid metabolism in women with PCOS.

  15. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used.

  16. Pulicaria jaubertii extract prevents triglyceride deposition in 3T3-L1 adipocytes

    Science.gov (United States)

    Currently, levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation. In Yemen, Pulicaria jaubertii E.Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the ability of ex...

  17. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells.

    Science.gov (United States)

    Rajesh, Deepika; Chinnasamy, Nachimuthu; Mitalipov, Shoukhrat M; Wolf, Don P; Slukvin, Igor; Thomson, James A; Shaaban, Aimen F

    2007-02-01

    Progress toward clinical application of ESC-derived hematopoietic cellular transplantation will require rigorous evaluation in a large animal allogeneic model. However, in contrast to human ESCs (hESCs), efforts to induce conclusive hematopoietic differentiation from rhesus macaque ESCs (rESCs) have been unsuccessful. Characterizing these poorly understood functional differences will facilitate progress in this area and likely clarify the critical steps involved in the hematopoietic differentiation of ESCs. To accomplish this goal, we compared the hematopoietic differentiation of hESCs with that of rESCs in both EB culture and stroma coculture. Initially, undifferentiated rESCs and hESCs were adapted to growth on Matrigel without a change in their phenotype or karyotype. Subsequent differentiation of rESCs in OP9 stroma led to the development of CD34(+)CD45(-) cells that gave rise to endothelial cell networks in methylcellulose culture. In the same conditions, hESCs exhibited convincing hematopoietic differentiation. In cytokine-supplemented EB culture, rESCs demonstrated improved hematopoietic differentiation with higher levels of CD34(+) and detectable levels of CD45(+) cells. However, these levels remained dramatically lower than those for hESCs in identical culture conditions. Subsequent plating of cytokine-supplemented rhesus EBs in methylcellulose culture led to the formation of mixed colonies of erythroid, myeloid, and endothelial cells, confirming the existence of bipotential hematoendothelial progenitors in the cytokine-supplemented EB cultures. Evaluation of four different rESC lines confirmed the validity of these disparities. Although rESCs have the potential for hematopoietic differentiation, they exhibit a pause at the hemangioblast stage of hematopoietic development in culture conditions developed for hESCs.

  18. Effect of Tumor Necrosis Factor-α on Resistin Expression in 3T3-L1 Adipocytes and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of tumor necrosis factor-α (TNFα) on resistin expression in 3T3-L1 adipocytes, and further explore its mechanisms, the differentiated 3T3-L1 adipocytes were incubated with 0, 1, 10, 100 ng/mL TNFα respectively for 24 h, and then the expression of resistin was determined. The differentiated 3T3-L1 adipocytes were incubated with 100 ng/mL TNFα for 3, 6, 24 h respectively, and then the expression of resistin mRNA was analyzed.3T3-L1 adipocytes were induced to differentiate into mature adipocytes. The cells were randomly divided into 4 groups for culture. In the control group, no drugs were added. Cells of TNFα group were treated with 100 ng/mL TNFα. In Ro-31-8220 group, 5μmol/L protein kinase C inhibitor Ro-31-8220 was added. With TNFα+Ro-31-8220 group, 100 ng/mL TNFα were added 1 h after the addition of 5 μmol/L Ro-31-8220. All adipocytes were cultured for 24 h. Reverse transcriptionpolymerase chain reaction (RT-PCR) and Western blotting were employed to detect the expression of resistin gene. Our results showed that resistin protein and mRNA in 3T3-L1 adipocytes were inhibited by TNFα at different concentrations (P<0.01), and the inhibitory effect increased with the concentration (P<0.01). At the same concentrations, the inhibitory effect increased with time (P <0.01). Ro-31-8220 could inhibit its expression and the inhibitive effect remained unchanged with addition of TNFα(P>0.05). It was concluded that TNFα could inhibit the expression of resistin in 3T3-L1 adipocytes. The mechanism may be that the expression of resistin is partly controlled by protein kinase C signal conduction pathway.

  19. Postaggregative differentiation induction by cyclic AMP in Dictyostelium: intracellular transduction pathway and requirement for additional stimuli.

    Science.gov (United States)

    Schaap, P; Van Lookeren Campagne, M M; Van Driel, R; Spek, W; Van Haastert, P J; Pinas, J

    1986-11-01

    Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal induction of postaggregative gene expression requires that vegetative cells are first exposed to 2-4 hr of nanomolar cAMP pulses, and subsequently for 4-6 hr to steady-state cAMP concentrations in the micromolar range. Cyclic AMP pulses, which are endogenously produced before and during aggregation, induce full responsiveness to cAMP as a morphogen. The transduction pathway from the cell surface cAMP receptor to postaggregative gene expression may involve Ca2+ ions as intracellular messengers. A cAMP-induced increase in intracellular cAMP or cGMP levels is not involved in the transduction pathway.

  20. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules.

    OpenAIRE

    Gardiol, A E; Truchet, G L; Dazzo, F. B.

    1987-01-01

    Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti ba...

  1. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  2. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.

    Science.gov (United States)

    Kosaka, Kentaro; Kubota, Yoshitaka; Adachi, Naoki; Akita, Shinsuke; Sasahara, Yoshitaro; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2016-08-01

    Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 μm(2), P < 0.05). Primary cultured adipocytes from SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ.

  3. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Haruka; Yoshimura, Takeshi [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan); Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  4. Dynamics of Adipocyte Turnover in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, K; Arner, E; Westermark, P; Bernard, S; Buchholz, B; Bergmann, O; Blomqvist, L; Hoffstedt, J; Naslund, E; Britton, T; Concha, H; Hassan, M; Ryden, M; Frisen, J; Arner, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.

  5. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  6. Withaferin A induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Rayalam, Srujana; Della-Fera, Mary Anne; Ambati, Suresh; Yang, Jeong-Yeh; Baile, Clifton A

    2008-01-01

    Withaferin A (WA), a highly oxygenated steroidal lactone that is found in the medicinal plant Withania somnifera (also called ashwagandha) has been reported to have anti-tumor, anti-angiogenesis, and pro-apoptotic activity. We investigated the effects of WA on viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. Pre- and post-confluent preadipocytes and mature adipocytes were treated with WA (1-25 microM) up to 24 hrs. Viability and apoptosis were measured by CellTiter-Blue Cell Viability Assay and single strand DNA ELISA Assay, respectively. WA decreased viability and induced apoptosis in all stages of cells. Induction of apoptosis by WA in mature adipocytes was mediated by increased ERK1/2 phosphorylation and altered Bax and Bcl2 protein expression. The effect of WA on adipogenesis was examined by AdipoRed Assay after treating with WA (0.1-1 microM) during the differentiation period. WA decreased lipid accumulation in a dose-dependent manner and decreased the expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte fatty acid binding protein. The effects on apoptosis and lipid accumulation were also confirmed with Hoechst staining and Oil Red O staining, respectively. These results show that WA acts on adipocytes to reduce cell viability and adipogenesis and also induce apoptosis.

  7. The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium.

    Science.gov (United States)

    Katoh-Kurasawa, Mariko; Santhanam, Balaji; Shaulsky, Gad

    2016-03-09

    The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG(-) phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG(-) culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells.

  8. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    Science.gov (United States)

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  9. Caffeic Acid Phenethyl Ester Regulates PPAR’s Levels in Stem Cells-Derived Adipocytes

    Directory of Open Access Journals (Sweden)

    Luca Vanella

    2016-01-01

    Full Text Available Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ, considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape, isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration.

  10. Differing Requirements for MALT1 Function in Peripheral B Cell Survival and Differentiation.

    Science.gov (United States)

    Lee, Peishan; Zhu, Zilu; Hachmann, Janna; Nojima, Takuya; Kitamura, Daisuke; Salvesen, Guy; Rickert, Robert C

    2017-02-01

    During a T cell-dependent immune response, formation of the germinal center (GC) is essential for the generation of high-affinity plasma cells and memory B cells. The canonical NF-κB pathway has been implicated in the initiation of GC reaction, and defects in this pathway have been linked to immune deficiencies. The paracaspase MALT1 plays an important role in regulating NF-κB activation upon triggering of Ag receptors. Although previous studies have reported that MALT1 deficiency abrogates the GC response, the relative contribution of B cells and T cells to the defective phenotype remains unclear. We used chimeric mouse models to demonstrate that MALT1 function is required in B cells for GC formation. This role is restricted to BCR signaling where MALT1 is critical for B cell proliferation and survival. Moreover, the proapoptotic signal transmitted in the absence of MALT1 is dominant to the prosurvival effects of T cell-derived stimuli. In addition to GC B cell differentiation, MALT1 is required for plasma cell differentiation, but not mitogenic responses. Lastly, we show that ectopic expression of Bcl-2 can partially rescue the GC phenotype in MALT1-deficient animals by prolonging the lifespan of BCR-activated B cells, but plasma cell differentiation and Ab production remain defective. Thus, our data uncover previously unappreciated aspects of MALT1 function in B cells and highlight its importance in humoral immunity.

  11. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Roberta eHaddad-Tóvolli

    2015-03-01

    Full Text Available Secreted protein Sonic hedgehog (Shh ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e. we wanted to clarify the hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: 1 hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; 2 another source of diversity are differential requirements for Shh of neural vs non-neural origin; 3 Gli2 is indispensable for the specification of a medial progenitor domain generating several essential hypothalamic nuclei plus the pituitary and median eminence; 4 the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it.

  12. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals.

    Directory of Open Access Journals (Sweden)

    Anja Böhm

    Full Text Available Among obese subjects, metabolically healthy and unhealthy obesity (MHO/MUHO can be differentiated: the latter is characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Aim of this study was, to identify adipocyte-specific metabolic signatures and functional biomarkers for MHO versus MUHO.10 insulin-resistant (IR vs. 10 insulin-sensitive (IS non-diabetic morbidly obese (BMI >40 kg/m2 Caucasians were matched for gender, age, BMI, and percentage of body fat. From subcutaneous fat biopsies, primary preadipocytes were isolated and differentiated to adipocytes in vitro. About 280 metabolites were investigated by a targeted metabolomic approach intracellularly, extracellularly, and in plasma.Among others, aspartate was reduced intracellularly to one third (p = 0.0039 in IR adipocytes, pointing to a relative depletion of citric acid cycle metabolites or reduced aspartate uptake in MUHO. Other amino acids, already known to correlate with diabetes and/or obesity, were identified to differ between MUHO's and MHO's adipocytes, namely glutamine, histidine, and spermidine. Most species of phosphatidylcholines (PCs were lower in MUHO's extracellular milieu, though simultaneously elevated intracellularly, e.g., PC aa C32∶3, pointing to increased PC synthesis and/or reduced PC release. Furthermore, altered arachidonic acid (AA metabolism was found: 15(S-HETE (15-hydroxy-eicosatetraenoic acid; 0 vs. 120pM; p = 0.0014, AA (1.5-fold; p = 0.0055 and docosahexaenoic acid (DHA, C22∶6; 2-fold; p = 0.0033 were higher in MUHO. This emphasizes a direct contribution of adipocytes to local adipose tissue inflammation. Elevated DHA, as an inhibitor of prostaglandin synthesis, might be a hint for counter-regulatory mechanisms in MUHO.We identified adipocyte-inherent metabolic alterations discriminating between MHO and MUHO.

  13. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro.

    Science.gov (United States)

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-04-01

    Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase.

  14. Insulin: pancreatic secretion and adipocyte regulation.

    Science.gov (United States)

    Baumgard, L H; Hausman, G J; Sanz Fernandez, M V

    2016-01-01

    Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.

  15. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan)

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  16. File list: His.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.White_adipocytes.bed ...

  17. File list: His.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.White_adipocytes.bed ...

  18. File list: His.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.White_adipocytes.bed ...

  19. File list: His.Adp.10.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.White_adipocytes mm9 Histone Adipocyte White adipocytes SRX800009 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.White_adipocytes.bed ...

  20. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  1. Compact Differential Evolution Light: High Performance Despite Limited Memory Requirement and Modest Computational Overhead

    Institute of Scientific and Technical Information of China (English)

    Giovanni Iacca; Fabio Caraffini; Ferrante Neri

    2012-01-01

    Compact algorithms are Estimation of Distribution Algorithms which mimic the behavior of population-based algorithms by means of a probabilistic representation of the population of candidate solutions.These algorithms have a similar behaviour with respect to population-based algorithms but require a much smaller memory.This feature is crucially important in some engineering applications,especially in robotics.A high performance compact algorithm is the compact Differential Evolution (cDE) algorithm.This paper proposes a novel implementation of cDE,namely compact Differential Evolution light (cDElight),to address not only the memory saving necessities but also real-time requirements.cDElight employs two novel algorithmic modifications for employing a smaller computational overhead without a performance loss,with respect to cDE.Numerical results,carried out on a broad set of test problems,show that cDElight,despite its minimal hardware requirements,does not deteriorate the performance of cDE and thus is competitive with other memory saving and population-based algorithms.An application in the field of mobile robotics highlights the usability and advantages of the proposed approach.

  2. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation.

    Science.gov (United States)

    Wang, Xi-De; Leow, Ching Ching; Zha, Jiping; Tang, Zhijun; Modrusan, Zora; Radtke, Freddy; Aguet, Michel; de Sauvage, Frederic J; Gao, Wei-Qiang

    2006-02-01

    Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.

  3. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation.

    Science.gov (United States)

    Pei, Bo; Zhao, Meng; Miller, Brian C; Véla, Jose Luis; Bruinsma, Monique W; Virgin, Herbert W; Kronenberg, Mitchell

    2015-06-15

    Autophagy regulates cell differentiation, proliferation, and survival in multiple cell types, including cells of the immune system. In this study, we examined the effects of a disruption of autophagy on the differentiation of invariant NKT (iNKT) cells. Using mice with a T lymphocyte-specific deletion of Atg5 or Atg7, two members of the macroautophagic pathway, we observed a profound decrease in the iNKT cell population. The deficit is cell-autonomous, and it acts predominantly to reduce the number of mature cells, as well as the function of peripheral iNKT cells. In the absence of autophagy, there is reduced progression of iNKT cells in the thymus through the cell cycle, as well as increased apoptosis of these cells. Importantly, the reduction in Th1-biased iNKT cells is most pronounced, leading to a selective reduction in iNKT cell-derived IFN-γ. Our findings highlight the unique metabolic and genetic requirements for the differentiation of iNKT cells.

  4. TSH effects on thermogenesis in rat brown adipocytes.

    Science.gov (United States)

    Martinez-deMena, Raquel; Anedda, Andrea; Cadenas, Susana; Obregon, Maria-Jesus

    2015-03-15

    TSH receptor (TSHR) is present in the thyroid and other tissues, as adipose tissue. In brown adipose tissue (BAT) TSH increases UCP1 expression and lipolysis. We have studied the regulation of Tshr mRNA expression and the effect of TSH on Ucp1 and Dio2 mRNA, on D2 activity and O2 consumption in rat brown adipocytes and the TSH signaling pathways. Tshr increased during brown adipocyte differentiation, was up-regulated by insulin and low TSH concentrations and down-regulated by high TSH concentrations, T3 and/or NE. TSH increased basal Ucp1 mRNA in a dose-dependent way acting synergistically with T3, while had no effect when NE was present. High TSH concentrations increased basal Dio2 mRNA (12-fold) and were synergistic with T3 (100-fold), but decreased Dio2 mRNA in T3+NE-treated cells. TSH increased D2 activities in T3-treated cells and inhibition of ERK pathway decreased the TSH effect by 55%. In T3+NE treated-cells TSH decreased D2 activity by 50%, in a dose-dependent manner. TSH activated Akt and Erk phosphorylation, while inhibition of PKA promoted Akt phosphorylation. TSH inhibited leptin mRNA. TSH increased O2 consumption by 20% and T3 enhanced its effect. Tshr is expressed in brown adipocytes and is regulated by insulin, TSH, T3 and NE. TSH increases basal and T3-stimulated Ucp1 and Dio2 expression and D2 activity only when T3 is present, but decreases Dio2 mRNA and D2 activity stimulated by NE+T3. TSH increases O2 consumption, confirming the role of TSH in the maintenance of thermogenesis.

  5. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling

    Directory of Open Access Journals (Sweden)

    Rajan eSingh

    2014-10-01

    Full Text Available Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiological role in adult human physiology has been questioned for years. Recent demonstrations of metabolically active brown fat depots in adult humans have revolutionized current therapeutic approaches for obesity-related diseases. The balance between white adipose tissue (WAT and BAT affects the systemic energy balance and is widely believed to be the key determinant in the development of obesity and related metabolic diseases. Members of the transforming growth factor-beta (TGF-β superfamily play an important role in regulating overall energy homeostasis by modulation of brown adipocyte characteristics. Inactivation of TGF-β/Smad3/myostatin (Mst signaling promotes browning of white adipocytes, increases mitochondrial biogenesis and protects mice from diet-induced obesity, suggesting the need for development of a novel class of TGF-β/Mst antagonists for the treatment of obesity and related metabolic diseases. We recently described an important role of follistatin (Fst, a soluble glycoprotein that is known to bind and antagonize Mst actions, during brown fat differentiation and the regulation of cellular metabolism. Here we highlight various investigations performed using different in vitro and in vivo models to support the contention that targeting TGF-β/Mst signaling enhances brown adipocyte functions and regulates energy balance, reducing insulin resistance and curbing the development of obesity and diabetes.

  6. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Science.gov (United States)

    Bacallao, Ketty; Monje, Paula V

    2015-01-01

    Isolated Schwann cells (SCs) respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1). To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP) and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC) agonists and antagonists revealed that selective transmembrane AC (tmAC) activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC), a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the uncoupling of signals

  7. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  8. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes.

    Science.gov (United States)

    El-Houri, Rime B; Kotowska, Dorota; Christensen, Kathrine B; Bhattacharya, Sumangala; Oksbjerg, Niels; Wolber, Gerhard; Kristiansen, Karsten; Christensen, Lars P

    2015-07-01

    A dichloromethane (DCM) extract of carrot roots was found to stimulate insulin-dependent glucose uptake (GU) in adipocytes in a dose dependent manner. Bioassay-guided fractionation of the DCM extract resulted in the isolation of the polyacetylenes falcarinol and falcarindiol. Both polyacetylenes were able to significantly stimulate basal and/or insulin-dependent GU in 3T3-L1 adipocytes and porcine myotube cell cultures in a dose-dependent manner. Falcarindiol increased peroxisome proliferator-activated receptor (PPAR)γ-mediated transactivation significantly at concentrations of 3, 10 and 30 μM, while PPARγ-mediated transactivation by falcarinol was only observed at 10 μM. Docking studies accordingly indicated that falcarindiol binds to the ligand binding domain of PPARγ with higher affinity than falcarinol and that both polyacetylenes exhibit characteristics of PPARγ partial agonists. Falcarinol was shown to inhibit adipocyte differentiation as evident by gene expression studies and Oil Red O staining, whereas falcarindiol did not inhibit adipocyte differentiation, which indicates that these polyacetylenes have distinct modes of action. The results of the present study suggest that falcarinol and falcarindiol may represent scaffolds for novel partial PPARγ agonists with possible antidiabetic properties.

  9. Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis.

    Science.gov (United States)

    Fu, Dun Jack; Thomson, Calum; Lunny, Declan P; Dopping-Hepenstal, Patricia J; McGrath, John A; Smith, Frances J D; McLean, W H Irwin; Pedrioli, Deena M Leslie

    2014-03-01

    Keratin 9 (K9) is a type I intermediate filament protein whose expression is confined to the suprabasal layers of the palmoplantar epidermis. Although mutations in the K9 gene are known to cause epidermolytic palmoplantar keratoderma, a rare dominant-negative skin disorder, its functional significance is poorly understood. To gain insight into the physical requirement and importance of K9, we generated K9-deficient (Krt9(-/-)) mice. Here, we report that adult Krt9(-/-)mice develop calluses marked by hyperpigmentation that are exclusively localized to the stress-bearing footpads. Histological, immunohistochemical, and immunoblot analyses of these regions revealed hyperproliferation, impaired terminal differentiation, and abnormal expression of keratins K5, K14, and K2. Furthermore, the absence of K9 induces the stress-activated keratins K6 and K16. Importantly, mice heterozygous for the K9-null allele (Krt9(+/-)) show neither an overt nor histological phenotype, demonstrating that one Krt9 allele is sufficient for the developing normal palmoplantar epidermis. Together, our data demonstrate that complete ablation of K9 is not tolerable in vivo and that K9 is required for terminal differentiation and maintaining the mechanical integrity of palmoplantar epidermis.

  10. Keratin 9 Is Required for the Structural Integrity and Terminal Differentiation of the Palmoplantar Epidermis

    Science.gov (United States)

    Fu, Dun Jack; Thomson, Calum; Lunny, Declan P; Dopping-Hepenstal, Patricia J; McGrath, John A; Smith, Frances J D; Irwin McLean, W H; Pedrioli, Deena M Leslie

    2014-01-01

    Keratin 9 (K9) is a type I intermediate filament protein whose expression is confined to the suprabasal layers of the palmoplantar epidermis. Although mutations in the K9 gene are known to cause epidermolytic palmoplantar keratoderma, a rare dominant-negative skin disorder, its functional significance is poorly understood. To gain insight into the physical requirement and importance of K9, we generated K9-deficient (Krt9−/−) mice. Here, we report that adult Krt9−/−mice develop calluses marked by hyperpigmentation that are exclusively localized to the stress-bearing footpads. Histological, immunohistochemical, and immunoblot analyses of these regions revealed hyperproliferation, impaired terminal differentiation, and abnormal expression of keratins K5, K14, and K2. Furthermore, the absence of K9 induces the stress-activated keratins K6 and K16. Importantly, mice heterozygous for the K9-null allele (Krt9+/−) show neither an overt nor histological phenotype, demonstrating that one Krt9 allele is sufficient for the developing normal palmoplantar epidermis. Together, our data demonstrate that complete ablation of K9 is not tolerable in vivo and that K9 is required for terminal differentiation and maintaining the mechanical integrity of palmoplantar epidermis. PMID:23962810

  11. A mex3 homolog is required for differentiation during planarian stem cell lineage development.

    Science.gov (United States)

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-06-26

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment.

  12. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Sandeep Dave

    Full Text Available The phytotherapeutic protein stem bromelain (SBM is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2, fatty acid synthase (FAS, lipoprotein lipase (LPL, CD36, and acetyl-CoA carboxylase (ACC were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B, and GTP binding protein G(iα(1, as well as sustained expression of hormone sensitive lipase (HSL. These data indicate that SBM, together with all-trans retinoic-acid (atRA, may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  13. Take-over: multiple mechanisms of inter-adipocyte communication

    Institute of Scientific and Technical Information of China (English)

    Günter Müller

    2011-01-01

    Adipose tissue mass in mammals is thought to expand with an increase in both volume and total number of the adipocytes. Recent findings suggest that in normal-weight as well as obese individuals, the adipocyte number is set during adolescence prior to adulthood, whereas the subsequent increase in size predominantly drives obesity. The simultaneous existence of large and small adipocytes and their unsynchronized growth, even within the same adipose tissue depot, argues against simple filling-up of emerging adipocytes with lipids and lipid droplets (LDs). Consequently, it is tempting to speculate about signals sent by large adipocytes to order small adipocytes the take-over of the burden of lipid loading. Currently there is experimental evidence for three distinct types of inter-adipocyte signals, i.e, cell-to-cell contacts, adipokines, and other soluble factors and microvesicles. Very recently,microvesicles have been shown (i) to harbour the glycosylphosphatidylinositol-anchored (c)AMP-degrading phosphodiesterase Gce1 and 5'-nucleotidase CD73, (ii) to be released from large adipocytes, (iii) to interact with small adipocytes, and (iv) to transfer Gce1 and CD73 to plasma membranes and LDs of small adipocytes where they degrade (c)AMP. This sequence of events leads to the up-regulation of lipid storage in small adipocytes in response to the microvesicle-encoded 'take-over' signal from large adipocytes. A model is proposed for the maturation of small adipocytes driven by large ones along a gradient of those inter-adipocyte signals.Pharmacological modulation of inter-adipocyte communication and thereby adipocyte maturation may be useful for the therapy of metabolic diseases.

  14. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes.

    Science.gov (United States)

    Sun, Zhiqi; Gong, Jingyi; Wu, Han; Xu, Wenyi; Wu, Lizhen; Xu, Dijin; Gao, Jinlan; Wu, Jia-Wei; Yang, Hongyuan; Yang, Maojun; Li, Peng

    2013-01-01

    Mature white adipocytes contain a characteristic unilocular lipid droplet. However, the molecular mechanisms underlying unilocular lipid droplet formation are poorly understood. We previously showed that Fsp27, an adipocyte-specific lipid droplet-associated protein, promotes lipid droplet growth by initiating lipid exchange and transfer. Here, we identify Perilipin1 (Plin1), another adipocyte-specific lipid droplet-associated protein, as an Fsp27 activator. Plin1 interacts with the CIDE-N domain of Fsp27 and markedly increases Fsp27-mediated lipid exchange, lipid transfer and lipid droplet growth. Functional cooperation between Plin1 and Fsp27 is required for efficient lipid droplet growth in adipocytes, as depletion of either protein impairs lipid droplet growth. The CIDE-N domain of Fsp27 forms homodimers and disruption of CIDE-N homodimerization abolishes Fsp27-mediated lipid exchange and transfer. Interestingly, Plin1 can restore the activity of CIDE-N homodimerization-defective mutants of Fsp27. We thus uncover a novel mechanism underlying lipid droplet growth and unilocular lipid droplet formation that involves the cooperative action of Fsp27 and Plin1 in adipocytes.

  15. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard;

    2012-01-01

    epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...... sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARγ is associated with highly depot-specific gene expression. This indicates that PPARγ plays a role in the induction of genes characteristic...... of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARγ lineage-specific recruitment even when differentiated in vitro....

  16. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal.

    Directory of Open Access Journals (Sweden)

    Sung-Ho Huh

    2012-01-01

    Full Text Available A large proportion of age-related hearing loss is caused by loss or damage to outer hair cells in the organ of Corti. The organ of Corti is the mechanosensory transducing apparatus in the inner ear and is composed of inner hair cells, outer hair cells, and highly specialized supporting cells. The mechanisms that regulate differentiation of inner and outer hair cells are not known. Here we report that fibroblast growth factor 20 (FGF20 is required for differentiation of cells in the lateral cochlear compartment (outer hair and supporting cells within the organ of Corti during a specific developmental time. In the absence of FGF20, mice are deaf and lateral compartment cells remain undifferentiated, postmitotic, and unresponsive to Notch-dependent lateral inhibition. These studies identify developmentally distinct medial (inner hair and supporting cells and lateral compartments in the developing organ of Corti. The viability and hearing loss in Fgf20 knockout mice suggest that FGF20 may also be a deafness-associated gene in humans.

  17. Zebrafish vasa is required for germ-cell differentiation and maintenance.

    Science.gov (United States)

    Hartung, Odelya; Forbes, Meredyth M; Marlow, Florence L

    2014-10-01

    Vasa is a universal marker of the germ line in animals, yet mutations disrupting vasa cause sexually dimorphic infertility, with impaired development of the ovary in some animals and the testis in others. The basis for this sexually dimorphic requirement for Vasa is not clear; in most animals examined, both the male and female gonad express vasa throughout the life of the germ line. Here we characterized a loss-of-function mutation disrupting zebrafish vasa. We show that maternally provided Vasa is stable through the first ten days of development in zebrafish, and thus likely fulfills any early roles for Vasa during germ-line specification, migration, survival, and maintenance. Although zygotic Vasa is not essential for the development of juvenile gonads, vasa mutants develop exclusively as sterile males. Furthermore, phenotypes of vasa;p53 compound mutants are indistinguishable from those of vasa mutants, therefore the failure of vasa mutants to differentiate as females and to support germ-cell development in the testis is not due to p53-mediated apoptosis. Instead, we found that failure to progress beyond the pachytene stage of meiosis causes the loss of germ-line stem cells, leaving empty somatic tubules. Our studies provide insight into the function of zebrafish vasa during female meiosis, differentiation, and maintenance of germ-line stem cells.

  18. Resveratrol metabolites modify adipokine expression and secretion in 3T3-L1 pre-adipocytes and mature adipocytes.

    Directory of Open Access Journals (Sweden)

    Itziar Eseberri

    Full Text Available OBJECTIVE: Due to the low bioavailability of resveratrol, determining whether its metabolites exert any beneficial effect is an interesting issue. METHODS: 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 µM of resveratrol or with its metabolites and 3T3-L1 mature adipocytes were treated for 24 hours with 10 µM resveratrol or its metabolites. The gene expression of adiponectin, leptin, visfatin and apelin was assessed by Real Time RT-PCR and their concentration in the incubation medium was quantified by ELISA. RESULTS: Resveratrol reduced mRNA levels of leptin and increased those of adiponectin. It induced the same changes in leptin secretion. Trans-resveratrol-3-O-glucuronide and trans-resveratrol-4'-O-glucuronide increased apelin and visfatin mRNA levels. Trans-resveratrol-3-O-sulfate reduced leptin mRNA levels and increased those of apelin and visfatin. CONCLUSIONS: The present study shows for the first time that resveratrol metabolites have a regulatory effect on adipokine expression and secretion. Since resveratrol has been reported to reduce body-fat accumulation and to improve insulin sensitivity, and considering that these effects are mediated in part by changes in the analyzed adipokines, it may be proposed that resveratrol metabolites play a part in these beneficial effects of resveratrol.

  19. Increased Mitochondrial Activity in BMP7-Treated Brown Adipocytes, Due to Increased CPT1- and CD36-Mediated Fatty Acid Uptake

    OpenAIRE

    Townsend, Kristy L; An, Ding; Lynes, Matthew D.; Huang, Tian Lian; Zhang, Hongbin; Goodyear, Laurie J.; Tseng, Yu-Hua

    2013-01-01

    Aims: Brown adipose tissue dissipates chemical energy in the form of heat and regulates triglyceride and glucose metabolism in the body. Factors that regulate fatty acid uptake and oxidation in brown adipocytes have not yet been fully elucidated. Bone morphogenetic protein 7 (BMP7) is a growth factor capable of inducing brown fat mitochondrial biogenesis during differentiation from adipocyte progenitors. Administration of BMP7 to mice also results in increased energy expenditure. To determine...

  20. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Yang, Jeong-Yeh; Ambati, Suresh; Della-Fera, Mary Anne; Hausman, Dorothy B; Rayalam, Srujana; Baile, Clifton A

    2008-12-01

    The natural compounds genistein (G), quercetin (Q), and resveratrol (R) have been reported to each exhibit anti-adipogenic activities in adipocytes and antiproliferative and pro-apoptotic activities in several cell types. We studied the combined effects of G, Q, and R on adipogenesis and apoptosis in primary human adipocytes (HAs) and 3T3-L1 murine adipocyte (MAs). Combined treatment with 6.25 microM G, 12.5 microM Q, and 12.5 microM R during the 14-day differentiation period caused an enhanced inhibition of lipid accumulation in maturing HAs that was greater than the responses to individual compounds and to the calculated additive response. Glycerol 3-phosphate dehydrogenase activity, a marker of late adipocyte differentiation, was decreased markedly in HAs treated with the combination of G+Q+R. In addition, combined treatment with 50 microM G, 100 microM Q, and 100 microM R for 3 days decreased cell viability and induced apoptosis in early- and mid- phase maturing and lipid-filled mature HAs. In contrast, no compound alone induced apoptosis. Oil Red O stain and Hoechst 33342 stain were performed to confirm the effects on lipid accumulation and apoptosis, respectively. We also determined whether MAs responded to the combination treatment similarly to HAs. As in HAs, G+Q+R treatment decreased lipid accumulation in maturing MAs and increased apoptosis in pre- and lipid-filled mature MAs more than the responses to G, Q, and R when used separately. These results show that lower concentrations of combined treatments with several natural compounds may be useful for treatments for obesity through the suppression of adipogenesis and enhanced adipocyte apoptosis.

  1. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes.

    Science.gov (United States)

    Kou, Liang; Lu, Xiao-Wen; Wu, Min-Ke; Wang, Hang; Zhang, Yu-Jiao; Sato, Soh; Shen, Jie-Fei

    2014-02-21

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.

  2. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  3. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    Science.gov (United States)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  4. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Science.gov (United States)

    Miller, Colette N; Yang, Jeong-Yeh; England, Emily; Yin, Amelia; Baile, Clifton A; Rayalam, Srujana

    2015-01-01

    Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1), enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM) following standard differentiation supplemented with thyroid hormone (T3; 1 nM). The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1) were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  5. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Colette N Miller

    Full Text Available Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1, enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM following standard differentiation supplemented with thyroid hormone (T3; 1 nM. The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1 were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  6. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    Science.gov (United States)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-01-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health. PMID:25743104

  7. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes.

    Science.gov (United States)

    Timper, Katharina; Grisouard, Jean; Sauter, Nadine S; Herzog-Radimerski, Tanja; Dembinski, Kaethi; Peterli, Ralph; Frey, Daniel M; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2013-01-01

    Obesity-related insulin resistance is linked to a chronic state of systemic and adipose tissue-derived inflammation. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone also acting on adipocytes. We investigated whether GIP affects inflammation, lipolysis, and insulin resistance in human adipocytes. Human subcutaneous preadipocyte-derived adipocytes, differentiated in vitro, were treated with human GIP to analyze mRNA expression and protein secretion of cytokines, glycerol, and free fatty acid release and insulin-induced glucose uptake. GIP induced mRNA expression of IL-6, IL-1β, and the IL-1 receptor antagonist IL-1Ra, whereas TNFα, IL-8, and monocyte chemotactic protein (MCP)-1 remained unchanged. Cytokine induction involved PKA and the NF-κB pathway as well as an autocrine IL-1 effect. Furthermore, GIP potentiated IL-6 and IL-1Ra secretion in the presence of LPS, IL-1β, and TNFα. GIP induced lipolysis via activation of hormone-sensitive lipase and was linked to NF-κB activation. Finally, chronic GIP treatment impaired insulin-induced glucose uptake possibly due to the observed impaired translocation of glucose transporter GLUT4. In conclusion, GIP induces an inflammatory and prolipolytic response via the PKA -NF-κB-IL-1 pathway and impairs insulin sensitivity of glucose uptake in human adipocytes.

  8. St. John's Wort Has Metabolically Favorable Effects on Adipocytes In Vivo.

    Science.gov (United States)

    Fuller, Scott; Richard, Allison J; Ribnicky, David M; Beyl, Robbie; Mynatt, Randall; Stephens, Jacqueline M

    2014-01-01

    In addition to serving as a storage site for reserve energy, adipocytes play a critical role in whole-body insulin sensitivity and glucose metabolism. St. John's Wort (SJW) is a botanical supplement widely used as an over-the-counter treatment of depression and a variety of other conditions associated with anxiety and nerve pain. Previous studies in our laboratory demonstrated that SJW inhibits insulin-stimulated glucose uptake and adipocyte differentiation in cultured murine and mature human adipocytes. To investigate the effects of SJW on adipocyte function in vivo, we utilized C57BL/6J mice. In our studies, mice were administered SJW extract (200 mg/kg) once daily by gavage for two weeks. In contrast to our in vitro studies, mice treated with SJW extract showed increased levels of adiponectin in white adipose tissue in a depot specific manner (P < 0.01). SJW also exerted an insulin-sensitizing effect as indicated by a significant increase in insulin-stimulated Akt serine phosphorylation in epididymal white adipose tissue (P < 0.01). Food intake, body weight, fasting blood glucose, and fasting insulin did not differ between the two groups. These results are important as they indicate that SJW does not promote metabolic dysfunction in adipose tissue in vivo.

  9. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes.

    Science.gov (United States)

    Bartesaghi, Stefano; Hallen, Stefan; Huang, Li; Svensson, Per-Arne; Momo, Remi A; Wallin, Simonetta; Carlsson, Eva K; Forslöw, Anna; Seale, Patrick; Peng, Xiao-Rong

    2015-01-01

    Heat-producing beige/brite (brown-in-white) adipocytes in white adipose tissue have the potential to suppress metabolic disease in mice and hold great promise for the treatment of obesity and type 2 diabetes in humans. Here, we demonstrate that human adipose-derived stromal/progenitor cells (hASCs) from subcutaneous white adipose tissue can be efficiently converted into beige adipocytes. Upon pharmacological activation of peroxisome proliferator-activated receptor-γ, hASC-derived adipocytes activated beige fat-selective genes and a brown/beige fat-selective electron transport chain gene program. Importantly, hASC-derived beige fat cells displayed the bioenergetic characteristics of genuine brown fat cells, including a capacity for increased respiratory uncoupling in response to β-adrenergic agonists. Furthermore, knock-down experiments reveal that the thermogenic capacity of human beige fat cells was entirely dependent on the presence of Uncoupling protein 1. In summary, this study reveals that hASCs can be readily differentiated into beige adipocytes that, upon activation, undergo uncoupling protein 1-dependent thermogenesis.

  10. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies.

    Science.gov (United States)

    Billon, Nathalie; Dani, Christian

    2012-03-01

    The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of adipocyte progenitors into mature adipocytes. However, the early steps of adipocyte development and the embryonic origin of this lineage have been largely disregarded until recently. In mammals, two functionally different types of adipose tissues coexist, which are both involved in energy balance but assume opposite functions. White adipose tissue (WAT) stores energy, while brown adipose tissue (BAT) is specialized in energy expenditure. WAT and BAT can be found as several depots located in various sites of the body. Individual fat depots exhibit different timing of appearance during development, as well as distinct functional properties, suggesting possible differences in their developmental origin. This hypothesis has recently been revisited through large-scale genomics studies and in vivo lineage tracing approaches, which are reviewed in this report. These studies have provided novel fundamental insights into adipocyte biology, pointing out distinct developmental origins for WAT and BAT, as well as for individual WAT depots. They suggest that the adipose tissue is composed of distinct mini-organs, exhibiting developmental and functional differences, as well as variable contribution to obesity-related metabolic diseases.

  11. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons.

    Science.gov (United States)

    Kwon, Yu-Rim; Jeong, Myong-Ho; Leem, Young-Eun; Lee, Sang-Jin; Kim, Hyun-Jin; Bae, Gyu-Un; Kang, Jong-Sun

    2014-09-01

    Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis. Cdo and Shh signaling components are induced during neurogenesis of embryonic stem (ES) cells. Cdo(-/-) ES cells show reduced neuronal differentiation accompanied by increased cell death upon neuronal induction. In addition, Cdo(-/-) ES cells form fewer tyrosine hydroxylase (TH) and microtubule associated protein 2 (MAP2)-positive DA neurons correlating with the decreased expression of key regulators of DA neurogenesis, such as Shh, Neurogenin2, Mash1, Foxa2, Lmx1a, Nurr1 and Pitx3, relative to the Cdo(+/+) ES cells. Consistently, the Cdo(-/-) embryonic midbrain displays a reduction in expression of TH and Nurr1. Furthermore, activation of Shh signaling by treatment with Purmorphamine (Pur) restores the DA neurogenesis of Cdo(-/-) ES cells, suggesting that Cdo is required for the full Shh signaling activation to induce efficient DA neurogenesis.

  12. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA.

    Directory of Open Access Journals (Sweden)

    Prahathees Eswaramoorthy

    2014-08-01

    Full Text Available Sporulation in the bacterium Bacillus subtilis is a developmental program in which a progenitor cell differentiates into two different cell types, the smaller of which eventually becomes a dormant cell called a spore. The process begins with an asymmetric cell division event, followed by the activation of a transcription factor, σF, specifically in the smaller cell. Here, we show that the structural protein DivIVA localizes to the polar septum during sporulation and is required for asymmetric division and the compartment-specific activation of σF. Both events are known to require a protein called SpoIIE, which also localizes to the polar septum. We show that DivIVA copurifies with SpoIIE and that DivIVA may anchor SpoIIE briefly to the assembling polar septum before SpoIIE is subsequently released into the forespore membrane and recaptured at the polar septum. Finally, using super-resolution microscopy, we demonstrate that DivIVA and SpoIIE ultimately display a biased localization on the side of the polar septum that faces the smaller compartment in which σF is activated.

  13. MicroRNA networks regulate development of brown adipocytes.

    Science.gov (United States)

    Trajkovski, Mirko; Lodish, Harvey

    2013-09-01

    Brown adipose tissue (BAT) is specialized for heat generation and energy expenditure as a defense against cold and obesity; in both humans and mice increased amounts of BAT are associated with a lean phenotype and resistance to development of the metabolic syndrome and its complications. Here we summarize recent research showing that several BAT-expressed microRNAs (miRNAs) play important roles in regulating differentiation and metabolism of brown and beige adipocytes; we discuss the key mRNA targets downregulated by these miRNAs and show how these miRNAs affect directly or indirectly transcription factors important for BAT development. We suggest that these miRNAs could be part of novel therapeutics to increase BAT in humans.

  14. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  15. C/EBPalpha and C/EBPbeta are required for Sebocyte differentiation and stratified squamous differentiation in adult mouse skin.

    Directory of Open Access Journals (Sweden)

    John S House

    Full Text Available C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3 and melanocortin 5 receptor (MC5R, two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.

  16. The Histone H2B Monoubiquitination Regulatory Pathway Is Required for Differentiation of Multipotent Stem Cells

    DEFF Research Database (Denmark)

    Karpiuk, Oleksandra; Najafova, Zeynab; Kramer, Frank;

    2012-01-01

    Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly und...

  17. Adhesion protein VSIG1 is required for the proper differentiation of glandular gastric epithelia.

    Directory of Open Access Journals (Sweden)

    Odgerel Oidovsambuu

    Full Text Available VSIG1, a cell adhesion protein of the immunoglobulin superfamily, is preferentially expressed in stomach, testis, and certain gastric, esophageal and ovarian cancers. Here, we describe the expression patterns of three alternatively spliced isoforms of mouse Vsig1 during pre- and postnatal development of stomach and potential function of Vsig1 in differentiation of gastric epithelia. We show that isoforms Vsig1A and Vsig1B, which differ in the 3'untranslated region, are expressed in the early stages of stomach development. Immunohistochemical analysis revealed that VSIG1 is restricted to the adherens junction of the glandular epithelium. The shorter transcript Vsig1C is restricted to the testis, encodes an N-terminal truncated protein and is presumably regulated by an internal promoter, which is located upstream of exon 1b. To determine whether the 5' flanking region of exon 1a specifically targets the expression of Vsig1 to stomach epithelia, we generated and analyzed transgenic mice. The 4.8-kb fragment located upstream of exon 1a was sufficient to direct the expression of the reporter gene to the glandular epithelia of transgenic stomach. To determine the role of VSIG1 during the development of stomach epithelia, an X-linked Vsig1 was inactivated in embryonic stem cells (ESCs. Although Vsig1(-/Y ESCs were only able to generate low coat color chimeric mice, no male chimeras transmitted the targeted allele to their progeny suggesting that the high contribution of Vsig1(-/Y cells leads to the lethality of chimeric embryos. Analysis of chimeric stomachs revealed the differentiation of VSIG1-null cells into squamous epithelia inside the glandular region. These results suggest that VSIG1 is required for the establishment of glandular versus squamous epithelia in the stomach.

  18. Adhesion protein VSIG1 is required for the proper differentiation of glandular gastric epithelia.

    Science.gov (United States)

    Oidovsambuu, Odgerel; Nyamsuren, Gunsmaa; Liu, Shuai; Göring, Wolfgang; Engel, Wolfgang; Adham, Ibrahim M

    2011-01-01

    VSIG1, a cell adhesion protein of the immunoglobulin superfamily, is preferentially expressed in stomach, testis, and certain gastric, esophageal and ovarian cancers. Here, we describe the expression patterns of three alternatively spliced isoforms of mouse Vsig1 during pre- and postnatal development of stomach and potential function of Vsig1 in differentiation of gastric epithelia. We show that isoforms Vsig1A and Vsig1B, which differ in the 3'untranslated region, are expressed in the early stages of stomach development. Immunohistochemical analysis revealed that VSIG1 is restricted to the adherens junction of the glandular epithelium. The shorter transcript Vsig1C is restricted to the testis, encodes an N-terminal truncated protein and is presumably regulated by an internal promoter, which is located upstream of exon 1b. To determine whether the 5' flanking region of exon 1a specifically targets the expression of Vsig1 to stomach epithelia, we generated and analyzed transgenic mice. The 4.8-kb fragment located upstream of exon 1a was sufficient to direct the expression of the reporter gene to the glandular epithelia of transgenic stomach. To determine the role of VSIG1 during the development of stomach epithelia, an X-linked Vsig1 was inactivated in embryonic stem cells (ESCs). Although Vsig1(-/Y) ESCs were only able to generate low coat color chimeric mice, no male chimeras transmitted the targeted allele to their progeny suggesting that the high contribution of Vsig1(-/Y) cells leads to the lethality of chimeric embryos. Analysis of chimeric stomachs revealed the differentiation of VSIG1-null cells into squamous epithelia inside the glandular region. These results suggest that VSIG1 is required for the establishment of glandular versus squamous epithelia in the stomach.

  19. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Kyoung [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Tae-Yoon [Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-gu, Daegu 705-717 (Korea, Republic of); Choi, Jong-Soon [Division of Life Science, Korea Basic Science Institute, 169-148 Gwahakro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Hong, Victor Sukbong [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Jinho, E-mail: jinho@gw.kmu.ac.kr [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Park, Jong-Wook, E-mail: j303nih@dsmc.or.kr [Department of Immunology, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  20. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  1. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Sae-Rom Yoo

    2015-01-01

    Full Text Available Background. Oyaksungi-san (OYSGS is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH activity, triglyceride (TG content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α, and peroxisome proliferator-activated receptor gamma (PPAR-γ. Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK as well as its substrate acetyl CoA (ACC carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity.

  2. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue.

    Directory of Open Access Journals (Sweden)

    Nicholas A Fairbridge

    Full Text Available CD24 is a glycophosphatidylinositol (GPI-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO. We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35% or high fat (45% diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels.

  3. Metabolic interplay between white, beige, brown adipocytes and the liver.

    Science.gov (United States)

    Scheja, Ludger; Heeren, Joerg

    2016-05-01

    In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease.

  4. Differentiation of endometrial stromal stem cells into osteoblasts and adipocytes in vitro%子宫内膜基质干细胞的体外成骨诱导和成脂诱导分化

    Institute of Scientific and Technical Information of China (English)

    杨新园; 李旭; 陈葳

    2012-01-01

    目的 探讨子宫内膜基质干细胞的多向分化潜能.方法 取因子宫肌瘤行全子宫切除术患者的子宫内膜组织,磁珠分选子宫内膜基质干细胞,进行传代培养.传代细胞分别加入成骨诱导剂和成脂诱导剂培养,并通过茜素红和油红O染色对成骨细胞和脂肪细胞形态进行鉴定.结果 子宫内膜基质干细胞呈成纤维细胞样贴壁生长,其经成骨、成脂诱导培养3周后形态、体积发生明显改变.茜素红染色显示细胞团中央能形成钙化结节;成脂诱导后油红O染色可见细胞质内出现橙红色脂滴.结论 子宫内膜基质干细胞经体外诱导培养后可向成骨细胞和脂肪细胞分化,并具有明显的成骨和成脂细胞形态,表明子宫内膜基质干细胞具有多向分化潜能.%Objective To investigate the multilineage differentiation capacity of stromal stem cells isolated and cultured from human endometrial tissues. Methods Single-cell suspensions of endometrial stromal stem cells were obtained from hysterectomy tissues of women experiencing normal menstrual cycles. Purified stromal stem cell suspensions were then obtained by selecting cells with a further round of magnetic bead sorting using anti-EpCAM-coated Dynabeads. Rare human endometrial EpCAM-stromal stem cells were screened by inverted microscope each day and identified by flow cytometer. Then the cells were cultured in osteoblast-inducing culture medium, and osteoblast phenotype was assayed with alizarin red staining. The passage cells were cultured in adipogenesis-medium and stained with oil red O for identification. Results Endometrial stromal stem cells grew as adherent cells and presented fibroblast-like in vitro, and could stably proliferate and be passed. The cells changed from fibroblast-like into ellipse after osteoblast-inducing cultivation. After induction for 21 d, alizarin red staining demonstrated the formation of mineralized nods in extracellular matrix. Under the

  5. COL18A1 is highly expressed during human adipocyte differentiation and the SNP c.1136C > T in its "frizzled" motif is associated with obesity in diabetes type 2 patients

    Directory of Open Access Journals (Sweden)

    Flavia I.V. Errera

    2008-03-01

    Full Text Available Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met and Endostatin (c.4349G>A; Asp1437Asn regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI =30; 232 non-obese, BMI A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5% than in non-obese individuals (10.9% [P = 0.02; OR = 2.0 (95%CI: 1.07-3.73], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048, and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.Colágeno XVIII pode gerar dois fragmentos, um correspondendo à região NC11-728 contendo o motivo ''frizzled'', o qual possivelmente atua na sinalização Wnt, e outro correspondendo a Endostatina, que é clivada a partir da região NC1 e é uma potente inibidora de angiogênese. Colágeno XVIII e a via de sinalização Wnt foram recentemente associados à diferenciação adipogênica e obesidade em alguns modelosanimais, porém ainda não em humanos. No presente trabalho, mostramos que os níveis de expressão gênica do COL18A1 aumentam durante o processo de diferenciação adipogênica em humanos. Também testamos se polimorfismos localizados no motivo ''Frizzled'' (c.1136C > T; Thr379Met e na

  6. St. John's Wort inhibits insulin signaling in murine and human adipocytes.

    Science.gov (United States)

    Richard, Allison J; Amini, Zhaleh J; Ribnicky, David M; Stephens, Jacqueline M

    2012-04-01

    Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.

  7. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity.

    Directory of Open Access Journals (Sweden)

    Marina R Pulido

    Full Text Available Lipid droplets (LDs are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K, the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.

  8. Acute genome-wide effects of rosiglitazone on PPARγ transcriptional networks in adipocytes.

    Science.gov (United States)

    Haakonsson, Anders Kristian; Stahl Madsen, Maria; Nielsen, Ronni; Sandelin, Albin; Mandrup, Susanne

    2013-09-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, and genome-wide studies indicate that it is involved in the induction of most adipocyte genes. Here we report, for the first time, the acute effects of the synthetic PPARγ agonist rosiglitazone on the transcriptional network of PPARγ in adipocytes. Treatment with rosiglitazone for 1 hour leads to acute transcriptional activation as well as repression of a number of genes as determined by genome-wide RNA polymerase II occupancy. Unlike what has been shown for many other nuclear receptors, agonist treatment does not lead to major changes in the occurrence of PPARγ binding sites. However, rosiglitazone promotes PPARγ occupancy at many preexisting sites, and this is paralleled by increased occupancy of the mediator subunit MED1. The increase in PPARγ and MED1 binding is correlated with an increase in transcription of nearby genes, indicating that rosiglitazone, in addition to activating the receptor, also promotes its association with DNA, and that this is causally linked to recruitment of mediator and activation of genes. Notably, both rosiglitazone-activated and -repressed genes are induced during adipogenesis. However, rosiglitazone-activated genes are markedly more associated with PPARγ than repressed genes and are highly dependent on PPARγ for expression in adipocytes. By contrast, repressed genes are associated with the other key adipocyte transcription factor CCAAT-enhancer binding proteinα (C/EBPα), and their expression is more dependent on C/EBPα. This suggests that the relative occupancies of PPARγ and C/EBPα are critical for whether genes will be induced or repressed by PPARγ agonist.

  9. Optical detection of pores in adipocyte membrane

    Science.gov (United States)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  10. MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia.

    Science.gov (United States)

    Kulyté, Agné; Lorente-Cebrián, Silvia; Gao, Hui; Mejhert, Niklas; Agustsson, Thorhallur; Arner, Peter; Rydén, Mikael; Dahlman, Ingrid

    2014-02-01

    Cancer cachexia is associated with pronounced adipose tissue loss due to, at least in part, increased fat cell lipolysis. MicroRNAs (miRNAs) have recently been implicated in controlling several aspects of adipocyte function. To gain insight into the possible impact of miRNAs on adipose lipolysis in cancer cachexia, global miRNA expression was explored in abdominal subcutaneous adipose tissue from gastrointestinal cancer patients with (n = 10) or without (n = 11) cachexia. Effects of miRNA overexpression or inhibition on lipolysis were determined in human in vitro differentiated adipocytes. Out of 116 miRNAs present in adipose tissue, five displayed distinct cachexia-associated expression according to both microarray and RT-qPCR. Four (miR-483-5p/-23a/-744/-99b) were downregulated, whereas one (miR-378) was significantly upregulated in cachexia. Adipose expression of miR-378 associated strongly and positively with catecholamine-stimulated lipolysis in adipocytes. This correlation is most probably causal because overexpression of miR-378 in human adipocytes increased catecholamine-stimulated lipolysis. In addition, inhibition of miR-378 expression attenuated stimulated lipolysis and reduced the expression of LIPE, PLIN1, and PNPLA2, a set of genes encoding key lipolytic regulators. Taken together, increased miR-378 expression could play an etiological role in cancer cachexia-associated adipose tissue loss via effects on adipocyte lipolysis.

  11. Bacterial translocation - impact on the adipocyte compartment.

    Science.gov (United States)

    Kruis, Tassilo; Batra, Arvind; Siegmund, Britta

    2014-01-01

    Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn's disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called "creeping fat." The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.

  12. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  13. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    Science.gov (United States)

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  14. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  15. TC10 is regulated by caveolin in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Dave Bridges

    Full Text Available BACKGROUND: TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone. METHODOLOGY/PRINCIPAL FINDINGS: TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10. CONCLUSIONS/SIGNIFICANCE: Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin.

  16. Effects of Methylmercury exposure in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Theresa Vertigan

    2017-02-01

    Full Text Available Mercury-containing compounds are environmental pollutants that have become increasingly consequential in the Arctic regions of North America due to processes of climate change increasing their release and availability at northern latitudes. Currently, the form of mercury known to be most detrimental to human health is methylmercury, CH3Hg+, which is found in the environment and accumulates in the tissues of piscivores, including those consumed by Alaska Natives through subsistence gathering. Much is known about the neurotoxicity of methylmercury after exposure to high concentrations, but little is known about toxicity to other tissues and cell types, particularly for long-term exposure and the lower concentrations that would occur through fish consumption. Effects of methylmercury exposure on 3T3-L1 adipocytes in culture were assessed using assays for cytotoxicity and an ELISA assay for vascular endothelial growth factor (VEGF, a signaling molecule shown to be important for maintaining metabolic status in adipose tissue. Results showed that exposure to methylmercury leads to significant toxicity in adipocytes at exposures of 100 ng/mL during later stages of differentiation, but lower methylmercury concentrations produced little to no toxicity. Results also showed that VEGF secretion is elevated in adipocytes exposed to methylmercury after the process of differentiating into mature, fat-storing cells. These results provide a basis for further exploration into metabolic consequences of methylmercury exposure on specific cell types and cell models.

  17. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  18. Fast Prediction of Differential Mode Noise Input Filter Requirements for FLyback and Boost Unity Power Factor Converters

    DEFF Research Database (Denmark)

    Andersen, Michael Andreas E.

    1997-01-01

    Two new and simple methods to make predictions of the differential mode (DM) input filter requirements are presented, one for flyback and one for boost unity power factor converters. They have been verified by measurements. They give the designer the ability to predict the DM input noise filter...

  19. Leukotriene synthesis is required for hedgehog-dependent neurite projection in neuralized embryoid bodies but not for motor neuron differentiation

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold; Roelink, Henk

    2008-01-01

    The hedgehog (Hh) pathway is required for many developmental processes,. as well as for adult homeostasis. Although all known effects of Hh signaling affecting patterning and differentiation are mediated by members of the Gli family of zinc ringer transcription factors, we demonstrate that the Hh-de

  20. Differentiation of rabbit bone marrow mesenchymal stem cells into adipocytes in media containing dexamethasone, 3-isobutyl-1-methylxanthine, insulin and indomethacin%地塞米松、3-异丁基-1-甲基黄嘌呤、胰岛素、吲哚美辛定向诱导兔骨髓间充质干细胞分化为脂肪细胞的研究

    Institute of Scientific and Technical Information of China (English)

    李雅娜; 孙研; 张玲; 刘旭

    2008-01-01

    背景:研究证明,脂肪细胞来源于脂肪前体细胞,而脂肪前体细胞又是由间充质干细胞分化而来.探讨间充质干细胞分化为脂肪细胞的机制,可能为肥胖防治提供新的思路.目的:探讨兔骨髓间充质干细胞体外分离培养、诱导分化为脂肪细胞的方法.设计:观察对比,体外实验.单位:滨州医学院组织学与胚胎学教研室及云南省天然药物药理重点实验室.材料:选用健康6~8周龄日本大耳兔12只,体质量200~300g,雌雄不拘,由昆明医学院实验动物中心提供.定向诱导细胞用地塞米松、3-异丁基-1-甲基黄嘌岭、胰岛素为Sigma公司产品,吲哚美辛为ALEXIS公司产品.方法:实验于2004-07/2005-01在云南省天然药物药理重点实验室完成.由兔股骨、胫骨及肱骨中分离骨髓间充质干细胞,对其进行纯化、培养.用1μmol/L地塞米松、0.5mmol/L 3-异丁基-1-甲基黄嘌呤、10mg/L胰岛素、0.2mmol/L吲哚美辛定向诱导骨髓间充质干细胞分化为脂肪细胞.实验过程中对动物的处置符合动物伦理学标准.主要观察指标:采用改良MTT法测定其生长曲线,油红-O染色;光镜下观察橙红色脂滴沉着的脂肪细胞比例.结果:骨髓间充质干细胞经定向诱导72h后,细胞内有脂滴出现,随着诱导时间的延长,脂滴逐渐增加并融合为脂泡,细胞由梭形转变为类圆形或多角形;第3周油红-O染色显示80%以上的细胞转变为脂肪细胞.结论:兔骨髓间充质干细胞在体外分离、培养后,经1μmol几地塞米松、0.5mmol/L3-异丁基-1-甲基黄嘌呤、10mg/L胰岛素、0.2mmol/L吲哚美辛定向诱导,可以分化为脂肪细胞.%BACKGROUND: Adipocytes are derived from preadipocytes, which are induced by mesenchymal stem cell differentiation. This study explored the mechanism of mesenchymal stem cell differentiation into adipocytes and provided a new thinking for preventing and treating obesity.OBJECTIVE: To investigate

  1. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp [Institute for Environmental and Gender-Specific Medicine, Department of Cardiology, Juntendo University Faculty of Medicine Urayasu Hospital, Tomioka 2-1-1, Urayasu-shi, Chiba 279-0022 (Japan); Nakamura, Kyoko [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Itoh, Seigo [Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Iesaki, Takafumi [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Daida, Hiroyuki [Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Nakazato, Yuji [Institute for Environmental and Gender-Specific Medicine, Department of Cardiology, Juntendo University Faculty of Medicine Urayasu Hospital, Tomioka 2-1-1, Urayasu-shi, Chiba 279-0022 (Japan); Okada, Takao [Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+} levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the accumulation of

  2. Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage

    Directory of Open Access Journals (Sweden)

    Smas Cynthia M

    2008-09-01

    Full Text Available Abstract Background White adipose tissue is not only an energy storage organ; it also functions as an endocrine organ. The coordination and integration of numerous gene expression events is required to establish and maintain the adipocyte phenotype. Findings We previously observed a 45-fold upregulation for a transcript encoding a novel predicted transmembrane protein, Tmem182, upon brown preadipocyte to adipocyte conversion. Here we use real-time PCR analysis to further characterize Tmem182 transcript expression in the adipocyte lineage. Analysis across a panel of 10 murine tissues revealed highest Tmem182 transcript expression in white adipose tissues (WAT, with 10-fold to 20-fold higher levels than in brown adipose tissue (BAT. Tmem182 transcript expression is ~3-fold upregulated in BAT of genetically obese (ob/ob mice vs. wild type C57BL/6. Analysis of three in vitro models of white adipogenesis indicates markedly enriched expression of Tmem182 transcript in adipocytes vs. preadipocytes. Compared to 3T3-L1 preadipocytes, a 157-fold higher level of Tmem182 transcript is detected at 3 day post-induction of adipogenesis and an ~2500-fold higher level in mature 3T3-L1 adipocytes. TNFα treatment of 3T3-L1 adipocytes resulted in a ~90% decrease in Tmem182 transcript level. As skeletal muscle and heart were also found to express Tmem182 transcript, we assessed expression in C2C12 myogenesis and observed a ~770-fold upregulation upon conversion of myoblasts to myocytes. Conclusion WAT is the most prominent site of Tmem182 transcript expression and levels of transcript for Tmem182 are altered in adipose tissues of ob/ob mice and upon exposure of 3T3-L1 adipocytes to the proinflammatory cytokine TNFα. The dramatic upregulation of Tmem182 transcript during in vitro adipogenesis and myogenesis suggests Tmem182 may function in intracellular pathways important in these two cell types.

  3. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Midbrain Neural Stem Cells Differentiated into Dopamine Neurons.

    Science.gov (United States)

    Chen, Chunhai; Ma, Qinglong; Chen, Xiaowei; Zhong, Min; Deng, Ping; Zhu, Gang; Zhang, Yanwen; Zhang, Lei; Yang, Zhiqi; Zhang, Kuan; Guo, Lu; Wang, Liting; Yu, Zhengping; Zhou, Zhou

    2015-08-01

    Midbrain dopamine (DA) neurons are essential for maintaining multiple brain functions. These neurons have also been implicated in relation with diverse neurological disorders. However, how these neurons are developed from neuronal stem cells (NSCs) remains largely unknown. In this study, we provide both in vivo and in vitro evidence that the thyroid hormone, an important physiological factor for brain development, promotes DA neuron differentiation from embryonic ventral midbrain (VM) NSCs. We find that thyroid hormone deficiency during development reduces the midbrain DA neuron number, downregulates the expression of tyrosine hydroxylase (TH) and the dopamine transporter (DAT), and impairs the DA neuron-dependent motor behavior. In addition, thyroid hormone treatment during VM NSC differentiation in vitro increases the production of DA neurons and upregulates the expression of TH and DAT. We also found that the thyroid hormone enhances the expression of Otx2, an important determinant of DA neurogenesis, during DA neuron differentiation. Our in vitro gene silencing experiments indicate that Otx2 is required for thyroid hormone-dependent DA neuron differentiation from embryonic VM NSCs. Finally, we revealed both in vivo and in vitro that the thyroid hormone receptor alpha 1 is expressed in embryonic VM NSCs. Furthermore, it participates in the effects of thyroid hormone-induced Otx2 upregulation and DA neuron differentiation. These data demonstrate the role and molecular mechanisms of how the thyroid hormone regulates DA neuron differentiation from embryonic VM NSCs, particularly providing new mechanisms and a potential strategy for generating dopamine neurons from NSCs.

  4. Is Very High Thyroid Stimulating Hormone Level Required in Differentiated Thyroid Cancer for Ablation Success?

    Directory of Open Access Journals (Sweden)

    Zekiye Hasbek

    2016-06-01

    Full Text Available Objective: Remnant ablation with radioactive iodine (I-131 is a successful form of treatment that aims to destroy the remaining residual tissue and/or metastatic tissue after total thyroidectomy in differentiated thyroid cancer (DTC patients. High level of thyroid stimulating hormone (TSH (≥30 mIU/L is recommended for success of ablation treatment. In this retrospective study, our aim was to investigate whether the TSH levels at the time of ablation effect the success of radioactive iodine remnant ablation. Methods: Patients who were diagnosed with DTC, treated with bilateral total/near total thyroidectomy and who were referred for I-131 remnant ablation were included in this study. Patients with undetectable TSH-stimulated serum thyroglobulin (Tg level, normal physical examination, negative results on whole body scan with I-131, and no evidence of neck lymph node metastasis on ultrasound were defined as disease-free. The correlation between TSH level at the time of ablation and ablation success was assessed. Results: Two hundred sixty one consecutive patients were included in the present study. Mean TSH level was 19.47±6 mIU/L in the 34 patients with TSH <30 mIU/L, while mean TSH level was 73.65±27 mIU/L in the 227 patients with TSH ≥30 mIU/L during I-131 remnant ablation. Ablation was unsuccessful in only one patient with TSH <30 mIU/L who had lung metastasis. Ablation was unsuccessful in 5.1% of patients with TSH ≥30 mIU/L. The effect of TSH level was not significant on ablation success (p=0.472. Conclusion: In conclusion, we think that a high TSH serum level alone is not a factor for the success of ablation. Age, presence of metastasis, extent of residual thyroid mass should also be considered. Especially, in the presence of metastatic tissue, obtaining adequate increase in TSH level is not always possible. The success of ablation at lower levels of TSH elevations may be sufficient for patients, and long-term hypothyroidism may not

  5. Optimal dendritic cell differentiation in rpmi media requires the absence of HEPES buffer.

    Science.gov (United States)

    Svajger, Urban; Jeras, Matjaž

    2011-01-01

    Monocyte-derived dendritic cells (DCs) are considered an indispensible and one of primary tools for in vitro DC-based studies. For majority of in vitro DC-based studies the medium of choice is supplemented RPMI, with certain variable ingredients such as HEPES buffer or Phenol Red (PHR). In effort to identify potential obstruction of DC differentiation process due to presence of mentioned additives, we differentiated DCs using RPMI either with or without HEPES or PHR. Although PHR caused a certain down-regulation of immature DCs (iDCs) differentiation markers and lower expression of co-stimulatory molecules on mature DCs, these changes were not significant. In contrast, use of RPMI also containing HEPES resulted in significantly lower CD1a and DC-SIGN expression on iDCs and extensively lowered co-stimulatory molecule expression after DC activation (HEPES-DCs). Furthermore, DCs differentiated in HEPES-free RPMI possessed more genuine immature/mature DC characteristics in context of Th1 polarization. Additionally, during classical differentiation procedure, fewer DCs remained adherent and possessed better overall morphology in HEPES-free medium. In summary our study clarifies a seemingly minor, but a very important issue, that will most likely facilitate lab work for many scientists dealing with monocyte-derived DCs.

  6. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice.

    Science.gov (United States)

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Buechler, Christa

    2014-10-01

    Galectin-3 regulates immune cell function and clearance of advanced glycation end products. Galectin-3 is increased in serum of obese humans and mice and most studies suggest that this protein protects from inflammation in metabolic diseases. Current data show that galectin-3 is markedly elevated in the liver, subcutaneous and intra-abdominal fat depots of mice fed a high fat diet and ob/ob mice. Galectin-3 is also increased in brown adipose tissues of these animals and immunohistochemistry confirms higher levels in adipocytes. Raised galectin-3 in obese white adipocytes has been described in the literature and regulation of adipocyte galectin-3 by metabolites with a role in obesity has been analyzed. Galectin-3 is expressed in 3T3-L1 fibroblasts and human preadipocytes and is modestly induced in mature adipocytes. In 3T3-L1 adipocytes galectin-3 is localized in the cytoplasm and is also detected in cell supernatants. Glucose does not alter soluble galectin-3. Lipopolysaccharide has no effect while TNF reduces and IL-6 raises this lectin in cell supernatants. Palmitate and oleate modestly elevate soluble galectin-3. Differentiation of 3T3-L1 cells in the presence of 100 μM and 200 μM linoleate induces soluble galectin-3 and cellular levels are upregulated by the higher concentration. Current data suggest that free fatty acids and IL-6 increase galectin-3 in adipocytes and thereby may contribute to higher levels in obesity.

  7. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues.

  8. Microsomal Triglyceride Transfer Protein (MTP Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Joseph D Love

    Full Text Available Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP, a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1 MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2 As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3 Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4 MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.

  9. Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice

    Directory of Open Access Journals (Sweden)

    Dionysios V. Chartoumpekis

    2015-07-01

    Conclusions: Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for therapeutic interventions in metabolic disease.

  10. Phytochemicals and regulation of the adipocyte life cycle.

    Science.gov (United States)

    Rayalam, Srujana; Della-Fera, Mary Anne; Baile, Clifton A

    2008-11-01

    Natural products have potential for inducing apoptosis, inhibiting adipogenesis and stimulating lipolysis in adipocytes. The objective of this review is to discuss the adipocyte life cycle and various dietary bioactives that target different stages of adipocyte life cycle. Different stages of adipocyte development include preadipocytes, maturing preadipocytes and mature adipocytes. Various dietary bioactives like genistein, conjugated linoleic acid (CLA), docosahexaenoic acid, epigallocatechin gallate, quercetin, resveratrol and ajoene affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted monotherapy has resulted in lack of success. Thus, targeting several signal transduction pathways simultaneously with multiple natural products to achieve additive or synergistic effects might be an appropriate approach to address obesity. We have previously reported two such combinations, namely, ajoene+CLA and vitamin D+genistein. CLA enhanced ajoene-induced apoptosis in mature 3T3-L1 adipocytes by synergistically increasing the expression of several proapoptotic factors. Similarly, genistein potentiated vitamin D's inhibition of adipogenesis and induction of apoptosis in maturing preadipocytes by an enhanced expression of VDR (vitamin D receptor) protein. These two examples indicate that combination therapy employing compounds that target different stages of the adipocyte life cycle might prove beneficial for decreasing adipose tissue volume by inducing apoptosis or by inhibiting adipogenesis or both.

  11. Obesity Beige adipocytes-will they beat obesity?

    DEFF Research Database (Denmark)

    Sandholt, Camilla H.; Pedersen, Oluf.

    2015-01-01

    The mechanistic link between the FTO locus and risk of obesity has remained elusive. However, a new study presents compelling evidence suggesting that the browning of white adipocytes into beige adipocytes (together with regulation of thermogenesis), might be an important and potentially modifiable...... pathway for development of obesity therapeutics....

  12. Sexual differentiation of the brain requires perinatal kisspeptin-GnRH neuron signaling.

    Science.gov (United States)

    Clarkson, Jenny; Busby, Ellen R; Kirilov, Milen; Schütz, Günther; Sherwood, Nancy M; Herbison, Allan E

    2014-11-12

    Sex differences in brain function underlie robust differences between males and females in both normal and disease states. Although alternative mechanisms exist, sexual differentiation of the male mammalian brain is initiated predominantly by testosterone secreted by the testes during the perinatal period. Despite considerable advances in understanding how testosterone and its metabolite estradiol sexually differentiate the brain, little is known about the mechanism that generates the male-specific perinatal testosterone surge. In mice, we show that a male-specific activation of GnRH neurons occurs 0-2 h following birth and that this correlates with the male-specific surge of testosterone occurring up to 5 h after birth. The necessity of GnRH signaling for the sexually differentiating effects of the perinatal testosterone surge was demonstrated by the persistence of female-like brain characteristics in adult male, GnRH receptor knock-out mice. Kisspeptin neurons have recently been identified to be potent, direct activators of GnRH neurons. We demonstrate that a population of kisspeptin neurons appears in the preoptic area of only the male between E19 and P1. The importance of kisspeptin inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a normal neonatal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspeptin receptor was deleted selectively from GnRH neurons. These observations demonstrate the necessity of perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inputs to GnRH neurons are essential for this process to occur.

  13. Lamin A/C Is Required for ChAT-Dependent Neuroblastoma Differentiation.

    Science.gov (United States)

    Guglielmi, Loredana; Nardella, Marta; Musa, Carla; Iannetti, Ilaria; Arisi, Ivan; D'Onofrio, Mara; Storti, Andrea; Valentini, Alessandra; Cacci, Emanuele; Biagioni, Stefano; Augusti-Tocco, Gabriella; D'Agnano, Igea; Felsani, Armando

    2016-05-25

    The mouse neuroblastoma N18TG2 clone is unable to differentiate and is defective for the enzymes of the biosynthesis of neurotransmitters. The forced expression of choline acetyltransferase (ChAT) in these cells results in the synthesis and release of acetylcholine (Ach) and hence in the expression of neurospecific features and markers. To understand how the expression of ChAT triggered neuronal differentiation, we studied the differences in genome-wide transcription profiles between the N18TG2 parental cells and its ChAT-expressing 2/4 derived clone. The engagement of the 2/4 cells in the neuronal developmental program was confirmed by the increase of the expression level of several differentiation-related genes and by the reduction of the amount of transcripts of cell cycle genes. At the same time, we observed a massive reorganization of cytoskeletal proteins in terms of gene expression, with the accumulation of the nucleoskeletal lamina component Lamin A/C in differentiating cells. The increase of the Lmna transcripts induced by ChAT expression in 2/4 cells was mimicked treating the parental N18TG2 cells with the acetylcholine receptor agonist carbachol, thus demonstrating the direct role played by this receptor in neuron nuclei maturation. Conversely, a treatment of 2/4 cells with the muscarinic receptor antagonist atropine resulted in the reduction of the amount of Lmna RNA. Finally, the hypothesis that Lmna gene product might play a crucial role in the ChAT-dependent molecular differentiation cascade was strongly supported by Lmna knockdown in 2/4 cells leading to the downregulation of genes involved in differentiation and cytoskeleton formation and to the upregulation of genes known to regulate self-renewal and stemness.

  14. Featured Article: Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells

    Science.gov (United States)

    Ezquer, Fernando; Espinosa, Maximiliano; Arango-Rodriguez, Martha; Puebla, Carlos; Sobrevia, Luis; Conget, Paulette

    2015-01-01

    The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone’s canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes’ specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and

  15. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo.

    Science.gov (United States)

    Levay, Agata K; Peacock, Jacqueline D; Lu, Yinhui; Koch, Manuel; Hinton, Robert B; Kadler, Karl E; Lincoln, Joy

    2008-10-24

    Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.

  16. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  17. Requirement of Smad4-mediated signaling in odontoblast differentiation and dentin matrix formation

    Science.gov (United States)

    Yun, Chi-Young; Choi, Hwajung; You, Young-Jae; Yang, Jin-Young

    2016-01-01

    Dentin is the major part of tooth and formed by odontoblasts. Under the influence of the inner enamel epithelium, odontoblasts differentiate from ectomesenchymal cells of the dental papilla and secrete pre-dentin which then undergo mineralization into dentin. Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) signaling is essential for dentinogenesis; however, the precise molecular mechanisms remain unclear. To understand the role of TGF-β/BMP signaling in odontoblast differentiation and dentin formation, we generated mice with conditional ablation of Smad4, a key intracellular mediator of TGF-β/BMP signaling, using Osr2 or OC-Cre mice. Here we found the molars of Osr2CreSmad4 mutant mice exhibited impaired odontoblast differentiation, and normal dentin was replaced by ectopic bone-like structure. In Osr2CreSmad4 mutant mice, cell polarity of odontoblast was lost, and the thickness of crown dentin was decreased in later stage compared to wild type. Moreover, the root dentin was also impaired and showed ectopic bone-like structure similar to Osr2CreSmad4 mutant mice. Taken together, our results suggest that Smad4-dependent TGF-β/BMP signaling plays a critical role in odontoblast differentiation and dentin formation during tooth development. PMID:27722013

  18. Syndecan-1 is required to maintain intradermal fat and prevent cold stress.

    Directory of Open Access Journals (Sweden)

    Ildiko Kasza

    2014-08-01

    Full Text Available Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1-/- intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology.

  19. Intracellular mechanisms coupled to NPY Y2 and Y5 receptor activation and lipid accumulation in murine adipocytes.

    Science.gov (United States)

    Rosmaninho-Salgado, Joana; Cortez, Vera; Estrada, Marta; Santana, Magda M; Gonçalves, Alexandra; Marques, Ana Patrícia; Cavadas, Cláudia

    2012-12-01

    The formation of adipose tissue is a process that includes the pre-adipocyte proliferation and differentiation to adipocytes that are cells specialized in lipid accumulation. The adipocyte differentiation is a process driven by the coordinated expression of various transcription factors, such as peroxisome proliferator-activated receptor (PPAR-γ). Neuropeptide Y (NPY) induces adipocyte proliferation and differentiation but the NPY receptors and the intracellular pathways involved in these processes are still not clear. In the present work we studied the role of NPY receptors and the intracellular pathways involved in the stimulatory effect of NPY on lipid accumulation. The murine pre-adipocyte cell line, 3T3-L1, was used as a cell model. Adipogenesis was evaluated by quantifying lipid accumulation by Oil red-O assay and by analyzing PPAR-γ expression using the Western blotting assay. Adipocytes were incubated with NPY (100nM) and a decrease on lipid accumulation and PPAR-γ expression was observed in the presence of NPY Y(2) receptor antagonist (BIIE0246, 1μM) or NPY Y(5) antagonist. Furthermore, NPY Y(2) (NPY(3-36), 100nM) or NPY Y(5) (NPY(19-23)(GLY(1), Ser(3), Gln(4), Thr(6), Ala(31), Aib(32), Gln(34)) PP, 100nM) receptor agonists increased lipid accumulation and PPAR-γ expression. We further investigate the intracellular pathways associated with NPY Y(2) and NPY Y(5) receptor activation. Our results show NPY induces PPAR-γ expression and lipid accumulation through NPY Y(2) and NPY Y(5) receptors activation. PKC and PLC inhibitors inhibit lipid accumulation induced by NPY Y(5) receptor agonist. Moreover, our results suggest that lipid accumulation induced by NPY Y(2) receptor activation occurs through PKA, MAPK and PI3K pathways. In conclusion, this study contributes to a step forward on the knowledge of intracellular mechanisms associated with NPY receptors activation on adipocytes and contributes to a better understanding and the development of new

  20. Regulation of vascular tone by adipocytes

    Directory of Open Access Journals (Sweden)

    Van de Voorde Johan

    2011-03-01

    Full Text Available Abstract Recent studies have shown that adipose tissue is an active endocrine and paracrine organ secreting several mediators called adipokines. Adipokines include hormones, inflammatory cytokines and other proteins. In obesity, adipose tissue becomes dysfunctional, resulting in an overproduction of proinflammatory adipokines and a lower production of anti-inflammatory adipokines. The pathological accumulation of dysfunctional adipose tissue that characterizes obesity is a major risk factor for many other diseases, including type 2 diabetes, cardiovascular disease and hypertension. Multiple physiological roles have been assigned to adipokines, including the regulation of vascular tone. For example, the unidentified adipocyte-derived relaxing factor (ADRF released from adipose tissue has been shown to relax arteries. Besides ADRF, other adipokines such as adiponectin, omentin and visfatin are vasorelaxants. On the other hand, angiotensin II and resistin are vasoconstrictors released by adipocytes. Reactive oxygen species, leptin, tumour necrosis factor α, interleukin-6 and apelin share both vasorelaxing and constricting properties. Dysregulated synthesis of the vasoactive and proinflammatory adipokines may underlie the compromised vascular reactivity in obesity and obesity-related disorders.

  1. The dietary fatty acid 10E12Z-CLA induces epiregulin expression through COX-2 dependent PGF(2α) synthesis in adipocytes.

    Science.gov (United States)

    Belda, Benjamin J; Thompson, Jerry T; Sinha, Raghu; Prabhu, K Sandeep; Vanden Heuvel, John P

    2012-10-01

    Conjugated linoleic acids (CLAs) are a group of dietary fatty acids that are widely marketed as weight loss supplements. The isomer responsible for this effect is the trans-10, cis-12 CLA (10E12Z-CLA) isomer. 10E12Z-CLA treatment during differentiation of 3T3-L1 adipocytes induces expression of prostaglandin-endoperoxide synthase-2 (Cyclooxygenase-2; COX-2). This work demonstrates that COX-2 is also induced in fully differentiated 3T3-L1 adipocytes after a single treatment of 10E12Z-CLA at both the mRNA (20-40 fold) and protein level (7 fold). Furthermore, prostaglandin (PG)F(2α), but not PGE(2), is significantly increased 10 fold. In female BALB/c mice fed 0.5% 10E12Z-CLA for 10 days, COX-2 was induced in uterine adipose (2 fold). In vitro, pharmacological COX-2 inhibition did not block the effect of 10E12Z-CLA on adipocyte-specific gene expression although PGF(2α) was dose-dependently decreased. These studies demonstrate that PGF(2α) was not by itself responsible for the reduction in adipocyte character due to 10E12Z-CLA treatment. However, PGF(2α), either exogenously or endogenously in response to 10E12Z-CLA, increased the expression of the potent mitogen and epidermal growth factor (EGF) receptor (EGFR) ligand epiregulin in 3T3-L1 adipocytes. Blocking PGF(2α) signaling with the PGF(2α) receptor (FP) antagonist AL-8810 returned epiregulin mRNA levels back to baseline. Although this pathway is not directly responsible for adipocyte dependent gene expression, these results suggest that this signaling pathway may still have broad effect on the adipocyte and surrounding cells.

  2. White Tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre-adipocytes

    Directory of Open Access Journals (Sweden)

    Wenck Horst

    2009-05-01

    Full Text Available Abstract Background The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes. Methods For our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human preadipocytes we investigated White Tea extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. In vitro studies on human adipocytes were performed aiming to elucidate the efficacy of White Tea extract solution to stimulate lipolytic activity. To characterize White Tea extract solution-mediated effects on a molecular level, we analyzed gene expression of essential adipogenesis-related transcription factors by qRT-PCR and determined the expression of the transcription factor ADD1/SREBP-1c on the protein level utilizing immunofluorescence analysis. Results Our data show that incubation of preadipocytes with White Tea extract solution significantly decreased triglyceride incorporation during adipogenesis in a dose-dependent manner (n = 10 without affecting cell viability (n = 10. These effects were, at least in part, mediated by EGCG (n = 10, 50 μM. In addition, White Tea extract solution also stimulated lipolytic activity in adipocytes (n = 7. Differentiating preadipocytes cultivated in the presence of 0.5% White Tea extract solution showed a decrease in PPARγ, ADD1/SREBP-1c, C/EBPα and C/EBPδ mRNA levels. Moreover, the expression of the transcription factor ADD1/SREBP-1c was not only decreased on the mRNA but also on the protein level. Conclusion White Tea extract is a natural source that effectively inhibits adipogenesis and stimulates lipolysis-activity. Therefore, it can be utilized to

  3. Increased 4-hydroxynonenal formation contributes to obesity-related lipolytic activation in adipocytes.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Oxidative stress in adipose tissue plays an etiological role in a variety of obesity-related metabolic disorders. We previously reported that increased adipose tissue 4-hydroxynonenal (4-HNE contents contributed to obesity-related plasma adiponectin decline in mice. In the present study, we investigated the effects of intracellular 4-HNE accumulation on lipolytic response in adipocytes/adipose tissues and underlying mechanisms. In both fully-differentiated 3T3-L1 and primary adipocytes, a 5-hour 4-HNE exposure elevated lipolytic reaction in a dose-dependent manner at both basal and isoproterenol-stimulated conditions, evidenced by significantly increased glycerol and fatty acids releases. This conclusion was corroborated by the comparable observations when the minced human visceral adipose tissues were used. Mechanistic investigations revealed that 4-HNE-stimulated lipolytic activation is multifactorial. 4-HNE exposure quickly increased intracellular cyclic AMP (cAMP level, which was concomitant with increased phosphorylations of protein kinase A (PKA and its direct downstream target, hormone sensitive lipase (HSL. Pre-incubation with H89, a potent PKA inhibitor, prevented 4-HNE stimulated glycerol release, suggesting that enhanced lipolytic action in response to 4-HNE increase is mediated mainly by cAMP/PKA signal pathway in adipocytes. In addition to activating cAMP/PKA/HSL pathway, 4-HNE exposure also suppresses AMP-activated protein kinase (AMPK, a suppressive pathway for lipolysis, measured by both Western blotting for phosphorylated form of AMPK and ELISA for enzyme activity. Furthermore, 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR, a pharmacological AMPK activator, alleviated 4-HNE-induced lipolysis, suggesting that AMPK suppression also contributes to 4-HNE elicited lipolytic response. In conclusion, our findings indicate that increased intracellular 4-HNE accumulation in adipocytes/adipose tissues contributes to

  4. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes.

    Science.gov (United States)

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-Hui

    2015-02-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO(-) inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO(-) mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes.

  5. Luteolin suppresses TCDD-induced wasting syndrome in a cultured adipocyte model.

    Science.gov (United States)

    Ashida, Hitoshi; Harada, Kiyonari; Mishima, Sakiho; Mitani, Takakazu; Yamashita, Yoko; Matsumura, Fumio

    2015-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various toxic effects, including wasting syndrome, through activation of an aryl hydrocarbon receptor (AhR). Our previous report demonstrated that certain flavonoids inhibit the activation of AhR and suppress its DNA binding activity. In this study, we searched for an active compound among 13 flavonoids that suppressed TCDD-induced loss of lipid accumulation using 3T3-L1 adipocytes as a cell culture model for wasting syndrome. Two flavonoids, luteolin and epigallocatechin gallate, suppressed TCDD-induced loss of lipid accumulation in this model. We further investigated luteolin to clarify the underlying molecular mechanism and confirmed that luteolin inhibited nuclear translocation of AhR caused by TCDD. Luteolin also inhibited the TCDD-driven decrease in protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Although TCDD alone did not change protein expression of C/EBPβ and C/EBPδ, luteolin and TCDD up-regulated C/EBPδ expression in a dose-dependent manner. On the other hand, TCDD significantly decreased DNA binding of C/EBPβ and C/EBPδ, and luteolin completely canceled TCDD-decreased DNA binding of them. We conclude that luteolin suppresses the TCDD-induced loss of lipid accumulation in 3T3-L1 adipocytes by preventing a decrease in protein expression of PPARγ and C/EBPα, the master regulators of adipocyte differentiation and in DNA binding of C/EBPβ and C/EBPδ. Moreover, luteolin was rapidly incorporated and accumulated in 3T3-L1 adipocytes. Thus, luteolin is an attractive compound for the prevention of TCDD-induced wasting syndrome.

  6. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  7. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation.

    Directory of Open Access Journals (Sweden)

    Grace Ramena

    Full Text Available CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT. To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1 and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS. The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.

  8. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brandan, Enrique, E-mail: ebrandan@bio.puc.cl [Centro de Regulacion Celular y Patologia, Centro de Regeneracion y Envejecimiento (CARE), Departamento de Biologia Celular y Molecular, MIFAB, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  9. File list: Pol.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.Brown_adipocytes.bed ...

  10. File list: Oth.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.White_adipocytes mm9 TFs and others Adipocyte White adipocytes SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.White_adipocytes.bed ...

  11. File list: Unc.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Brown_adipocytes.bed ...

  12. File list: Pol.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Brown_adipocytes.bed ...

  13. File list: NoD.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.White_adipocytes mm9 No description Adipocyte White adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.White_adipocytes.bed ...

  14. File list: NoD.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.White_adipocytes mm9 No description Adipocyte White adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.White_adipocytes.bed ...

  15. File list: Oth.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.White_adipocytes mm9 TFs and others Adipocyte White adipocytes SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.White_adipocytes.bed ...

  16. File list: Oth.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX800019,SRX978691,SRX978690,SRX978689,SRX978688 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Brown_adipocytes.bed ...

  17. File list: Oth.Adp.05.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...968,SRX760970,SRX760967,SRX760971,SRX760969 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.05.AllAg.Pre-adipocytes.bed ...

  18. File list: ALL.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.20.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X800018,SRX800019,SRX185797,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.20.AllAg.Brown_adipocytes.bed ...

  19. File list: ALL.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.05.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X185879,SRX978689,SRX978688,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.05.AllAg.Brown_adipocytes.bed ...

  20. File list: NoD.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Brown_adipocytes.bed ...

  1. File list: InP.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.White_adipocytes mm9 Input control Adipocyte White adipocytes SRX9...97757,SRX821799,SRX821801,SRX821800,SRX268023 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.White_adipocytes.bed ...

  2. File list: InP.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX4...78163,SRX143805,SRX185879 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Brown_adipocytes.bed ...

  3. File list: InP.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.White_adipocytes mm9 Input control Adipocyte White adipocytes SRX2...68023,SRX997757,SRX821800,SRX821801,SRX821799 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.White_adipocytes.bed ...

  4. File list: Unc.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Brown_adipocytes.bed ...

  5. File list: Oth.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX800014,SRX978690,SRX978689,SRX978688,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Brown_adipocytes.bed ...

  6. File list: Pol.Adp.10.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.White_adipocytes mm9 RNA polymerase Adipocyte White adipocytes SRX...800011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.White_adipocytes.bed ...

  7. File list: Oth.Adp.20.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...967,SRX760968,SRX760971,SRX760969,SRX760970 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.20.AllAg.Pre-adipocytes.bed ...

  8. File list: Oth.Adp.50.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...967,SRX760968,SRX760971,SRX760969,SRX760970 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.50.AllAg.Pre-adipocytes.bed ...

  9. File list: NoD.Adp.20.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.White_adipocytes mm9 No description Adipocyte White adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.White_adipocytes.bed ...

  10. File list: His.Adp.05.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760966,SRX...760963,SRX760964,SRX760965,SRX760962 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.05.AllAg.Pre-adipocytes.bed ...

  11. File list: His.Adp.10.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760965,SRX...760962,SRX760966,SRX760964,SRX760963 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.10.AllAg.Pre-adipocytes.bed ...

  12. File list: Pol.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Brown_adipocytes.bed ...

  13. File list: InP.Adp.05.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.White_adipocytes mm9 Input control Adipocyte White adipocytes SRX9...97757,SRX821800,SRX821801,SRX268023,SRX821799 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.White_adipocytes.bed ...

  14. File list: Unc.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Brown_adipocytes.bed ...

  15. File list: Oth.Adp.10.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Pre-adipocytes hg19 TFs and others Adipocyte Pre-adipocytes SRX760...968,SRX760967,SRX760971,SRX760969,SRX760970 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Adp.10.AllAg.Pre-adipocytes.bed ...

  16. File list: His.Adp.50.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760966,SRX...760964,SRX760963,SRX760965,SRX760962 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.50.AllAg.Pre-adipocytes.bed ...

  17. File list: ALL.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.10.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X978688,SRX800019,SRX478163,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.10.AllAg.Brown_adipocytes.bed ...

  18. File list: Oth.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX978688,SRX800015,SRX800014,SRX800018,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Brown_adipocytes.bed ...

  19. File list: Unc.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Brown_adipocytes mm9 Unclassified Adipocyte Brown adipocytes SRX97...8685,SRX800022 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Brown_adipocytes.bed ...

  20. File list: Pol.Adp.50.AllAg.White_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.White_adipocytes mm9 RNA polymerase Adipocyte White adipocytes SRX...800011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.White_adipocytes.bed ...

  1. File list: Pol.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Brown_adipocytes mm9 RNA polymerase Adipocyte Brown adipocytes SRX...800010,SRX800016,SRX800017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Brown_adipocytes.bed ...

  2. File list: Oth.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Brown_adipocytes mm9 TFs and others Adipocyte Brown adipocytes SRX...RX978689,SRX800015,SRX800014,SRX800018,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Brown_adipocytes.bed ...

  3. File list: ALL.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adp.50.AllAg.Brown_adipocytes mm9 All antigens Adipocyte Brown adipocytes SRX80...X800019,SRX185797,SRX478163,SRX478162 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Adp.50.AllAg.Brown_adipocytes.bed ...

  4. File list: His.Adp.20.AllAg.Pre-adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Pre-adipocytes hg19 Histone Adipocyte Pre-adipocytes SRX760962,SRX...760966,SRX760963,SRX760965,SRX760964 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Adp.20.AllAg.Pre-adipocytes.bed ...

  5. File list: NoD.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Brown_adipocytes.bed ...

  6. File list: InP.Adp.20.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX1...85879,SRX143805,SRX478163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Brown_adipocytes.bed ...

  7. File list: NoD.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Brown_adipocytes.bed ...

  8. File list: InP.Adp.10.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX1...43805,SRX185879,SRX478163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.10.AllAg.Brown_adipocytes.bed ...

  9. File list: NoD.Adp.05.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Brown_adipocytes mm9 No description Adipocyte Brown adipocytes htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Brown_adipocytes.bed ...

  10. File list: InP.Adp.50.AllAg.Brown_adipocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Brown_adipocytes mm9 Input control Adipocyte Brown adipocytes SRX1...85879,SRX143805,SRX478163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Brown_adipocytes.bed ...

  11. Expression Pattern and Regulatory Role of microRNA-23a in Conjugated Linoleic Acids-Induced Apoptosis of Adipocytes

    Directory of Open Access Journals (Sweden)

    Renli Qi

    2016-11-01

    Full Text Available Background/Aims: Conjugated linoleic acids (CLAs are known to induce apoptosis in adipocytes; however, the cellular mechanisms involved remained illdefined. We explored the different apoptotic induction effects of two CLA isomers on adipocytes and then investigated the expression and function of microRNAs (miRNAs related to the apoptosis. Methods: TUNEL and FCM assays were used to detect CLAs-induced adipocyte apoptosis. Microarrays were used to compare the differential expression of miRNAs. MiR-23a, a miRNA that showed significant changes in expression in the CLA-treated cells, was selected for the subsequent functional studies via over-expression and knock down in in vivo and in vitro experiments. Results: C9, t11-CLA exhibited a stronger induction of apoptosis in the differentiated 3T3-L1 adipocytes than t10, c12-CLA. However, t10, c12-CLA could rapidly activate NF-κB, which may have caused their different apoptotic effects. MiR-23a was markedly down-regulated by the CLAs treatment and miR-23a over-expression attenuated CLA-induced apoptosis. Apoptosis protease-activating factor 1 (APAF1 was identified as a target gene of miR-23a. In an in vivo experiment endogenous miR-23a was down-regulated in mice fed with a mixture of both CLAs. The mice also exhibited less fat deposition and more apoptotic fat cells in adipose tissue. Moreover, endogenous miR-23a was suppressed in mice via intravenous injection with an antagomir which resulted in decreased body weight, increased number of apoptotic fat cells and increased APAF1 expression in adipose tissue. Conclusion: Taken together, our results suggest that miR-23a plays a critical role in CLA-induced apoptosis in adipocytes via controlling APAF1 expression.

  12. Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice.

    Science.gov (United States)

    Vishvanath, Lavanya; MacPherson, Karen A; Hepler, Chelsea; Wang, Qiong A; Shao, Mengle; Spurgin, Stephen B; Wang, Margaret Y; Kusminski, Christine M; Morley, Thomas S; Gupta, Rana K

    2016-02-01

    The expansion of white adipose tissue (WAT) in obesity involves de novo differentiation of new adipocytes; however, the cellular origin of these cells remains unclear. Here, we utilize Zfp423(GFP) reporter mice to characterize adipose mural (Pdgfrβ(+)) cells with varying levels of the preadipocyte commitment factor Zfp423. We find that adipose tissue contains distinct mural populations, with levels of Zfp423 distinguishing adipogenic from inflammatory-like mural cells. Using our "MuralChaser" lineage tracking system, we uncover adipose perivascular cells as developmental precursors of adipocytes formed in obesity, with adipogenesis and precursor abundance regulated in a depot-dependent manner. Interestingly, Pdgfrβ(+) cells do not significantly contribute to the initial cold-induced recruitment of beige adipocytes in WAT; it is only after prolonged cold exposure that these cells differentiate into beige adipocytes. These results provide genetic evidence for a mural cell origin of white adipocytes in obesity and suggest that beige adipogenesis may originate from multiple sources.

  13. Anti-obesity effects of Arctii Fructus (Arctium lappa) in white/brown adipocytes and high-fat diet-induced obese mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Park, Jinbong; Jeong, Mi-Young; Mun, Jung-Geon; Park, Sung-Joo; Lee, Jong-Hyun; Um, Jae-Young; Hong, Seung-Heon

    2016-12-07

    Arctii Fructus is traditionally used in oriental pharmacies as an anti-inflammatory medicine. Although several studies have shown its anti-inflammatory effects, there have been no reports on its use in obesity related studies. In this study, the anti-obesity effect of Arctii Fructus was investigated in high-fat diet (HFD)-induced obese mice, and the effect was confirmed in white and primary cultured brown adipocytes. Arctii Fructus inhibited weight gain and reduced the mass of white adipose tissue in HFD-induced obese mice. Serum levels of triglyceride and LDL-cholesterol were reduced, and HDL-cholesterol was increased in the Arctii Fructus treated group. In 3T3-L1 cells, a water extract (WAF) and 70% EtOH extract (EtAF) of Arctii Fructus significantly inhibited adipogenesis and suppressed the expression of proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha. In particular, EtAF activated the phosphorylation of AMP-activated protein kinase. On the other hand, uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, known as brown adipocytes specific genes, were increased in primary cultured brown adipocytes by WAF and EtAF. This study shows that Arctii Fructus prevents the development of obesity through the inhibition of white adipocyte differentiation and activation of brown adipocyte differentiation which suggests that Arctii Fructus could be an effective therapeutic for treating or preventing obesity.

  14. Female adipocyte androgen synthesis and the effects of insulin

    Directory of Open Access Journals (Sweden)

    David Cadagan

    2014-01-01

    Full Text Available The metabolic syndrome is a cluster of metabolic disorders characterized by insulin resistance and hyperinsulinaemia, and its presence can increase the risk of cardiovascular disease significantly. The metabolic syndrome is associated with increased circulating androgen levels in women, which may originate from the ovaries and adrenal glands. Adipocytes are also able to synthesise steroid hormones, and this output has been hypothesised to increase with elevated insulin plasma concentrations. However, the contribution of the adipocytes to the circulating androgen levels in women with metabolic syndrome is limited and the effects of insulin are not fully understood. The aim of this study was to investigate the presence of steroid precursors and synthetic enzymes in human adipocyte biopsies as markers of possible adipocyte androgen synthesis. We examined pre and mature adipocytes taken from tissue biopsies of abdominal subcutaneous adipose tissue of participating women from the Department of Obstetrics and Gynaecology, of the Royal Derby Hospital. The results showed the potential for localised adipocyte androgen synthesis through the presence of the androgen precursor progesterone, as well as the steroid-converting enzyme 17α-hydroxylase. Furthermore, we found the controlled secretion of androstenedione in vitro and that insulin treatment caused levels to increase. Continued examination of a localised source of androgen production is therefore of clinical relevance due to its influence on adipocyte metabolism, its negative impact on female steroidogenic homeostasis, and the possible aggravation this may have when associated to obesity and obesity related metabolic abnormalities such as hyperinsulinaemia.

  15. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  16. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  17. Dicer is required for haploid male germ cell differentiation in mice.

    Directory of Open Access Journals (Sweden)

    Hanna M Korhonen

    Full Text Available BACKGROUND: The RNase III endonuclease Dicer is an important regulator of gene expression that processes microRNAs (miRNAs and small interfering RNAs (siRNAs. The best-characterized function of miRNAs is gene repression at the post-transcriptional level through the pairing with mRNAs of protein-encoding genes. Small RNAs can also act at the transcriptional level by controlling the epigenetic status of chromatin. D